DOCKETED	
Docket Number:	00-AFC-01C
Project Title:	Contra Costa Power Plant Project Compliance
TN #:	249375
Document Title:	Annual Compliance Report RY 2022 for the PG&E Gateway Generating Station
Description:	N/A
Filer:	Angel B. Espiritu
Organization:	PG&E Gateway Generating Station
Submitter Role:	Applicant Representative
Submission Date:	3/20/2023 3:37:46 PM
Docketed Date:	3/20/2023

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

March 20, 2023

Mr. John Heiser Compliance Project Manager California Energy Commission Siting, Transmission and Environmental Protection Division 1516 Ninth Street, MS-15 Sacramento, CA 95814

Reference:

PG&E Gateway Generating Station (00-AFC-01C)

Subject:

Annual Compliance Report for Reporting Period of January 2022 to

December 2022

Dear Mr. Heiser,

In compliance with the General Condition of Certification as set forth in the California Energy Commission's Final Decision for Pacific Gas and Electric Company Gateway Generating Station (GGS) pages 179-180, attached is the Annual Compliance Report for the reporting period of January 2022 to December 2022.

Included in this report are documents specifically required by Conditions of Certification SOILS&WATER-10, SOILS&WATER-4, HAZ-1, and SOILS&WATER-3, BIO-2 to be submitted along with the Annual Compliance Report and are attached herewith as Exhibits 3, 4, 5, 6, and 7, respectively. Also included in this report are updated compliance matrix, Project operating status, and statements of compliance with Conditions of Certifications VIS-1, and VIS-4.

If you have any questions regarding this report, please contact Angel Espiritu at (925) 522-7838, 510-861-1597 (m) or abe4@pge.com.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisolom

Attachments: a/s

Gateway Generating Station Project (00-AFC-1C)

Annual Compliance Report No. 14

(Reporting Period: January 2022 - December 2022)

March 30, 2023

Table of Contents

Annual Compliance Report

Introduction	1
Compliance Activities	
1. Compliance Matrix	1
2. Summary of Project Operating Status	
3. Documents Required by Specific Conditions	
4. Cumulative Listing of Post Certification Changes	
5. Missed Submittal Deadlines	
6. List of Filings/Permits	
7. Projected Compliance Activities for the Succeeding Year	
8. Listing of Year's Addition to On-site Compliance File	
9. Evaluation of On-site Contingency Plan	
10. Complaints, NOVs, and Citations	
List of Attachments	
1. Updated Compliance Matrix	Exhibit 1
2. Key Events List	
3. Water Use Summary (SOIL&WATER-10)	Exhibit 3
4. Semi-annual Self-Monitoring Reports to Delta Diablo District	
(SOIL&WATER-4)	Exhibit 4
5. HAZ-1 Appendix Ć Table 8.12-4 (HAZ-1), and Hazardous	
Materials Inventory as submitted to CUPA through CERS	Exhibit 5
6. Copy of Notice of Intent (NOI), AND Revised SWPPP to	
comply with the requirements of new	
Statewide Industrial General Permit	
(SOIL & WATER-3)	Exhibit 6
7. Biological Record Summaries (BIO-2)	Exhibit 7

Introduction

This document constitutes PG&E's Annual Compliance Report (ACR) for the Gateway Generating Station (GGS) Project. The information contained in this report covers the reporting period of January 2022 to December 2022 (RY 2022).

Compliance Activities

This section of the Annual Compliance Report focuses on PG&E's activities related to ensuring that compliance with all the Conditions of Certification, as specified in the California Energy Commission's Final Decision for the Gateway Generating Station Project, are achieved in a timely and satisfactory manner. The following information is provided per the requirements set forth on page 179 and 180 of the Final Decision, specifically General Conditions on Annual Compliance Report.

- Updated Compliance Matrix The compliance matrix has been updated for the reporting period to reflect the status of all conditions of certification. See the compliance matrix in Exhibit 1.
- Current Project Operating Status The PG&E Gateway Generating Station (GGS) achieved Plant Commercial Operation status on January 4, 2009. During the reporting period of January 2022 to December 2022, GGS continued its normal commercial operation activities. The Project key events list is included in Exhibit 2.
- Required Documents Submitted with This Report The Final Decision sets forth specific conditions, many of which include reporting requirements that must be addressed in the project's ACR. The following paragraphs provide the status of ongoing compliance activities that were completed during the reporting period:
 - 3.1 <u>SOIL&WATER-10</u> GGS utilized potable water, supplied by the City of Antioch. The Water Use Summary for RY 2022 is included in this report as **Exhibit 3**. Also included in Exhibit 3 is monthly water consumption invoices information from the City of Antioch. For RY 2022, it was observed that the total annual water usage based on the consumption invoices of 1,585,012 gallons was significantly lower than the metered wastewater discharges from the facility of

10,089,035 gallons. The GGS promptly reached out to the City of Antioch about this issue. The City of Antioch, in turn, conducted several visits to the facility to investigate the cause and later determined that the flowmeters were defective. These metering devices are owned, and maintained by the City of Antioch, which also does the servicing, testing, and calibration of the metering devices. In an attempt to provide a reasonable estimate of the total annual water usage, the GGS calculated the estimated monthly usage for RY 2022 based on the average of five-year historical data of monthly percentages of recorded wastewater discharges. This estimate accounts for the characteristic of monthly operational fluctuation in water usages/discharges. The detail of this calculation is also included in **Exhibit 3**. The total estimated water use for the reporting period is 52.59 AF (acre-feet).

- 3.2 VIS-1 The maintenance works on treatment of structures, buildings, and tanks at Gateway Generating Station (GGS) were performed on regular basis expeditiously. There are at least 3 separate routine plant inspections, which include among other items, the identification of treatment re-works on structures, buildings, and tanks. These are: (1) Semi-annual (Spring and Fall) Facility-wide Inspection by Safety Committee, (2) Weekly Plant Engineer's Walk-down, and (3) Daily Plant Technician's Walk-down Inspection. In each of these inspections, maintenance work is identified (as may be needed), and a job request notification is submitted. At GGS, there is Work Management (SAP) System which tracks job requests to ensure that works are completed in a timely manner.
- 3.3 <u>VIS-4</u> In compliance with the Condition of Certification VIS-4, GGS confirms that appropriate maintenance was performed to ensure continued establishment (of growth) of the planted trees and shrubs.

- A suitable drip irrigation system, equipped with automatic sprinkler timer, was installed and is in operation.
- SOIL&WATER-4 In compliance with Condition of Certification SOIL&WATER-4, attached in Exhibit 4a are copies of Quarterly Self-Monitoring Reports submitted to and received by the Delta Diablo (DD) on April 14, 2022, July 13, 2022, October 10, 2022, and January 12, 2023, to cover the reporting year (RY) 2021. Attached in Exhibit 4b is the status on agency citation. A Warning Notice from Delta Diablo Sanitation District dated December 30, 2022, but was received on January 4, 2023, regarding metal zinc monitoring parameter exceedance. After resampling result of below permit limit, no further compliance action was required by the District. No Notice of Violation (NOV) was received from DD during the reporting period.
- 3.5 <u>HAZ-1</u> In compliance with Condition of Certification HAZ-1, attached in **Exhibit 5** is Updated Table 8.12-4: Hazardous Materials to be Added at Gateway Generating Station During the Operational Phase (of the Project). Also, a copy of Annual (2023) Update on Hazardous Materials Inventory as submitted to Local CUPA (Contra Costa Health Services) through the California Environmental Reporting System (CERS) is attached.
- 3.6 <u>SOIL & WATER-3</u> In compliance with Condition of Certification SOIL & WATER-3, a copy of the correspondence with the State Water Resources Control Board, through SMARTS (Stormwater Application & Report Tracking Systems) on the most current NOI and Revised SWPPP to comply with the requirements of the Industrial General Permit (WQ Order No. 2014-0057-DWQ) is submitted with this ACR. (See **Exhibit 6**.)

- 3.7 <u>BIO-2</u> In compliance with Condition of Certification BIO-2, the biology record summaries of the tasks described in BIO-2 is submitted with this ACR. (See **Exhibit 7**)
- 4. Cumulative Listing of All Post-Certification Changes Approved by the CEC The following is a cumulative listing of all post-certification changes as approved by the CEC or cleared by the CPM.
 - 4.1 ORDER Approving Addition, of Pacific Gas and Electric Company as

 Co-Owner and Operator with Mirant Delta, LLC on the Gateway

 Power Plant Unit 8 Project Approved on July 19, 2006.
 - 4.2 Removing Mirant Delta LLC As A Co-Owner, And Changing the Name of The Project To The Gateway Generating Station Approved on January 3, 2008
 - 4.3 Order to Change Construction Work Hours and Noise-8 for the Gateway Generating Station – Approved on May 23, 2007
 - 4.4 Order Amending the Energy Commission Decision to Eliminate the use of San Joaquin River Water as the Cooling Water Source and Complete Ten Associated project design Changes Approved on August 1, 2007
 - 4.5 Order to Amend the Energy Commission Decision to Allow Use of Anhydrous Ammonia as the Refrigerant in the Inlet Air Chiller Approved on December 5, 2007.
 - 4.6 Order Approving a Petition to Amend the Energy Commission

 Decision to Allow Use of Two Additional Water Tanks January 2,

 2008
 - 4.7 <u>Petition for Insignificant Project Change -</u> On February 4, 2008, PG&E filed a request for an insignificant project change related to a modification to the route for the sewer line. The CEC approved PG&E's request on March 10, 2008.
 - 4.8 Approval of the Pacific Gas & Electric Company Petition to use a diesel fire pump engine and make other minor changes to Air Quality

- Conditions of Certification of the Energy Commission Decision for the Gateway Generating Station (Order Amending the CEC Decision to Modify Equipment & Change Air Quality Conditions of Certification) Approved August 26, 2009.
- 4.9 <u>Commission Adoption Order Adoption of the Proposed Decision of the Siting Committee on the Complaint for Noncompliance</u> Approved on February 17, 2010
- 4.10 Notice of Approval to Modify Gateway Generating Station Project:

 Petition for Insignificant Project Change to Plant Facility Approved on October 18, 2010
- 4.11 On May 27, 2010, the CEC (Mr. Joseph Douglas) approved AQ-SC-11 submittal on the Preliminary Compliance Review on the Authority to Construct Application for the Fire Pump Diesel Engine.
- 4.12 Order Approving a Petition to Modify Several Air Quality Conditions to reflect the Bay Area Management District current conditions and the Prevention of Significant Deterioration (PSD) Action, September 7, 2011.
- 4.13 <u>Notice of Decision by California Energy Commission</u> on: Amendment to Modify Several Air Quality Conditions to Reflect the (BAAQMD) current conditions and the Prevention of Significant Deterioration (PSD) Enforcement Actions, dated and posted: September 9, 2011.
- 4.14 <u>Storage of One Spare Generator Step-Up (GSU) Transformer,</u> January 26, 2012
- 4.15 <u>Notice of Determination on Petition to Install additional 40,000-gallon</u> Storage Tank, April 3, 2012
- 4.16 Approval of Project Change: to Install additional 40,000-gallon Storage Tank, April 19, 2012
- 4.17 Approval of Petition for Insignificant Project Change to Plant Facility:
 (a) to acquire the 29% aqueous ammonia system (from NRG, Inc.,
 (b) to install a new stainless steel above-ground aqueous ammonia delivery piping system, and (c) to build security fence around the aqueous ammonia system and remainder of the west side of facility

- property. Staff-level approval: April 9, 2013. A request to modify this petition to include installation of 2 gate structures (one for GGS and the other for NRG, Inc., was sent to CEC on October 23, 2013. The modification was approved on October 23, 2013. A second modification to install only one gate structure for GGS was sent to CEC on November 13, 2014. The second modification was approved on November 13, 2014.
- 4.18 <u>Approval of proposed stormwater BMP: Construction Work to Cover the Asphalt Drainage Ditch</u>: The request was submitted to CEC on October 14, 2013. The request was approved on October 14, 2013.
- 4.19 <u>Approval of proposed construction of additional turbine decking</u>: The request was submitted on May 23, 2014. The request was approved on September 15, 2014.
- 4.20 <u>Approval of proposed access stairs upgrades at three separate switchgear rooms</u>: The request was submitted on August 11, 2014. The request was approved on October 2, 2014.
- 4.21 Approval of proposed installation of fixed hydrogen tube bank at the south side of the facility: The request was submitted on December 5, 2014. The request was approved on March 19, 2015
- 4.22 Approval of proposed construction of additional grating-type decking on the east side of the steam turbine: The request was submitted on May 21, 2015. The request was approved on August 14, 2015.
- 4.23 <u>Approval of proposed construction of a temporary stormwater treatment system</u>. The request was submitted on August 26, 2016. The request was approved on December 22, 2016.
- 4.24 Response to a project change questionnaire for work to be conducted by PG&E Gas Department on natural gas pipelines located within the site parcel boundaries of Gateway Generating Station, RE: Removal and Replacement of Underground Natural Gas Pipelines at Gateway Generating Station. The questionnaire was submitted to CEC on January 24, 2019. The CEC responded on March 15, 2019. The CEC determined that the approval by the CEC is not required. However, the trees that would be impacted by the

- pipeline work would have to be replanted when the work is completed. This is to comply with the Condition of Certification VIS-4.
- 4.25 <u>Approval of Title IV Acid Rain Permit Renewal</u> -The Bay Area Air Quality Management District (BAAQMD) approved the Title IV Acid Rain permit renewal on September 3, 2020. A copy of this permit was submitted to the CEC CPM on September 7, 2020.
- 4.26 Approval of Title V Major Facility Review Permit Renewal The Bay Area Air Quality Management District (BAAQMD) approved the Title V Major Facility Review permit renewal on September 3, 2020. A copy of this permit was submitted to the CEC CPM on September 7, 2020.
- 5. Missed Submittal Deadline: None
- 6. Filings Submitted to / Permits Issued by Other Government Agencies During the Reporting Period - The following is a list of filings submitted to, or permits issued by other government agencies during the reporting period:
 - 6.1. January 10, 2022 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: October 2021 to December 2021
 - 6.2. January 27, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for December 2021
 - 6.3. January 27, 2022 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q4-2021Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
 - 6.4. January 27, 2022 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q4-2021 was submitted to CEC/BAAQMD
 - 6.5. January 27, 2022 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q4-2021 (Part 75 Compliance)

- 6.6. February 22, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for January 2022
- 6.7. February 28, 2022 GGS submitted to Contra Costa Health Services (CCHS) the Hazardous Materials Business Plan Annual Update for 2022, through the California Environmental Reporting System (CERS)
- 6.8. March 11, 2022 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Notification/Waiver Request on Visual Emission Evaluation for the earliest anticipated re-start date of March 20, 2022, on Unit-A and Unit-B.
- 6.9. March 11, 2022 (Condition of Certification AQ-29, AQ-30, AQ-31) GGS submitted to BAAQMD/CEC Source Test Report and 2022 Relative Accuracy Test Audit & Compliance Test Report. The tests were completed January 10-14, 2022
- 6.10. March 26, 2022 (Condition of Certification AQ-SC13) GGS submitted to BAAQMD/CEC the Report on Visual Emission Evaluation (VEE) for the VEE performed on March 20, 2022, on Unit A and Unit B.
- 6.11. March 28, 2022 (General Condition of Certification, pages 179-180): GGS submitted the Annual Compliance Report for RY 2021
- 6.12. March 29, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for February 2022
- 6.13. April 14, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for March 2022
- 6.14. April 14, 2022 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: January 2022 to March 2022
- 6.15. April 20, 2022 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q1-2022 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second

- Amended Compliance Decree (CV09-4503-SI)
- 6.16. April 20, 2022 GGS submitted to BAAQMD the Permit to Operate (PTO) Renewal Data update (2022-2023)
- 6.17. April 26, 2022 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q1-2022 (Part 75 Compliance)
- 6.18. April 26, 2022 GGS submitted to BAAQMD/CEC the Semi-annual Monitoring report for the period October 1, 2021, to March 31, 2022. This is to comply with Standard Condition F (Monitoring Report) of the Major Facility (Title V) Permit.
- 6.19. April 28, 2022 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q1 2022 was submitted to CEC/BAAQMD
- 6.20. May 19, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for April 2022
- 6.21. June 1, 2022 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the semi-annual report on the CO projected exceedance date. This is incompliance with the requirement of Paragraph 11 (1) of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.22. June 22, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for May 2022
- 6.23. June 30, 2022 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, the 2021-2022 Annual Report was submitted to Central Valley Regional Water Quality Control Board
- 6.24. July 13, 2022 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: April 2022 to June 2022
- 6.25. July13, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for June 2022

- 6.26. July 13, 2022 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the Q2-2022 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.27. July 21, 2022 GGS received the renewal on the Permit to Operate (PTO) from BAAQMD. The PTO expires on August 1, 2023
- 6.28. July 25, 2022 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q2-2022 (Part 75 Compliance)
- 6.29. July 25, 2022- (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q2 2022 was submitted to CEC/BAAQMD
- 6.30. July 28, 2022 GGS submitted to Contra Costa Health Services (CCHS) the Hazardous Materials Business Plan Interim Update through the California Environmental Reporting System (CERS)
- 6.31. August 24, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for July 2022
- 6.32. September 15, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for August 2022
- 6.33. September 27, 2022 GGS submitted to BAAQMD/EPA, and copied CEC, on the Annual Compliance Certification for the reporting period of September 1, 2021 to August 31, 2022 as required under permit condition I.G of the Major Facility Review (Title V) permit.
- 6.34. October 10, 2022 GGS submitted to DD the Quarterly Self-Monitoring Report and wastewater flow data for the period: July 2022 to September 2022
- 6.35. October 11, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for September 2022
- 6.36. October 19, 2022 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US

- EPA Regional Office IX, and copied to CEC the Q3-2022 Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.37. October 20, 2022 GGS submitted to EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q3-2022 (Part 75 Compliance)
- 6.38. October 24, 2022 (Condition of Certification AQ-14) Quarterly Air Compliance Report for Q3 2022 was submitted to CEC/BAAQMD
- 6.39. October 25, 2022 GGS submitted to BAAQMD/CEC the Semiannual Monitoring report for the period April 1, 2022, to September 30, 2022. This is to comply with Standard Condition F (Monitoring Report) of the Major Facility (Title V) Permit
- 6.40. November 10, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for October 2022
- 6.41. December 12, 2022 In compliance with the terms of the General Permit for Storm Water Associated with Industrial Activity, GGS submitted the analytical results for the sampling of the Qualified Storm Event (QSE) that occurred on November 8, 2022, in Storm Water Multiple Application and Report Tracking Systems (SMARTS)
- 6.42. December 20, 2022 (Conditions of Certification AQ-31) GGS submitted to BAAQMD and CEC the 2023 Annual RATA and Source Test Protocol for the proposed dates of January 9-13, 2023
- 6.43. December 21, 2022 GGS submitted to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the semi-annual report on the CO projected exceedance date. This is incompliance with the requirement of Paragraph 11 (1) of the Second Amended Compliance Decree (CV09-4503-SI)
- 6.44. December 22, 2022 (Condition of Certification AQ-33) GGS submitted to BAAQMD Monthly CEMS Report for November 2022
- 7. Projected Compliance Activities for Next Year (RY January 1, 2023 –

- **December 31, 2023)** The following is a list of compliance activities/documents that PG&E anticipates for the January 1, 2023, to December 31, 2023, reporting period:
- 7.1 (Condition of Certification AQ-14) Quarterly Air Compliance Reports will be submitted within 30 days after the reporting period
- 7.2 (Condition of Certification AQ-33) Monthly CEMS Reports will be submitted to BAAQMD within 30 days after the reporting period
- 7.3 (Air Quality Compliance) PG&E anticipates the issuance of Permit to Operate (PTO Annual Renewal) in August 2023
- 7.4 Quarterly Air Quality EDR reports to EPA due on January 30, 2023, April 30, 2023, July 30, 2023, and October 30, 2023
- 7.5 Quarterly Self-Monitoring Reports to DD due on January 15, 2023, April 15, 2023, July 15, 2023, and October 15, 2023
- 7.6 Quarterly Industrial Flow Data Report to DD due January 15, 2023, April 15, 2023, July 15, 2023, and October 15, 2023
- 7.7 Annual HMBP update due to CCHS on March 1, 2023
- 7.8 2022-2023 Annual Report to comply with General Permit for Storm Water Associated with Industrial Activity, due to Central Valley Regional Water Quality Control Board on July 15, 2023
- 7.9 Sampling results of all qualified storm events due to Central Valley Regional Water Quality Control Board within 30 days of receiving analytical results from laboratory
- 7.10 (Conditions of Certification AQ-30 and AQ-31) To submit to BAAQMD and CEC the Annual Source Test and RATA Plan for 2023
- 7.11 (Conditions of Certification AQ-29, AQ-30, AQ-31, and AQ-32) To submit to BAAQMD and CEC Source Test Report and 2023 Relative Accuracy Test Audit & Compliance Test Report within 60 days of test date.
- 7.12 To submit to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and

- copied to CEC the Quarterly Excess Emission Report in accordance with 40 CFR 60.7 (c). This is incompliance with the requirement of Paragraph 12 of the Second Amended Compliance Decree (CV09-4503-SI). These reports are due on January 30, 2023, April 30, 2023, July 30, 2023, and October 30, 2023
- 7.13 To submit to Section Chief of the Environmental Enforcement Section, US department of Justice, US EPA Regional Office IX, and copied to CEC the CO Projected Exceedance Date (on semi-annual basis). This is incompliance with the requirement of Paragraph 11 of the Second Amended Compliance Decree (CV09-4503-SI). These reports are due on June 15, 2023, and December 15, 2023.
- 7.14 To submit to BAAQMD/EPA Annual and Semi-annual Title V reports. These reports are due on September 30, 2023, April 30, 2023, and October 31, 2023, respectively.
- 7.15 (Conditions of Certification General Conditions) CEC Annual Compliance Report for RY2020 due March 30, 2023, as prenegotiated with the CPM
- 8. **Listing of the Year's Addition to Compliance File** During the reporting period, the following compliance submittals were submitted to the CEC CPM and other regulatory agencies as required for review and approval.

Date	То	Condition	Subject
1/10/2022	DD	SOILS&WATE R-4	Quarterly Self-Monitoring Report for the period: Oct 2021 to Dec 2021
1/27/2022	BAAQMD	AQ-33	Monthly CEMS Report for December 2021
1/27/2022	US EPA IX/ CEC	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q4-2021

Date	То	Condition	Subject
1/27/2022	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q4-2021
1/27/2022	EPA	Part 75	EPA Quarterly EPA ECMPS Electronic Data Reports (EDR) Reports for Q4-2021
2/22/2022	BAAQMD	AQ-33	Monthly CEMS Report for January 2022
2/28/2022	CCHS/CERS		Hazardous Materials Business Plan Annual Update for 2022
3/11/2022	CEC/BAAQMD	AQ-SC13	Notification/Waiver request on Visual Emission Evaluation (VEE) for March 20, 2022, Restart (Unit-A, and Unit-B)
3/11/2022	BAAQMD/CEC	AQ-29, AQ-30, AQ-31, AQ-32	Source Test Report and 2022 Relative Accuracy Test Audit and Compliance Test Report; the tests were completed January 10-14, 2022
3/26/2022	CEC/BAAQMD	AQ-SC13	Report on Visual Emission Evaluation (VEE) for March 20, 2022, Restart (Unit-A, and Unit B)
3/28/2022	CEC	GEN (pp.179- 180)	Annual Compliance Report #13 RY 2021
3/29/2022	BAAQMD	AQ-33	Monthly CEMS Report for February 2022
4/14/2022	BAAQMD	AQ-33	Monthly CEMS Report for March 2022
4/14/2022	DD	SOILS&WATE R-4	Quarterly Self-Monitoring Report for the period: January 2022 to March 2022

Date	То	Condition	Subject
4/20/2022	US EPA IX/ CEC/DOJ	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q1-2022
4/20/2022	BAAQMD	PTO	PTO Renewal Data Update (2022-2023)
4/26/2022	EPA	Part 75	EPA ECMPS ED) for Q1-2022
4/26/2022	BAAQMD/CEC	Title V	Semi-annual Monitoring Report for Oct 1, 2021, to Mar 31, 2022
4/28/2022	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q1 2022
5/19/2022	BAAQMD	AQ-33	Monthly CEMS Report for April 2022
6/1/2022	US EPA IX/ CEC	Consent Decree Paragraph 11(1)	Semi-annual Report on CO Projected Exceedance Date
6/22/2022	BAAQMD	AQ-33	Monthly CEMS Report for May 2022
6/30/2022	CVRWQCB- SMARTS	IGP	Storm Water Annual Report for 2021-2022
7/13/2022	DD	SOILS&WATE R-4	Quarterly Self-Monitoring Report for the period: April 2022 to June 2022
7/13/2022	BAAQMD	AQ-33	Monthly CEMS Report for June 2022
7/13/2022	US EPA IX/ CEC/DOJ	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q2-2022
7/21/2022	BAAQMD	PTO	PTO Renewal Received (2022-2023)
7/25/2022	EPA	Part 75	EPA ECMPS EDR for Q2-2022
7/25/2022	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q2 2022
7/28/2022	CCHS/CERS		Hazardous Materials Business Plan Interim Update

Date	То	Condition	Subject
8/24/2022	BAAQMD	AQ-33	Monthly CEMS Report for July 2022
9/15/2022	BAAQMD	AQ-33	Monthly CEMS Report for August 2022
9/27/2022	BAAQMD/EPA /CEC	Title V	Annual Compliance Certification (Sep 1, 2021- Aug 31, 2022)
10/10/2022	DD	SOILS&WATE R-4	Quarterly Self-Monitoring Report for the period: July 2022 to September 2022
10/11/2022	BAAQMD	AQ-33	Monthly CEMS Report for September 2022
10/19/2022	US EPA IX/ CEC	Consent Decree Paragraph 12	Quarterly Excess Emission Report (NOx & CO) for Q3-2022
10/20/2022	EPA	Part 75	EPA ECMPS EDR for Q3-2022
10/24/2022	CEC/BAAQMD	AQ-14	Quarterly Air Compliance Report for Q3 2022
10/25/2022	BAAQMD/CEC	Title V	Semi-annual Monitoring Report for Apr 1, 2022, to Sep 30, 2022
11/10/2022	BAAQMD	AQ-33	Monthly CEMS Report for October 2022
12/12/2022	CVRWQCB- SMARTS	IGP	Analytical results for the sampling of the QSEs that occurred on November 8, 2022
12/20/2022	BAAQMD/CEC	AQ-29, AQ-30, AQ-31, AQ-32	Notification on 2023 Source Test and Relative Accuracy Test Audit for Jan 9-14, 2023

Date	То	Condition	Subject
12/21/2022	US EPA IX/ CEC	Consent Decree Paragraph 11(1)	Semi-annual Report on CO Projected Exceedance Date
12/22/2022	BAAQMD	AQ-33	Monthly CEMS Report for November 2022

- 9. **Evaluation of On-site Contingency Plan** The On-site Contingency Plan for Unexpected Facility Closure (previously submitted to CEC 12/30/2008) has been evaluated. PG&E determined that the plan is adequate and does not need revision. PG&E, however, will continue to evaluate the plan and make necessary revisions as may be needed. A copy of the revision will be submitted to CEC promptly.
- 10. **Listing of Complaints, NOVs, Citations Received** A Warning Notice from Delta Diablo Sanitation District dated December 30, 2022, but was received on January 4, 2023, regarding metal zinc monitoring parameter exceedance. After resampling result of below permit limit, no further compliance action was required by the Delta Diablo Sanitation District.

No Notice of Violation (NOV) was received from agencies during the reporting period.

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 14

Exhibit 1 Updated Compliance Matrix

Color Code Legend

Construction Phase Communication Phase

Commissioning Phase Condition Operations Phase Condition

Submitted

Submitted / Approved / Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-13	3_OPS	CTs and HRSGs shall be fired on gas with a maximum sulfur content of no greater than 1 grain per 100 standard cubic feet.	Conduct monthly sulfur analysis and incorporate results into QAQR.	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-14	3_OPS		Demonstrate compliance in Quarterly Air Quality Reports (QAQR) due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-15	3_OPS	Combined heat input rate to each power train shall not exceed 49,950 MM BTU per calendar day.	Demonstrate compliance in QAQR due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-16	3_OPS	Combined cumulative heat input rate for the CTs and HRSG shall not exceed 34,900,000 MM BTU per year.	Demonstrate compliance in Quarterly Air Quality Reports (QAQR) due January 30, April 30, July 30, and October 30	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-17	3_OPS	HRSG duct burners shall not be fired without CT in operation.	Include info on date, time, an duration of any violation in Quarterly Air Quality Reports (due January 30, April 30, July 30, and October 30)	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-18	3_OPS	CT 1 and HRSG 1 shall be abated by SCR whenever fuel is combusted at those sources and catalyst bed has reached minimum operating temp. (BACT for NOx)	Provide information on any major problem in operation of OxCat and SCR (include date, description, and steps taken to resolve) in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-19	3_OPS	· · · · · · · · · · · · · · · · · · ·	Provide information on any major problem in operation of OxCat and SCR (include date, description, and steps taken to resolve) in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-20	3_OPS	CTs and HRSGs to comply with requirements as listed in the Condition under all operating scenarios, including duct burner firing mode and steam injection power aug mode. Requirements do not apply to CT start-up or shut down. (BACT, PSD)	Provide info listed in Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-21	3_OPS	Regulated air pollutant mass emission rates shall not exceed limits shown in the Condition. (PSD)	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-22	3_OPS	CTs shall not run in startup mode simultaneously (PSD).	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-23	3_OPS	Total combined emissions from CTs and HRSG shall not exceed limits specified in Condition during any calendar day.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 (of each year) Public	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	

Color Code Legend

Construction Phase Condition

Submitted

Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-24	3_OPS	Cumulative combined emissions shall not exceed limits specified in Condition during any consecutive 12 month period.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-25	3_OPS	Maximum projected annual toxic air contaminant emissions from CTs and HRSGs shall not exceed limits specified in Condition.	Owner shall perform a health risk assessment using emission rates determined by source test and most current BAAQMD approved procedures and unit risk factors in effect at the time of the analysis.	Within 60 days of source test date	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-26	3_OPS	Demonstrate compliance with Conditions AQ-14 through 17, 20(a) through 20 (d), 21, 23 (a), 24(a), and 24(b) with CEMs during all hours of operation including equipment startup and shutdowns for all parameters listed in Condition.	Detailed plan on how the measurements and recordings will be performed. CEMS Monitoring Plan	At least 60 days prior to initial operation	8/21/2008		Submitted to CEC & BAAQMD	Record keeping to demonstrate compliance is ongoing.
AQ-27	3_OPS	Calculate and record daily the POC, PM10, and SO2 from each power train using actual heat input rates calculated per AQ-26, actual CT startup and shutdown times, and CEC/BAAQMD approved emission factors to calculate emissions. (See additional reporting requirements listed in Condition.)	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-28	3_OPS	Calculate and record on an annual basis the maximum projected emissions of formaldehyde, benzene, and specified PAHs.	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-30	3_OPS	Conduct District approved source test on exhaust points while CTs and HRSGs are operating at max. load and min. load to demonstrate compliance with AQ-20, and to verify accuracy of CEMS (per Condition AQ-26).	Submit Source Test Protocols/Conduct Source Test 60 days of initial operation and annually thereafter	Within 60 days of first fire, & annually thereafter	Notification: 12/14/2021 (for 2022 ST/RATA), Test (01/10/2022 to 01/14/2022)			
AQ-31a	3_OPS	Obtain approval for all source test procedures from BAAQMD Source Test Section and CPM prior to conducting tests.	Notify BAAQMD Source Test Section and CEC CPM in writing of source test protocols and projected test dates.	At least 7 days prior to source test dates	Notification: 12/14/2021 (for 2022 ST/RATA), Test (01/10/2022 to 01/14/2022)			
AQ-31b	3_OPS	Submit source test results to the District & CEC CPM.	Submit source test results to BAAQMD and CEC CPM.	Within 60 days of conducting source tests	3/11/2022			l l
AQ-32a	3_OPS	Conduct source test on exhaust point P-11 or P-12 while CT and HRSGs are operating at maximum allowable operating rates to demonstrate compliance with AQ-25 (see Condition for more details).	Notify BAAQMD Source Test Section and CEC CPM in writing of source test protocols and projected test dates. Conduct Source test 60 days of initial operation and biennial thereafter	At least 7 days prior to source test dates	Notification: 12/14/2021 (for 2022 ST/RATA), Test (01/10/2022 to 01/14/2022)			

Construction Phase Condition

Construction Phase Condition

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
AQ-32b	3_OPS	Submit source test results to the District & CEC CPM.	Submit source test results to BAAQMD and CEC CPM.	Within 60 days of conducting source tests	3/11/2022			
AQ-33	3_OPS	Submit all reports (monitor breakdowns, CEMS, emission access reports, equipment breakdowns) as required by District Rules or Regulations	Provide info listed in Condition 20 Verification language of condition and include in QAQR reports due January 30, April 30, July 30, and Oct. 30 each year)	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-34	3_OPS	Maintain ongoing records and reports on site for a minimum of 5 years (to include but not limited to: CEMS records (firing hours, fuel flows, emission rates, monitor excesses, breakdowns, etc.). Source and analytical records, natural gas sulfur content analysis results, emission calculation record, plant upsets and related incidents.)	Make records available to BAAQMD, ARB, EPA, and CEC.	Ongoing	N/A		On-going (Records are maintained)	
AQ-35	3_OPS	Notify District and CPM of violation of any permit conditions in accordance with applicable BAAQMD rules and regulations.	Submit written notification to Enforcement Division within 96 hours of the violation.	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	event occurred on 10/19/16
AQ-44	3_OPS	Take monthly gas samples.		Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-45b	3_OPS	WSAC shall be properly installed/maintained to minimize drift losses	Sample the water once in July, August and September each year while WSAC is in operation and submit results in QACR.	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-46b	3_OPS	Have WSAC field rep inspect drift eliminators and certify installation was performed satisfactorily. Verify that PM10 emissions do not exceed 4.7 lbs/day based on most recent TDS (see formula in condition).	Report calculated PM10 emissions from WSAC in QACR.	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AQ-47	3_OPS	Fuel gas preheater shall not be operated more than 16 hours in any day.	Submit verification of hours of operation as part of QACR.	Quarterly after COD (Recurring)	Q1: 04/28/2022, Q2: 07/25/2022, Q3:10/24/2022, Q4: 01/26/2023		Submitted w/ Quarterly Air Compliance Reports (QACR)	
AM-1	3_OPS	Conduct Source Test to determine ammonia emission concentration	Submit the results of Source Test with in 60 days of completion	Annually (recurring)	3/11/2022			
BIO-02	3_OPS	Designated Biologist to submit record summaries in the Annual Compliance Report	Provide statement in the Annual Compliance Report whether any actions that affected biological resources occurred on site for the reporting year.	Annually in ACR	3/30/2023		Submitted with this Annual Compliance Report (ACR)	

Color Code Legend

Construction Phase Commissioning Phase Condition Operations Phase Submitted Submitted Completed

Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
BIO-09	3_OPS	Incorporate a Biological Resource Element that includes biological resource facility closure measures into the facility closure plan and BRMIMP.	at least 12 months prior to commencement of permanent closure activities.	at least 12 months prior to facility closure or earlier if needed				Not needed yet
GEN	3_OPS	Annual Compliance Report (ACR)	Submit Annual Compliance Report (ACR): March 31st of the following calendar year	Annually (recurring)	3/30/2023		Submitted w/ this report	
GEN-09	3_OPS	Submit closure/decommissioning plan	Submit closure/decommissioning plan. Meet with CPM prior to submittal.	12 months prior to closing				Not needed yet
HAZ-01	3_OPS	Do not use any hazardous material not listed in Appendix C of the Final Decision.	Provide list of all hazardous materials used at site in the Annual Compliance Report	Annually in ACR	3/30/2023		Submitted w/ this report (see Exhibit 5)	
PAL-07	3_OPS	Include in facility closure plan a description regarding facility closure activity's potential to impact paleontological resources.	Include description of closure activities.	12 months prior to closure of the facility.				Not needed yet
SOILS & WATER- 03	3_OPS	Keep the CPM informed of any modification to the permit, Stormwater Industrial General Permit (IGP).	Submit to CPM: any modification of IGP, submit copy of correspondence with the County on MS4 permit and CVRWQCB, maintain in SWPPP a copy of NOI.	during operation	3/30/2023		report	NOI and revised SWPPP was submitted to Waterboard through SMARTS copied on this report
SOILS & WATER-4	3_OPS	During operation, any monitoring reports provided to DD shall be provided to the CPM. The CPM shall be notified of any violations of discharge limits/amounts	Submit any water quality monitoring required by DD to the CPM in annual compliance report. Submit any NOV from DD to the CPM within 10 days of receipt explaining corrective actions taken.	Annually	3/30/2023		Submitted w/ this report	
SOILS & WATER- 10b	3_OPS	Submit a water use summary to the CPM in the annual compliance report. Also report on the servicing, testing, and calibration of the meters in the ACR.		Annually in ACR	3/30/2023		Submitted w/ this report	

Public

	Color Co	ode Legend		
Construction Phase	Commissioning	Operations Phase	Submitted	Submitted / Approved /
Condition	Phase Condition	Condition		Completed

CEC Cond. No.	Project Phase	Summary of Condition	Submittal Required	Due Date to CEC	Date Submitted/ Completed	Submittal Approved by CEC	Status	Comments
TLSN-03	3_OPS		Submit reports of line-related interferences and action taken to CPM for the first five year of operation.	Annually in ACR (for 2009-2013)	No longer required starting in RY 2014			
VIS-04c	3_OPS		Verify in the annual compliance report that maintenance has been performed	Annually in ACR	3/30/2023		Submitted with ACR: appropriate maintenance was performed in RY 2022	

Key Dates:

First Fire	11/1/2008	(CT-A = 11/01/08, CT-B = 11/04/08)
Perf. Tests (Target)	12/6/2008	
Source Test (Started)	1/4/2009	Unit A:1/4/2009, Unit B: 01/06/2009
Source Test (Completed)	1/14/2009	For Both Units
COD (Target)	2/5/2009	
COD (Actual)	1/4/2009	
COD (Guaranteed)	2/28/2009	
Aq. Ammonia on Site	12/4/2008	
Steam Blow	11/4/2008	
Install Catalyst (SCR/CO)	11/24/2008	(SCR Catalyst = 11/24/08)
Q4 2009 Report	1/30/2010	
Sulfuric Acid on Site	3/1/2009	Planned: March 2009
First Lube	7/14/2008	
Noise Survey(Completed)	1/21/2009	Both Community and in-plant surveys
Sustained output	1/4/2009	
Connection Potable Water	3/17/2008	
Pre-energy E/MF	5/19/2008	
		(W/in 6 mos of start of operation = first synchronization to
Post-energy E/MF	5/9/2009	grid)
First Synchronization	11/10/2008	(First Synchronization to grid: CT-A : 11/11/08, CT-B : 11/10/08)
Start of operation	1/4/2009	
Annual Compliance Report	3/30/2023	RY 2022 ACR #14

Gateway Generating Station (00-AFC-01C)

Annual Compliance Report No. 14

Exhibit 2
Key Events List

KEY EVENTS LIST

PROJECT: GATEWAY GENERATING STATION

DOCKET #: 00-AFC-1C

EVENT DESCRIPTION

DATE

LVLINI DEGOINII IION	DAIL
Date of Certification	05-30-01
POWER PLANT SITE ACTIVITIES	
Start Site Pre-Mobilization	01-08-07
Start Ground Disturbance	02-02-07
Start Grading	03-12-07
Start Construction	02-05-07
Begin Pouring Major Foundation Concrete	04-09-07
Begin Installation of Major Equipment	02-12-07
Completion of Installation of Major Equipment	10-16-08
First Combustion of Gas Turbine	10-25-08
Start Commercial Operation	12-31-08
Acquisition of second ammonia tank, tank farm facility, and associated property	December 2013
Regulated Substances Deregistration of Anhydrous Ammonia	05/23/2016
Granted exemption to forego sampling of 126 priority pollutants per 40CFR423.17(a)(4)(ii)	7/23/2019
Renewal of Title IV and Title V Permits was approved	09/03/2020
Submitted 5-year Anniversary Update of the Risk Management Program (to EPA) and California Accidental Release Prevention (CalARP) Program (to Contra Costa Health Services -Hazardous Materials Program)	02/22/2021
SWITCHYARD & TRANSMISSION TIE-IN ACTIVITIES	
Start Switchyard Construction	10-01-07
Switchyard & Tie-in Complete	04-30-08
Synchronization with Grid and Interconnection	12-01-08
	i

FUEL SUPPLY LINE ACTIVITIES	
Started Gas Pipeline Construction and Interconnection	07-13-07
Completed Gas Pipeline Construction	07-01-08

Gateway Generating Station (00-AFC-01C)

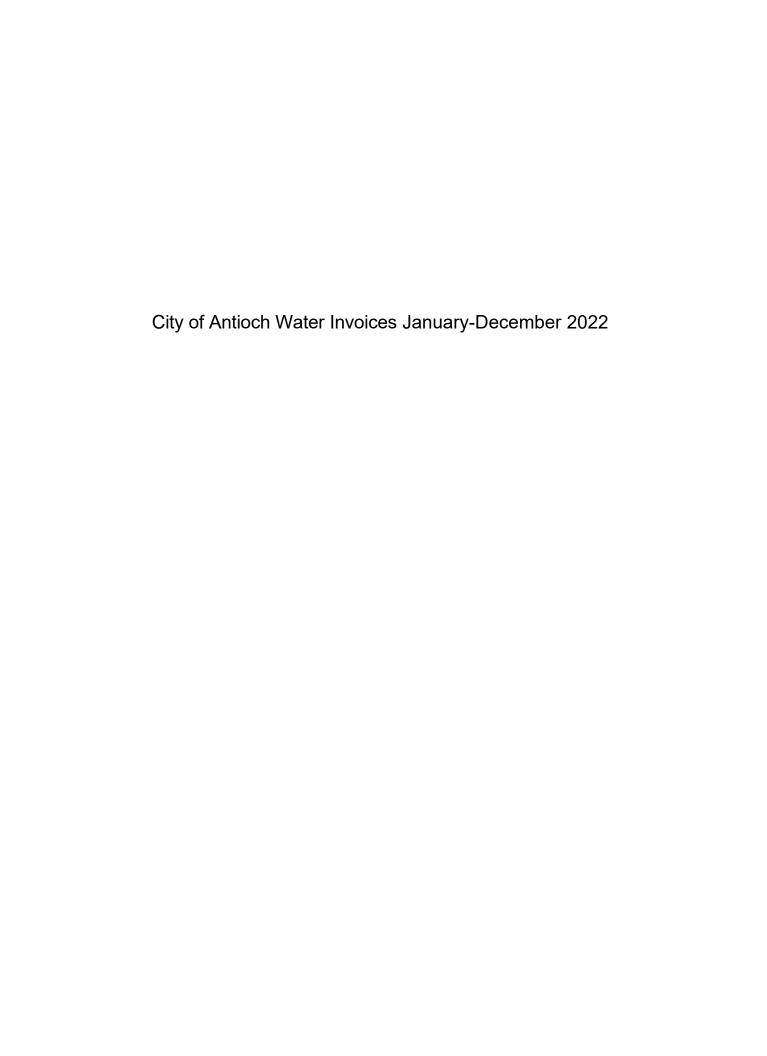
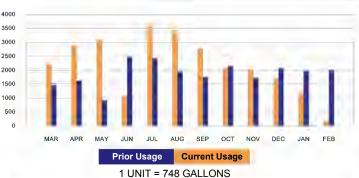

Annual Compliance Report No. 14

Exhibit 3 Water Use Summary City of Antioch Invoices, Wastewater Discharge, and Water Use Estimate

(To comply with CEC Condition of Certification: SOIL & WATER-10)

PG&E Gateway Generating Station Water Use Summary Reporting Period: January 2022 - December 2022

Date	Water Consumption (Estimated)			
Bato	(gals.)	(cu. feet)	(acre-feet)	
Jan-22	1,501,106	200,668.62	4.61	
Feb-22	320,152	42,798.11	0.98	
Mar-22	858,996	114,831.07	2.64	
Apr-22	1,608,210	214,986.41	4.94	
May-22	1,885,044	251,993.69	5.78	
Jun-22	2,077,684	277,745.98	6.38	
Jul-22	2,225,176	297,462.70	6.83	
8/1/202	1,945,147	260,028.29	5.97	
Sep-22	1,402,647	187,506.67	4.30	
Oct-22	1,147,879	153,449.07	3.52	
Nov-22	1,047,635	140,048.49	3.22	
Dec-22	1,117,468	149,383.80	3.43	
Annual Total:	17,137,144	2,290,902.89	52.59	



Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

Utility Billing: (925)779-7060 8:00 A.M.-5:00 P.M. **Public Works:** (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	115362	115542	180

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01 SERVICE ADDRESS: 3225 Wilbur Ave SERVICE PERIOD: 01/01/22 TO 02/01/22 **BILLING DATE:** 02/04/22

CURRENT CHARGES

WATER		\$819.00
USAGE TIER 1 = 180 Units @ 4.55 / UNIT	\$819.00	
2 " WATER MAINT FEE		\$165.00
SEWER		\$240.40
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$17,248.62 TOTAL PAYMENTS (LAST PAYMENT 01/31/2022) (\$17,248.62)CURRENT CHARGES DUE 02/25/2022 \$1,249.50

TOTAL BALANCE

\$1,249.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: **BILLING DATE:**

004-01511-01

3225 Wilbur Ave 01/01/22 TO 02/01/22 02/04/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00 **CURRENT CHARGES DUE 02/25/2022** \$1,249.50 **TOTAL BALANCE** \$1,249.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 -|ՍլՍՍլՍՍլՍՍ-|--գլլոիգոհլ||լիոնգոՍ|||լոնգՍլգոր|Ս-|լ||Սլ|

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO, CA 95798-1476

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Final or Disconnection Notice to avoid penalties and service charges.

Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

Utility Billing: Public Works: (925)779-7060 8:00 A.M.-5:00 P.M. (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

Meter	Service Type	<u>Previous</u>	Current	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 01/01/22 TO 02/01/22
BILLING DATE: 02/04/22

CURRENT CHARGES

FL DET CHK 6" \$47.80 5/8"X3/4" MAINT FEE \$24.40 BACKFLOW DEVICE \$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$155.00

TOTAL PAYMENTS (LAST PAYMENT 01/31/2022) (\$155.00)

CURRENT CHARGES DUE 02/25/2022 \$77.50

TOTAL BALANCE \$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01 3225 Wilbur Ave

3225 Wilbur Ave 01/01/22 TO 02/01/22 02/04/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 02/25/2022 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորուրությունը արևուրությունը արևությունը արևությությունը արևությունը արևությունը արևությունը արևությունը արևությու

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO , CA 95798-1476

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

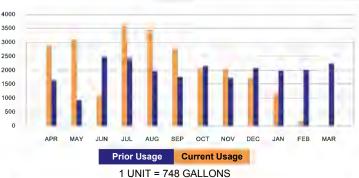
Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.


Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

Utility Billing: (925)779-7060 8:00 A.M.-5:00 P.M. **Public Works:** (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

Meter	Service Type	<u>Previous</u>	Current	Consumption
31682	WATER	115542	115557	15

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

The automated phone system (IVR) is providing incorrect balances. Please refer to your current bill balance due to make an IVR payment.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01 SERVICE ADDRESS: 3225 Wilbur Ave SERVICE PERIOD: 02/01/22 TO 03/01/22 03/03/22 **BILLING DATE:**

CURRENT CHARGES

WATER	\$68.25
USAGE TIER 1 = 15 Units @ 4.55 / UNIT	\$68.25
2 " WATER MAINT FEE	\$165.00
SEWER	\$24.25
BACKFLOW DEVICE	\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$1,249.50 TOTAL PAYMENTS (LAST PAYMENT 02/04/2022) (\$1,249.50)CURRENT CHARGES DUE 03/24/2022 \$282.60 \$282.60

TOTAL BALANCE

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: **BILLING DATE:**

004-01511-01

3225 Wilbur Ave 02/01/22 TO 03/01/22 03/03/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00 **CURRENT CHARGES DUE 03/24/2022** \$282.60 **TOTAL BALANCE** \$282.60

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 -|ՍլՍՍլՍՍլՍՍ-|--գլլոիգոհլ||լիոնգոՍ|||լոնգՍլգոր|Ս-|լ||Սլ|

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

The automated phone system (IVR) is providing incorrect balances. Please refer to your current bill balance due to make an IVR payment.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 02/01/22 TO 03/01/22
BILLING DATE: 03/03/22

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT)	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 02/04/2022)	(\$77.50)
CURRENT CHARGES DUE 03/24/2022	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01

3225 Wilbur Ave 02/01/22 TO 03/01/22 03/03/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 03/24/2022 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

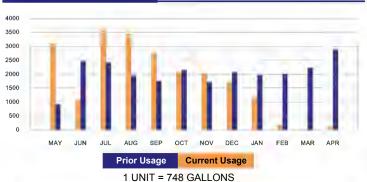
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	Current	Consumption
31682	WATER	115557	115667	110

SPECIAL MESSAGE

Pay your bill online with no fees.
Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 03/01/22 TO 04/01/22
BILLING DATE: 04/05/22

CURRENT CHARGES

WATER		\$500.50
USAGE TIER 1 = 110 Units @ 4.55 / UNIT	\$500.50	
2 " WATER MAINT FEE		\$165.00
SEWER		\$148.70
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$282.60

TOTAL PAYMENTS (LAST PAYMENT 03/28/2022) (\$282.60)

CURRENT CHARGES DUE 04/26/2022 \$839.30

TOTAL BALANCE \$839.30

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED.

THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01

004-01511-01 3225 Wilbur Ave 03/01/22 TO 04/01/22 04/05/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 04/26/2022 \$839.30
TOTAL BALANCE \$839.30

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորակարերդիրելիիորոպիրելիրդիիիիիի

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

Utility Billing: (925)779-7060 8:00 A.M.-5:00 P.M. **Public Works:** (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

Meter	Service Type	<u>Previous</u>	Current	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01 SERVICE ADDRESS: 3225 Wilbur Ave SERVICE PERIOD: 03/01/22 TO 04/01/22 04/05/22 **BILLING DATE:**

CURRENT CHARGES

FL DET CHK 6" \$47.80 5/8"X3/4" MAINT FEE \$24 40 **BACKFLOW DEVICE** \$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$77.50 TOTAL PAYMENTS (LAST PAYMENT 03/28/2022) (\$77.50)CURRENT CHARGES DUE 04/26/2022 \$77.50 \$77.50

TOTAL BALANCE

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: **BILLING DATE:**

004-01512-01

3225 Wilbur Ave 03/01/22 TO 04/01/22 04/05/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00 **CURRENT CHARGES DUE 04/26/2022** \$77.50 **TOTAL BALANCE** \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 -|ՍլՍՍլՍՍլՍՍ-|--գլլոիգոհլ||լիոնգոՍ|||լոնգՍլգոր|Ս-|լ||Սլ|

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

Utility Billing: (925)779-7060 8:00 A.M.-5:00 P.M. **Public Works:** (925)779-6950 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

Meter	Service Type	<u>Previous</u>	Current	Consumption
31682	WATER	115667	115842	175

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Billing Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01 SERVICE ADDRESS: 3225 Wilbur Ave SERVICE PERIOD: 04/01/22 TO 05/02/22 **BILLING DATE:** 05/04/22

CURRENT CHARGES

WATER		\$796.25
USAGE TIER 1 = 175 Units @ 4.55 / UNIT	\$796.25	
2 " WATER MAINT FEE		\$165.00
SEWER		\$233.85
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$839.30 TOTAL PAYMENTS (LAST PAYMENT 04/27/2022) (\$839.30)CURRENT CHARGES DUE 05/25/2022 \$1,220.20 **TOTAL BALANCE** \$1,220.20

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: **BILLING DATE:**

004-01511-01

3225 Wilbur Ave 04/01/22 TO 05/02/22 05/04/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00 **CURRENT CHARGES DUE 05/25/2022** \$1,220.20 **TOTAL BALANCE** \$1,220.20

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 -|ՍլՍՍլՍՍլՍՍ-|--գլլոիգոհլ||լիոնգոՍ|||լոնգՍլգոր|Ս-|լ||Սլ|

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

ACCOUNT INFORMATION

Statement

Billing

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 04/01/22 TO 05/02/22
BILLING DATE: 05/04/22

CURRENT CHARGES

FL DET CHK 6" \$47.80 5/8"X3/4" MAINT FEE \$24.40 BACKFLOW DEVICE \$5.30

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

Meter	Service Type	<u>Previous</u>	Current	Consumption
31752	WATER	0	0	0

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$77.50

TOTAL PAYMENTS (LAST PAYMENT 04/27/2022) (\$77.50)

CURRENT CHARGES DUE 05/25/2022 \$77.50

TOTAL BALANCE \$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

PUBLIC WORKS

LATE CHARGE.

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 04/01/22 TO 05/02/22 05/04/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 05/25/2022 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորակարերդիրդիկիրերակիրերիրդիկիկի

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

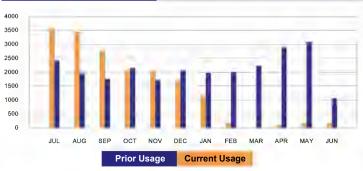
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

Meter	Service Type	<u>Previous</u>	Current	Consumption
31682	WATER	115842	116015	173

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 05/02/22 TO 06/01/22
BILLING DATE: 06/02/22

CURRENT CHARGES

WATER		\$787.15
USAGE TIER 1 = 173 Units @ 4.55 / UNIT	\$787.15	
2 " WATER MAINT FEE		\$165.00
SEWER		\$231.23
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT)	\$1,220.20
TOTAL PAYMENTS	\$0.00
CURRENT CHARGES DUE 06/23/2022	\$1,208.48
TOTAL BALANCE	\$2,428,68

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilbur Ave

3225 Wilbur Ave 05/02/22 TO 06/01/22 06/02/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$1,220.20
CURRENT CHARGES DUE 06/23/2022 \$1,208.48
TOTAL BALANCE \$2,428.68

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորությունը արդարակին արտակին արև արդարակին իրի և

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Billing **Statement**

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 05/02/22 TO 06/01/22
BILLING DATE: 06/02/22

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$77.50

TOTAL PAYMENTS \$0.00

CURRENT CHARGES DUE 06/23/2022 \$77.50

TOTAL BALANCE \$155.00

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01

3225 Wilbur Ave 05/02/22 TO 06/01/22 06/02/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$77.50
CURRENT CHARGES DUE 06/23/2022 \$77.50
TOTAL BALANCE \$155.00

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորակավույթիրկիիսիսայիրկիրերիկիի

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

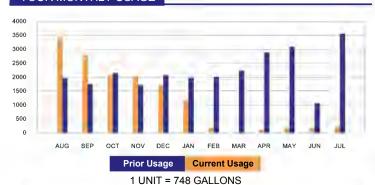
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

ourient meter information					
Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption	
31682	WATER	116015	116226	211	

SPECIAL MESSAGE

turrent Meter Informati

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 06/01/22 TO 07/01/22
BILLING DATE: 07/07/22

CURRENT CHARGES

WATER		\$960.05
USAGE TIER 1 = 211 Units @ 4.55 / UNIT	\$960.05	
2 " WATER MAINT FEE		\$165.00
SEWER		\$281.01
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$2,428.68

TOTAL PAYMENTS (LAST PAYMENT 07/01/2022) (\$2,428.68)

CURRENT CHARGES DUE 07/28/2022 \$1,431.16

TOTAL BALANCE \$1,431.16

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01

3225 Wilbur Ave 06/01/22 TO 07/01/22 07/07/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 07/28/2022 \$1,431.16
TOTAL BALANCE \$1,431.16

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորակարերդիրելիիորոպիրելիրդիիիիիի

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

YOUR MONTHLY USAGE

Utility Billing: Public Works: (925)779-6950 7:00 A.M.-4:00 P.M.

(925)779-7060 8:00 A.M.-5:00 P.M.

AUG SEP JUL Prior Usage **Current Usage**

1 UNIT = 748 GALLONS

Current	Meter	Information
---------	-------	-------------

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Billing **Statement**

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01 SERVICE ADDRESS: 3225 Wilbur Ave SERVICE PERIOD: 06/01/22 TO 07/01/22 **BILLING DATE:** 07/07/22

CURRENT CHARGES

FL DET CHK 6"	\$47.80
5/8"X3/4" MAINT FEE	\$24.40
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$155.00 TOTAL PAYMENTS (LAST PAYMENT 07/01/2022) (\$155.00)CURRENT CHARGES DUE 07/28/2022 \$77.50 \$77.50

TOTAL BALANCE

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: **BILLING DATE:**

004-01512-01

3225 Wilbur Ave 06/01/22 TO 07/01/22 07/07/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00 **CURRENT CHARGES DUE 07/28/2022** \$77.50 **TOTAL BALANCE** \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 -|ՍլՍՍլՍՍլՍՍ-|--գլլոիգոհլ||լիոնգոՍ|||լոնգՍլգոր|Ս-|լ||Սլ|

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

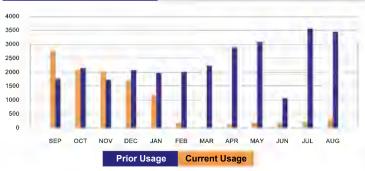
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

Meter	Service Type	<u>Previous</u>	Current	Consumption
31682	WATER	116226	116556	330

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Billing **Statement**

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 07/01/22 TO 08/01/22
BILLING DATE: 08/03/22

CURRENT CHARGES

WATER		\$1,501.50
USAGE TIER 1 = 330 Units @ 4.55 / UNIT	\$1,501.50	
2 " WATER MAINT FEE		\$165.00
SEWER		\$436.90
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT)	\$1,431.16
TOTAL PAYMENTS (LAST PAYMENT 07/29/2022)	(\$1,431.16)
CURRENT CHARGES DUE 08/24/2022	\$2,128.50
TOTAL BALANCE	\$2 128 50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01 3225 Wilhur Ave

3225 Wilbur Ave 07/01/22 TO 08/01/22 08/03/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 08/24/2022 \$2,128.50
TOTAL BALANCE \$2,128.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

ACCOUNT INFORMATION

Statement

Billing

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 07/01/22 TO 08/01/22
BILLING DATE: 08/03/22

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

YOUR MONTHLY USAGE

1 0 111 1 10 0 1 1 1 2 0 1 1

Current Meter Information					
Meter	Service Type	<u>Previous</u>	Current	Consumption	
31752	WATER	0	0	0	

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT)	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 07/29/2022)	(\$77.50)
CURRENT CHARGES DUE 08/24/2022	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO

RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01

3225 Wilbur Ave 07/01/22 TO 08/01/22 08/03/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 08/24/2022 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորակարերդիրդիկիրերակիրերիրդիկիկի

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

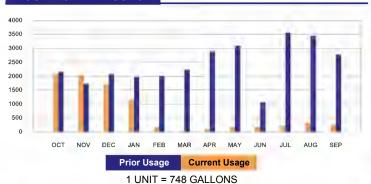
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

I UNII = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	Current	Consumption
31682	WATER	116556	116797	241

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 08/01/22 TO 09/01/22
BILLING DATE: 09/07/22

CURRENT CHARGES

WATER \$1,096.55 USAGE TIER 1 = 241 Units @ 4.55 / UNIT \$1,096.55 2 " WATER MAINT FEE \$165.00 SEWER \$320.31 BACKFLOW DEVICE \$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT) \$2,128.50

TOTAL PAYMENTS (LAST PAYMENT 08/22/2022) (\$2,128.50)

CURRENT CHARGES DUE 09/28/2022 \$1,606.96

TOTAL BALANCE \$1,606.96

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01

3225 Wilbur Ave 08/01/22 TO 09/01/22 09/07/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 09/28/2022 \$1,606.96
TOTAL BALANCE \$1,606.96

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորակավության այլիանիկին արակարկերի հայասիանի

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

Utility Billing: (925)779-7060 8:00 A.M.-5:00 P.M. **Public Works:** (925)779-6950 7:00 A.M.-4:00 P.M.

ACCOUNT INFORMATION

Statement

Billing

ACCOUNT: 004-01512-01 SERVICE ADDRESS: 3225 Wilbur Ave SERVICE PERIOD: 08/01/22 TO 09/01/22 **BILLING DATE:** 09/07/22

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

<u>Meter</u>	Service Type	<u>Previous</u>	Current	Consumption
31752	WATER	0	0	0

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT)	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 08/22/2022)	(\$77.50)
CURRENT CHARGES DUE 09/28/2022	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

PUBLIC WORKS

LATE CHARGE.

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: **BILLING DATE:**

004-01512-01

3225 Wilbur Ave 08/01/22 TO 09/01/22 09/07/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00 **CURRENT CHARGES DUE 09/28/2022** \$77.50 **TOTAL BALANCE** \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 -|ՍլՍՍկՍԱ-|--գլլոիգոկ||լիոնրոՍ|||լոնգՍիգոր|Աիլ||Ալ

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

I UNII =	140	GALLONS

Current	Meter	Informa	tion
Ouliell	INICICI		шоп

Meter	Service Type	<u>Previous</u>	Current	Consumption
31682	WATER	116797	117032	235

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 09/01/22 TO 10/01/22
BILLING DATE: 10/05/22

CURRENT CHARGES

WATER		\$1,069.25
USAGE TIER 1 = 235 Units @ 4.55 / UNIT	\$1,069.25	
2 " WATER MAINT FEE		\$165.00
SEWER		\$312.45
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT)	\$1,606.96
TOTAL PAYMENTS (LAST PAYMENT 09/27/2022)	(\$1,606.96)
CURRENT CHARGES DUE 10/26/2022	\$1,571.80
TOTAL BALANCE	\$1,571.80

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO

RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01

3225 Wilbur Ave 09/01/22 TO 10/01/22 10/05/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 10/26/2022 \$1,571.80
TOTAL BALANCE \$1,571.80

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորակարերերիրելիիորոայիրերիրդվելիիի

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Infor	mation
---------------------	--------

Meter	Service Type	<u>Previous</u>	Current	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 09/01/22 TO 10/01/22
BILLING DATE: 10/05/22

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT)	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 09/27/2022)	(\$77.50)
CURRENT CHARGES DUE 10/26/2022	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01

3225 Wilbur Ave 09/01/22 TO 10/01/22 10/05/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 10/26/2022 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորությունը արդարակին արտակին արև արդարակին իրի և

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (925) 779-7060

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

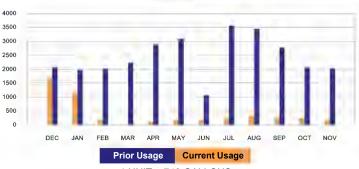
Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.



All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	Current	Consumption
31682	WATER	117032	117207	175

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Billing **Statement**

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 10/01/22 TO 11/01/22
BILLING DATE: 11/03/22

CURRENT CHARGES

WATER		\$796.25
USAGE TIER 1 = 175 Units @ 4.55 / UNIT	\$796.25	
2 " WATER MAINT FEE		\$165.00
SEWER		\$233.85
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT)	\$1,571.80
TOTAL PAYMENTS (LAST PAYMENT 10/27/2022)	(\$1,650.39)
TOTAL PENALTIES	\$78.59
CURRENT CHARGES DUE 11/24/2022	\$1,220.20
TOTAL BALANCE	\$1,220,20

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01

004-01511-01 3225 Wilbur Ave 10/01/22 TO 11/01/22 11/03/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 11/24/2022 \$1,220.20
TOTAL BALANCE \$1,220.20

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորակավության այդիրերիիի արակարիների ինչի

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Shut offs and late fess will resume the week of July 4th, 2022. If you need to make a payment arrangement, please contact us at service@antiochca.gov

Billing **Statement**

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 10/01/22 TO 11/01/22
BILLING DATE: 11/03/22

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE (PAY NOW TO AVOID DISCONNECT)	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 10/27/2022)	(\$81.38)
TOTAL PENALTIES	\$3.88
CURRENT CHARGES DUE 11/24/2022	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE:

004-01512-01 3225 Wilbur Ave 10/01/22 TO 11/01/22 11/03/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE (PAY NOW TO AVOID DISCONNECT) \$0.00
CURRENT CHARGES DUE 11/24/2022 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

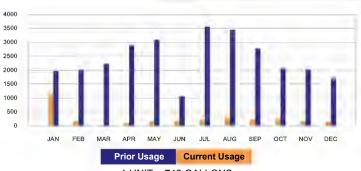
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.


Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31682	WATER	117207	117356	149

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

Billing **Statement**

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 11/01/22 TO 12/01/22
BILLING DATE: 12/06/22

CURRENT CHARGES

WATER		\$677.95
USAGE TIER 1 = 149 Units @ 4.55 / UNIT	\$677.95	
2 " WATER MAINT FEE		\$165.00
SEWER		\$199.79
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$1,220.20
TOTAL PAYMENTS (LAST PAYMENT 11/18/2022)	(\$1,220.20)
CURRENT CHARGES DUE 12/27/2022	\$1,067.84
TOTAL BALANCE	\$1,067.84

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01

3225 Wilbur Ave 11/01/22 TO 12/01/22 12/06/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

 PAST DUE BALANCE
 \$0.00

 CURRENT CHARGES DUE 12/27/2022
 \$1,067.84

 TOTAL BALANCE
 \$1,067.84

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO , CA 95798-1476

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.

Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

Utility Billing: (925)779-7060 8:00 A.M.-5:00 P.M. **Public Works:** (925)779-6950 7:00 A.M.-4:00 P.M.

ACCOUNT INFORMATION

Statement

Billing

ACCOUNT: 004-01512-01 SERVICE ADDRESS: 3225 Wilbur Ave SERVICE PERIOD: 11/01/22 TO 12/01/22 12/06/22 **BILLING DATE:**

YOUR MONTHLY USAGE

1 UNIT = 748 GALLONS

Current Meter Information

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

Meter	Service Type	<u>Previous</u>	<u>Current</u>	Consumption
31752	WATER	0	0	0

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 11/18/2022)	(\$77.50)
CURRENT CHARGES DUE 12/27/2022	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Payment Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: **BILLING DATE:**

004-01512-01

3225 Wilbur Ave 11/01/22 TO 12/01/22 12/06/22

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00 **CURRENT CHARGES DUE 12/27/2022** \$77.50 **TOTAL BALANCE** \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 -|ՍլՍՍկՍԱ-|--գլլոիգոկ||լիոնրոՍ|||լոնդՍիգոր|Աիլ||Ալ

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO, CA 95798-1476

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

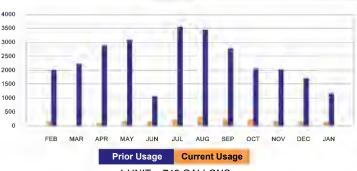
If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.


Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

1 UNIT = 74<mark>8 G</mark>ALLONS

Current	N	leter	Inf	format	ion
---------	---	-------	-----	--------	-----

Meter	Service Type	<u>Previous</u>	Current	Consumption
31682	WATER	117356	117481	125

SPECIAL MESSAGE

Pay your bill online with no fees. Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01511-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 12/01/22 TO 01/01/23
BILLING DATE: 01/05/23

CURRENT CHARGES

WATER		\$568.75
USAGE TIER 1 = 125 Units @ 4.55 / UNIT	\$568.75	
2 " WATER MAINT FEE		\$165.00
SEWER		\$168.35
BACKFLOW DEVICE		\$25.10

AMOUNT NOW DUE

PREVIOUS BALANCE	\$1,067.84
TOTAL PAYMENTS (LAST PAYMENT 12/28/2022)	(\$1,121.24)
TOTAL PENALTIES	\$53.40
CURRENT CHARGES DUE 01/26/2023	\$927.20
TOTAL BALANCE	\$927.20

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01511-01

3225 Wilbur Ave 12/01/22 TO 01/01/23 01/05/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 01/26/2023 \$927.20
TOTAL BALANCE \$927.20

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորակավույթիրկիիսիսայիրկիրերիկիի

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO , CA 95798-1476

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service at service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.

Pay Online: www.municipalonlinepayments.com/antiochca

All Offices are open Monday-Friday

 Utility Billing:
 (925)779-7060
 8:00 A.M.-5:00 P.M.

 Public Works:
 (925)779-6950
 7:00 A.M.-4:00 P.M.

YOUR MONTHLY USAGE

Current Meter Information						
<u>Meter</u>	Service Type	<u>Previous</u>	<u>Current</u>	Consumption		
31752	WATER	0	0	0		

SPECIAL MESSAGE

Pay your bill online with no fees.

Visit https://www.municipalonlinepayments.com/antiochca

Please make sure you are referencing the account number exactly as it appears on this bill.

Please note, we have a new automated phone number for water payments. The new number is (866)301-8999, this number is available 24/7.

Statement

ACCOUNT INFORMATION

ACCOUNT: 004-01512-01
SERVICE ADDRESS: 3225 Wilbur Ave
SERVICE PERIOD: 12/01/22 TO 01/01/23
BILLING DATE: 01/05/23

CURRENT CHARGES

5/8"X3/4" MAINT FEE	\$24.40
FL DET CHK 6"	\$47.80
BACKFLOW DEVICE	\$5.30

AMOUNT NOW DUE

PREVIOUS BALANCE	\$77.50
TOTAL PAYMENTS (LAST PAYMENT 12/28/2022)	(\$81.38)
TOTAL PENALTIES	\$3.88
CURRENT CHARGES DUE 01/26/2023	\$77.50
TOTAL BALANCE	\$77.50

PAYMENT IS NOW DUE. IF NOT PAID BY THE DATE LISTED ABOVE, A 5% LATE CHARGE WILL BE ADDED AND YOUR SERVICE MAY BE INTERRUPTED. THERE IS A NIGHT DEPOSITORY FOR YOUR CONVENIENCE. FAILURE TO RECEIVE A BILL OR PAYMENTS DELAYED IN THE MAIL DOES NOT VOID A LATE CHARGE.

PUBLIC WORKS

For sewer problems, water leaks, potholes and street lights, call Public Works at (925) 779-6950 or email publicworks@antioch.gov. For emergencies after hours, on weekends or holidays call Police dispatch at (925) 778-2441.

Coupon Coupon

ACCOUNT INFORMATION

ACCOUNT: SERVICE ADDRESS: SERVICE PERIOD: BILLING DATE: 004-01512-01

3225 Wilbur Ave 12/01/22 TO 01/01/23 01/05/23

PLEASE RETURN THIS PORTION ALONG WITH YOUR PAYMENT

AMOUNT DUE

PAST DUE BALANCE \$0.00
CURRENT CHARGES DUE 01/26/2023 \$77.50
TOTAL BALANCE \$77.50

AMOUNT ENCLOSED

REMIT PAYMENT TO:

Pg&E 3225 Wilbur Ave Antioch, CA 94509-8546 վորակավույթիրկլիկութայիլուկիրդիկիլիկ

CITY OF ANTIOCH PO BOX 981476 WEST SACRAMENTO , CA 95798-1476

Payment Options

AutoDraft

Have you monthly water bill automatically paid from your checking account.

Online

https://www.municipalonlinepayments.com/antiochca

Make a one-time payment or have your monthly bill automatically paid from your credit card.

By Phone - Available 24/7 (866) 301-8999

By Mail

City of Antioch PO Box 981476 West Sacramento, CA 95798

Smart Phone App

MyCivic Utilities App https://qrs.ly/x8cemoz
For iOS and Android

Dropbox

Antioch City Hall Mid Parking Lot (Drive-Up) *No Cash

In Person

Antioch City Hall - 1st Floor 200 H Street

Billing

If you have any questions about billing, payment arrangements or to change your billing address, contact Customer Service@antiochca.gov or call (925) 779-7060.

