DOCKETED				
Docket Number:	14-AAER-02			
Project Title:	Computer, Computer Monitors, and Electronic Displays			
TN #:	204320			
Document Title:	Title:Pierre Delforge Comments: NRDC - April 15 2015 Computer Workshop Presentation - Revised			
Description:	N/A			
Filer:	System			
Organization:	Pierre Delforge			
Submitter Role:	itter Role: Public			
Submission Date:	4/23/2015 12:01:32 PM			
Docketed Date:	4/23/2015			

Comment Received From: Pierre Delforge Submitted On: 4/23/2015 Docket Number: 14-AAER-02

NRDC - April 15 2015 Computer Workshop Presentation - Revised

This is a revision of the version presented at the April 15 workshop: slide 7 was updated to reflected the correct allowance proposed for desktops in CEC's staff proposal.

Additional submitted attachment is included below.

CEC COMPUTER EFFICIENCY STANDARDS

APRIL 15, 2015

Computers and displays are responsible for 4-5% of electricity use in California

Computers, monitors, displays energy use in California

	CEC Staff Proposal	8,282 GWh/y	\sim	
	EIA - Miscellaneous Electric Loads - 2013 ¹	12,125 GWh/y	Д	4-5 power plants
A w	ctual energy use could be eve hen adjusted for real-usage ²	n higher,	CO ₂	4-5 MMT CO2/y
	Desktop	+ 15%		• • • • • • •
	Integrated Desktop	+ 25%	0 10 0	\$1.5-2 billion/y
	Notebook	+ 40%		

- 1. http://www.eia.gov/analysis/studies/demand/miscelectric/pdf/miscelectric.pdf
- 2. CA IOUs, Real World Adjustment Factor, Oct 2014 CASE report addendum, Docket #12-AAER-2A

LARGE ENERGY SAVING POTENTIAL WITH EXISTING TECHNOLOGY

Large efficiency gap between computer form factors

Battery-powered devices of similar capabilities and price have radically lower power use

Source: Fraunhofer 2014, plus real-world adjustment factor.

Much progress made on low-power technology since previous standards

Recent efficiency technology	ENERGY STAR v6, EU Ecodesign Tier 1 (2010-2012 computers)
 Low-power processor states (C6/C7) 	Not available
 Motherboard switches off inactive components 	 Components remain on throughout idle mode
 Peripheral interface PCIe L1.2 sub-state 	Not available
 Graphics switching on desktop (switch to integrated gfx for low- intensity gfx tasks) 	 Notebooks only
 Right-sized and efficient power supplies 	 Minimum efficiency requirements, but many still oversized
 "Keystroke sleep" (real-time power management) 	 15-min power management

Today's mainstream desktops capable of achieving CEC proposal with minor changes

Aggios demonstration project:

- Reduced power by 54-61% from out-of-the-box configuration
- Through power management software, BIOS and OS configuration changes, and inexpensive power supply upgrade
- No impact on latency or performance

Integrated Desktops: significant energy saving potential beyond current CEC proposal

iMac 35% lower than proposed CEC limit, HP EliteOne 22% lower, <u>without optimizations</u>

- (1) HP model has higher adders than the iMac
- (2) Both computers in ENERGY STAR I3 performance category, and have same screen size

Notebooks: very large energy saving potential beyond current CEC proposal

MacBook Pro 78% lower than proposed CEC limit

- (1) Both laptops in ENERGY STAR I2 performance category, and have same screen size
- (2) MacBook Pro has higher adder due to higher resolution screen

Real-time power management: sleep between keystrokes

Smartphone- and tablet-like power management:

Apple's MacBook Pro manages power at millisecond level Goes to low-power "sleep mode" between keystrokes

Demonstrates technical feasibility of much lower levels for notebooks

© Apple computers

CEC's proposal is generally sound, technically feasible, very cost-effective

- Large energy saving opportunity: 1-2 power plants, \$430 million, 1-2 million tons CO2 in CA (much more nationally and globally)
- Performance-based: flexibility for industry to achieve levels
- ✓ Idle mode only: no impact on new features or performance in active mode

NRDC is committed to working with all stakeholders to make the standards work for all parties.