You are responsible for all charges until you notify the City of Antioch to stop water service and water service is terminated.

Section 6-5.04.E provides disputes regarding a water bill shall not justify non-payment, underpayment, or delay in payment. Disputed bills shall be paid when due. Requests for investigation of a disputed bill shall be made in writing to the Finance Services Supervisor. If a dispute is resolved in favor of the customer, a refund or credit shall be made.

Any type of payment returned to the City are subject to a returned fee of \$50.00. This may subject you to immediate disconnection of water service if payment was made to avoid a disconnection.

Automated telephone or Internet payments made to avoid disconnection must be made ON or BEFORE the due date specified in your Late or Final Notice to avoid penalties and service charges.

GGS Wastewater Discharge Flow Data January-December 2022

Discharge Flow Data

January 2022-March 2022

		Industria	l Flow		Sanitary Flow				
			Did it ever			Time Meter	Did it ever		
	In atomtom a a	Time Over	go over	Daile Tatal	la ata ata a a a		go over	Daily Takal	Cita Tatal
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(**************************************	mins?			(minutes)	mins?		
1/1/2022	34.6	0.0	NO	27 470	0.0	0	NO		27 470
	34.5		NO	27,479					27,479
1/2/2022		0.0	NO	20,341	0.0	0	NO	400	20,341
1/3/2022	34.9 34.5	0.0	NO	37,554	8.0 10.7	0	NO NO	402	37,956 25,546
1/4/2022 1/5/2022	35.0		NO	25,157 41,634		0		388	
1/6/2022	35.0	0.0	NO	31,573	0.0 11.2	0	NO NO	440	41,634 32,013
1/0/2022	34.5	0.0	NO	24,528	0.0	0	NO	440	
	34.5								24,528
1/8/2022		1.0	NO	23,181	0.0	2	NO		23,181
1/9/2022	35.0	0.0	NO	33,548	0.0	0	NO		33,548
1/10/2022	34.8	0.0	NO	45,441	0.4	0	NO	400	45,441
1/11/2022	34.7	0.0	NO	31,435	0.4	0	NO	128	31,563
1/12/2022	34.8	0.0	NO	38,695	10.4	0	NO	592	39,288
1/13/2022	35.0	0.0	NO	20,035	0.0	0	NO	0	20,035
1/14/2022	35.5	0.0	NO	31,883	12.3	0	NO	364	32,247
1/15/2022	34.8	0.0	NO	23,400	0.1	0	NO	2	23,403
1/16/2022	35.4	0.0	NO	47,169	0.1	0	NO		47,169
1/17/2022	34.7	0.0	NO	18,848	0.0	0	NO		18,848
1/18/2022	35.5	0.0	NO	27,093	0.0	0	NO	100	27,093
1/19/2022	34.6	0.0	NO	16,468	8.0	0	NO	402	16,871
1/20/2022	35.3	0.0	NO	29,923	0.0	0	NO		29,923
1/21/2022	35.0	0.0	NO	33,178	6.3	0	NO	386	33,564
1/22/2022	34.9	0.0	NO	44,222	0.1	0	NO		44,222
1/23/2022	34.7	0.0	NO	38,873	0.0	0	NO		38,873
1/24/2022	50.7	6.0	NO	47,498	0.0	0	NO		47,498
1/25/2022	34.5	0.0	NO	45,239	9.2	0	NO	381	45,620
1/26/2022	34.6	0.0	NO	48,997	0.0	0	NO		48,997
1/27/2022	34.6	0.0	NO	25,269	11.2	0	NO	380	25,649
1/28/2022	34.8	0.0	NO	48,995	0.0	0	NO		48,995
1/29/2022	34.6	0.0	NO	38,755	0.0	0	NO		38,755
1/30/2022	34.9	0.0	NO	41,884	8.0	0	NO	154	42,038
1/31/2022	34.5	0.0	NO	35,872	11.8	0	NO	241	36,113
						Max D	aily Flow (Lir		48,997
								onthly Total:	1,048,427
2/1/2022		0.0		40,374	4.7			413	40,788
2/2/2022		0.0	NO	49,006	0.0	0	NO		49,006
2/3/2022		0.0	NO	36,334	2.1	0	NO	444	36,778
2/4/2022		0.0	NO	33,481	0.1	0	NO	0	33,481
2/5/2022		0.0	NO		2.5		NO	407	407
2/6/2022		0.0	NO	-	0.1	0	NO	1	1
2/7/2022		0.0	NO	6,859	3.9		NO	320	7,179
2/8/2022		1.0	NO		1.9		NO	46	46
2/9/2022		0.0	NO		6.2	0	NO	436	436
2/10/2022	-0.5	0.0	NO		0.1	0	NO	436	436
2/11/2022		0.0	NO		5.8	0	NO	367	367
2/12/2022		0.0	NO		0.1	0	NO	0	0
2/13/2022		0.0	NO		0.1	0	NO		-
2/14/2022		0.0	NO		2.8		. NO	465	465
2/15/2022		0.0	NO	13,082	8.4		NO	391	13,473
2/16/2022	-0.6	0.0	NO		3.0	35	NO	27	27
2/17/2022	0.0	0.0	NO	-	6.5	0	NO	359	359
2/18/2022	0.0	0.0	NO	-	9.4	0	NO	420	420
2/19/2022	0.0	0.0	NO	_	0.0	0	NO		_

Discharge Flow Data

January 2022-March 2022

		Industria	l Flow		Sanitary Flow				
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
2/20/2022	0.0	0.0	NO	-	0.0	0	NO		-
2/21/2022	0.0	0.0	NO	-	10.3	0	NO	390	390
2/22/2022	0.0	0.0	NO	-	6.4	0	NO	247	247
2/23/2022	0.0	0.0	NO	-	7.5	0	NO	155	155
2/24/2022	0.0	0.0	NO	-	10.3	0	NO	368	368
2/25/2022	0.0	0.0	NO	-	0.1	0	NO		-
2/26/2022	0.0	0.0	NO	-	4.2	0	NO	410	410
2/27/2022	0.0	0.0	NO	-	0.1	0	NO	1	1
2/28/2022	0.0	0.0	NO	-	11.3	0	NO	213	213
						Max D		mit: 51,120): onthly Total:	49,006 185,453
3/1/2022	0.0	0.0	NO	_	11.3	0	NO	169	169
3/2/2022	96.7	1.0	NO		4.2	0	NO	408	408
3/3/2022	-0.5	0.0	NO		0.0	0	NO	100	-
3/4/2022	-0.5	0.0	NO		0.0	0	NO		_
3/5/2022	-0.5	0.0	NO		14.9	0	NO	350	350
3/6/2022	-0.5	0.0	NO		0.1	0	NO		-
3/7/2022	-0.4	0.0	NO		0.0	0	NO		_
3/8/2022	-0.5	1.0	NO		3.6	2	NO	452	452
3/9/2022	-0.4	0.0	NO		0.0	0	NO		-
3/10/2022	-0.5	0.0	NO		20.9	0	NO		-
3/11/2022	-0.5	0.0	NO		0.0	0	NO		-
3/12/2022	-0.5	0.0	NO		0.0	0	. NO		-
3/13/2022	-0.5	60.0	NO		0.0	60	i NO		-
3/14/2022	34.8	0.0	NO	10,601	20.2	0	NO	412	11,013
3/15/2022	34.6	0.0	NO	6,709	0.1	0	NO		6,709
3/16/2022	34.5	0.0	NO	40,990	18.3	0	NO	386	41,376
3/17/2022	34.5	0.0	NO	33,260	0.0	0	NO		33,260
3/18/2022	34.7	0.0	NO	17,900	0.0	0	NO		17,900
3/19/2022	35.0	0.0	NO	21,010	0.0	0	NO		21,010
3/20/2022	34.9	0.0	NO	30,784	11.6	0	NO	350	31,134
3/21/2022	34.5	0.0	NO	48,707	0.0	0	NO		48,707
3/22/2022	34.4	0.0	NO	48,857	6.6		NO	141	48,998
3/23/2022	34.6	0.0		48,693	10.4	0	NO	296	48,989
3/24/2022	34.5	0.0	NO	7,741	0.0	0	NO		7,741
3/25/2022	34.7	0.0	NO	14,625	20.4	0	NO	390	15,015
3/26/2022	34.8	0.0	NO	42,331	0.0	0	NO	2	42,333
3/27/2022	34.4	0.0	NO	28,565	0.0	0	NO	200	28,565
3/28/2022	32.8	0.0	NO	25,155	20.8	0	NO	306	25,461
3/29/2022 3/30/2022	32.5	0.0	NO	28,407	0.0		NO	200	28,407
3/30/2022	32.6 32.5	0.0	NO NO	26,735 9,711	18.3 0.1	0	NO NO	388	27,123 9,711
3/3/1/2022	ა∠.5	0.0	INU	9,711	U. I	_		mit: 51 120):	48 998

Max Daily Flow (Limit: 51,120): Monthly Total: 48,998 **494,831**

Notes:

 $^{1. \} On \ 2/15/2022$: System placed in LOTO for repair work on outlet valve. The bad quality in meter reading was due to no water in the meter.

^{2.} On 3/13/2022: There was no missing data. The reading was a result of change of time to daylight savings time.

Discharge Flow Data

April 2022-June 2022

		Industria	l Flow		Sanitary Flow				
			Did it ever				Did it ever		
		Time Over	go over	l		Time Meter	go over	l l	
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
5410	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(IIIIIates)				(minutes)			
			mins?				mins?		
4/1/2022	32.7	0.0		24,125	0.1	0			24,125
4/2/2022	33.9	0.0	NO	22,812	0.0	0	NO		22,812
4/3/2022	33.6	0.0	NO	14,038	0.0	0	NO		14,038
4/4/2022	35.1	0.0	NO	16,207	12.5	0	NO	382	16,589
4/5/2022	34.6	0.0	NO	25,407	0.0	0	NO		25,407
4/6/2022	34.4	0.0	NO	20,122	2.7	0	NO	425	20,547
4/7/2022	34.6	0.0	NO	43,574	0.0	0	NO		43,574
4/8/2022	34.6	1.0	NO	39,426	0.0	2	NO		39,426
4/9/2022	35.3	0.0	NO	29,555	0.2	0	NO	10	29,564
4/10/2022	34.5	0.0	NO	14,668	0.1	0	NO	10	14,677
4/11/2022	34.5	0.0	NO	35,119	0.0	0	NO		35,119
4/12/2022	34.8	0.0	NO	18,488	0.1	0	NO		18,488
4/13/2022	34.7	0.0	NO	25,632	0.1	0	NO		25,632
4/14/2022	34.6	0.0	NO	27,960	4.7	0	NO		27,960
4/15/2022	34.8	0.0	NO	33,065	0.1	0	NO		33,065
4/16/2022	35.0	0.0	NO	14,794	0.0	0	NO		14,794
4/17/2022	34.6	0.0	NO	13,942	0.0	0	NO		13,942
4/18/2022	34.7	0.0	NO	42,194	0.1	0	NO		42,194
4/19/2022	34.8	0.0	NO	34,022	25.6	0	NO	302	34,324
4/20/2022	34.6	0.0	NO	48,292	20.2	0	NO	685	48,978
4/21/2022	34.7	0.0	NO	39,690	0.0	0	NO	003	39,690
4/21/2022	34.7	0.0	NO	44,993	0.0	0	NO		44,993
4/23/2022	34.6	0.0	NO	41,732	18.3	0	NO	349	42,081
4/24/2022	34.8	0.0	NO	29,990	0.0	0		349	29,990
4/25/2022	35.0		NO		0.0		NO		
		0.0	NO	28,221		0		254	28,221
4/26/2022	34.7	0.0	NO	38,114	21.9	0	NO	351	38,465
4/27/2022	34.6	0.0		19,816	0.0	0	NO	200	19,816
4/28/2022	-0.5	0.0	NO	04.050	21.3	0	NO	332	332
4/29/2022	34.8	0.0	NO	31,858	0.0	0	NO		31,858
4/30/2022	34.5	0.0	NO	39,850	0.0	0	NO		39,850
						Max D	,	mit: 51,120):	48,978
								onthly Total:	860,553
5/1/2022	34.8	0.0		13,861	0.0	0			13,861
5/2/2022	34.6	0.0		6,341	23.8			362	6,703
5/3/2022	34.7	0.0		21,043	0.0	0			21,043
5/4/2022	35.0	0.0	NO	32,549	0.0	0			32,549
5/5/2022	35.3	0.0	NO	28,989	24.3	0		378	29,367
5/6/2022	34.8	0.0		44,836	0.0	0			44,836
5/7/2022	34.6	0.0		27,905	24.1	0		377	28,283
5/8/2022	34.8	1.0	NO	26,082	0.0	2			26,082
5/9/2022	34.6	0.0	NO	10,146	0.0	0	_		10,146
5/10/2022	34.7	0.0	NO	24,726	25.9	0	NO		24,726
5/11/2022	34.5	0.0	NO	18,870	0.1	0			18,870
5/12/2022	34.7	0.0	NO	16,487	23.9	0		350	16,837
5/13/2022	34.8	0.0	NO	28,137	0.0	0	NO		28,137
5/14/2022	35.1	0.0	NO	20,996	0.0	0	NO		20,996
5/15/2022	34.5	0.0	NO	49,034	0.0	0	NO		49,034
5/16/2022	34.8	0.0	NO	9,554	25.6	0		376	9,929
5/17/2022	34.7	0.0		23,232	0.0	0			23,232
5/18/2022	34.7	0.0	NO	31,492	0.0	0			31,492
5/19/2022	34.8	0.0	NO	45,833	25.7	0		369	46,202
5/20/2022	34.8	0.0		40,275	0.0	0		300	40,275
0/20/2022	J . .0	0.0	110	70,210	0.0		110		70,210

Discharge Flow Data

April 2022-June 2022

		Industria	l Flow			Sanitary	Flow		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
5/21/2022	34.8	0.0	NO	13,138	0.0	0	NO		13,138
5/22/2022	-0.5	0.0	NO		26.8	0	NO	362	362
5/23/2022	35.2	0.0	NO	33,471	0.0	0	NO		33,471
5/24/2022	34.7	0.0	NO	49,033	0.0	0	NO		49,033
5/25/2022	34.8	0.0	NO	44,978	25.8	0	NO	360	45,338
5/26/2022	34.7	0.0	NO	48,573	0.0	0	NO		48,573
5/27/2022	34.7	0.0	NO	40,446	27.0	0	NO	347	40,793
5/28/2022	34.6	0.0	NO	26,284	0.0	0	NO		26,284
5/29/2022	35.0	0.0	NO	22,423	0.1	0	NO		22,423
5/30/2022	34.5	0.0	NO	13,245	0.0	0	NO		13,245
5/31/2022	34.6	0.0	NO	45,568	26.5	0	NO	348	45,916
						Max D		mit: 51,120):	49,034
6/1/2022	34.8	0.0	NO	49,022	0.0	0	NO	onthly Total:	861,176 49,022
6/2/2022	34.8	0.0	NO	17,606	24.9	0	NO	361	17,967
6/3/2022	34.5	0.0	NO	6,347	0.1	0	NO		6,347
6/4/2022	34.5	0.0	NO	14,454	0.0	0	NO		14,454
6/5/2022	34.8	0.0	NO	16,259	0.0	0	NO		16,259
6/6/2022	34.6	0.0	NO	40,855	26.0	0	NO	349	41,204
6/7/2022	34.6	0.0	NO	35,443	0.0	0	NO		35,443
6/8/2022	34.8	1.0	NO	42,578	25.8	2	NO	381	42,958
6/9/2022	35.0	0.0	NO	36,799	0.0	0	NO		36,799
6/10/2022	34.7	0.0	NO	29,342	0.0	0	NO		29,342
6/11/2022	34.8	0.0	NO	49,026	0.0	0	NO		49,026
6/12/2022	34.8	0.0	NO	20,648	26.4	0	NO	548	21,195
6/13/2022	34.9	0.0	NO	36,271	0.1	0	NO		36,271
6/14/2022	34.6	0.0	NO	48,261	26.4	0	NO	327	48,587
6/15/2022	34.5	0.0	NO	46,677	0.0	0	NO		46,677
6/16/2022	35.0	0.0	NO	32,830	26.0	0	NO	360	33,189
6/17/2022	35.0	0.0	NO	35,001	0.0	0	NO		35,001
6/18/2022	34.8	0.0	NO	25,106	0.0	0	NO		25,106
6/19/2022	34.5	0.0	NO	9,447	27.2	0	NO	360	9,807
6/20/2022	34.7	0.0	NO	24,689	0.0	0	NO		24,689
6/21/2022	34.5	0.0		49,026	0.0	0	NO		49,026
6/22/2022	34.6	0.0	NO	46,068	26.1	0	NO	344	46,412
6/23/2022	34.8	9.0	NO	32,128	0.1	13	NO		32,128
6/24/2022	34.8	0.0	NO	40,743	0.0	0	NO		40,743
6/25/2022	35.1	0.0	NO	28,543	27.5	0	NO	365	28,908
6/26/2022	34.8	0.0	NO	45,280	0.0	0	NO		45,280
6/27/2022	34.7	0.0	NO	43,925	0.0	0	NO		43,925
6/28/2022	34.7	0.0	NO	39,245	26.1	0	NO	361	39,606
6/29/2022	34.9	0.0	NO	42,112	0.0	0	NO		42,112
6/30/2022	35.2	0.0	NO	27,559	25.9	0	NO	340	27,899

Max Daily Flow (Limit: 51,120): 49,026 Monthly Total: 1,015,382

Discharge Flow Data

July 2022-September 2022

		Industria	l Flow		Sanitary Flow				
			Did it ever			Time Meter	Did it ever		
	Instantancous	Time Over	go over	Doily Total	Instantancous		go over	Doily Total	Site Total
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		,	mins?			(minutes)	mins?		
7/1/2022	34.8	0.0		32,518	0.0	0	NO		32,518
7/2/2022	35.0	0.0	NO	27,315	0.0	0	NO		27,315
7/3/2022	34.8	0.0	NO	13,355	0.0	0	NO		13,355
7/4/2022	34.8	0.0	NO	15,190	0.0	0	NO		15,190
7/5/2022	34.7	0.0	NO	29,201	26.9	0	NO	348	29,549
7/6/2022	34.9	0.0	NO	43,519	0.0	0	NO	340	43,519
7/7/2022	35.0	0.0	NO	35,943	0.0	0	NO		35,943
7/8/2022	34.8	1.0	NO	44,348	27.1	2	NO	360	44,708
7/9/2022	34.7	0.0	NO	22,041	0.0	0	NO	300	22,041
7/10/2022	34.9	0.0	NO	37,525	0.0	0	NO		37,525
7/11/2022	34.9	0.0	NO	37,323	0.0	0	NO		37,323
7/11/2022	34.6	0.0	NO	28,212	27.1	0	NO	352	28,564
7/13/2022	35.0	0.0	NO	24,421	0.0	0	NO	332	24,421
7/14/2022	34.8	0.0	NO	33,160	26.5	0	NO	346	33,506
7/15/2022	34.8	0.0	NO	39,259	0.1	0	NO	040	39,259
7/16/2022	34.5	0.0	NO	45,157	0.0	0	NO		45,157
7/17/2022	34.6	0.0	NO	47,225	27.8	0	NO	330	47,554
7/18/2022	34.7	0.0	NO	44,008	0.0	0	NO	330	44,008
7/19/2022	34.7	0.0	NO	39,513	0.0	0	NO		39,513
7/20/2022	34.6	0.0	NO	44,416	26.8	0	NO	359	44,774
7/21/2022	34.5	0.0	NO	42,012	0.0	0	NO	000	42,012
7/22/2022	34.5	0.0	NO	48,224	26.5	0	NO	349	48,573
7/23/2022	34.5	0.0	NO	43,877	0.0	0	NO	0.0	43,877
7/24/2022	34.7	0.0	NO	49,026	0.0	0	NO		49,026
7/25/2022	34.4	0.0	NO	34,518	27.1	0	NO	356	34,874
7/26/2022	34.7	0.0	NO	35,241	0.0	0	NO		35,241
7/27/2022	34.4	0.0	NO	48,644	25.6	0	NO	347	48,991
7/28/2022	34.5	0.0	NO	39,264	0.0	0	NO	-	39,264
7/29/2022	34.8	0.0	NO	38,395	26.1	0	NO	358	38,753
7/30/2022	34.6	0.0	NO	14,233	0.0	0	NO		14,233
7/31/2022	34.7	0.0	NO	20,388	0.0	0	NO		20,388
· · · · · · · · · · · · · · · · · · ·				,		Max D	ailv Flow (Lii	nit: 51,120):	49,026
							,	onthly Total:	1,100,925
8/1/2022	34.9	0.0	NO	36,960	25.9	0	NO	347	37,307
8/2/2022	34.9	0.0		28,894	0.0		NO		28,894
8/3/2022	35.3	0.0	NO	27,590	26.8		NO	343	27,934
8/4/2022	34.8	0.0		43,118	0.0	0	NO		43,118
8/5/2022	34.6	0.0	NO	48,640	26.2	0	NO	346	48,985
8/6/2022	35.1	0.0	NO	45,989	0.0	0	NO		45,989
8/7/2022	34.8	0.0	NO	39,828	0.0	0	NO		39,828
8/8/2022	34.5	1.0		46,952	0.0	2	NO		46,952
8/9/2022	34.5	0.0		46,958	25.8		NO	355	47,313
8/10/2022	34.8	0.0	NO	36,101	27.5	0	NO	355	36,457
8/11/2022	34.9	0.0	NO	36,486	0.0	0	NO		36,486
8/12/2022	34.6	0.0		21,413	28.1	0	NO	361	21,773
8/13/2022	34.9	0.0	NO	35,770	0.0	0	NO		35,770
8/14/2022	35.0	0.0	NO	45,064	0.0	0	NO		45,064
8/15/2022	34.9	0.0		26,428	0.0		NO		26,428
8/16/2022	34.8	0.0		28,771	27.0	0	NO	363	29,135
8/17/2022	34.6	0.0	NO	43,971	0.0	0	NO		43,971
		0.0		30 683	26.2	0	NO	348	31,031
8/18/2022	35.0	0.0	INO	30,692	20.2		110	, J T U I	01,001

Discharge Flow Data

July 2022-September 2022

		Industria	l Flow			Sanitary	Flow		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
8/20/2022	34.8	0.0	NO	32,650	0.0	0	NO		32,650
8/21/2022	34.5	0.0	NO	45,827	0.0	0	NO		45,827
8/22/2022	34.4	0.0	NO	48,423	27.8	0	NO	372	48,795
8/23/2022	34.8	0.0	NO	27,421	0.0	0	NO		27,421
8/24/2022	34.7	0.0	NO	39,497	27.2	0	NO	349	39,846
8/25/2022	35.2	0.0	NO	36,141	27.7	0	NO	363	36,505
8/26/2022	34.7	0.0	NO	47,131	0.0	0	NO		47,131
8/27/2022	34.8	10.0	NO	43,259	0.0	10	NO		43,259
8/28/2022	34.5	0.0	NO	45,504	0.0	0	NO		45,504
8/29/2022	34.5	0.0	NO	25,654	28.7	0	NO	369	26,022
8/30/2022	34.4	0.0	NO	28,703	24.7	0	NO	234	28,937
8/31/2022	34.5	0.0	NO	49,024	0.0	0	NO		49,024
						Max D	aily Flow (Lii	mit: 51,120):	49,024
							M	onthly Total:	1,174,046
9/1/2022	34.5	0.0	NO	40,577	28.0	0	NO	376	40,953
9/2/2022	34.9	0.0	NO	22,580	0.0	0	NO		22,580
9/3/2022	35.1	0.0	NO	27,834	0.0	0	NO		27,834
9/4/2022	34.9	0.0	NO	42,602	25.9	0	NO	365	42,967
9/5/2022	34.9	0.0	NO	32,673	0.1	0	NO		32,673
9/6/2022	34.8	0.0	NO	33,342	0.0	0	NO		33,342
9/7/2022	34.7	0.0	NO	43,980	28.4	0	NO	393	44,373
9/8/2022	34.5	1.0	NO	46,541	28.4	2	NO	780	47,321
9/9/2022	34.8	0.0	NO	35,974	0.0	0	NO		35,974
9/10/2022	35.0	0.0	NO	36,306	0.0	0	NO		36,306
9/11/2022	34.5	0.0	NO	46,980	26.8	0	NO	378	47,358
9/12/2022	34.8	0.0	NO	47,820	0.1	0	NO		47,820
9/13/2022	34.6	0.0	NO	44,712	26.4	0	NO	370	45,082
9/14/2022	34.6	0.0	NO	20,686	0.1	0	NO		20,686
9/15/2022	34.8	0.0	NO	6,549	25.3	0	NO	350	6,899
9/16/2022	34.8	0.0	NO	14,350	0.0	0	NO		14,350
9/17/2022	34.9	0.0	NO	23,348	0.0	0	NO		23,348
9/18/2022	34.7	0.0	NO	39,466	0.0	0	NO		39,466
9/19/2022	34.6			22,540	0.0		NO		22,540
9/20/2022	34.7	0.0	NO	14,453	0.0		NO		14,453
9/21/2022	34.7	0.0	NO	14,743	27.8	0	NO	656	15,400
9/22/2022	34.6	0.0	NO	22,641	27.7	0	NO	393	23,034
9/23/2022	34.8	0.0	NO	22,420	0.0	0	NO		22,420
9/24/2022	35.0	0.0	NO	24,158	0.0		NO		24,158
9/25/2022	35.0	0.0	NO	28,548	0.1	0	NO	222	28,548
9/26/2022	34.7	0.0	NO	26,066	27.3		NO	396	26,462
9/27/2022	34.7	0.0	NO	25,624	0.0		NO	200	25,624
9/28/2022	34.8	0.0	NO	29,327	28.2	0	NO	392	29,718
9/29/2022	34.7	0.0	NO	23,203	0.0		NO		23,203
9/30/2022	34.5	0.0	NO	19,144	0.0		NO	mit: 51 120):	19,144 47,820

Max Daily Flow (Limit: 51,120): 47,820

Monthly Total: 884,037

Discharge Flow Data

October 2022-December 2022

		Industria	l Flow			Sanitary	Flow		
			Did it ever			Time Mate	Did it ever		
		Time Over	go over	Dalla Fatal		Time Meter	go over	Dath Takal	City Tatal
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		,	mins?			(minutes)	mins?		
10/1/2022	34.7	0.0	NO	23,858	25.6	0	NO	389	24,247
10/1/2022	34.7	0.0	NO	26,804	0.0	0	NO	000	26,804
10/3/2022	34.7	0.0	NO	21,519	29.0	0	NO	877	22,395
10/4/2022	34.7	0.0	NO	20,101	0.0	0	NO	011	20,101
10/5/2022	35.0	0.0	NO	26,409	24.7	0	NO	508	26,917
10/6/2022	34.9	0.0	NO	19,377	34.4	0	NO	559	19,936
10/7/2022	35.1	0.0	NO	27,052	7.8	0	NO		27,052
10/8/2022	35.0	1.0	NO	20,936	23.9	2	NO	113	21,049
10/9/2022	35.0	0.0	NO	34,711	0.0	0	NO		34,711
10/10/2022	34.7	0.0	NO	30,504	0.0	0	NO		30,504
10/11/2022	34.8	0.0	NO	40,995	0.0	0	NO		40,995
10/12/2022	34.8	0.0	NO	25,167	0.0	0	NO		25,167
10/13/2022	34.7	0.0	NO	22,921	26.6	0	NO	921	23,842
10/14/2022	34.7	0.0	NO	24,237	0.1	0	NO		24,237
10/15/2022	34.9	0.0	NO	16,747	25.9	0	NO	482	17,228
10/16/2022	34.7	0.0	NO	39,575	24.7	0	NO	145	39,720
10/17/2022	34.6	0.0	NO	15,948	0.0	0	NO		15,948
10/18/2022	34.8	0.0	NO	22,080	28.6	0	NO	135	22,214
10/19/2022	34.9	0.0	NO	30,462	22.2	0	NO	210	30,672
10/20/2022	34.7	0.0	NO	16,613	0.1	0	NO		16,613
10/21/2022	34.6	0.0		37,898	0.0	0	NO		37,898
10/22/2022	34.1	0.0	NO	8,647	0.0	0	NO		8,647
10/23/2022	30.6	0.0	NO	25,169	0.0	0	NO		25,169
10/24/2022	35.1	0.0	NO	39,164	27.4	0	NO	231	39,394
10/25/2022	34.2	0.0	NO	26,820	0.0	0	NO		26,820
10/26/2022	34.3	0.0	NO	32,363	27.1	0	NO	789	33,152
10/27/2022	32.6	0.0	NO	26,140	0.0	0	NO		26,140
10/28/2022	32.8	0.0	NO	45,906	26.9	0	NO	196	46,102
10/29/2022	34.4	0.0	NO	29,182	0.1	0	NO		29,182
10/30/2022	34.8	0.0	NO	22,438	0.0	0	NO		22,438
10/31/2022	34.8	0.0	NO	28,738	0.0	0	NO		28,738
						Max D		mit: 51,120):	46,102
								onthly Total:	834,034
11/1/2022	34.9	0.0	NO	26,689	26.9	0	NO	633	27,323
11/2/2022	34.6	0.0	NO	34,534	0.1	0	NO	0	34,534
11/3/2022	34.8	0.0		14,343	26.4	0	NO	373	14,716
11/4/2022	34.8	0.0	NO	26,721	0.0	0	NO	200	26,721
11/5/2022	34.5	0.0	NO	25,734	26.8	0	NO	366	26,100
11/6/2022	34.7	1.0	NO	24,844	0.1	1	NO		24,844
11/7/2022	34.6	0.0	NO	48,245	0.0	0	NO		48,245
11/8/2022	34.5 34.4	1.0	NO NO	22,427	0.1 27.1	2 0	NO NO	371	22,427
11/9/2022 11/10/2022	34.4 34.6	0.0		28,583 33,849	0.1	0	NO NO	371	28,955 34,220
11/10/2022	34.6	0.0		33,849	0.1	0	NO	3/1	34,220
11/11/2022	34.0	0.0	NO	14,211	27.8	0	NO	385	14,597
11/12/2022	34.7 34.6	0.0	NO	30,668	0.1	0	NO	300	30,668
11/13/2022	34.9	0.0	NO	29,499	0.0	0	NO		29,499
11/15/2022	34.6	0.0	NO	24,364	28.1	0	NO	392	24,756
11/16/2022	34.4	0.0	NO	29,455	0.0	0	NO	392	29,455
11/10/2022	35.0	0.0		30,338	27.3	0	NO	375	30,714
11/17/2022	34.8	0.0		25 970	0.0	0	NO	4	25,974
11/19/2022	34.4	0.0	NO	21,472	0.0	0	NO	7	21,472
11/13/2022	J 4 .4	0.0	L 110	<u> </u>	lblic 0.0		110	<u> </u>	21,412

Discharge Flow Data

October 2022-December 2022

		Industria	l Flow			Sanitary	Flow		
			Did it ever			l	Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
11/20/2022	34.8	0.0	NO	29,804	26.3	0	NO	389	30,193
11/21/2022	34.5	0.0	NO	28,017	0.1	0	NO	000	28,017
11/22/2022	34.7	0.0	NO	26,745	0.1	0	NO		26,745
11/23/2022	34.6	0.0	NO	20,713	0.1	0	NO		20,713
11/24/2022	34.6	0.0	NO	14,820	23.5	0	NO	384	15,204
11/25/2022	34.9	0.0	NO	30,704	0.1	0	NO		30,704
11/26/2022	34.5	0.0	NO	18,610	0.0	0	NO		18,610
11/27/2022	34.8	0.0	NO	35,448	0.0	0	NO		35,448
11/28/2022	34.8	0.0	NO	9,834	25.9	0	NO	389	10,223
11/29/2022	-0.5	0.0	NO	-,	0.1	0	NO	2	2
11/30/2022	34.5	0.0	NO	18,338	26.0	0	NO	403	18,741
				10,000			aily Flow (Lii		48,245
							, .	onthly Total:	760,234
12/1/2022	34.5	0.0	NO	32,435	0.1	0	NO	, 1	32,436
12/2/2022	34.6	0.0	NO	17,568	0.0	0	NO		17,568
12/3/2022	34.6	0.0	NO	44,803	26.1	0	NO	393	45,196
12/4/2022	34.4	0.0	NO	33,127	0.1	0	NO	1	33,128
12/5/2022	34.7	0.0	NO	37,252	0.0	0	NO	_	37,252
12/6/2022	34.5	0.0	NO	28,397	26.3	0	NO	262	28,659
12/7/2022	34.9	0.0	NO	30,375	25.4	0	NO	287	30,662
12/8/2022	34.5	1.0	NO	43,605	0.0	2	NO		43,605
12/9/2022	34.5	0.0	NO	34,575	0.0	0	NO		34,575
12/10/2022	34.5	0.0	NO	32,894	26.6	0	NO		32,894
12/11/2022	34.4	0.0	NO	39,559	0.0	0	NO		39,559
12/12/2022	34.5	0.0	NO	24,316	0.0	0	NO		24,316
12/13/2022	34.5	0.0	NO	20,509	25.4	0	NO	391	20,900
12/14/2022	34.4	0.0	NO	24,504	0.1	0	NO		24,504
12/15/2022	34.4	0.0	NO	15,789	26.3	0	NO	411	16,199
12/16/2022	34.5	0.0	NO	17,808	0.0	0	NO		17,808
12/17/2022	34.6	0.0	NO	43,217	0.1	0	NO		43,217
12/18/2022	34.4	0.0	NO	27,112	27.6	0	NO	374	27,486
12/19/2022	35.0	0.0	NO	25,067	0.0	0	NO		25,067
12/20/2022	34.6	0.0	NO	34,774	0.0	0	NO		34,774
12/21/2022	34.4	0.0	NO	14,822	27.2	0	NO	389	15,211
12/22/2022	34.5	0.0	NO	6,791	0.0		NO		6,791
12/23/2022	34.7	0.0		20,031	0.1	0	NO		20,031
12/24/2022	34.5	0.0	NO	25,279	0.0		NO		25,279
12/25/2022	34.5	0.0	NO	29,070	26.4	0	NO	383	29,453
12/26/2022	34.8	0.0	NO	24,652	0.1	0	NO		24,652
12/27/2022	34.6	0.0	NO	28,013	0.0	0	NO		28,013
12/28/2022	34.6	0.0	NO	28,012	27.1	0	NO	384	28,396
12/29/2022	34.5	0.0	NO	3,928	0.1	0	NO		3,928
12/30/2022	34.4	0.0		33,128	0.0		NO		33,128
12/31/2022	35.6	0.0	NO	44,852	25.6		NO	397	45,249
						Max D		mit: 51,120):	45,249

Monthly Total: 869,937

GGS Water Usage for CY 2022 (Estimated)

Volume of Incoming Water (gallons)	2017 (Billing Records)	2018 (Billing Records)	2019 (Billing Records)	2020 (Billing Records)	2021 (Billing Records)	2022 (Billing Records)	2022 (Estimated based on Percentage Discharge))
January	1,294,788	825,792	784,652	881,144	1,507,968	134,640	1,501,106
February	224,400	1,140,700	1,119,008	1,093,576	1,671,780	11,220	320,152
March	3,184,236	1,119,008	1,228,216	1,220,736	2,167,704	82,280	858,996
April	1,401,752	319,396	478,720	685,916	2,316,556	130,900	1,608,210
May	2,168,452	1,218,492	1,068,144	1,852,048	797,368	129,404	1,885,044
June	2,061,488	2,280,652	1,377,068	1,806,420	2,664,376	157,828	2,077,684
July	1,786,224	2,104,872	2,508,044	1,469,820	2,584,340	246,840	2,225,176
August	1,681,504	1,311,244	2,692,800	1,317,976	2,079,440	180,268	1,945,147
September	2,055,504	1,252,152	2,255,220	1,605,956	1,543,872	175,780	1,402,647
October	1,188,572	1,205,028	1,676,268	1,292,544	1,518,440	130,900	1,147,879
November	712,844	860,948	1,280,576	1,548,360	1,280,576	111,452	1,047,635
December	861,696	786,896	946,968	1,477,300	871,420	93,500	1,117,468
	18,621,460	14,425,180	17,415,684	16,251,796	21,003,840	1,585,012	17,137,144
Volume of Discharged Wastewater (gallons)	2017 (Flowmeter Readings)	2018 (Flowmeter Readings)	2019 (Flowmeter Readings)	2020 (Flowmeter Readings)	2021 (Flowmeter Readings)	2022 (Flowmeter Readings)	
January	922,981	595,902	583,462	573,723	999,816	1,048,427	
February	995,149	665,341	642,154	637,223	965,002	185,453	
March	1,081,198	766,023	793,611	813,098	1,179,151	494,831	
April	647,934	223,178	234,569	391,835	1,050,020	860,553	
May	961,357	491,880	573,277	882,603	338,050	861,176	
June	1,097,960	926,551	633,026	1,065,745	1,212,301	1,015,382	
July	1,148,569	837,244	930,128	900,501	1,161,648	1,100,925	
August	1,169,873	915,593	817,158	994,281	1,177,030	1,174,046	
September	1,245,381	856,884	849,400	1,312,252	1,030,315	884,037	
October	1,009,096	754,451	858,003	1,165,312	1,130,378	834,034	
November	666,388	553,929	726,401	1,044,092	1,035,399	760,234	
December	663,539	502,374	677,412	1,055,450	918,641	869,937	
	11,609,425	8,089,350	8,318,601	10,836,115	12,197,751	10,089,035	

Percentage of Discharge (Calculated)	2017	2018	2019	2020	2021	5-average
January	71	72	74	65	66	70
February		58	57	58	58	58
March	34	68	65	67	54	58
April	46	70	49	57	45	54
May	44	40	54	48	42	46
June	53	41	46	59	46	49
July	64	40	37	61	45	49
August	70	70	30	75	57	60
September	61	68	38	82	67	63
October	85	63	51	90	74	73
November	93	64	57	67	81	73
December	77	64	72	71	105	78

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 14

Exhibit 4
Quarterly Self-Monitoring Reports to Delta
Diablo Sanitation District,
Notice of Violation/Corrective Action
(Condition of Certification SOIL&WATER-4)

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 14

Exhibit 4a
Quarterly Self-Monitoring Reports to DD,
(Condition of Certification SOIL&WATER-4)

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

Anh Mm 4-14-22

April 14, 2022

Mr. Edward Mora Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending March 31, 2021)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending March 31, 2022, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in March 31, 2022

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 1 Certification Statement

Certification Statement

PG&E Gateway Generating Station

Name of Business:

Address:	3225 Wilbur Avenue, Antioch, CA. 94509						
Phone:	<u>925-522-7805</u>						
Period Covered:	Period ending: March 31, 2022						
direction or supervision personnel properly gathering the information belief, true, accurate	of law that this document and all attachments were prepared under my ion in accordance with a system designed to assure that qualified other and evaluate the information submitted. Based on my inquiry of s who manage the system, or those persons directly responsible for action, the information submitted is to the best of my knowledge and and complete. I am aware that there are significant penalties for mation, including the possibility of fine and imprisonment for knowing						
	Date:						

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

	756-1961	Pretreatment Phone: (925)756-1929 ateway Generating Station
	Jser Checklist for self –monitoring repermit issued by Delta Diablo Sanitation	•
Self-monito	oring reports	
Calibround Calibr	discharge summary (Discharge Permi ration of flow meters, as required. (Sectoring results- <u>All</u> required tests compaded, QA/QC, chain of custody (section fication statement included (See Attack	etion E.1.g.) leted, results reviewed, results n F.7.) (See Attachment 8)
Violations ((if applicable)	
Delta A foll Correc	astewater discharge exceedance are re Diablo was contacted. (See Additional ow-up report on characterization re-sa ctive actions to resolve violation: violations - i.e. Reporting, spills to se	al Notes below) ampling was submitted on

<u>Additional Notes</u>: None

Significant changes

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station ID #: 0208841-C SIC: 4911

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

_							
DATE	3/28/2021	3/29/2022	3/29/2022	3/29/2022	3/29/2022		
TYPE	G	G	C24	G	G		
STATION	E-001	E-001	E-001	E-001	E-001		
SMP.BY	Muskan	Muskan	Muskan	Muskan	Muskan		·
[Compliance	Compliance	Compliance	Compliance Semi-	Compliance		
PURPOSE	Quarterly (Q1)	Quarterly (Q1)	Quarterly (Q1)	annually (SA1)	Annually (A)		
				1		I	I

Units: mg/L

PARAMETERS	LIMITS	6/ -							
FLOW, DAILY (gal)	51,120							Т	
FLOW, MONTH (gal)	5			15					
рН	6-10 s.u.	8.92		(1		F 1			
BOD				ND(<40)	1	140			
COD				16.0			Į.		
TDS				354.0					
TSS	1			15.2			i.		
Arsenic	0.15		10	ND(<0.0025)		1			
Cadmium	0.1			ND(<0.0025)					
Chromium	0.5			0.0070			,		
Copper	0.5			0.0180			2		
Iron	- 1		1	14.0					
Lead	0.5			ND(<0.0025)			5		
Mercury	0.003			ND(<0.0002)		1			
Molybdenum				0.016					
Nickel	0.5		1	0.0079					
Selenium	0.25			ND(<0.0025)					
Silver	0.2		(-	ND(<0.0025)))		
Zinc	1.00		l le	0.680					
Cyanide	0.2		0.012			4			
Phenol	1.00		ND(<0.002)					<u> </u>	
Ammonia	200		13						
O&G Petro/Min (E1664A w/ Silica)	100	ND(<5.0)	ND(<5.0)	1			a a		
O&G Animal/Vegetable Oil	300	15	ND(<5.0)	1 = 0					
TTO EPA 608					ND(<0.000001)		F		
TTO EPA 624	10			7	0.00385				
TTO EPA 625	Ú				0.001819		7		
TTO	2.00	-			0.005669	-			
Sulfide	i i					ND (<0.1)			
Sulfate		_	7.0		5	96			

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

Discharge Flow Data

January 2022-March 2022

		Industria	l Flow		Sanitary Flow				
			Did it ever			Time Meter	Did it ever		
	la stanta a sa sus	Time Over	go over	Daile Tatal	la ata ata a a a		go over	Daily Takal	Cita Tatal
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		,	mins?			(minutes)	mins?		
1/1/2022	34.6	0.0	NO	27 470	0.0	0	NO		27,479
1/1/2022	34.5		NO	27,479			NO		20,341
1/3/2022		0.0	NO	20,341	0.0	0	NO	402	•
	34.9	0.0	NO	37,554	8.0	0			37,956
1/4/2022	34.5 35.0	0.0	NO	25,157	10.7	0	NO	388	25,546
1/5/2022 1/6/2022	35.0	0.0	NO	41,634 31,573	0.0	0	NO NO	440	41,634
1/0/2022	34.5	0.0	NO	24,528	11.2 0.0		NO	440	32,013
		0.0				0			24,528
1/8/2022	34.7	1.0	NO	23,181	0.0	2	NO		23,181
1/9/2022	35.0	0.0	NO	33,548	0.0	0	NO		33,548
1/10/2022	34.8	0.0	NO	45,441	0.4	0	NO	400	45,441
1/11/2022	34.7	0.0	NO	31,435	0.4	0	NO	128	31,563
1/12/2022	34.8	0.0	NO	38,695	10.4	0	NO	592	39,288
1/13/2022	35.0	0.0	NO	20,035	0.0	0	NO	0	20,035
1/14/2022	35.5	0.0	NO	31,883	12.3	0	NO	364	32,247
1/15/2022	34.8	0.0	NO	23,400	0.1	0	NO	2	23,403
1/16/2022	35.4	0.0	NO	47,169	0.1	0	NO		47,169
1/17/2022	34.7	0.0	NO	18,848	0.0	0	NO		18,848
1/18/2022	35.5	0.0	NO	27,093	0.0	0	NO		27,093
1/19/2022	34.6	0.0	NO	16,468	8.0	0	NO	402	16,871
1/20/2022	35.3	0.0	NO	29,923	0.0	0	NO		29,923
1/21/2022	35.0	0.0	NO	33,178	6.3	0	NO	386	33,564
1/22/2022	34.9	0.0	NO	44,222	0.1	0	NO		44,222
1/23/2022	34.7	0.0	NO	38,873	0.0	0	NO		38,873
1/24/2022	50.7	6.0	NO	47,498	0.0	0	NO		47,498
1/25/2022	34.5	0.0	NO	45,239	9.2	0	NO	381	45,620
1/26/2022	34.6	0.0	NO	48,997	0.0	0	NO		48,997
1/27/2022	34.6	0.0	NO	25,269	11.2	0	NO	380	25,649
1/28/2022	34.8	0.0	NO	48,995	0.0	0	NO		48,995
1/29/2022	34.6	0.0	NO	38,755	0.0	0	NO		38,755
1/30/2022	34.9	0.0	NO	41,884	8.0	0	NO	154	42,038
1/31/2022	34.5	0.0	NO	35,872	11.8	0	NO	241	36,113
						Max D	aily Flow (Lir	nit: 51,120):	48,997
								onthly Total:	1,048,427
2/1/2022	34.9	0.0		40,374	4.7			413	40,788
2/2/2022	35.1	0.0	NO	49,006	0.0	0	NO		49,006
2/3/2022	35.0	0.0	NO	36,334	2.1	0	NO	444	36,778
2/4/2022	35.1	0.0	NO	33,481	0.1	0	NO	0	33,481
2/5/2022	-0.7	0.0	NO		2.5	0	NO	407	407
2/6/2022	-0.7	0.0	NO		0.1	0	NO	1	1
2/7/2022	34.7	0.0	NO	6,859	3.9	0	NO	320	7,179
2/8/2022	-0.5	1.0	NO	·	1.9	2	NO	46	46
2/9/2022	-0.5	0.0	NO		6.2	0	NO	436	436
2/10/2022	-0.5	0.0	NO		0.1	0	NO	436	436
2/11/2022	-0.5	0.0	NO		5.8	0	NO	367	367
2/12/2022	-0.5	0.0	NO		0.1	0	NO	0	0
2/13/2022	-0.5	0.0	NO		0.1	0	NO		-
2/14/2022	-0.5	0.0	NO		2.8		NO	465	465
2/15/2022	34.5	0.0	NO	13,082	8.4		NO	391	13,473
2/16/2022	-0.6	0.0	NO	12,002	3.0		NO	27	27
2/17/2022	0.0	0.0	NO	_	6.5		NO	359	359
2/17/2022	0.0	0.0	NO	_	9.4	0	NO	420	420
2/19/2022	0.0	0.0	NO	-	0.0			120	-
LITOLL	0.0	0.0	1,0	I	0.0		.,0	<u> </u>	

Discharge Flow Data

January 2022-March 2022

		Industria	l Flow		Sanitary Flow				
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
2/20/2022	0.0	0.0	NO	-	0.0	0	NO		-
2/21/2022	0.0	0.0	NO	-	10.3	0	NO	390	390
2/22/2022	0.0	0.0	NO	-	6.4	0	NO	247	247
2/23/2022	0.0	0.0	NO	-	7.5	0	NO	155	155
2/24/2022	0.0	0.0	NO	-	10.3	0	NO	368	368
2/25/2022	0.0	0.0	NO	-	0.1	0	NO		-
2/26/2022	0.0	0.0	NO	-	4.2	0	NO	410	410
2/27/2022	0.0	0.0	NO	-	0.1	0	NO	1	1
2/28/2022	0.0	0.0	NO	-	11.3	0	NO	213	213
						Max D		mit: 51,120):	49,006
								onthly Total:	185,453
3/1/2022	0.0	0.0	NO	-	11.3	0	NO	169	169
3/2/2022	96.7	1.0	NO		4.2	0	NO	408	408
3/3/2022	-0.5	0.0	NO		0.0	0	NO		-
3/4/2022	-0.5	0.0	NO		0.0	0	NO		-
3/5/2022	-0.5	0.0	NO		14.9	0	NO	350	350
3/6/2022	-0.5	0.0	NO		0.1	0	NO		-
3/7/2022	-0.4	0.0	NO		0.0	0	NO		-
3/8/2022	-0.5	1.0	NO		3.6	2	NO	452	452
3/9/2022	-0.4	0.0	NO		0.0	0	NO		-
3/10/2022	-0.5	0.0	NO		20.9	0	NO		-
3/11/2022	-0.5	0.0	NO		0.0	0	NO		-
3/12/2022	-0.5	0.0	NO		0.0	0	NO		-
3/13/2022	-0.5	60.0	NO		0.0	60	NO		-
3/14/2022	34.8	0.0	NO	10,601	20.2	0	NO	412	11,013
3/15/2022	34.6	0.0	NO	6,709	0.1	0	NO	200	6,709
3/16/2022	34.5	0.0	NO	40,990	18.3	0	NO	386	41,376
3/17/2022	34.5	0.0	NO	33,260	0.0	0	NO		33,260
3/18/2022	34.7	0.0	NO	17,900	0.0	0	NO		17,900
3/19/2022	35.0	0.0	NO NO	21,010	0.0	0	NO NO	250	21,010
3/20/2022 3/21/2022	34.9	0.0	NO NO	30,784	11.6	0		350	31,134
	34.5 34.4	0.0	NO	48,707	0.0 6.6	0	NO NO	141	48,707 48,998
3/22/2022 3/23/2022			NO NO	48,857 48,693		0	NO	296	
3/23/2022	34.6 34.5	0.0	NO	7,741	10.4 0.0	0	NO	290	48,989 7,741
3/24/2022	34.5	0.0	NO	14,625	20.4	0	NO	390	15,015
3/25/2022	34.7	0.0	NO	42,331	0.0	0	NO	390	42,333
3/26/2022	34.6 34.4	0.0	NO	28,565	0.0	0	NO		28,565
3/28/2022	32.8	0.0	NO	25,155	20.8	0	NO	306	25,461
3/29/2022	32.5	0.0	NO	28,407	0.0	0	NO	300	28,407
3/30/2022	32.5	0.0	NO	26,735	18.3	0	NO	388	27,123
3/31/2022	32.5	0.0	NO	9,711	0.1	0	NO	300	9,711
3/31/2022	3∠.3	0.0	NO	3,111	0.1	_	nily Flow (Liu		48 998

Max Daily Flow (Limit: 51,120): Monthly Total: 48,998 **494,831**

Notes:

 $^{1. \} On \ 2/15/2022$: System placed in LOTO for repair work on outlet valve. The bad quality in meter reading was due to no water in the meter.

^{2.} On 3/13/2022: There was no missing data. The reading was a result of change of time to daylight savings time.

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2022**

Month	Flow (gallons)	Due Date
January	1,048,427	4/15/2022
February	185,453	4/15/2022
March	494,831	4/15/2022
April		
May		
June		
July		
August		
September		
October		
November		
December		

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

WSAC Operating Hours Report January 2022 to March 2022

	WSAC Operation
Month	Hours of Operation
January-22	0.00
February-22	0.00
March-22	7.25
April-22	
May-22	
June-22	
July-22	
August-22	
September-22	
October-22	
November-22	
December-22	

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report January 2022 to March 2022

	WSAC Operation
Month	Average Daily Blowdown Cycles
January-22	Not in operation
February-22	Not in operation
March-22	3.34
April-22	
May-22	
June-22	
July-22	
August-22	
September-22	
October-22	
November-22	
December-22	

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

"When Quality Counts"

Analytical Report

WorkOrder: 2203H62

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (March 2022)

Project Received: 03/29/2022

Analytical Report reviewed & approved for release on 04/06/2022 by:

Christine Askari

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2203H62

Project: Quarterly Sampling (March 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LOL Laboratory Control Sample
LOL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2203H62

Project: Quarterly Sampling (March 2022)

Analytical ualifiers

b1 Aqueous sample that contains greater than ~1 vol. % sediment

i9 The BOD dilution scheme was setup per the method and met the criterion of a residual dissolved oxygen of at

least 1 mg/L and final DO difference of 2mg/L, however the reported sample yielded a result of ND based on the

method dilutions performed.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/30/2022

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

Extraction Method: E1664A_SG

Analytical Method: E1664A

Unit: mg/L

Client ID	Lab ID Matrix	Date Collected	Instrument	Batch ID
E-001 Grab	2203H62-001A Water	03/28/2022 09:30	O&G	242308
Analytes	<u>Result</u>	<u>RL</u> <u>DF</u>		Date Analyzed
SGT-HEM	ND	5.0 1		03/30/2022 16:00

Analyst(s): HN

Analytical Comments: b1

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 Grab	2203H62-002A	Water	03/29/2022	2 10:50	O&G	242308
Analytes	Result		RL	DF		Date Analyzed
SGT-HEM	ND		5.0	1		03/30/2022 16:05

Analyst(s): HN

Analytical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/30/2022

Project: Quarterly Sampling (March 2022) WorkOrder:

2203H62

Extraction Method: E1664A

Analytical Method: E1664A

Unit:

mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID N	Aatrix	Date Col	lected	Instrument	Batch ID
E-001 Grab	2203H62-001B V	Vater	03/28/2022	2 09:30	O&G	242307
Analytes	Result		RL	<u>DF</u>		Date Analyzed
HEM	15		5.0	1		03/30/2022 15:35

Analyst(s): HN Analytical Comments: b1

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001 Grab	2203H62-002B	Water	03/29/202	2 10:50	O&G	242307
Analytes	Result		RL	DF		Date Analyzed
HEM	ND		5.0	1		03/30/2022 15:40

Analyst(s): HN

Analytical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/30/2022

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Ammonia as N

Client ID	Lab ID	Date Col	llected	Instrument	Batch ID	
E-001 Grab	2203H62-002C Water		03/29/2022 10:50		WC S ALAR 033022E 52	242309
Analytes	Result		RL	<u>DF</u>	Date	e Analyzed
Ammonia, total as N	13		1.0	10	03/3	30/2022 16:02

Analyst(s): RB Analytical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/31/2022

Project: Quarterly Sampling (March 2022)

WorkOrder: 220

2203H62

Extraction Method: SM5210B

Analytical Method: SM5210 B

Unit: mg/L

Biochemical Oxygen Demand (BOD)

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 Comp	2203H62-003A	Water	03/29/2022	2 10:30	WetChem	242399
_Analytes	Result		RL	DE		Date Analyzed
BOD	ND		40	10		04/05/2022 07:53

Analyst(s): HAD Analytical Comments: i9,b1

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/31/2022

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

Extraction Method: SM5220 D-1997

Analytical Method: SM5220 D-1997

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID	Lab ID Matrix Date (lected	Instrument	Batch ID
E-001 Comp	2203H62-003B	Water	03/29/202	2 10:30	SPECTROPHOTOMETER2	242458
Analytes	Result		RL	DE	Date	e Analyzed
COD	16		10	1	03/3	31/2022 18:06

Analyst(s): NYG Analytical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/30/2022

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

Extraction Method: E245.2

Analytical Method: E245.2

Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption

	, J					
Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001 Comp	2203H62-003E	Water	03/29/2022	10:30	AA1 23	242323
Analytes	Result		RL	<u>DF</u>		Date Analyzed
Mercury	ND		0.20	1		03/30/2022 16:45

Analyst(s): MIG Analytical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/29/2022

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

Extraction Method: E200.8

Analytical Method: E200.8

Unit: $\mu g/L$

Metals (>1% Sediment Content)

Client ID	Lab ID Matrix Date Collected		Instrument	Batch ID		
E-001 Comp	2203H62-003F	Water	03/29/2022	2 10:30	ICP-MS3 042SMPL.D	242206
Analytes	Result		RL	DE		Date Analyzed
Arsenic	ND		2.5	1		03/30/2022 15:15
Cadmium	ND		2.5	1		03/30/2022 15:15
Chromium	7.0		2.5	1		03/30/2022 15:15
Copper	18		2.5	1		03/30/2022 15:15
Iron	14,000		250	1		03/30/2022 15:15
Lead	ND		2.5	1		03/30/2022 15:15
Molybdenum	16		2.5	1		03/30/2022 15:15
Nickel	7.9		2.5	1		03/30/2022 15:15
Selenium	ND		2.5	1		03/30/2022 15:15
Silver	ND		2.5	1		03/30/2022 15:15
Zinc	680		50	1		03/30/2022 15:15
Surrogates	REC (%)		Limits			
Terbium	117		70-130			03/30/2022 15:15
Analyst(s): MIG			Analytical Cor	nments: b1		

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 04/06/2022

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

Extraction Method: E420.4

Analytical Method: E420.4

Unit: $\mu g/L$

ν	h	Or	\mathbf{n}	II	cs
	и	CI.	w	11	Lo

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001 Grab	2203H62-002C	Water	03/29/202	2 10:50	WC S ALAR 04062022C1-2	242903
Analytes	Result		<u>RL</u>	<u>DF</u>	<u>Date</u>	Analyzed
Phenolics	ND		2.0	1	04/06	6/2022 11:35

Analyst(s): JN Analytical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/29/2022

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

Extraction Method: SM2540 C-1997

Analytical Method: SM2540 C-1997

Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001 Comp	2203H62-003C	Water	03/29/2022	10:30	WetChem	242276
Analytes	Result		RL	<u>DF</u>		Date Analyzed
Total Dissolved Solids	354		10.0	1		03/30/2022 16:55

Analyst(s): JRA Analytical Comments: b1

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/31/2022

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

Extraction Method: SM2540 D-1997

Analytical Method: SM2540 D-1997

Unit: mg/L

Total Suspended Solids

Client ID	Lab ID Matrix Date Collected		lected	Instrument	Batch ID	
E-001 Comp	2203H62-003D	Water	03/29/2022	10:30	WetChem	242379
Analytes	Result		RL	<u>DF</u>		Date Analyzed
Total Suspended Solids	15.2		1.00	1		03/31/2022 14:40

Analyst(s): HAD Analytical Comments: b1

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/30/2022 **Date Analyzed:** 03/30/2022 **Instrument:** O&G

Matrix: Water

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

BatchID: 242308 **Extraction Method:** E1664A SG

Analytical Method: E1664A

Unit: mg/L

Sample ID: MB/LCS/LCSD-242308

QC Summary	Report for	E1664A
-------------------	------------	--------

Analyte	MB Result	MDL	RL			
SGT-HEM	ND	0.72	5.0	-	-	-

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
SGT-HEM	8.5	8.1	10.42	81	77	64-132	5.04	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/30/2022 **Date Analyzed:** 03/30/2022 **Instrument:** O&G

Matrix: Water

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

BatchID: 242307

Extraction Method: E1664A **Analytical Method:** E1664A

Unit: mg/L

Sample ID: MB/LCS/LCSD-242307

Analyte	MB Result	MDL	RL			
HEM	ND	1.3	5.0	-	-	-

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
HEM	18	18	20.83	87	88	78-114	1.60	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/30/2022 **Date Analyzed:** 03/30/2022 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62 **BatchID:** 242309

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Sample ID: MB/LCS/LCSD-242309

2203H62-002CMS/MSD

QC Summary Report for SM4500-NH3

Analyte	MB Result	MDL	RL			
Ammonia, total as N	ND	0.096	0.10	-	-	-

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Ammonia, total as N	3.8	3.8	4	96	95	88-113	0.797	20

Quality Control Report

PG&E Gateway Generating Station Client:

03/31/2022 Date Prepared:

04/05/2022 Date Analyzed:

WetChem Water Instrument: Matrix: Quarterly Sampling (March 2022) Project:

2203H62 WorkOrder:

Extraction Method: SM5210B 242399 BatchID:

SM5210 B Analytical Method:

mg/L Unit:

MB/LCS/LCSD-242399 2203H62-003A Sample ID:

QC Summary Report for BOD

RL	4.0
MDL	4.0
MB Result	ND
Analyte	BOD

				ı	ı		ı	١
Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
BOD	200	190	198	100	94	80-120	6.25	16

Analyte	SAMP Result	DUP Result	RPD	RPD
BOD	ND<40	ND<40	N/A	10

Quality Control Report

PG&E Gateway Generating Station Client:

03/31/2022 Date Prepared:

03/31/2022 Date Analyzed:

SPECTROPHOTOMETER2 Water Instrument: Matrix: Quarterly Sampling (March 2022) Project:

2203H62 WorkOrder:

242458 BatchID:

Extraction Method: SM5220 D-1997 SM5220 D-1997 Analytical Method:

mg/L Unit:

MB/LCS/LCSD-242458 2203H62-003BMS/MSD Sample ID:

QC Summary Report for COD

Analyte MDL Result	۲ <u>۲</u>		
S.S.	10		

	I	I		l	l	I	ı	l
Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
cop	06	06	100	06	06	90-110	0	20

Analyte	MS	MS Result	MSD Result	SP Val	SP Ref Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD
COD	~	110	110	100	16.00	94	92	80-120 1.83	1.83	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/30/2022 **Date Analyzed:** 03/30/2022

Instrument: AA1
Matrix: Water

Project: Quar

Quarterly Sampling (March 2022)

WorkOrder: 2203H62

BatchID: 242323

Extraction Method: E245.2 **Analytical Method:** E245.2

Unit: μg/L

Sample ID: MB/LCS/LCSD-242323

QC Summary	Report for	Mercury
------------	------------	---------

Analyte	MB Result	MDL	RL			
Mercury	ND	0.13	0.20	-	-	-

Analyte	LCS	LCSD	SP	LCS	LCSD	LCS/LCSD	RPD	RPD
7 and 19to	Result	Result	Val	%REC	%REC	Limits	5	Limit
Mercury	1.9	1.7	2	95	86	85-115	9.33	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/29/2022 **Date Analyzed:** 03/29/2022

Instrument: ICP-MS4
Matrix: Water

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

BatchID: 242206 **Extraction Method:** E200.8

Analytical Method: E200.8 Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-242206

QC Report for Metals (>1% Sediment Content)

Analyte	MB Result		MDL	R.		SP Val	MB SS %REC	MB	MB SS Limits
Arsenic	ND		0.54	2.5					
Cadmium	N Q		0.35	2.5					
Chromium	ND		0.76	2.5					
Copper	ND		1.0	2.5					
Iron	Q.		83	250					
Lead	QN		0.74	2.5					
Molybdenum	Q.		0.49	2.5					
Nickel	QN		1.9	2.5					
Selenium	QN		1.1	2.5					
Silver	Q.		0.33	2.5					
Zinc	QN		24	20					
Surrogate Recovery									
Terbium	2400					2500	26	-02	70-130
					l	l		I	Ĥ
Analyte	LCS Result	LCSD Result	SP Val	1	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	250	250	250		100	102	85-115	1.81	20
Cadmium	250	250	250		101	102	85-115	0.638	20
Chromium	250	260	250		100	103	85-115	3.03	20
Copper	240	240	250	0,		96	85-115	1.52	20
Iron	24,000	24,000	25000	0,		97	85-115	3.44	20
Lead	250	250	250	O,		101	85-115	1.31	20
Molybdenum	230	240	250	O,	93	96	85-115	3.27	20
Nickel	240	250	250	D,	96	66	85-115	2.46	20
Selenium	250	250	250	J,	66	100	85-115	1.02	20
Silver	240	250	250		96	98	85-115	1.73	20
Zinc	2500	2500	2500		66	66	85-115	0.543	20
Surrogate Recovery									
Terbium	2500	2600	2500		102	104	70-130	1.76	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 04/06/2022 **Date Analyzed:** 04/06/2022 **Instrument:** WC_SKALAR

Matrix: Water

Project: Quarterly Sampling (March 2022)

WorkOrder: 2203H62

BatchID: 242903

Extraction Method: E420.4 **Analytical Method:** E420.4

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-242903

2203H62-002CMS/MSD

	QC Summary	y Report for	E420.4			
Analyte	MB Result	MDL	RL			
Phenolics	ND	1.4	2.0	-	-	-

Analyte	LCS Result	LCSD Result	SP Val	LCS %RE	LCSD C %REC	LCS/LCSD Limits	RPD	RPD Limit
Phenolics	40	39	40	100	99	80-120	1.14	20

Analyte	MS DF	MS Result	MSD Result	SP Val	SP Ref Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Phenolics	1	41	42	40	ND	102	104	70-130	2.20	30

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/29/2022 **Date Analyzed:** 03/30/2022

Instrument: WetChem **Matrix:**

Water

Project: Quarterly Sampling (March 2022) WorkOrder: 2203H62 BatchID: 242276

Extraction Method: SM2540 C-1997 **Analytical Method:** SM2540 C-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-242276

QC Summary Report for Total Dissolved Solids

Analyte	MB Result	MDL	RL			
Total Dissolved Solids	ND	10.0	10.0	-	-	-

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Dissolved Solids	978	1020	1000	98	102	80-120	3.81	10

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/31/2022 **Date Analyzed:** 03/31/2022 **Instrument:** WetChem

Matrix:

Water

Project:

Quarterly Sampling (March 2022)

WorkOrder: 2203H62

242379 BatchID:

Extraction Method: SM2540 D-1997 **Analytical Method:** SM2540 D-1997

Unit: mg/L

Sample ID: MB/LCS/LCSD-242379

QC Summary Report for Total Suspended Solids

Analyte	MB Result	MDL	RL			
Total Suspended Solids	ND	1.00	1.00	-	-	-

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Suspended Solids	87.0	84.0	100	87	84	80-120	3.51	10

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Email

Excel

Page of 1

WorkOrder: 2203H62

EQuIS

ClientCode: PGEA

□HardCopy

ThirdParty

J-flag

Report to:

Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX:

abe4@pge.com Email:

cc/3rd Party: A1HE@pge.com; J5Ld@pge.com;

FEDF

CLIP

PO:

☐ WaterTrax

Project: Quarterly Sampling (March 2022) Detection Summary Bill to:

Angel Espiritu

Dry-Weight

PG&E Gateway Generating Station

3225 Wilbur Avenue

Antioch, CA 94509

Date Received:

Re uested TATs:

Date Logged:

03/29/2022

03/29/2022

1 day: 5 days;

							0	Re	uestec	Tests	See leg	end bel	ow)			
Lab ID	Client ID	Matri	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2203H62-001	E-001 Grab	Water	3/28/2022 09:30	ĪDĪ	Α	В								Α		Ť.
2203H62-002	E-001 Grab	Water	3/29/2022 10:50		Α	В	С	1	D		1		С	Α		
2203H62-003	E-001 Comp	Water	3/29/2022 10:30	用面。	· ·			Α		В	† E	F		Α	С	D

Test Legend:

1	1664A SG W	
5	CN SM4500CE W	
9	PHENOLICS W	

2	1664A W	
6	COD W	
10	PRDisposal Fee	

3	AMMONIA-SM4500BG W
7	HG W
11	TDS W

4	BOD W
8	METALSMS TTLC Sed
12	TSS W

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

GATEWAY	GENERATING	STATION
	GATEWAY	GATEWAY GENERATING

Project: Quarterly Sampling (March 2022)

Work Order: 2203H62

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments:

Date Logged: 3/29/2022

		☐ Water	Trax WriteOn EDF	Exc	el <u>EQul</u>	S	Em	nail	HardCopy	Third	dParty	9		
LabID	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	_	Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content		Sub Out
001A	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl	П	П		3/28/2022 9:30	1 day	3/30/2022	1%+		
001B	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl		П		3/28/2022 9:30	1 day	3/30/2022	1%+		
002A	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl		П	E	3/29/2022 10:50	1 day	3/30/2022	1%+		
002B	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl		П		3/29/2022 10:50	1 day	3/30/2022	1%+		
002C	E-001 Grab	Water	E420.4 (Phenolics)	1	500mL aG w/ H2SO4				3/29/2022 10:50	1 day	3/30/2022	1%+		
			SM4500-NH3 BG (Ammonia Nitrogen)							1 day	3/30/2022	1%+		
002D	E-001 Grab	Water	SM4500-CN CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH		П		3/29/2022 10:50	1 day	3/30/2022	1%+		
003A	E-001 Comp	Water	SM5210B (BOD)	1	1L HDPE, unprsv.				3/29/2022 10:30	5 days	4/5/2022	1%+	<u> </u>	
003B	E-001 Comp	Water	SM5220D (COD)	2	aVOA w/ H2SO4				3/29/2022 10:30	1 day	3/30/2022	1%+		
003C	E-001 Comp	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.		Д		3/29/2022 10:30	1 day	3/30/2022	1%+		
003D	E-001 Comp	Water	SM2540D (TSS)	1	1L HDPE, unprsv.				3/29/2022 10:30	1 day	3/30/2022	1%+		
003E	E-001 Comp	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3		×(II)		3/29/2022 10:30	1 day	3/30/2022	1%+		

NOTES: * STLC and TCLP e tractions re uire 2 days to complete; therefore, all TATs begin after the e traction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not e clude any material from the sample prior to sample preparation unless re uested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to e tend hold time for analysis.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION **Project:** Quarterly Sampling (March 2022) Work Order: 2203H62

Client Contact: Angel Espiritu

OC Level: LEVEL 2

Contact's Email: abe4@pge.com

Date Logged: 3/29/2022 **Comments:**

	☐ WaterTr	rax WriteOn EDF	Exce	el EQui	S En	nail	HardCopy	Third	lPartyJ-flag	1	
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U** Head Space	•		TAT	Test Due Date	Sediment Content	Hold Sub Out
003F E-001 Comp	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3			3/29/2022 10:30	1 day	3/30/2022	1%+	

NOTES: * STLC and TCLP e tractions re uire 2 days to complete; therefore, all TATs begin after the e traction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not e clude any material from the sample prior to sample preparation unless re uested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to e tend hold time for analysis.

2203462

RUSH

		O Webs	iite: w	MPBE 1534 PITT Ww.mccam (877) 25	WILLOW SBURG, C pbell.com	PASS A 945	S ROAD 65-1701 il: main		amp	bell.	com					TURN GeoTra	AROU	ND'	TIN	Æ	; f RU PDF □	SH 24 Excel	∃ HR Ç	l v	48 W I] HR ite	CORD 72 HR 5 DAY On (DW) "J" flag is required		
	Report To	: Angel Es	piritu	l		В	ili To: I	PG&	E Ga	tew	ау						Analysi	Req	uest	ì				•		R	lemarks		
	Company	PG&E G	atew	ay Genera	iting Stat	ion										CN.	Î	£	П	S,		iem,	П						
	E-Mail: abe4@pge.com, A1HE@pge.com, JSLd@pge.com, tlWY@pge.com											with fore 500 C	Metals (Arsenic and selenium) by 200.8 Selenium by reaction mode	Oil/Greuse (USEPA 1664A) wit and with out silica gel clean up	Total Phenolics (USEPA 420.4)	0-NH		100.8 cadmium, chrorr end, nickel, silver, num, iron, and zinc)											
	Tel: (925) 522-7838, (510) 861-1597 (Cell) Fax: ()											Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 (ABCE				450			П										
	Project Name: Quarterly Sampling (Morch 2022) Project Location: Combined Site Flow															N(S)	ন		æ	9	g	a							
	Sampler Signature: Muskan Environmental Sampling															(245	X 52		A 522	1254	2540D)								
			43					Ma	Matrix		METHOD PRESERVED			ΈD	Cyanide nodium preservi ABCE	Metals (by 200.8 Selentur	Oil/Gree	Total Phy	Ammonia	Mercury (245.2)	Metals (200.8 c copper, lead, n Molybdenum,	BOD (SM 5210F)	COD (SM 5220D)	TDS/SM2540C)	TSS (SM	_			
		LOCATION / Field Point Name		Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE II CE	NeOU	HCI	OND	Other														
X	E-001		G	3-28-22	09:30	2	1L Amb	Х			X	Г	Х		Т			Х	П				П						
	E-001		G	3-24-22		2	IL Amb	Х		П	X		X	1				Х	П				П						1
V.	E-001		G	3-29-22		1	500ml	X	Г	H	X 2	1	1	T	1				Х	X			П	П					
	E-001		G			1	Amb 250-ml	х		H	\mathbf{x}	X		۲	╈	X			tt				H	Π					
	E-001		С	3-29-22		1	Poly 1L	X	Н	X	╁	┢	╁	┢	╁╴					-		-	$\frac{1}{x}$	٦	-	ᅱ			
,			 	3-29-28		-	Poly 43-ml	X		H	$\frac{1}{X}$	╀	╫	┝	╁				┢┼				Н	X	4	ᅱ			
1	E-001		C	3-29-2		-	VOA 500-mi				1	1	╀	₽	╀			-	₩				Н	-	Х	-			
× -	E-001		С	3-29-2	- 10:30	1	poly	Х		Х	X	L	╀-	Ļ	-				Н				Ц	_	4	Ţ			
~	E-001		С	3-29-22	10:30	I	IL poly	X		Х	X	上	丄	L	<u> </u>				Ц	Щ			Ц		_	X			
-	E-001		С	3-29-2	-16:30	1	250-ml Poly	X			X			}	4				Ц		Х		Ц						
٠	E-001	ì	C	3-29-27	-10:30	1	250-ml poly	X			X			>	4		х		Ш			X	LL				ļ		
							\wedge			П	Т		1	Γ	T				П				П						
								7		N		1	T	Г					П				П						
	Relinquishe Relinquishe	d By:	-	Date: 3/29/2 Date:	7/2:4 Time:	Rece	ived by:	1		7	\\\ _	_		_		ICE/r GOOD CO HEAD SPA DECHLOR APPROPRI PRESERVI	CE ABSE INATED IATE CON	NT_ IN LAI VTAIN	. · , B	<u>/</u>	·c W	+	C	DMI	ME!	VTS	,	F 1	
	Relinquished By: Date: Time:				Rece	Received By:						VOAS ORC METALS OTHER								Page 27	7 of 28								

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	PG&E Gateway Generating Station			Date and Time Received	
Project:	uarterly Sampling (March 2022)			Date Logged:	3/29/2022
WorkOrder №:	2203H62 Matrix: Water			Received by: Logged by:	Tina Perez Valerie Alfaro
Carrier:	Client Drop-In			209904 27.	valorie / waro
	<u>Chain of</u>	Custod	y (COC) I	nformation	
Chain of custody	present?	Yes		No 🗔	
Chain of custody	signed when relinquished and received?	Yes		No 🔲	
Chain of custody	agrees with sample labels?	Yes		No 🔲	
Sample IDs note	ed by Client on COC?	Yes		No 🔲	
Date and Time o	of collection noted by Client on COC?	Yes	V	No 🔲	
Sampler's name	noted on COC?	Yes		No 🔲	
COC agrees with	n Quote?	Yes		№ □	NA 📝
	Samp	ple Rec	eipt Infor	mation	
Custody seals in	stact on shipping container/cooler?	Yes		No 🔲	NA 🖬
Custody seals in	stact on sample bottles?	Yes		No 🔲	NA 🖬
Shipping contain	ner/cooler in good condition?	Yes		No 🔲	-
Samples in prop	er containers/bottles?	Yes		No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sample	e volume for indicated test?	Yes		No 🔲	
	Sample Preservat	tion and	Hold Tir	me (HT) Information	
All samples rece	eived within holding time?	Yes		No 🔲	NA 🔲
Samples Receiv		Yes		No 🔲	
	(Ice Ty	pe: WE	TICE)	
Sample/Temp B	lank temperature		Temp:	1.4°C	NA 🔲
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🔄
Sample labels cl	hecked for correct preservation?	Yes		No 🔲	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes	•	No 🔲	NA 🗍
UCMR Samples					
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🔄
Free Chlorine [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🖂	NA 🗾

Environment Testing America

ANALYTICAL REPORT

Eurofins Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-112013-1 Client Project/Site: 2203H62

For:

McCampbell Analytical, Inc. 1534 Willow Pass Road Pittsburg, California 94565

Attn: Sub Data

Authorized for release by: 4/4/2022 4:07:21 PM

Pauline Matlock, Project Manager (253)922-2310

Pauline.Matlock@et.eurofinsus.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: McCampbell Analytical, Inc. Project/Site: 2203H62

Laboratory Job ID: 580-112013-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	6
Chronicle	7
Certification Summary	8
Sample Summary	9
Chain of Custody	10
Receipt Checklists	11

3

4

9

10

Case Narrative

Client: McCampbell Analytical, Inc.

Project/Site: 2203H62

Job ID: 580-112013-1

Job ID: 580-112013-1

Laboratory: Eurofins Seattle

Narrative

Job Narrative 580-112013-1

Comments

No additional comments.

Receipt

The sample was received on 3/31/2022 9:45 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.3° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

_

4

F

6

0

0

10

110

Definitions/Glossary

Job ID: 580-112013-1 Client: McCampbell Analytical, Inc.

Project/Site: 2203H62

Qualifiers

Qualifier

General Chemistry

Qualifier Description F1 MS and/or MSD recovery exceeds control limits.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J

Clossary

Giossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Seattle

Page 4 of 11 4/4/2022

Client Sample Results

Client: McCampbell Analytical, Inc.

Job ID: 580-112013-1

Project/Site: 2203H62

Client Sample ID: E-001 Grab Lab Sample ID: 580-112013-1

Date Collected: 03/29/22 10:50

Matrix: Water

Date Received: 03/31/22 09:45

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	0.012	J	0.020	0.0080	mg/L		04/01/22 15:06	04/01/22 15:09	1

0

9

Client: McCampbell Analytical, Inc. Job ID: 580-112013-1

Project/Site: 2203H62

Method: SM 4500 CN E - Cyanide, Total

Lab Sample ID: MB 580-386058/1-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 386059

Prep Type: Total/NA **Prep Batch: 386058** MB MB

Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Analyte 0.020 04/01/22 15:06 04/01/22 15:09 Cyanide, Total ND 0.0080 mg/L

Lab Sample ID: LCS 580-386058/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 386058 Analysis Batch: 386059** Spike LCS LCS %Rec

Added Result Qualifier Unit D %Rec Limits Analyte 0.200 90 - 110 Cyanide, Total 0.201 mg/L 100

Lab Sample ID: LCSD 580-386058/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 386059

Prep Batch: 386058 Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Limits RPD Unit %Rec Limit 0.200 0.207 90 - 110 Cyanide, Total mg/L 104

Lab Sample ID: 580-112018-A-1-B MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 386059 **Prep Batch: 386058** MS MS

Spike %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits ND F1 0.200 90 - 110 Cyanide, Total ND F1 mg/L 0

Lab Sample ID: 580-112018-A-1-C MSD **Client Sample ID: Matrix Spike Duplicate**

Matrix: Water

Analysis Batch: 386059 Prep Batch: 386058 MSD MSD Sample Sample Spike %Rec Result Qualifier Added Result Qualifier Unit %Rec Limits RPD

Limit Analyte ND F1 0.200 ND F1 90 - 110 Cyanide, Total mg/L 0 NC 10

4/4/2022

Prep Type: Total/NA

RPD

Lab Chronicle

Client: McCampbell Analytical, Inc. Job ID: 580-112013-1

Project/Site: 2203H62

Client Sample ID: E-001 Grab

Lab Sample ID: 580-112013-1 Date Collected: 03/29/22 10:50 **Matrix: Water**

Date Received: 03/31/22 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Distill/CN			386058	04/01/22 15:06	R1K	FGS SEA
Total/NA	Analysis	SM 4500 CN E		1	386059	04/01/22 15:09	R1K	FGS SEA

Laboratory References:

FGS SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: McCampbell Analytical, Inc.

Job ID: 580-112013-1

Project/Site: 2203H62

Laboratory: Eurofins Seattle

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	rogram	Identification Number	Expiration Date
California		ate	2954	07-07-22
The following analyte the agency does not o	•	ort, but the laboratory is i	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
SM 4500 CN E	Distill/CN	Water	Cyanide, Total	
Washington	St	ate	C788	07-13-22

6

8

10

Sample Summary

Client: McCampbell Analytical, Inc.

Project/Site: 2203H62

Lab Sample ID Client Sample ID Matrix Collected Received 580-112013-1 03/29/22 10:50 03/31/22 09:45 E-001 Grab Water

Job ID: 580-112013-1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 Phone: (925) 252-9262

(925) 252-9269

SUB CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Subcontractor:

Eurofins TestAmerica

TEL:

(949) 333-9055

FAX: ProjectNo:

Acct #:

Quarterly Sampling (March 2022)

ClientCode: PGEA

Date Received: 03/29/2022

EDF: NO

Lab ID

2203H62-002D

5755 8th Street East

Tacoma, WA 98424

Client ID E-001 Grab

Matrix Water

Collection Date 3/29/2022 10:50

WorkOrder: 2203H62

TAT STD

Requested Tests (see Legend below)

* Cyunide

Test Legend:

CN_SM4500CE W 5

6

Comments: PLEASE USE 'CLIENT ID' AS THE SAMPLE ID AND EMAIL ASAP!

Blue Ice, Wet, Dry, None

Lab Cour:_ Other:

Please email results to Valerie Alfaro at subdata@mccampbell.com upon completion.

Relinquished by:

Date/Time

Received by:// Received by:

Date/Time

Login Sample Receipt Checklist

Client: McCampbell Analytical, Inc.

Job Number: 580-112013-1

Login Number: 112013 List Source: Eurofins Seattle

List Number: 1

Creator: Greene, Ashton R

Creator: Greene, Ashton R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

5

7

9

10

1.

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2203H67

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Sanjiv Gill

Project P.O.:

Project: pH Sampling (March 2022)

Project Received: 03/29/2022

Analytical Report reviewed & approved for release on 03/30/2022 by:

Susan Thompson Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2203H67

Project: pH Sampling (March 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LOL Laboratory Control Sample
LOL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2203H67

Project: pH Sampling (March 2022)

Analytical ualifiers

H Sample was analyzed out of hold time

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/29/2022

Project: pH Sampling (March 2022)

WorkOrder: 2203H67

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

pН

Client ID	Lab ID	Matrix	Date Collec	eted	Instrument	Batch ID
E-001	2203H67-00°	1A Water	03/28/2022 0	9:35	WetChem	242350
Analytes	Result	Qualifiers	Accuracy	DE		Date Analyzed
рН	8.92	Н	±0.05	1		03/29/2022 21:36

Analyst(s): JRA

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/29/2022 - 03/30/2022

Date Analyzed: 03/29/2022 - 03/30/2022

Instrument: WetChem
Matrix: Water

Project: pH Sampling (March 2022)

WorkOrder: 2203H67 **BatchID:** 242350

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

Sample ID: CCV-242350

QC Summary Report for pH						
Analyte	CCV Result	CCV Limits				
рН	7.02	6.9-7.1				

McCampbell Analytical, Inc. CHAIN-OF-CUSTODY RECORD Page of 1 1534 Willow Pass Rd Pittsburg, CA 94565-1701 ClientCode: PGEA WorkOrder: 2203H67 (925) 252-9262 ☐ WaterTrax CLIP EQuIS ☐ Dry-Weight Email □HardCopy ThirdParty J-flag EDF Detection Summary Excel Report to: Bill to: Re uested TAT: 1 day; Sanjiv Gill Email: sanjivgill@comcast.net Angel Espiritu cc/3rd Party: PG&E Gateway Generating Station PG&E Gateway Generating Station Date Received: 03/29/2022 3225 Wilbur Avenue PO: 3225 Wilbur Avenue Antioch, CA 94509 Project: pH Sampling (March 2022) Antioch, CA 94509 Date Logged: 03/29/2022 (925) 459-7212 FAX: Re uested Tests (See legend below) Lab ID Client ID Collection Date Hold 10 11 Matri 2203H67-001 E-001 Water 3/28/2022 09:35 Α

Test Legend:

1 PH W SAN IV	PRDisposal Fee	3	4	
5	[6]	1 7	8	
9	10	[11]	12	

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Project: pH Sampling (March 2022)

Work Order: 2203H67

Client Contact: Sanjiv Gill

..

QC Level: LEVEL 2

Contact's Email: sanjivgill@comcast.net

Comments: Date Logged: 3/29/2022

	☐ WaterTrax	WriteOn	EDF	Ехс	el EQuI	S En	nail	HardCopy	Third	IParty ☐J-flag]	
LabID ClientSampID	Matrix Te	st Name		Containers /Composites	Bottle & Preservative	U** Head Space	•		TAT	Test Due Date	Sediment Content	Hold Sub Out
001A E-001	Water SM	14500H+B (Field pH)		0	<not received<="" td=""><td>> </td><td>TE)</td><td>3/28/2022 9:35</td><td>1 day</td><td>3/30/2022</td><td></td><td></td></not>	>	TE)	3/28/2022 9:35	1 day	3/30/2022		

NOTES: * STLC and TCLP e tractions re uire 2 days to complete; therefore, all TATs begin after the e traction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not e clude any material from the sample prior to sample preparation unless re uested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to e tend hold time for analysis.

																	. : -								U	5	H		1	2	03467
	McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: www.mecampbell.com Email: main@mecampbell.com Telephone: (877) 252-9262 Report To: Sanjiy Gili Bill To: Muskan Environmental											UR eo]			OU	NI) T	IMI 3	E PD	· C	US RUS RUS	H Ex	OI 24 cel	Y J HR	RI	EC 48 H Vri	CORD				
							Musk	an E	evir	010111	ent	1							·	A	nal	ysis	Req	ues						٦	Remarks
Company: PG&E Gateway Generating Station							\dashv																								
E-Mail: sanjivgill@comcast.net																	- !		- 1		Ì		- 1								
	8) 666-449			A -	E	BX: (<u> </u>							4									- [ŀ						
Project	Name: p	H 281	ECCS A	Marc	- A	202	2	<u>) </u>						4															-		
	Signature						1	1		1	آم	7-		E																	•
خيف ليخت		mposite	SAMP		74.4		Mat		MET		o PRI	0	, ,													.					
AMPLE ID	LOCATION / Field Point	ے گ			5	alsera	is in		T																						
19	Name	Sample Type	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	H.SO.	NaOH	HCL	HNO.	Zhe Aceta	Hd																
E-001		G	3/28/22	09:35	NA	NA	Х		Х				7	7	X										1	1				1	Grab Time: 09:35 Analysis Time: 09:36
														1																	Temperature: 14.7°C
								_				\dashv	\bot	4	_	_	_	_	_		_	_	\perp	_	\perp		\perp				
								_	\bot		_	_	1	4	4		-	4	_	[4	_	\perp	\perp		_	4	1		
									+	\square		4	1	4	_	_	_	_	\dashv	_	_	_	_	4	\perp	1	\downarrow	\perp	_		
								_	_				_	4	_			4	\dashv	_	_	_	_	_	4	\bot		_		4	
								4	+			-	_	4	\dashv	-	_	4	4	_		4	4	\dashv	_	_	\dashv	4	4	4	
									+	\square	_	_	\dashv	4	-		_	4	\dashv	_	_	\dashv	\dashv	4	4	_	\dashv	\perp	_	\bot	
									4			\dashv	+	4	-	\dashv			-	-				4	\bot	_	\dashv	\perp	\perp	4	
					-			4	+		\Rightarrow	+	+	4	\dashv	-	\dashv	\dashv	-			\dashv	-	\dashv	4	\perp	+	+	-	4	
elinquisi	ed for		Date:	Those:	Recei	red Byz		4	1	Ų				4	ICE.				Ц,		_	_		٠,							
	2		129/22	12:48		_	1	H		<u> </u>				_ ;	GOI EIEA	D SI	PAC	EAR	SER	NT_	_	_						U	OMN	uler V	
elle quinh			Date:	Time:		red By:		\mathcal{L}						-1.	APP	HI.C ROP SER	RIA	TE (ON	TAI	VER	<u></u>									ı
dispelis	ed By:		Date:	Time:	Recei	ved By:				ノ						SER			VQ.		0&		MET.		0	THE	R				

Logbook for Field pH Samples

Date/Time	Samula ID	Matrix	1st Re	eading	2 nd R	eading	Ave	Standard	Comments	Analyst
Date/Time	Sample ID	Matrix	рН	Temp.°c	pН	Temp.°c	pН	(lot # / exp. Date)	Comments	Analyst
03/28/22/08.35	Cal. pH # 7.00	L	7.00	19.1	7.00	19.2	7.00	bulk		
03/28/22 /0835	Cal pH # 4.00	L	4.00	19.2	4.00	19.2	4.00	bulk	203H67-001A H W SANJIV H 3/28 09:35 03/29	
03/28/22/08:35	Cal. pH # 10.00	L	10.06	19.2	10.00	19.2	10.00	bwk	3/28 09:35	
						Meter	M	mor L (ompeny	
							tra 1	lefer II		
						ser	al /2	6222066		
						ρ	H on	Coe 3/	28/22	
							19	Patt Lo	toway	

Client supplied pH data

Client Name: PG&E Gateway Generating Station

WorkOrder №: 2203H67

Project: pH Sampling (March 2022)

 SampID
 ClientSampID
 pH

 2203H67-001A
 E-001
 8.92 [analyzed: 3/28/2022 9:35:00 AM]

PG&E Gateway Generating Station

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received: 3/29/2022 12:45

Sample Receipt Checklist

Project:	pH Sampling (March 2022)			Date Logged: Received by:	3/29/2022 Tina Perez
WorkOrder №: Carrier:	2203H67 Matrix: Water Client Drop-In			Logged by:	Valerie Alfaro
	Chain of	Custod	y (COC) lı	nformation	
Chain of custody	present?	Yes		No 🗔	
Chain of custody	signed when relinquished and received?	Yes		No 🔲	
Chain of custody	agrees with sample labels?	Yes		No 🔲	
Sample IDs note	d by Client on COC?	Yes		No 🔲	
Date and Time o	f collection noted by Client on COC?	Yes	V	No 🔲	
Sampler's name	noted on COC?	Yes		No 🔲	
COC agrees with	n Quote?	Yes		№ □	NA 📝
	Sam	ple Rece	eipt Infori	mation	
Custody seals in	tact on shipping container/cooler?	Yes		No 🔲	NA 🖬
Custody seals in	tact on sample bottles?	Yes		No 🔲	NA 🖬
Shipping contain	er/cooler in good condition?	Yes		No 🔲	-
Samples in prop	er containers/bottles?	Yes		No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sample	e volume for indicated test?	Yes		No 🔲	
	Sample Preserva	tion and	l Hold Tin	ne (HT) Information	
All samples rece	ived within holding time?	Yes		No 🔲	NA 🖃
Samples Receive	ed on Ice?	Yes		No 🔚	
Sample/Temp Bl	lank temperature		Temp:		NA 📷
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🔁
Sample labels ch	necked for correct preservation?	Yes	P	No 🔲	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No 🔲	NA 🔄
UCMR Samples:					
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🛅
Free Chlorine to [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🔲	NA 🙀

Comments: Sample E-001 was not received.

Attachment 8c Laboratory Results Semi-annual Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2203H64

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Semi-Annual Sampling (March 2022)

Project Received: 03/29/2022

Analytical Report reviewed & approved for release on 03/31/2022 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2203H64

Project: Semi-Annual Sampling (March 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LOL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2203H64

Project: Semi-Annual Sampling (March 2022)

Analytical ualifiers

S	Surrogate recovery outside accepted recovery limits.
a2	Sample diluted due to cluttered chromatogram.
c2	Surrogate recovery outside of the control limits due to matrix interference.
h7	Copper (FPA 3660B) cleanup

uality Control ualifiers

F2 LCS/LCSD recovery and/or RPD/RSD is out of acceptance criteria.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/29/2022

Project: Semi-Annual Sampling (March 2022)

WorkOrder: 2203H64

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3

Unit: $\mu g/L$

Organochlorine Pesticides + PCBs w/ Florisil Clean-up

Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
E-001	2203H64-001D	Water	03/29/2022	10:50	GC22 03312211.D	242183
Analytes	Result		RL	<u>DF</u>		Date Analyzed
Aldrin	ND		0.0010	1		03/31/2022 11:00
a-BHC	ND		0.0010	1		03/31/2022 11:00
b-BHC	ND		0.0010	1		03/31/2022 11:00
d-BHC	ND		0.0010	1		03/31/2022 11:00
g-BHC	ND		0.0010	1		03/31/2022 11:00
Chlordane (Technical)	ND		0.020	1		03/31/2022 11:00
p,p-DDD	ND		0.0010	1		03/31/2022 11:00
p,p-DDE	ND		0.0010	1		03/31/2022 11:00
p,p-DDT	ND		0.0010	1		03/31/2022 11:00
Dieldrin	ND		0.0010	1		03/31/2022 11:00
Endosulfan I	ND		0.0010	1		03/31/2022 11:00
Endosulfan II	ND		0.0010	1		03/31/2022 11:00
Endosulfan sulfate	ND		0.0020	1		03/31/2022 11:00
Endrin	ND		0.0010	1		03/31/2022 11:00
Endrin aldehyde	ND		0.0010	1		03/31/2022 11:00
Heptachlor	ND		0.0010	1		03/31/2022 11:00
Heptachlor epoxide	ND		0.0010	1		03/31/2022 11:00
Toxaphene	ND		0.020	1		03/31/2022 11:00
Aroclor1016	ND		0.020	1		03/31/2022 11:00
Aroclor1221	ND		0.020	1		03/31/2022 11:00
Aroclor1232	ND		0.020	1		03/31/2022 11:00
Aroclor1242	ND		0.020	1		03/31/2022 11:00
Aroclor1248	ND		0.020	1		03/31/2022 11:00
Aroclor1254	ND		0.020	1		03/31/2022 11:00
Aroclor1260	ND		0.020	1		03/31/2022 11:00
PCBs, total	ND		0.020	1		03/31/2022 11:00
Surrogates	REC (%)		Limits			
Decachlorobiphenyl	115		60-130			03/31/2022 11:00
Analyst(s): CK			Analytical Com	ments: a2	2,h7	

J\g4

"When Quality Counts" McCampbell Analytical, Inc.

Project:

Analytical Report

Date Received: 03/29/2022 12:45 Extraction Method: E624.1 PG&E Gateway Generating Station 2203H64 WorkOrder: Client:

Semi-Annual Sampling (March 2022) Analytical Method: E624.1 **Date Prepared:** 03/29/2022

Acrolein, Acrylonitrile, & 2-Chloroethyl Vinyl Ether

Batch ID	Instrument	pətəəl	Date Coll	xirtsM	Lab ID	Client ID
242234	GC10 03292210.D	03:01	03/56/2055	Water	2203H64-001B	E-001
Date Analyzed		DE	TB		tlusaA	sətytes
03/29/2022 20:52		l	0.8		ND	Acrolein (Propenal)
03/29/2022 20:52		l	2.0		ΔN	Acrylonitrile
03/29/2022 20:52		l	0.1		ND	S-Chloroethyl Vinyl Ether
			Limits		BEC (%)	Surrogates
03/20/2022 20:52			70-130		901	Dibromofluoromethane
						<u> Jualyst(s)</u> : KF

Semi-Annual Sampling (March 2022)

Project:

Analytical Report

Extraction Method: E624.1 **Date Received:** 03/29/2022 12:45 PG&E Gateway Generating Station 2203H64 WorkOrder: Client:

J\g4 Analytical Method: E624.1 **Date Prepared:** 03/31/2022

Volatile Organics

ent ID	Lab ID	Da	pətəəl	Instrument	Batch ID
100	A100-49H6022	7/20	10:50	GC18 03312210.D	242436
alytes	Result	A	DE		DazylanA etaQ
əuəzu	ΠD	0	l		03/31/2022 14:01
omodichloromethane	r.	0	l		03/31/2022 14:01
miofomo	86.0	0	l		03/31/2022 14:01
ошошеграпе	ΠD	0	ı		03/31/2022 14:01
rbon tetrachloride	ΠD	0	ı		03/31/2022 14:01
lorobenzene	ΠN	0	ı		03/31/2022 14:01
loroethane	ΔN	0	ı		03/31/2022 14:01
noforof	0.1	0	l		03/31/2022 14:01
loromethane	ΠN	0	ı		03/31/2022 14:01
oromochloromethane	77.0	0	ı		03/31/2022 14:01
2-Dichlorobenzene	ΔN	0	ı		03/31/2022 14:01
9-Dichlorobenzene	ΔN	0	ı		03/31/2022 14:01
l-Dichlorobenzene	ΔN	0	ı		03/31/2022 14:01
l-Dichloroethane	ΔN	0	l		03/31/2022 14:01
2-Dichloroethane (1,2-DCA)	ΔN	0	l		03/31/2022 14:01
l-Dichloroethene	ΔN	0	l		03/31/2022 14:01
ns-1,2-Dichloroethene	ΔN	0	ı		10:41 2202/18/80
2-Dichloropropane	ΔN	0	l		03/31/2022 14:01
-1,3-Dichloropropene	ΔN	0	ı		03/31/2022 14:01
ns-1,3-Dichloropropene	ΔN	0	l		10:41 2202/18/80
лурели	ΔN	0	ŀ		03/31/2022 14:01
sthylene chloride	ΔN	7	ı		03/31/2022 14:01
ensdteoroldsstet-2,2,1	ΔN	0	l		03/31/2022 14:01
trachloroethene	ΔN	0	l		03/31/2022 14:01
nene	ΔN	0	i		03/31/2022 14:01
ا,۱-Trichloroethane	ΔN	0	l L		03/31/2022 14:01
l,2-Trichloroethane	an	0	L		03/31/2022 14:01
chloroethene	<u>an</u> an	0	l.		03/31/2022 14:01
chlorofluoromethane	dN	0			03/31/2022 14:01
γι chloride		0			03/31/2022 14:01
rogates	<u>₩</u>	7			10-71 6606/18/80
oromofluoromethane Juene-d8					03/31/2022 14:01
R-R					03/31/2022 14:01
MT :(s):					

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/30/2022

Project: Semi-Annual Sampling (March 2022)

WorkOrder: 2203H64

Extraction Method: E625.1

Analytical Method: E625.1

Unit: $\mu g/L$

Semi-Volatile Organics

Client ID	Lab ID Matrix	Date Collected	Instrument Batch ID
E-001	2203H64-001C Water	03/29/2022 10:50	GC53 03302211.D 242330
<u>Analytes</u>	Result	RL DF	Date Analyzed
Acenaphthene	ND	0.0047 1	03/30/2022 13:36
Acenaphthylene	ND	0.0047 1	03/30/2022 13:36
Anthracene	ND	0.0047 1	03/30/2022 13:36
Benzidine	ND	4.7 1	03/30/2022 13:36
Benzo (a) anthracene	ND	0.047 1	03/30/2022 13:36
Benzo (a) pyrene	ND	0.0047 1	03/30/2022 13:36
Benzo (b) fluoranthene	ND	0.019 1	03/30/2022 13:36
Benzo (g,h,i) perylene	ND	0.019 1	03/30/2022 13:36
Benzo (k) fluoranthene	ND	0.019 1	03/30/2022 13:36
Bis (2-chloroethoxy) Methane	ND	0.95 1	03/30/2022 13:36
Bis (2-chloroethyl) Ether	ND	0.0047 1	03/30/2022 13:36
Bis (2-chloroisopropyl) Ether	ND	0.047 1	03/30/2022 13:36
Bis (2-ethylhexyl) Phthalate	1.8	0.19 1	03/30/2022 13:36
4-Bromophenyl Phenyl Ether	ND	0.95 1	03/30/2022 13:36
Butylbenzyl Phthalate	ND	0.047 1	03/30/2022 13:36
4-Chloro-3-methylphenol	ND	0.95 1	03/30/2022 13:36
2-Chloronaphthalene	ND	0.95 1	03/30/2022 13:36
2-Chlorophenol	ND	0.047 1	03/30/2022 13:36
4-Chlorophenyl Phenyl Ether	ND	0.95 1	03/30/2022 13:36
Chrysene	ND	0.0047 1	03/30/2022 13:36
Dibenzo (a,h) anthracene	ND	0.019 1	03/30/2022 13:36
Di-n-butyl Phthalate	ND	0.047 1	03/30/2022 13:36
1,2-Dichlorobenzene	ND	0.95 1	03/30/2022 13:36
1,3-Dichlorobenzene	ND	0.95 1	03/30/2022 13:36
1,4-Dichlorobenzene	ND	0.95 1	03/30/2022 13:36
3,3-Dichlorobenzidine	ND	0.0047 1	03/30/2022 13:36
2,4-Dichlorophenol	ND	0.0095 1	03/30/2022 13:36
Diethyl Phthalate	ND	0.047 1	03/30/2022 13:36
2,4-Dimethylphenol	ND	0.95 1	03/30/2022 13:36
Dimethyl Phthalate	ND	0.0095 1	03/30/2022 13:36
4,6-Dinitro-2-methylphenol	ND	4.7 1	03/30/2022 13:36
2,4-Dinitrophenol	ND	0.95 1	03/30/2022 13:36
2,4-Dinitrotoluene	ND	0.047 1	03/30/2022 13:36
2,6-Dinitrotoluene	ND	0.047 1	03/30/2022 13:36
Di-n-octyl Phthalate	ND	0.95 1	03/30/2022 13:36
1,2-Diphenylhydrazine	ND	0.95 1	03/30/2022 13:36
Fluoranthene	ND	0.0095 1	03/30/2022 13:36

(Cont.)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/30/2022

Project: Semi-Annual Sampling (March 2022)

WorkOrder: 2203H64

Extraction Method: E625.1

Analytical Method: E625.1

Unit: $\mu g/L$

Semi-	Volatile (Organics	

Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
E-001	2203H64-001C	Water	03/29/2022	10:50	GC53 03302211.D	242330
Analytes	Result		RL	<u>DF</u>		Date Analyzed
Fluorene	ND		0.0095	1		03/30/2022 13:36
Hexachlorobenzene	ND		0.0047	1		03/30/2022 13:36
Hexachlorobutadiene	ND		0.0047	1		03/30/2022 13:36
Hexachlorocyclopentadiene	ND		4.7	1		03/30/2022 13:36
Hexachloroethane	ND		0.0095	1		03/30/2022 13:36
Indeno (1,2,3-cd) pyrene	ND		0.019	1		03/30/2022 13:36
Isophorone	ND		1.9	1		03/30/2022 13:36
Naphthalene	ND		0.047	1		03/30/2022 13:36
Nitrobenzene	ND		0.95	1		03/30/2022 13:36
2-Nitrophenol	ND		4.7	1		03/30/2022 13:36
4-Nitrophenol	ND		4.7	1		03/30/2022 13:36
N-Nitrosodimethylamine	ND		4.7	1		03/30/2022 13:36
N-Nitrosodiphenylamine	ND		0.95	1		03/30/2022 13:36
N-Nitrosodi-n-propylamine	ND		0.95	1		03/30/2022 13:36
Pentachlorophenol	ND		0.24	1		03/30/2022 13:36
Phenanthrene	0.019		0.0047	1		03/30/2022 13:36
Phenol	ND		0.19	1		03/30/2022 13:36
Pyrene	ND		0.0047	1		03/30/2022 13:36
1,2,4-Trichlorobenzene	ND		0.95	1		03/30/2022 13:36
2,4,6-Trichlorophenol	ND		0.0095	1		03/30/2022 13:36
Surrogates	REC (%)	Qualifiers	Limits			
2-Fluorophenol	33		30-130			03/30/2022 13:36
Phenol-d5	24		20-130			03/30/2022 13:36
Nitrobenzene-d5	55	S	60-130			03/30/2022 13:36
2-Fluorobiphenyl	61		50-130			03/30/2022 13:36
2,4,6-Tribromophenol	62		60-130			03/30/2022 13:36
4-Terphenyl-d14	65		40-130			03/30/2022 13:36
Analyst(s): KVE			Analytical Com	ments: c2	2	

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/29/2022 **Date Analyzed:** 03/30/2022

Instrument: GC22 **Matrix:** Water

Project: Semi-Annual Sampling (March 2022)

WorkOrder: 2203H64

BatchID: 242183

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-242183

Analyte	MB Result	MDL	RL	SP Val	MB SS %REC	MB SS Limits
Aldrin	ND	0.00028	0.0010	-	-	-
a-BHC	ND	0.00031	0.0010	-	-	-
b-BHC	ND	0.00069	0.0010	-	-	
d-BHC	ND	0.00014	0.0010	-	-	
g-BHC	ND	0.00045	0.0010	-	-	-
Chlordane (Technical)	ND	0.0023	0.020	-	-	-
a-Chlordane	ND	0.00085	0.0010	-	-	
g-Chlordane	ND	0.00015	0.0010	-	-	-
p,p-DDD	ND	0.00011	0.0010	-	-	-
p,p-DDE	ND	0.00018	0.0010	-	-	-
p,p-DDT	ND	0.00017	0.0010	-	-	
Dieldrin	ND	0.00014	0.0010	-	-	
Endosulfan I	ND	0.00011	0.0010	-	-	
Endosulfan II	ND	0.00046	0.0010	-	-	-
Endosulfan sulfate	ND	0.00033	0.0020	-	-	-
Endrin	ND	0.00018	0.0010	-	-	-
Endrin aldehyde	ND	0.00053	0.0010	-	-	-
Endrin ketone	ND	0.00026	0.0010	-	-	
Heptachlor	ND	0.00041	0.0010	-	-	-
Heptachlor epoxide	ND	0.00025	0.0010	-	-	
Methoxychlor	ND	0.00012	0.0010	-	-	-
Toxaphene	ND	0.0020	0.020	-	-	-
Aroclor1016	ND	0.0019	0.020	-	-	-
Aroclor1221	ND	0.0024	0.020	-	-	-
Aroclor1232	ND	0.0038	0.020	-	-	-
Aroclor1242	ND	0.0028	0.020	-	-	-
Aroclor1248	ND	0.0018	0.020	-	-	-
Aroclor1254	ND	0.0015	0.020	-	-	-
Aroclor1260	ND	0.0028	0.020	-	-	-
Surrogate Recovery						
Decachlorobiphenyl	0.043			0.05	87	60-130

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/29/2022 **Date Analyzed:** 03/30/2022

Instrument: GC22 **Matrix:** Water

Project: Semi-Annual Sampling (March 2022)

WorkOrder: 2203H64

BatchID: 242183

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-242183

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Aldrin	0.049	0.054	0.050	99	107	60-130	8.30	20
a-BHC	0.051	0.055	0.050	103	110	70-130	7.22	20
b-BHC	0.046	0.050	0.050	93	100	70-130	7.79	20
d-BHC	0.053	0.058	0.050	106	117	70-130	9.73	20
g-BHC	0.047	0.051	0.050	93	101	60-130	8.00	20
a-Chlordane	0.048	0.053	0.050	97	107	60-130	9.70	20
g-Chlordane	0.050	0.055	0.050	100	110	70-130	9.23	20
p,p-DDD	0.054	0.059	0.050	108	119	70-130	9.80	20
p,p-DDE	0.050	0.055	0.050	100	109	70-130	9.26	20
p,p-DDT	0.052	0.060	0.050	104	119	70-130	13.2	20
Dieldrin	0.051	0.056	0.050	101	111	70-130	9.40	20
Endosulfan I	0.048	0.053	0.050	96	106	70-130	9.85	20
Endosulfan II	0.049	0.055	0.050	98	110	70-130	10.8	20
Endosulfan sulfate	0.051	0.057	0.050	102	114	70-130	11.5	20
Endrin	0.058	0.064	0.050	116	129	70-130	10.4	20
Endrin aldehyde	0.044	0.049	0.050	89	99	60-130	10.7	20
Endrin ketone	0.047	0.053	0.050	95	106	60-130	11.1	20
Heptachlor	0.053	0.058	0.050	105	115	70-130	9.06	20
Heptachlor epoxide	0.048	0.052	0.050	95	104	70-130	8.61	20
Methoxychlor	0.053	0.060	0.050	106	120	70-130	12.0	20
Aroclor1016	0.15	0.15	0.15	99	100	70-130	1.13	20
Aroclor1260	0.16	0.15	0.15	104	102	70-130	1.75	20
Surrogate Recovery								
Decachlorobiphenyl	0.037	0.042	0.050	73	85	60-130	14.6	20

PG&E Gateway Generating Station 03/29/2022 Date Prepared: Client:

03/29/2022 GC10 Water Date Analyzed: **Instrument:** Matrix: Semi-Annual Sampling (March 2022) Project:

2203H64 242234 WorkOrder: BatchID:

Extraction Method: E624.1 Analytical Method: E624.1

 $\mu g/L$ Unit:

MB/LCS/LCSD-242234 Sample ID:

	QC Sun	ımary R	QC Summary Report for E624.1	E624.1					
Analyte	MB Result		MDL	RL		SP Val	MB SS %REC	E M	MB SS Limits
Acrolein (Propenal)	QN		3.9	5.0				'	
Acrylonitrile	QN ON		0.23	2.0					
2-Chloroethyl Vinyl Ether	ND		0.44	1.0		ı			
Surrogate Recovery									
Dibromofluoromethane	26					25	103)2	70-130
									l
Analyte	LCS Result	LCSD Result	SP Val		LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD	RPD
Acrolein (Propenal)	22	23	20		110	113	71-140	2.05	20
Acrylonitrile	19	19	20		94	97	67-145	2.80	20
2-Chloroethyl Vinyl Ether	20	21	20		86	103	70-124	4.69	20
Surrogate Recovery									
Dibromofluoromethane	26	26	25		105	103	70-130	1.32	20

2203H64 WorkOrder: BatchID: PG&E Gateway Generating Station 03/31/2022 **Date Analyzed:** 03/31/2022 Date Prepared: Client:

Unit: GC18 Water **Instrument:** Matrix:

Semi-Annual Sampling (March 2022)

Project:

242436 **Extraction Method:** E624.1 Analytical Method: E624.1

µg/L

MB/LCS/LCSD-242436 Sample ID:

	QC Summa	QC Summary Report for E624.1	E624.1			
Analyte	MB Result	MDL	RL	SP Val	MB SS %REC	MB SS Limits
tert-Amyl methyl ether (TAME)	QN	0.13	0.50			
Benzene	QN	0.12	0.20			
Bromodichloromethane	Q	0.025	0:050	ı		
Bromoform	Q	0.31	0.50			
Bromomethane	QN	0.18	0.50			
t-Butyl alcohol (TBA)	Q	2.5	5.0			
Carbon Disulfide	Q	0.18	0.50			
Carbon tetrachloride	Q	0.028	0:050			
Chlorobenzene	QN	0.11	0.50			
Chloroethane	QN	0.20	0.50		•	
Chloroform	QN	0.091	0.10			
Chloromethane	QN	0.28	0.50			
Dibromochloromethane	QN	0.026	0.15			
1,2-Dibromoethane (EDB)	QN	0.021	0.040			
1,2-Dichlorobenzene	QN	0.16	0.50	-		ĺ
1,3-Dichlorobenzene	QN	0.12	0.50		•	
1,4-Dichlorobenzene	QN	0.093	0.50			
Dichlorodifluoromethane	QN	0.29	0.50			
1,1-Dichloroethane	QN	0.15	0.50			
1,2-Dichloroethane (1,2-DCA)	QN	0.011	0.020			
1,1-Dichloroethene	QN	0.0094	0.010			
trans-1,2-Dichloroethene	QN	0.11	0.50			
1,2-Dichloropropane	QN	0.019	0.20			
cis-1,3-Dichloropropene	QN	0.21	0:50			
trans-1,3-Dichloropropene	QN	0.28	0:50			
Diisopropyl ether (DIPE)	QN	0.12	0:50			
Ethylbenzene	QN	0.14	0:20		-	
Ethyl tert-butyl ether (ETBE)	QN	0.16	0:50			
Methyl-t-butyl ether (MTBE)	QN	0.16	0.50		ı	
Methylene chloride	Q	0.74	2.0			
1,1,2,2-Tetrachloroethane	QN	0.011	0.020	,		
Tetrachloroethene	QN	0.16	0.20			
Toluene	QN	0.17	0:50			
1,1,1-Trichloroethane	QN	0.11	0:00			
1,1,2-Trichloroethane	QN	0.11	0.20			
Trichloroethene	ON	0.25	0:50			
Trichlorofluoromethane	QN	0.14	0.50			
Vinyl chloride	QN	0.0043	0.0050			

PG&E Gateway Generating Station 03/31/2022 Date Prepared: Client:

03/31/2022 GC18 Water Date Analyzed: Instrument: Matrix: Semi-Annual Sampling (March 2022) Project:

2203H64 242436 WorkOrder: BatchID:

Extraction Method: E624.1 Analytical Method: E624.1

µg/L Unit:

MB/LCS/LCSD-242436 Sample ID:

	QC Summary Report for E624.1	ort for I	3624.1			
Analyte	MB Result	MDL	RL	SP Val	MB SS %REC	MB SS Limits
Surrogate Recovery						
Dibromofluoromethane	23			25	94	70-130
Toluene-d8	25			25	100	70-130
4-BFB	2.0			2.5	79	70-130

PG&E Gateway Generating Station Client:

03/31/2022 Date Prepared:

Date Analyzed: 03/31/2022 GC18 Instrument:

Water Matrix:

Semi-Annual Sampling (March 2022) Project:

2203H64 WorkOrder:

242436 **Extraction Method:** E624.1 BatchID:

Analytical Method: E624.1

µg/L Unit:

MB/LCS/LCSD-242436 Sample ID:

QC Summary Report for E624.1

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	3.4	3.3	4	84	83	60-130	1.64	20
Benzene	3.4	3.3	4	85	83	60-130	2.75	20
Bromodichloromethane	3.4	3.4	4	98	85	60-130	0.585	20
Bromoform	3.6	3.6	4	91	68	50-130	2.07	20
Bromomethane	3.8	3.4	4	94	85	50-130	9.57	20
t-Butyl alcohol (TBA)	16	16	16	102	66	50-130	2.48	20
Carbon Disulfide	3.5	3.4	4	88	85	60-130	4.01	20
Carbon tetrachloride	3.7	3.6	4	93	88	60-130	3.54	20
Chlorobenzene	3.6	3.5	4	06	87	60-130	3.54	20
Chloroethane	3.4	3.4	4	98	85	60-140	1.54	20
Chloroform	3.3	3.4	4	84	8	60-130	0.307	20
Chloromethane	4.5	4.2	4	111	105	50-130	5.84	20
Dibromochloromethane	3.6	3.6	4	06	88	50-130	1.04	20
1,2-Dibromoethane (EDB)	3.5	3.5	4	88	87	60-130	0.640	20
1,2-Dichlorobenzene	3.6	3.5	4	06	87	60-130	3.50	20
1,3-Dichlorobenzene	3.7	3.6	4	93	88	60-130	4.31	20
1,4-Dichlorobenzene	3.6	3.4	4	88	98	60-130	2.99	20
Dichlorodifluoromethane	4.2	3.9	4	105	66	40-140	6.22	20
1,1-Dichloroethane	3.4	3.3	4	98	83	50-130	2.92	20
1,2-Dichloroethane (1,2-DCA)	3.2	3.2	4	81	81	60-130	0.400	20
1,1-Dichloroethene	3.5	3.3	4	87	84	60-130	3.85	20
trans-1,2-Dichloroethene	3.4	3.4	4	85	84	60-130	1.81	20
1,2-Dichloropropane	3.5	3.5	4	88	98	60-130	1.95	20
cis-1,3-Dichloropropene	3.6	3.5	4	91	87	60-130	3.47	20
trans-1,3-Dichloropropene	3.7	3.7	4	93	91	60-130	2.28	20
Diisopropyl ether (DIPE)	3.5	3.3	4	98	83	60-130	3.96	20
Ethylbenzene	3.4	3.3	4	82	83	60-130	2.64	20
Ethyl tert-butyl ether (ETBE)	3.4	3.4	4	85	85	60-130	0.783	20
Methyl-t-butyl ether (MTBE)	3.5	3.4	4	88	98	60-130	3.05	20
Methylene chloride	2.5	2.4	4	62	61	50-130	2.37	20
1,1,2,2-Tetrachloroethane	3.5	3.4	4	88	98	60-130	3.33	20
Tetrachloroethene	3.5	3.4	4	87	48	60-130	3.70	20
Toluene	3.5	3.3	4	87	83	60-130	3.80	20
1,1,1-Trichloroethane	3.5	3.4	4	88	84	60-130	4.10	20
1,1,2-Trichloroethane	3.6	3.5	4	88	88	60-130	1.60	20
Trichloroethene	3.5	3.5	4	88	/8	60-130	1.78	20
Trichlorofluoromethane	3.5	3.3	4	88	84	60-130	5.25	20
Vinyl chloride	4.2	4.1	4	106	103	60-130	2.83	20

PG&E Gateway Generating Station Client:

03/31/2022 Date Prepared:

03/31/2022 GC18 Date Analyzed: Instrument:

Water Project: Matrix:

2203H64 WorkOrder:

242436 **Extraction Method:** E624.1 BatchID:

Analytical Method: E624.1

µg/L Unit:

MB/LCS/LCSD-242436 Sample ID: Semi-Annual Sampling (March 2022)

	QC Sun	nmary R	QC Summary Report for E624.1	_				
Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
Surrogate Recovery								
Dibromofluoromethane	24	24	25	92	86	70-130	2.90	20
Toluene-d8	25	25	25	100	100	70-130	0.248	20
4-BFB	2.0	2.0	2.5	81 80	80	70-130	0.775	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:03/30/2022Date Analyzed:03/30/2022Instrument:GC21

Matrix: Water

Project: Semi-Annual Sampling (March 2022)

WorkOrder: 2203H64

BatchID: 242330

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-242330

	Q C Summary Report for Educati						
Analyte	MB Result	MDL	RL	SP Val	MB SS %REC	MB SS Limits	
Acenaphthene	ND	0.0020	0.0050	-		-	
Acenaphthylene	ND	0.00093	0.0050	-	-	-	
Anthracene	ND	0.0027	0.0050	-	-		
Benzidine	ND	2.4	5.0	-	-		
Benzo (a) anthracene	ND	0.012	0.050	-	-		
Benzo (a) pyrene	ND	0.0031	0.0050	-	-		
Benzo (b) fluoranthene	ND	0.0056	0.020	-	-		
Benzo (g,h,i) perylene	ND	0.0051	0.020	-	-		
Benzo (k) fluoranthene	ND	0.0052	0.020	-	-		
Benzyl Alcohol	ND	3.2	5.0	-	-	-	
Bis (2-chloroethoxy) Methane	ND	0.25	1.0	-	-	-	
Bis (2-chloroethyl) Ether	ND	0.0020	0.0050	-	-	-	
Bis (2-chloroisopropyl) Ether	ND	0.015	0.050	-	-		
Bis (2-ethylhexyl) Adipate	ND	0.27	1.0	-	-	-	
Bis (2-ethylhexyl) Phthalate	ND	0.045	0.20	-	-		
4-Bromophenyl Phenyl Ether	ND	0.15	1.0	-	-	-	
Butylbenzyl Phthalate	ND	0.0074	0.050	-	-	-	
4-Chloroaniline	ND	0.0014	0.0050	-	-	-	
4-Chloro-3-methylphenol	ND	0.37	1.0	-	-	-	
2-Chloronaphthalene	ND	0.22	1.0	-	-	-	
2-Chlorophenol	ND	0.013	0.050	-	-	-	
4-Chlorophenyl Phenyl Ether	ND	0.22	1.0	-	-	-	
Chrysene	ND	0.0020	0.0050	-	-	-	
Dibenzo (a,h) anthracene	ND	0.0056	0.020	-	-	-	
Dibenzofuran	ND	0.0015	0.0050	-	-	-	
Di-n-butyl Phthalate	ND	0.018	0.050	-	-	-	
1,2-Dichlorobenzene	ND	0.17	1.0	-	-	-	
1,3-Dichlorobenzene	ND	0.28	1.0	-	-	-	
1,4-Dichlorobenzene	ND	0.28	1.0	-	-	-	
3,3-Dichlorobenzidine	ND	0.0024	0.0050	-	-	-	
2,4-Dichlorophenol	ND	0.0030	0.010	-	-	-	
2,6-Dichlorophenol	ND	0.012	0.050	-	-	-	
Diethyl Phthalate	ND	0.016	0.050	-	-	-	
2,4-Dimethylphenol	ND	0.49	1.0	-	_	-	
Dimethyl Phthalate	ND	0.0048	0.010	-	-	-	
4,6-Dinitro-2-methylphenol	ND	1.9	5.0	-	-	-	
2,4-Dinitrophenol	ND	0.38	1.0	-	_		
2,4-Dinitrotoluene	ND	0.020	0.050		_		

(Cont.)

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:03/30/2022Date Analyzed:03/30/2022Instrument:GC21

Matrix: Water

Project: Semi-Annual Sampling (March 2022)

WorkOrder: 2203H64

BatchID: 242330

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-242330

QC Summary Report for E625.1

	_	• •				
Analyte	MB Result	MDL	RL	SP Val	MB SS %REC	MB SS Limits
2,6-Dinitrotoluene	ND	0.019	0.050	-	-	-
Di-n-octyl Phthalate	ND	0.77	1.0	-	-	-
1,2-Diphenylhydrazine	ND	0.20	1.0	-	-	-
Fluoranthene	ND	0.0027	0.010	-	-	-
Fluorene	ND	0.0029	0.010	-	-	-
Hexachlorobenzene	ND	0.0016	0.0050	-	-	-
Hexachlorobutadiene	ND	0.0020	0.0050	-	-	
Hexachlorocyclopentadiene	ND	2.3	5.0	-	-	
Hexachloroethane	ND	0.0029	0.010	-	-	-
Indeno (1,2,3-cd) pyrene	ND	0.0072	0.020	-	-	
1-Methylnaphthalene	ND	0.0024	0.0050	-	-	-
Isophorone	ND	0.92	2.0	-	-	-
2-Methylnaphthalene	ND	0.0015	0.0050	-	-	-
2-Methylphenol (o-Cresol)	ND	0.33	1.0	-	-	-
3 & 4-Methylphenol (m,p-Cresol)	ND	0.25	1.0	-	-	-
Naphthalene	ND	0.012	0.050	-	-	-
2-Nitroaniline	ND	1.3	5.0	-	-	-
3-Nitroaniline	ND	1.8	5.0	-	-	-
4-Nitroaniline	ND	1.9	5.0	-	-	-
Nitrobenzene	ND	0.29	1.0	-	-	-
2-Nitrophenol	ND	1.7	5.0	-	-	-
4-Nitrophenol	ND	1.6	5.0	-	-	-
N-Nitrosodimethylamine	ND	1.9	5.0	-	-	-
N-Nitrosodiphenylamine	ND	0.23	1.0	-	-	-
N-Nitrosodi-n-propylamine	ND	0.35	1.0	-	-	-
Pentachlorophenol	ND	0.089	0.25	-	-	-
Phenanthrene	ND	0.0026	0.0050	-	-	-
Phenol	ND	0.057	0.20	-	-	-
Pyrene	ND	0.0019	0.0050	-	-	-
Pyridine	ND	0.23	1.0	-	_	-
1,2,4-Trichlorobenzene	ND	0.19	1.0	-	-	-
2,4,5-Trichlorophenol	ND	0.0025	0.010	-	-	-
2,4,6-Trichlorophenol	ND	0.0038	0.010	-	_	-

WB 22

Вb

WB 22

Analyte

Quality Control Report

Client:PG&E Gateway Generating StationWorkOrder:2203H64Date Prepared:03/30/2022Extraction Method:242330Date Analyzed:GC21Analytical Method:Ec25.1

Matrix:Unit:Unit:µg/LProject:Semi-Annual Sampling (March 2022)Sample ID:MB/LCS/LCSD-242330

QC Summary Report for E625.1

WDF

ВГ

Surrogate Recovery				
5-Fluorophenol	9.4	9	76	30-130
gp-louəy _c	5.1	G	102	20-130
Vitrobenzene-d5	1.3	S	102	061-09
Z-Fluorobiphenyl	9.4	g	۱6	20-130
lonəhqomordirT-6,4,5	9.4	G	۱6	061-09
ϯ-Terphenyl-d14	1.8	9	63	40-130

Quality Control Report

Client: PG&E Gateway Generating Station

 Date Prepared:
 03/30/2022

 Date Analyzed:
 03/30/2022

 Instrument:
 GC21

Matrix: Water

Project: Semi-Annual Sampling (March 2022)

WorkOrder: 2203H64

BatchID: 242330

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-242330

QC Summary Report for E625.1

Analyte	LCS	LCSD	SP	LCS	LCSD	LCS/LCSD	RPD	RPD
Analyte	Result	Result	Val	%REC	%REC	Limits	KPD	Limit
Acenaphthene	0.22	0.24	0.25	89	96	50-130	7.63	25
Acenaphthylene	0.21	0.22	0.25	84	90	60-130	7.03	25
Anthracene	0.23	0.25	0.25	93	99	60-130	6.46	25
Benzidine	17	19	25	69	78	20-130	11.7	25
Benzo (a) anthracene	0.24	0.26	0.25	96	104	60-130	8.09	25
Benzo (a) pyrene	0.22	0.23	0.25	89	93	60-130	4.25	25
Benzo (b) fluoranthene	0.20	0.23	0.25	82	94	60-130	13.4	25
Benzo (g,h,i) perylene	0.22	0.23	0.25	87	92	50-130	5.81	25
Benzo (k) fluoranthene	0.31	0.30	0.25	122	120	60-130	1.92	25
Benzyl Alcohol	22	25	25	90	101	60-130	11.9	25
Bis (2-chloroethoxy) Methane	4.3	4.6	5	86	92	65-130	7.34	25
Bis (2-chloroethyl) Ether	0.20	0.23	0.25	81	90	60-130	10.8	25
Bis (2-chloroisopropyl) Ether	0.21	0.25	0.25	85	102	60-130	17.8	25
Bis (2-ethylhexyl) Adipate	4.4	4.7	5	88	94	60-130	6.64	25
Bis (2-ethylhexyl) Phthalate	0.21	0.23	0.25	85	90	60-130	6.51	25
4-Bromophenyl Phenyl Ether	4.3	4.5	5	85	89	65-130	4.89	25
Butylbenzyl Phthalate	0.22	0.23	0.25	87	92	60-140	6.41	25
4-Chloroaniline	0.21	0.24	0.25	85	95	60-130	10.7	25
4-Chloro-3-methylphenol	4.8	5.3	5	95	105	65-130	10.1	25
2-Chloronaphthalene	4.5	4.7	5	91	94	65-130	3.41	25
2-Chlorophenol	0.21	0.23	0.25	83	90	60-130	8.60	25
4-Chlorophenyl Phenyl Ether	4.4	4.8	5	89	95	65-130	7.19	25
Chrysene	0.24	0.26	0.25	95	104	70-130	9.32	25
Dibenzo (a,h) anthracene	0.22	0.24	0.25	88	96	50-130	8.27	25
Dibenzofuran	0.23	0.25	0.25	90	99	65-130	8.91	25
Di-n-butyl Phthalate	0.22	0.24	0.25	88	94	60-130	7.12	25
1,2-Dichlorobenzene	4.1	4.6	5	82	92	60-130	11.7	25
1,3-Dichlorobenzene	4.1	4.4	5	82	88	60-130	7.44	25
1,4-Dichlorobenzene	4.0	4.4	5	80	88	60-130	9.08	25
3,3-Dichlorobenzidine	0.23	0.25	0.25	93	101	60-130	8.08	25
2,4-Dichlorophenol	0.22	0.24	0.25	89	98	60-130	8.88	25
2,6-Dichlorophenol	0.21	0.23	0.25	85	92	65-130	8.33	25
Diethyl Phthalate	0.21	0.24	0.25	86	96	65-130	10.8	25
2,4-Dimethylphenol	4.3	4.6	5	85	93	60-130	8.58	25
Dimethyl Phthalate	0.22	0.27	0.25	88	108	60-130	19.8	25
4,6-Dinitro-2-methylphenol	25	27	25	99	106	60-130	7.48	25
2,4-Dinitrophenol	5.1	5.7	5	102	114	50-130	11.4	25
2,4-Dinitrotoluene	0.28	0.31	0.25	111	123	70-130	10.3	25

Quality Control Report

Client: PG&E Gateway Generating Station

 Date Prepared:
 03/30/2022

 Date Analyzed:
 03/30/2022

 Instrument:
 GC21

Matrix: Water

Project: Semi-Annual Sampling (March 2022)

WorkOrder: 2203H64

BatchID: 242330

Extraction Method: E625.1 **Analytical Method:** E625.1

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-242330

QC Summary Report for E625.1

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
2,6-Dinitrotoluene	0.26	0.29	0.25	105	114	65-140	8.40	25
Di-n-octyl Phthalate	4.3	4.7	5	86	94	70-130	8.65	25
1,2-Diphenylhydrazine	4.6	4.8	5	91	95	65-130	4.41	25
Fluoranthene	0.23	0.25	0.25	90	100	65-130	10.3	25
Fluorene	0.22	0.24	0.25	89	97	65-130	8.58	25
Hexachlorobenzene	0.21	0.22	0.25	84	87	60-130	3.93	25
Hexachlorobutadiene	0.20	0.22	0.25	81	86	60-130	6.13	25
Hexachlorocyclopentadiene	20	20	25	79	80	50-130	1.73	25
Hexachloroethane	0.20	0.22	0.25	80	87	40-130	7.49	25
Indeno (1,2,3-cd) pyrene	0.22	0.23	0.25	88	92	50-130	4.73	25
1-Methylnaphthalene	0.22	0.24	0.25	88	96	65-130	9.35	25
Isophorone	4.4	5.0	5	88	99	50-130	11.8	25
2-Methylnaphthalene	0.22	0.24	0.25	90	97	60-130	7.72	25
2-Methylphenol (o-Cresol)	4.2	4.7	5	85	93	60-130	9.69	25
3 & 4-Methylphenol (m,p-Cresol)	4.3	4.9	5	86	97	60-130	12.4	25
Naphthalene	0.23	0.25	0.25	91	100	50-130	9.33	25
2-Nitroaniline	25	25	25	98	102	65-130	3.66	25
3-Nitroaniline	25	28	25	98	111	70-140	12.0	25
4-Nitroaniline	24	28	25	96	113	70-130	16.7	25
Nitrobenzene	4.8	5.1	5	95	103	60-130	7.59	25
2-Nitrophenol	23	26	25	93	103	70-130	9.73	25
4-Nitrophenol	23	28	25	93	112	30-130	18.8	25
N-Nitrosodimethylamine	21	23	25	83	93	30-130	12.0	25
N-Nitrosodiphenylamine	4.6	4.8	5	91	96	65-130	4.91	25
N-Nitrosodi-n-propylamine	4.2	4.9	5	85	98	50-130	14.3	25
Pentachlorophenol	1.2	1.3	1.25	94	101	60-130	6.85	25
Phenanthrene	0.22	0.24	0.25	89	94	65-130	6.23	25
Phenol	0.85	0.93	1	85	93	30-130	8.67	25
Pyrene	0.23	0.24	0.25	91	98	70-130	7.11	25
Pyridine	4.2	4.8	5	83	96	30-130	13.7	25
1,2,4-Trichlorobenzene	4.3	4.6	5	86	92	65-130	6.58	25
2,4,5-Trichlorophenol	0.24	0.23	0.25	95	93	65-130	1.48	25
2,4,6-Trichlorophenol	0.23	0.24	0.25	93	95	65-130	1.89	25

Analyte

Quality Control Report

Instrument: GC21 Analytical Method: E625.1

Mater: Water programment: Legistrix: Water Water Mater Mat

Result

rcs

Project: Semi-Annual Sampling (March 2022) Sample ID: MB/LCS/LCSD-242330

Result

rced

QC Summary Report for E625.1

lεV

ЯS

4-Terphenyl-d14	8.2	3.0	g	99	09	40-130	91.9	52
2,4,6-Tribromophenol	6.4	6.4	S	86	86	061-09	611.0	52
Z-Fluorobiphenyl	g.4	9.4	S	68	۱6	20-130	2.20	52
Zb-ənəznədorili	8.4	2.2	S	96	104	061-09	79.T	52
Phenol-d5	† †	7.4	g	88	7 6	20-130	7 0 [.] 9	52
Z-Fluorophenol	9.5	۲.4	g	87	28	30-130	99.3	52
Surrogate Recovery								

Jimil

RPD

Limits

CCS/CCSD RPD

%BEC

rcap

%BEC

FCS

McCampbell Analytical, Inc. CHAIN-OF-CUSTODY RECORD Page of 1 1534 Willow Pass Rd Pittsburg, CA 94565-1701 WorkOrder: 2203H64 ClientCode: PGEA (925) 252-9262 ☐ WaterTrax CLIP EQuIS ☐ Dry-Weight Email □HardCopy ThirdParty J-flag EDF Detection Summary Excel Report to: Bill to: Re uested TAT: 1 day; abe4@pge.com Angel Espiritu Angel Espiritu Email: cc/3rd Party: A1HE@pge.com; J5Ld@pge.com; PG&E Gateway Generating Station PG&E Gateway Generating Station Date Received: 03/29/2022 3225 Wilbur Avenue PO: 3225 Wilbur Avenue Project: Date Logged: Antioch, CA 94509 Semi-Annual Sampling (March 2022) Antioch, CA 94509 03/29/2022

	Re uested Tests (See legend below)								_							
Lab ID	Client ID	Matri	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2203H64-001	E-001	Water	3/29/2022 10:50			1 4	1 - D		I A	1	1	1-	1	D.		Th:

Test Legend:

(925) 459-7212

FAX:

1 608 W	2 624 W	3 624ACR+2CEVE W	4 625 SCSM W
5 PRDisposal Fee	6	7	8
9	10	[11]	12

Prepared by: Valerie Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Project: Semi-Annual Sampling (March 2022)

Work Order: 2203H64

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com Comments:

Date Logged: 3/29/2022

		☐ WaterT	rax WriteOn	□EDF □Exc	el <u>EQuIS</u>	3	Em	nail	HardCopy	ThirdF	PartyU-flag	I	
LabID	ClientSampID	Matrix	Test Name	Containers /Composites				Dry- Weight		TAT	Test Due Date	Sediment Content	Sub Out
001A E	E-001	Water	E624.1 (VOCs)	2	VOA w/ HCl	1	П		3/29/2022 10:50	1 day	3/30/2022	Present	+ .
001B E	E-001	Water	E624.1 (ACRO, ACRY, & 2-CE	EVE) 2	VOA, Unpres	13			3/29/2022 10:50	1 day	3/30/2022	Present	
001C E	E-001	Water	E625.1 (SVOCs)	1	1LA Narrow Mouth, Unpres				3/29/2022 10:50	1 day	3/30/2022	Present	
001D E	E-001	Water	E608.3 (OC Pesticides+PCBs w/ Clean-up)	Florisil 1	1LA Narrow Mouth, Unpres				3/29/2022 10:50	1 day	3/30/2022	Present	*

NOTES: * STLC and TCLP e tractions re uire 2 days to complete; therefore, all TATs begin after the e traction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not e clude any material from the sample prior to sample preparation unless re uested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to e tend hold time for analysis.

2203464

RIJSH

	McCAMPBELL ANALYTICAL, INC.							-		T		CITE	A ===	7 -		CHICAGO			N TO 1	00	DE								
	M W	CUA		ELL A 4 WILL				. ربا	IN	C.							ANT A TO 2					CUSTO	D)		CE(KD	_	
			Pľ	ITSBURG	, CA S	4565-170	1				-	17	1	11 6	FA		N ARC	JUND"	IIM	LE	-	RUSH 241	סדב		→ 48 H]		-	☐. 5 DAY	
			www.mcca ie: (877) 2				in@m 'ax: (9						The same of			Geo	Tracke	EDF	1	P	DIŪ						n (DW		
												N W								Cl	neck i	f sample is	eMu		and	1 "J"	flag is		
Report To	o: Angel Es	pirit	u		- [1	Bill To:	PG&	E G	ate	way							Analys	is Reque	est						Re	mark	CB		
Company	: PG&E G	atew	ay Gener	ating Sta	tion														П		l	Т	П		П	T			
			om, A1HE@pge.com, J5Ld@pge.com, tlWY@pge.com								624-Volatile Organic] _ä	Organochlorine)	Ш			1	П											
	522-7838					@pge.co Fax: (m, tl	WY(@)p	ge.cc	m					ှိ	Volet	fi g	Ш				Н		Н				
, ,	ame: Sen						20	27	١.)			-		/olatt	, I	5	Ш	- 1			Н		Н				
	ocation: Co				- 12	WI DA		<i>a</i>								25	53 m	8 S	Ш				П		Н				
Sampler S	ignature:	ature: Muskan Environmental Sampling								A G	Comp	A P	Н				П		Н										
										EID.	TTO (USEPA (Compounds)	TTO (USEPA 625- Seni Volatife Organic Campounds)	TTO (USEPA 608 – (Pesticides and PCBs)	Н				Н		Н									
		Composite	SAMP	LING		Matrix METHOD PRESERVED ES ES ES																							
	LOCATION / Field Point	ပ္ပိုန္			2	Type Containers	H			П	Т		\neg	П					П	\exists			П		П	7			
I ID	Name	[\[\sigma \qquad \qqquad \qqquad \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqqq \qqqq \qqqqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \qqq \qqqq \	Dota	Time	Containers		Waste Water	Serrer Water		П							l			1		1	П		Н	1			
	1		Date	Lime		8	불	5	None	뎔	H-SO	NaOH	HCL	HINO	Other		Į	l		-1			П						
		Sample			*	Ļ	≱	35	Ž	i E	=	z	Ħ	耳	ö								Ц		Ш	上			
E-001		G	3-24-22	10:30	2	43 ml VOA	Х			X			X			Х			П				П						
E-001		G	3-29-22	02:01		43 ml VOA	Х		Х	Х	Т	Т	٦	П		Х			П	П			П		П				
E-001		G	3-29-22		1	1L Amb	Х		Х	X	T		7	٦			Х		П				П			Τ			_
E-001		G	3-29-22		1	IL Amb	Х		Х	X			T	\neg				X	П	T			П			T	·	-	
				,,,,,						П	Ť	T	T	寸					П	T			П			\top			
											T	1	7	寸					П	7			П			\top			
											T	7	コ	┪					П	7			П			\top			
											+	寸	T	7					Ħ	7			П			1			_
										\sqcap	T		7	7					H	T			П			1	•		
										П	Ť	7	7	7					Ħ				П		十	1			
						1			7	\Box	Ť	T	T	7					H				П		+	十			_
	di					1	1	7		T	1	十	寸	7					M	7			П		1	十			
Relinquishe	Ву:		Date:	Time:		elved By		1	X	1			_	_		ICE/r_			1		1.1		C	OM	MEN	TS:			
	<i>y</i>	_3	VALLE	12:45		/		74	1	X_						HEAD.	CONDITION SPACE AB	SENT		' 4	f. C	1.41.		TTO	O (EP	A 608), TTO (EPA 624),	
Relinquished	l By:		Date:	Time:	Reco	elved By:		/)							ORINATE PRIATE C			—′		WIT						CACHED e only listed	1
Relinquished	Bv:	• • • • • • • • • • • • • • • • • • • •	Date:	Time:	Rec	cived By:	_/_	- 1	7	_							RVED IN I		-		_				ipour				
q======	·			~ 444		20] •												VOAS C)&G	M	ETALS	S OTHER				/ .	11	n	00-1
																					/	0	41	Pa	age 2				

APPENDIX A

District Local Discharge Limits include a parameter called Total Toxic Organics (TTO). The required analytical methods for TTO analysis are listed in 40 CFR Part 136 and include the following EPA methods: 624,625, 608, and 1613, respectively. Unless specifically required, EPA method 1613 for dioxins is not mandatory for routine TTO analysis. The constituents with concentrations greater than the minimum limit/reporting limit must be added together to determine compliance with the District's Local Discharge Limit for TTO of 2.0 mg/L. The following is a list of the constituents of TTO:

EPA Method 624 Compounds

Acrolein
Acrylonitrile
Benzene
Bromodichloromethane (Dichlorobromomethane)
Bromform
Brommomethane (Methyl Bromide)
Carbon tetrachloride (Tetrachloromethane)
Chlorobenzene
Chloroethane (Ethyl Chloride)
2-Chloroethyl vinyl ether
Chloroform (trichloromethane)
Chloromethane (Methyl Chloride)
Dibromochloromethane (Chlorodibromomethane)
1, 2-Dichlorobenzene
1, 4-Dichlorobenzene
1, 4-Dichlorobenzene
1, 1-Dichloroethane
1, 2-Dichloroethane
1, 2-Dichloroethene (1, 1-dichloroethylene)
trans-1, 2-Dichloropropene
trans-1, 3-Dichloropropene
ethylbenzene
Methylene Chloride (Dichloromethane)
1, 1, 2, 2, -Tetrachloroethane
Tetrachloroethene (PCE)
Toluene
1, 1, 1-Trichloreothane
Trichloroethene (TCE)
Trichlorofluoromethane
Trichlorofluoromethane
Trichlorofluoromethane
Trichlorofluoromethane
Trichlorofluoromethane
Trichlorofluoromethane
Vinyl chloride (Chloroethylene)

EPA Method 625 Compounds

Acenaphthene
Acenaphthylene
Anthricene
Benzidine
Benzo (a) anthracene
Benzo (b) fluoranthene
Benzo (c) fluoranthene
Benzyl butyl phthalate
bis (2-Chloroethoxy) methane
bis (2-Chloroethoxy) methane
bis (2-Chloroethoxy) methane
bis (2-Chloroethyl) ether
bis (2-Chloroethyl) ether
bis (2-Ethylhexyl) phthalate
4-Bromophenyl phenyl ether
4-Chloro-3-methylphenol
2-Chlorophenyl
4-Chlorophenyl phenyl ether
Chrysene
Dibenzo (a, h) anthracene
1, 2-Dichlorobenzene
1, 3-Dichlorobenzene
1, 4-Dichlorobenzene
1, 4-Dichlorobenzene
3, 3'-Dichlorobenzidine

2, 4-Dichlorophenol Diethyl phthalate 2,4-Dimethylphenol Dimethylphthalate
Di-n-butylphthalate
2, 4-Dinitrotoluene
2, 6-Dinitrotoluene Di-n-octylphthalate 1.2-Diphenylhydrazine/Azo Fluoranthene Fluorene Hexachlorobenzene Hexchlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1, 2, 3-cd) pyrene Isophorone 2-Methyl-4, 6-dinitrophenol Naphthalene Nifrobenzene 2-Nitrophenol 4-Nitrophenol N-Nitrosodimethylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Pentachlorophenol Phenanthrene Phenol Pyrene 1, 2, 4-Trichlorobenzene 2, 4, 6-Trichlorophenol

EPA Method 608 Compounds

Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4, 4'-DDD 4, 4'-DDE 4, 4 DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260 Toxaphene

3-29-22 12:MS

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	PG&E Gateway Generating Station			Date and Time Received:	3/29/2022 12:45
Project:	Semi-Annual Sampling (March 2022)			Date Logged:	3/29/2022
Mankonden No.	Matrice Western			Received by:	Tina Perez
WorkOrder №: Carrier:	2203H64 Matrix: Water Client Drop-In			Logged by:	Valerie Alfaro
	<u>Chain of</u>	Custod	y (COC)	Information	
Chain of custody	present?	Yes		No 🗔	
Chain of custody	signed when relinquished and received?	Yes		No 🔲	
Chain of custody	agrees with sample labels?	Yes		No 🔲	
Sample IDs note	d by Client on COC?	Yes		No 🔲	
Date and Time o	f collection noted by Client on COC?	Yes	V	No 🔲	
Sampler's name	noted on COC?	Yes		No 🔲	
COC agrees with	n Quote?	Yes		No 🔲	NA 📝
	Sam	ple Rece	eipt Info	rmation	
Custody seals in	tact on shipping container/cooler?	Yes		No 🔲	NA 🖬
Custody seals in	tact on sample bottles?	Yes		No 🔲	NA 🖬
Shipping contain	er/cooler in good condition?	Yes		No 🔲	
Samples in prope	er containers/bottles?	Yes		No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sample	e volume for indicated test?	Yes		No 🔲	
	Sample Preservat	tion and	Hold Ti	me (HT) Information	
All samples rece	ived within holding time?	Yes		No 🔲	NA 🔲
Samples Receive		Yes		No 🔲	
	(Ice Ty	pe: WE	TICE)	
Sample/Temp BI	lank temperature		Temp	: 1.4°C	NA 🔲
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🔲
Sample labels ch	necked for correct preservation?	Yes		No 🔲	
pH acceptable up <2; 522: <4; 218.	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No 🔲	NA 🔄
UCMR Samples:					
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🔟
Free Chlorine t [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		№ □	NA 🗾

Attachment 8d Laboratory Results Annual Monitoring of Combined Site Stream (E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2203H52

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: An

Angel Espiritu

Project P.O.:

Project: Annual Sampling (March 2022)

Project Received: 03/29/2022

Analytical Report reviewed & approved for release on 03/30/2022 by:

Susan Thompson Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2203H52

Project: Annual Sampling (March 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LOL Laboratory Control Sample
LOL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/29/2022

Project: Annual Sampling (March 2022)

WorkOrder: 2203H52

Extraction Method: E300.1

Analytical Method: E300.1

Unit: mg/L

Inorganic Anions by IC

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001	2203H52-001B	Water	03/29/202	2 10:50	IC4 03302213.D	242243
Analytes	Result		RL	DF		Date Analyzed
Sulfate	96		5.0	50		03/29/2022 19:42

Analyst(s): ND

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 03/29/2022 12:45

Date Prepared: 03/30/2022

Project: Annual Sampling (March 2022)

WorkOrder: 2203H52

Extraction Method: SM4500-S⁻² D-2000

Analytical Method: SM4500 S⁻² D

Unit: mg/L

Total Sulfide - S

Client ID	Lab ID N	Aatrix	Date Coll	ected	Instrument	Batch ID
E-001	2203H52-001A V	Vater	03/29/2022	10:50	SPECTROPHOTOMETER2	242357
Analytes	Result		RL	<u>DF</u>	<u>Dat</u>	te Analyzed
Total Sulfide	ND		0.10	1	03/	30/2022 15:09

Analyst(s): RB

Quality Control Report

PG&E Gateway Generating Station 03/29/2022 Date Prepared: Client:

Date Analyzed: 03/29/2022

Water IC4 Instrument: Matrix: Annual Sampling (March 2022) Project:

2203H52 242243 WorkOrder: BatchID:

Extraction Method: E300.1 Analytical Method: E300.1

mg/L Unit:

MB/LCS/LCSD-242243 Sample ID:

	QC Sun	nmary R	QC Summary Report for E300.1	E300.1					
Analyte	MB Result		MDL	뀜		SP Val	MB SS %REC	ĒŪ	MB SS Limits
Sulfate	Q.		0.057	0.10					
Surrogate Recovery Malonate	0.10					0.1	102	06	90-115
Analyte	LCS Result	LCSD Result	SP		LCS %REC	LCSD %REC	LCSD LCS/LCSD RPD %REC Limits	RPD	RPD
Sulfate	1.0	1.0	_		101	102	85-115	1.82	20
Surrogate Recovery Malonate	0.10	0.10	0.10		100	102	90-115	1.44	20

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 03/30/2022 **Date Analyzed:** 03/30/2022

Instrument: SPECTROPHOTOMETER2

Matrix: Water

Project: Annual Sampling (March 2022)

WorkOrder: 2203H52

BatchID: 242357

Extraction Method: SM4500-S⁻² D-2000 **Analytical Method:** SM4500 S⁻² D

Unit: mg/L

Sample ID: MB/LCS/LCSD-242357

QC Summary Report For SM4500 S-2D

Analyte	MB Result	MDL	RL			
Total Sulfide	ND	0.042	0.10	-	-	-

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Sulfide	0.46	0.47	0.50	91	93	80-120	2.34	20

McCampbell Analytical, Inc. CHAIN-OF-CUSTODY RECORD Page of 1 1534 Willow Pass Rd Pittsburg, CA 94565-1701 WorkOrder: 2203H52 ClientCode: PGEA (925) 252-9262 T CLIP EDF **EQuIS** WaterTrax Dry-Weight Email HardCopy ThirdParty J-flag Detection Summary Excel Report to: Bill to: Re uested TAT: 1 day; Email: Angel Espiritu abe4@pge.com Angel Espiritu cc/3rd Party: A1HE@pge.com; J5Ld@pge.com; tIWY@p PG&E Gateway Generating Station PG&E Gateway Generating Station Date Received: 03/29/2022 PO: 3225 Wilbur Avenue 3225 Wilbur Avenue Antioch, CA 94509 Project: Annual Sampling (March 2022) Antioch, CA 94509 Date Logged: 03/29/2022 (925) 459-7212 FAX:

					-			Re	uested	lests	(See leg	end bei	ow)			7 -
Lab ID	Client ID	Matri	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2203H52-001	E-001	Water	3/29/2022 10:50	TI	В	A	I A						Ī-			

Tes	4 1	~~	

1 300 1 W	PRDisposal Fee	3 SULFIDE W	[4]
5	6	7	8
9	10	11	12

Prepared by: Cassandra Gallegos

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Project: Annual Sampling (March 2022)

Work Order: 2203H52

QC Level: LEVEL 2

Client Contact: Angel Espiritu
Contact's Email: abe4@pge.com

Comments

Date Logged: 3/29/2022

	☐ Water1	Trax WriteOn E	EDF Exce	el [EQul	s [Email	HardCopy	Third	dParty □J-flag)	
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U** Ho	ead Dry- ace Weigh		TAT	Test Due Date	Sediment Content	Sub Out
001A E-001	Water	SM4500S2D (Total Sulfide)	1	250mL HDPE w/ NaOH+ZnAc			3/29/2022 10:50	1 day	3/30/2022	None	
001B E-001	Water	E300.1 (Inorganic Anions) <sulfate< td=""><td>> 1</td><td>250mL HDPE, unprsv.</td><td></td><td></td><td>3/29/2022 10:50</td><td>1 day</td><td>3/30/2022</td><td>None</td><td></td></sulfate<>	> 1	250mL HDPE, unprsv.			3/29/2022 10:50	1 day	3/30/2022	None	

NOTES: * STLC and TCLP e tractions re uire 2 days to complete; therefore, all TATs begin after the e traction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not e clude any material from the sample prior to sample preparation unless re uested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to e tend hold time for analysis.

RUSH 2203452

Á	W) M	¢СА	MPBE					L, I	N	J.					_								, C	ÚS	TO		Y R	E(COR	D		
				4 WILLO						110	7			5	T	UR	N A	RO	UN	D T	IM	E		13					l			
			www.mccar	npbell.co		nail: mai	n@mc					6				еоТ	Frac	kar	FD	ar (٦	PΠ			H :			48 F	^{IR} ite On	72 HR	5 DA	λY
,	1 ere	pnon	e: (877) 2	32-9202		r	ax: (9	23) /	252 -	920	9				u	COI	HAC	ACI	1213		\exists								id "J" i			ed
Report	Γο: Angel l	Espir	itu		I	Bill To:	PG&	E Ga	tew	ay										Ana	lysis		ques							Rem		
Compar	y: PG&E	Gate	way Gene	rating S	tatio	n								_[_			
			11											4												1						
_	abe4@pge						com,	IW)	(a)	ge.c	om									i												
	5) 522-783 Name: Ai					ax: (<u> </u>	<u> </u>			<u> </u>			\dashv					ļ									Н				
	Location: (D_T C									一																		
	Signatura	- N) rAv	المساوية	لما	S	····	ile	12		R	I																		
		site	SAMP		_		Mat		ME	7710	D PR	rer.	DVE																			
		m DC	SAME	LING		2	MIN	FIX	HIL	Ino	DIK	ESE.	KAE																			
	LOCATION	۽ د			er.s	Type Containers	ЕГ	L						밀	Sulfide (EPA 376.2)	300.1)																
ID	/ Field Point Name	Type C /Grah		TC:	Containers	l di	Waste Water	Sewer Water] _			Zinc Acetate	EPA :	(EPA						l										
		ple'	Date	Time] e	ıste	ver V	None	H SO	NaOH	H	HNO.	4	ide (I	ate (
	LOCATION / Field Point Name	Sam			#	Ě	×̃	Se	2	H.S.	ž	HCL	Ħ	Zir	Sull	Sulf																
E-001		G	3/29/2	10150	1	250-ml poly	Х			X	Х			Х	X				1													
E-001		G	3/29/21	10:5	1	250-ml poly	Х		Х	X				7		Х			1													
			-, -,, 0,	101,21		pony				1					_			-	1	1						\top						
										+				┪											_	 	1					
										+-				7				\dashv	+				\Box	\dashv	\top	+						
										1	· · · ·			十					1	+-	<u> </u>				+	\top						
	-									1			1	十	_				+	+	1					1	1					
														十												1						
										1-			\dashv	┪																		
									_					7	-			_	1	-												
								$\overline{}$		\dagger				7													1					
								abla		\top				\top				\top		1				_								
Relinquish	iga By:		Date:	Time:	Rece	ived By:				_					ICE						<u>, , , , , , , , , , , , , , , , , , , </u>	· · /	- <u>-</u>		1		COMN	ÆN'	TS:			
			3/29/2:	12:4			$\sqrt{2}$	$\geq \!$	\angle					_	HE	AD S	COND	EABS	ENT		- 4	C- C	, r	4								
Relinquish	red By:		Date:	Time:	Rece	ived By:	\	7	1					- 1	DE	CHL	ORIN PRIAT	ATE) IN	LAB	RS.	_ l	W	Í								
Relinguish	ad Day		Date:	Time:	Post	decod Dec)	_							RVED				*/O		-									
zemqusi	ied Dy:		Daie:	i mile:		ived By:												,	OAS	0	&G	ME	TALS	6 0	THE	2			/	of1	/	
					l										PRI	ESER	VAT.					pH<							/	レ''		

PG&E Gateway Generating Station

Client Name:

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received: 3/29/2022 12:45

Sample Receipt Checklist

Project:	Annual Samplir	ng (March 2022)			Date Logged: Received by:	3/29/2022 Cassandra Gallego
WorkOrder №: Carrier:	2203H52 Client Drop-In	Matrix: <u>Water</u>			Logged by:	Cassandra Gallego
		Chain of	Custod	y (COC) lı	nformation	
Chain of custody	y present?		Yes	•	No 🔲	
Chain of custody	y signed when reli	nquished and received?	Yes	~	No 🔲	
Chain of custody	y agrees with sam	ple labels?	Yes		No 🗆	
Sample IDs note	ed by Client on CC	OC?	Yes		No 🔲	
Date and Time of	of collection noted	by Client on COC?	Yes		No 🔲	
Sampler's name	noted on COC?		Yes		No 🔲	
COC agrees with	h Quote?		Yes		No 🔲	NA 🖃
		Sam	ple Rec	eipt Infori	mation	
Custody seals in	ntact on shipping o	ontainer/cooler?	Yes		No 🔲	NA 🗹
Custody seals in	ntact on sample bo	ottles?	Yes		No 🔲	NA 🖃
Shipping contain	ner/cooler in good	condition?	Yes		No 🔲	
Samples in prop	er containers/bott	es?	Yes		No 🔲	
Sample containe	ers intact?		Yes		No 🔲	
Sufficient sample	e volume for indic	ated test?	Yes	•	No 🔲	
		Sample Preservat	tion and	Hold Tin	ne (HT) Information	
All samples rece	eived within holding	g time?	Yes		No 🔲	NA 🔲
Samples Receiv	red on Ice?	(lee Ty	Yes pe: WE	TICE)	No 🔲	
Sample/Tomp B	lank temperature	(ice ry	pe. we		1.4°C	NA [T]
	•	aata zara baadanaaa	Yes	Tomp.	No 🖂	NA 🕞
	OCs, TPHg/BTEX,	eets zero headspace RSK)?	103	ш	140	IVA (
Sample labels cl	hecked for correct	preservation?	Yes		No 🔲	
pH acceptable u <2; 522: <4; 218		: <2; Nitrate 353.2/4500NO3:	Yes		No 🔲	NA 💽
UCMR Samples						
pH tested and 537.1: 6 - 8)?	acceptable upon	receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🔄
Free Chlorine [not applicable		able upon receipt (<0.1mg/L)	Yes		No 🔲	NA 📦

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

July 12, 2022

Mr. Andrew Mora Delta Diablo Sanitation District 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station Delta

Diablo Sanitation District Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending June 30, 2022)

Dear Mr. Mora,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending June 30, 2022, as required under Delta Diablo Sanitation District Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, Annual Flowmeter Calibration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Peceived by:

Claudia Arzen Q

1/13/22 136 pm

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

July 12, 2022

Mr. Andrew Mora Delta Diablo Sanitation District 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station Delta

Diablo Sanitation District Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report (For Period Ending June 30, 2022)

Dear Mr. Mora,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending June 30, 2022, as required under Delta Diablo Sanitation District Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, WSAC Operating Months Report, Cycles of Concentration, Annual Flowmeter Calibration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in June 30, 2022

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 9: Annual Flowmeter Calibration

Attachment 1 Certification Statement

Certification Statement

Name of Business:

PG&E Gateway Generating Station

Address:

3225 Wilbur Avenue, Antioch, CA. 94509

Phone:

925-522-7805

Period Covered:

Period ending: June 30, 2022

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Tim Wisdom Date: July 12, 2022

Print Name:

Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Andrew Mora	Pretreatment
Fax # (925)756-1961	Phone: (925)756-1929
From: Tim Wisdom	
Company: Pacific Gas and Electric Co	ompany – Gateway Generating Station
Period Covered: Period ending June 3	
Terror covered. Terror enamy valle s	0, 2022
Industrial User Checklist for self -mo	nitoring reports, as specified by the wastewater
discharge permit issued by Delta Diab	
disentinge permit issued by Berta Black	To Summeron District.
Self-monitoring reports	
Sen memoring reperts	
√ Flow discharge summary (Disch	narge Permit Section E.1.h.) (See Attachment 4)
$\sqrt{}$ Calibration of flow meters, as re	· · · · · · · · · · · · · · · · · · ·
	tests completed, results reviewed, results
	tody (section F.7.) (See Attachment 8)
	• • • • • • • • • • • • • • • • • • • •
$\underline{\underline{}}$ Certification statement included	(See Attachment 1)
Violations (if applicable)	
Violations (if applicable)	
All wastewater discharge evene	lance are reported during this reporting period
Delta Diablo was contacted. (Se	
	ization re-sampling was submitted on
Corrective actions to resolve vio	
	, spills to sewer, or prohibited discharges
Other violations - i.e. Reporting	, spins to sewer, or promoted discharges
Additional Notes:	
None	
Significant changes	

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station ID #: 0208841-C SIC: 4911

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

DATE	6/14/2022	6/15/2022	6/15/2022			
TYPE	G	G	C24			
STATION	E-001	E-001	E-001			
SMP.BY	Muskan	Muskan	Muskan	10		
PURPOSE	Compliance	Compliance	Compliance			
PURPUSE	Quarterly (Q2)	Quarterly (Q2)	Quarterly (Q2)			

Units: mg/L

PARAMETERS	<u>LIMITS</u>								
FLOW, DAILY (gal)	51,120								
FLOW, MONTH (gal)	26				Œ				
рН	6-10 s.u.	8.96							
BOD				ND(<16)					
COD	Ü		- 0	290.0					
TDS	3		S 2	604.0					
TSS			4	18.4					
Arsenic	0.15			0.00120					
Cadmium	0.1			ND(<0.0005)					
Chromium	0.5		. T	0.0095					
Copper	0.5			0.0500					
Iron	3			23.0	1				
Lead	0.5			0.00059					
Mercury	0.003		- 1	ND(<0.0002)	I				
Molybdenum				0.045					
Nickel	0.5			0.0160					
Selenium	0.25			ND(<0.0005)					
Silver	0.2		1	ND(<0.0005)	i				
Zinc	1.00			0.890					
Cyanide	0.2		ND(<0.008)		Ī				
Phenol	1.00		ND(<0.05)		Ī			1	
Ammonia	200		51						
O&G Petro/Min (E1664A w/ Silica)	100	ND(<5.0)	ND(<5.0)		[
O&G Animal/Vegetable Oil	300	ND(<5.0)	ND(<5.0)	(F)	Ĭ				
TTO EPA 608	1			1	iii				
TTO EPA 624									
TTO EPA 625									
TTO						1	İ		
Sulfide							1		
Sulfate									
Comments: ND = Non-Detect, NSD = No Structures D	etected. MFI = Millio	ns of Fihers ner Liter				•	•	•	

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

April 2022-June 2022

	Industrial Flow			Sanitary Flow					
			Did it ever				Did it ever		
		Time Over	go over			Time Meter	go over		
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		(Illiliates)				(minutes)			
			mins?				mins?		
4/1/2022	32.7	0.0		24,125	0.1	0			24,125
4/2/2022	33.9	0.0	NO	22,812	0.0	0	NO		22,812
4/3/2022	33.6	0.0	NO	14,038	0.0	0	NO		14,038
4/4/2022	35.1	0.0	NO	16,207	12.5	0	NO	382	16,589
4/5/2022	34.6	0.0	NO	25,407	0.0	0	NO		25,407
4/6/2022	34.4	0.0	NO	20,122	2.7	0	NO	425	20,547
4/7/2022	34.6	0.0	NO	43,574	0.0	0	NO		43,574
4/8/2022	34.6	1.0	NO	39,426	0.0	2	NO		39,426
4/9/2022	35.3	0.0	NO	29,555	0.2	0	NO	10	29,564
4/10/2022	34.5	0.0	NO	14,668	0.1	0	NO	10	14,677
4/11/2022	34.5	0.0	NO	35,119	0.0	0	NO		35,119
4/12/2022	34.8	0.0	NO	18,488	0.1	0	NO		18,488
4/13/2022	34.7	0.0	NO	25,632	0.1	0	NO		25,632
4/14/2022	34.6	0.0	NO	27,960	4.7	0	NO		27,960
4/15/2022	34.8	0.0	NO	33,065	0.1	0	NO		33,065
4/16/2022	35.0	0.0	NO	14,794	0.0	0	NO		14,794
4/17/2022	34.6	0.0	NO	13,942	0.0	0	NO		13,942
4/18/2022	34.7	0.0	NO	42,194	0.1	0	NO		42,194
4/19/2022	34.8	0.0	NO	34,022	25.6	0	NO	302	34,324
4/20/2022	34.6	0.0	NO	48,292	20.2	0	NO	685	48,978
4/21/2022	34.7	0.0	NO	39,690	0.0	0	NO	000	39,690
4/22/2022	34.5	0.0	NO	44,993	0.0	0	NO		44,993
4/23/2022	34.6	0.0	NO	41,732	18.3	0	NO	349	42,081
4/24/2022	34.8	0.0	NO	29,990	0.0	0		349	29,990
4/25/2022	35.0	0.0	NO	28,221	0.0	0	NO		28,221
4/26/2022	34.7	0.0	NO	38,114	21.9	0	NO	351	38,465
4/27/2022	34.7	0.0	NO	19,816	0.0	0	NO	331	19,816
4/28/2022	-0.5	0.0	NO	19,010	21.3	0	NO	332	332
			NO	24 050		0	NO	332	
4/29/2022	34.8 34.5	0.0	NO	31,858	0.0	0	NO		31,858
4/30/2022	34.5	0.0	NO	39,850	0.0	ů			39,850
						Max D	aily Flow (Lii		48,978
<i>E (4 /</i> 0000)	24.0	0.0	NO	40.004	0.0			onthly Total:	860,553
5/1/2022	34.8	0.0		13,861	0.0	0		200	13,861
5/2/2022	34.6	0.0		6,341	23.8			362	6,703
5/3/2022	34.7	0.0		21,043	0.0	0			21,043
5/4/2022	35.0	0.0	NO	32,549	0.0	0		070	32,549
5/5/2022	35.3	0.0	NO	28,989	24.3	0		378	29,367
5/6/2022	34.8	0.0		44,836	0.0	0			44,836
5/7/2022	34.6	0.0		27,905	24.1	0		377	28,283
5/8/2022	34.8	1.0	NO	26,082	0.0	2			26,082
5/9/2022	34.6	0.0	NO	10,146	0.0	0	_		10,146
5/10/2022	34.7	0.0	NO	24,726	25.9	0			24,726
5/11/2022	34.5	0.0	NO	18,870	0.1	0			18,870
5/12/2022	34.7	0.0	NO	16,487	23.9	0		350	16,837
5/13/2022	34.8	0.0		28,137	0.0	0			28,137
5/14/2022	35.1	0.0		20,996	0.0	0	NO		20,996
5/15/2022	34.5	0.0	NO	49,034	0.0	0	NO		49,034
5/16/2022	34.8	0.0	NO	9,554	25.6	0		376	9,929
5/17/2022	34.7	0.0	NO	23,232	0.0	0	NO		23,232
5/18/2022	34.7	0.0	NO	31,492	0.0	0			31,492
5/19/2022	34.8	0.0	NO	45,833	25.7	0		369	46,202
	34.8	0.0		40,275	0.0	0			40,275

PG&E Gateway Generating Station

Discharge Flow Data

April 2022-June 2022

	Industrial Flow			Sanitary Flow					
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
5/21/2022	34.8	0.0	NO	13,138	0.0	0	NO		13,138
5/22/2022	-0.5	0.0	NO		26.8	0	NO	362	362
5/23/2022	35.2	0.0	NO	33,471	0.0	0	NO		33,471
5/24/2022	34.7	0.0	NO	49,033	0.0	0	NO		49,033
5/25/2022	34.8	0.0	NO	44,978	25.8	0	NO	360	45,338
5/26/2022	34.7	0.0	NO	48,573	0.0	0	NO		48,573
5/27/2022	34.7	0.0	NO	40,446	27.0	0	NO	347	40,793
5/28/2022	34.6	0.0	NO	26,284	0.0	0	NO		26,284
5/29/2022	35.0	0.0	NO	22,423	0.1	0	NO		22,423
5/30/2022	34.5	0.0	NO	13,245	0.0	0	NO		13,245
5/31/2022	34.6	0.0	NO	45,568	26.5	0	NO	348	45,916
						Max D		mit: 51,120):	49,034
6/1/2022	34.8	0.0	NO	49,022	0.0	0	NO	onthly Total:	861,176 49,022
6/2/2022	34.8	0.0	NO	17,606	24.9	0	NO	361	17,967
6/3/2022	34.5	0.0	NO	6,347	0.1	0	NO		6,347
6/4/2022	34.5	0.0	NO	14,454	0.0	0	NO		14,454
6/5/2022	34.8	0.0	NO	16,259	0.0	0	NO		16,259
6/6/2022	34.6	0.0	NO	40,855	26.0	0	NO	349	41,204
6/7/2022	34.6	0.0	NO	35,443	0.0	0	NO		35,443
6/8/2022	34.8	1.0	NO	42,578	25.8	2	NO	381	42,958
6/9/2022	35.0	0.0	NO	36,799	0.0	0	NO		36,799
6/10/2022	34.7	0.0	NO	29,342	0.0	0	NO		29,342
6/11/2022	34.8	0.0	NO	49,026	0.0	0	NO		49,026
6/12/2022	34.8	0.0	NO	20,648	26.4	0	NO	548	21,195
6/13/2022	34.9	0.0	NO	36,271	0.1	0	NO		36,271
6/14/2022	34.6	0.0	NO	48,261	26.4	0	NO	327	48,587
6/15/2022	34.5	0.0	NO	46,677	0.0	0	NO		46,677
6/16/2022	35.0	0.0	NO	32,830	26.0	0	NO	360	33,189
6/17/2022	35.0	0.0	NO	35,001	0.0	0	NO		35,001
6/18/2022	34.8	0.0	NO	25,106	0.0	0	NO		25,106
6/19/2022	34.5	0.0	NO	9,447	27.2	0	NO	360	9,807
6/20/2022	34.7	0.0	NO	24,689	0.0	0	NO		24,689
6/21/2022	34.5	0.0		49,026	0.0	0	NO		49,026
6/22/2022	34.6	0.0	NO	46,068	26.1	0	NO	344	46,412
6/23/2022	34.8	9.0	NO	32,128	0.1	13	NO		32,128
6/24/2022	34.8	0.0	NO	40,743	0.0	0	NO		40,743
6/25/2022	35.1	0.0	NO	28,543	27.5	0	NO	365	28,908
6/26/2022	34.8	0.0	NO	45,280	0.0	0	NO		45,280
6/27/2022	34.7	0.0	NO	43,925	0.0	0	NO		43,925
6/28/2022	34.7	0.0	NO	39,245	26.1	0	NO	361	39,606
6/29/2022	34.9	0.0	NO	42,112	0.0	0	NO		42,112
6/30/2022	35.2	0.0	NO	27,559	25.9	0	NO	340	27,899

Max Daily Flow (Limit: 51,120): 49,026 Monthly Total: 1,015,382

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2022**

Month	Flow (gallons)	Due Date
January		
February		
March		
April	860,553	7/15/2022
May	861,176	7/15/2022
June	1,015,382	7/15/2022
July		
August		
September		
October		
November		
December		

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report April 2022 to June 2022

	WSAC Operation
Month	Hours of Operation
January-22	
February-22	
March-22	
April-22	89.75
May-22	205.67
June-22	416.25
July-22	
August-22	
September-22	
October-22	
November-22	
December-22	

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report April 2022 to June 2022

	WSAC Operation
Month	Average Daily Blowdown Cycles
January-22	
February-22	
March-22	
April-22	2.12
May-22	2.83
June-22	2.75
July-22	
August-22	
September-22	
October-22	
November-22	
December-22	

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

"When Quality Counts"

Analytical Report

WorkOrder: 2206950

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (June 2022)

Project Received: 06/15/2022

Analytical Report reviewed & approved for release on 06/24/2022 by:

100

Christine Askari Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2206950

Project: Quarterly Sampling (June 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 m filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
L bwest unntitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of uantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TE Toxicity Equivalents

T A Time one Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2206950

Project: Quarterly Sampling (June 2022)

Analytical ualifiers

i5 The sample dilutions set up for the BOD analysis did not meet the oxygen depletion criterion of at least 2 mg/l,

therefore the reported result is an estimated value only.

uality Control ualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validates the prep batch.

F10 MS/MSD outside control limits. Physical or chemical interferences exist due to sample matrix.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08 **Date Prepared:** 06/20/2022

Project: Quarterly Sampling (June 2022) WorkOrder:

Unit:

2206950

mg/L

Extraction Method: E1664A_SG

Analytical Method: E1664A

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2206950-001B	Water	06/14/2022	2 09:05	O&G	247672
Analytes	Result		RL	DE		Date Analyzed
SGT-HEM	ND		5.0	1		06/21/2022 16:00

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
E-001	2206950-002B	Water	06/15/2022	10:10	O&G	247672
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		5.0	1		06/21/2022 16:05

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08

Date Prepared: 06/20/2022

Project: Quarterly Sampling (June 2022) WorkOrder:

2206950

Extraction Method: E1664A

Analytical Method: E1664A

Unit:

mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Collected		Date Collected Instrument		Instrument	Batch ID
E-001	2206950-001A	Water	06/14/202	2 09:05	O&G	247946		
_Analytes	Result		RL	DE		Date Analyzed		
HEM	ND		5.0	1		06/21/2022 15:30		

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Collected		Instrument	Batch ID
E-001	2206950-002A	Water	06/15/2022	2 10:10	O&G	247946
Analytes	Result		RL	<u>DF</u>		Date Analyzed
HEM	ND		5.0	1		06/21/2022 15:35

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08 **Date Prepared:** 06/20/2022

Project: Quarterly Sampling (June 2022)

WorkOrder: 2206950

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Ammonia as N

Client ID	Lab ID Matrix	Date Collected	Instrument	Batch ID
E-001	2206950-002C Water	06/15/2022 10:10	WC S ALAR 220620B1 68	247859
_Analytes	Result	RL DE	Date	Analyzed
Ammonia, total as N	51	1.0 10	06/2	0/2022 17:39

Analyst(s): CC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08

Date Prepared: 06/16/2022

Project: Quarterly Sampling (June 2022)

WorkOrder:

2206950

Extraction Method: SM5210B

Analytical Method: SM5210 B

Unit: mg/L

Biochemical Oxygen Demand (BOD)

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2206950-003A	Water	06/15/202	2 10:03	WetChem	247673
_Analytes	Result		RL	DE		Date Analyzed
BOD	ND		16	4		06/21/2022 16:10

Analyst(s): MGO Analytical Comments: i5

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08

Date Prepared: 06/16/2022

Project: Quarterly Sampling (June 2022)

WorkOrder: 2206950

Extraction Method: SM5220 D-1997 **Analytical Method:** SM5220 D-1997

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2206950-003B	Water	06/15/202	2 10:03	SPECTROPHOTOMETER2	247728
_Analytes	Result		RL	DE	Date	e Analyzed
COD	290		10	1	06/1	6/2022 16:37

Analyst(s): NYG

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08

Date Prepared: 06/15/2022

Project: Quarterly Sampling (June 2022)

WorkOrder: 2206950

Extraction Method: E245.2

Analytical Method: E245.2

Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption

Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
E-001	2206950-003E	Water	06/15/2022	2 10:03	AA1 27	247512
_Analytes	Result		RL	DE		Date Analyzed
Mercury	ND		0.20	1		06/16/2022 16:11

Analyst(s): MIG

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08

Date Prepared: 06/16/2022

Project: Quarterly Sampling (June 2022)

WorkOrder: 2206950

Extraction Method: E200.8

Analytical Method: E200.8

Unit: $\mu g/L$

Metals								
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID		
E-001	2206950-003F	Water	06/15/2022	10:03	ICP-MS2 070SMPL.D	247580		
Analytes	Result		RL	DE		Date Analyzed		
Arsenic	1.2		0.50	1		06/16/2022 18:15		
Cadmium	ND		0.50	1		06/16/2022 18:15		
Chromium	9.5		0.50	1		06/16/2022 18:15		
Copper	50		1.5	1		06/16/2022 18:15		
Iron	23,000		50	1		06/16/2022 18:15		
Lead	0.59		0.50	1		06/16/2022 18:15		
Molybdenum	45		0.50	1		06/16/2022 18:15		
Nickel	16		0.50	1		06/16/2022 18:15		
Selenium	ND		0.50	1		06/16/2022 18:15		
Silver	ND		0.50	1		06/16/2022 18:15		
inc	890		20	1		06/16/2022 18:15		
Surrogates	REC (%)		Limits					
Terbium	110		70-130			06/16/2022 18:15		
Analyst(s): DB								

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08

Date Prepared: 06/22/2022

Project: Quarterly Sampling (June 2022)

WorkOrder: 2206950

Extraction Method: E420.1

Analytical Method: E420.1

Unit: $\mu g/L$

Phenolics

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001	2206950-002C	Water	06/15/2022 10:10		SPECTROPHOTOMETER2	248077
Analytes	Result		RL	DE.	Date	Analyzed
Phenolics	ND		50	1	06/2	2/2022 16:12

Analyst(s): NYG

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08

Date Prepared: 06/20/2022

Project: Quarterly Sampling (June 2022)

WorkOrder: 2206950

Extraction Method: SM2540 C-1997 **Analytical Method:** SM2540 C-1997

Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2206950-003C	Water	06/15/2022	2 10:03	WetChem	247925
_Analytes	Result		RL	DE		Date Analyzed
Total Dissolved Solids	604		10.0	1		06/21/2022 16:35

Analyst(s): JRA

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08

Date Prepared: 06/17/2022

Project: Quarterly Sampling (June 2022)

WorkOrder: 2206950

Extraction Method: SM2540 D-1997 **Analytical Method:** SM2540 D-1997

Unit: mg/L

Total Suspended Solids

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2206950-003D	Water	06/15/2022	2 10:03	WetChem	247771
Analytes	Result		RL	DE		Date Analyzed
Total Suspended Solids	18.4		1.00	1		06/17/2022 16:05

Analyst(s): MGO

PG&E Gateway Generating Station Client:

06/16/2022 Date Prepared:

06/17/2022 Date Analyzed:

Water 0&GInstrument: Matrix:

Quarterly Sampling (June 2022) Project:

2206950 WorkOrder:

Extraction Method: E1664A_SG 247672 BatchID:

E1664A Analytical Method: Unit: MB/LCS/LCSD-247672 Sample ID:

C1664A	RL	5.0
Report for E	MDL	0.72
QC Summary Report for E1664A	MB Result	ON
	Analyte	SGT-HEM

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD RF Limits	RPD RPD Limit
SGT-HEM	8.7	8.1	10.42	83	78	64-132 6.77	77 30

PG&E Gateway Generating Station Client:

06/21/2022 Date Prepared:

06/21/2022 0&GDate Analyzed: Instrument:

Quarterly Sampling (June 2022) Water Project: Matrix:

2206950 WorkOrder:

Extraction Method: E1664A 247946 BatchID:

Analytical Method: E1664A Unit: MB/LCS/LCSD-247946 Sample ID:

E1664A
Report for
QC Summary

1
0
5.0
1.3
ND
HEM

							ı	١
Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
HEM	18	18	20.83	88	86	78-114	2.99	30

PG&E Gateway Generating Station Client:

06/20/2022 Date Prepared:

06/20/2022 Date Analyzed: WC_SKALAR Instrument:

Quarterly Sampling (June 2022) Water Project: Matrix:

2206950 WorkOrder:

247859 BatchID:

SM4500-NH3 BG **Extraction Method:** SM4500-NH3 BG Analytical Method:

Unit:

MB/LCS/LCSD-247859 Sample ID:

QC Summary Report for SM4500-NH3

R	0.10
MDL	960.0
MB Result	ND
Analyte	Ammonia, total as N

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	D RPD Limit
Ammonia, total as N	3.9	3.8	4	97	95	88-113 1.88	8 20

PG&E Gateway Generating Station Client:

06/16/2022 Date Prepared:

06/21/2022 WetChem Date Analyzed: Instrument:

Quarterly Sampling (June 2022) Water Project: Matrix:

2206950 WorkOrder:

Extraction Method: SM5210B 247673 BatchID:

SM5210 B Analytical Method:

mg/L Unit:

MB/LCS/LCSD-247673 Sample ID:

BOD	RL	
QC Summary Report for BOD	WDL	4.0
QC Sur	MB Result	QN
	Analyte	BOD

	RPD RPD Limit	2.82 16
	LCS/LCSD Limits	80-120
ı	LCSD %REC	106
	LCS %REC	109
	SP Val	198
	LCSD Result	210
	LCS Result	220
	Analyte	BOD

PG&E Gateway Generating Station Client:

06/16/2022 Date Prepared:

06/16/2022 Date Analyzed:

SPECTROPHOTOMETER2 Instrument:

Quarterly Sampling (June 2022) Water Project: Matrix:

2206950 WorkOrder:

247728 BatchID:

Extraction Method: SM5220 D-1997 SM5220 D-1997 Analytical Method:

mg/L Unit:

MB/LCS/LCSD-247728 Sample ID:

	QC Summary Report for COD	port for	COD
Analyte	MB Result	MDL	RL
COD	QN	9.5	

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD R Limits	RPD	RPD
COD	94	94	100	94	94	90-110 0		20

WorkOrder: PG&E Gateway Generating Station 06/15/2022 Date Prepared: Client:

06/16/2022 Water AA1 Date Analyzed: Instrument: Matrix:

Quarterly Sampling (June 2022) Project:

247512 **Extraction Method:** E245.2 Analytical Method: E245.2 BatchID:

2206950

MB/LCS/LCSD-247512 $\mu g/L$ Sample ID:

Unit:

	M	
Mercury	R	0.20
QC Summary Report for Mercury	WDL	0.13 0.20
QC Summ	MB Result	ΩN
	Analyte	Mercury

				ı	ı		ı	١
Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD F Limits	RPD	RPD
Mercury	2.1	2.0	2	103	102	85-115 0	0.719	20

PG&E Gateway Generating Station Client:

06/16/2022 Date Prepared:

06/16/2022 ICP-MS2 Date Analyzed: Instrument:

Water

Matrix:

Quarterly Sampling (June 2022) Project:

2206950 WorkOrder:

247580 **Extraction Method:** E200.8 BatchID:

E200.8 Analytical Method: Unit:

MB/LCS/LCSD-247580 2206950-003FMS/MSD 2206950-003FPDS µg/L

Sample ID:

QC Summary Report for Metals

	J C					1
Analyte	MB Result	MDL	RL	SP Val	MB SS %REC	MB SS Limits
Arsenic	ND	0.074	0.50		1	
Cadmium	ND	0.043	0.50			
Chromium	ND	0.28	0.50			
Copper		0.75	1.5			
Iron		26	50			
Lead		0.19	0.50			
Molybdenum		0.13	0.50			
Nickel		0.33	0.50		ı	
Selenium	ND	0.16	0.50			
Silver	ND	0.092	0.50			
inc	ND	14	20		ı	
Surrogate Recovery						
Terbium	540			200	107	70-130

PG&E Gateway Generating Station Client:

06/16/2022 06/16/2022 Date Analyzed: Date Prepared:

ICP-MS2 Instrument: Quarterly Sampling (June 2022) Project:

Water

Matrix:

2206950 WorkOrder:

247580 **Extraction Method:** E200.8 BatchID:

E200.8 $\mu g/L$ Analytical Method: Unit:

MB/LCS/LCSD-247580 2206950-003FMS/MSD Sample ID:

2206950-003FPDS

QC Summary Report for Metals

Analyte Arsenic Cadmium Chromium Copper Iron Lead Molybdenum Nickel Selenium Silver inc		LCS	CSD	SP		SS	CSD	ויסטוויסטו		000
Arsenic Cadmium Chromium Copper Iron Lead Molybdenum Nickel Selenium Silver inc			Result	Val		%REC	%REC	Limits	אר ט	Limit
Cadmium Chromium Copper Iron Lead Molybdenum Nickel Selenium Silver inc		54	52	50		108	103	85-115	4.47	20
Chromium Copper Iron Lead Molybdenum Nickel Selenium Silver inc		53	51	20		107	101	85-115	5.26	20
Copper Iron Lead Molybdenum Nickel Selenium Silver inc		53	51	20		106	101	85-115	5.02	20
Iron Lead Molybdenum Nickel Selenium Silver inc		52	20	20		105	100	85-115	4.88	20
Lead Molybdenum Nickel Selenium Silver inc		5200	4900	2000		103	86	85-115	5.36	20
Molybdenum Nickel Selenium Silver inc		53	51	20		106	101	85-115	4.50	20
Nickel Selenium Silver inc		52	49	20		104	86	85-115	5.56	20
Selenium Silver inc		52	50	20		103	66	85-115	4.04	20
Silver		55	54	20		110	107	85-115	2.83	20
inc		53	51	20		106	101	85-115	3.94	20
		540	520	200		108	103	85-115	4.14	20
Surrogate Recovery										
Terbium		550	530	200		111	106	70-130	4.72	20
Analyte	MS DF	MS Result	MSD Result	SP Val	SP Ref Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD
Arsenic	-	56	56	50	1.164	109	109		0.108	20
Cadmium	_	51	50	20	ΩN	102	100	85-115	1.43	20
Chromium	_	61	61	20	9.457	104	102	85-115	1.12	20
Copper	_	83	84	20	49.76	66,F10	69,F10	85-115	1.72	20
Iron	_	28,000	27,000	2000	22,750	96	91	85-115	0.802	20
Lead	_	54	54	20	0.5901	107	107	85-115	0.0742	20
Molybdenum	_	96	92	20	45.28	101	94	85-115	3.89	20
Nickel	_	99	92	20	15.91	101	66	85-115	1.66	20
Selenium	L	30	30	20	ON	60,F10	59,F10	85-115	2.26	20
Silver	L	20	20	20	ON	101	101	85-115	0.298	20
inc	L	1400	1400	200	886.2	101	66	85-115	0.650	20
Surrogate Recovery										
Terbium (-	260	250	200		113	110	70-130	2.21	20
	П						Ш		Ш	П
Analyte		PDS Result		SP Val	SP Ret Val	PDS %REC	0	PDS Limits		

(Cont.)

Selenium

Copper

75-125

က္ထ

49.76

20

96

PG&E Gateway Generating Station Client:

06/16/2022 Date Prepared:

06/16/2022 ICP-MS2 Water Date Analyzed: Instrument: Matrix:

Sample ID: Quarterly Sampling (June 2022) Project:

2206950 247580 WorkOrder: BatchID:

E200.8 **Extraction Method:** E200.8 Analytical Method: MB/LCS/LCSD-247580 2206950-003FMS/MSD

 $\mu g/L$

Unit:

2206950-003FPDS

QC Summary Report for Metals

	•						
Analyte	PDS Result	SP Val	SP Ref Val	PDS %REC	PDS Limits		
Analyte	DLT Result		DLTRef Val		%	Q %	%D Limit
Arsenic	ND<2.5		1.164		1		1
Cadmium	ND<2.5		QN		1		
Chromium	9.4		9.457		0	0.603	
Copper	50		49.76		.0	0.482	20
Iron	23,000		22,750			1.10	20
Lead	ND<2.5		0.5901		'		
Molybdenum	43		45.28		5.	5.04	20
Nickel	16		15.91		0	0.566	20
Selenium	ND<2.5		QN		1		
Silver	ND<2.5		QN		'		
inc	890		886.2		0	0.429	20

[%]D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

Client: PG&E Gateway Generating Station

Date Prepared: 06/22/2022

Date Analyzed: 06/22/2022

Instrument: SPECTROPHOTOMETER2
Matrix: Water

Project: Quarterly Sampling (June 2022)

WorkOrder: 2206950

BatchID: 248077 **Extraction Method:** E420.1

Analytical Method: E420.1 Unit: µg/L

Unit: μg/L Sample ID: MB/LCS/LCSD-

MB/LCS/LCSD-248077 2206950-002CMS/MSD

QC Summary Report for Phenolics

RL	09
MDL	45
MB Result	QN
Analyte	Phenolics

Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD
Phenolics	190	190	200	96	96	80-120 0	20

										Ì
Analyte	MS	MS Result	MSD Result	SP Val	SP Ref Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Phenolics	_	160	160	200	ND	79,F1	82	80-120	4.44	20

PG&E Gateway Generating Station Client:

06/20/2022 Date Prepared:

06/21/2022 Date Analyzed:

WetChem Water Instrument: Matrix: Quarterly Sampling (June 2022) Project:

2206950 WorkOrder:

Extraction Method: SM2540 C-1997 247925 BatchID:

SM2540 C-1997 Analytical Method:

mg/L Unit:

MB/LCS/LCSD-247925

Sample ID:

QC Summary Report for Total Dissolved Solids

	,
RL	10.0
MDL	10.0
MB Result	QN
Analyte	Total Dissolved Solids

					ı		l
Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	C RPD
Total Dissolved Solids	1050	1040	1000	105	104	80-120 1.15	10

PG&E Gateway Generating Station 06/17/2022 Date Prepared: Client:

06/17/2022

WetChem Date Analyzed: Instrument:

Water Project:

Matrix:

Quarterly Sampling (June 2022)

2206950 WorkOrder:

247771 BatchID:

Extraction Method: SM2540 D-1997 SM2540 D-1997 Analytical Method:

mg/L Unit:

MB/LCS/LCSD-247771 Sample ID:

QC Summary Report for Total Suspended Solids

R	1.00
MDL	1.00
MB Result	QN
Analyte	Total Suspended Solids

							Ì
Analyte	LCS Result	LCSD Result	SP Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD
Total Suspended Solids	81.0	82.0	100	81	82	80-120 1.23	10

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page of 1

WorkOrder: 2206950

ClientCode: PGEA

E ulS Dry-Weight Email

HardCopy

ThirdParty

Re uested TATs:

Date Received:

Date Logged:

J-flag

CLIP ☐ WaterTrax EDF

Detection Summary

Excel

Report to: Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX: Email: abe4@pge.com

cc/3rd Party: a1he@pge.com; j5ld@pge.com; tlwy@pge.

PO:

Project: uarterly Sampling (June 2022) Bill to:

Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue

Antioch, CA 94509

06/15/2022

06/15/2022

5 days; 7 days;

									Re	uested	Tests (See leg	end bel	ow)			
Lab ID	ClientSampID	Matri	Collection Date	Hold	1	2	3		4	5	6	7	8	9	10	11	12
2206950-001	E-001	Water	6/14/2022 09:05		В	Α		1							Α	1	
2206950-002	E-001	Water	6/15/2022 10:10	1-121	В	Α	С			D			11:00	С	Α		
2206950-003	E-001	Water	6/15/2022 10:03		_		1	_7	Α		В	E	F		Α	С	D

Test Legend:

1]	1664A SG W
5	CN SM4500CE W
9	Phenolics 420 1 W

2	1664A W
6	COD W
10]	PRDisposal Fee

3	AMMONIA-SM4500BG W
7	HG W
11	TDS W

4	BOD W
8]	METALSMS TTLC W
12	TSS W

Prepared by: Adrianna Cardoza

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION Work Order: 2206950 **Project:** Quarterly Sampling (June 2022)

QC Level: LEVEL 2

Client Contact: Angel Espiritu **Comments:** Contact's Email: abe4@pge.com **Date Logged:** 6/15/2022

☐ WaterTrax ☐ WriteOn EDF ☐ Excel TE uls **Email** HardCopy ThirdParty **J**-flag LabID ClientSampID Matrix **Test Name** Containers Bottle & U** Head Dry-**Collection Date** TAT Test Due Date Sediment Hold Sub /Composites Preservative Space Weight & Time Content Out 001A E-001 Water E1664A (HEM; Oil & Grease w/o S.G. 6/14/2022 9:05 5 days 1LA w/ HCl 6/22/2022 Present П Clean-Up) E1664A (SGT- HEM; Non-polar 001B E-001 Water 1LA w/ HCl 6/14/2022 9:05 5 days 6/22/2022 Present Material) 002A E-001 Water E1664A (HEM: Oil & Grease w/o S.G. 1LA w/ HCl 6/15/2022 10:10 5 days 6/22/2022 Present Clean-Up) 002B E-001 Water E1664A (SGT- HEM; Non-polar 1LA w/ HCl 5 days 6/22/2022 6/15/2022 10:10 Present Material) 002C E-001 Water E420.1 (Phenolics) (Manual) 500mL aG w/ 6/15/2022 10:10 5 days 6/22/2022 Present H2SO4 SM4500-NH3 BG (Ammonia Nitrogen) 5 days 6/22/2022 Present 002D E-001 SM4500-CN⁻CE (Cvanide, Total) 6/15/2022 10:10 6/24/2022 Water 250mL aHDPE w/ 5 days Present NaOH 7 days SM5210B (BOD) 003A E-001 Water 1L HDPE, unprsv. 6/15/2022 10:03 6/24/2022 Present 6/22/2022 003B E-001 Water SM5220D (COD) aVOA w/ DNPH 6/15/2022 10:03 5 days Present 003C E-001 Water SM2540C (TDS) 500mL HDPE, 6/15/2022 10:03 5 days 6/22/2022 Present unprsv. 003D E-001 Water SM2540D (TSS) 6/15/2022 10:03 6/22/2022 1L HDPE, unprsv. 5 days Present

NOTES: * STLC and TCLP e tractions re uire 2 days to complete; therefore, all TATs begin after the e traction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic e tracts are held for 40 days before disposal; Inorganic e tract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not e clude any material from the sample prior to sample preparation unless re uested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to e tend hold time for analysis.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Quarterly Sampling (June 2022) **Project:**

Work Order: 2206950

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com **Comments:** **Date Logged:** 6/15/2022

	☐ Water1	Trax ☐ WriteOn ☐ EDF	Exce	el <u>E</u> ul	S	Em	nail	HardCopy	Third	IParty □J-flag	9	
LabID ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative			Dry- Weight		TAT	Test Due Date	Sediment Content	Sub Out
003E E-001	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3				6/15/2022 10:03	5 days	6/22/2022	Present	
003F E-001	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3	П			6/15/2022 10:03	5 days	6/22/2022	Present	

NOTES: * STLC and TCLP e tractions re uire 2 days to complete; therefore, all TATs begin after the e traction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic e tracts are held for 40 days before disposal; Inorganic e tract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not e clude any material from the sample prior to sample preparation unless re uested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to e tend hold time for analysis.

													_													
			PITT	WILLOV SBURG.	V PASI CA 945	8 ROAD 65-1701									CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY											
	Webs Telep	ite: <u>w</u> bone	ww.mccam :: (877) 25	pbell.com 2-9262	Ema	d: main Fa	@mcc x; (92	:amp :5) 2:	bell. 52 -9	com 9 2 69	•				GeoTracker EDF PDF Excel Write On (DW) Check if sample is effluent and "J" flag is required										e On (DW)	
Report To	: Angel Es	pirit			В	ill To:	PG&	E Ga	tew	ay	•••					Analysi	s Req	ues	t						į	Remarks
Company	PG&E G	atew	ay Genera	ting Sta	tion																-			Τ	T	
															ا خ		4 4	g G	3.6		and a					
	be4@pge.co						m, tl\	NY@)pg	e.co	m				# 5 g	(Arzenic and selenium) 8 m by reaction mode	564A) w	420	88 N (SM 4500-NH3-		chroni fer, zinc)			ı	ı	
	522-7838,					ax: ()	^							1 g g X 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	pd for	1 = 7	EPA	450		143			L	ı	
	ame: Qua				lina	<u> </u>	102	L	^				_		- Farther Pr	la per		GS.	(SM		cedmium nickel, sib , iras, and	E	l a	į	ء اء	
Project Location: Combined Site Flow Sampler Signature: Muskan Environmental Sampling									두돌호	1 P	S	office	25.5	3	90.8 10.4 10.4 10.4	521	222	9	7 3							
Sampler	iguature: I		GIU ERVIEL	Jumen (a	Sain	DimK		^								186	1 4		monia	Метсигу (245.2)	25 th	(S)	SM	1		
		Composite	SAMP	LING		E	Ma	trix	ME	тно)D P	RES	ER	ÆD	Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 C ABCE	Metals (Arser by 200.8 Selentum by r	Oil/Grense (USEP/ and with out silica	Total Phenolics (USEPA 420.4)	Аши	Мет	Metals (200.8 cadmit copper, lead, nickel, Molybdenum, irun,	BOD (SM 5210E)	COD (SM 5228D)	9	TES (SM 25,400)	_
SAMPLE ID	LOCATION / Fleid Point Name	Sample Type Co	Date	Time	Containers	Type Containers	Waste Water	Sewer Water	None	ICE	H-SO,	NaOH	HCL	HNO	-											
		Sa			非			υž	4		<u> </u>		_	1	1	ļ		Ц					_	Ļ	╄	
E-001		G	06/14/2	09:05	2	IL Amb	Х			X			X				Х					Ш		L	L	
E-001		G	06/15/27		2	IL Amb	Х			X			X	T			х									-
E-001		G	06/15/27	I	1	500ml	х		\Box	х :	x		Ť	1				Х	Х					Γ	Τ	
E-001		G			1	Amb 250-ml	Х			才	13	7	十	+	x							П	_	T	T	
E-001		c	Oblista		1	Poly 1L	Х		X	$\frac{1}{x}$	┿	+	+	┿			 	H				X	-	t	十	
			06(15(5)		,	Poly 43-ml	X				╁	-	4	+-		-	-	Н	Н				X	┾	┿	
E-001		С	06/15/22	10:03	2	VOA				_	X_		4	4	ļ				Щ			Ц		4	丰	
E-001		С	36/15/2	10:03	1	500-ml poly	Х		Х	X		\bot	\perp	\perp			ļ.,	Ц				Ц		2	-	
E-001		С	06/15/27	10:03	1	1L poly	Х		X	X														L	X	
E-001		С	06/15/2		1	250-ml Poly	Х		П	X	Т		7	X					П	X				Γ	Γ	
E-001		Ċ	06/15/2		1	250-ml poly	Х			X			2	X		Х					Х			Γ		
									П	Т														L	L	
								П	П			Т	T	Т	Á	n								Γ	Γ	
Relinquishe	d/104/:		Date:	Time:	Rece	ived By:	—			7.		<u></u>			ICE/r	LOV	VE					C	OM	MI	ENT	S:
			06/15/22	12:08			1//	£	4	21	VK,		\mathcal{V}		GOOD CO HEAD SPA											
Relinquishe			Date:	Time:	Rece	ived By:		J	//						DECHLOI APPROPR PRESERV	RINATED LATE CO	IN LAI YTAIN	_	<u>-</u> 5	-						
Relinquishe	d By:		Date:	Time:	Rece	ived By:										374	346 4	n e	C	METALS	OTUED					

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station uarterly Sampling (une 2022)			Date and Time Rec Date Logged: Received by:	eived: 6/15/2022 12:08 6/15/2022 Agustina Venegas
WorkOrder №: Carrier:	2206950 Matrix: Water Client Drop-In			Logged by:	Adrianna Cardoza
	Chain	of Custod	y (COC) I	nformation	
Chain of custody	y present?	Yes		No 🗆	
Chain of custody	y signed when relinquished and received?	Yes		No 🔲	
Chain of custody	y agrees with sample labels?	Yes		No 🗆	
Sample IDs note	ed by Client on COC?	Yes		No 🔲	
Date and Time of	of collection noted by Client on COC?	Yes		No 🔲	
Sampler's name	e noted on COC?	Yes		No 🔲	
COC agrees wit	h uote?	Yes		No 🔲	NA 🗷
	Sal	mple Rec	eipt Infor	mation	
Custody seals in	ntact on shipping container/cooler?	Yes		No 🔲	NA 🖭
Custody seals in	ntact on sample bottles?	Yes		No 🔲	NA 🔲
Shipping contain	ner/cooler in good condition?	Yes		No 🔲	
Samples in prop	per containers/bottles?	Yes		No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sampl	e volume for indicated test?	Yes	₽	No 🔲	
	Sample Preserv	ation and	l Hold Tir	me (HT) Information	
All samples rece	eived within holding time?	Yes	~	No 🔲	NA 🔲
Samples Receiv	ved on Ice?	Yes		No 🔲	
	(Ice 1	Гуре: WE		,	7.8
Sample/Temp B	slank temperature		Temp:	: 4 C	NA 🔲
	analyses: VOA meets zero headspace DCs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🗾
Sample labels c	hecked for correct preservation?	Yes		No 🔲	
pH acceptable u <2; 522: <4; 218	upon receipt (Metal: <2; Nitrate 353.2/4500NO3: 3.7: >8)?	Yes		No 🔲	NA 💽
DCMR Samples pH tested and 537.1: 6 - 8)?	:: acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🙀
Free Chlorine not applicable	tested and acceptable upon receipt (<0.1mg/L) e to 200.7 ?	Yes		No 🔲	NA 🗾

Comments:

ANALYTICAL REPORT

Eurofins Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

Laboratory Job ID: 580-114913-1 Client Project/Site: 2206950

For:

McCampbell Analytical, Inc. 1534 Willow Pass Road Pittsburg, California 94565

Attn: Sub Data

Authorized for release by: 6/27/2022 7:50:19 PM

Pauline Matlock, Project Manager

(253)922-2310

Pauline.Matlock@et.eurofinsus.com

..... LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: McCampbell Analytical, Inc. Project/Site: 2206950

Laboratory Job ID: 580-114913-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	6
Chronicle	7
Certification Summary	8
Sample Summary	9
Chain of Custody	10
Receipt Checklists	11

2

4

J

9

Case Narrative

Client: McCampbell Analytical, Inc.

Project/Site: 2206950

Job ID: 580-114913-1

Job ID: 580-114913-1

Laboratory: Eurofins Seattle

Narrative

Job Narrative 580-114913-1

Comments

No additional comments.

Receipt

The sample was received on 6/16/2022 9:45 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 6.4° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

0

Definitions/Glossary

Client: McCampbell Analytical, Inc. Job ID: 580-114913-1

Project/Site: 2206950

Qualifiers

General Chemistry

Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

9

Client Sample Results

Client: McCampbell Analytical, Inc.

Job ID: 580-114913-1

Project/Site: 2206950

Client Sample ID: E-001 Lab Sample ID: 580-114913-1

Matrix: Water

Date Collected: 06/15/22 10:10 Date Received: 06/16/22 09:45

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		0.020	0.0080	mg/L		06/17/22 16:35	06/17/22 16:35	1

8

Client: McCampbell Analytical, Inc. Job ID: 580-114913-1

Project/Site: 2206950

Method: SM 4500 CN E - Cyanide, Total

Lab Sample ID: MB 580-394222/1-A Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total/NA **Analysis Batch: 394232** Prep Batch: 394222

MB MB

Result Qualifier RL **MDL** Unit D Analyzed Dil Fac Analyte Prepared 0.020 06/17/22 16:35 06/17/22 16:35 Cyanide, Total ND 0.0080 mg/L

Lab Sample ID: LCS 580-394222/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 394222 Analysis Batch: 394232**

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits Analyte 0.200 90 - 110 Cyanide, Total 0.185 mg/L 92

Lab Sample ID: LCSD 580-394222/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 394232 Prep Batch: 394222 Spike LCSD LCSD %Rec **RPD**

Analyte Added Result Qualifier Limits RPD Unit %Rec Limit 0.200 0.194 90 - 110 Cyanide, Total mg/L

Lab Sample ID: 580-114910-A-1-B MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 394232 Prep Batch: 394222 MS MS %Rec

Spike Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits

0.200 0.145 F1 90 - 110 Cyanide, Total ND F1 mg/L 72

Lab Sample ID: 580-114910-A-1-C MSD

Matrix: Water

Analysis Batch: 394232

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Analyte Limit ND F1 0.200 90 - 110 Cyanide, Total 0.152 F1 mg/L 76 10

6/27/2022

Prep Type: Total/NA Prep Batch: 394222

5

Client Sample ID: Matrix Spike Duplicate

Lab Chronicle

Client: McCampbell Analytical, Inc.

Job ID: 580-114913-1

Project/Site: 2206950

Client Sample ID: E-001 Lab Sample ID: 580-114913-1

Matrix: Water

Date Collected: 06/15/22 10:10 Date Received: 06/16/22 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Distill/CN			394222	06/17/22 16:35	R1K	FGS SEA
Total/NA	Analysis	SM 4500 CN E		1	394232	06/17/22 16:35	R1K	FGS SEA

Laboratory References:

FGS SEA = Eurofins Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

2

4

5

7

9

Accreditation/Certification Summary

Client: McCampbell Analytical, Inc.

Job ID: 580-114913-1

Project/Site: 2206950

Laboratory: Eurofins Seattle

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
California	Sta	ate	2954	07-07-22
The following analytes the agency does not o	' '	ort, but the laboratory is i	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
SM 4500 CN E	Distill/CN	Water	Cyanide, Total	
Washington	C+	ate	C788	07-13-22

3

6

7

9

Sample Summary

Client: McCampbell Analytical, Inc. Project/Site: 2206950

Lab Sample ID Client Sample ID Matrix Collected Received 580-114913-1 06/15/22 10:10 06/16/22 09:45 E-001 Water

Job ID: 580-114913-1

Page 1 of 1

Fax: (925) 252-9269

1534 Willow Pass Rd Pittsburg, CA 94565-1701 Phone: (925) 252-9262

WorkOrder: 2206950

ClientCode: PGEA

EDF: NO

Subcontractor:

Eurofins TestAmerica 5755 8th Street East

OC Level: LEVEL 2

Project Name: Quarterly Sampling (June 2022)

Tacoma, WA 98424

TEL: (949) 333-9055

Project Number: 2206950

							Red	quested	Tests (:	see Leg	end be	low)	
MAI Lab ID	ClientSamplD	Source Name	PS Code	Matrix	Collection Date	TAT	1	2	3	4	5	6	ľ
2206950-002D	E-001			Water	6/15/2022 10:10	STD	1			······································		T	

Tes	t l	_eg	er	١d

1 SM4500-CN GE (Cyanide, Total)	2	3
4	5	6

Comments: PLEASE USE 'CLIENT ID' AS THE SAMPLE ID AND EMAIL ASAP!

STANDARD TATE CYANIDE SM4500

Please email results to at subdata@mccampbell.com upon completion.

	Date/Time		Date/Time	
Relinquished by:	6.16.22	Received by:	Celile/22 94	15
Relinquished by:		Received by:		
			/ . · · · · · · · · · · · · · · · · · ·	

Page 10 of 11

6/27/2022

Login Sample Receipt Checklist

Client: McCampbell Analytical, Inc.

Job Number: 580-114913-1

Login Number: 114913 List Source: Eurofins Seattle

List Number: 1

Creator: Vallelunga, Diana L

Creato	or: vallelunga, Diana L		
Quest	ion	Answer	Comment
Radioa meter.	activity wasn't checked or is = background as measured by a survey</td <td>N/A</td> <td></td>	N/A	
The co	poler's custody seal, if present, is intact.	True	
Sampl	e custody seals, if present, are intact.	True	
	poler or samples do not appear to have been compromised or red with.	N/A	
Sampl	es were received on ice.	True	
Cooler	Temperature is acceptable.	True	
Cooler	Temperature is recorded.	True	
COC is	s present.	True	
COC is	s filled out in ink and legible.	True	
COC is	s filled out with all pertinent information.	True	
Is the	Field Sampler's name present on COC?	True	
There	are no discrepancies between the containers received and the COC.	True	
Sampl HTs)	es are received within Holding Time (excluding tests with immediate	True	
Sampl	e containers have legible labels.	True	
Contai	ners are not broken or leaking.	True	
Sampl	e collection date/times are provided.	True	
Approp	oriate sample containers are used.	True	
Sampl	e bottles are completely filled.	True	
Sampl	e Preservation Verified.	True	
There MS/MS	is sufficient vol. for all requested analyses, incl. any requested SDs	True	
Contai <6mm	ners requiring zero headspace have no headspace or bubble is (1/4").	True	
Multipl	nasic samples are not present.	True	
Sampl	es do not require splitting or compositing.	True	
Residu	ual Chlorine Checked.	True	

3

4

6

8

9

10

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2206A62

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Sanjiv Gill

Project P.O.:

Project: pH Sampling (June 2022)

Project Received: 06/15/2022

Analytical Report reviewed & approved for release on 06/22/2022 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2206A62

Project: pH Sampling (June 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 m filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

L L Laboratory Control Sample
L L Lowest uantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of uantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TE Toxicity Equivalents

T A Time one Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 06/15/2022 12:08

Date Prepared: 06/14/2022

Project: pH Sampling (June 2022)

WorkOrder: 2206A62

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

рH

	<u> </u>			
Client ID	Lab ID Matrix	Date Collected	Instrument	Batch ID
E-001	2206A62-001A Water	06/14/2022 09:03	WetChem	248095
Analytes	Result	Accuracy DF		Date Analyzed
pH	8.96	0.05 1		06/14/2022 09:03

Analyst(s): JRA

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared: 06/14/2022

Date Analyzed: 06/14/2022 **Instrument:** WetChem **Matrix:** Water

Project: pH Sampling (June 2022)

WorkOrder: 2206A62 **BatchID:** 248095

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

Sample ID: CCV-248095

QC Summary Report for pH					
Analyte	CCV Result	CCV Limits			
рН	7.00	6.9-7.1			

McCampbell Analytical, Inc. **CHAIN-OF-CUSTODY RECORD** 1534 Willow Pass Rd Pittsburg, CA 94565-1701 WorkOrder: 2206A62 ClientCode: PGEA (925) 252-9262 WaterTrax CLIP EDF E ulS Dry-Weight Email HardCopy ThirdParty Detection Summary Excel Report to: Bill to: Re uested TAT: Email: Sanjiv Gill sanjivgill@comcast.net Angel Espiritu cc/3rd Party: PG&E Gateway Generating Station PG&E Gateway Generating Station Date Received: PO: 3225 Wilbur Avenue 3225 Wilbur Avenue Antioch, CA 94509 Project: pH Sampling (June 2022) Antioch, CA 94509 Date Logged: (925) 459-7212 FAX:

-		Re uested Tests (See legend below)										-	7 -			
Lab ID	ClientSampID	Matri	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2206A62-001	E-001	Water	6/14/2022 09:03		Α	Α		1 =			1 =					. =

Test Legend	gend
-------------	------

1 PH W SAN IV	PRDisposal Fee] 3]	4	
5	6	7	8	
9	10	[11]	12	

Prepared by: Adrianna Cardoza

J-flag

06/15/2022

06/15/2022

5 days;

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION **Project:** pH Sampling (June 2022) Work Order: 2206A62

Client Contact: Sanjiv Gill

QC Level: LEVEL 2

Contact's Email: sanjivgill@comcast.net

Comments:

Date Logged: 6/15/2022

		☐ Water	Γrax ☐ WriteOn	EDF	Exce	■E ul	S	Ema	ail	∏HardCopy	Third	IParty □J-flag]	
LabID	ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	U** He Sp		Dry- Veight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold Sub Out
001A	E-001	Water	SM4500H+B (Field pH)		1	<not received=""></not>		I)		6/14/2022 9:03	5 days	6/22/2022		

NOTES: * STLC and TCLP e tractions re uire 2 days to complete; therefore, all TATs begin after the e traction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic e tracts are held for 40 days before disposal; Inorganic e tract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not e clude any material from the sample prior to sample preparation unless re uested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to e tend hold time for analysis.

Compan Tel: (40 Project	Web	elte: y phon Gill Gate	PTT VWW.RECER e: (877) 2: way Gene ii) npling (WHLO TSBURG, appelled 52-9262 rating S	E TE	SS ROAL IS65-1701 Sall: mai Pall: To: 1 A I-Mail: (2.0 2	m@mo nz: (9 Musk	25) 2	pbel 252	Lco -92	59 mer			7	1					DU	ND DF	T	IMI]	E PD Ch	F	RUS	E:	24 KCE	HR		48 I Wri		
	Signature						r/ha		> ₆ ,	×P	Kg	/ •			1																		
		sodui(SAMP:	LING		g	Ma	irix	ME	STH(OD I	PRE	SER	VE	<u>'</u>																		
SAMPLE ID	LOCATION / Field Point Name	Sample Type Col	Date	Time	# Containers	Type Centriners	Waste Water	Sewer Water	None	ICE	H-SO.	NaOH	HCL	HNO.	Zec Acetate	8 8																	
E-001		G	<i>06/14/21</i>	09:03	NA	NA	Х		X						7	K																Grab Time: 09:03 Analysis Time: 09:0	4
											I				I																	Temperature: /4.5° pH: 8.96	C
									Ц	\perp	\perp	_	\perp	\perp	$oldsymbol{\perp}$	1	\downarrow	_		_							_	_	L	_	Ц		
						-			dash	+	+	+	+	+	╀	+	+	\dashv	+	-	\dashv	-		_			_	-	-	_	Н		
						-			H	十	\dagger	十	+	+	+	\dagger	+	\dashv	+	\dashv	1	-					-	\vdash			H		
										I	I		工	I	I	1																	
									\dashv	+	+	+	4	+	4	+	4		\dashv			\dashv	_					_	-		Н		
							-		\vdash	十	十	+	+	+	╁	+	\dashv	\dashv	\dashv	\dashv	\dashv	ᅱ						-	-	-	Н		
							2		H	T	T	\dagger	\dagger	+	†	†	1		+	1	7										H		
									X	$oxed{T}$	I		Ι		T				\mathbf{n}	,													
Relinquisi	2		Date: 06/15/2:	There:		tved Bfr.	Y.	4	N	A	~	٠,				JEC JEC JEA	DSI BLC 101	PAC	ia s tai tai	ED I CON	n ij Ital	IB_			_					CON	ANGE	NTS:	
Relinquisi	led By:		Dates	Timet	Rece	ived Ry:												VAI		VQ	AS	08	:G	ME pH-		s (OTE	ER					

Logbook for Field pH Samples

Date/Time	Sample ID	Matrix	1 st Re	eading	2 nd R	eading	Ave	Standard	Comments	Analyst
Date/Time	Sample 1D	IVIALITA	pН	Temp.°c	pН	Temp.°c	pН	(lot # / exp. Date)	Comments	Analyst
86/14/22/08:25	Cal. pH # 7.00	L	7.00	19.1	7.00	19- [7.00	bulk		-
06/14/22/08:25	Cal pH # 4-00	L	4.00	19-1	4.00	19.1	4-00	bulk		
06/14/22/08:25	Cal. pH # /0.00	L	10.00	19.1	10.00	19.1	10.00	L/K		
						M	Ner	Myson	Campa	24
							Hra	Moter II		
							(cria)	# 6223	-066	
							PH	on COC o	6/14/22	
							1	00 1	- 1	
							N	Phal	halen	197

Client Supplied pH Data

Client Name: PG&E Gateway Generating Station

WorkOrder №: 2206A62

Project: pH Sampling (une 2022)

 SampID
 ClientSampID
 pH

 2206A62-001A
 E-001
 8.96 analyzed: 6/14/2022 9:04:00 AM

Sample Receipt Checklist

Client Name: Project:	PG&E Gateway Generating Station pH Sampling (une 2022)			Date and Time Receiv Date Logged: Received by:	red: 6/15/2022 12:08 6/15/2022 Adrianna Cardoza
WorkOrder №: Carrier:	2206A62 Matrix: -Water -Client Drop-In			Logged by:	Adrianna Cardoza
	Chain	f Custod	y (COC) Ir	nformation	
Chain of custod	y present?	Yes		No 🗆	
Chain of custod	y signed when relinquished and received?	Yes		No 🗆	
Chain of custod	y agrees with sample labels?	Yes		№ □	
Sample IDs note	ed by Client on COC?	Yes		№ □	
Date and Time	of collection noted by Client on COC?	Yes		No 🗆	
Sampler's name	e noted on COC?	Yes		№ □	
COC agrees wit	h uote?	Yes		№ □	NA 🗷
	Sar	nple Rec	eipt Inforr	nation	
Custody seals in	ntact on shipping container/cooler?	Yes		No 🔲	NA 🗹
Custody seals in	ntact on sample bottles?	Yes		No 🔲	NA 🔲
Shipping contain	ner/cooler in good condition?	Yes		No 🔲	
Samples in prop	per containers/bottles?	Yes	•	No 🔲	
Sample contain	ers intact?	Yes		No 🔲	
Sufficient sample	le volume for indicated test?	Yes	•	No 🔲	
	Sample Preserv	ation and	Hold Tim	ne (HT) Information	
All samples rece	eived within holding time?	Yes	, Top	No 🗃	NA 🔲
Samples Receiv	ved on Ice?	Yes		No 🔲	
	(Ice T	ype: WE	TICE)		
Sample/Temp B	Blank temperature		Temp:	4 C	NA 🔲
	l analyses: VOA meets zero headspace DCs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🗾
Sample labels c	checked for correct preservation?	Yes		No 🔲	
pH acceptable u<2; 522: <4; 218	upon receipt (Metal: <2; Nitrate 353.2/4500NO3: 3.7: >8)?	Yes		No 🔲	NA 🗾
UCMR Samples	s:				
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🗾
Free Chlorine	tested and acceptable upon receipt (<0.1mg/L)	Yes		No 🔲	NA 🗾

Comments: Method SM4500H+B (pH) was received past its 0.01-day holding time. Method SM4500H+B (Field pH) was received past its 0.25-day holding time.

Attachment 9 Annual Flowmeter Calibration

Gateway Generating Station			
Annual Flowmeter Accuracy Test	1	1/11	11
Name and Signature of Tester:	(esar	Valder	Cill
Date of Test:	6-	23-2022	

Follow the testing procedure (per manufacturer's -YokogawaCorporation of America's recomemdation) below.

Flowmeter ID	Coil Resis	tance Check	Flow Tube Resistance Check						
	Reading (ohm/s)	Within +/- 10% (Y/N)?	Electrode A Reading (ohm/s)	Electrode A Reading (ohm/s)	Within 20% Difference (Y/N)?				
Industrial Wastewater Flowmeter Tag No. 8WWC-FM-X001 Model No. Yokogawa AXF-100C Coil Resistance Value: 113.4 ohms	117.2	yes	1821	1921	yes				
Sanitary Wastewater Flowmeter Tag No. 8WWB-FM-X001 Model No. Yokogawa AXF 650C Coil Resistance Value: 116.8 ohms	113.8	yes	891	971	yes				

Procedure for testing AXF integral flowtubes

- 1. Remove power from the flow meter. Remove the display side cover from the meter electronics housing.
- 2. Remove three retaining screws with a Phillips head screwdriver used to hold the amplifier assembly in place.
- 3. Remove the white plastic connector (CN5) attached to the left side of the amplifier assembly. The connector has 3 wires (red, white & blue). Remove the white plastic connector (CN3) attached to the right side of the amplifier assembly. The connector has 2 wires (purple & yellow).
- Remove the amplifier assembly and store it in a safe place.

Checking the coil circuits

- 5. Locate 2 wire connector (CN3). Measure the excitation coil resistance between the yellow wire and purple wire of connector CN3. The measured resistance should correspond to the resistance value shown above in table 2 within +/- 10%.
- Confirm that there is more than 20 MOHMS resistance between each wire to the meter electronics housing. If leakage is detected consult Yokogawa at 800-524-SERV.

Checking the flow tube when filled with conductive liquid

- 7. Make certain that the meter flow tube is full of liquid with greater than one micro-siemen conductivity.
- 8. Locate connector CN5 (3 wire connector). Measure the resistance between the red wire (A) and the blue wire (C) of CN5. Record the value.
- 9. Measure the resistance between the white wire (B) and the blue wire (C) of CN5. Record the value.
- 10. Compare resistance readings obtained in steps 8 and 9 above. If the readings are less than 20% apart the meter flow tube is not suspect. Proceed to the reassembly instructions (step
- 13). If readings are greater than 20% apart proceed to step 11.

Checking the flow tube when empty and dry

- 11. Drain the meter flow tube of all conductive liquid. Measure the resistance between each electrode in the meter flow tube to CN5 red (A) or white (B). The resistance will be less than 3 Ohms for general purpose meters or 150 K ohms for FM approved meters.
- 12. Repeat steps 8 and 9 above. The resistance should be infinite. Any leakage measured maybe due to buildup of conductive material between the electrode and the meter tube. Clean
- 13. Replace the amplifier assembly and meter electronics housing cover.

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

October 10, 2022

Mr. Jason Yun
Delta Diablo Sanitation District (DD)
2500 Pittsburg-Antioch Hwy.
Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report

(For Period Ending September 30, 2022)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending September 30, 2022, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, Monthly Flow, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisolem

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in September 30, 2022

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration Attachment 8: Laboratory Results

Attachment 1 Certification Statement

Certification Statement

Name of Business: PG&E Gateway Generating Station

Address: 3225 Wilbur Avenue, Antioch, CA. 94509

Phone: 925-522-7805

Period Covered: Period ending: September 30, 2022

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: Tim Wisolom Date: Oct, 10, 2022

Print Name: Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Jason Yun	Pretreatment
Fax # (925)756-1961	Phone: (925)756-1929
From: Tim Wisdom	
Company: Pacific Gas and Electric Comp	pany – Gateway Generating Station
Period Covered: Period ending September	
Industrial User Checklist for self –monitor	oring reports, as specified by the wastewater
discharge permit issued by Delta Diablo	
<i>3</i> 1	
Self-monitoring reports	
Flow discharge summary (Discharge	ge Permit Section E.1.h.) (See Attachment 4)
Calibration of flow meters, as requi	
$\sqrt{}$ Monitoring results- All required tes	sts completed, results reviewed, results
	y (section F.7.) (See Attachment 8)
√ Certification statement included (Se	
<u> </u>	,
Violations (if applicable)	
· ·	
	ce are reported during this reporting period
Delta Diablo was contacted. (See A	Additional Notes below)
A follow-up report on characterizat	
Corrective actions to resolve violati	ion:
Other violations - i.e. Reporting, sp	ills to sewer, or prohibited discharges
Allicianal Nation	
Additional Notes: None	
None	
Significant changes	
Significant changes	
Anticipated changes that may alter the na	ature, quality, or volume of the wastewater

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME: PG&E Gateway Generating Station ID #: 0208841-C SIC: <u>4911</u>

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

DATE	8/30/2022	8/31/2022	8/31/2022	8/31/2022			
TYPE	G	G	C24	G	4		
STATION	E-001	E-001	E-001	E-001			
SMP.BY	Muskan	Muskan	Muskan	Muskan			
	Compliance	Compliance	Compliance	Compliance Semi-			
PURPOSE	Quarterly (Q3)	Quarterly (Q3)	Quarterly (Q3)	annually (SA2)			

Units: mg/L

PARAMETERS	LIMITS	-							
FLOW, DAILY (gal)	51,120						\Box		
FLOW, MONTH (gal)			1	11					1
рН	6-10 s.u.	8.4		1					
BOD				4.4					
COD				44.0			1		1
TDS			11-	674.0		1	1		
TSS				3.2					
Arsenic	0.15		h 1	0.00098		1			
Cadmium	0.1			ND(<0.0005)		1			
Chromium	0.5			0.00061					
Copper	0.5			0.0098		1	1		
Iron				0.31					
Lead	0.5			ND(<0.0005)		ì			
Mercury	0.003			ND(<0.0002)					
Molybdenum				0.025			T		
Nickel	0.5		7.1	0.0021					
Selenium	0.25		1 - 3	ND(<0.0005)		i			
Silver	0.2		4	ND(<0.0005)					
Zinc	1.00		I Ç	0.270					
Cyanide	0.2	1 1	0.0019						
Phenol	1.00		0.0021			1		٦	
Ammonia	200		44						
O&G Petro/Min (E1664A w/ Silica)	100	6.8	ND (<4.7)						
O&G Animal/Vegetable Oil	300	0	ND (<4.7)	J - 3		1			
TTO EPA 608			J C		ND(<0.0004)				
TTO EPA 624			1		0.001092				
TTO EPA 625					0.003123				
TTO	2.00				0.004215				
Sulfide	. 10		JP	102					
Sulfate									

Comments: ND = Non-Detect, NSD = No Structures Detected, MFL = Millions of Fibers per Liter

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

July 2022-September 2022

	Industrial Flow			Sanitary Flow					
			Did it ever			_	Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM	go over 35.5 GPM	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality	go over 35.5 GPM	Daily Total (Gallons)	Site Total (Gallons)
		(minutes)	for 15 mins?	(000)		(minutes)	for 15 mins?	(Gaileris)	(000)
7/1/2022	34.8	0.0	NO	32,518	0.0	0	NO		32,518
7/2/2022	35.0	0.0	NO	27,315	0.0	0	NO		27,315
7/3/2022	34.8	0.0	NO	13,355	0.0	0	NO		13,355
7/4/2022	34.8	0.0	NO	15,190	0.0	0	NO		15,190
7/5/2022	34.7	0.0	NO	29,201	26.9	0	NO	348	29,549
7/6/2022	34.9	0.0	NO	43,519	0.0	0	NO		43,519
7/7/2022	35.0	0.0	NO	35,943	0.0	0	NO		35,943
7/8/2022	34.8	1.0	NO	44,348	27.1	2	NO	360	44,708
7/9/2022	34.7	0.0	NO	22,041	0.0	0	NO		22,041
7/10/2022	34.9	0.0	NO	37,525	0.0	0	NO		37,525
7/11/2022 7/12/2022	34.9 34.6	0.0	NO NO	37,272	0.0 27.1	0	NO NO	252	37,272 28,564
7/13/2022	35.0	0.0	NO	28,212 24,421	0.0	0	NO	352	24,421
7/14/2022	34.8	0.0	NO	33,160	26.5	0	NO	346	33,506
7/15/2022	34.8	0.0	NO	39,259	0.1	0	NO	340	39,259
7/16/2022	34.5	0.0	NO	45,157	0.0	0	NO		45,157
7/17/2022	34.6	0.0	NO	47,225	27.8	0	NO	330	47,554
7/18/2022	34.7	0.0	NO	44,008	0.0	0	NO		44,008
7/19/2022	34.7	0.0	NO	39,513	0.0	0	NO		39,513
7/20/2022	34.6	0.0	NO	44,416	26.8	0	NO	359	44,774
7/21/2022	34.5	0.0	NO	42,012	0.0	0	NO		42,012
7/22/2022	34.5	0.0	NO	48,224	26.5	0	NO	349	48,573
7/23/2022	34.5	0.0	NO	43,877	0.0	0	NO		43,877
7/24/2022	34.7	0.0	NO	49,026	0.0	0	NO		49,026
7/25/2022	34.4	0.0	NO	34,518	27.1	0	NO	356	34,874
7/26/2022	34.7	0.0	NO	35,241	0.0	0	NO	0.47	35,241
7/27/2022	34.4 34.5	0.0	NO NO	48,644	25.6	0	NO NO	347	48,991
7/28/2022 7/29/2022	34.5	0.0	NO	39,264 38,395	0.0 26.1	0	NO	358	39,264 38,753
7/30/2022	34.6	0.0	NO	14,233	0.0	0	NO	336	14,233
7/31/2022	34.7	0.0	NO	20,388	0.0	0	NO		20,388
170172022	04.7	0.0	140	20,000	0.0	_	aily Flow (Lir	nit· 51 120)·	49,026
								onthly Total:	1,100,925
8/1/2022	34.9	0.0	NO	36,960	25.9	0	NO	347	37,307
8/2/2022	34.9	0.0	NO	28,894	0.0	0	NO		28,894
8/3/2022		0.0	NO	27,590	26.8	0	NO	343	27,934
8/4/2022		0.0		43,118	0.0	0	NO		43,118
8/5/2022		0.0	NO	48,640	26.2	0	NO	346	48,985
8/6/2022		0.0	NO	45,989	0.0	0	NO		45,989
8/7/2022		0.0	NO	39,828	0.0	0	NO		39,828
8/8/2022		1.0		46,952	0.0	2	NO		46,952
8/9/2022		0.0		46,958	25.8		NO	355	47,313
8/10/2022		0.0	NO NO	36,101	27.5	0	NO NO	355	36,457
8/11/2022 8/12/2022		0.0		36,486	0.0 28.1	0	NO NO	261	36,486 21,773
8/12/2022		0.0	NO	21,413 35,770	0.0	0	NO	361	35,770
8/13/2022		0.0	NO	45,064	0.0	0	NO		45,064
8/15/2022		0.0		26,428	0.0		NO		26,428
8/16/2022		0.0		28,771	27.0	0	NO	363	29,135
8/17/2022		0.0	NO	43,971	0.0	0	NO		43,971
8/18/2022	35.0	0.0		30 683	26.2	0	NO	348	31,031
8/19/2022		0.0		30,692	0.0				30,692

PG&E Gateway Generating Station

Discharge Flow Data

July 2022-September 2022

	Industrial Flow			Sanitary Flow					
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	Did it ever go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
8/20/2022	34.8	0.0	NO	32,650	0.0	0	NO		32,650
8/21/2022	34.5	0.0	NO	45,827	0.0	0	NO		45,827
8/22/2022	34.4	0.0	NO	48,423	27.8	0	NO	372	48,795
8/23/2022	34.8	0.0	NO	27,421	0.0	0	NO		27,421
8/24/2022	34.7	0.0	NO	39,497	27.2	0	NO	349	39,846
8/25/2022	35.2	0.0	NO	36,141	27.7	0	NO	363	36,505
8/26/2022	34.7	0.0	NO	47,131	0.0	0	NO		47,131
8/27/2022	34.8	10.0	NO	43,259	0.0	10	NO		43,259
8/28/2022	34.5	0.0	NO	45,504	0.0	0	NO		45,504
8/29/2022	34.5	0.0	NO	25,654	28.7	0	NO	369	26,022
8/30/2022	34.4	0.0	NO	28,703	24.7	0	NO	234	28,937
8/31/2022	34.5	0.0	NO	49,024	0.0	0	NO		49,024
						Max D	aily Flow (Lii	mit: 51,120):	49,024
							M	onthly Total:	1,174,046
9/1/2022	34.5	0.0	NO	40,577	28.0	0	NO	376	40,953
9/2/2022	34.9	0.0	NO	22,580	0.0	0	NO		22,580
9/3/2022	35.1	0.0	NO	27,834	0.0	0	NO		27,834
9/4/2022	34.9	0.0	NO	42,602	25.9	0	NO	365	42,967
9/5/2022	34.9	0.0	NO	32,673	0.1	0	NO		32,673
9/6/2022	34.8	0.0	NO	33,342	0.0	0	NO		33,342
9/7/2022	34.7	0.0	NO	43,980	28.4	0	NO	393	44,373
9/8/2022	34.5	1.0	NO	46,541	28.4	2	NO	780	47,321
9/9/2022	34.8	0.0	NO	35,974	0.0	0	NO		35,974
9/10/2022	35.0	0.0	NO	36,306	0.0	0	NO		36,306
9/11/2022	34.5	0.0	NO	46,980	26.8	0	NO	378	47,358
9/12/2022	34.8	0.0	NO	47,820	0.1	0	NO		47,820
9/13/2022	34.6	0.0	NO	44,712	26.4	0	NO	370	45,082
9/14/2022	34.6	0.0	NO	20,686	0.1	0	NO		20,686
9/15/2022	34.8	0.0	NO	6,549	25.3	0	NO	350	6,899
9/16/2022	34.8	0.0	NO	14,350	0.0	0	NO		14,350
9/17/2022	34.9	0.0	NO	23,348	0.0	0	NO		23,348
9/18/2022	34.7	0.0	NO	39,466	0.0	0	NO		39,466
9/19/2022	34.6			22,540	0.0		NO		22,540
9/20/2022	34.7	0.0	NO	14,453	0.0		NO		14,453
9/21/2022	34.7	0.0	NO	14,743	27.8	0	NO	656	15,400
9/22/2022	34.6	0.0	NO	22,641	27.7	0	NO	393	23,034
9/23/2022	34.8	0.0	NO	22,420	0.0	0	NO		22,420
9/24/2022	35.0	0.0	NO	24,158	0.0		NO		24,158
9/25/2022	35.0	0.0	NO	28,548	0.1	0	NO		28,548
9/26/2022	34.7	0.0	NO	26,066	27.3		NO	396	26,462
9/27/2022	34.7	0.0	NO	25,624	0.0		NO		25,624
9/28/2022	34.8	0.0	NO	29,327	28.2	0	NO	392	29,718
9/29/2022	34.7	0.0	NO	23,203	0.0		NO		23,203
9/30/2022	34.5	0.0	NO	19,144	0.0		NO	mit: 51 120):	19,144 47,820

Max Daily Flow (Limit: 51,120): 47,820

Monthly Total: 884,037

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2022**

Month	Flow (gallons)	Due Date
January		
February		
March		
April		
May		
June		
July	1,100,925	10/15/2022
August	1,174,046	10/15/2022
September	884,037	10/15/2022
October		
November		
December		

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report July 2022 to September 2022

	WSAC Operation					
Month	Hours of Operation					
January-22						
February-22						
March-22						
April-22						
May-22						
June-22						
July-22	337.92					
August-22	389.17					
September-22	380.75					
October-22						
November-22						
December-22						

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report July 2022 to September 2022

	WSAC Operation					
Month	Average Daily Blowdown Cycles					
January-22						
February-22						
March-22						
April-22						
May-22						
June-22						
July-22	2.12					
August-22	2.83					
September-22	2.75					
October-22						
November-22						
December-22						

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2208M31

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (August 2022)

Project Received: 08/31/2022

Analytical Report reviewed & approved for release on 09/09/2022 by:

Susan Thompson Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2208M31

Project: Quarterly Sampling (August 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/06/2022

Project: Quarterly Sampling (August 2022) WorkOrder:

2208M31

Extraction Method: E1664A_SG

Analytical Method: E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID Matrix	Date Collecte	d Instrument	Batch ID
E-001 Grab	2208M31-001A Water	08/30/2022 08:4	17 O&G	253387
_Analytes	Result	RL I	DE.	Date Analyzed
SGT-HEM	6.8	5.0		09/07/2022 16:00

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001 Grab	2208M31-002A	Water	08/31/2022	10:35	O&G	253387
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
SGT-HEM	ND		4.7	1		09/07/2022 16:05

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/01/2022

Project: Quarterly Sampling (August 2022) WorkOrder: 2208M31

Extraction Method: E1664A

Analytical Method: E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 Grab	2208M31-001B	Water	08/30/202	2 08:47	O&G	253117
Analytes	Result		RL	DE		Date Analyzed
HEM	6.1		5.0	1		09/02/2022 14:40

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001 Grab	2208M31-002B	Water	08/31/2022	10:35	O&G	253117
Analytes	Result		<u>RL</u>	DF		Date Analyzed
HEM	ND		4.7	1		09/02/2022 14:45

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22 **Date Prepared:** 09/01/2022

Project: Quarterly Sampling (August 2022)

WorkOrder: 2208M31

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Ammonia as N

Client ID	Lab ID Matrix	Date Collected	Instrument Batch ID
E-001 Grab	2208M31-002C Water	08/31/2022 10:35	WC_SKALAR 2209091A1_62 253123
_Analytes	Result	RL DE	Date Analyzed
Ammonia, total as N	44	1.0 10	09/01/2022 11:58

Analyst(s): CC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/01/2022

Project: Quarterly Sampling (August 2022)

WorkOrder:

2208M31

Extraction Method: SM5210B

Analytical Method: SM5210 B

Unit:

mg/L

Biochemical Oxygen Demand (BOD)

Client ID	Lab ID M	Aatrix	Date Coll	ected	Instrument	Batch ID
E-001 Comp	2208M31-003A V	Vater	08/31/2022	10:20	WetChem	253119
_Analytes	Result		RL	DE		Date Analyzed
BOD	4.4		4.1	1.02		09/06/2022 13:38

Analyst(s): MGO

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/01/2022

Project: Quarterly Sampling (August 2022)

WorkOrder: 2208M31

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: $\mu g/L$

Cyanide, Total

Client ID	Lab ID Matrix	Date Collected	Instrument Batch ID
E-001 Grab	2208M31-002D Water	08/31/2022 10:35	WC_Skalar3 TCN220901A1_5 253173
_Analytes	Result	RL DE	Date Analyzed
Total Cyanide	1.9	1.0 1	09/01/2022 13:47

Analyst(s): CC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/07/2022

Project: Quarterly Sampling (August 2022)

WorkOrder: 2208M31

Extraction Method: SM5220 D-1997 **Analytical Method:** SM5220 D-1997

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID Ma	atrix	Date Col	lected	Instrument	Batch ID
E-001 Comp	2208M31-003B Wa	ater	08/31/2022	2 10:20	SPECTROPHOTOMETER2	253401
_Analytes	Result		RL	DE	Date	e Analyzed
COD	44		10	1	09/0	7/2022 10:38

Analyst(s): RB

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/01/2022

Project: Quarterly Sampling (August 2022)

WorkOrder: 2208M31

Extraction Method: E245.2

Analytical Method: E245.2

Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption

Client ID	Lab ID Matri	x Date Col	llected	Instrument	Batch ID
E-001 Comp	2208M31-003E Water	08/31/202	2 10:20	AA1 _07	253118
_Analytes	Result	RL	DE		Date Analyzed
Mercury	ND	0.20	1		09/01/2022 14:59

Analyst(s): DMA

Analytical Report

Metals

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 08/31/2022

Client ID

E-001 Comp

Analytes Arsenic

Cadmium

Project: Quarterly Sampling (August 2022)

WorkOrder: 2208M31

Extraction Method: E200.8

Analytical Method: E200.8

Unit: $\mu g/L$

Matrix	Date Collected		Instrument	Batch ID	
Water	08/31/2022 10:20		08/31/2022 10:20 ICP-MS2 023SMPL.D		252936
	RL	DE		Date Analyzed	
	0.50	1		09/01/2022 22:01	
	0.50	1		09/01/2022 22:01	
	0.50	1		09/01/2022 22:01	
	1.5	1		09/01/2022 22:01	
	50	1		09/01/2022 22:01	

Chromium	0.61	0.50	1	09/01/2022 22:01
Copper	9.8	1.5	1	09/01/2022 22:01
Iron	310	50	1	09/01/2022 22:01
Lead	ND	0.50	1	09/01/2022 22:01
Molybdenum	25	0.50	1	09/01/2022 22:01
Nickel	2.1	0.50	1	09/01/2022 22:01
Selenium	ND	0.50	1	09/01/2022 22:01
Silver	ND	0.50	1	09/01/2022 22:01
Zinc	270	20	1	09/01/2022 22:01

 Surrogates
 REC (%)
 Limits

 Terbium
 106
 70-130

Lab ID

Result

ND

0.98

2208M31-003F

Analyst(s): MIG

09/01/2022 22:01

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/02/2022

Project: Quarterly Sampling (August 2022)

WorkOrder: 2208M31

Extraction Method: E420.4

Analytical Method: E420.4

Unit: $\mu g/L$

Phenolics

Client ID	Lab ID	Matrix	Date Col	llected	Instrument	Batch ID
E-001 Grab	2208M31-002C	Water	08/31/202	2 10:35	WC_SKALAR 090222a1_30	253255
Analytes	Result		RL	DE	Date	Analyzed
Phenolics	2.1		2.0	1	09/02	2/2022 12:37

Analyst(s): RB

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/01/2022

Project: Quarterly Sampling (August 2022)

WorkOrder: 2208M31

Extraction Method: SM2540 C-1997 **Analytical Method:** SM2540 C-1997

Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID Matrix	Date Collected	Instrument	Batch ID
E-001 Comp	2208M31-003C Water	08/31/2022 10:20	WetChem	253202
_Analytes	Result	RL DE		Date Analyzed
Total Dissolved Solids	674	10.0 1		09/02/2022 12:25

Analyst(s): MGO

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/02/2022

Project: Quarterly Sampling (August 2022) WorkOrder: 2208M31

Extraction Method: SM2540 D-1997

Analytical Method: SM2540 D-1997

Unit: mg/L

Total Suspended Solids

Client ID	Lab ID Matrix	Date Collected	Instrument	Batch ID
E-001 Comp	2208M31-003D Water	08/31/2022 10:20	WetChem	253121
_Analytes	Result	RL DE		Date Analyzed
Total Suspended Solids	3.20	1.00 1		09/02/2022 12:00

Analyst(s): JRA

PG&E Gateway Generating Station Client:

09/07/2022 Date Prepared:

Date Analyzed: 09/07/2022

Water 0&GInstrument: Matrix:

Quarterly Sampling (August 2022) Project:

2208M31 WorkOrder:

253387 BatchID:

Extraction Method: E1664A_SG Analytical Method: E1664A

mg/L Unit:

MB/LCS/LCSD-253387 Sample ID:

rt for E1664A	MDL RL	0.72 5.0
QC Summary Report for E1664A	MB Result	ND
	Analyte	SGT-HEM

				ı	ı		I
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD
SGT-HEM	8.9	8.5	10.42	98	82	64-132 4.61	30

PG&E Gateway Generating Station Client:

09/01/2022 Date Prepared:

09/01/2022 Date Analyzed:

Water 0&GInstrument: Matrix: Quarterly Sampling (August 2022) Project:

2208M31 WorkOrder:

253117 BatchID:

E1664A **Extraction Method:** E1664A Analytical Method:

Unit:

MB/LCS/LCSD-253117 Sample ID:

QC Summary Report for E1664A

RL	5.0
MDL	1.3
MB Result	Q.V
Analyte	HEM

							ı	١
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
HEM	18	18	20.83	85	87	78-114	2.86	30

PG&E Gateway Generating Station 09/01/2022 Date Prepared: Client:

WC_SKALAR 09/01/2022 Date Analyzed: Instrument:

Quarterly Sampling (August 2022) Project:

Water

Matrix:

2208M31 WorkOrder:

253123 BatchID:

Extraction Method: SM4500-NH3 BG SM4500-NH3 BG Analytical Method:

Unit:

MB/LCS/LCSD-253123 Sample ID:

QC Summary Report for SM4500-NH3

R	0.10
MDL	960.0
MB Result	CZ
Analyte	Ammonia, total as N

				ı	ı		ı	١
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD F Limits	RPD	RPD
Ammonia, total as N	4.0	4.4	4	100	109	88-113	9.22	20

PG&E Gateway Generating Station Client:

09/01/2022 Date Prepared:

09/06/2022 WetChem Date Analyzed: Instrument:

Quarterly Sampling (August 2022) Water Project: Matrix:

2208M31 WorkOrder:

Extraction Method: SM5210B 253119 BatchID:

SM5210 B Analytical Method:

mg/L Unit:

MB/LCS/LCSD-253119 Sample ID:

Analyte QC Sum NB Result OD ND	OC Summary Report for BOD MB Result ND 4.0 4.0	SOD RL
--------------------------------	---	--------

RPD	16
RPD	5.87
LCS/LCSD Limits	80-120
LCSD %REC	96
LCS %REC	102
SPK Val	198
LCSD Result	190
LCS Result	200
alyte	
₹	M

PG&E Gateway Generating Station Client:

09/01/2022 Date Prepared:

WC_Skalar3 09/01/2022 Date Analyzed: Instrument:

Water Matrix:

Quarterly Sampling (August 2022) Project:

2208M31 WorkOrder:

253173 BatchID:

SM4500-CN⁻ CE Extraction Method: SM4500-CN⁻ E Analytical Method:

 $\mu g/L$ Unit:

MB/LCS/LCSD-253173 Sample ID:

QC Summary Report for SM4500-CN CE

	Ĺ
RL	1.0
MDL	0.59
MB Result	ND
Analyte	Total Cyanide

					ı		1
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD Limit
Total Cyanide	51	50	20	102	100	90-110 2.03	20

PG&E Gateway Generating Station Client:

09/07/2022 Date Prepared:

09/07/2022 Date Analyzed:

SPECTROPHOTOMETER2 Water **Instrument:** Matrix:

Quarterly Sampling (August 2022) Project:

2208M31 WorkOrder:

Extraction Method: SM5220 D-1997 253401 BatchID:

SM5220 D-1997 Analytical Method:

mg/L Unit:

MB/LCS/LCSD-253401 Sample ID:

	QC Summary Report for COD	port for	COD	
Analyte	MB Result	MDL	RL	
сор	ND	9.2		

	ı	ı		ı	ı	ı		I
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
COD	92	100	100	92	104	90-110	12.2	20

Client: PG&E Gateway Generating Station W
Date Prepared: 09/01/2022 B

Date Analyzed: 09/01/2022

Instrument: AA1
Matrix: Water

Project: Quarterly Sampling (August 2022)

WorkOrder: 2208M31

BatchID: 253118 **Extraction Method:** E245.2

Analytical Method: E245.2 Unit: $\mu g/L$

Unit: μg/L
Sample ID: MB/LCS/LCSD-2

MB/LCS/LCSD-253118 2208M31-003EMS/MSD

QC Summary Report for Mercury

RL	0.20
MDL	0.13
MB Result	QN
Analyte	Mercury

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
Mercury	2.0	2.0	2	102	100	85-115	1.85	20

RPD RPD Limit	5.44 20
MS/MSD Limits	80-120
MSD %REC	66
MS %REC	104
SPKRef Val	ND
SPK Val	2
MSD Result	2.0
MS Result	2.1
MS	-
Analyte	Mercury

PG&E Gateway Generating Station Client:

Date Prepared: 08/31/2022 Date Analyzed: 08/31/2022

Instrument: ICP-MS5

Matrix: Water

Project: Quarterly Sampling (August 2022)

WorkOrder: 2208M31

BatchID: 252936 **Extraction Method:** E200.8

Analytical Method: E200.8 Unit: $\mu g L$

Sample ID: MB/LCS/LCSD-252936

	7	,							l
	QC Sur	mmary K	QC Summary Report for Metals	Metals					
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC	MB	MB SS Limits
Arsenic	QN		0.074	0:20					
Cadmium	Q.		0.043	0.50			,		
Chromium	ND		0.28	0.50					
Copper	ΩN		0.75	1.5			,		
Iron	ND		26	20					
Lead	QN		0.19	0.50					
Molybdenum	ΩN		0.13	0.50					
Nickel	QN		0.33	0.50					
Selenium	QN		0.16	0.50					
Silver	QN		0.092	0.50					
Zinc	Q		14	20					
Surrogate Recovery									
Terbium	540					200	108	-02	70-130
		I		II	Ш	Ш	I	I	Ĥ
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Arsenic	53	53	50		105	107	85-115	1.50	20
Cadmium	52	52	20		104	105	85-115	0.874	20
Chromium	51	52	20		102	104	85-115	1.64	20
Copper	51	53	20		103	106	85-115	2.74	20
Iron	2000	5100	2000		100	101	85-115	1.15	20
Lead	52	52	20		103	104	85-115	0.482	20
Molybdenum	55	55	20		109	109	85-115	0.368	20
Nickel	52	53	20		104	106	85-115	2.07	20
Selenium	53	54	20		107	109	85-115	1.84	20
Silver	51	51	90		102	102	85-115	0.106	20
Zinc	530	530	200		105	107	85-115	1.61	20
Surrogate Recovery									
Terbium	540	530	200		107	107	70-130	0.325	20

PG&E Gateway Generating Station 09/02/2022 Date Prepared: Client:

WC_SKALAR 09/02/2022 Date Analyzed:

Water **Instrument:** Matrix:

Quarterly Sampling (August 2022) Project:

2208M31 WorkOrder:

253255 **Extraction Method:** E420.4 BatchID:

Analytical Method: E420.4 $\mu g/L$ Unit:

MB/LCS/LCSD-253255 Sample ID:

	QC Summary Report for E420.4	oort for E	5420.4	
Analyte	MB Result	MDL	RL	
Phenolics	ND	1.4	2.0	

Ì	RPD	20
	RPD	2.31
	LCS/LCSD Limits	80-120
	LCSD %REC	103
	LCS %REC	101
	SPK Val	40
	LCSD Result	41
	LCS Result	40
	Analyte	Phenolics

PG&E Gateway Generating Station Client:

09/01/2022 Date Prepared:

09/02/2022 Date Analyzed:

WetChem Water Instrument: Matrix: Quarterly Sampling (August 2022) Project:

2208M31 WorkOrder:

253202 BatchID:

Extraction Method: SM2540 C-1997 SM2540 C-1997 Analytical Method:

mg/L Unit:

MB/LCS/LCSD-253202 Sample ID:

QC Summary Report for Total Dissolved Solids

RL	10.0
MDL	10.0
MB Result	QN
Analyte	Total Dissolved Solids

		ı		ı	ı		ı	١
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD R Limits	RPD L	RPD
Total Dissolved Solids	866	1000	1000	100	100	80-120 0	0.599	10

PG&E Gateway Generating Station Client:

09/01/2022 Date Prepared:

09/01/2022 Date Analyzed:

WetChem Instrument:

Quarterly Sampling (August 2022) Project:

Water

Matrix:

2208M31 WorkOrder:

253121 BatchID:

Extraction Method: SM2540 D-1997 SM2540 D-1997 Analytical Method:

mg/L Unit:

MB/LCS/LCSD-253121 Sample ID:

QC Summary Report for Total Suspended Solids

RL	1.00
MDL	1.00
MB Result	ND
Analyte	Total Suspended Solids

							I
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD
Total Suspended Solids	95.0	95.0	100	95	95	80-120 0	10

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 2208M31

ClientCode: PGEA

EQuIS

EDF

Dry-Weight Email

| Excel

HardCopy

ThirdParty

Requested TATs:

Date Received:

J-flag

Report to:

Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX: Email: abe4@pge.com

cc/3rd Party: a1he@pge.com; j5ld@pge.com; tlwy@pge.

T CLIP

PO:

WaterTrax

Project: Quarterly Sampling (August 2022)

Detection Summary

Bill to:

Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Date Logged:

08/31/2022

08/31/2022

5 days; 7 days;

								Re	quested	Tests	(See leg	end bel	ow)			
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2208M31-001	E-001 Grab	Water	8/30/2022 08:47	Ш	Α	В						1	1	Α		T
2208M31-002	E-001 Grab	Water	8/31/2022 10:35		Α	В	С		D			1	С	Α		
2208M31-003	E-001 Comp	Water	8/31/2022 10:20	HH-1				A		В	E	F		Α	С	D

Test Legend:

1	1664A_SG_W
5	CN_SM4500CE_W
9]	PHENOLICS_W

2	1664A_W
6]	COD_W
10]	PRDisposal Fee

3	AMMONIA-SM4500BG_W
7	HG_W
1	TDS_W

4	BOD_W	
8	METALSMS_TTLC_W	
12	TSS_W	

Prepared by: Lilly Ortiz

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Client Contact:

Contact's Email: abe4@pge.com

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Comments

Client Name: PG&E GATEWAY GENERATING STATION

Angel Espiritu

Project: Quarterly Sampling (August 2022)

Work Order: 2208M31

QC Level: LEVEL 2

Date Logged: 8/31/2022

		☐ Water	Trax WriteOn EDF	Exc	cel EQuis	S	En	nail	HardCopy	Third	dParty ∏J-flaç	g		
LabII	O ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative		Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content		Sub Out
001A	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl				8/30/2022 8:47	5 days	9/8/2022	Present		
001B	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl				8/30/2022 8:47	5 days	9/8/2022	Present		
002A	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl			Ш	8/31/2022 10:35	5 days	9/8/2022	Present		П
002B	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl	П			8/31/2022 10:35	5 days	9/8/2022	Present	П	
002C	E-001 Grab	Water	E420.4 (Phenolics)	1	500mL aG w/ H2SO	04 🔲			8/31/2022 10:35	5 days	9/8/2022	Present	П	
			SM4500-NH3 BG (Ammonia Nitrogen)			П				5 days	9/8/2022	Present		
002D	E-001 Grab	Water	SM4500-CN ⁻ CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH	П			8/31/2022 10:35	5 days	9/8/2022	Present		
003A	E-001 Comp	Water	SM5210B (BOD)	1	1L HDPE, unprsv.	-][[8/31/2022 10:20	7 days	9/12/2022	None		
003B	E-001 Comp	Water	SM5220D (COD)	2	aVOA w/ H2SO4	П			8/31/2022 10:20	5 days	9/8/2022	None	-EL	
003C	E-001 Comp	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.			E	8/31/2022 10:20	5 days	9/8/2022	None		
003D	E-001 Comp	Water	SM2540D (TSS)	1	1L HDPE, unprsv.	-177	-101		8/31/2022 10:20	5 days	9/8/2022	None	-17	-17

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

Client Contact:

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Angel Espiritu

Project: Quarterly Sampling (August 2022)

Work Order: 2208M31

Quarterly bumping (Magust 2022)

QC Level: LEVEL 2

Contact's Email: abe4@pge.com

Comments

Date Logged: 8/31/2022

		☐ Water1	Trax WriteOn EDF	Exce	el <u>EQul</u>	S	Em	ail	HardCopy	Third	Party J-flag)	
LabID	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative		Head Space	•	Collection Date & Time	TAT	Test Due Date	Sediment Content	Sub Out
003E	E-001 Comp	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3				8/31/2022 10:20	5 days	9/8/2022	None	
003F	E-001 Comp	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3				8/31/2022 10:20	5 days	9/8/2022	None	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

2208M3/

			-																								220 XIV (31
	W Mc	CA		WILLO!	W PAS	S ROAD	CAI	., II	NC	1					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TURN	AROU						OI	Y		RE	CCORD
	A		PITT	rsburg,	CA 94	565-1701	· ~ -		L - II						1			- 1				JSH 24	HF	ι	4!	8 H	R 72 HR 5 DÂY
	Telep	hone	: (877) 25	2-9262	i em	Fa	i æ inici i x ; (92	25) 2:	52 -:	9269)				(GeoTra	acker E	DF			PDF 🛛	Exce	} [3	W	ri	te On (DW) 🖵 d "J" flag is required
Report To	: Angel Es	piritı			T	Bill To:	PG&	E G	tew	ay			•		1		Analysi	Req	- 4						-		Remarks
Company	: PG&E G	atew	ay Genera	ting Sta	tion											,	-					É	T		Τ		
															┨,	ź	de di	€ a	4	33-6				1		1	}
	be4@pge.ce						m, ti	WY(g)pg	e .coi	m				- ₹	500 200		\$	8	3		chrome fir, fire)				ı	
المستحدث فللمستحدث	522-7838,					ax: (1			_				- T #	M be	thon	(USEPA 1664A) with	8	55		143				ı	
	ame: Qua				المحد	. 5-	202	L			,					ulfate by SM	ake a	EPA Ics	į	8	_ <u>.</u>	S cadaslum, reichel, silv i, iron, and	E	É	įξ	ء اه	3
	ocation: Co							0								thiost lng)	E A	ne (USEPA 1664A) with out silics set clean un	읳	2	3	(200.8 c lead, ré enum, i	20	233			
Sampler S	ignature: l		an Enver)nmenta	Sam	hims	1			· : -					4 %		6.8 Firm		題	-ig	"	84.4	8	ě		2	a s
SAMPLE LOCATION S - SAMPLING Matrix METHOD PRESERVED										/ED	, ,	preserving) by SM 4500	Metals (Arsenic and selentum by 200.8 Selentum by reaction mode	Oil/Gres	Total Phenolics (USEPA 420.4)	Ammonia as N (SM 4500-NH3-G	Mercury (245.2)	Metals (200.8 cadas) copper, lead, nickel, Molybdenum, iron,	ROD (SM 5210R	COD (SM 5220D)))	TINGS M ZSANC)	(100 CZ WS) (SZ WS)				
SAMPLE	LOCATION	ي ن			ŗ	ļ ģ	늄			Т	Т	Т	Τ	Т	Т												
1D	SAMPLE LOCATION IN Same Waste Water Type Containers Containers Co																		L	1							
	Semen Waste Water									5	a				П				1	ı							
		dur			Ŭ	اج ا	§	Sewer	None		4	<u>ع</u> اقِ			Other											۱	
E-001		S G			-	1L	X	<u> </u>	Н	기	+	_	1	7	+			Х	Н				十	┝	十	╁	
			8/30/22		_	Amb 1L			Н		╀		4-	+	+-				Н	-			╄	┝	┾	╄	
E-001		G	8/3/27	10:35	2	Amb	Х		Ц	X	Ļ		1	1	\bot			Х		-			_	_	1	\downarrow	
E-001		G	8/31/27	10:35	1	500ml Amb	Х		Ц		<u> </u>	_	┸		\bot				Х	Х			┸	L	1	╀	
E-001		G	8/3/27	10:35	1	250-ml Poly	Х	Ш		Х	X		┸	_	X				Ц	Ŀ			<u> </u>	L	ļ	┸	
E-001		С	8/31/22	10:20	1	lL Poly	Х		Х	Х			L										X	L	L		
E-001		C	8/31/22		2	43-ml VOA	Х			X 2			I											Х			
E-001		С	8/31/22		1	500-ml poly	Х		X	Х	Т	Т	Τ	Т	T										2	X	
E-001		С	8/31/22		1	1L poly	Х		X	Х			Τ	T						Г			T	Γ	Γ	7	X
E-001		С	8/31/22		1	250-ml Poly	Х		П	Х		\top	1	X	1				П		X		T	Г	T		
E-001		Ċ	8/31/22		1	250-ml poly	Х	П		Х	T		7	X			X					Х	Π	Г	Τ	Т	
									П		1	T	T											Γ	Τ	Τ	
							Т			1	T		T	十	1								T		T	Τ	
Relin qui que	d By:		Date:	Time:	Rece	ived By:					<u></u>				IC	Erc_ c	Z NDITION	7			1		-	O.M	MI	ENI	S:
//	•		8/31/22	12:21		بؤرا	//	1)	, –		91	12	21 21	.	G	OOD CO	NDITION CE ABSE	NT.	•								•
Réimquishe	d By:		Date:			Eived By:	/)	مجه				DI	ECHLOR	INATED I	IN LA		- S							
Delle anishe	A Ree		Date:	Time:	Ren	eived By:									₽F	RESERVE	ED IN LA	3	_								
Relinquishe	a ny:		Date:	l rme:	I WEST	nten Då:											VO	AC.	በቆሳ	C	METALS	OTHER					

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	PG&E Gateway Generating Station			Date and Time Receiv	ed: 8/31/2022 12:22
Project:	Quarterly Sampling (August 2022)			Date Logged:	8/31/2022
W 10 1 N				Received by:	Lilly Ortiz
WorkOrder №: Carrier:	2208M31 Matrix: Water Client Drop-In			Logged by:	Lilly Ortiz
	Chain o	f Custod	y (COC) In	formation	
Chain of custody	y present?	Yes	•	No 🔲	
Chain of custody	y signed when relinquished and received?	Yes	~	No 🔲	
Chain of custody	y agrees with sample labels?	Yes	•	No 🔲	
Sample IDs note	ed by Client on COC?	Yes		No 🔲	
Date and Time	of collection noted by Client on COC?	Yes	7	No 🔲	
Sampler's name	e noted on COC?	Yes		No 🔲	
COC agrees wit	h Quote?	Yes		No 🔲	NA 🗾
	San	nple Rec	eipt Inform	nation	
Custody seals in	ntact on shipping container/cooler?	Yes		No 🔲	NA 💹
Custody seals in	ntact on sample bottles?	Yes		No 🔲	NA 🖃
Shipping contain	ner/cooler in good condition?	Yes		No 🔲	
Samples in prop	per containers/bottles?	Yes		No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sampl	e volume for indicated test?	Yes		No 🔲	
	Sample Preserv	ation and	l Hold Tim	e (HT) Information	
All samples rece	eived within holding time?	Yes	₩.	No 🔲	NA 🔲
Samples Receiv		Yes		No 🔲	
	(Ice T	ype: WE	TICE)		
Sample/Temp B	slank temperature		Temp:	1.9°C	NA 🔲
	analyses: VOA meets zero headspace DCs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🚂
Sample labels c	hecked for correct preservation?	Yes		No 🔲	
pH acceptable u <2; 522: <4; 218	upon receipt (Metal: <2; Nitrate 353.2/4500NO3: 3.7: >8)?	Yes		No 🔲	NA 🔲
UCMR Samples	:				
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🔄
Free Chlorine [not applicable	tested and acceptable upon receipt (<0.1mg/L) e to 200.7]?	Yes		No 🔲	NA 🔝

Page 29 of 29

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

"When Quality Counts"

Analytical Report

WorkOrder: 2208M33

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Sanjiv Gill

Project P.O.:

Project: Ph Sampling (August 2022)

Project Received: 08/31/2022

Analytical Report reviewed & approved for release on 09/07/2022 by:

Christine Askari Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2208M33

Project: Ph Sampling (August 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LOL Laboratory Control Sample
LOL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 08/30/2022

Project: Ph Sampling (August 2022)

WorkOrder: 2208M33

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

рH

		•		
Client ID	Lab ID Matri	x Date Collected	Instrument	Batch ID
E-001	2208M33-001A Water	08/30/2022 08:50	WetChem	253252
Analytes	Result	Accuracy DF		Date Analyzed
pН	8.40	0.05 1		08/30/2022 08:51

Analyst(s): JRA

McCampbell Analytical, Inc. **CHAIN-OF-CUSTODY RECORD** Page of 1 1534 Willow Pass Rd Pittsburg, CA 94565-1701 WorkOrder: 2208M33 ClientCode: PGEA (925) 252-9262 EDF Dry-Weight WaterTrax T CLIP **EQuIS** Email HardCopy ThirdParty J-flag Detection Summary **I** Excel Report to: Bill to: Requested TAT: 5 days; Email: Sanjiv Gill sanjivgill@comcast.net Angel Espiritu cc/3rd Party: PG&E Gateway Generating Station PG&E Gateway Generating Station Date Received: 08/31/2022 PO: 3225 Wilbur Avenue 3225 Wilbur Avenue Antioch, CA 94509 Project: Ph Sampling (August 2022) Antioch, CA 94509 Date Logged: 08/31/2022 (925) 459-7212 FAX: Requested Tests (See legend below) ClientSampID Lab ID Matrix Collection Date Hold 2 3 7 10 11 12 2208M33-001 E-001 8/30/2022 08:50 Water

Test Legend:

1 PH_W_SANJIV	PRDisposal Fee	3	[4]
5	6	7	8
9	10	11	12

Prepared by: Lilly Ortiz

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Project: Ph Sampling (August 2022)

Work Order: 2208M33

Client Contact: Sanjiv Gill

. 6.11

QC Level: LEVEL 2

 $\textbf{Contact's Email:} \ sanjivgill@comcast.net$

Comments

Date Logged: 8/31/2022

	☐ WaterTra	x WriteOn	EDF	Exce	elEQuI	S	Em	nail	HardCopy	Third	PartyJ-flag			
LabID ClientSampID	Matrix T	Γest Name		Containers /Composites	Bottle & Preservative			Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
001A E-001	Water S	SM4500H+B (Field pH)		0	<not received<="" td=""><td>> 🔲</td><td></td><td></td><td>8/30/2022 8:50</td><td>5 days</td><td>9/8/2022</td><td></td><td></td><td></td></not>	> 🔲			8/30/2022 8:50	5 days	9/8/2022			

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	Web Tele	elte: y phon		WILLO TSBURG, npbell.ce	W PA	98 ROAI 565-1701 alk mai	n@m ax: (9	25) 2	pbel 252	Lсер -926	9	401					IN A		JO	NE EDI	יוני קי	MI L	E PD	F I	RUSI J.	H Ex	24 (cel	HR	l v	48 I Wri	CORD IR 72 HR ite On (DW id "J" flag is Rema	required
	io: Sanjiv y: PG&E						Make	ND E	BAL	run I	I CH	CILI.			├-	T	T-	Т		A	THE .	/813	Key	ues	-		_		_	-	Kem	ITKS
Compan	y: PGOLE	Gatt	MEA Gene	rauny 3	ERITO										ł	ı									- 1	- 1						
						-Mail:	conti	edil/	200	mee	et n				ł		1								- 1							
Tel: (48	8) 666-449	4 (Ce	4D			ex: (,								1										ļ							
	Name: pl			Anes			t)				·			1										- 1	- 1						
	Location: I											1			1								ı	l								
	Signature						1	S	01	Ne		1			1	.																
		postta	SAMP	•			Ma	trix	ME	THO	D P	RES	ER1	/ED												.						
	LOCATION / Field Point Name		Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE H.SO	No.	MACH	10.00	Zine Acciete	H																	
E-001		G	850/v	08:50	NA	NA	х		X						X																Grab Time: (Analysis Time:	08:51
									П									Ш				-	- 1	١	- 1						Temperature: pH: 2,40	4.1°C1
										1	Γ	T					П						\neg	7	\exists							
					 		—		H	十	十	+	十	T	 	T	T	H			_	_	\dashv	7	+	7	\neg			H		
					 				H	+	厂	+	T	+	-	1	1	Н			-	一	7	+	+	_				Н		
					 		 		\vdash	十	\vdash	╁	十	+	-	╁╌	1	\vdash				\dashv	\dashv	+	\dashv	-				\vdash		
			·		-		├─	Н	H	┿	一	+	十	+	┝	╁╌	╁	Н	-	-		ᅱ	ᅥ	+	\dashv	+	\dashv		-	Н		
					 —		—	\vdash	┝┼	┿	⊢	┿	╁	+-	-	╁╌	╫	Н		\dashv		\dashv	\dashv	\dashv	┰	+			Н	\vdash		
					-				⊦┼	┿	┝	+	┿	+	-	┼	╁	Н		\dashv			\dashv	+	\dashv	\dashv				Н		
			 		 				╟┼	╀	╀	+-	╀	+	 -	-	╀	Н	_	\dashv	\dashv	\dashv	-	+	-	-				\dashv		
			ļ					\vdash	┝┼	+	╀	╀	╀	+-	 -	╀	╀	Н					\dashv	4	+	-		-		\dashv		
									⊢	┿	┡	+	+	+-	<u> </u>	₽	├	Н	_	_			-	-	+	-						
							<u> </u>		Ш		L		_	1_	<u> </u>	Ļ	ــــــــــــــــــــــــــــــــــــــ	لِـا		لِـــا	لب			Ц	\perp							
Relinquist	B/		Date: 8/31/27	Time: 2:22	ح	lved By:		2	le	<u> </u>	1	3//	ر ا		GC	ŒO	CON	DIT	ION		-	-							COM	ME	NTS:	
Relinquisi	ted By:		Dates	Time:	Rece	lved By:	, 		- } -						AP	TRO	PRI	TE	COR	IAI		8_	-									
Relinquisi	ed By:		Dates	Times	Rece	lved By:											RVA.		VO		04		MET pH<		0	THI	ER.					

PG&E Gateway Generating Station

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received: 8/31/2022 12:22

Sample Receipt Checklist

Project:	Ph Sampling (August 2022)			Date Logged: Received by:	8/31/2022 Lilly Ortiz
WorkOrder №: Carrier:	2208M33 Matrix: <u>Water</u> <u>Client Drop-In</u>			Logged by:	Lilly Ortiz
	Chain	f Custod	y (COC) Info	ormation	
Chain of custody	present?	Yes		No 🗆	
Chain of custody	signed when relinquished and received?	Yes		No 🔲	
Chain of custody	agrees with sample labels?	Yes		No 🗆	
Sample IDs note	ed by Client on COC?	Yes		No 🔲	
Date and Time of	of collection noted by Client on COC?	Yes		No 🔲	
Sampler's name	noted on COC?	Yes		No 🔲	
COC agrees with	n Quote?	Yes		No 🔲	NA 🗐
	Sar	nple Rec	eipt Informa	ation	
Custody seals in	ntact on shipping container/cooler?	Yes		No 🔲	NA 💹
Custody seals in	ntact on sample bottles?	Yes		No 🔲	NA 🖃
Shipping contain	ner/cooler in good condition?	Yes		No 🔲	
Samples in prop	er containers/bottles?	Yes		No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sample	e volume for indicated test?	Yes		No 🔲	
	Sample Preserv	ation and	l Hold Time	(HT) Information	
All samples rece	eived within holding time?	Yes		No 🔲	NA 🖃
Samples Receiv	ed on Ice?	Yes		No 💽	
Sample/Temp B	lank temperature		Temp:		NA 💽
	analyses: VOA meets zero headspace CS, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 📴
Sample labels cl	hecked for correct preservation?	Yes		No 🔲	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No 🖂	NA 💽
UCMR Samples pH tested and 537.1: 6 - 8)?	: acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🔄
Free Chlorine [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🔲	NA 🕞

Comments: Method SM4500H+B (Field pH) was received past its 0.25-day holding time.

Attachment 8c Laboratory Results Semi-annual Monitoring of Combined Site Stream (E-001)

"When Quality Counts"

Analytical Report

WorkOrder: 2208M32

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact: Angel Espiritu

Project P.O.:

Project: Semi-Annual Sampling (August 2022)

Project Received: 08/31/2022

Analytical Report reviewed & approved for release on 09/08/2022 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2208M32

Project: Semi-Annual Sampling (August 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2208M32

Project: Semi-Annual Sampling (August 2022)

Analytical Qualifiers

S	Surrogate recovery outside accepted recovery limits.
a3	Sample diluted due to high organic content interfering with quantitative/or qualitative analysis.
c1	Surrogate recovery outside of the control limits due to the dilution of the sample.
c4	Surrogate recovery outside of the control limits due to coelution with another peak(s) / cluttered chromatogram.

Quality Control Qualifiers

F2	LCS/LCSD recovery	and/or RPD/RSD is out of acceptance criteria.

F5 LCS/LCSD recovery is outside of acceptance limits; however, the data is acceptable based upon the TNI

allowable marginal exceedances.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/02/2022

Project: Semi-Annual Sampling (August 2022)

WorkOrder: 2208M32

Extraction Method: E608.3/SW3620B

Analytical Method: E608.3

Unit: $\mu g/L$

Organochlorine Pesticides + PCBs w/ Florisil Clean-up

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001	2208M32-00	1D Water	08/31/2022	10:35	GC40 09072231.d	253222
Analytes	Result		RL	<u>DF</u>		Date Analyzed
Aldrin	ND		0.020	20		09/07/2022 14:56
a-BHC	ND		0.020	20		09/07/2022 14:56
b-BHC	ND		0.020	20		09/07/2022 14:56
d-BHC	ND		0.020	20		09/07/2022 14:56
g-BHC	ND		0.020	20		09/07/2022 14:56
Chlordane (Technical)	ND		0.40	20		09/07/2022 14:56
p,p-DDD	ND		0.020	20		09/07/2022 14:56
p,p-DDE	ND		0.020	20		09/07/2022 14:56
p,p-DDT	ND		0.020	20		09/07/2022 14:56
Dieldrin	ND		0.020	20		09/07/2022 14:56
Endosulfan I	ND		0.020	20		09/07/2022 14:56
Endosulfan II	ND		0.020	20		09/07/2022 14:56
Endosulfan sulfate	ND		0.040	20		09/07/2022 14:56
Endrin	ND		0.020	20		09/07/2022 14:56
Endrin aldehyde	ND		0.020	20		09/07/2022 14:56
Heptachlor	ND		0.020	20		09/07/2022 14:56
Heptachlor epoxide	ND		0.020	20		09/07/2022 14:56
Toxaphene	ND		0.40	20		09/07/2022 14:56
Aroclor1016	ND		0.40	20		09/07/2022 14:56
Aroclor1221	ND		0.40	20		09/07/2022 14:56
Aroclor1232	ND		0.40	20		09/07/2022 14:56
Aroclor1242	ND		0.40	20		09/07/2022 14:56
Aroclor1248	ND		0.40	20		09/07/2022 14:56
Aroclor1254	ND		0.40	20		09/07/2022 14:56
Aroclor1260	ND		0.40	20		09/07/2022 14:56
PCBs, total	ND		0.40	20		09/07/2022 14:56
Surrogates	REC (%)	Qualifiers	Limits			
Decachlorobiphenyl	154	S	60-130			09/07/2022 14:56
Analyst(s): CN			Analytical Com	nments: a3	3,c4	

J\g ม

Semi-Annual Sampling (August 2022)

Project:

Analytical Report

Client: PG&E Gateway Generating Station WorkOrder: 2208M32

Date Received: 08/31/2022 12:22

Extraction Method: E624.1

Date Prepared: 08/31/2022 Analytical Method: E624.1

Acrolein, Acrylonitrile, & 2-Chloroethyl Vinyl Ether

Batch ID	Instrument	pətəə	Date Coll	Matrix	Lab ID	Client ID
523152	GC10 08302232.D	36:01	2202/180	Water	2208M32-001B	E-001
Date Analyzed		DE	TB		Result	səjytes
16:31 \202\16:31		l	0.3		ΠD	Acrolein (Propenal)
16:31 \202\16:31		ı	2.0		ΠN	Acrylonitrile
16:31 /202/16:31		l	0.1		αN	2-Chloroethyl Vinyl Ether
			Limits		BEC (%)	burrogates
16:31 /202/16/80			70-130		₽8	Oibromofluoromethane
						Analyst(s): LT

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/03/2022

Project: Semi-Annual Sampling (August 2022)

WorkOrder: 2208M32

Extraction Method: E624.1

Analytical Method: E624.1

Unit: $\mu g/L$

Volatile Organics

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001	2208M32-001A	Water	08/31/2022	10:35	GC45 09022230.D	253232
Analytes	Result		RL	DE		Date Analyzed
Benzene	ND		0.20	1		09/03/2022 02:32
Bromodichloromethane	1.0		0.050	1		09/03/2022 02:32
Bromoform	8.5		0.50	1		09/03/2022 02:32
Bromomethane	ND		0.50	1		09/03/2022 02:32
Carbon tetrachloride	ND		0.050	1		09/03/2022 02:32
Chlorobenzene	ND		0.50	1		09/03/2022 02:32
Chloroethane	ND		0.50	1		09/03/2022 02:32
Chloroform	0.45		0.10	1		09/03/2022 02:32
Chloromethane	ND		0.50	1		09/03/2022 02:32
Dibromochloromethane	0.97		0.15	1		09/03/2022 02:32
1,2-Dichlorobenzene	ND		0.50	1		09/03/2022 02:32
1,3-Dichlorobenzene	ND		0.50	1		09/03/2022 02:32
1,4-Dichlorobenzene	ND		0.50	1		09/03/2022 02:32
1,1-Dichloroethane	ND		0.50	1		09/03/2022 02:32
1,2-Dichloroethane (1,2-DCA)	ND		0.020	1		09/03/2022 02:32
1,1-Dichloroethene	ND		0.010	1		09/03/2022 02:32
trans-1,2-Dichloroethene	ND		0.50	1		09/03/2022 02:32
1,2-Dichloropropane	ND		0.20	1		09/03/2022 02:32
cis-1,3-Dichloropropene	ND		0.50	1		09/03/2022 02:32
trans-1,3-Dichloropropene	ND		0.50	1		09/03/2022 02:32
Ethylbenzene	ND		0.50	1		09/03/2022 02:32
Methylene chloride	ND		2.0	1		09/03/2022 02:32
1,1,2,2-Tetrachloroethane	ND		0.020	1		09/03/2022 02:32
Tetrachloroethene	ND		0.20	1		09/03/2022 02:32
Toluene	ND		0.50	1		09/03/2022 02:32
1,1,1-Trichloroethane	ND		0.50	1		09/03/2022 02:32
1,1,2-Trichloroethane	ND		0.20	1		09/03/2022 02:32
Trichloroethene	ND		0.50	1		09/03/2022 02:32
Trichlorofluoromethane	ND		0.50	1		09/03/2022 02:32
Vinyl chloride	ND		0.0050	1		09/03/2022 02:32
Surrogates	REC (%)		Limits			
Dibromofluoromethane	93		70-130			09/03/2022 02:32
Toluene-d8	103		70-130			09/03/2022 02:32
4-BFB	83		70-130			09/03/2022 02:32

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/02/2022

Project: Semi-Annual Sampling (August 2022)

WorkOrder: 2208M32

Extraction Method: E625.1

Analytical Method: E625.1

Unit: $\mu g/L$

Semi-Volatile Organics

Client ID	Lab ID Matrix	Date Collected	Instrument Batch ID
E-001	2208M32-001C Water	08/31/2022 10:35	GC47 09072212.D 253224
Analytes	Result	RL DE	Date Analyzed
Acenaphthene	ND	0.0096 2	09/07/2022 14:18
Acenaphthylene	ND	0.0096 2	09/07/2022 14:18
Anthracene	ND	0.0096 2	09/07/2022 14:18
Benzidine	ND	9.6 2	09/07/2022 14:18
Benzo (a) anthracene	ND	0.096 2	09/07/2022 14:18
Benzo (a) pyrene	ND	0.0096 2	09/07/2022 14:18
Benzo (b) fluoranthene	ND	0.038 2	09/07/2022 14:18
Benzo (g,h,i) perylene	ND	0.038 2	09/07/2022 14:18
Benzo (k) fluoranthene	ND	0.038 2	09/07/2022 14:18
Bis (2-chloroethoxy) Methane	ND	1.9 2	09/07/2022 14:18
Bis (2-chloroethyl) Ether	ND	0.0096 2	09/07/2022 14:18
Bis (2-chloroisopropyl) Ether	ND	0.096 2	09/07/2022 14:18
Bis (2-ethylhexyl) Phthalate	3.1	0.38 2	09/07/2022 14:18
4-Bromophenyl Phenyl Ether	ND	1.9 2	09/07/2022 14:18
Butylbenzyl Phthalate	ND	0.096 2	09/07/2022 14:18
4-Chloro-3-methylphenol	ND	1.9 2	09/07/2022 14:18
2-Chloronaphthalene	ND	1.9 2	09/07/2022 14:18
2-Chlorophenol	ND	0.096 2	09/07/2022 14:18
4-Chlorophenyl Phenyl Ether	ND	1.9 2	09/07/2022 14:18
Chrysene	ND	0.0096 2	09/07/2022 14:18
Dibenzo (a,h) anthracene	ND	0.038 2	09/07/2022 14:18
Di-n-butyl Phthalate	ND	0.096 2	09/07/2022 14:18
1,2-Dichlorobenzene	ND	1.9 2	09/07/2022 14:18
1,3-Dichlorobenzene	ND	1.9 2	09/07/2022 14:18
1,4-Dichlorobenzene	ND	1.9 2	09/07/2022 14:18
3,3-Dichlorobenzidine	ND	0.0096 2	09/07/2022 14:18
2,4-Dichlorophenol	ND	0.019 2	09/07/2022 14:18
Diethyl Phthalate	ND	0.096 2	09/07/2022 14:18
2,4-Dimethylphenol	ND	1.9 2	09/07/2022 14:18
Dimethyl Phthalate	ND	0.019 2	09/07/2022 14:18
4,6-Dinitro-2-methylphenol	ND	9.6 2	09/07/2022 14:18
2,4-Dinitrophenol	ND	1.9 2	09/07/2022 14:18
2,4-Dinitrotoluene	ND	0.096 2	09/07/2022 14:18
2,6-Dinitrotoluene	ND	0.096 2	09/07/2022 14:18
Di-n-octyl Phthalate	ND	1.9 2	09/07/2022 14:18
1,2-Diphenylhydrazine	ND	1.9 2	09/07/2022 14:18
Fluoranthene	ND	0.019 2	09/07/2022 14:18

(Cont.)

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 08/31/2022 12:22

Date Prepared: 09/02/2022

Project: Semi-Annual Sampling (August 2022)

WorkOrder: 2208M32

Extraction Method: E625.1

Analytical Method: E625.1

Unit: $\mu g/L$

Semi-Volatile Organics

Client ID	Lab ID	Matrix	Date Colle	ected	Instrument	Batch ID
E-001	2208M32-001	C Water	08/31/2022	10:35	GC47 09072212.D	253224
Analytes	Result		RL	DE		Date Analyzed
Fluorene	ND		0.019	2		09/07/2022 14:18
Hexachlorobenzene	ND		0.0096	2		09/07/2022 14:18
Hexachlorobutadiene	ND		0.0096	2		09/07/2022 14:18
Hexachlorocyclopentadiene	ND		9.6	2		09/07/2022 14:18
Hexachloroethane	ND		0.019	2		09/07/2022 14:18
Indeno (1,2,3-cd) pyrene	ND		0.038	2		09/07/2022 14:18
Isophorone	ND		3.8	2		09/07/2022 14:18
Naphthalene	ND		0.096	2		09/07/2022 14:18
Nitrobenzene	ND		1.9	2		09/07/2022 14:18
2-Nitrophenol	ND		9.6	2		09/07/2022 14:18
4-Nitrophenol	ND		9.6	2		09/07/2022 14:18
N-Nitrosodimethylamine	ND		9.6	2		09/07/2022 14:18
N-Nitrosodiphenylamine	ND		1.9	2		09/07/2022 14:18
N-Nitrosodi-n-propylamine	ND		1.9	2		09/07/2022 14:18
Pentachlorophenol	ND		0.48	2		09/07/2022 14:18
Phenanthrene	0.023		0.0096	2		09/07/2022 14:18
Phenol	ND		0.38	2		09/07/2022 14:18
Pyrene	ND		0.0096	2		09/07/2022 14:18
1,2,4-Trichlorobenzene	ND		1.9	2		09/07/2022 14:18
2,4,6-Trichlorophenol	ND		0.019	2		09/07/2022 14:18
Surrogates	REC (%)	Qualifiers	Limits			
2-Fluorophenol	38		30-130			09/07/2022 14:18
Phenol-d5	26		20-130			09/07/2022 14:18
Nitrobenzene-d5	58	S	60-130			09/07/2022 14:18
2-Fluorobiphenyl	63		50-130			09/07/2022 14:18
2,4,6-Tribromophenol	70		60-130			09/07/2022 14:18
4-Terphenyl-d14	79		40-130			09/07/2022 14:18
Analyst(s): LAT			Analytical Com	ments: c1		

PG&E Gateway Generating Station Client:

09/02/2022 Date Prepared:

09/03/2022 - 09/07/2022 Date Analyzed:

GC40 Water Instrument: Matrix: Semi-Annual Sampling (August 2022) Project:

2208M32 WorkOrder:

Extraction Method: E608.3/SW3620B 253222 BatchID:

Analytical Method: E608.3 Unit:

MB/LCS/LCSD-253222 Sample ID:

QC Summary Report for E608.3 w/ Florisil Clean-up

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Aldrin	ND	0.00028	0.0010		1	
a-BHC	ND	0.00031	0.0010			
b-BHC	ND	0.00069	0.0010			
d-BHC	ND	0.00014	0.0010		ı	
g-BHC	ND	0.00045	0.0010		ı	
Chlordane (Technical)	ND	0.0023	0.020			
a-Chlordane	ND	0.00085	0.0010			
g-Chlordane	ND	0.00015	0.0010			
DDD-d'd	ND	0.00011	0.0010			
p,p-DDE	ND	0.00018	0.0010			
p,p-DDT	ND	0.00017	0.0010			
Dieldrin	ND	0.00014	0.0010			
Endosulfan I	ND	0.00011	0.0010			
Endosulfan II	ND	0.00046	0.0010			
Endosulfan sulfate	ND	0.00033	0.0020			
Endrin	ND	0.00018	0.0010			
Endrin aldehyde	ND	0.00053	0.0010			
Endrin ketone	ND	0.00026	0.0010			
Heptachlor	ND	0.00041	0.0010		•	
Heptachlor epoxide	ND	0.00025	0.0010			
Methoxychlor	0.0076	0.00012	0.0010			
Toxaphene	QN	0.0020	0.020			
Aroclor1016	ND	0.0019	0.020		•	
Aroclor1221	ND	0.0024	0.020			
Arodor1232	QN	0.0038	0.020			
Arodor1242	ON	0.0028	0.020			
Aroclor1248	DN	0.0018	0.020			
Aroclor1254	DN	0.0015	0.020			
Arodor1260	ND	0.0028	0.020			
Decachlorobiphenyl	0.066	N/A	N/A			
Surrogate Recovery						
Decachlorobiphenyl	0.040			0.05	80	60-130

Client: PG&E Gateway Generating Station

Date Prepared: 09/02/2022

Date Analyzed: 09/03/2022 - 09/07/2022

Instrument: GC40

Water

Matrix:

Project: Semi-Annual Sampling (August 2022)

WorkOrder: 2208M32

BatchID: 253222
Extraction Method: E608.3/SW3620B

Analytical Method: E608.3

Unit: µg/L

Sample ID: MB/LCS/LCSD-253222

QC Summary Report for E608.3 w/ Florisil Clean-up

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
Aldrin	0.034	0.036	0.050	89	72	42-140	5.95	20
a-BHC	0.036	0.038	0.050	72	92	70-130	4.97	20
b-BHC	0.031	0.032	0.050	62,F2	65,F2	70-130	4.71	20
d-BHC	0.038	0.040	0.050	77	81	70-130	4.90	20
g-BHC	0.036	0.038	0.050	71	75	60-130	5.29	20
a-Chlordane	0.034	0.036	0.050	89	71	45-140	4.38	20
g-Chlordane	0.035	0.036	0.050	69	73	45-140	4.52	20
DDD-d'd	0.038	0.040	0.050	77	80	70-130	4.57	20
p,p-DDE	0.039	0.041	0.050	78	82	70-130	4.93	20
p,p-DDT	0.039	0.041	0.050	79	83	70-130	4.44	20
Dieldrin	0.037	0.039	0.050	75	79	70-130	5.09	20
Endosulfan I	0.036	0.037	0.050	72	75	70-130	3.85	20
Endosulfan II	0.037	0.039	0.050	75	79	70-130	5.05	20
Endosulfan sulfate	0.038	0.040	0.050	92	80	70-130	4.94	20
Endrin	0.041	0.043	0.050	82	86	70-130	4.78	20
Endrin aldehyde	0.031	0.033	0.050	62	29	60-130	8.05	20
Endrin ketone	0.037	0.038	0.050	73	77	60-130	4.63	20
Heptachlor	0.038	0.040	0.050	75	79	34-140	5.42	20
Heptachlor epoxide	0.036	0.038	0.050	73	2.2	70-130	5.44	20
Methoxychlor	0.042	0.044	0.050	84	88	70-130	4.03	20
Aroclor1016	0.12	0.12	0.15	78	80	70-130	2.58	20
Aroclor1260	0.11	0.12	0.15	92	80	70-130	6.02	20
Surrogate Recovery								
Decachlorobiphenyl	0.044	0.045	0.050	88	91	60-130	3.56	20

"When Quality Counts"

Quality Control Report

PG&E Gateway Generating Station 08/31/2022 Date Prepared: Client:

08/31/2022 Date Analyzed:

GC10 Water Instrument: Matrix: Semi-Annual Sampling (August 2022) Project:

2208M32 WorkOrder:

253125 **Extraction Method:** E624.1 BatchID:

E624.1 $\mu g/L$ Analytical Method: Unit:

Sample ID:

MB/LCS/LCSD-253125 2208M32-001BMS/MSD

QC Summary Report for E624.1

		,	•	•						1
Analyte		MB Result		MDL	RL		SPK Val	MB SS %REC	ĽΨ	MB SS Limits
Acrolein (Propenal)		QN		3.9	5.0					Ì
Acrylonitrile		QN		0.23	2.0				ı	
2-Chloroethyl Vinyl Ether		QN		0.44	1.0			,		
Surrogate Recovery										
Dibromofluoromethane		22					25	86	70	70-130
	Ш									П
Analyte		LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
Acrolein (Propenal)		17	19	20		84	94	71-140	11.2	20
Acrylonitrile		19	18	20		94	92	67-145	2.06	20
2-Chloroethyl Vinyl Ether		19	17	20		97	86	70-124	12.6	20
Surrogate Recovery										
Dibromofluoromethane		22	21	52		88	84	70-130	5.17	20
	ı						l			ľ
Analyte	MS	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD
Acrolein (Propenal)	-	19	19	20	QN	97	97	24-149	0.433	20
Acrylonitrile	-	19	19	20	ND ND	93	93	50-151	0.0940	20
2-Chloroethyl Vinyl Ether	-	19	19	20	QN	96	96	66-140	0.356	20
Surrogate Recovery										
Dibromofluoromethane	_	21	21	25		85	84	70-130	1.48	20

WorkOrder: PG&E Gateway Generating Station Client:

09/02/2022 09/02/2022 Date Prepared: Date Analyzed:

GC45 Water Instrument: Matrix:

Semi-Annual Sampling (August 2022)

Project:

253232 **Extraction Method:** E624.1 Analytical Method: E624.1 $\mu g/L$ BatchID: Unit:

2208M32

MB/LCS/LCSD-253232 Sample ID:

4.1
or E624
port fo
Iry Repo
ımma
OC SI

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
tert-Amyl methyl ether (TAME)	QN	0.13	0.50			
Benzene	QN	0.12	0.20			
Bromodichloromethane	QN	0.025	0.050			
Bromoform	QN	0.31	0.50			
Bromomethane	ND	0.18	0.50	ı		
t-Butyl alcohol (TBA)	QN	2.5	5.0			
Carbon Disulfide	QN	0.18	0.50			
Carbon tetrachloride	QN	0.028	0.050			
Chlorobenzene	QN	0.11	0.50			
Chloroethane	ND	0.20	0.50			
Chloroform	QN	0.091	0.10			
Chloromethane	QN	0.28	0.50			
Dibromochloromethane	QN	0.026	0.15			
1,2-Dibromoethane (EDB)	ND	0.021	0.040			
1,2-Dichlorobenzene	QN	0.16	0.50			
1,3-Dichlorobenzene	QN	0.12	0.50			
1,4-Dichlorobenzene	QN	0.093	0.50			
Dichlorodifluoromethane	ND	0.29	0.50			
1,1-Dichloroethane	QN	0.15	0.50			
1,2-Dichloroethane (1,2-DCA)	QN	0.011	0.020			
1,1-Dichloroethene	QN	0.0094	0.010			
trans-1,2-Dichloroethene	QN	0.11	0.50			
1,2-Dichloropropane	QN	0.019	0.20			
cis-1,3-Dichloropropene	QN	0.21	0.50			
trans-1,3-Dichloropropene	QN	0.28	0.50			1
Diisopropyl ether (DIPE)	QN	0.12	0.50			
Ethylbenzene	ND	0.14	0.50			
Ethyl tert-butyl ether (ETBE)	QN	0.16	0:50			
Methyl-t-butyl ether (MTBE)	ND	0.16	0:50			
Methylene chloride	ND	0.74	2.0			
1,1,2,2-Tetrachloroethane	ND	0.011	0.020			
Tetrachioroethene	QN	0.16	0.20			
Toluene	QN	0.17	0:50			
1,1,1-Trichioroethane	QN.	0 11:0	0:20			
1,1,2-Trichloroethane	QN	0.11	0.20	ı	ı	
Trichloroethene	QN	0.25	0.50			
Trichlorofluoromethane	QN	0.14	0.50			
Vinyi chloride	0:0020	0.0043	0.0050			

WorkOrder: PG&E Gateway Generating Station 09/02/2022 Date Prepared: Client:

09/02/2022 GC45 Date Analyzed: Instrument:

Water

Matrix:

Semi-Annual Sampling (August 2022) Project:

2208M32

253232 **Extraction Method:** E624.1 BatchID:

Analytical Method: E624.1 Unit: MB/LCS/LCSD-253232 Sample ID:

	QC Summary Report for E624.1	oort for I	E624.1			
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Surrogate Recovery						
Dibromofluoromethane	24			25	97	70-130
Toluene-d8	26			25	103	70-130
4-BFB	2.3		ı	2.5	94	70-130

WorkOrder: PG&E Gateway Generating Station Client:

Date Prepared: 09/02/2022

Date Analyzed: 09/02/2022 Instrument: GC45 **Project:** Semi-Annual Sampling (August 2022)

Water

Matrix:

BatchID: 253232
Extraction Method: E624.1
Analytical Method: E624.1

2208M32

Unit: µg/L

Sample ID: MB/LCS/LCSD-253232

QC Summary Report for E624.1

betweeting the intervaling time (TAME) 3.4 3.6 4.0 4.1 4.0 6.0 6.0-130	Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
4.0 4.1 4 4.0 10.0 10.3 60-130 3.0c nomethane 2.4 4 4 10.0 10.3 60-130 4.17 ne 2.9 3.5 4 5.6 8 60-130 4.17 ne 2.9 3.3 4 7.2 8.9 60-130 14.1 ide 3.2 3.3 4 7.2 8.9 60-130 14.1 ide 3.2 3.3 4 8.0 8.2 60-130 14.1 ide 3.2 3.3 4 8.0 8.0 60-130 2.81 increase 3.5 4 4 9.0 8.0 60-130 2.81 increase 3.5 4.6 4 9.0 8.0 60-130 2.81 increase 3.3 3.4 4 8.0 8.0 60-130 2.81 increase 3.3 3.4 4 8.2 60-130 </td <td>tert-Amyl methyl ether (TAME)</td> <td>3.4</td> <td>3.6</td> <td>4</td> <td>84</td> <td>06</td> <td>60-130</td> <td>6.68</td> <td>20</td>	tert-Amyl methyl ether (TAME)	3.4	3.6	4	84	06	60-130	6.68	20
one thane 34 35 4 85 86 60-130 417 ne 26 2.7 4 65 89 60-130 6.22 ne 2.9 3.7 4 65 89 60-130 6.22 ne 2.9 3.7 4 6 89 60-130 6.22 icle 3.9 4.0 4 80 82 60-130 6.26 icle 3.2 3.0 4 80 82 60-130 6.28 icle 4 4 80 82 60-130 6.28 icle 4.5 4.6 4 80 82 60-130 5.28 icle 4.6 4 4 90 60-130 2.28 icle 4.6 4 91 4 80 80 60-130 2.28 icle 5.2 4 4 82 60-130 2.48 8		4.0	4.1	4	100	103	60-130	3.06	20
Lie 2.6 2.7 4 6.6 6.9 50-130 6.22 Incline 2.9 3.3 4 7.2 8.9 50-130 6.14.1 Incline 1.1 1.2 4.0 4 7.2 7.7 7.0 60-130 14.1 Incline 3.2 3.3 4 6 9.9 100 60-130 14.1 Incline 3.2 3.3 4 8 9.0 60-130 1.1 Incline 3.2 3.3 4 8 9.0 60-130 2.9 Incline 3.2 3.3 4 4 8 9.0 60-130 2.9 Incline 3.5 3.6 4 4 9.1 1.1	Bromodichloromethane	3.4	3.5	4	85	88	60-130	4.17	20
tite 1.9 3.3 4 7.2 8.3 50-130 14.1 tite 1.1 1.2 1.6 1.7 50-130 14.7 60-130 14.1 tite 1.2 1.2 4 99 100 60-130 2.9 17.7 60-130 6.9 tite 3.5 3.6 4 99 100 60-130 2.9 17 60-130 2.9 tite 4.5 4 4 99 10.2 60-130 2.9 1.7 1.7 60-130 2.9 tite 4.5 4 4 4 1.2 1.1 1.7 60-130 2.8 tite 4.5 4 4 4 1.1 1.1 60-130 2.8 tite 1.6 4 4 4 1.1 1.1 60-130 2.8 tite 1.6 4 4 8 8 8 60-130 2.4	Bromoform	2.6	2.7	4	65	69	50-130	6.22	20
(TEAA) 11 12 16 72 77 50-130 696 (dee 3.3 4.0 4 99 100 60-130 1.17 lede 3.5 3.6 4 8 8 90 60-130 2.58 lee 3.5 3.6 4 8 8 90 60-130 2.58 lee 4.5 4.6 4 8 8 60-130 2.58 nee 4.5 4.6 4 112 116 60-130 2.58 nee 4.5 4.6 4 112 116 60-130 2.58 netratene 2.9 3.1 4 7.3 7.7 50-130 2.51 ntranet 1.5 2.6 4 4 6 6 60-130 2.58 ntranet 1.5 1.6 2 7 7 7 7 7 7 ntranet 1.5 2 <td>Bromomethane</td> <td>2.9</td> <td>3.3</td> <td>4</td> <td>72</td> <td>83</td> <td>50-130</td> <td>14.1</td> <td>20</td>	Bromomethane	2.9	3.3	4	72	83	50-130	14.1	20
ide 39 40 4 99 100 60-130 1.17 hidride 32 3.3 4 80 82 60-130 2.91 ee 4.5 4.6 4 80 82 60-130 2.91 ee 4.5 4.6 4 112 116 60-130 2.91 ee 4.5 4.6 4 112 114 50-130 2.89 ee 4.5 4.6 4 4 112 114 50-130 2.89 ee 4.5 4.6 4 4 7.7 50-130 2.89 encrane 3.3 3.4 4 7.7 50-130 2.81 thane (EDB) 1.6 1.6 2 7.7 50-130 2.81 thane (EDB) 1.6 4 4 7.7 50-130 2.81 thane (EDB) 1.6 4 4 8.2 60-130 2.8 <	t-Butyl alcohol (TBA)	11	12	16	72	77	50-130	96.9	20
bioloide 3.2 3.3 4 80 62 60-130 2.91 lee 3.5 3.6 4 8 90 60-130 2.58 lee 3.7 3.6 4 112 116 60-140 2.58 nee 4.5 4.6 4 112 114 60-130 2.89 nee 4.5 4.6 4 112 114 60-130 2.89 nearene 3.3 3.4 4 112 114 60-130 2.89 nerzene 3.3 3.4 4 82 84 60-130 2.48 nerzene 3.3 3.4 4 82 84 60-130 2.48 nerzene 3.3 3.4 4 82 84 60-130 2.44 nerzene 3.3 3.4 4 82 84 60-130 2.44 thane (12-DCA) 3.1 3.2 4 82 80-130 </td <td>Carbon Disulfide</td> <td>3.9</td> <td>4.0</td> <td>4</td> <td>66</td> <td>100</td> <td>60-130</td> <td>1.17</td> <td>20</td>	Carbon Disulfide	3.9	4.0	4	66	100	60-130	1.17	20
the 3.5 3.6 4 88 90 60-130 2.88 the 4.5 4.6 4 112 116 60-140 3.99 the 4.5 4.6 4 4 112 114 60-130 2.89 the 4.5 4.6 4 4 112 114 60-130 2.89 omethane 2.9 3.1 4 4 72 77 60-130 2.85 enzane 3.3 3.4 4 4 82 60-130 5.17 enzane 3.3 3.4 4 4 82 60-130 2.81 enzane 3.3 3.4 4 82 60-130 2.81 enzane 3.5 3.4 4 82 60-130 2.81 enzane 3.5 3.6 4 82 60-130 2.74 thane 3.5 3.6 4 82 60-130 2.74	Carbon tetrachloride	3.2	3.3	4	80	82	60-130	2.91	20
4.5 4.6 4 112 116 60-140 3.99 nee 3.7 3.8 4 91 94 60-130 2.89 nee 4.5 4.6 4 11 14 50-130 2.89 one thane 2.9 3.1 4 7.3 7.7 50-130 2.81 thane (EDB) 1.6 1.6 2 7.8 8.2 60-130 2.81 enzene 3.3 3.4 4 8.2 8.4 60-130 2.17 enzene 3.3 3.4 4 8.2 8.4 60-130 2.17 enzene 3.3 3.4 4 8.7 8.4 60-130 2.4 enzene 3.3 3.4 4 8.7 8.7 8.4 8.7 8.7 enzene 3.5 3.6 4 8.7 8.7 8.7 8.7 thane (LDCA) 3.1 3.2 4 8.7 8.0 </td <td>Chlorobenzene</td> <td>3.5</td> <td>3.6</td> <td>4</td> <td>88</td> <td>06</td> <td>60-130</td> <td>2.58</td> <td>20</td>	Chlorobenzene	3.5	3.6	4	88	06	60-130	2.58	20
the complex of the control o	Chloroethane	4.5	4.6	4	112	116	60-140	3.99	20
tene 4.5 4.6 4 112 114 50-130 2.35 donethane 2.9 3.1 4 7.7 7.7 50-130 5.17 futene (EDB) 3.3 3.4 4 2 82 84 60-130 2.81 enzene 3.3 3.4 4 82 84 60-130 2.81 enzene 3.3 3.4 4 62 84 60-130 2.81 enzene 3.3 3.4 4 62 84 60-130 2.81 competiene 3.3 3.4 4 62 84 60-130 2.81 finance (1,2-DCA) 3.1 3.3 4 7 8 8 60-130 2.44 finance (1,2-DCA) 3.1 3.5 3.6 4 8 8 60-130 2.44 finance (1,2-DCA) 3.1 3.4 4 8 8 8 60-130 2.44 fit	Chloroform	3.7	3.8	4	91	94	60-130	2.89	20
trane (EDB) 3.1 4 73 77 50-130 5.17 thane (EDB) 1.6 1.6 2 78 82 60-130 5.21 morethane 3.3 3.4 4 84 87 60-130 2.48 encrene 3.4 3.5 4 84 60-130 2.48 encrene 3.4 3.5 4 4 84 87 60-130 2.48 encrene 3.4 3.5 4 4 82 84 60-130 2.48 encrene 3.5 3.7 4 90 92 80-130 2.44 encrene 3.5 3.7 4 90 92 60-130 2.44 encrene 3.5 3.5 3.6 4 88 89 60-130 0.744 encrentene 3.7 3.8 4 88 89 60-130 0.744 encrene 3.7 3.8 4 88 89 60-130 0.744 encrentene 3.7 3.8 4 89 89 60-130 0.744 encrentene 3.7 3.8 4 89 89 60-130 0.744 encrentene 3.7 3.8 4 80 88 80 60-130 0.744 encrentene 3.7 3.8 4 80 88 80 60-130 0.744 encrentene 3.7 3.8 4 80 88 80 60-130 0.744 encrentene 3.7 3.8 4 80 80 80 80 0.730 0.744 encrentene 3.7 3.8 4 80 89 60-130 0.744 encrentene 3.7 3.8 4 80 80 80 80 90 0.730 0.744 encrentene 3.7 3.8 4 80 80 80 80 90 0.730 0.744 encrentene 3.7 3.8 4 80 80 80 80 90 0.730 0.744 encrentene 3.2 3.2 4 80 80 80 80 90 0.730 0.744 encrentene 3.2 3.2 4 81 81 87 80 80 90 90 0.744 encrentene 3.2 3.2 4 81 81 87 80 80 90 90 0.744 encrentene 3.2 3.2 4 81 81 87 80 80 90 90 0.744 encrentene 3.2 3.2 4 81 81 81 81 80 90 90 90 90 90 90 90 90 90 90 90 90 90	Chloromethane	4.5	4.6	4	112	114	50-130	2.35	20
thane (EDB) 1.6 1.6 2 78 82 60-130 5.21 enzene 3.3 3.4 4 8 82 60-130 5.21 enzene 3.3 3.4 4 4 82 84 60-130 2.48 enzene 3.4 3.5 4 4 82 84 60-130 2.48 enzene 5.0 5.2 4 4 60-130 2.56 enzene 5.0 5.2 4 4 60-130 2.56 enzene 5.0 5.3 4 4 60-130 40-140 3.68 enzene 3.6 3.7 4 6 90 92 60-130 2.44 thene thane (1.2-DCA) 3.1 3.3 4 4 78 82 60-130 0.744 indicatemen 3.5 3.6 4 88 89 60-130 0.744 indicatemen 3.4 3.5 4 4 88 89 60-130 0.744 indicatemen 3.2 3.4 4 88 89 60-130 3.83 enter (DIPE) 3.1 3.3 4 4 88 80 89 60-130 3.83 enter (DIPE) 3.1 3.3 4 4 88 80 89 60-130 3.83 enter (DIPE) 3.1 3.3 4 4 88 80 89 80-130 3.83 enter (DIPE) 3.1 3.3 4 4 88 80 89 80-130 3.83 enter (DIPE) 3.1 3.3 4 4 88 80 89 80-130 3.83 enter (DIPE) 3.1 3.3 4 4 88 80 89 80-130 3.83 enter (DIPE) 3.1 3.3 4 8 80 89 80-130 3.83 enter (DIPE) 3.1 3.3 4 8 80 80-130 3.83 enter (DIPE) 3.1 3.3 4 8 80 80-130 3.83 enter (DIPE) 3.1 3.2 3.2 4 88 80 80-130 3.38 enter (DIPE) 3.2 3.2 4 88 80 80-130 3.30 2.50 enter (DIPE) 3.3 3.3 4 8 80 80-130 3.30 2.50 enter (DIPE) 3.3 3.3 4 8 80 80-130 3.30 2.50 enter (DIPE) 3.3 3.3 4 8 80 80 84 80 8.3 80 8.3 80 80 80 80 80 80 80 80 80 80 80 80 80	Dibromochloromethane	2.9	3.1	4	73	77	50-130	5.17	20
enzene 3.3 3.4 4 82 84 60-130 2.48 enzene 3.4 3.5 4 84 87 60-130 2.48 enzene 3.3 3.4 4 84 87 60-130 2.81 enzene 3.3 3.4 4 8 8 60-130 2.81 romethane 5.0 5.2 4 9 92 50-130 2.84 thane (12-DCA) 3.1 3.3 4 8 8 60-130 2.84 thane (12-DCA) 3.1 3.3 4 89 89 60-130 2.44 thane (12-DCA) 3.1 3.3 4 89 89 60-130 2.44 thane (12-DCA) 3.5 3.6 4 89 89 60-130 2.44 thane (12-DCA) 3.5 3.6 4 89 89 60-130 2.44 torpance 3.7 3.4 4 <t< td=""><td>1,2-Dibromoethane (EDB)</td><td>1.6</td><td>1.6</td><td>2</td><td>78</td><td>82</td><td>60-130</td><td>5.21</td><td>20</td></t<>	1,2-Dibromoethane (EDB)	1.6	1.6	2	78	82	60-130	5.21	20
enzene 34 3.5 4 84 87 60-130 2.81 enzene 3.3 3.4 4 8 8 60-130 2.86 ricene 3.3 3.4 4 8 8 60-130 2.56 thane (1,2-DCA) 3.1 3.7 4 90 92 50-130 2.44 thane (1,2-DCA) 3.1 3.3 4 8 8 60-130 2.44 thene (1,2-DCA) 3.1 3.4 4 8 8 60-130 2.44 thene (1,2-DCA) 3.5 3.6 4 88 80 60-130 2.44 thene (1,2-DCA) 3.5 3.6 4 88 80 60-130 2.74 incroschene 3.7 3.8 4 85 88 60-130 0.744 roporporpene 3.2 3.4 4 87 80 60-130 0.74 nicropropene 3.2 3.4 4 </td <td>1,2-Dichlorobenzene</td> <td>3.3</td> <td>3.4</td> <td>4</td> <td>82</td> <td>84</td> <td>60-130</td> <td>2.48</td> <td>20</td>	1,2-Dichlorobenzene	3.3	3.4	4	82	84	60-130	2.48	20
enzene 3.3 3.4 4 62 84 60-130 2.56 romethane 5.0 5.2 4 125 130 40-140 3.96 thane (1,2-DCA) 3.6 3.7 4 90 92 50-130 2.44 thane (1,2-DCA) 3.1 3.3 4 78 82 60-130 2.44 then e 3.5 3.6 4 88 89 60-130 0.744 inforethene 3.7 3.8 4 88 89 60-130 0.744 inforethene 3.7 3.8 4 81 85 60-130 0.744 inforethene 3.7 3.4 4 81 85 60-130 0.744 inforpropere 3.2 3.4 4 80 84 60-130 3.58 incropropere 3.2 3.4 4 80 84 60-130 7.74 ether (DIPE) 3.2 3.5 <	1,3-Dichlorobenzene	3.4	3.5	4	84	87	60-130	2.81	20
thane (1,2-DCA) 3.6 5.0 4 125 130 40-140 3.96 thane 1.2-DCA) 3.1 3.3 4 90 92 50-130 2.44 thene 1.2-DCA) 3.1 3.3 4 78 82 50-130 2.44 thene 1.2-DCA) 3.1 3.3 4 78 89 60-130 0.704 thene 2.2 3.4 3.5 4 88 60-130 0.704 0.704 0.704 0.704 0.704 0.704 0.704 0.704 0.705 0.704 0.705 0.704 0.705 0.70	1,4-Dichlorobenzene	3.3	3.4	4	82	84	60-130	2.56	20
thane (1,2-DCA) 3.1 3.3 4 78 82 60-130 2.44 thene (1,2-DCA) 3.1 3.3 4 78 82 60-130 0.704 thene (1,2-DCA) 3.1 3.3 4 78 82 60-130 0.704 thene (1,2-DCA) 3.5 3.6 4 89 89 60-130 0.704 octive thene (1,2-DCA) 3.5 3.6 4 88 89 60-130 0.744 octive thene (1,2-DCA) 3.2 3.4 4 88 89 60-130 3.93 and octive thene (1,2-DCA) 3.2 3.4 4 81 85 60-130 3.93 and octive thene (1,2-DCA) 3.2 3.4 4 81 87 60-130 5.89 end octive thene (1,2-DCA) 3.2 3.2 4 81 81 87 60-130 3.28 and octive thene (1,2-DCA) 3.2 3.2 4 81 81 88 60-130 3.28 and octive thene (1,2-DCA) 3.2 3.2 4 81 88 60-130 3.28 and octive thene (1,2-DCA) 3.2 3.2 4 81 88 60-130 3.28 and octive thene (1,2-DCA) 3.2 3.2 4 81 88 60-130 3.28 and octive thene (1,2-DCA) 3.2 3.2 4 81 81 88 60-130 3.28 and octive thene (1,2-DCA) 3.2 3.2 4 81 81 88 60-130 3.28 and octive thene (1,2-DCA) 3.2 3.2 4 81 81 81 81 81 81 81 81 81 81 81 81 81	Dichlorodifluoromethane	5.0	5.2	4	125	130	40-140	3.96	20
thane (1,2-DCA) 3.1 3.3 4 78 82 60-130 4.84 thene thene (1,2-DCA) 3.5 3.6 4 89 89 60-130 0.704 horoethene 3.5 3.6 4 88 89 60-130 0.704 100 to pane 3.7 3.8 4 91 95 60-130 0.744 100 to pane 3.2 3.4 4 85 88 60-130 3.67 1.91 1.95 1.95 1.91 1.91 1.95 1.95 1.91 1.91	1,1-Dichloroethane	3.6	3.7	4	06	92	50-130	2.44	20
thene 3.5 3.6 4 89 89 60-130 0.704 nloroethene 3.5 3.6 4 88 89 60-130 0.744 ropane 3.7 3.8 4 91 95 60-130 0.744 roptopene 3.4 3.5 4 81 85 86 60-130 3.67 nloropropene 3.2 3.4 4 81 85 60-130 3.67 her (DIPE) 3.2 3.4 4 81 85 60-130 5.02 her (DIPE) 3.2 3.4 4 87 89 60-130 5.14 her (DIPE) 3.2 3.4 4 87 89 60-130 5.14 refer (DIPE) 3.1 3.2 4 87 89 60-130 5.14 refer (DIPE) 3.2 3.5 4 87 80 60-130 5.24 refer (DIPE) 3.2 3.2	1,2-Dichloroethane (1,2-DCA)	3.1	3.3	4	78	82	60-130	4.84	20
Jordethene 3.5 3.6 4 88 89 60-130 0.744 ropane 3.7 3.8 4 91 95 60-130 3.93 ropropene 3.4 3.5 4 85 86 60-130 3.93 ropropene 3.2 3.4 4 81 85 60-130 3.67 her (DIPE) 3.2 3.4 4 81 85 60-130 5.02 her (DIPE) 3.2 3.4 4 87 89 60-130 5.14 reflect (DIPE) 3.1 3.3 4 87 89 60-130 5.14 reflect (DIPE) 3.1 3.3 4 87 89 60-130 5.24 reflect (DIPE) 3.1 4 87 89 60-130 5.24 reflect (MIBE) 3.2 4 81 87 80-130 6.73 7.74 reflect (MIBE) 3.2 3.2 4 <th< td=""><td>1,1-Dichloroethene</td><td>3.5</td><td>3.6</td><td>4</td><td>83</td><td>89</td><td>60-130</td><td>0.704</td><td>20</td></th<>	1,1-Dichloroethene	3.5	3.6	4	83	89	60-130	0.704	20
ropane 3.7 3.8 4 91 95 60-130 3.93 ropropene 3.4 3.5 4 85 88 60-130 3.67 her (DIPE) 3.2 3.4 4 81 85 60-130 5.02 her (DIPE) 3.2 3.4 4 80 84 60-130 5.14 her (DIPE) 3.5 3.6 4 87 80 60-130 5.14 her (DIPE) 3.1 3.3 4 79 84 60-130 5.89 ether (MIBE) 3.2 3.5 4 81 87 60-130 5.27 ether (MIBE) 3.2 3.5 4 81 87 60-130 5.28 inflored and 3.2 3.5 4 81 80 60-130 3.58 inflored and 3.5 3.5 4 87 80 60-130 3.74 inflored and 3.5 3.5 4	trans-1,2-Dichloroethene	3.5	3.6	4	88	89	60-130	0.744	20
ropropene 3.4 3.5 4 85 88 60-130 3.67 nloropropene 3.2 3.4 4 81 85 60-130 5.02 her (DIPE) 3.5 3.4 4 80 84 60-130 5.14 n ether (EIBE) 3.5 3.6 4 87 89 60-130 5.14 ether (MIBE) 3.2 3.5 4 87 89 60-130 5.89 ether (MIBE) 3.2 3.5 4 81 87 60-130 7.27 ether (MIBE) 3.2 4 81 87 60-130 7.27 infloredrane 3.2 3.5 4 81 88 60-130 3.74 nene 3.2 3.2 4 87 80 60-130 3.74 netrane 3.5 3.5 4 87 80 60-130 3.74 netrane 3.5 3.5 4 87	1,2-Dichloropropane	3.7	3.8	4	91	92	60-130	3.93	20
her (DIPE) 3.2 3.4 4 81 85 60-130 5.02 her (DIPE) 3.2 3.4 4 80 84 60-130 5.14 nether (EIBE) 3.5 3.6 4 87 89 60-130 5.14 nether (MIBE) 3.2 3.5 4 87 89 60-130 5.89 sether (MIBE) 3.2 3.5 4 81 87 60-130 7.27 cether (MIBE) 3.2 3.5 4 81 87 60-130 7.27 nordinate 3.2 3.5 4 87 80 60-130 3.74 neme 3.5 3.6 4 87 87 60-130 3.74 nethane 3.5 3.5 4 87 80 60-130 3.74 nethane 3.5 3.3 4 87 80 60-130 3.74 nethane 3.2 3.3 4 <t< td=""><td>cis-1,3-Dichloropropene</td><td>3.4</td><td>3.5</td><td>4</td><td>85</td><td>88</td><td>60-130</td><td>3.67</td><td>20</td></t<>	cis-1,3-Dichloropropene	3.4	3.5	4	85	88	60-130	3.67	20
her (DIPE) 3.2 3.4 4 80 84 60-130 5.14 1 ether (ETBE) 3.5 3.6 4 87 89 60-130 1.91 1 ether (ETBE) 3.1 3.3 4 79 83 60-130 5.89 ether (MTBE) 3.2 3.5 4 81 87 60-130 5.89 nordde 3.2 3.5 4 81 87 60-130 8.39 hene 3.2 3.5 4 79 80 60-130 8.39 hene 3.2 3.5 4 87 91 60-130 3.74 oethane 3.5 3.5 4 87 91 60-130 0.774 oethane 2.9 3.1 4 82 83 60-130 5.66 ne 3.2 3.3 4 80 80 50-130 5.51 ne 3.2 3.3 4 80 6	trans-1,3-Dichloropropene	3.2	3.4	4	81	85	60-130	5.02	20
13.5 3.6 4 87 89 60-130 1.91 In ether (MTBE) 3.1 3.3 4 79 83 60-130 5.89 ether (MTBE) 3.2 3.5 4 81 87 60-130 7.27 Indicate 4.1 4.3 4 81 87 60-130 3.28 Indicated 3.2 3.5 4 87 80 60-130 8.39 Indicated 3.2 3.5 4 87 91 60-130 3.74 Indicated 3.3 3.5 4 87 91 60-130 3.74 Indicated 3.3 3.3 4 87 91 60-130 0.774 Indicated 3.3 3.3 4 80 82 60-130 0.774 Indicated 3.2 3.3 4 80 82 60-130 0.585 Indicated 3.2 3.2 4 80	Diisopropyl ether (DIPE)	3.2	3.4	4	80	84	60-130	5.14	20
ether (MIBE) 3.3 4 79 83 60-130 5.89 ether (MIBE) 3.2 3.5 4 81 87 60-130 7.27 forde 4.1 4.3 4 105 50-130 3.28 shloroethane 3.2 3.5 4 81 88 60-130 8.39 hene 3.2 3.5 4 87 91 60-130 1.41 oethane 3.3 3.3 4 82 83 60-130 0.774 oethane 2.9 3.1 4 80 82 60-130 5.66 ne 3.2 3.3 4 80 82 60-130 5.56 ne 3.2 3.3 4 80 82 60-130 0.585 ne 3.2 3.2 4 80 79 60-130 0.585 ne 3.2 3.2 4 80 79 60-130 0.585	Ethylbenzene	3.5	3.6	4	87	83	60-130	1.91	20
ether (MTBE) 3.2 3.5 4 81 87 60-130 7.27 foride 4.1 4.3 4 103 106 50-130 3.28 shloroethane 3.2 3.5 4 81 88 60-130 8.39 hene 3.2 3.2 4 87 91 60-130 1.41 nethane 3.3 3.3 4 82 83 60-130 0.774 nethane 2.9 3.1 4 80 82 60-130 5.66 nethane 3.2 3.3 4 80 82 60-130 5.51 nethane 3.2 3.3 4 80 82 60-130 0.585 nethane 3.2 3.2 4 80 79 60-130 0.585 nethane 3.2 3.2 4 80 79 60-130 0.585 nethane 3.2 2 4 80 <	Ethyl tert-butyl ether (ETBE)	3.1	3.3	4	6/	83	60-130	5.89	20
Ioride 4.1 4.3 4 103 106 50-130 3.28 Anioroethane 3.2 3.5 4 81 88 60-130 8.39 Rene 3.2 3.2 4 79 80 60-130 1.41 Detribute 3.5 3.6 4 87 91 60-130 3.58 Detribute 3.3 3.4 82 80 60-130 5.66 Detribute 3.2 3.3 4 80 82 60-130 5.51 Description 3.2 3.3 4 80 82 60-130 2.51 Description 3.2 3.2 4 80 79 60-130 0.585 Description 3.2 3.2 4 80 79 60-130 0.585 Description 3.2 3.2 4 80 79 60-130 0.585 Description 3.2 2.8 2 60-130	Methyl-t-butyl ether (MTBE)	3.2	3.5	4	81	8/	60-130	7.27	20
Shloroethane 3.2 3.5 4 81 88 60-130 8.39 hene 3.2 3.2 4 79 80 60-130 1.41 3.5 3.6 4 87 91 60-130 3.58 oethane 2.9 3.1 4 73 77 60-130 5.66 ne 3.2 3.3 4 80 82 60-130 2.51 omethane 3.2 3.2 4 80 79 60-130 0.585 omethane 2.7 2.8 2 134,F2 138,F2 60-130 3.14	Methylene chloride	4.1	4.3	4	103	106	50-130	3.28	20
hene 3.2 3.2 4 79 80 60-130 1.41 3.5 3.6 4 87 91 60-130 3.58 oethane 2.9 3.1 4 73 77 60-130 0.774 ne 3.2 3.3 4 80 82 60-130 2.51 omethane 3.2 3.2 4 80 79 60-130 0.585 omethane 2.7 2.8 2 134,F2 138,F2 60-130 3.14	1,1,2,2-Tetrachloroethane	3.2	3.5	4	81	88	60-130	8.39	20
3.5 3.6 4 87 91 60-130 3.58 oethane 3.3 3.3 4 82 63 60-130 0.774 oethane 2.9 3.1 4 73 77 60-130 5.66 nethane 3.2 3.3 4 80 79 60-130 0.585 omethane 3.2 3.2 4 80 79 60-130 0.585 oethane 2.7 2.8 2 134,F2 138,F2 60-130 3.14	Tetrachloroethene	3.2	3.2	4	6/	80	60-130	1.41	20
oethane 3.3 3.3 4 82 83 60-130 0.774 oethane 2.9 3.1 4 73 77 60-130 5.66 ne 3.2 3.3 4 80 82 60-130 2.51 omethane 3.2 3.2 4 80 79 60-130 0.585 omethane 2.7 2.8 2 134,F2 138,F2 60-130 3.14	Toluene	3.5	3.6	4	/8	91	60-130	3.58	20
oethane 2.9 3.1 4 73 77 60-130 5.66 ne 3.2 3.3 4 80 82 60-130 2.51 omethane 3.2 3.2 4 80 79 60-130 0.585 2.7 2.8 2 134,F2 138,F2 60-130 3.14	1,1,1-Trichloroethane	3.3	3.3	4	78	83	60-130	0.774	22
ne 3.2 3.3 4 80 82 60-130 2.51 omethane 3.2 3.2 4 80 79 60-130 0.585 2.7 2.8 2 134,F2 138,F2 60-130 3.14	1,1,2-Trichloroethane	2.9	3.1	4	73	1	60-130	5.66	20
3.2 3.2 4 80 79 60-130 2.7 2.8 2 134,F2 138,F2 60-130	Trichloroethene	3.2	3.3	4	08	82	60-130	2.51	20
2.7 2.8 2 134,F2 138,F2	Trichlorofluoromethane	3.2	3.2	4	80	62	60-130	0.585	20
	Vinyl chloride	2.7	2.8	2	134,F2	138,F2	60-130	3.14	20

PG&E Gateway Generating Station Client:

09/02/2022 09/02/2022 Date Prepared: Date Analyzed:

GC45 Water Instrument: Matrix: Semi-Annual Sampling (August 2022) Project:

2208M32 253232 WorkOrder: BatchID:

Extraction Method: E624.1 Analytical Method: E624.1

 $\mu g/L$ Unit:

MB/LCS/LCSD-253232 Sample ID:

	QC Sum	mary Re	QC Summary Report for E624.1					
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD	RPD
								ĺ
Surrogate Recovery								
Dibromofluoromethane	24	24	25	26	86		0.596	20
Toluene-d8	26	25	25	102	102	70-130	0.404	20
4-BFB	2.4	2.4	2.5	86	26	70-130	1.06	20

WorkOrder: PG&E Gateway Generating Station Client:

BatchID: 09/02/2022 Date Prepared:

Date Analyzed: 09/02/2022 Instrument: GC47

Water

Matrix:

Project: Semi-Annual Sampling (August 2022)

WorkOrder: 2208M32 **BatchID:** 253224

Extraction Method: E625.1 Analytical Method: E625.1 Unit: µg/L

Sample ID: MB/LCS/LCSD-253224

7		7	
ļ		j	
ļ	2	1	
`	ε	₹	
ŀ	I	4	
	٤	-	
	ς	?	
•	۰	7	
•	ŧ	_	
	7	5	
		5	
	ā	2	
•	ï	d	
۱	Ť	4	
	þ	>	2
	٤	4	•
	2	3	
	۶	3	
	È	3	
	Ž	3	
	Ξ	3	
ζ	7	2	
7		١	
١	=	•	
Ć)	,
•			

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Acenaphthene	ND	0.0020	0:0020			
Acenaphthylene	ND	0.00093	0.0050			
Anthracene	ND	0.0027	0.0050			
Benzidine	ND	2.4	5.0			
Benzo (a) anthracene	ND	0.012	0.050			
Benzo (a) pyrene	ND	0.0031	0.0050			
Benzo (b) fluoranthene	ND	0.0056	0.020			
Benzo (g,h,i) perylene	ND	0.0051	0.020			
Benzo (k) fluoranthene	ND	0.0052	0.020			
Benzyl Alcohol	ND	3.2	5.0			
Bis (2-chloroethoxy) Methane	ND	0.25	1.0			
Bis (2-chloroethyl) Ether	ND	0.0020	0.0050			
Bis (2-chloroisopropyl) Ether	ND	0.015	0.050			
Bis (2-ethylhexyl) Adipate	ND	0.27	1.0			
Bis (2-ethylhexyl) Phthalate	ND	0.045	0.20			
4-Bromophenyl Phenyl Ether	ND	0.15	1.0			Ĭ.
Butylbenzyl Phthalate	ND	0.0074	0.050			
4-Chloroaniline	QN	0.0014	0.0050			
4-Chloro-3-methylphenol	ND	0.37	1.0			
2-Chloronaphthalene	ND	0.22	1.0			
2-Chlorophenol	QN	0.013	0.050			
4-Chlorophenyl Phenyl Ether	QN	0.22	1.0			Ĭ.
Chrysene	QN	0.0020	0.0050			
Dibenzo (a,h) anthracene	QN	0.0056	0.020			Ì.
Dibenzofuran	QN	0.0015	0.0050			ĺ.
Di-n-butyl Phthalate	QN	0.018	0.050			Ì.
1,2-Dichlorobenzene	QN	0.17	1.0			Ì.
1,3-Dichlorobenzene	QN	0.28	1.0			
1,4-Dichlorobenzene	QN	0.28	1.0			
3,3-Dichlorobenzidine	QN	0.0024	0.0050			
2,4-Dichlorophenol	QN	0.0030	0.010			Ĭ.
Diethyl Phthalate	QN	0.016	0.050			ľ
2,4-Dimethylphenol	QN	0.49	1.0			
Dimethyi Phthalate	ДN	0.0048	0.010			
4,6-Dinitro-2-methylphenol	QN	6.	5.0	ļ.		
2,4-Dinitrophenol	QN	0.38	1.0			
2,4-Dinitrotoluene	QN	0.020	0.050			ľ
2,6-Dinitrotoluene	<u>QN</u>	0.019	0.050			

WorkOrder: PG&E Gateway Generating Station Client:

09/02/2022 Date Prepared:

Date Analyzed: 09/02/2022 Instrument: GC47

Water

Matrix:

Project: Semi-Annual Sampling (August 2022)

WorkOrder: 2208M32 **BatchID:** 253224

Extraction Method: E625.1 Analytical Method: E625.1

Unit: µg/L

Sample ID: MB/LCS/LCSD-253224

QC Summary Report for E625.1

Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Di-n-octyl Phthalate	ND	0.77	1.0		1	
1,2-Diphenylhydrazine	ND	0.20	1.0			
Fluoranthene	ND	0.0027	0.010			
Fluorene	QN	0.0029	0.010			
Hexachlorobenzene	QN	0.0016	0.0050			
Hexachlorobutadiene	ND	0.0020	0.0050			
Hexachlorocyclopentadiene	QN	2.3	5.0			
Hexachloroethane	QN	0.0029	0.010			
Indeno (1,2,3-cd) pyrene	QN	0.0072	0.020			
Isophorone	QN	0.92	2.0			
2-Methylnaphthalene	ND	0.0015	0.0050			
2-Methylphenol (o-Cresol)	ND	0.33	1.0			
3 & 4-Methylphenol (m,p-Cresol)	QN	0.25	1.0			
Naphthalene	ND	0.012	0.050			
2-Nitroaniline	QN	1.3	5.0			
3-Nitroaniline	ND	1.8	5.0			
4-Nitroaniline	ND	1.9	5.0			
Nitrobenzene	QN	0.29	1.0			
2-Nitrophenol	ND	1.7	5.0			
4-Nitrophenol	QN	1.6	5.0			
N-Nitrosodimethylamine	ND	1.9	5.0			
N-Nitrosodiphenylamine	ND	0.23	1.0			
N-Nitrosodi-n-propylamine	QN	0.35	1.0		•	
Pentachlorophenol	ND	0.089	0.25			
Phenanthrene	ND	0.0026	0.0050		1	
Phenol	ND	0.057	0.20			
Pyrene	ND	0.0019	0.0050			
Pyridine	ND	0.23	1.0			
1,2,4-Trichlorobenzene	ND	0.19	1.0			
2,4,5-Trichlorophenol	ND	0.0025	0.010			
2,4,6-Trichlorophenol	QN	0.0038	0.010			

Quality Control Report

BatchID: PG&E Gateway Generating Station 09/02/2022 Date Prepared: Client:

09/02/2022 GC47 Date Analyzed: Instrument:

Water

Matrix:

Semi-Annual Sampling (August 2022) Project:

2208M32 WorkOrder:

253224 Extraction Method: E625.1

Analytical Method: E625.1 $\mu g/L$ Unit:

MB/LCS/LCSD-253224 Sample ID:

Analyte	Commany report for E025:1		T.C705			
	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Surrogate Recovery						
2-Fluorophenol	4.1			2	82	30-130
Phenol-d5	4.6			2	91	20-130
Nitrobenzene-d5	3.9			2	78	60-130
2-Fluorobiphenyl	4.4			2	89	50-130
2,4,6-Tribromophenol	3.7			2	74	60-130
4-Terphenyl-d14	3.5			2	69	40-130

PG&E Gateway Generating Station Client:

09/02/2022 Date Prepared:

09/02/2022 GC47 Date Analyzed: Instrument:

Semi-Annual Sampling (August 2022) Water Project: Matrix:

2208M32 WorkOrder:

253224 Extraction Method: E625.1 BatchID:

Analytical Method: E625.1

 $\mu g/L$ Unit:

MB/LCS/LCSD-253224 Sample ID:

QC Summary Report for E625.1

Actornaphithene 0 20 0 21 0 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 6 25 8 25 6 20 10 6 23 6 25 8 25 6 20 10 6 23 8 25 8 25 6 20 10 6 23 8 25	Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
Condition 0.20 0.21 0.25 7.9 82 60-130 4.23 ene 0.22 0.21 0.25 87 88 60-130 5.63 ene 0.20 0.13 0.25 38 38 60-130 5.63 ene 0.20 0.10 0.25 80 78 60-130 1.08 here 0.20 0.21 0.25 80 78 60-130 1.08 here 0.20 0.21 0.25 80 78 60-130 1.08 here 0.20 0.21 0.25 80 78 60-130 1.08 here 0.20 0.19 0.25 80 76 60-130 1.08 here 0.13 0.19 0.25 72 72 60-130 1.19 Ether 0.13 0.13 0.25 72 74 60-130 1.38 Ether 0.13 0.13 0.25	Acenaphthene	0.20	0.21	0.25	81	83	50-130	3.47	25
ene 0.22 0.21 0.25 0.21 0.25 0.27 0.29 0.20 0.10 0.25 0.29 7.4 60-130 4.53 hene 0.18 0.18 0.25 7.2 7.4 60-130 4.53 hene 0.18 0.19 0.25 7.2 7.4 66-130 4.53 pply) Methane 0.18 0.25 7.5 7.4 66-130 4.53 pply) Ether 0.19 0.20 0.25 7.5 7.4 66-130 4.53 stee 0.19 0.19 0.25 7.5 7.4 66-130 <t< td=""><td>Acenaphthylene</td><td>0.20</td><td>0.21</td><td>0.25</td><td>79</td><td>82</td><td>60-130</td><td>4.23</td><td>25</td></t<>	Acenaphthylene	0.20	0.21	0.25	79	82	60-130	4.23	25
Res 8.2 2.6 3.6 3.3 20-130 8.2 ene 0.20 0.25 2.6 3.6 7.8 60-130 3.11 hene 0.20 0.19 0.25 80 7.9 60-130 3.11 hene 0.20 0.21 0.25 80 7.9 60-130 3.11 hene 0.18 0.18 0.25 84 60-130 6.0 4.38 hene 0.18 0.18 0.25 74 77 50-130 4.38 perfect 0.18 0.18 0.25 77 60-130 4.19 Elther 0.19 0.19 0.25 75 72 66-130 4.19 Adipate 0.19 0.19 0.25 75 75 60-130 3.14 Adipate 0.19 0.25 75 75 60-130 3.18 Interest 0.19 0.25 75 75 60-130 4.18	Anthracene	0.22	0.21	0.25	87	83	60-130	5.63	25
ene 0.20 0.19 0.25 60-130 778 60-130 1.08 hene 0.20 0.20 0.25 89 79 60-130 1.08 hene 0.20 0.20 0.20 0.25 84 60-130 1.08 hene 0.20 0.19 0.25 84 60-130 1.08 hene 0.20 0.19 0.25 74 71 50-130 4.38 hene 0.20 0.19 0.25 79 76 60-130 4.38 hene 0.18 0.19 0.25 75 72 66-130 4.31 Adjatate 0.19 0.20 0.25 72 74 60-130 2.75 Adjatate 0.19 0.20 0.25 75 77 60-130 2.36 Adjatate 0.19 0.25 76 77 60-130 2.35 Adjatate 0.19 0.25 78 66-130 2.7	Benzidine	8.9	8.2	25	36	33	20-130	8.29	25
hene 0.20 0.20 0.25 6.9 6.9 79 60-130 108 hene 0.18 0.25 0.25 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	Benzo (a) anthracene	0.20	0.19	0.25	80	78	60-130	3.11	25
hene 0.20 0.21 0.25 84 60-130 260 lene lene 0.18 0.18 0.25 74 71 50-130 4.38 lene 0.18 0.18 0.25 79 74 71 50-130 4.38 lene 0.18 0.18 0.25 79 79 60-130 4.38 lene 0.18 0.19 0.25 79 69 60-130 0.314 y) Methane 0.18 0.19 0.25 75 72 66-130 4.19 1.25 lene 0.19 0.19 0.25 75 72 66-130 4.19 1.25 lene 0.19 0.19 0.25 75 72 66-130 2.75 lene 0.19 0.19 0.25 75 72 69 60-130 0.386 lene 0.19 0.19 0.25 75 72 69 60-130 0.386 lene 0.19 0.19 0.25 75 77 76 60-130 0.386 lene 0.19 0.19 0.25 75 77 76 60-130 0.386 lene 0.19 0.19 0.25 75 77 76 60-130 0.386 lene 0.19 0.19 0.25 75 77 76 60-130 0.386 lene 0.19 0.19 0.25 75 77 76 60-130 0.386 lene 0.19 0.19 0.25 80 80 65-130 0.386 lene 0.19 0.19 0.25 80 80 65-130 0.386 lene 0.20 0.20 0.20 0.25 80 80 65-130 0.386 lene 0.20 0.20 0.20 0.25 80 80 65-130 0.389 lene 0.20 0.20 0.20 0.25 80 80 65-130 0.389 lene 0.20 0.20 0.20 0.25 80 80 65-130 0.389 lene 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	Benzo (a) pyrene	0.20	0.20	0.25	80	79	60-130	1.08	25
lene 0.18 0.18 0.25 74 71 50-130 4.38 here 0.20 0.19 0.25 76 66-130 4.38 here 0.20 0.19 0.25 76 66-130 0.314 0.35 1.8	Benzo (b) fluoranthene	0.20	0.21	0.25	82	84	60-130	2.60	25
hene 0.20 0.19 0.25 79 76 60-130 4.53 Hene 17 25 68 69	Benzo (g,h,i) perylene	0.18	0.18	0.25	74	71	50-130	4.38	25
y) Methane 17 17 25 69 60-130 0.314 Ether 3.8 3.6 5 75 72 74 66-130 4.19 Ether 0.18 0.19 0.25 72 74 66-130 2.71 pyl) Ether 0.18 0.19 0.25 75 75 66-130 5.71 Adipate 0.19 0.20 0.25 75 79 60-130 5.71 Adipate 0.19 0.19 0.25 76 77 60-130 0.386 Phthalate 0.19 0.18 0.25 76 77 60-130 0.386 Phthalate 0.19 0.18 0.25 76 77 60-130 0.386 Phthalate 0.19 0.18 0.25 77 76 60-130 0.386 John 0.19 0.26 0.25 82 86 65-130 2.77 John 0.20 0.20 <t< td=""><td>Benzo (k) fluoranthene</td><td>0.20</td><td>0.19</td><td>0.25</td><td>79</td><td>9/</td><td>60-130</td><td>4.53</td><td>25</td></t<>	Benzo (k) fluoranthene	0.20	0.19	0.25	79	9/	60-130	4.53	25
by) Methane 3.8 3.6 5 75 72 65-130 4.19 Elther 0.18 0.19 0.25 75 74 60-130 2.75 poy) Ether 0.18 0.19 0.25 75 79 60-130 2.75 Adjatele 0.19 0.26 0.25 76 77 60-130 2.75 Adjatele 0.19 0.19 0.25 76 77 60-130 2.75 Adjatele 0.19 0.19 0.25 76 77 60-130 2.75 Adjatele 0.19 0.19 0.25 76 77 60-130 2.36 Iate 0.19 0.19 0.25 77 76 60-130 2.36 phenol 3.8 3.7 5 80 80 65-130 7.7 phenol 3.8 3.7 5 7.2 7.2 60-130 0.38 phenol 3.8 3.8 6	Benzyl Alcohol	17	17	25	69	69	60-130	0.314	25
LEther 0.18 0.19 0.25 72 74 60-130 2.75 Adjaate 0.19 0.20 0.25 75 79 60-130 5.71 Adjaate 3.6 3.4 5 7 60-130 4.65 Adjaate 0.19 0.19 0.25 76 77 60-130 3.85 nenyl Ether 0.19 0.19 0.25 76 77 60-140 2.30 nenyl Ether 0.19 0.19 0.25 86 82 65-130 2.36 phenol 0.19 0.19 0.25 77 76 60-140 2.30 phenol 0.19 0.19 0.25 77 76 60-140 2.30 phenol 0.19 0.25 80 80 80-140 2.36 phenol 0.19 0.25 77 76 66-130 2.38 processor 0.20 0.20 0.25 82 80 <	Bis (2-chloroethoxy) Methane	3.8	3.6	5	75	72	65-130	4.19	25
Opyl) Ether 0.19 0.20 0.25 75 79 60-130 5.71 Adipate 3.6 3.4 5 72 69 60-130 5.71 Adipate 3.6 3.4 5 5 69 60-130 4.65 Phthalate 0.19 0.19 0.25 76 77 60-130 0.386 Interest 0.19 0.19 0.25 77 76 60-130 2.36 phenol 3.8 3.7 5 82 89 65-130 2.36 phenol 3.2 3.2 3.2 3.2	Bis (2-chloroethyl) Ether	0.18	0.19	0.25	72	74	60-130	2.75	25
Adipate 3.6 3.4 5 72 69 60-130 4.65 Phthalate 0.19 0.19 0.25 76 77 60-130 0.386 Parithalate 0.19 0.19 0.25 76 77 60-130 0.386 Parithalate 0.19 0.19 0.25 77 76 60-130 0.386 phenol 3.8 3.7 5 77 76 60-130 2.88 phenol 3.8 3.7 5 5 82 89 65-130 2.88 Parithalate 0.20 0.20 0.25 80 80 65-130 2.88 Parithalate 0.20 0.20 0.25 80 80 65-130 0.382 Parithalate 0.20 0.21 0.25 80 81 70-130 0.382 Parithalate 0.20 0.19 0.25 80 85 65-130 0.382 Parithalate 0.20 0.19 0.25 80 85 65-130 0.382 Parithalate 0.20 0.19 0.25 80 77 77 80-130 0.382 Parithalate 0.20 0.19 0.25 80 75 60-130 0.382 Parithalate 0.20 0.19 0.25 76 60-130 0.382 Parithalate 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	Bis (2-chloroisopropyl) Ether	0.19	0.20	0.25	75	79	60-130	5.71	25
Phithalate 0.19 0.19 0.25 76 77 60-130 0.386 lentyl Ether 4.3 4.1 5 86 82 65-130 4.33 late 0.19 0.18 0.25 75 75 76 60-130 2.36 phenol 3.8 3.7 5 7 76 60-130 2.36 phenol 4.1 4.5 5 80 80 65-130 2.36 phenol 0.20 0.20 0.20 0.20 0.20 80 80 65-130 3.38 nenyl Ether 4.1 4.3 5 80 81 70-130 0.392 nenyl Ether 0.20 0.20 0.20 0.25 80 81 70-130 0.398 nrecene 0.18 0.18 0.25 80 81 70-130 0.398 nrecene 0.20 0.21 0.25 80 81 70-130 0.352	Bis (2-ethylhexyl) Adipate	3.6	3.4	5	72	69	60-130	4.65	25
late 4.3 4.1 5 86 82 65-130 4.33 late 0.19 0.18 0.25 75 75 66-130 2.30 phenol 3.8 3.7 5 77 76 60-140 2.30 phenol 3.8 3.7 5 80 80 65-130 2.68 sne 4.1 4.5 5 80 80 65-130 2.36 sne 4.1 4.3 5 80 80 65-130 2.36 sne 0.20 0.20 0.25 80 81 70 7.7 tach 0.18 0.25 80 81 70 7.8 8.8 tach 0.20 0.21 0.25 80 81 70 7.8 8.8 tach 0.20 0.21 0.25 72 72 72 72 72 72 73 80-130 7.0 ine	Bis (2-ethylhexyl) Phthalate	0.19	0.19	0.25	9/	77	60-130	0.386	25
late 0.19 0.18 0.25 75 73 60-140 2.30 phenol 3.8 3.7 5 7 76 60-130 2.36 phenol 3.8 3.7 5 7 76 60-130 2.36 phenol 3.8 3.7 5 80 80 65-130 2.68 nenyl Ether 0.20 0.20 0.25 80 80 65-130 3.38 nenyl Ether 0.20 0.20 0.25 80 80 65-130 0.392 nenyl Ether 0.20 0.20 0.25 80 81 70-130 0.392 neryl Ether 0.18 0.25 80 81 70-130 0.392 neryl Ether 0.20 0.21 0.25 80 81 60-130 0.382 nee 0.20 0.21 0.25 81 76 60-130 0.382 nee 0.20 0.20 0.25	4-Bromophenyl Phenyl Ether	4.3	4.1	2	98	82	65-130	4.33	25
phenol 38 3.7 5 77 76 60-130 2.36 phenol 38 3.7 5 76 74 65-130 2.68 sne 4.1 4.5 5 82 89 65-130 2.68 nenyl Ether 4.1 4.5 5 82 89 65-130 2.68 nenyl Ether 4.1 4.3 5 82 80 60-130 0.32 nenyl Ether 4.1 4.3 5 83 86 65-130 2.71 nenyl Ether 0.20 0.20 0.25 80 81 70-130 0.398 nrecene 0.18 0.25 80 81 70-130 0.398 nre 0.20 0.21 0.25 80 85 65-130 2.71 nre 0.22 0.23 17 7 7 60-130 0.38 nre 3.6 5 5 7 7 <th< td=""><td>Butylbenzyl Phthalate</td><td>0.19</td><td>0.18</td><td>0.25</td><td>75</td><td>73</td><td>60-140</td><td>2.30</td><td>25</td></th<>	Butylbenzyl Phthalate	0.19	0.18	0.25	75	73	60-140	2.30	25
phenol 3.8 3.7 5 76 74 65-130 2.68 sne 4.1 4.5 5 82 89 65-130 7.71 sne 4.1 4.5 5 82 89 65-130 7.71 newyl Ether 4.1 4.3 5 83 86 65-130 7.71 ne 0.20 0.20 0.25 80 81 70-130 0.38 ne 0.20 0.21 0.25 80 81 70-130 0.38 ne 0.20 0.21 0.25 80 81 70-130 0.38 ne 0.20 0.21 0.25 81 7 7 60-130 0.38 ne 3.6 3.7 5 7 7 60-130 0.38 ne 0.20 0.19 0.25 80 81 60-130 0.38 ne 0.20 0.21 0.25 76 7	4-Chloroaniline	0.19	0.19	0.25	77	9/	60-130	2.36	25
ane 4.1 4.5 5 82 89 65-130 7.71 nemyl Ether 0.20 0.20 0.25 80 80 65-130 0.392 nemyl Ether 4.1 4.3 5 83 86 65-130 0.392 nemyl Ether 0.20 0.20 0.25 80 81 70-130 0.998 nracene 0.18 0.25 72 72 72 56-130 0.0805 te 0.20 0.21 0.25 80 85 65-130 0.0805 te 0.20 0.21 0.25 72 72 56-130 0.0805 te 0.20 0.21 0.25 81 76 65-130 0.0805 ine 0.20 0.21 0.25 81 77 77 60-130 0.452 ine 0.20 0.19 0.25 77 77 60-130 0.34 ine 3.56 3.74	4-Chloro-3-methylphenol	3.8	3.7	2	9/	74	65-130	2.68	25
nemyl Ether 4.1 4.3 5 80 80 60-130 0.392 nemyl Ether 4.1 4.3 5 83 86 65-130 3.38 nracene 0.20 0.20 0.25 80 81 70-130 0.998 nracene 0.18 0.25 72 72 50-130 0.0905 te 0.20 0.21 0.25 80 85 65-130 0.0805 ine 0.20 0.21 0.25 81 7 50-130 0.0805 ine 0.20 0.19 0.25 81 7 60-130 0.0805 ine 3.8 3.9 5 7 7 60-130 0.452 ine 3.6 3.7 7 7 60-130 0.452 ine 3.6 3.7 7 7 60-130 0.339 ine 3.6 3.7 7 7 7 60-130 0.349 <	2-Chloronaphthalene	4.1	4.5	2	82	89	65-130	7.71	25
nenyl Ether 4.1 4.3 5 83 86 65-130 3.38 nenyl Ether 0.20 0.20 0.25 80 81 70-130 0.998 nracene 0.18 0.18 0.25 72 72 50-130 0.998 te 0.20 0.21 0.25 80 85 65-130 5.88 nne 0.20 0.19 0.25 81 77 77 60-130 0.452 nne 3.8 3.9 5 77 77 60-130 0.452 nne 3.8 3.6 5 77 77 60-130 0.452 nne 3.8 3.7 5 7 7 60-130 0.352 nne 3.6 3.7 7 7 60-130 0.339 nne 3.6 3.7 7 7 60-130 0.349 nne 0.19 0.19 0.25 7 7 7 <td>2-Chlorophenol</td> <td>0.20</td> <td>0.20</td> <td>0.25</td> <td>80</td> <td>80</td> <td>60-130</td> <td>0.392</td> <td>25</td>	2-Chlorophenol	0.20	0.20	0.25	80	80	60-130	0.392	25
nracene 0.20 0.20 0.25 80 81 70-130 0.998 nracene 0.18 0.25 72 72 72 50-130 0.0805 te 0.20 0.21 0.25 80 85 65-130 6.0805 nne 0.20 0.19 0.25 81 78 60-130 5.88 nne 3.8 3.9 5 77 77 60-130 6.52 nne 3.6 3.6 5 77 77 60-130 3.52 nne 3.6 3.7 7 7 7 60-130 3.77 sine 3.6 3.7 7 7 7 60-130 3.77 dine 0.29 3.7 7 7 60-130 3.77 dine 0.20 0.25 7 7 60-130 3.24 dine 0.20 0.25 7 7 60-130 3.24	4-Chlorophenyl Phenyl Ether	4.1	4.3	2	83	98	65-130	3.38	25
irracene 0.18 0.18 0.25 72 72 72 50-130 0.0805 te 0.20 0.21 0.25 80 85 65-130 5.88 te 0.20 0.19 0.25 81 77 77 60-130 3.52 sine 3.6 3.6 5 77 77 60-130 3.52 sine 3.6 3.7 77 77 60-130 3.52 sine 3.6 3.7 77 77 60-130 3.52 sine 3.6 3.7 7 7 60-130 3.77 sine 0.19 0.25 7 7 60-130 7.06 ol 0.20 0.19 0.25 7 7 66 65-130 4.01 ol 0.18 0.19 0.25 7 7 7 66 65-130 1.47 e 0.20 0.21 0.25 7 <td< td=""><td>Chrysene</td><td>0.20</td><td>0.20</td><td>0.25</td><td>80</td><td>81</td><td>70-130</td><td>0.998</td><td>25</td></td<>	Chrysene	0.20	0.20	0.25	80	81	70-130	0.998	25
te 0.20 0.21 0.25 80 85 65-130 5.88 ft or control of the control o	Dibenzo (a,h) anthracene	0.18	0.18	0.25	72	72	50-130	0.0805	25
te 6.20 0.19 0.25 81 78 60-130 3.52 sine 3.8 3.9 5 77 77 60-130 0.452 sine 3.6 3.6 5 77 77 77 60-130 0.452 sine 3.6 3.6 3.7 71 73 60-130 2.50 3.77 sine 0.19 0.19 0.25 80 75 60-130 7.06 0.18 0.19 0.25 80 75 60-130 7.06 0.18 0.19 0.25 72 76 60-130 7.06 0.19 0.25 80 72 76 60-130 4.01 sine 0.20 0.21 0.25 76 60-130 4.01 sine 0.20 0.21 0.25 75 74 60-130 1.47 sine 0.21 0.25 83 85 70-130 3.24 0.20 0.21 0.25 83 85 70-130 3.24	Dibenzofuran	0.20	0.21	0.25	80	85	65-130	5.88	25
nne 3.8 3.9 5 77 77 60-130 0.452 nne 3.6 3.6 5 77 73 60-130 2.50 sine 3.6 3.7 5 72 75 60-130 2.50 all 0.19 0.25 76 75 60-130 7.06 ol 0.18 0.19 0.25 76 76 75 60-130 4.01 ol 3.8 3.6 5 76 73 60-130 4.01 e 0.20 0.21 0.25 76 73 60-130 4.01 e 0.20 0.21 0.25 76 74 60-130 1.47 e 0.20 0.21 0.25 75 74 60-130 1.47 e 19 19 25 75 74 60-130 1.47 e 10.21 0.21 0.25 83 85 70-130	Di-n-butyl Phthalate	0.20	0.19	0.25	81	78	60-130	3.52	25
sine 3.6 3.6 5 71 73 60-130 2.50 sine 3.6 3.7 5 72 75 60-130 3.77 dine 0.19 0.25 76 75 60-130 0.339 ol 0.20 0.19 0.25 72 76 60-130 7.06 ol 3.8 3.6 5 76 73 60-130 4.01 e 0.20 0.21 0.25 78 83 60-130 5.63 wildphenol 19 25 75 74 60-130 1.47 3.4 3.8 5 68 76 50-130 11.5 0.21 0.21 0.25 75 74 60-130 1.47 3.4 3.8 5 70-130 3.24 0.21 0.25 83 85 70-130 3.24 0.20 0.21 0.25 79 83 65-140	1,2-Dichlorobenzene	3.8	3.9	5	1	1	60-130	0.452	25
sine 3.6 3.7 5 72 75 60-130 3.77 dine 0.19 0.19 0.25 76 75 60-130 0.339 ol 0.20 0.19 0.25 72 76 60-130 7.06 ol 3.8 3.6 5 76 73 60-130 4.01 e 0.20 0.21 0.25 78 83 60-130 4.01 e 0.20 0.21 0.25 78 83 60-130 1.47 sylphenol 19 19 25 74 60-130 1.47 s.4 3.8 5 68 76 50-130 11.5 o.21 0.21 0.25 83 85 70-130 3.24 o.20 0.21 0.25 79 83 65-140 5.48	1,3-Dichlorobenzene	3.6	3.6	5	7	/3	60-130	2.50	25
dine 0.19 0.19 0.25 76 75 60-130 0.339 ol 0.20 0.19 0.25 80 75 60-130 7.06 ol 3.8 3.6 5 76 73 60-130 4.01 e 0.20 0.21 0.25 76 73 60-130 4.01 e 0.20 0.21 0.25 75 74 60-130 1.47 sylphenol 19 19 25 75 74 60-130 1.47 state 3.24 3.8 5 68 76 50-130 11.5 o.21 0.21 0.25 83 85 70-130 3.24 o.20 0.21 0.25 79 83 65-140 5.48	1,4-Dichlorobenzene	3.6	3.7	5	7.2	75	60-130	3.77	25
olimitation 0.20 0.19 0.25 80 75 60-130 7.06 ol 0.18 0.19 0.25 72 76 65-130 4.96 ol 3.8 3.6 5 76 73 60-130 4.01 e 0.20 0.21 0.25 75 74 60-130 1.47 sylphenol 19 19 25 75 74 60-130 1.47 3.4 3.8 5 68 76 50-130 11.5 0.21 0.21 0.25 83 85 70-130 3.24 0.20 0.21 0.25 83 85 70-130 5.48	3,3-Dichlorobenzidine	0.19	0.19	0.25	9/	75	60-130	0.339	25
0.18 0.19 0.25 72 76 65-130 4.96 3.8 3.6 5 76 73 60-130 4.01 e 0.20 0.21 0.25 78 83 60-130 5.63 lylphenol 19 25 75 74 60-130 1.47 3.4 3.8 5 68 76 50-130 11.5 0.21 0.21 0.25 83 85 70-130 3.24 0.20 0.21 0.25 83 65-140 5.48	2,4-Dichlorophenol	0.20	0.19	0.25	80	75	60-130	7.06	25
ol 3.8 3.6 5 76 73 60-130 4.01 e 0.20 0.21 0.25 78 83 60-130 5.63 ylphenol 19 25 75 74 60-130 1.47 3.4 3.8 5 68 76 50-130 11.5 0.21 0.21 0.25 83 85 70-130 3.24 0.20 0.21 0.25 83 65-140 5.48	Diethyl Phthalate	0.18	0.19	0.25	7.5	9/	65-130	4.96	25
e 0.20 0.21 0.25 78 83 60-130 5.63 50/190 5.63 50/190 5.63 50/190 5.63 50/190 5.63 50/190 1.47 50/190 5.63 50/190 1.47 50/190 5.24 50/190 5.24 50/190 5.48	2,4-Dimethylphenol	3.8	3.6	2	9/	73	60-130	4.01	25
lyphenol 19 19 25 75 74 60-130 1.47 3.4 3.8 5 68 76 50-130 11.5 0.21 0.21 0.25 83 85 70-130 3.24 0.20 0.21 0.25 79 83 65-140 5.48	Dimethyl Phthalate	0.20	0.21	0.25	8/	83	60-130	5.63	52
3.4 3.8 5 68 76 50-130 11.5 0.21 0.21 0.25 83 85 70-130 3.24 0.20 0.21 0.25 79 83 65-140 5.48	4,6-Dinitro-2-methylphenol	61	19	25	75	74	60-130	1.47	25
0.21 0.25 83 85 70-130 3.24 0.20 0.21 0.25 79 83 65-140 5.48	2,4-Dinitrophenoi	3.4	3.8	2	89	9/	50-130	11.5	25
0.20 0.21 0.25 79 83 65-140	2,4-Dinitrotoluene	0.21	0.21	0.25	83	85	70-130	3.24	22
	2,6-Dinitrotoluene	0.20	0.21	0.25	79	83	65-140	5.48	25

PG&E Gateway Generating Station Client:

09/02/2022 09/02/2022 Date Prepared:

GC47 Date Analyzed: Instrument:

Semi-Annual Sampling (August 2022) Water Project: Matrix:

2208M32 WorkOrder:

253224 Extraction Method: E625.1 BatchID:

Analytical Method: E625.1 $\mu g/L$ Unit:

MB/LCS/LCSD-253224 Sample ID:

QC Summary Report for E625.1

				ı	ı			١
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Di-n-octyl Phthalate	4.0	4.1	5	80	82	70-130	2.56	25
1,2-Diphenylhydrazine	4.1	3.9	2	83	78	65-130	6.14	25
Fluoranthene	0.23	0.22	0.25	91	89	65-130	2.62	25
Fluorene	0.20	0.21	0.25	82	98	65-130	4.74	25
Hexachlorobenzene	0.22	0.21	0.25	89	84	60-130	5.45	25
Hexachlorobutadiene	0.21	0.21	0.25	84	84	60-130	0.607	25
Hexachlorocyclopentadiene	17	18	25	89	72	50-130	6.34	25
Hexachloroethane	0.19	0.19	0.25	75	9/	40-130	1.87	25
Indeno (1,2,3-cd) pyrene	0.19	0.19	0.25	75	75	50-130	0.429	25
Isophorone	3.6	3.5	2	72	71	50-130	1.82	25
2-Methylnaphthalene	0.21	0.21	0.25	85	83	60-130	2.57	25
2-Methylphenol (o-Cresol)	4.0	3.7	2	79	75	60-130	5.45	25
3 & 4-Methylphenol (m,p-Cresol)	4.1	3.8	2	81	9/	60-130	6.80	25
Naphthalene	0.19	0.19	0.25	78	92	50-130	1.67	25
2-Nitroaniline	19	20	25	92	79	65-130	3.68	25
3-Nitroaniline	17	16	25	67,F5	62,F5	70-140	7.21	25
4-Nitroaniline	21	23	25	84	92	70-130	8.22	25
Nitrobenzene	3.8	3.7	2	92	75	60-130	1.60	25
2-Nitrophenol	19	18	25	17	72	70-130	7.56	25
4-Nitrophenol	19	20	25	75	81	30-130	8.02	25
N-Nitrosodimethylamine	20	20	25	80	78	30-130	1.75	25
N-Nitrosodiphenylamine	4.3	4.0	2	85	79	65-130	7.38	25
N-Nitrosodi-n-propylamine	3.4	3.5	2	89	71	50-130	4.20	25
Pentachlorophenol	1.1	1.1	1.25	91	87	60-130	4.88	25
Phenanthrene	0.21	0.20	0.25	83	79	65-130	5.57	25
Phenol	08.0	0.79	_	80	6/	30-130	1.51	25
Pyrene	0.20	0.19	0.25	80	78	70-130	2.79	25
Pyridine	3.3	3.2	2	99	65	30-130	2.50	25
1,2,4-Trichlorobenzene	4.0	4.0	2	6/	81	65-130	1.75	25
2,4,5-Trichlorophenol	0.22	0.23	0.25	/8	92	65-130	5.96	25
2,4,6-Trichlorophenol	0.21	0.22	0.25	84	8/	65-130	4.21	. 52

BatchID: PG&E Gateway Generating Station 09/02/2022 09/02/2022 Date Analyzed: Date Prepared: Client:

Water GC47 Instrument: Matrix:

Semi-Annual Sampling (August 2022) Project:

2208M32 253224 WorkOrder:

Extraction Method: E625.1 Analytical Method: E625.1 $\mu g/L$ Unit:

MB/LCS/LCSD-253224 Sample ID:

	QC Sun	ımary Ro	QC Summary Report for E625.1					
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD	RPD
Surrogate Recovery								
2-Fluorophenol	3.9	3.9	5	78	77	30-130	1.09	25
Phenol-d5	4.5	4.4	5	06	88	20-130	2.22	25
Nitrobenzene-d5	4.2	4.1	2	84	81	60-130	2.87	25
2-Fluorobiphenyl	4.5	4.7	5	06	94	50-130	3.92	25
2,4,6-Tribromophenol	4.1	3.9	5	83	78	60-130	6.37	25
4-Terphenyl-d14	3.7	3.5	5	74	71	40-130	5.16	25

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page of 1

WorkOrder: 2208M32

ClientCode: PGEA

HardCopy

ThirdParty

J-flag

5 days;

☐ WaterTrax T CLIP EDF **EQuIS** Dry-Weight Email

| Excel

Detection Summary Bill to:

Report to:

Angel Espiritu PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509 (925) 459-7212 FAX: Email: abe4@pge.com

cc/3rd Party: a1he@pge.com; j5ld@pge.com; tlwy@pge.

PO:

Project: Semi-Annual Sampling (August 2022) Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Date Received:

Requested TAT:

08/31/2022

Date Logged: 08/31/2022

								Re	equeste	d Tests	(See leg	end bel	ow)			
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
2208M32-001	E-001	Water	8/31/2022 10:35	ш	D	A	В	С	ΙΑ	1			ī-		1	Ť

Test Legend:

1	608_W
5	PRDisposal Fee
9	

2	624_W	
6]		
10]		

3	624ACR+2CEVE_W	Į,
7		
11		

4	625_SCSM_W
8	
12	

Prepared by: Lilly Ortiz

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Project: Semi-Annual Sampling (August 2022)

Work Order: 2208M32

QC Level: LEVEL 2

Client Contact: Angel Espiritu
Contact's Email: abe4@pge.com

Comments

Date Logged: 8/31/2022

		☐ Water	Trax WriteOn EDF	Exce	elEQu	IS Email	HardCopy	Third	dParty U-flag	9	
LabID	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U** Head Dry- Space Weigh		TAT	Test Due Date	Sediment Content	Sub Out
001A E	-001	Water	E624.1 (VOCs) <1,1,1-Trichloroethane, 1,1,2-Trichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethane, 1,2-Dichlorobenzene, 1,2-Dichloroethane (1,2-DCA), 1,2-Dichloropropane, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Benzene, Bromodichloromethane, Bromoform, Bromomethane, Carbon tetrachloride, Chlorobenzene, Chloroethane, Chloroform, Chloromethane, cis-1,3-Dichloropropene, Dibromochloromethane, Ethylbenzene, Methylene chloride, Tetrachloroethene, Toluene, trans-1,2-Dichloroethene, trans-1,3-Dichloropropene, Trichloroethene, Trichlorofluoromethane, Vinyl chloride>		VOA w/ HCl		8/31/2022 10:35	5 days	9/8/2022	Present	
001B E	5-001	Water	E624.1 (ACRO, ACRY, & 2-CEVE) <2- Chloroethyl Vinyl Ether, Acrolein (Propenal), Acrylonitrile>	2	VOA, Unpres		8/31/2022 10:35	5 days	9/8/2022	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Client Contact:

Contact's Email: abe4@pge.com

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Angel Espiritu

Project: Semi-Annual Sampling (August 2022)

Work Order: 2208M32

QC Level: LEVEL 2

Comments Date Logged: 8/31/2022

LabID	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U** Head Spac	l Dry- e Weigh	Collection Date t & Time	TAT	Test Due Date	Sediment Content	Sub Out
001C E	-001	Water	E625.1 (SVOCs) <1,2,4- Trichlorobenzene, 1,2-Dichlorobenzene, 1,2-Diphenylhydrazine, 1,3- Dichlorobenzene, 1,4-Dichlorobenzene, 2,4,6-Trichlorophenol, 2,4- Dichlorophenol, 2,4-Dinitrotoluene, 2,4-Dinitrotoluene, 2- Chloronaphthalene, 2-Chlorophenol, 2- Nitrophenol, 3,3-Dichlorobenzidine, 4- Bromophenyl Phenyl Ether, 4-Chloro-3- methylphenol, 4-Chlorophenyl Phenyl Ether, 4-Nitrophenol, Acenaphthene, Acenaphthylene, Anthracene, Benzo (a) pyrene, Benzo (a) anthracene, Benzo (g,h,i) perylene, Benzo (k) fluoranthene, Bis (2- chloroethoxy) Methane, Bis (2- chloroethoxy) Methane, Bis (2- chloroisopropyl) Ether, Bis (2- ethylhexyl) Phthalate, Butylbenzyl Phthalate, Chrysene, Dibenzo (a,h) anthracene, Diethyl Phthalate, Dimethyl	1	1LA Narrow Mouth Unpres	n, 🔲		8/31/2022 10:35	5 days	9/8/2022	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Semi-Annual Sampling (August 2022) **Project:**

Work Order: 2208M32

QC Level: LEVEL 2

Client Contact: Angel Espiritu

Contact	's Email: abe4@pg	e.com		Comments						Date Lo	gged: 8/31	1/2022
		☐ Water	Trax WriteOn EDF	Exce	elEQu	IS F E	Email	HardCopy	Third	IParty ☐J-flaç)	
LabID	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	U** Head Space	•	lection Date & Time	TAT	Test Due Date	Sediment Content	Hold Sub Out
			Phthalate, Di-n-butyl Phthalate, Di-n- octyl Phthalate, Fluoranthene, Fluorene, Hexachlorobenzene, Hexachlorobutadiene, Hexachlorocyclopentadiene, Hexachloroethane, Indeno (1,2,3-cd) pyrene, Isophorone, Naphthalene, Nitrobenzene, N-Nitrosodimethylamine, N-Nitrosodi-n-propylamine, N- Nitrosodiphenylamine, Pentachlorophenol, Phenanthrene, Phenol, Pyrene>									

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Project: Semi-Annual Sampling (August 2022)

Work Order: 2208M32

QC Level: LEVEL 2

Client Contact: Angel Espiritu
Contact's Email: abe4@pge.com

Comments

Date Logged: 8/31/2022

	☐ Water	Trax WriteOn EDF	Exc	cel EQuis	S Emai	il HardCopy	Third	Party J-flag	9	
LabID ClientSampID	Matrix	Test Name	Containers /Composites		U** Head I Space W	Dry- Collection Date Veight & Time	TAT	Test Due Date	Sediment Content	Hold Sub Out
001D E-001	Water	E608.3 (OC Pesticides+PCBs w/ Florisil Clean-up) <a-bhc_1, (technical)_1,="" aldehyde_1,="" aldrin_1,="" aroclor1016_1,="" aroclor1221_1,="" aroclor1232_1,="" aroclor1242_1,="" aroclor1248_1,="" aroclor1254_1,="" aroclor1260_1,="" b-bhc_1,="" chlordane="" d-bhc_1,="" dieldrin_1,="" endosulfan="" endrin="" endrin_1,="" epoxide_1,="" g-bhc_1,="" heptachlor="" heptachlor_1,="" i_1,="" ii_1,="" p,p-ddd_1,="" p,p-dde_1,="" p,p-ddt_1,="" pcbs,="" sulfate_1,="" total_1,="" toxaphene_1=""></a-bhc_1,>	1	1LA Narrow Mouth Unpres	· 🔲 🗋	8/31/2022 10:35	5 days	9/8/2022	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

																		_							22081132		
McCAMPBELL ANALYTICAL, INC.										CHAIN OF CUSTODY RECORD																	
1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701											TUE	TURN AROUND TIME □ □ □ □								-							
Website: www.mccampbell.com Email: main@mccampbell.com												RUSH 24 GeoTracker EDF PDF Excel															
Telephone: (877) 252-9262 Fax: (925) 252 -9269																		effluent and "J" flag is required									
Report To: Angel Espiritu Bill To: PG&E Gateway													Analysis Request							Remarks							
Company: PG&E Gateway Generating Station														 			1 										
Company: PG&L Gateway Generating Station												1	<u> </u>	Ę	1	l				H							
E-Mail: abe4@pge.com, A1HE@pge.com, J5Ld@pge.com, tlWY@pge.com												TTO (USEPA 624-Volatile Organic Compounda) TTO (USEPA 625- Semi Volatile Organic Compounds)	Organochlorine)						П								
Tel: (925) 522-7838, (510) 861-1597 (Cell) Fax: ()													E V	Š.						Н							
Project Name: Semi-Annual Sampling (August 2022)											80 (80)							П									
Project Location: Combined Site Flow													P.A. 66				П		Н								
Sampler Signature: Muskan Environmental Sampling													(USE)	(USE)				Ш		Н	1						
SAMPLE LOCATION U 4							METHOD PRESERVED						ΈD	OT I	E	TTO (USEPA 608 C Pesticides and PCBs)				Ш		П					
SAMPLE	LOCATION	, E			y	2	Mat	_	Н	Т	Т		_					- 	+-	 -	-	Н	-	H	-		
ID	/ Field Point	rpe C.			Containers	Pype Containers	Waste Water	iter	l I		ļ											П		Н	1		
	Name	E T	Date	Time		ا ق	≥	Ϋ́			d	国	٦	占	占						i			Ш			
		Sample Type			ŭ	Ž	.¥8	Sewer Water	None	ICE	H-SO	NaOH	HCL	HNO	Other									Ш			
E-001		G		la 76		43 ml	X		Н	Х	7	-	$\frac{1}{x}$			Х			+-	-		Н		H			
E-001		G	3 131 h	0.23	2	VOA 43 ml	X	-	X	X	+	-	\dashv			X	 					Н	H	╟			
			8/31/2/		1	VOA IL	X	_	⊢	_	+	_	-	\dashv		ļ^	x		╇	<u> </u>	 	Н	_	┝┼			
E-001		G	8/31/21	10:35	1	Amb 1L		_	X	X	+	-	4				ļ^	-	+			Н	_	₽			
E-001		G	8/31/22	10:35		Amb	Х		Х	4	4	_	4				ļ	Х			 	Ц		4			
		<u> </u>				ļ			Ц	4	1	_	4	_					_			Ц		Щ			
									Ц	4	1	_	4						_		-	Ц		\bot			
	ļi								Ц	1			_						_			Ц					
											\perp		\Box									Ц					
													\sqcup									Ц					
									\square													Ш					
																						Ш					
									П	T			П														
Relinquished By: Date: Time: Received By: 1222							22	ICEIT / 9-c /-						(COMMENTS:												
_//	2		8/31/2:	12:27	Tell On - 8/21/22									2//	22	HEAD	GOOD CONDITION HEAD SPACE ABSENT							TTO (EPA 608), TTO (EPA 624),			
Relinquished By: Date: Time:				Received By:												DECHLORINATED IN LAB APPROPRIATE CONTAINERS							TTO (EPA 625) see ATTACHED Appendix A and analyze only listed				
Dalin quicked By: Date: Time:				Timor	Dans	Paratyad Ry										PRESERVED IN LAB							compounds				

VOAS O&G METALS OTHER

APPENDIX A

District Local Discharge Limits include a parameter called Total Toxic Organics (TTO). The required analytical methods for TTO analysis are listed in 40 CFR Part 136 and include the following EPA methods: 624,625, 608, and 1613, respectively. Unless specifically required, EPA method 1613 for dioxins is not mandatory for routine TTO analysis. The constituents with concentrations greater than the minimum limit/reporting limit must be added together to determine compliance with the District's Local Discharge Limit for TTO of 2.0 mg/L. The following is a list of the constituents of TTO:

EPA Method 624 Compounds

Acrolein Acrylonitrile Benzene Bromodichloromethane (Dichlorobromomethane) Bromform Brommomethane (Methyl Bromide)
Carbon tetrachloride (Tetrachloromethane)
Chlorobenzene Chloroethane (Ethyl Chloride)
2-Chloroethyl vinyl ether
Chloroform (trichloromethane)
Chloromethane (Methyl Chloride)
Dibromochloromethane (Chlorodibromomethane) 2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 1, 1-Dichloroethane 1, 2-Dichloroethane 1, 1-Dichloroethene (1, 1-dichloroethylene) trans-1, 2-Dichloroethene 1, 2-Dichloropropane cis-1, 3-Dichloropropene trans-1, 3-Dichloropropene Ethylbenzene Methylene Chloride (Dichloromethane)
1, 1, 2, 2, -Tetrachloroethane
Tetrachloroethene (PCE) Toluene 1, 1, 1-Trichloreothane 1, 1, 2-Trichloroethane 1, 1, 2-Trichloroethane Trichloroethene (TCE) Trichiorofluoromethane Vinyl chloride (Chloroethylene)

EPA Method 625 Compounds

Acenaphthene Acenaphthylene Anthracene Benzidine Benzo (a) anthracene Benzo (a) pyrene Benzo (b) iluoranthene Benzo (g, h, i) perylene Benzo (k) fluoranthene Benzo (k) fluoranthene
Benzyl butyl phthalate
bis (2-Chloroethoxy) methane
bis (2-Chloroethyl) ether
bis (2-Chlorothyl) ether
bis (2-Ethylhexyl) phthalate
4-Bromophenyl phenyl ether
4-Chloro-3-methylphenol
2-Chlorophenyl
4-Chlorophenyl
4-Chlorophenyl phenyl ether
Chrysene Chrysene Dibenzo (a, h) anthracene 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 3, 3'-Dichlorobenzidine

2. 4-Dichlorophenol Diethyl phthalate 2.4-Dimethylphenol Dimethylphthalate Di-n-butylphthalate 2. 4-Dinitrophenol 2. 4-Dinitrotoluene 2. 6-Dinitrotoluene Di-n-octylphthalate 1.2-Diplienylhydrazine/Azo Fluoranthene Fluorene Hexachlorobenzene Hexchlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1, 2, 3-cd) pyrene Isophorone 2-Methyl-4, 6-dinitrophenol Naphthalene Nitrobenzene 2-Nitrophenol 4-Nitrophenol N-Nitrosodimethylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Pentachiorophenol Phenanthrene Phenol Pyrene 1, 2, 4-Trichlorobenzene 2, 4, 6-Trichlorophenol

EPA Method 608 Compounds

Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Chlordane 4, 4'-DDD 4, 4'-DDE 4,4'DDT Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide PCB 1016 PCB 1221 PCB 1232 PCB 1242 PCB 1248 PCB 1254 PCB 1260 Toxaphene

8/31/22 12:22

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	PG&E Gateway Generating Station			Date and Time Receive	ved: 8/31/2022 12:22
Project:	Semi-Annual Sampling (August 2022)			Date Logged:	8/31/2022
W 10 1 N				Received by:	Lilly Ortiz
WorkOrder №: Carrier:	2208M32 Matrix: Water Client Drop-In			Logged by:	Lilly Ortiz
	Chain of	Custody	/ (COC) Ir	formation	
Chain of custody	y present?	Yes	•	No 🔲	
Chain of custody	y signed when relinquished and received?	Yes		No 🔲	
Chain of custody	y agrees with sample labels?	Yes	•	No 🔲	
Sample IDs note	ed by Client on COC?	Yes		No 🔲	
Date and Time of	of collection noted by Client on COC?	Yes	•	No 🔲	
Sampler's name	noted on COC?	Yes	7	No 🔲	
COC agrees wit	h Quote?	Yes		No 🔲	NA 🗾
	Sam	ple Rece	eipt Inforn	nation	
Custody seals in	ntact on shipping container/cooler?	Yes		No 🔲	NA 🜌
Custody seals in	ntact on sample bottles?	Yes		No 🔲	NA 🖃
Shipping contain	ner/cooler in good condition?	Yes		No 🔲	
Samples in prop	per containers/bottles?	Yes		No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sampl	e volume for indicated test?	Yes		No 🔲	
	Sample Preserva	tion and	Hold Tim	ne (HT) Information	
All samples rece	eived within holding time?	Yes	7	No 🔲	NA 🔲
Samples Receiv		Yes		No 🔲	
	(Ice Ty	pe: WE	TICE)		
Sample/Temp B	lank temperature		Temp:	1.9°C	NA 🔲
	analyses: VOA meets zero headspace DCs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🔲
Sample labels c	hecked for correct preservation?	Yes		No 🔲	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: 3.7: >8)?	Yes		No 🖂	NA 💽
UCMR Samples					
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🔀
Free Chlorine [not applicable	tested and acceptable upon receipt (<0.1mg/L) a to 200.7]?	Yes		No 🔲	NA 🕞

Page 29 of 29

Mailing Address: Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Anlioch, CA 94509 (925) 522-7801

January 10, 2023

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report

(For Period Ending December 31, 2022)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending December 31, 2022, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, Monthly Flow, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

The quarterly self-monitoring of the combined flows indicated an exceedance in zinc parameter. The laboratory report was received on 12/16/2022. A notification of exceedance was submitted to the District on 12/16/2022. A resulting warning notice was received from the District on 01/04/2023. A corrective action plan to address potential future exceedance and comply with the Discharge Permit requirement was submitted on 01/05/2023 (via email), and 01/09/2023 (hard copy). A resampling of the discharge flow for zinc was performed on 01/05/2023.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

fecrid

CA 2/0023

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

Public

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

January 10, 2023

Mr. Jason Yun Delta Diablo Sanitation District (DD) 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

DD Industrial Wastewater Discharge Permit

Permit Number: 0208841-C

Subject:

Quarterly Self-Monitoring Report

(For Period Ending December 31, 2022)

Dear Mr. Yun,

Attached is the Quarterly Self-Monitoring Report (SMR) for Pacific Gas and Electric Company - Gateway Generating Station (GGS) for the period ending December 31, 2022, as required under DD Industrial Wastewater Discharge Permit Number 0208841-C.

Included in the report are Certification Statement, Industrial User Compliance Report, Industrial Monitoring Report Summary, Discharge Flow Data, Monthly Flow, WSAC Operating Months Report, Cycles of Concentration, and Copy of Laboratory Results.

The quarterly self-monitoring of the combined flows indicated an exceedance in zinc parameter. The laboratory report was received on 12/16/2022. A notification of exceedance was submitted to the District on 12/16/2022. A resulting warning notice was received from the District on 01/04/2023. A corrective action plan to address potential future exceedance and comply with the Discharge Permit requirement was submitted on 01/05/2023 (via email), and 01/09/2023 (hard copy). A resampling of the discharge flow for zinc was performed on 01/05/2023.

If you have any questions about this report, please feel free to contact Angel Espiritu at 925-522-7838, 510-861-1597, or at abe4@pge.com. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

Pacific Gas and Electric Company Gateway Generating Station

Quarterly Self-Monitoring Report

For the reporting period ending in December 31, 2022

This report is to comply with the requirement of the Industrial Wastewater Discharge Permit issued by the Delta Diablo Sanitation District (DD) to Gateway Generating Station (GGS) under Permit No. 02088441-C with expiration date of February 28, 2023.

The report includes the following attachments:

Attachment 1: Certification Statement

Attachment 2: Industrial User Compliance Report
Attachment 3: Industrial Monitoring Report Summary

Attachment 4: Discharge Flow Data
Attachment 5: Monthly Flow Data

Attachment 6: WSAC Operating Hours Report

Attachment 7: Cycles of Concentration
Attachment 8: Laboratory Results

Attachment 9: Annual Flowmeter Calibration

Attachment 1 Certification Statement

Certification Statement

Name of Business:

PG&E Gateway Generating Station

Address:

3225 Wilbur Avenue, Antioch, CA. 94509

Phone:

925-522-7805

Period Covered:

Period ending: December 31, 2022

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tim Wisdom Date: Jan. 10, 2023 Signature:

Print Name:

Tim Wisdom

Attachment 2 Industrial User Compliance Report

Industrial User Compliance Report Form

Attn: Jason Yun Pretreatment Fax # (925)756-1961 Phone: (925)756-1929 From: Tim Wisdom Company: Pacific Gas and Electric Company – Gateway Generating Station Period Covered: Period ending December 31, 2022 Industrial User Checklist for self –monitoring reports, as specified by the wastewater discharge permit issued by Delta Diablo Sanitation District: Self-monitoring reports √ Flow discharge summary (Discharge Permit Section E.1.h.) (See Attachment 4) Calibration of flow meters, as required. (Section E.1.g.) √ Monitoring results- All required tests completed, results reviewed, results included, QA/QC, chain of custody (section F.7.) (See Attachment 8) √ Certification statement included (See Attachment 1) Violations (if applicable) $\sqrt{}$ All wastewater discharge exceedance are reported during this reporting period √ Delta Diablo was contacted. (See Additional Notes below) A follow-up report on characterization re-sampling was submitted on $\sqrt{}$ Corrective actions to resolve violation: Other violations - i.e. Reporting, spills to sewer, or prohibited discharges Additional Notes: 1. The results of Q4 2022 quarterly monitoring was received on 12/16/2022 2. The notification of exceedance on zinc parameter was submitted to the District on 12/16/2022 (via email to Jason Yun). 3. A warning notice from the District was received on 01/04/2023. 4. A corrective action plan to address exceedance was submitted to the District on

- 4. A corrective action plan to address exceedance was submitted to the District on 01/05/2023 (email), and 01/09/2023 (hard copy).
- 5. Resampling of discharge flow for zinc was performed on 01/05/2023. The laboratory result received on 01/10/2023 indicated below the local limit: 0.67 mg/L (limit = 1.0 mg/L)

Significant changes

Anticipated changes that may alter the nature, quality, or volume of the wastewater discharged. Planned changes shall be submitted at least 90-days prior to implementation and shall include a detailed description of this change. (None)

Attachment 3 Industrial Monitoring Report Summary

INDUSTRIAL MONITORING REPORT SUMMARY (Combined Site Flow: FAC - Control Manhole Local Limits: E-001)

IU NAME : PG&E Gateway Generating Station ID #: 0208841-C SIC: 4911

ADDRESS: 3225 Wilbur Avenue TYPE: Power Generation Plant

CITY: Antioch

DATE	12/7/2022	12/8/2022	12/8/2022			
TYPE	G	G	C24			
STATION	E-001	E-001	E-001			
SMP.BY	Muskan	Muskan	Muskan			
PURPOSE	Compliance	Compliance	Compliance			
PURPUSE	Quarterly (Q4)	Quarterly (Q4)	Quarterly (Q4)			

Units: mg/L

PARAMETERS	<u>LIMITS</u>							
FLOW, DAILY (gal)	51,120							
FLOW, MONTH (gal)	13	11						
рН	6-10 s.u.	7.94		1	L.			
BOD	11	-	la l	ND(<8.0)	JI			
COD				330				
TDS				460	Ī			
TSS				5.0				
Arsenic	0.15			0.0006				
Cadmium	0.1			ND(<0.0005)				
Chromium	0.5			0.0016				
Copper	0.5			0.038				
Iron				1.6				
Lead	0.5			ND(<0.0005)				
Mercury	0.003			ND(<0.0002)				
Molybdenum				0.027				
Nickel	0.5			0.0036				
Selenium	0.25			ND(<0.0005)				
Silver	0.2			ND(<0.0005)				
Zinc	1.00			2.00				
Cyanide	0.2		0.0086					
Phenol	1.00		ND(<0.002)					
Ammonia	200		58					
O&G Petro/Min (E1664A w/ Silica)	100	ND (<4.7)	ND (<5.0)					
O&G Animal/Vegetable Oil	300	10	ND (<4.7)					
TTO EPA 608	31	-		E .				
TTO EPA 624								
TTO EPA 625								
TTO	2.00				_			
Sulfide								
Sulfate								
Comments: ND = Non-Detect, NSD = No Structures D	etected, MFL = Millio	ns of Fibers per Liter				•	•	

In accordance with Footnote 2 of the table located in Section (D)(1) of the permit, PG&E is reporting the Oil & Grease (O&G) as follows: Petroleum/Mineral includes the silica gel (i.e. SGT-HEM) and Animal/Vegetable does not include silica gel

Attachment 4 Discharge Flow Data

PG&E Gateway Generating Station

Discharge Flow Data

October 2022-December 2022

		Industria	l Flow			Sanitary	Flow		
			Did it ever			Time Mate	Did it ever		
		Time Over	go over	Dalla Fatal		Time Meter	go over	Dath Takal	City Tatal
Date	Instantaneous	35.5 GPM	35.5 GPM	Daily Total	Instantaneous	went Bad	35.5 GPM	Daily Total	Site Total
	Flow (GPM)	(minutes)	for 15	(Gallons)	Flow (GPM)	Quality	for 15	(Gallons)	(Gallons)
		,	mins?			(minutes)	mins?		
10/1/2022	34.7	0.0	NO	23,858	25.6	0	NO	389	24,247
10/1/2022	34.7	0.0	NO	26,804	0.0	0	NO	000	26,804
10/3/2022	34.7	0.0	NO	21,519	29.0	0	NO	877	22,395
10/4/2022	34.7	0.0	NO	20,101	0.0	0	NO	011	20,101
10/5/2022	35.0	0.0	NO	26,409	24.7	0	NO	508	26,917
10/6/2022	34.9	0.0	NO	19,377	34.4	0	NO	559	19,936
10/7/2022	35.1	0.0	NO	27,052	7.8	0	NO		27,052
10/8/2022	35.0	1.0	NO	20,936	23.9	2	NO	113	21,049
10/9/2022	35.0	0.0	NO	34,711	0.0	0	NO		34,711
10/10/2022	34.7	0.0	NO	30,504	0.0	0	NO		30,504
10/11/2022	34.8	0.0	NO	40,995	0.0	0	NO		40,995
10/12/2022	34.8	0.0	NO	25,167	0.0	0	NO		25,167
10/13/2022	34.7	0.0	NO	22,921	26.6	0	NO	921	23,842
10/14/2022	34.7	0.0	NO	24,237	0.1	0	NO		24,237
10/15/2022	34.9	0.0	NO	16,747	25.9	0	NO	482	17,228
10/16/2022	34.7	0.0	NO	39,575	24.7	0	NO	145	39,720
10/17/2022	34.6	0.0	NO	15,948	0.0	0	NO		15,948
10/18/2022	34.8	0.0	NO	22,080	28.6	0	NO	135	22,214
10/19/2022	34.9	0.0	NO	30,462	22.2	0	NO	210	30,672
10/20/2022	34.7	0.0	NO	16,613	0.1	0	NO		16,613
10/21/2022	34.6	0.0		37,898	0.0	0	NO		37,898
10/22/2022	34.1	0.0	NO	8,647	0.0	0	NO		8,647
10/23/2022	30.6	0.0	NO	25,169	0.0	0	NO		25,169
10/24/2022	35.1	0.0	NO	39,164	27.4	0	NO	231	39,394
10/25/2022	34.2	0.0	NO	26,820	0.0	0	NO		26,820
10/26/2022	34.3	0.0	NO	32,363	27.1	0	NO	789	33,152
10/27/2022	32.6	0.0	NO	26,140	0.0	0	NO		26,140
10/28/2022	32.8	0.0	NO	45,906	26.9	0	NO	196	46,102
10/29/2022	34.4	0.0	NO	29,182	0.1	0	NO		29,182
10/30/2022	34.8	0.0	NO	22,438	0.0	0	NO		22,438
10/31/2022	34.8	0.0	NO	28,738	0.0	0	NO		28,738
						Max D		mit: 51,120):	46,102
								onthly Total:	834,034
11/1/2022	34.9	0.0	NO	26,689	26.9	0	NO	633	27,323
11/2/2022	34.6	0.0	NO	34,534	0.1	0	NO	0	34,534
11/3/2022	34.8	0.0		14,343	26.4	0	NO	373	14,716
11/4/2022	34.8	0.0	NO	26,721	0.0	0	NO	200	26,721
11/5/2022	34.5	0.0	NO	25,734	26.8	0	NO	366	26,100
11/6/2022	34.7	1.0	NO	24,844	0.1	1	NO		24,844
11/7/2022	34.6	0.0	NO	48,245	0.0	0	NO		48,245
11/8/2022	34.5 34.4	1.0	NO NO	22,427	0.1 27.1	2 0	NO NO	371	22,427
11/9/2022 11/10/2022	34.4 34.6	0.0		28,583 33,849	0.1	0	NO NO	371	28,955 34,220
11/10/2022	34.6	0.0		33,849	0.1	0	NO	3/1	34,220
11/11/2022	34.0	0.0	NO	14,211	27.8	0	NO	385	14,597
11/12/2022	34.7 34.6	0.0	NO	30,668	0.1	0	NO	300	30,668
11/13/2022	34.9	0.0	NO	29,499	0.0	0	NO		29,499
11/15/2022	34.6	0.0	NO	24,364	28.1	0	NO	392	24,756
11/16/2022	34.4	0.0	NO	29,455	0.0	0	NO	392	29,455
11/10/2022	35.0	0.0		30,338	27.3	0	NO	375	30,714
11/17/2022	34.8	0.0		25 970	0.0	0	NO	4	25,974
11/19/2022	34.4	0.0	NO	21,472	0.0	0	NO	7	21,472
11/13/2022	J 4 .4	0.0	L 110	<u> </u>	lblic 0.0		110	<u> </u>	21,412

PG&E Gateway Generating Station

Discharge Flow Data

October 2022-December 2022

		Industria	l Flow			Sanitary	Flow		
			Did it ever			l	Did it ever		
Date	Instantaneous Flow (GPM)	Time Over 35.5 GPM (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Instantaneous Flow (GPM)	Time Meter went Bad Quality (minutes)	go over 35.5 GPM for 15 mins?	Daily Total (Gallons)	Site Total (Gallons)
11/20/2022	34.8	0.0	NO	29,804	26.3	0	NO	389	30,193
11/21/2022	34.5	0.0	NO	28,017	0.1	0	NO	000	28,017
11/22/2022	34.7	0.0	NO	26,745	0.1	0	NO		26,745
11/23/2022	34.6	0.0	NO	20,713	0.1	0	NO		20,713
11/24/2022	34.6	0.0	NO	14,820	23.5	0	NO	384	15,204
11/25/2022	34.9	0.0	NO	30,704	0.1	0	NO		30,704
11/26/2022	34.5	0.0	NO	18,610	0.0	0	NO		18,610
11/27/2022	34.8	0.0	NO	35,448	0.0	0	NO		35,448
11/28/2022	34.8	0.0	NO	9,834	25.9	0	NO	389	10,223
11/29/2022	-0.5	0.0	NO	-,	0.1	0	NO	2	2
11/30/2022	34.5	0.0	NO	18,338	26.0	0	NO	403	18,741
				10,000			aily Flow (Lii		48,245
							, .	onthly Total:	760,234
12/1/2022	34.5	0.0	NO	32,435	0.1	0	NO	, 1	32,436
12/2/2022	34.6	0.0	NO	17,568	0.0	0	NO		17,568
12/3/2022	34.6	0.0	NO	44,803	26.1	0	NO	393	45,196
12/4/2022	34.4	0.0	NO	33,127	0.1	0	NO	1	33,128
12/5/2022	34.7	0.0	NO	37,252	0.0	0	NO	_	37,252
12/6/2022	34.5	0.0	NO	28,397	26.3	0	NO	262	28,659
12/7/2022	34.9	0.0	NO	30,375	25.4	0	NO	287	30,662
12/8/2022	34.5	1.0	NO	43,605	0.0	2	NO		43,605
12/9/2022	34.5	0.0	NO	34,575	0.0	0	NO		34,575
12/10/2022	34.5	0.0	NO	32,894	26.6	0	NO		32,894
12/11/2022	34.4	0.0	NO	39,559	0.0	0	NO		39,559
12/12/2022	34.5	0.0	NO	24,316	0.0	0	NO		24,316
12/13/2022	34.5	0.0	NO	20,509	25.4	0	NO	391	20,900
12/14/2022	34.4	0.0	NO	24,504	0.1	0	NO		24,504
12/15/2022	34.4	0.0	NO	15,789	26.3	0	NO	411	16,199
12/16/2022	34.5	0.0	NO	17,808	0.0	0	NO		17,808
12/17/2022	34.6	0.0	NO	43,217	0.1	0	NO		43,217
12/18/2022	34.4	0.0	NO	27,112	27.6	0	NO	374	27,486
12/19/2022	35.0	0.0	NO	25,067	0.0	0	NO		25,067
12/20/2022	34.6	0.0	NO	34,774	0.0	0	NO		34,774
12/21/2022	34.4	0.0	NO	14,822	27.2	0	NO	389	15,211
12/22/2022	34.5	0.0	NO	6,791	0.0		NO		6,791
12/23/2022	34.7	0.0		20,031	0.1	0	NO		20,031
12/24/2022	34.5	0.0	NO	25,279	0.0		NO		25,279
12/25/2022	34.5	0.0	NO	29,070	26.4	0	NO	383	29,453
12/26/2022	34.8	0.0	NO	24,652	0.1	0	NO		24,652
12/27/2022	34.6	0.0	NO	28,013	0.0	0	NO		28,013
12/28/2022	34.6	0.0	NO	28,012	27.1	0	NO	384	28,396
12/29/2022	34.5	0.0	NO	3,928	0.1	0	NO		3,928
12/30/2022	34.4	0.0		33,128	0.0		NO		33,128
12/31/2022	35.6	0.0	NO	44,852	25.6		NO	397	45,249
						Max D		mit: 51,120):	45,249

Monthly Total: 869,937

Attachment 5 Monthly Flow Data

Industrial Flow Reporting Form for Delta Diablo

SIU Name: **PG&E Gateway Generating Station**Address: 3225 Wilbur Avenue, Antioch, CA 94509

City: Antioch
Contact Name: Tim Wisdom

Flow Meter: Sewer Final Effluent ____ City Water Meter ____

(The data are based on flowmeter readings as recorded by the plant's "Pi Historian" data

acquisition/handling system)

Year: **2022**

Month	Flow (gallons)	Due Date
January		
February		
March		
April		
May		
June		
July		
August		
September		
October	834,034	1/15/2023
November	760,234	1/15/2023
December	869,937	1/15/2023

Note:

File: N: Pretreatment/PT Forms/ Industrial Reporting Form for DDSD.xls

¹⁾ Flow data is based on the sewer final effluent flow meter or the City water meter if no effluent flow meter is at the industrial facility.

²⁾ The flow data documentation shall continue to be submitted in the regularly scheduled self-monitoring reports.

Attachment 6 WSAC Operating Hours Report

PG&E Gateway Generating Station

WSAC Operating Hours Report October 2022 - December 2022

	WSAC Operation						
Month	Hours of Operation						
January-22							
February-22							
March-22							
April-22							
May-22							
June-22							
July-22							
August-22							
September-22							
October-22	149.25						
November-22	0.00						
December-22	0.00						

Attachment 7 Cycles of Concentration

PG&E Gateway Generating Station

WSAC Average Daily Blowdown Cycles Report October 2022 - December 2022

	WSAC Operation
Month	Average Daily Blowdown Cycles
January-22	
February-22	
March-22	
April-22	
May-22	
June-22	
July-22	
August-22	
September-22	
October-22	2.07
November-22	WSAC not in operation
December-22	WSAC not in operation

Average Daily Blowdown Cycles calculated using the ratio of specific conductivities between the three WSAC basins (average) relative to the makeup water.

Attachment 8
Laboratory Results
Monitoring of Combined Site Stream
(E-001)

Attachment 8a
Laboratory Results
Quarterly Monitoring of Combined Site Stream
(E-001)

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2212602

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Angel Espiritu

Project P.O.:

Project: Quarterly Sampling (December 2022)

Project Received: 12/08/2022

Analytical Report reviewed & approved for release on 12/16/2022 by:

Jennifer Lagerbom Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2212602

Project: Quarterly Sampling (December 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the

measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006,

December 2016.

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting limit is the lowest level that can be reliably determined within specified limits of precision and accuracy

during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard

used in the initial calibration of the instrument and must be greater than the MDL.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2212602

Project: Quarterly Sampling (December 2022)

Analytical Qualifiers

H Sample was analyzed out of hold time

i5 The sample dilutions set up for the BOD analysis did not meet the oxygen depletion criterion of at least 2 mg/l,

therefore the reported result is an estimated value only.

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/12/2022

Project: Quarterly Sampling (December 2022) WorkOrder: 2212602

Extraction Method: E1664A_SG

Analytical Method: E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) with Silica Gel Clean-Up

Client ID	Lab ID N	Aatrix	Date Col	lected	Instrument	Batch ID
E-001 Grab	2212602-001B V	Vater	12/07/2022	2 09:10	O&G	260006
_Analytes	Result		RL	DE		Date Analyzed
SGT-HEM	ND		4.7	1		12/13/2022 14:05

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Collecte	d Instrument	Batch ID
E-001 Grab	2212602-002B	Water	12/08/2022 10:	20 O&G	260006
Analytes	Result	Qualifiers	<u>RL</u>	OF_	Date Analyzed
SGT-HEM	ND	Н	5.0	I	12/13/2022 14:10

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/13/2022

Project: Quarterly Sampling (December 2022) WorkOrder:

2212602

Extraction Method: E1664A

Analytical Method: E1664A

Unit: mg/L

Hexane Extractable Material (HEM; Oil & Grease) without Silica Gel Clean-Up

Client ID	Lab ID Matrix	Date Col	llected	Instrument	Batch ID
E-001 Grab	2212602-001A Water	12/07/202	2 09:10	O&G	260105
_Analytes	Result	RL	DE		Date Analyzed
HEM	10	4.7	1		12/14/2022 16:30

Analyst(s): HN

Client ID	Lab ID	Matrix	Date Coll	ected	Instrument	Batch ID
E-001 Grab	2212602-002A	Water	12/08/2022	10:20	O&G	260105
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
HEM	ND		4.7	1		12/14/2022 16:35

Analyst(s): HN

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/15/2022

Project: Quarterly Sampling (December 2022)

WorkOrder: 2212602

Extraction Method: SM4500-NH3 BG **Analytical Method:** SM4500-NH3 BG

Unit: mg/L

Ammonia as N

Client ID	Lab ID Matrix	Date Colle	cted	Instrument	Batch ID
E-001 Grab	2212602-002C Water	12/08/2022 1	0:20	WC_SKALAR 221215B1_26	260245
_Analytes	Result	RL	DE	Date	Analyzed
Ammonia, total as N	58	1.0	10	12/1	5/2022 13:50

Analyst(s): CC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/09/2022

Project: Quarterly Sampling (December 2022)

WorkOrder: 2212602

Extraction Method: SM5210B

Analytical Method: SM5210 B

Unit: mg/L

Biochemical Oxygen Demand (BOD)

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 Comp	2212602-003A	Water	12/08/202	2 10:15	WetChem	259863
Analytes	Result		RL	DE		Date Analyzed
BOD	ND		8.0	2		12/14/2022 13:08

Analyst(s): MGO Analytical Comments: i5

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/12/2022

Project: Quarterly Sampling (December 2022)

WorkOrder: 2212602

Extraction Method: SM4500-CN⁻ E **Analytical Method:** SM4500-CN⁻ CE

Unit: $\mu g/L$

Cyanide, Total

Client ID	Lab ID Matr	ix Date Co	llected	Instrument	Batch ID
E-001 Grab	2212602-002D Water	12/08/202	22 10:20	WC_Skalar3 221212B1_25	259980
_Analytes	Result	RL	DE	Date	e Analyzed
Total Cyanide	8.6	1.0	1	12/1	2/2022 14:58

Analyst(s): CC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/09/2022

Project: Quarterly Sampling (December 2022) WorkOrder: 2212602

Extraction Method: SM5220 D-1997

Analytical Method: SM5220 D-1997

Unit: mg/L

Chemical Oxygen Demand (COD) as mg O2/L

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 Comp	2212602-003B	Water	12/08/2022	2 10:15	SPECTROPHOTOMETER2	259898
_Analytes	Result		RL	DE	Date	e Analyzed
COD	330		10	1	12/0	9/2022 17:52

Analyst(s): IGC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/09/2022

Project: Quarterly Sampling (December 2022)

WorkOrder: 2212602

Extraction Method: E245.2

Analytical Method: E245.2

Unit: $\mu g/L$

Mercury by Cold Vapor Atomic Absorption

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 Comp	2212602-003E	Water	12/08/2022	2 10:15	AA1 _23	259710
Analytes	Result		RL	DE		Date Analyzed
Mercury	ND		0.20	1		12/09/2022 17:17

Analyst(s): DMA

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/08/2022

Project: Quarterly Sampling (December 2022)

WorkOrder: 2212602

Extraction Method: E200.8

Analytical Method: E200.8

Unit: $\mu g/L$

		Metal	ls			
Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
E-001 Comp	2212602-003F	Water	12/08/2022	10:15	ICP-MS4 141SMPL.d	259817
Analytes	Result		RL	DE		Date Analyzed
Arsenic	0.60		0.50	1		12/09/2022 18:52
Cadmium	ND		0.50	1		12/09/2022 18:52
Chromium	1.6		0.50	1		12/09/2022 18:52
Copper	38		1.5	1		12/09/2022 18:52
Iron	1600		50	1		12/09/2022 18:52
Lead	ND		0.50	1		12/09/2022 18:52
Molybdenum	27		0.50	1		12/09/2022 18:52
Nickel	3.6		0.50	1		12/09/2022 18:52
Selenium	ND		0.50	1		12/09/2022 18:52
Silver	ND		0.50	1		12/09/2022 18:52
Zinc	2000		20	1		12/09/2022 18:52
Surrogates	REC (%)		Limits			
Terbium	113		70-130			12/09/2022 18:52
Analyst(s): WV						

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/14/2022

Project: Quarterly Sampling (December 2022)

WorkOrder: 2212602

Extraction Method: E420.4

Analytical Method: E420.4

Unit: $\mu g/L$

Phenolics

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 Grab	2212602-002C	Water	12/08/202	2 10:20	WC_SKALAR 221214B1_23	260137
Analytes	Result		RL	DE	<u>Date</u>	Analyzed
Phenolics	ND		2.0	1	12/14	4/2022 11:21

Analyst(s): CC

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/12/2022

Project: Quarterly Sampling (December 2022)

WorkOrder: 2212602

Extraction Method: SM2540 C-1997

Analytical Method: SM2540 C-1997

Unit: mg/L

Total Dissolved Solids

Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001 Comp	2212602-003C	Water	12/08/2022	2 10:15	WetChem	259998
_Analytes	Result		RL	DE		Date Analyzed
Total Dissolved Solids	460		10.0	1		12/14/2022 12:30

Analyst(s): JME

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/14/2022

Project: Quarterly Sampling (December 2022) WorkOrder: 2212602

Extraction Method: SM2540 D-1997

Analytical Method: SM2540 D-1997

Unit: mg/L

Total Suspended Solids

Client ID	Lab ID	Matrix	Date Coll	lected	Instrument	Batch ID
E-001 Comp	2212602-003D	Water	12/08/2022	2 10:15	WetChem	260062
_Analytes	Result		RL	DE		Date Analyzed
Total Suspended Solids	5.00		1.00	1		12/14/2022 13:35

Analyst(s): JRA

Quality Control Report

PG&E Gateway Generating Station Client:

12/12/2022 Date Prepared:

12/13/2022 O&G Date Analyzed: Instrument: Water Matrix:

Quarterly Sampling (December 2022) Project:

2212602 WorkOrder:

Extraction Method: E1664A_SG 260006 BatchID:

Analytical Method: E1664A

Unit:

MB/LCS/LCSD-260006 Sample ID:

		,
E1664A	RL	5.0
eport for	MDL	1.5
QC Summary Report for E1664A	MB Result	QN
	Analyte	SGT-HEM

				ı	ı		ı	١
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
SGT-HEM	8.4	8.6	10.42	81	83	64-132	2.44	30

PG&E Gateway Generating Station Client:

12/13/2022 Date Prepared:

12/14/2022 Date Analyzed:

Water O&G Instrument: Matrix:

Quarterly Sampling (December 2022) Project:

2212602 WorkOrder:

260105 BatchID:

Extraction Method: E1664A Analytical Method: E1664A

Unit:

MB/LCS/LCSD-260105 Sample ID:

E1664A	RL	5.0
eport for	MDL	0.91
QC Summary Report for E1664A	MB Result	QN
	Analyte	НЕМ

PG&E Gateway Generating Station Client:

12/15/2022 Date Prepared:

12/15/2022 Date Analyzed:

WC_SKALAR Water Instrument: Matrix: Quarterly Sampling (December 2022) Project:

2212602 WorkOrder:

260245 BatchID:

SM4500-NH3 BG **Extraction Method:** SM4500-NH3 BG Analytical Method:

Unit:

MB/LCS/LCSD-260245 Sample ID:

QC Summary Report for SM4500-NH3

	,
RL	0.10
MDL	960.0
MB Result	CZ
Analyte	Ammonia: total as N

				ı	ı		I	١
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
Ammonia, total as N	4.2	4.1	4	105	102	88-113	3.08	20

PG&E Gateway Generating Station Client:

12/09/2022 Date Prepared:

12/14/2022 Date Analyzed:

WetChem Water Instrument: Matrix:

Quarterly Sampling (December 2022) Project:

2212602 WorkOrder:

Extraction Method: SM5210B 259863 BatchID:

SM5210 B Analytical Method:

mg/L Unit:

MB/LCS/LCSD-259863 Sample ID:

꿉

MDL

Analyte

4.0 4.0 MB Result 2 BOD

				ı	ı		ı	١
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD
BOD	180	180	198	93	91	80-120	2.20	16

PG&E Gateway Generating Station 12/12/2022 Client:

Date Prepared:

WC_Skalar3 12/12/2022 Date Analyzed: Instrument:

Water Matrix:

Quarterly Sampling (December 2022) Project:

2212602 WorkOrder:

Extraction Method: SM4500-CN⁻ E 259980 BatchID:

SM4500-CN⁻ CE Analytical Method:

MB/LCS/LCSD-259980 $\mu g/L$ Sample ID: Unit:

QC Summary Report for SM4500-CN CE

RL	1.0
MDL	69:0
MB Result	QN
Analyte	Total Cyanide

								Ì
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD R Limits	RPD 1	RPD
Total Cyanide	46	48	50	91	96	90-110 5	5.44	20

PG&E Gateway Generating Station Client:

12/09/2022 Date Prepared:

12/09/2022 Date Analyzed:

SPECTROPHOTOMETER2 Water **Instrument:** Matrix:

Quarterly Sampling (December 2022)

Project:

2212602 WorkOrder:

Extraction Method: SM5220 D-1997 259898 BatchID:

SM5220 D-1997 Analytical Method:

mg/L Unit:

MB/LCS/LCSD-259898 Sample ID:

		,	
r COD	RL	10	
QC Summary Report for COD	MDL	9.5	
QC Summa	MB Result	QV	
	Analyte	COD	

				ı				1
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD R Limits	RPD R Li	RPD
сор	100	100	100	102	100	90-110 1.	1.98	20

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

WorkOrder: PG&E Gateway Generating Station 12/09/2022 Date Prepared: Client:

12/09/2022 Date Analyzed:

Water AA1 Instrument: Matrix:

Quarterly Sampling (December 2022) Project:

2212602

259710 **Extraction Method:** E245.2 BatchID:

Analytical Method: E245.2 $\mu g/L$ Unit:

MB/LCS/LCSD-259710 Sample ID:

	QC Summary Report for Mercury	ort for M	ercury		
Analyte	MB Result	MDL	RL		
Mercury	QN	0.13 0.20	0.20		

LCSD LCS/LCSD RPD RPD S %REC Limits Limit	93 85-115 2.35 20
SPK LCS Val %REC	96
LCS LCSD S Result Result V	1.9
Analyte LCS Res	Mercury 1.9

PG&E Gateway Generating Station Client:

Date Prepared: 12/08/2022 **Date Analyzed:** 12/09/2022

Instrument: ICP-MS4, ICP-MS5

Matrix: Water

Sample ID: Quarterly Sampling (December 2022) Project:

WorkOrder: 2212602

BatchID: 259817
Extraction Method: E200.8

Analytical Method: E200.8 Unit: μg/L

Onit: μg/L
Sample ID: MB/LCS/LCSD-259817

	QC Summary Report for Metals	ort for N	1 etals			
Analyte	MB Result	MDL	RL	SPK Val	MB SS %REC	MB SS Limits
Arsenic	QV :	0.074	0.50			
Cadmium		0.043	0.50			
Copper	QN QN	0.75	1.5			
Iron	ND	26	50			
Lead	ND	0.19	0.50			
Molybdenum	QN	0.13	0.50			
Nickel	ND	0.33	0.50			
Selenium	ND	0.16	0.50			
Silver	ND	0.092	0.50			
Zinc	ND	14	20		1	
Surrogate Recovery						
Terbium	550			200	110	70-130

LCSD SPK Result Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD	RPD Limit
56 50	112	112	85-115	0.0179	20
56 50	112	112	85-115	0.385	20
56 50	111	113	85-115	1.27	20
56 50	113	113	85-115	0.115	20
5200 5000	104	104	85-115	0.552	20
56 50	110	112	85-115	1.16	20
20	105	107	85-115	2.18	20
56 50	112	111	85-115	0.455	20
56 50	112	111	85-115	0.144	20
56 50	110	113	85-115	2.37	20
260 500	114	112	85-115	1.18	20
540 500	109	108	70-130	0.811	20
	500 500		112 110 0 114	112 111 110 113 0 114 112 0 109 108	112 111 85-115 110 113 85-115 0 114 112 85-115 0 109 108 70-130

WorkOrder: PG&E Gateway Generating Station 12/14/2022 12/14/2022 Date Prepared: Date Analyzed: Client:

WC_SKALAR Water Instrument: Matrix: Quarterly Sampling (December 2022)

Project:

2212602 260137 **Extraction Method:** E420.4 BatchID:

Analytical Method: E420.4 $\mu g/L$ Unit:

MB/LCS/LCSD-260137 Sample ID:

QC Summary Report for E420.4	MB MDL RL Result	ND 1.4 2.0
	Analyte	Phenolics

RPD Limit

LCS/LCSD RPD Limits

LCSD %REC

LCS %REC

SPK Val

LCSD Result

LCS Result

20

0.863

80-120

66

100

4

40

40

Phenolics

Analyte

PG&E Gateway Generating Station Client:

12/12/2022 Date Prepared:

12/14/2022 Date Analyzed:

WetChem Water Instrument: Matrix: Quarterly Sampling (December 2022) Project:

2212602 WorkOrder:

Extraction Method: SM2540 C-1997 259998 BatchID:

SM2540 C-1997 Analytical Method:

mg/L Unit:

MB/LCS/LCSD-259998 Sample ID:

QC Summary Report for Total Dissolved Solids

RL	10.0
MDL	10.0
MB Result	QN
Analyte	Total Dissolved Solids

								١
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Total Dissolved Solids	1040	1030	1000	104	103	80-120	996:0	10

PG&E Gateway Generating Station Client:

12/14/2022 Date Prepared:

12/14/2022 Date Analyzed:

WetChem Water Instrument: Matrix: Quarterly Sampling (December 2022) Project:

2212602 WorkOrder:

260062 BatchID: SM2540 D-1997 Analytical Method:

Extraction Method: SM2540 D-1997

MB/LCS/LCSD-260062 mg/L Unit:

Sample ID:

QC Summary Report for Total Suspended Solids

R	1.00
MDL	1.00
MB Result	QN
Analyte	Total Suspended Solids

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD RPD Limits	RPD Limit
Total Suspended Solids	92.0	93.0	100	92	93	80-120 1.08	10

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 2212602

ClientCode: PGEA

Weight Email

HardCopy

ThirdParty

J-flag

5 days; 7 days;

☐ WaterTrax

EDF

EQuIS Dry-Weight
Detection Summary

Bill to:

Excel

Report to:

Angel Espiritu

PG&E Gateway Generating Station 3225 Wilbur Avenue Antioch, CA 94509

(925) 459-7212 FAX:

Email: abe4@pge.com

CLIP

cc/3rd Party: a1he@pge.com; j5ld@pge.com; tlwy@pge.

PO:

Project: Quarterly Sampling (December 2022)

Angel Espiritu

PG&E Gateway Generating Station

3225 Wilbur Avenue

Antioch, CA 94509

Date Received:

Requested TATs:

12/08/2022

Date Logged: 12/08/2022

									Re	questec	Tests (See leg	end bel	ow)			
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3		4	5	6	7	8	9	10	11	12
2212602-001	E-001 Grab	Water	12/7/2022 09:10		В	Α		T				T .	1		A	1	
2212602-002	E-001 Grab	Water	12/8/2022 10:20		В	Α	С			D				С	Α		
2212602-003	E-001 Comp	Water	12/8/2022 10:15				1	_7	Α		В	E	F		Α	С	D

Test Legend:

1]	1664A_SG_W
5	CN_SM4500CE_W
9]	PHENOLICS_W

2	1664A_W
6	COD_W
10]	PRDisposal Fee

3	AMMONIA-SM4500BG_W
7	HG_W
11	TDS_W

4	BOD_W	
8]	METALSMS_TTLC_W	
12	TSS_W	

Prepared by: Adrianna Cardoza

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Client Contact: Angel Espiritu

Contact's Email: abe4@pge.com

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Comments:

Client Name:	PG&E GATEWAY GENERATING STATION	Project:	Quarterly Sampling (December 2022)	
--------------	---------------------------------	----------	------------------------------------	--

Work Order: 2212602

QC Level: LEVEL 2

Date Logged: 12/8/2022

		☐ Water	Trax CLIP EDF	Exc	el EQuI	S	Em	nail	□HardCopy	□Third	dParty ☐J-flaç	9		
LabID	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative		Head Space	Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Hold	Sub Out
001A	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl				12/7/2022 9:10	5 days	12/15/2022	Present		
001B	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl	П		П	12/7/2022 9:10	5 days	12/15/2022	Present		
002A	E-001 Grab	Water	E1664A (HEM; Oil & Grease w/o S.G. Clean-Up)	1	1LA w/ HCl			įĮ.	12/8/2022 10:20	5 days	12/15/2022	Present		
002B	E-001 Grab	Water	E1664A (SGT- HEM; Non-polar Material)	1	1LA w/ HCl	•	I		12/8/2022 10:20	5 days	12/15/2022	Present		
002C	E-001 Grab	Water	E420.4 (Phenolics)	1	500mL aG w/ H2SO4				12/8/2022 10:20	5 days	12/15/2022	Present		
			SM4500-NH3 BG (Ammonia Nitrogen)							5 days	12/15/2022	Present		
002D	E-001 Grab	Water	SM4500-CN ⁻ CE (Cyanide, Total)	1	250mL aHDPE w/ NaOH				12/8/2022 10:20	5 days	12/15/2022	Present	П	
003A	E-001 Comp	Water	SM5210B (BOD)	1	1L HDPE, unprsv.	-(E)		4.00	12/8/2022 10:15	7 days	12/19/2022	Present	$\neg \Box$	
003B	E-001 Comp	Water	SM5220D (COD)	2	aVOA w/ H2SO4	- []		-	12/8/2022 10:15	5 days	12/15/2022	Present		
003C	E-001 Comp	Water	SM2540C (TDS)	1	500mL HDPE, unprsv.				12/8/2022 10:15	5 days	12/15/2022	Present	П	
003D	E-001 Comp	Water	SM2540D (TSS)	1	1L HDPE, unprsv				12/8/2022 10:15	5 days	12/15/2022	Present		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Quarterly Sampling (December 2022) **Project:**

Work Order: 2212602

Client Contact: Angel Espiritu

QC Level: LEVEL 2

Contact's Email: abe4@pge.com **Comments:** **Date Logged:** 12/8/2022

		☐ Water	Trax CLIP EDF	Exce	el EQ ul	S	En	nail	HardCopy	Third	IParty ☐J-flaç	9	
LabID	ClientSampID	Matrix	Test Name	Containers /Composites	Bottle & Preservative			Dry- Weight	Collection Date & Time	TAT	Test Due Date	Sediment Content	Sub Out
003E	E-001 Comp	Water	E245.2 (Mercury)	1	250mL HDPE w/ HNO3		· 🔲		12/8/2022 10:15	5 days	12/15/2022	Present	
003F	E-001 Comp	Water	E200.8 (Metals) <arsenic, cadmium,<br="">Chromium, Copper, Iron, Lead, Molybdenum, Nickel, Selenium, Silver, Zinc></arsenic,>	1	250mL HDPE w/ HNO3				12/8/2022 10:15	5 days	12/15/2022	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

	Webs	ite: w		WILLOW ISBURG,	W PAS CA 945 Em	S ROAD 565-1701 ail: mair Fa	1@mc	camp 25) 2	bell 52 -	.com 9269						TURN GeoTra	acker l	UND EDF	TI	MI	RI PDF C	JSH 24 Exce	HI L		4 W	8 H Vri	IR 72 HR 5 DAY te On (DW) □ d "J" flag is required
Report To	: Angel Es	pirit	u .		E	Bill To:	PG&	E Ga	itev	vay							Analys	is Rec	que	st							Remarks
Company	: PG&E G	atew	ay Gener	ating Sta	tion										#			T	T				T	T	T	T	
	he4@nge.c					ax: () mi, tl	WY()pg	(e.co)	m					ed with before 4500 CN-	and selenium ction mode	(USEPA 1664A) with	PA 420.4)	N (SM 4500-NH3-G		um, chromiun silver, and zinc)					
	ame: Qua	-		ng (T	ece	dm.	Px	20	12	2)					fate SM	ke am	PAI	USE.	SMA		200.8 cadmium lead, rickel, silv rum, ivon, and	1	۽ ا			
	ocation: Co				C	15		7	V.	_	_		_		4	(Preliosu	by n	CUSE	offer	NS	145.2)	0.8 ca d, rdc	200	0000	34.60	200	2400
Sampler	AMPLE LOCATION OF SID / Fleld Point 25 SAMPLING STATE OF									RES	ER	VEI	,	Cyanide (Pretreated with sodium thiosulfate before preserving) by SM 4500 ABCE	Metals (Arsenic and selentum by 200.8 Selenium by reaction mode	Oil/Grease (USEPA 1664A) wit	Total Phenolics (IISEPA 429.4)	Ammonla	Mercury (245.2)	Metals (200.8 cadmium, copper, lead, rickel, silv Molyhdenim iron, and	more services	COD (Safety CO)	rop (am	TDS/KW2540C	TSS (SM 2540D)		
	LOCATION / Field Point Name	Sample Type Co	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	ICE	HANON	NaOH	HCL	HNO,	Other												
E-001		G	12/7/22	49:10	2	1L Amb	X			Х	T		X	T	1			X	T				T		T	T	
E-001		G		10:20	2	IL Amb	Х			Х	T		x	T	1			Х					T		T	T	
E-001		G	2/8/22		-	500ml Amb	Х			X 2	X	T	T	1	7			F	X	X			T		T	T	
E-001		G	12/8/22		1	250-ml Poly	Х			Х	>		T	T	7	х							Т		T	T	
E-001		C	12/8/22		1	1L Poly	X		X	Х		T	1	T	1				T				2	Г	Ť	T	
E-001		C	12/8/22		2	43-ml VOA	Х			X	X	T	1	T	1				T				T	х	T	T	
E-001		С	12/8/22		1	500-ml poly	Х		X	Х		T	T	T	1								T		T	X	
E-001		C	12/8/22		1	IL poly	Х		X	Х			T	T	1				T				T		T	17	x
E-001		С	12/8/22		1	250-ml Poly	Х			Х	T		1	х	1				T		X		T		T	T	
E-001		С	12/8/22		1	250-ml poly	Х	i		X			1	X	1		Х					Х			I	I	
			7.3									1	1	1	4								L		1	+	
Relinquishe	>		Date:		C	ived By:	16	4	3	in	IA	\ \ \			4	ICE/e // GOOD CO! HEAD SPA DECHLOR	CE ABSE	NT_					Τ,	ON	IMI	ENI	'S:
Relinquished By: Date: Time: Received By: Received By:												н	APPROPRI PRESERVE	ED IN LA	NTAIN B	ERS											

PG&E Gateway Generating Station

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Date and Time Received: 12/8/2022 12:05

Sample Receipt Checklist

Project:	Quarterly Sampling (December 2022)			Date Logged:	12/8/2022
WorkOrder №:	2212602 Matrix: Water			Received by: Logged by:	Agustina Venegas Adrianna Cardoza
Carrier:	Client Drop-In			Logged by.	Aunanna Caruoza
	Chain	of Custod	y (COC) I	nformation_	
Chain of custody	y present?	Yes		No 🗆	
Chain of custody	y signed when relinquished and received?	Yes		No 🗆	
Chain of custody	y agrees with sample labels?	Yes	•	№ □	
Sample IDs note	ed by Client on COC?	Yes		No 🗆	
Date and Time of	of collection noted by Client on COC?	Yes		№ □	
Sampler's name	noted on COC?	Yes		№ □	
COC agrees with	h Quote?	Yes		No 🔲	NA 🗷
	<u>Sa</u>	mple Rec	eipt Infor	mation	
Custody seals in	ntact on shipping container/cooler?	Yes		No 🔲	NA 🗷
Custody seals in	ntact on sample bottles?	Yes		No 🔲	NA 🔲
Shipping contain	ner/cooler in good condition?	Yes		No 🔲	
Samples in prop	per containers/bottles?	Yes	2	No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sampl	e volume for indicated test?	Yes	•	No 🔲	
	Sample Preserv	ation and	d Hold Tin	ne (HT) Information	
All samples rece	eived within holding time?	Yes		No 🗃	NA 🔲
Samples Receiv	red on Ice?	Yes		No 🔲	
	(Ice 7	Гуре: WE	ET ICE		
Sample/Temp B	lank temperature		Temp:	2.3°C	NA 🔲
	analyses: VOA meets zero headspace Ccs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🗾
Sample labels c	hecked for correct preservation?	Yes		No 🔲	
pH acceptable u <2; 522: <4; 218	ppon receipt (Metal: <2; Nitrate 353.2/4500NO3: 8.7: >8)?	Yes		No 🔲	NA 🗾
UCMR Samples	:				
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes	П	No 🔲	NA 🗾
Free Chlorine	tested and acceptable upon receipt (<0.1mg/L)	Yes		No 🔲	NA 🙀

Comments: Sample 2212602-002B with method E1664A (SGT- HEM; Non-polar Material) was received unpreserved. Method E1664A (SGT- HEM; Non-polar Material) was received past its 0.1667-day holding time. Sample 2212602-002C with method SM4500-NH3 BG (Ammonia Nitrogen) was received unpreserved. Sample 2212602-002C with method E420.4 (Phenolics) was received unpreserved. Sample 2212602-002D with method SM4500-CNT CE (Cyanide, Total) was received unpreserved.

Attachment 8b
Laboratory Results
Quarterly Monitoring of Combined Site Stream (E-001)
pH Report

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2212746

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Sanjiv Gill

Project P.O.:

Project: pH Sampling (December 2022)

Project Received: 12/08/2022

Analytical Report reviewed & approved for release on 12/16/2022 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2212746

Project: pH Sampling (December 2022)

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the

measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006,

December 2016.

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting limit is the lowest level that can be reliably determined within specified limits of precision and accuracy

during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard

used in the initial calibration of the instrument and must be greater than the MDL.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 12/08/2022 12:05

Date Prepared: 12/07/2022

Project: pH Sampling (December 2022)

WorkOrder: 2212746

Extraction Method: SM4500H+B-2000

Analytical Method: SM4500H+B

Unit: pH units

pН

Client ID	Lab ID Matrix	Date Collected	Instrument	Batch ID
E-001	2212746-001A Water	12/07/2022 09:25	WetChem	260281
Analytes	Result	Accuracy DF		Date Analyzed
рН	7.94	±0.05 1		12/07/2022 09:26

Analyst(s): JRA

PG&E Gateway Generating Station Client:

12/07/2022 Date Prepared:

12/07/2022 WetChem Date Analyzed: **Instrument:**

Water Matrix:

pH Sampling (December 2022) Project:

2212746 WorkOrder:

260281 BatchID:

Extraction Method: SM4500H+B-2000 SM4500H+B Analytical Method:

pH units Unit:

CCV-260281 Sample ID:

	QC Summary Report for pH	
Analyte	CCV Result	CCV Limits
Hd	7.00	6.9-7.1

McCampbell Analytical, Inc. **CHAIN-OF-CUSTODY RECORD** 1534 Willow Pass Rd Pittsburg, CA 94565-1701 WorkOrder: 2212746 ClientCode: PGEA (925) 252-9262 WaterTrax CLIP EDF EQuIS Dry-Weight Email HardCopy ThirdParty Detection Summary Excel Report to: Bill to: Requested TAT: Email: Sanjiv Gill sanjivgill@comcast.net Angel Espiritu cc/3rd Party: PG&E Gateway Generating Station PG&E Gateway Generating Station Date Received: PO: 3225 Wilbur Avenue 3225 Wilbur Avenue Antioch, CA 94509 Project: pH Sampling (December 2022) Antioch, CA 94509 Date Logged: (925) 459-7212 FAX:

							-		Rec	quested	Tests (See lege	end be	low)			7 -
Lab ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3		4	5	6	7	8	9	10	11	12
2212746-001	E-001	Water	12/7/2022 09:25	IT	A	I A	1	- 1								1	1

T 4	04	

1 PH_W_SANJIV	2 PRDisposal Fee	3	4]	
5	6	7	8	
9	10	11	12	

Prepared by: Adrianna Cardoza

J-flag

12/08/2022

12/09/2022

5 days;

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Client Contact:

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

pH Sampling (December 2022) **Project:**

Work Order: 2212746

OC Level: LEVEL 2

Contact's Email: sanjivgill@comcast.net

Sanjiv Gill

Comments:

Date Logged: 12/9/2022

	☐ WaterTra	ex CLIP	EDF	Exce	EQul	S	Em	nail	HardCopy	Third	IParty □J-flag	l	
LabID ClientSampID	Matrix	Test Name		Containers /Composites	Bottle & Preservative			Dry- Weight		TAT	Test Due Date	Sediment Content	ub Out
001A E-001	Water	SM4500H+B (Field pH)		1	<not received=""></not>			141	12/7/2022 9:25	5 days	12/15/2022		

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

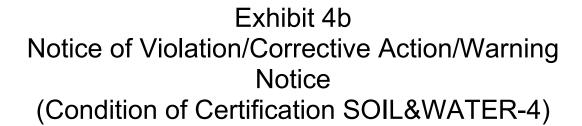
Report	Web	phon		WILLA TYSBURG mphelles	OW PA , CA 9 un Er	SS ROA! 4565-170 mali: ma	D 1 la@m 'ax: (9	ceam (25)	pbeli 252 -	.com 926:		1				UR eo'l			JO	EDI	T	IMI]]	E PD Ch	F	RU:	SH E	24 xce l	HR	48 W	S HI	· JA	
	y: PG&E		way Gen	erating 5					- 44	-				7								202	N.C.	lnes	-	T				+	Renaris	
																														ł		
					1	-Mail:	sanjir	vgill(gcoi	n CRI	t.ne	t		一																1		
Tel: (48	8) 666-449	4 (Ce	U)		1	Paz: ()							コ																		
Project	Name: pl	H Sai	npling (DACA	Last	4	027																							ı		
Project !	Location: I	FG&	E GGS A	ntioch —	E-901	<u> </u>						4																			•	
Sampler	Signature		uska	~ En	مُدو	nne	tol	SA	-0	بمأ																				ŀ		
:		mposite	SAMP	LING		,	Ma	trix	ME	LFIOI	PR	ESE	RVE	ъ												,						
SAMPLE ID	LOCATION / Field Point Name	Sample Type Co	Date	Time	# Containers	Type Containers	Waste Water	Sewer Water	None	H.SO.	NaOH	RCL	HNO.	Zinc Acetain	pH																	
E-001		G	12/1/22	09:25	NA	NA	Х		Х						x																Grab Time: 09:25 Analysis Time: 09:25	1
														T				T											\top	T	Temperature: 18,5°C pH: 7,94	٦
									\top					7	\neg			\top	7			٦							\top	十	prc (/97	┪
									十	-			\forall	+	-	\dashv		+	+	\dashv		\dashv	+	\dashv	\dashv			+	+	+		┨
									十			_	\dashv	+		-	\dashv	\dashv	\dashv	- 1	-+	-+	\dashv	-+	-			\dashv		╂╌		\dashv
									+	╀		\dashv	+	╅	-			-+	\dashv		-+		\dashv		\dashv			-		+		4
									-	┼╌┼		-	+	4		\dashv	-	-				-	-	-	\dashv	_				+		4
									+	╀┤		\dashv	\dashv	4			\dashv	\dashv	\dashv				_	4	_	_	_	\dashv		_		╛
									_	╀	_	\dashv	4	_	_	_	_	4	4		_	_	_	_	_		_	\perp				
											_	\perp		1	_		_		\perp			\perp	\bot	\bot	\perp							. [
									_			\perp		\perp	\perp			\perp				\bot	\perp				\perp					1
																				1			- 1						1	Г		7
							/						T	Т				T				\exists		\neg	\neg				1			1
Reliegich	ed By:		Date:	Time:	Recei	ved By:		2/							CI/													C	DMM	ENT	S:	1
$/\!\!/$			12/8/21	18.06	1	14	118	41	NA	2		4				D CI				T	-										•	
Relinquish	ed By:		Dates	Time:	Recei	ved By:]]]	DEC	HI.O	RIN	ATE	DI	NEA	II.	<u>-</u>	•									
Relinquish	ed By:		Date:	Thate;	Recei	ved By:								†	RE	SERV	/ED	in i	VOA		081	G 1	MET		0	THE	e R	·				

Logbook for Field pH Samples

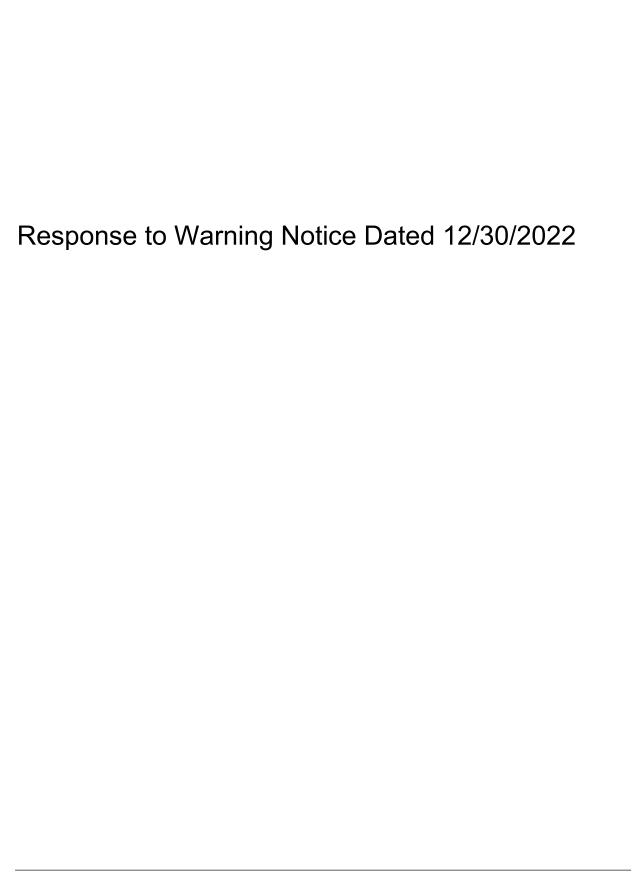
Date/Time	Sample ID	Matrix	1 st Reading		2 nd Reading		Ave	Standard	Comments	Amalous
			pН	Temp.°c	рН	Temp.°c	pН	(lot # / exp. Date)	Comments	Analyst
12/7/22 /835	Cal. pH#	L	7.00	21.4	7.00	21.4	7-00	bulk		
2/1/22/0835	Cal pH #4.00	L	4.00	21.4	4.00	21,4	4.00	bulk		
12/7/22/08:35	Cal. pH #	L	10.00	21.4	10.00	21.4	10.00	bulk		
	-									
					,			1 0		
		-			Maj	er M	1, LON	1 L Compa	my	
					-	seria	Mejeo	6222066		
						OHA	m C	AC 12/7/2		
						7	j			
						//	/	Drf	F 1	
					/	1	2	TNO	t hateh	m/

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com


Sample Receipt Checklist

0"	D005 0 / 0 / 0 / 0			D . IT D	40/0/0000 40 05
Client Name: Project:	PG&E Gateway Generating Station pH Sampling (December 2022)		Date and Time Received: Date Logged:	12/8/2022 12:05 12/9/2022	
i iojeci.	pri damping (December 2022)			Received by:	Agustina Venegas
WorkOrder №:	2212746 Matrix: Water			Logged by:	Adrianna Cardoza
Carrier:	-Client Drop-In				
	Chain of	Custod	v (COC) In	nformation	
Chain of custody	v procent?	Yes		No 🗆	
•				No 🗆	
-	signed when relinquished and received?	Yes	1	200	
•	agrees with sample labels?	Yes		No 🗆	
Sample IDs note	ed by Client on COC?	Yes		No 🔲	
Date and Time of	of collection noted by Client on COC?	Yes	2	No 🔲	
Sampler's name	noted on COC?	Yes		No 🔲	
COC agrees with	n Quote?	Yes		No 🔲	NA 🗷
	Sam	ple Rec	eipt Inforn	nation	
Custody seals in	stact on shipping container/cooler?	Yes		№ □	NA 🗹
Custody seals in	tact on sample bottles?	Yes		No 🔲	NA 🔲
Shipping contain	er/cooler in good condition?	Yes		No 🔲	
Samples in prop	er containers/bottles?	Yes	•	No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sample	e volume for indicated test?	Yes		No 🔲	
	Sample Preserva	ition and	l Hold Tim	ne (HT) Information	
All samples received within holding time?				No 🗃	NA 🔲
Samples Receiv	ed on Ice?	Yes		No 🔃	
Comple/Town D	look tomporatura		Temp:		NA 🗾
	lank temperature	V	Tomp.		
	analyses: VOA meets zero headspace Cs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🗾
Sample labels cl	hecked for correct preservation?	Yes		No 🔲	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: .7: >8)?	Yes		No 🔲	NA 🗐
UCMR Samples	:				
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		№ □	NA 🙀
Free Chlorine [not applicable	tested and acceptable upon receipt (<0.1mg/L) to 200.7]?	Yes		No 🔲	NA 🖬


Page 9 of 9

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 14

There was no NOV issued to PG&E GGS during RY 2022.

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

January 5, 2023

Mr. Michael Placencia Laboratory Manager Delta Diablo 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

Delta Diablo Industrial Wastewater Discharge Permit # 0208841-C

Subject:

Response to Warning Notice Dated December 30, 2022

Dear Mr. Placencia,

Please accept this response to Delta Diablo (District's) Warning Notice dated December 30, 2022 and received by PG&E on January 4, 2023 (see attached). In order to address the corrective actions required relative to the recent exceedance of the local limit for zinc at PG&E's Gateway Generating Station (GGS), which was self-reported to the District on December 16, 2022, PG&E submits the following plan to address the potential future exceedances and to ensure compliance with its Industrial Wastewater Discharge Permit:

- 1. PG&E will investigate the plant operational processes to assess potential source/s that may have contributed to the elevated zinc concentration in the discharge waste stream (i.e., cooling water processes, the chemistry of water treatment products, etc.).
- PG&E has performed re-sampling of the discharge flow for zinc. This re-sampling was completed today (January 5, 2023). Upon receipt of the laboratory report from the analytical laboratory, the results of the re-sampling will be submitted to the District.
- 3. PG&E will review any findings of the investigation performed in Item 1 and incorporate them into ongoing and annual training to inform GGS plant personnel of measures and actions that should be taken to ensure compliance with the Wastewater Discharge Permit requirements.

1/9/23 Received Stary Tucker for gason year

Please let us know if you have questions. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim D'adlen

Attachment: a/s

Public

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

January 5, 2023

Mr. Michael Placencia Laboratory Manager Delta Diablo 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

Delta Diablo Industrial Wastewater Discharge Permit # 0208841-C

Subject:

Response to Warning Notice Dated December 30, 2022

Dear Mr. Placencia,

Please accept this response to Delta Diablo (District's) Warning Notice dated December 30, 2022 and received by PG&E on January 4, 2023 (see attached). In order to address the corrective actions required relative to the recent exceedance of the local limit for zinc at PG&E's Gateway Generating Station (GGS), which was self-reported to the District on December 16, 2022, PG&E submits the following plan to address the potential future exceedances and to ensure compliance with its Industrial Wastewater Discharge Permit:

- PG&E will investigate the plant operational processes to assess potential source/s that may have contributed to the elevated zinc concentration in the discharge waste stream (i.e., cooling water processes, the chemistry of water treatment products, etc.).
- PG&E has performed re-sampling of the discharge flow for zinc. This re-sampling was completed today (January 5, 2023). Upon receipt of the laboratory report from the analytical laboratory, the results of the re-sampling will be submitted to the District.
- 3. PG&E will review any findings of the investigation performed in Item 1 and incorporate them into ongoing and annual training to inform GGS plant personnel of measures and actions that should be taken to ensure compliance with the Wastewater Discharge Permit requirements.

Please let us know if you have questions. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisolom

Attachment: a/s

December 30, 2022

CERTIFIED MAIL NUMBER 7014 0150 0000 1544 6295

Mr. Tim Wisdom, Senior Plant Manager Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509

SUBJECT: WARNING NOTICE - PG&E GATEWAY WASTEWATER DISCHARGE PERMIT #0208841-C ZINC VIOLATION

Dear Mr. Wisdom:

On December 16, 2022, Delta Diablo (District) received notice from Pacific Gas & Electric Gateway Generating Station (PG&E), Industrial Wastewater Discharge Permit #0208841-C, that a violation had occurred. This notice was received within 24 hours of PG&E becoming aware of said violation, as required by permit.

The District is issuing a WARNING NOTICE (WN) to PG&E for the following violation occurring from the sample event on December 8, 2022.

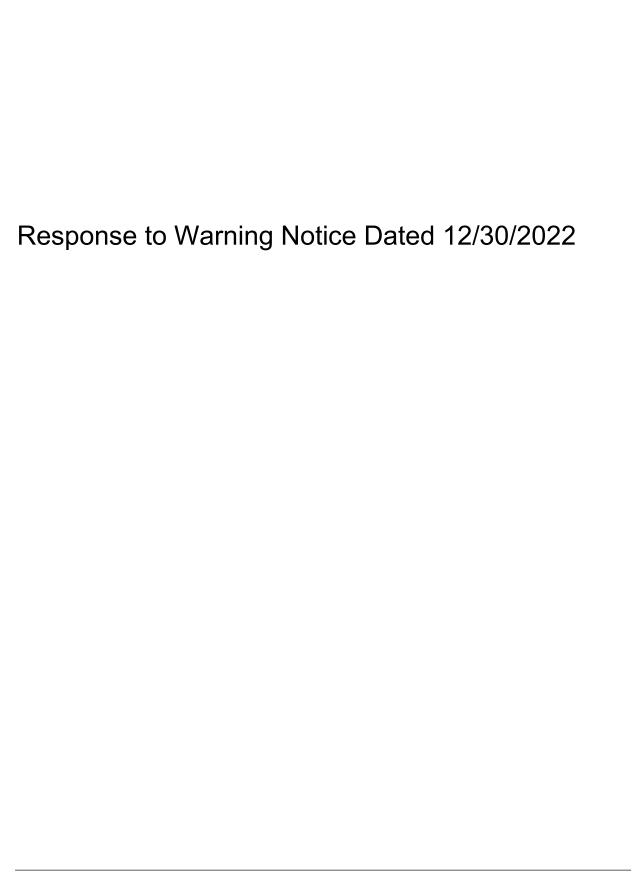
1. The zinc result of 2.0 mg/L violates the permitted limit of 1.0 mg/L.

CORRECTIVE ACTIONS REQUIRED:

- 1. Re-sample for zinc and submit the result of the analysis to the District within 30 days of becoming aware of the violation. PG&E became aware of the violation on December 16, 2022. The result due date is January 15, 2023.
- 2. Within five (5) days of receipt of this notice, a corrective action plan to prevent future violations must be submitted in writing to the District.

Failure to complete the corrective actions may result in escalating enforcement activity, including, but not limited to a Notice of Violation or monetary penalties.

If you have any questions regarding this notice, please contact Jason Yun, Environmental Compliance Specialist II at (925) 756-1913 or me at (925) 756-1915.


Sincerely,

Michael Placencia Laboratory Manager

MP/JY

CC: Dean Eckerson, Resource Recovery Services Director, Delta Diablo Jason Yun, Environmental Compliance Specialist II, Delta Diablo

2500 Pittsburg-Antioch Hwy · Antioch, CA 94509 · p 925.756.1900 · f 925.756.1961 · www.deltadiablo.org

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

January 12, 2023

Mr. Michael Placencia Laboratory Manager Delta Diablo 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station (PG&E)

Delta Diablo Industrial Wastewater Discharge Permit # 0208841-C

Subject:

Result of Resampling for Zinc (Response to Warning Notice dated 12/30/2022)

Dear Mr. Placencia,

This letter is to follow up on PG&E's response (submitted on January 9, 2023) to the Warning Notice received from Delta Diablo (dated December 30, 2022) regarding a recent exceedance of the local limit for zinc at PG&E's Gateway Generating Station. Please find attached the laboratory analytical report for the resampling for zinc, which was detected at a concentration of 0.67 mg/L (for which the permit limit is 1.0 mg/L).

PG&E will continue to implement the other aspects of corrective action plan described in the response letter (see attached). Please let us know if you have any questions. Thank you.

Feceived 12023

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisdom

Attachment: a/s

Public

Certification Statement

Name of Business: PG&E Gateway Generating Station

Address: 3225 Wilbur Avenue, Antioch, CA. 94509

Phone: <u>925-522-7805</u>

Period Covered: Period ending: December 31, 2022-Result of Re-sampling for Zinc

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

1

Signature: Tim Wisdom Date: Feb. 28, 2023

Print Name: Tim Wisdom

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

January 12, 2023

Mr. Michael Placencia Laboratory Manager Delta Diablo 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station (PG&E)

Delta Diablo Industrial Wastewater Discharge Permit # 0208841-C

Subject:

Result of Resampling for Zinc (Response to Warning Notice dated 12/30/2022)

Dear Mr. Placencia,

This letter is to follow up on PG&E's response (submitted on January 9, 2023) to the Warning Notice received from Delta Diablo (dated December 30, 2022) regarding a recent exceedance of the local limit for zinc at PG&E's Gateway Generating Station. Please find attached the laboratory analytical report for the resampling for zinc, which was detected at a concentration of 0.67 mg/L (for which the permit limit is 1.0 mg/L).

PG&E will continue to implement the other aspects of corrective action plan described in the response letter (see attached). Please let us know if you have any questions. Thank you.

Sincerely,

Tim Wisdom

Senior Plant Manager

Tim Wisdom

Attachment: a/s

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 2301160

Report Created for: PG&E Gateway Generating Station

3225 Wilbur Avenue Antioch, CA 94509

Project Contact:

Angel Espiritu

Project P.O.:

Project: December 2022 Resample

Project Received: 01/05/2023

Analytical Report reviewed & approved for release on 01/10/2023 by:

Yen Cao

Project Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in a case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: PG&E Gateway Generating Station WorkOrder: 2301160

Project: December 2022 Resample

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

CPT Consumer Product Testing not NELAP Accredited

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample
LQL Lowest Quantitation Level

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL is the minimum measured concentration of a substance that can be reported with 99% confidence that the

measured concentration is distinguishable from method blank results. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, 40CFR, Part 136, Appendix B, EPA 821-R-16-006,

December 2016.

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

NA Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting limit is the lowest level that can be reliably determined within specified limits of precision and accuracy

during routine laboratory operating conditions. (The RL cannot be lower than the lowest calibration standard

used in the initial calibration of the instrument and must be greater than the MDL.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

TZA TimeZone Net Adjustment for sample collected outside of MAI's UTC.

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: PG&E Gateway Generating Station

Date Received: 01/05/2023 13:34

Date Prepared: 01/05/2023

Project: December 2022 Resample

WorkOrder: 2301160

Extraction Method: E200.8

Analytical Method: E200.8

Unit: $\mu g/L$

		Meta	s			
Client ID	Lab ID	Matrix	Date Col	lected	Instrument	Batch ID
E-001	2301160-001A	Water	01/05/2023	3 11:55	ICP-MS5 145SMPL.d	261366
Analytes	Result		RL	DE		Date Analyzed
Zinc	670		20	1		01/06/2023 12:46
Surrogates	REC (%)		Limits			
Terbium	108		70-130			01/06/2023 12:46

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: PG&E Gateway Generating Station

Date Prepared:01/05/2023Date Analyzed:01/06/2023Instrument:ICP-MS5Matrix:Water

Project: December 2022 Resample

WorkOrder: 2301160

BatchID: 261366

Extraction Method: E200.8 **Analytical Method:** E200.8

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-261366

	QC Sui	nmary R	eport for	Metals					
Analyte	MB Result		MDL	RL		SPK Val	MB SS %REC		B SS mits
Zinc	ND		14	20		-	-	-	
Surrogate Recovery									
Terbium	520					500	104	70)-130
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Zinc	540	540	500		109	108	85-115	0.0920	20
Surrogate Recovery									
Terbium	530	540	500		106	107	70-130	1.62	20

McCampbell Analytical, Inc. **CHAIN-OF-CUSTODY RECORD** Page of 1 1534 Willow Pass Rd Pittsburg, CA 94565-1701 WorkOrder: 2301160 ClientCode: PGEA (925) 252-9262 EDF Dry-Weight WaterTrax T CLIP **EQuIS** Email HardCopy ThirdParty J-flag Detection Summary **I** Excel Report to: Bill to: Requested TAT: 3 days; Email: Angel Espiritu abe4@pge.com Angel Espiritu cc/3rd Party: TIWY@PGE.COM; PG&E Gateway Generating Station PG&E Gateway Generating Station Date Received: 01/05/2023 PO: 3225 Wilbur Avenue 3225 Wilbur Avenue Antioch, CA 94509 Project: December 2022 Resample Antioch, CA 94509 Date Logged: 01/05/2023 (925) 459-7212 FAX: Requested Tests (See legend below) ClientSampID Lab ID Matrix Collection Date Hold 2 3 7 10 11 12

Α

1/5/2023 11:55

Water

Test Legend:

2301160-001

E-001

1 METALSMS_TTLC_W	PRDisposal Fee	3	[4]
5	6	7	8
9	10	11	12

Prepared by: Lilly Ortiz

Comments:

NOTE: Soil samples are discarded 60 days after receipt unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PG&E GATEWAY GENERATING STATION

Project: December 2022 Resample

Work Order: 2301160

Client Contact: Angel Espiritu
Contact's Email: abe4@pge.com

QC Level: LEVEL 2

Comments

Date Logged: 1/5/2023

	WaterTrax	CLIP	EDF	Exce	el [[EQul	s	Ema	iil	HardCopy	Third	lParty ∏J-flaç)	
LabID ClientSampID	Matrix Tes	t Name		Containers /Composites	Bottle & Preservative		[ead] pace W	•	Collection Date & Time	TAT	Test Due Date	Sediment Content	Sub Out
001A E-001	Water E20	0.8 (Metals) <zinc></zinc>		1	250mL HDPE w/ HNO3	П			1/5/2023 11:55	3 days	1/10/2023	Present	

NOTES: * STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- Organic extracts are held for 40 days before disposal; Inorganic extract are held for 30 days.
- MAI assumes that all material present in the provided sampling container is considered part of the sample MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

U** = An unpreserved container was received for a method that suggests a preservation in order to extend hold time for analysis.

MAI Work Order # 230/160

McCAMPBELL ANALYTICAL, INC.				CHAIN OF	CUST	ODY R	ECOR	ED .			
1534 Willow Pass Rd. Pittsburg, Ca. 94565-1701	Tum Around Tim	e:1 Day	Rush	2 Day Rush	(3 Da	y Rush	STD		Quote #		
Telephone: (877) 252-9262 / Fax: (925) 252-9269	J-Flag / MDL	ESL		Cleanup Appr	oved	Dry Weig	ght	Bottle	Order#		,
www.mccampbell.com main/a/mccampbell.com	Delivery Format:	PDF		GeoTracker EDF	EDD		Write On	(DW)	Det	ect Sun	mary
Report To: Angel Espiritu Bill To: PGRE Galerry				An	alysis Re	quested				-	
Company: PGDF Coderny Generation Station											
Email: abe 4 & pge.com, A1 4 E & gge.com, J51d Doge.com Alt Email: +12 No. 200 Com Tele: 925-522-7838	7 ∞										
Alt Email: + Wy @ pge. Com Tele: 925-522-7838	9										
Project Name: December 2022 ResandProject #:] ନ୍ଧ										
Project Location: Combined Site Flow, PO#] "										
Sampler Signature: Muskan Environmental Sampling] [
	7 4 1										
Location / Field Point Freservative	<u> 2</u>				ŧ				1		
E-001 01-05-23 11:55 1 Waster HNO3	X										
		1									
	1-1-	+ +			_	 	-				
											
		-									
				1							
									+		
	1	+ +					+-				_
141 E-1607 E-1	<u></u>										
MAI clients MUST disclose any dangerous chemicals known to be present in their submitted samples in concentrations th Non-disclosure incurs an immediate \$250 surcharge and the client is subject to full legal liability for hum suffered. Thank	iat may cause immedia k you for your understa	ite harm o anding an	or serio id for a	ous future health endan illowing us to work safe	germent as a aly.	result of bri	ief, gloved	l, open air,	sample har	idling by	MAI staff.
* If metals are requested for water samples and the water type (Matrix) is not specified on the chain of custod	iy. MAI will default	to metal	s by E	200.8.			T	Com	ments / In	structio	ns
Please provide an adequate volume of sample. If the volume is not sufficient for a MS/MSD a LCS/LCSD will			_				\exists A	naly	120	Zir	١.
Relinquished By / Company Name Date Time	Received B	y / Com	pany l	Name	Date	Time		1			-
Angu 1/5/23 13:34			_		1/5/23	1330	2 (Inc	٧		intainer:
							- 3				10 ml
Maria Carlo DW Dialia was CW Constant and a series of the constant and a s							4				2017
Matrix Code: DW=Drinking Water, GW=Ground Water, WW=Waste Water, SW=Seaw		_=Slud	ge, A	A=Air, WP=Wip	e, O≃Oth			7			
Preservative Code: 1=4°C 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=ZnOAc/NaOl	ri /≃None					Ten	ip 🖊	.2,00	🗦 🖊 Inii	nais	TE

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Project:	December 2022 Resample			Date and Time Rec Date Logged: Received by:	1/5/2023 13:34 1/5/2023 Lilly Ortiz
WorkOrder №: Carrier:	2301160 Matrix: Water Client Drop-In			Logged by:	Lilly Ortiz
	Chain	of Custod	y (COC) li	nformation	
Chain of custody	y present?	Yes	*	No 🔲	
Chain of custody	y signed when relinquished and received?	Yes	~	No 🔲	
Chain of custody	y agrees with sample labels?	Yes		No 🔲	
Sample IDs note	ed by Client on COC?	Yes		No 🔲	
Date and Time of	of collection noted by Client on COC?	Yes		No 🔲	
Sampler's name	noted on COC?	Yes	7	No 🔲	
COC agrees with	h Quote?	Yes		No 🗔	NA 🖸
	Sai	mple Rec	eipt Infori	mation	
Custody seals in	ntact on shipping container/cooler?	Yes		No 🔲	NA 🜌
Custody seals in	ntact on sample bottles?	Yes		No 🔲	NA 🖃
Shipping contain	ner/cooler in good condition?	Yes		No 🔲	
Samples in prop	per containers/bottles?	Yes		No 🔲	
Sample containe	ers intact?	Yes		No 🔲	
Sufficient sampl	e volume for indicated test?	Yes		No 🔲	
	Sample Preserv	ation and	Hold Tin	ne (HT) Information	
All samples rece	eived within holding time?	Yes		No 🔲	NA 🔲
Samples Receiv	ved on Ice?	Yes		No 🔲	
	(Ice 7	Гуре: WE	T ICE		
Sample/Temp B	lank temperature		Temp:	1.3°C	NA 🔲
ZHS conditional requirement (VC	analyses: VOA meets zero headspace DCs, TPHg/BTEX, RSK)?	Yes		No 🔲	NA 🚁
Sample labels c	hecked for correct preservation?	Yes		No 🔲	
pH acceptable u <2; 522: <4; 218	pon receipt (Metal: <2; Nitrate 353.2/4500NO3: 8.7: >8)?	Yes		No 🔲	NA 🔲
UCMR Samples	:				
pH tested and 537.1: 6 - 8)?	acceptable upon receipt (200.7: ≤2; 533: 6 - 8;	Yes		No 🔲	NA 🔄
Free Chlorine [not applicable	tested and acceptable upon receipt (<0.1mg/L) e to 200.7]?	Yes		No 🔲	NA 🕞

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

January 5, 2023

Mr. Michael Placencia Laboratory Manager Delta Diablo 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

Delta Diablo Industrial Wastewater Discharge Permit # 0208841-C

Subject:

Response to Warning Notice Dated December 30, 2022

Dear Mr. Placencia,

Please accept this response to Delta Diablo (District's) Warning Notice dated December 30, 2022 and received by PG&E on January 4, 2023 (see attached). In order to address the corrective actions required relative to the recent exceedance of the local limit for zinc at PG&E's Gateway Generating Station (GGS), which was self-reported to the District on December 16, 2022, PG&E submits the following plan to address the potential future exceedances and to ensure compliance with its Industrial Wastewater Discharge Permit:

- 1. PG&E will investigate the plant operational processes to assess potential source/s that may have contributed to the elevated zinc concentration in the discharge waste stream (i.e., cooling water processes, the chemistry of water treatment products, etc.).
- PG&E has performed re-sampling of the discharge flow for zinc. This re-sampling was completed today (January 5, 2023). Upon receipt of the laboratory report from the analytical laboratory, the results of the re-sampling will be submitted to the District.
- 3. PG&E will review any findings of the investigation performed in Item 1 and incorporate them into ongoing and annual training to inform GGS plant personnel of measures and actions that should be taken to ensure compliance with the Wastewater Discharge Permit requirements.

1/9/23 Received Stary Tucker for gason year

Please let us know if you have questions. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim D'adlen

Attachment: a/s

Public

Mailing Address:
Pacific Gas & Electric Company
Gateway Generating Station
3225 Wilbur Ave.
Antioch, CA 94509
(925) 522-7801

January 5, 2023

Mr. Michael Placencia Laboratory Manager Delta Diablo 2500 Pittsburg-Antioch Hwy. Antioch, CA 94509-1373

Reference:

Pacific Gas and Electric Company - Gateway Generating Station

Delta Diablo Industrial Wastewater Discharge Permit # 0208841-C

Subject:

Response to Warning Notice Dated December 30, 2022

Dear Mr. Placencia,

Please accept this response to Delta Diablo (District's) Warning Notice dated December 30, 2022 and received by PG&E on January 4, 2023 (see attached). In order to address the corrective actions required relative to the recent exceedance of the local limit for zinc at PG&E's Gateway Generating Station (GGS), which was self-reported to the District on December 16, 2022, PG&E submits the following plan to address the potential future exceedances and to ensure compliance with its Industrial Wastewater Discharge Permit:

- PG&E will investigate the plant operational processes to assess potential source/s that may have contributed to the elevated zinc concentration in the discharge waste stream (i.e., cooling water processes, the chemistry of water treatment products, etc.).
- PG&E has performed re-sampling of the discharge flow for zinc. This re-sampling was completed today (January 5, 2023). Upon receipt of the laboratory report from the analytical laboratory, the results of the re-sampling will be submitted to the District.
- 3. PG&E will review any findings of the investigation performed in Item 1 and incorporate them into ongoing and annual training to inform GGS plant personnel of measures and actions that should be taken to ensure compliance with the Wastewater Discharge Permit requirements.

Please let us know if you have questions. Thank you.

Sincerely,

Tim Wisdom Senior Plant Manager

Tim Wisolom

Attachment: a/s

December 30, 2022

CERTIFIED MAIL NUMBER 7014 0150 0000 1544 6295

Mr. Tim Wisdom, Senior Plant Manager Pacific Gas & Electric Company Gateway Generating Station 3225 Wilbur Ave. Antioch, CA 94509

SUBJECT: WARNING NOTICE - PG&E GATEWAY WASTEWATER DISCHARGE PERMIT #0208841-C ZINC VIOLATION

Dear Mr. Wisdom:

On December 16, 2022, Delta Diablo (District) received notice from Pacific Gas & Electric Gateway Generating Station (PG&E), Industrial Wastewater Discharge Permit #0208841-C, that a violation had occurred. This notice was received within 24 hours of PG&E becoming aware of said violation, as required by permit.

The District is issuing a WARNING NOTICE (WN) to PG&E for the following violation occurring from the sample event on December 8, 2022.

1. The zinc result of 2.0 mg/L violates the permitted limit of 1.0 mg/L.

CORRECTIVE ACTIONS REQUIRED:

- 1. Re-sample for zinc and submit the result of the analysis to the District within 30 days of becoming aware of the violation. PG&E became aware of the violation on December 16, 2022. The result due date is January 15, 2023.
- 2. Within five (5) days of receipt of this notice, a corrective action plan to prevent future violations must be submitted in writing to the District.

Failure to complete the corrective actions may result in escalating enforcement activity, including, but not limited to a Notice of Violation or monetary penalties.

If you have any questions regarding this notice, please contact Jason Yun, Environmental Compliance Specialist II at (925) 756-1913 or me at (925) 756-1915.

Sincerely,

Michael Placencia Laboratory Manager

MP/JY

CC: Dean Eckerson, Resource Recovery Services Director, Delta Diablo Jason Yun, Environmental Compliance Specialist II, Delta Diablo

2500 Pittsburg-Antioch Hwy · Antioch, CA 94509 · p 925.756.1900 · f 925.756.1961 · www.deltadiablo.org

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 14

Exhibit 5 HAZ-1 Appendix C: Table 8.12-4 (Condition of Certification HAZ-1), and Hazardous Materials Inventory as submitted to CUPA through CERS on 02/27/2023

HAZ-1 Appendix C Table 8.12-4 Hazardous Materials to be Added at Gateway Generating Station During the Operational Phase

Material	CAS Number	Purpose	Location	Container	Hazardous Characteristics	Maximum Quantity	Unit	Reg	ulatory Th	resholds (I	bs.)
						On-Site		Cal-ARP	Federal RQ	Federal TPQ	Federal TQ
Aqueous Ammonia (29%)	7664-41-7	SCR	Ammonia Storage Facility	Storage Tank (20,000 gal)	Corrosive	285,000	lbs.	500	100	500	20,000
Trisodium Phosphate (or Pre-blended Phosphate/Caustic)	7601-54-9 1310-73-2	pH/Corrosion Control	Northeast Corner of Admin Building	Bulk Returnable Container (Tote) with Hose Connections	Corrosive/Toxic	1,000	lbs.				
Carbohydrazide	487-18-7	Oxygen Scavenger (Oxygen removal/metal passiavtion)	Between ST and ACC	Bulk Returnable Container (Tote) with Hose Connections	Toxic	500	gals.				
Aqueous Ammonia (19.4%) (or ammonia monoethanolamine blend) *	7664-41-7 141-43-5	Boiler Feed pH adjustment/corrosion control	Between ST and ACC (Northwest corner of ACC)	Bulk Returnable Container (Tote) with Hose Connections	Corrosive	330	gals.	500			
Sodium Bisulfite	7631-90-5	Water treatment feedwater dechlorinization	Fire Water Pump Enclosure	Bulk Returnable Container (Tote) with Hose Connections	Toxic	500	gals.				
Stabilized Bromine/Sodium Hydroxide	1310-73-2	Bacteria control for feedwater tank/WSAC cooling water biocide	Fire Water Pump Enclosure	Bulk Returnable Container (Tote) with Hose Connections	Corrosive/Toxic	400	gals.				
Sulfuric Acid *	7664-93-9	WSAC water pH adjustment	Between ACC and WSAC and Warehouse (Storage)	Bulk Returnable Container (Tote) with Hose Connections	Corrosive	50	gals.	1,000			
Corrosion/Scale Inhibitor/Sodium Hydroxide	1310-73-2	Scale and corrosion inhibitor for closed loop cooling	Fire Water Pump Enclosure	Drum	Toxic	55	gals.				
Scale Inhibitor/Sulfuric Acid	7664-93-9	Scale and corrosion inhibitor evaporative cooling system (WSAC)	Between ACC and WSAC	Bulk Returnable Container (Tote) with Hose Connections	Toxic	500	gals.				
Sodium Hypochlorite	7681-52-9	Evaporative Cooling (WSAC) biocide	Between ACC and WSAC	Bulk Returnable Container (Tote) with Hose Connections	Corrosive/Toxic	500	gals.				
Hydrogen Gas	1333-74-0	Heat transfer medium for generators	Storage (South of ACC), In Process (CT1, CT2, ST)	Bulk Returnable Container (Tube Trailer) & In Process	Flammable	1,029	lbs.				10,000
Propylene Glycol	00057-55-6	Heat transfer fluid (Anti- freeze)	Power Block	Bulk Returnable Container (Tube Trailer) & In Process	Flammable (HMIS Flam-1)	3,326	gals.				
Monoethanolamine (30%-60%) *	141-43-5	Corrosion Inhibitor	Between ST and ACC (Northwest corner of ACC)	Bulk Returnable Container (SS Metal Tote) with Hose Connections	Corrosive/Toxic/ Combustable	400	gals.				
Ammonium Hydroxide (15%) & Monoethanolamine (8%)	1336-21-6 141-43-5	Corrosion Inhibitor	Between ST and ACC (Northwest corner of ACC)	Bulk Returnable Container (SS Metal Tote) with Hose Connections	Corrosive, Toxic	400	gals.				
Aluminum chloride hydroxide sulfate (10-30%)	39290-78-3	Flocculant	Storm Water Treatment System and Warehouse (Storage)	Bulk Returnable Container (Tote) with Hose Connections	Corrosive	550	gals.				
Sodium Hydroxide (10-50%)	1310-73-2	Precipitate Transition (for Iron)	Storm Water Treatment System	Bulk Returnable Container with Hose Connections	Corrosive	80	gals.				

^{*} The aqueous ammonia (or ammonia monoethanolamine blend) and sulfuric acid are stored in catchments sized to meet all applicable codes.

			Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID	10018894	
acility Name	PG&E GA	TEWAY GENERATING STATION			Air Cooled	d Condense	r Gear Bo	oxes	Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	7/2023 11:46 AM
					Quantities		Annual Waste	Federal Hazard		azardous Component (For mixture only)	s
OOT Code/Fire Haz. O	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Lubricating Oil CAS No		432 Storage Container Other	12	432 Pressue Ambient	Waste Cod	le_	1-DECENE, HOMOPOLY HYDROGENATED	MER, 95%	68037-01-4
Combustible Liquic	, Class III-B	Map: Figure 2 Grid: C3	Туре	Days on Site: 365		Temperature > Ambient					

Printed on 3/15/2023 4:20 PM Page 1 of 49

			Hazardo	us Materials /	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID	10018894	
acility Name	PG&E GAT	TEWAY GENERATING STATION			Alternate	Feed Trans	former		Facility I	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	27/2023 11:46 AM
					Quantities		Annual Waste	Federal Hazard		Hazardous Componen (For mixture only)	ts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquic	l, Class III-B	Map: Figure 2 Grid: D6	Liquid Type	656 Storage Container Other Days on Site: 365	656	656 Pressue Ambient Temperature > Ambient	Waste Cod		Dielectric Oil (Highly I Oil)	Refined Petro 100%	

Printed on 3/15/2023 4:20 PM Page 2 of 49

		Hazardo	ous Materials	And Waste	s Inventor	y Matrix	Report			
ERS Business/Org.	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			Chemical Loca Ammonia	ation and Scaver	nger Feed	Skid	CERS ID 10018894 Facility ID 07-000-773723 Status Submitted on 2/27/2023 1		
OT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
Corrosive	NALCO 5711 CAS No Map: Figure 2 Grid: C4	Liquid Type	Storage Container Plastic/Non-metal Days on Site: 365	400 ic Drum	400 Pressue Ambient Temperature Ambient	Waste Cod	- Physical Corrosive To Metal - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation	AMMONIA MEA	15% 8%	

Printed on 3/15/2023 4:20 PM Page 3 of 49

ERS Business/Org.	PG&E PG&E GAT	EWAY GENERATING STATION			Chemical Local	ition Ammonia S	torage Ta	nk	CERS ID Facility I	10018894 07-000-773723	3
	3225 Wilbur	Ave, Antioch 94509					Annual		Status	Submitted on 2/2 Hazardous Component	•
OT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Waste Amount	Federal Hazard Categories	Component Name	(For mixture only) % Wt	EHS CAS No.
OOT: 8 - Corrosive: olids) Corrosive	s (Liquids and	Aqua Ammonia (29%) CAS No 1336-21-6 Map: Figure 2 Grid: A6	Gallons State Liquid Type Mixture	Storage Container Aboveground Tank Days on Site: 365	18020	18020 Pressue Ambient Temperature Ambient		- Health Acute Toxicity - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity - Health Hazard Not Otherwise Classified	Ammonia	30%	7664-41-7

Printed on 3/15/2023 4:20 PM Page 4 of 49

		Hazardous Materials And V	Vastes Inventory Matrix Repo	ort	
	GATEWAY GENERATING STATION bur Ave, Antioch 94509		nical Location lind (East of) Plant Service Build	CERS ID 10018894 ing and Shop Annex Facility ID 07-000-77372: Status Submitted on 2/2	
DOT Code/Fire Haz. Class DOT: 2.1 - Flammable Gases Flammable Gas	Common Name Acetylene, Compressed CAS No	State Storage Container	t Cont. Avg. Daily Amount Cate 45 1740 - Phy Pressue Waste Code Flam	Hazardous Component (For mixture only) gories Component Name % Wt ysical Acetylene 100% nmable ysical Gas	EHS CAS No. 74-86-2
Taillinable Gas	74-86-2 Map: Figure 2 Grid: B4	Gas Cylinder Type Pure Days on Site: 365	Temperature Und Ambient - Her Asph - Her Not	yalculous er Pressure alth Simple nyxiant alth Hazard Otherwise sified	
DOT: 2.1 - Flammable Gases Flammable Gas	Propane, Compressed CAS No 74-98-6 Map: Figure 2 Grid: B4	Gallons 111 9 State Storage Container Liquid Cylinder Type Pure Days on Site: 365	Pressue Waste Code Flam > Ambient - Phy Temperature - Hec Ambient Asph - Hec Not	ysical Propane 100% nmable ysical Gas er Pressure alth Simple nyxiant alth Hazard Otherwise sified	74-98-6
Combustible Liquid, Class III-I	Shell Turbo Oil DR46 CAS No Map: Figure 2 Grid: C4	State Storage Container Liquid Steel Drum Type Mixture Days on Site: 365	5 110 Pressue Waste Code Ambient Temperature Ambient	Highly Refined Petroleum Oil 99% Proprietary Additives 1%	

Printed on 3/15/2023 4:20 PM Page 5 of 49

1		Hazardo	us Materials A	and Waste	s Inventor	y Matrix	Report			
,	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Carbon Di	ioxide Bulk	Storage		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Gases	Carbon Dioxide, Liquid CAS No 124-38-9 Map: Figure 2 Grid: D2	Gallons State Liquid Type	-	2326	2326 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas	Carbon Dioxide	100%	124-38-9

Printed on 3/15/2023 4:20 PM Page 6 of 49

		Hazardo	us Materials <i>A</i>	And Waste	s Inventory	y Matrix	Report			
	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Combusti	on Turbine-	Α		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Gases		Gallons State Liquid Type		2326	2326	Waste Cod	- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Carbon Dioxide	100%	124-38-9

Printed on 3/15/2023 4:20 PM Page 7 of 49

			Hazardo	ous Materials .	And Waste	s Inventor	y Matrix	Report			-		
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID 10	018894			
acility Name	PG&E GA	TEWAY GENERATING STATION			Combusti	on Turbine	-A Lube C	Oil Reservoir	Facility ID 07	-000-77372	3		
	3225 Wilbur	Ave, Antioch 94509							Status Su	bmitted on 2/2	7/2023 11:46 AM		
	Code/Fire Haz. Class Common Name			Annual Quantities Waste Federal Hazard						Hazardous Components (For mixture only)			
DOT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.		
		Shell Turbo Oil T 32	Gallon	s 6000	6000	6000			Highly Refined Petroleum	Oil 99%			
Combustible Liquid	, Class III-B	CAS No	State Liquid	Storage Container Other	-	Pressue Ambient	Waste Cod	de	Proprietary Additives	5%			
		Map: Figure 2 Grid: C6	Type Mixture	Days on Site: 365		Temperature > Ambient	-						

Printed on 3/15/2023 4:20 PM Page 8 of 49

		Hazardo	us Materials <i>A</i>	and Waste	s Inventory	y Matrix	Report			
	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Combusti	on Turbine-	В		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Gases	Carbon Dioxide, Liquid CAS No 124-38-9 Map: Figure 2 Grid: B5	Liquid Type		2326	2326	Waste Cod	- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Carbon Dioxide	100%	124-38-9

Printed on 3/15/2023 4:20 PM Page 9 of 49

			Hazardo	ous Materials A	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID 1	.0018894	
acility Name	PG&E GA	TEWAY GENERATING STATION			Combusti	on Turbine-	B Lube O	il Reservoir	Facility ID 0	7-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status St	ubmitted on 2/2	7/2023 11:46 AM
					Quantities		Annual Waste	Federal Hazard		ardous Component For mixture only)	s
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Shell Turbo Oil T 32	Gallons	s 6000	6000	6000			Highly Refined Petroleum	n Oil 99%	
Combustible Liquic	I, Class III-B	CAS No	State Liquid	Storage Container Other		Pressue Ambient	Waste Cod	e	Proprietary Additives	5%	
		Map: Figure 2 Grid: C5	Type Mixture	Days on Site: 365		Temperature > Ambient	-				

Printed on 3/15/2023 4:20 PM Page 10 of 49

CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID 1	.0018894		
acility Name	PG&E GA	TEWAY GENERATING STATION			Construct	ion Power T	ransforn	ner	Facility ID 0	7-000-77372	3	
	3225 Wilbur	Ave, Antioch 94509							Status S	ubmitted on 2/2	7/2023 11:46 AM	
	Code/Fire Haz, Class Common Name			Quantities Waste Federal Hazard (For mixt							Components ture only)	
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.	
		Mineral Oil CAS No		390 Storage Container Other	390	390 Pressue Ambient	Waste Cod		Dielectric Oil (highly refir petroleum oil)	ned 100%		
Combustible Liquid	d, Class III-B	Map: Figure 2 Grid: B6	Туре	Days on Site: 365		Temperature > Ambient		_				

Printed on 3/15/2023 4:20 PM Page 11 of 49

			Hazardo	ous Materials A	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
acility Name	PG&E GAT	EWAY GENERATING STATION			Construct	ion Trailer 1	Transform	ner	Facility ID	07-000-77372	3
	3225 Wilbur A	Ave, Antioch 94509							Status	Submitted on 2/2	27/2023 11:46 AM
	Code/Fire Haz. Class Common Name			_	Quantities		Annual Waste	Federal Hazard	Н	lazardous Componer (For mixture only)	ts
OOT Code/Fire Haz. O	Code/Fire Haz. Class Common Name			Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		402 Storage Container Other	402	402 Pressue Ambient	Waste Cod		Dielectric Oil (highly re petroleum oil)	efined 100%	
Combustible Liquic	, Class III-B	Map: Figure 2 Grid: C8	Type Mixture	Days on Site: 365		Temperature > Ambient					

Printed on 3/15/2023 4:20 PM Page 12 of 49

	TEWAY GENERATING STATION Ave, Antioch 94509			CT A - PEE	C and CT B	- PEEC		Facility ID 07 Status Su	· ·	7/2023 11:46 AM
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories		dous Component or mixture only) % Wt	EHS CAS No.
OT: 8 - Corrosives (Liquids and olids) orrosive, Water Reactive, Class	Flooded Tubular Lead Acid	Liquid Type	Storage Container Other Days on Site: 365	3	357 Pressue Ambient Temperature Ambient	Waste Code	- Physical Explosive - Physical Corrosive To Metal - Health Carcinogenicity - Health Acute Toxicity - Health Reproductive Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Lead, Lead Compounds Sulfuric Acid	62% 7%	7439-92-1 ✓ 7664-93-9

Printed on 3/15/2023 4:20 PM Page 13 of 49

CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID 1	10018894	
acility Name	PG&E GA	TEWAY GENERATING STATION			CT-A Auxi	liary Transfe	ormer		Facility ID (07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	.7/2023 11:46 AM
			Quantities Waste Federal Hazard							ardous Components (For mixture only)	
OOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		6155 Storage Container Other	6155	6155 Pressue Ambient	Waste Code		Dielectric Oil (highly refir petroleum oil)	ned 100%	
Combustible Liquid	d, Class III-B	Map: Figure 2 Grid: C6	Type Mixture [Days on Site: 365		Temperature > Ambient					

Printed on 3/15/2023 4:20 PM Page 14 of 49

			Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report			
ERS Business/Org.	PG&E				Chemical Loca	ition			CERS ID	10018894	
acility Name	PG&E GAT	TEWAY GENERATING STATION			CT-A Excit	ation Trans	former		Facility ID	07-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	27/2023 11:46 AM
	Code/Fire Haz. Class Common Name				Quantities		Annual Waste	Federal Hazard	Ha	azardous Componen (For mixture only)	ts
OOT Code/Fire Haz. O	Code/Fire Haz. Class Common Name		Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	Code/Fire Haz. Class Mineral Oil CAS No			414 Storage Container Other	414	414 Pressue Ambient	Waste Cod		Dielectric Oil (highly ref petroleum oil)	fined 100%	
Combustible Liquic	I, Class III-B	Map: Figure 2 Grid: C6	Туре	Days on Site: 365		Temperature > Ambient					

Printed on 3/15/2023 4:20 PM Page 15 of 49

			Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 1	0018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-A Isola	ition Transfe	ormer		Facility ID 0	7-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status St	ibmitted on 2/2	7/2023 11:46 AM
	Code/Fire Haz. Class Common Name			Quantities Annual Waste Federal Haza						rdous Componen or mixture only)	ts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquic	I, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C6	Liquid Type	1413 Storage Container Other Days on Site: 365	1413	1413 Pressue Ambient Temperature > Ambient	Waste Cod	le_	Dielectric Oil (highly refin petroleum oil)	ed 100%	

Printed on 3/15/2023 4:20 PM Page 16 of 49

CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID 1	0018894		
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-A Maiı	n Step-Up Ti	ransform	er	Facility ID 07-000-773723			
	3225 Wilbur	Ave, Antioch 94509							Status St	bmitted on 2/2	7/2023 11:46 AM	
	Code/Fire Haz Class Common Name			Quantities Waste Federal Hazard							ardous Components For mixture only)	
DOT Code/Fire Haz. (T Code/Fire Haz. Class Common Name		Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.	
	Code/Fire Haz. Class Common Name Mineral Oil CAS No			12800 torage Container	12800	12800 Pressue	Waste Cod		Dielectric Oil (highly refin petroleum oil)	ed 100%		
Combustible Liquic	l, Class III-B	Map: Figure 2 Grid: C6	Туре	Other Days on Site: 365		Ambient Temperature > Ambient						

Printed on 3/15/2023 4:20 PM Page 17 of 49

			Hazardo	ous Materials /	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	CERS ID 10018894 Facility ID 07-000-773723 Status Submitted on 2/27/2023 11:46 A					
Facility Name		TEWAY GENERATING STATION Ave, Antioch 94509			CT-B Auxi						
			_	Quantities		Annual Waste	Federal Hazard	Hazardous Cor (For mixtur		•	
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Combustible Liquic	I, Class III-B	Mineral Oil CAS No Map: Figure 2 Grid: C5	Gallons State Liquid Type	Storage Container Other	6155	6155 Pressue Ambient Temperature	Waste Cod	le_	Dielectric Oil (highly ret petroleum oil)	fined 100%	
				Days on Site: 365		> Ambient					

Printed on 3/15/2023 4:20 PM Page 18 of 49

			Hazardo	us Materials /	And Waste	s Inventory	y Matrix	Report			
ERS Business/Org.	PG&E				Chemical Loca	CERS ID 10018894 Facility ID 07-000-773723					
acility Name	PG&E GAT	TEWAY GENERATING STATION			CT-B Excit						
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	27/2023 11:46 AM
				Quantities		Annual Waste	Federal Hazard	Hazardous Components (For mixture only)		ts	
DOT Code/Fire Haz. (lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		414 Storage Container Other	414	414 Pressue Ambient	Waste Cod		Dielectric Oil (highly re petroleum oil)	fined 100%	
Combustible Liquic	l, Class III-B	Map: Figure 2 Grid: C5	Type Mixture Days on Site: 365			> Ambient	-				

Printed on 3/15/2023 4:20 PM Page 19 of 49

			Hazardo	us Materials /	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			CT-B Isola	Facility ID 07-000-773723					
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	27/2023 11:46 AM
					Quantities		Annual Waste	Federal Hazard	H	azardous Componen (For mixture only)	ts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		1413 Storage Container Other	1413	1413 Pressue Ambient	Waste Cod	le_	Dielectric Oil (highly re petroleum oil)	fined 100%	
Combustible Liquic	, Class III-B Map: Figure 2 Grid: C5		Type Mixture Days on Site: 365			Temperature > Ambient					

Printed on 3/15/2023 4:20 PM Page 20 of 49

CERS Business/Org.	PG&E				Chemical Loca	CERS ID 10018894					
Facility Name	PG&E GA	TEWAY GENERATING STATION	CT-B Main Step-Up Transformer						Facility ID 07-000-773723		
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	7/2023 11:46 AM
				Quantities		Annual Waste	Federal Hazard	Hazardous Component (For mixture only)		ts	
DOT Code/Fire Haz.	Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		12800 torage Container Other	12800	12800 Pressue	Waste Cod		Dielectric Oil (highly refine petroleum oil)	ned 100%	
Combustible Liquid, Class III		ss III-B Map: Figure 2 Grid: C5		Type Mixture Days on Site: 365		Ambient Vaste Code Temperature > Ambient					

Printed on 3/15/2023 4:20 PM Page 21 of 49

		Hazardoı	us Materials /	And Waste	s Inventor	y Matrix	Report			
	TEWAY GENERATING STATION Ave, Antioch 94509	Chemical Location Gas Conditioning Station						CERS ID 10018894 Facility ID 07-000-773723 Status Submitted on 2/27/2023 11		
OOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
OOT: 2.2 - Nonflammable Gases	Helium, Compressed CAS No 7440-59-7 Map: Figure 2 Grid: D4	Cu. Feet State S Gas Type		292	1168	Waste Cod	- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Helium	100%	7440-59-7

Printed on 3/15/2023 4:20 PM Page 22 of 49

			Hazard	ous Materials <i>A</i>	And Waste	s Inventor	y Matrix	Report				
CERS Business/Org. Facility Name		TEWAY GENERATING STATION	Chemical Location Hazardous Mat/Waste Storage (M9)-Warehouse							e Facility ID 07-000-773723		
DOT Code/Fire Haz. C		r Ave, Antioch 94509 Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Status Component Name	Submitted on 2/2 Hazardous Componen (For mixture only) % Wt	,	
DOT: 4.1 - Flammal Flammable Solid	ble Solids	Waste Flamable Solids, Organic CAS No	Pound State Solid	Storage Container Steel Drum	500	66 Pressue Ambient	220 Waste Code 352	- Physical Flammable	Flamable Solid, Organ	nic 100%		
		Grid: B8, C3	Type Waste	Days on Site: 365		Temperature Ambient	=					

Printed on 3/15/2023 4:20 PM Page 23 of 49

CERS Business/Org. Facility Name	PG&E PG&E GA	ATEWAY GENERATING STATION	Hazardo	ous Materials A	And Waste Chemical Loca Hazardou	CERS ID Facility	10018894 ID 07-000-773723	=			
DOT Code/Fire Haz. (r Ave, Antioch 94509 Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Status Component Name	Submitted on 2/27/2 Hazardous Components (For mixture only) % Wt E	023 11:46 AM HS CAS No.
		Non-RCRA Mixed Oil CAS No Map: Figure 2 Grid: B8, C3	Gallons State Liquid Type Waste	-	55	26 Pressue Ambient Temperature Ambient	800 Waste Code 221		Oil		
		Non-RCRA Solids (Oily Debris) CAS No Map: Figure 2 Grid: B8, C3	State Solid Type Waste	Storage Container Steel Drum Days on Site: 90	500	1056 Pressue Ambient Temperature Ambient	3000 Waste Code 223	-			
		RCRA Liquid Lab Bench Waste CAS No Map: Figure 2 Grid: B8, C3	Gallons State Liquid Type Waste	•	30 ic Drum	25 Pressue Ambient Temperature Ambient	136 Waste Code 791	- Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation	Sulfuric Acid		

Printed on 3/15/2023 4:20 PM Page 24 of 49

			Hazardo	ous Materials <i>i</i>	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org.	PG&E PG&E GAT	EWAY GENERATING STATION			Chemical Loca	CERS ID 10018894 Facility ID 07-000-773723					
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2/2	
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 8 - Corrosives Solids)		Waste Sodium Hydroxide Contaminated Debris CAS No Map: Figure 2 Grid: B8, C3	Pounds	•	10	5 Pressue Ambient Temperature Ambient	5 Waste Code		,		

Printed on 3/15/2023 4:20 PM Page 25 of 49

			us Materials /								
	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca		y Steam G	Generators) - A	and B		10018894 07-000-773723 Submitted on 2/27	
	Common Name	Unit	Max. Daily	Quantities	Avg. Daily	Annual Waste	Federal Hazard			Hazardous Components (For mixture only)	
OOT Code/Fire Haz. Class OOT: 2.2 - Nonflammable Gases	Argon, Compressed Gas CAS No Map: Figure 2 Grid: B5	Cu. Feet State Gas Type		336	1344 Pressue > Ambient Temperature Ambient	Amount Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Argon	ne .	% Wt 100%	ENS CASINO.
OT: 2.2 - Nonflammable Gases	EPA Protocol Gas (Carbon Monoxide/Nitrogen Mixture) CAS No Map: Figure 2 Grid: B5	Gas Type	Storage Container Cylinder Days on Site: 365	144	1440 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas	Nitrogen Carbon Mono	oxide	88% 13%	7727-37-9 630-08-0
OOT: 2.2 - Nonflammable Gases	EPA Protocol Gas Carbon Monoxide 11/Nitric/Nitrogen Mixture	Gas Type	Storage Container Cylinder Days on Site: 365	144	864 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant	Nitrogen Nitric Oxide Carbon Mond	oxide	99% 1% 10%	7727-37-9 10102-43-9 630-08-0
OT: 2.2 - Nonflammable Gases	Map: Figure 2 Grid: B5 EPA Protocol Gas Carbon Monoxide 660/Nitric/Nitrogen Mixture CAS No Map: Figure 2 Grid: B5	Gas Type	Storage Container Cylinder Days on Site: 365	144	864 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant	Nitrogen Nitric Oxide Carbon Mond	oxide	99% 1% 20%	7727-37-9 10102-43- 630-08-0
OT: 2.2 - Nonflammable Gases	EPA Protocol Gas Nitric/Nitrogen Mixture CAS No Map: Figure 2 Grid: B5	State S Gas Type	576 Storage Container Cylinder Days on Site: 365	144	576 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant	Nitrogen Nitric Oxide		99% 2%	7727-37-9 10102-43-
OT: 2.2 - Nonflammable Gases	EPA Protocol Gas Nitrogen/Oxygen Mixture CAS No Map: Figure 2 Grid: B5	Gas Type	Storage Container Cylinder Days on Site: 365	144	1152 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant	Nitrogen Oxygen		99% 20%	7727-37-9 7782-44-7
OT: 2.2 - Nonflammable Gases	Helium, Compressed CAS No 7440-59-7 Map: Figure 2 Grid: B5	Gas Type	Storage Container Cylinder Days on Site: 365	336	1344 Pressue > Ambient Temperature Ambient	Waste Code	- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Helium		100%	7440-59-7

Printed on 3/15/2023 4:20 PM Page 26 of 49

		Hazardo	us Materials A	And Waste	s Inventor	y Matrix	Report				
	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca HRSGs (H		y Steam	Generators) - A	and B	CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/27	
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Na		Hazardous Components (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Gases Oxidizing Gas, Gaseous	Oxygen, Compressed CAS No 7782-44-7 Map: Figure 2 Grid: B3, B5		t 1124 Storage Container Cylinder	281	1124 Pressue > Ambient Temperature	Waste Cod	- Physical Gas Under Pressure - Physical Oxidize	Oxygen		100%	7782-44-7
	Map. Figure 2 Grid. B3, B3		Days on Site: 365		Ambient		 Health Hazard Not Otherwise Classified 				

Printed on 3/15/2023 4:20 PM Page 27 of 49

		Hazardou	ıs Materials <i>i</i>	And Waste	s Inventor	/ Matrix	Report			_
,	SATEWAY GENERATING STATION bur Ave, Antioch 94509			•		-	Generators) - A	CER: A and B, Faci Stat	lity ID 07-000-77372	
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Componen (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Ga	Nitrogen, Compressed CAS No 7727-37-9 Map: Figure 2 Grid: B5,C4,C5,C6	Gas C	3263 Storage Container Cylinder Days on Site: 365	251	3263 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Nitrogen	100%	7727-37-9

Printed on 3/15/2023 4:20 PM Page 28 of 49

		Hazardou	us Materials	And Waste	s Inventory	/ Matrix	Report			
,	E GATEWAY GENERATING STATION Vilbur Ave, Antioch 94509			Chemical Local Hydrogen	ation Bulk Storag	ge		CERS ID Facility I Status	10018894 D 07-000-773723 Submitted on 2/2	
OOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	
DOT: 2.1 - Flammable Gase	Hydrogen, Compressed CAS No 1333-74-0 Map: Figure 2 Grid: D1	Gas C		134000	134000 Pressue > Ambient Temperature Ambient	Waste Code	- Physical	Hydrogen	100%	1333-74-0

Printed on 3/15/2023 4:20 PM Page 29 of 49

ì		Hazardou	ıs Materials /	And Waste	s Inventory	y Matrix	Report			
	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Nitrogen	ation Bulk Storage	e		CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Gases	Nitrogen, Compressed CAS No 7727-37-9 Map: Figure 2 Grid: D2	Cu. Feet State S Gas C Type		304	10944 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas	Nitrogen	100%	7727-37-9

Printed on 3/15/2023 4:20 PM Page 30 of 49

		Hazardo	ous Materials	And Waste	s Inventory	/ Matrix	Report			
CERS Business/Org. Facility Name	PG&E PG&E GATEWAY GENER	ATING STATION		Chemical Local	e Feed Skid			CERS ID Facility I	10018894 D 07-000-773723	3
	3225 Wilbur Ave, Antioch 9450	09						Status	Submitted on 2/2	7/2023 11:46 AM
DOT Code/Fire Haz. (Class Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
501 Code/File Haz. V	NALCO BT-34 CAS No Map: Figure 2	Gallons State Liquid Grid: B4 Type		400	400 Pressue Ambient Temperature Ambient	Waste Cod	- Health Skin	Sodium Hydroxide Proprietary	5% 99%	1310-73-2

Printed on 3/15/2023 4:20 PM Page 31 of 49

		Hazardo	us Materials <i>i</i>	And Waste	s Inventory	y Matrix I	Report			
	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Plant Serv	rices Buildin	ng		CERS II Facility Status	10018894 0 07-000-773723 Submitted on 2/2	
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	s EHS CAS No.
OT: 8 - Corrosives (Liquids and olids) orrosive, Water Reactive, Class	Battery	Liquid Type	Storage Container Other Days on Site: 365	14	834 Pressue Ambient Temperature Ambient	Waste Code	- Physical Explosive - Physical Corrosive To Metal - Health Carcinogenicity - Health Acute Toxicity - Health Reproductive Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Lead Sulfuric Acid Lead Dioxide	52% 44% 21%	7439-92-1 ✓ 7664-93-9 1309-60-0

Printed on 3/15/2023 4:20 PM Page 32 of 49

		Hazardo	ous Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report			-
ERS Business/Org. acility Name	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			Chemical Loca	ation r Treatment			CERS ID Facility II Status	10018894 07-000-773723 Submitted on 2/2	
OT Code/Fire Haz. C	Sodium Bisulfite CAS No Map: Figure 2 Grid: C2	Unit Gallons State Liquid Type Mixture	Max. Daily 5 50 Storage Container Tank Inside Buildin Days on Site: 365	Quantities Largest Cont. 50	Avg. Daily 50 Pressue Ambient Temperature Ambient	Annual Waste Amount Waste Code	Federal Hazard Categories - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ Toxicity	Component Name Sodium Bisulfite	Hazardous Component (For mixture only) % Wt 20%	EHS CAS No. 763-90-5
orrosive	Sodium Hydroxide CAS No Map: Figure 2 Grid: C2	State Liquid Type Pure	S 75 Storage Container Aboveground Tank Days on Site: 365	75	75 Pressue Ambient Temperature Ambient	Waste Code	- Physical - Corrosive To - Metal - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye	SODIUM HYDROXIDE	100%	1310-73-2

Printed on 3/15/2023 4:20 PM Page 33 of 49

		Hazardou	us Materials A	And Waste	s Inventor	y Matrix	Report			
,	ATEWAY GENERATING STATION ur Ave, Antioch 94509			Chemical Local Sodium H		(Elect Ed	լսipment) Breal	CERS ID kers Facility II Status	10018894 07-000-773723 Submitted on 2/2	
DOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component Name	Hazardous Component (For mixture only) % Wt	EHS CAS No.
DOT: 2.2 - Nonflammable Gase	S SF6 CAS No 2551-62-4 Map: Figure 2 Grid: C5,C6,D4,D5,D6	Gas C	2043 Storage Container Other Days on Site: 365	639	2043 Pressue > Ambient Temperature Ambient	Waste Cod	- Physical Gas Under Pressure - Health Simple Asphyxiant - Health Hazard Not Otherwise Classified	Sulfur Hexafluoride	100%	2551-62-4

Printed on 3/15/2023 4:20 PM Page 34 of 49

			Hazardoı	us Materials /	And Waste	s Inventory	y Matrix	Report			
ERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
acility Name	PG&E GAT	TEWAY GENERATING STATION			ST Electro	-Hydraulic (Control S	ystem	Facility ID	07-000-773	723
	3225 Wilbur	Ave, Antioch 94509							Status	Submitted on 2	2/27/2023 11:46 AM
					Quantities		Annual Waste	Federal Hazard	Н.	azardous Compon (For mixture onl	
OT Code/Fire Haz. C	lass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% V	/t EHS CAS No.
Combustible Liquid,	, Class III-B	Hydraulic Oil CAS No Map: Figure 2 Grid: C4		130 Storage Container Other	130	130 Pressue Ambient Temperature	Waste Cod		Highly refined mineral C50)	oil (C15 - 999	6

Printed on 3/15/2023 4:20 PM Page 35 of 49

CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID 1	L0018894	_
acility Name		TEWAY GENERATING STATION				ion Transfo	rmer)7-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status S	Submitted on 2/2	7/2023 11:46 AM
					Quantities		Annual Waste	Federal Hazard		ardous Componen (For mixture only)	s
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Mineral Oil CAS No		414 Storage Container Other	414	414 Pressue Ambient	Waste Cod		Dielectric Oil (highly refine petroleum oil)	ned 100%	
Combustible Liquid	I, Class III-B	Map: Figure 2 Grid: C4	Туре	Days on Site: 365		Temperature > Ambient					

Printed on 3/15/2023 4:20 PM Page 36 of 49

CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
acility Name	PG&E GATEWA	Y GENERATING STATION			ST Main S	tep-Up Trar	nsformer		Facility ID	07-000-77372	3
	3225 Wilbur Ave, A	ntioch 94509							Status	Submitted on 2/2	7/2023 11:46 AM
					Quantities		Annual Waste	Federal Hazard		azardous Component (For mixture only)	s
DOT Code/Fire Haz. (Class Comr	non Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	Min CAS N			14143 Storage Container	14143	14143 Pressue	Waste Code	٥	Dielectric Oil (highly ref petroleum oil)	ined 100%	
Combustible Liquic	l, Class III-B Map	: Figure 2 Grid: C4	Туре	Other Days on Site: 365		Ambient Temperature > Ambient	- Vasc coa				

Printed on 3/15/2023 4:20 PM Page 37 of 49

			Hazardo	ous Materials <i>i</i>	And Waste	s Inventor	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ation			CERS ID 10	0018894	
Facility Name	PG&E GA	TEWAY GENERATING STATION			Steam Tu	rbine Lube	Oil Reser	voir	Facility ID 07	7-000-77372	3
	3225 Wilbur	Ave, Antioch 94509							Status Su	bmitted on 2/2	7/2023 11:46 AM
					Quantities		Annual Waste	Federal Hazard		rdous Componen or mixture only)	ts
DOT Code/Fire Haz. (Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
		Refined Petroleum Oil	Gallon	s 4800	4800	4800			Highly Refined Petroleum	Oil 99%	
Combustible Liquic	I, Class III-B	CAS No	State Liquid	Storage Container Other	3	Pressue Ambient	Waste Coo	le	Proprietary Additives	5%	
		Map: Figure 2 Grid: C4	Type Mixture	Days on Site: 365		Temperature > Ambient	=				

Printed on 3/15/2023 4:20 PM Page 38 of 49

	Hazardo	us Materials /	And Waste	s Inventor	y Matrix	Report			
			Chemical Loca	ation			CERS ID	10018894	
GATEWAY GENERATING STATION			Stormwat	ter Treatme	nt Syster	n	Facility II	07-000-77372	3
ilbur Ave, Antioch 94509							Status	Submitted on 2/2	7/2023 11:46 AM
			Quantities		Annual Waste	Federal Hazard		Hazardous Componen (For mixture only)	ts
Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
Tidal Clear Hybrid (TCH) CAS No Map: Figure 2 Grid: C9	Liquid Type	Storage Container Tote Bin	275			- Physical Corrosive To Metal - Health Serious Eye Damage Eye	Dialuminum Chloride Penthahydroxide	30%	12042-91-0
	Common Name Tidal Clear Hybrid (TCH) CAS No	Common Name CAS No CAS No Map: Figure 2 Grid: C9 CATEWAY GENERATING STATION Unit Unit Gallons State Liquid Type	Common Name Tidal Clear Hybrid (TCH) CAS No Chemical Local Stormward S	Chemical Location Stormwater Treatme Stormwater Treatme Stormwater Treatme Quantities Common Name Unit Max. Daily Largest Cont. Avg. Daily Tidal Clear Hybrid (TCH) CAS No State Storage Container Liquid Tote Bin Map: Figure 2 Grid: C9 Type Chemical Location Stormwater Treatme Quantities Quantities Person Avg. Daily Tote Bin Ambient Temperature	Chemical Location Stormwater Treatment System Stormwater Treatment System Stormwater Treatment System Stormwater Treatment System Quantities Common Name Unit Max. Daily Largest Cont. Avg. Daily Amount Tidal Clear Hybrid (TCH) Gallons 275 275 CAS No State Liquid Tote Bin Map: Figure 2 Grid: C9 Type Chemical Location Stormwater Treatment System Waste Cont. Annual Waste Largest Cont. Avg. Daily Amount Amount Tote Bin Ambient Temperature	GATEWAY GENERATING STATION Ilbur Ave, Antioch 94509 Common Name Unit Max. Daily Largest Cont. Avg. Daily Amount Categories Pressue Corrosive To Corrosive To Ambient Ambient Map: Figure 2 Grid: C9 State Storage Container Liquid Tote Bin Map: Figure 2 Grid: C9 State Storage Container Liquid Tote Bin Map: Figure 2 Grid: C9 State Storage Container Liquid Tote Bin Temperature Storage Container Ambient Federal Hazard Categories Federal Hazard Federa	CERS ID GATEWAY GENERATING STATION Stormwater Treatment System Status Common Name Unit Max. Daily Largest Cont. Avg. Daily Amount Categories Tidal Clear Hybrid (TCH) CAS No State Storage Container Liquid Tote Bin Map: Figure 2 Grid: C9 Chemical Location Stormwater Treatment System Facility II Annual Waste Federal Hazard Component Name Component Name Pressue Ambient Ambient Ambient Facility II Vaste Code Mactal Federal Hazard Component Name Component Name Pressue Ambient Facility II Status Status Component Name Federal Hazard Component Name Federal Hazard Component Name Component Name Federal Hazard Chemical Location Stormwater Treatment System Facility ID 07-000-77372: Status Submitted on 2/2 Annual Waste Federal Hazard Common Name Unit Max. Daily Largest Cont. Avg. Daily Amount Categories CAS NO CAS NO Map: Figure 2 Grid: C9 Chemical Location Stormwater Treatment System Facility ID 07-000-77372: Status Submitted on 2/2 Annual Waste Federal Hazard (For mixture only) Component Name Waste Code Metal Hazardous Component (For mixture only) Corrosive To Corrosive To Penthahydroxide Health Serious Penthahydroxide Health Serious Penthahydroxide Five Damagne Eve		

Printed on 3/15/2023 4:20 PM Page 39 of 49

ERS Business/Org. PG&E		Hazardo	ous Materials <i>i</i>	And Waste		y Matrix	Report	CERS ID	10018894	
	TEWAY GENERATING STATION									,
	Ave, Antioch 94509			Switchya	u				D 07-000-773723	
3225 WIIDUI	Ave, Antioch 94509							Status	Submitted on 2/2 Hazardous Component	-
				Quantities		Annual Waste	Federal Hazard		(For mixture only)	5
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
OT: 8 - Corrosives (Liquids and	KCR-7 Lead Calcium Batteries	Gallon	s 90	1.5	90		- Physical	Lead Calcium	52%	7439-92-1
olids)		State	Storage Container		Pressue		Explosive			
orrosive, Water Reactive, Class	CAS No	Liquid	Other		Ambient	Waste Code	Physical	Sulfuric Acid	44%	7 664-93-9
orrosive, water neactive, class	Map: Figure 2 Grid: D4	Туре			Temperature		Corrosive To	Lead Dioxide	21%	1309-60-0
			Days on Site: 365		Ambient		Metal			
							- Health			
							Carcinogenicity - Health Acute			
							Toxicity			
							- Health			
							Reproductive			
							Toxicity			
							- Health Skin			
							Corrosion			
							Irritation			
							- Health			
							Respiratory Skin			
							Sensitization			
							- Health Serious			
							Eye Damage Eye Irritation			
							- Health Specific			
							Target Organ			
							Toxicity			

Printed on 3/15/2023 4:20 PM Page 40 of 49

		Hazardo	ous Materials A	And Waste	s Inventory	/ Matrix I	Report			
RS Business/Org. PG& cility Name PG&	E E GATEWAY GENERATING STATION			Chemical Loca				CERS ID Facility ID	10018894 07-000-773723	
3225	Wilbur Ave, Antioch 94509							Status	Submitted on 2/27	7/2023 11:46 AM
				Quantities		Annual Waste	Federal Hazard		Hazardous Components (For mixture only)	
OT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	Gas Turbine Compressor Cleani Fluid	ng Gallons State	Storage Container	264	264 Pressue	Waste Code		Cleaning Fluid		
	CAS No	Liquid Type	Tote Bin		Ambient Temperature					
	Map: Figure 2 Grid: B8-9		Days on Site: 365		Ambient					
	NALCO BT-3400 CAS No	Gallons State Liquid	Storage Container Plastic/Non-metali	55 c Drum	55 Pressue Ambient	Waste Code	- Health Skin Corrosion Irritation	Sodium Hydroxide Proprietary	5% 99%	1310-73-2
	Map: Figure 2 Grid: B8-9	Туре	Days on Site: 365	o 2. a	Temperature Ambient		- Health Serious Eye Damage Eye Irritation			
	NALCO Trac107	Gallons State Liquid	Storage Container Plastic/Non-metali	55	55 Pressue Ambient	Waste Code	- Health Skin Corrosion Irritation	Sodium Hydroxide Inorganic Salt Proprietary	1% 5% 99%	1310-73-2
	Map: Figure 2 Grid: B8-9	Туре	Days on Site: 365	Cordin	Temperature Ambient		- Health Serious Eye Damage Eye Irritation	. ,		
	Petroleum Distillate	Gallons State		55	55			Severely Hydrotreated Petroleum Oil	d Naphthenic 100%	64742-53-6
mbustible Liquid, Class	CAS No III-B Map: Figure 2 Grid: B8-9	Liquid Type	Steel Drum Days on Site: 365		Ambient Temperature Ambient	Waste Code	-	ВНТ	0%	128-37-0
orrosive	Sodium Hydroxide (10-50%) CAS No 1310-73-2 Map: Figure 2 Grid: B8-9	Gallons State Liquid Type Mixture	Storage Container Plastic/Non-metali Days on Site: 365	55 c Drum	55 Pressue Ambient Temperature Ambient	Waste Code	- Physical Corrosive To Metal - Health Skin Corrosion Irritation - Health Serious Eye Damage Eye Irritation	SODIUM HYDROXIDE	50%	1310-73-2
orrosive	Tidal Clear Hybrid (TCH) CAS No Man: Figure 2 - Grid: RS 0	Gallons State Liquid Type	Storage Container Tote Bin	275	275 Pressue Ambient Temperature	Waste Code	- Physical Corrosive To Metal - Health Serious	Dialuminum Chloride Penthahydroxide	30%	12042-91-0
	Map: Figure 2 Grid: B8-9		Days on Site: 365		Ambient		Eye Damage Eye Irritation			

Printed on 3/15/2023 4:20 PM Page 41 of 49

		Hazardo	ous Materials A	nd Waste	s Inventor	y Matrix I	Report		
	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Local		ous Mat/W	Vaste Storage	CERS ID 100187 Facility ID 07-000 Status Submitte	
				Quantities		Annual Waste	Federal Hazard	Hazardous ((For mixt	
OOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt EHS CAS No.
OOT: 8 - Corrosives (Liquids and olids)	NON RCRA HAZARDOUS WASTE, LIQUIDS SOLUTION (SODIUM HYDROXIDE)	State Liquid Type		500	137 Pressue Ambient Temperature Ambient	274 Waste Code 135	-	LIQUIDS SOLUTION (SODIUM HYDROXIDE)	5%
	Map: Figure 2 Grid: B8, C3								
	NON-RCRA Hazardous Solids (Empty Drums) CAS No Grid: B8, C3	State Solid Type Waste	Storage Container Steel Drum Days on Site: 365	500	10 Pressue Temperature	165 Waste Code 512	-	Empty Drums	100%
	NON-RCRA Hazardous Waste Liquid (Oil, Water)	Туре	Storage Container Steel Drum Days on Site: 365	55	63 Pressue Ambient Temperature Ambient	113 Waste Code 223		Oil, Water	100%
	NON-RCRA Hazardous Waste Liquid (Oil, Water, Sludge) CAS No Grid: B8, C3	Туре	Storage Container Tank Wagon Days on Site: 365	1600	18 Pressue Ambient Temperature Ambient	36 Waste Code 222	-	Oil, Water, Sludge	100%
	RCRA Waste Paint, Liquids CAS No Map: Figure 2 Grid: B8, C3	State Liquid Type Waste	Storage Container Steel Drum Days on Site: 90	55	27 Pressue Ambient Temperature Ambient	44 Waste Code 352	-	Waste Paint, Liquids	
ombustible Liquid, Class III-B	Shell Tellus Oil 32 CAS No Map: Figure 2 Grid: B8	Gallons State Liquid Type	•	275	275 Pressue Ambient Temperature Ambient	Waste Code	-0	Highly refined mineral oils and additives	
ombustible Liquid, Class III-B	Shell Turbo Oil DR46 CAS No Map: Figure 2 Grid: B8	Gallons State Liquid Type Mixture	Storage Container Steel Drum Days on Site: 365	55	110 Pressue Ambient Temperature Ambient	Waste Code		Highly Refined Petroleum Oil Proprietary Additives	99% 1%
	Universal Waste - eWaste	Pounds		500	330	1070			
	CAS No	State	Storage Container Steel Drum		Pressue Ambient	Waste Code 181	3		

Printed on 3/15/2023 4:20 PM Page 42 of 49

CERS Business/Org. PG&E				Chemical Loca	tion			CERC II	10018894		
acility Name PG&E GA	TEWAY GENERATING STATION r Ave, Antioch 94509			Warehous	se, Behind (•	lant Service B et, Hazardous	uilding and Facility Mat/Waste Status	ID 07-000-77	_	/2023 11:46 AM
				Quantities		Annual Waste	Federal Hazard		Hazardous Compo (For mixture of		
OOT Code/Fire Haz. Class	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	%	Wt	EHS CAS No.
	Shell Morlina	Gallons	150	5	67			HIGHLY REFINED BA	SE OILS 99	9%	64742-54-7
Combustible Liquid, Class III-B	CAS No	State Liquid	Storage Container Plastic Bottle or Jug	g	Pressue Ambient	Waste Code					
	Map: Figure 2 Grid: C4, B8-9	Type Mixture	Days on Site: 365		Temperature Ambient	-					
	Shell Turbo	Gallons	150	5	67			HIGHLY REFINED BA	SE OILS 99	9%	64742-54-7
Combustible Liquid, Class III-B	CAS No	State Liquid	Storage Container Plastic Bottle or Jug	Š	Pressue Ambient	Waste Code					
	Map: Figure 2 Grid: C4, B8-9	Type Mixture	Days on Site: 365		Temperature Ambient						

Printed on 3/15/2023 4:20 PM Page 43 of 49

		Hazardo	ous Materials	And Waste	s Inventor	y Matrix	Report			
ERS Business/Org.	PG&E			Chemical Loca					8894	
acility Name	PG&E GATEWAY GENERATING STATION			Warehous	se, Behind I	lant Serv	vices Building	Facility ID 07-0		
	3225 Wilbur Ave, Antioch 94509							Status Subn	itted on 2/27/	'2023 11:46 AM
			_	Quantities		Annual Waste	Federal Hazard		us Components nixture only)	
OT Code/Fire Haz. C	Class Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
	Gear Lubricant (Shell Omala S	Gallon	s 170	5	170			Highly Refined Petroleum Oi	99%	
	GX 320)	State Liquid	Storage Container Plastic/Non-meta	alic Drum	Pressue Ambient	Waste Cod	le_	Proprietary Additives	1%	
	CAS No Map: Figure 2 Grid: B8-9, C4	Туре	Days on Site: 365		Temperature Ambient					

Printed on 3/15/2023 4:20 PM Page 44 of 49

		Hazardo	ous Materials A	And Waste	s Inventory	/ Matrix	Report			
Facility Name	PG&E PG&E GATEWAY GENERATING STATION 3225 Wilbur Ave, Antioch 94509			Chemical Loca Warehou		ater Treat	ment System	Facility ID	10018894 07-000-773723 Submitted on 2/23	
OOT Code/Fire Haz. Cla	ass Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories		zardous Components (For mixture only) % Wt	EHS CAS No.
Corrosive	Sodium Hydroxide (10-50%) CAS No Map: Figure 2 Grid: C9, B8-9	Gallon: State Liquid Type		30	15 Pressue Ambient Temperature Ambient	Waste Code	- Physical	SODIUM HYDROXIDE	50%	1310-73-2

Printed on 3/15/2023 4:20 PM Page 45 of 49

		Hazardo	ous Materials Ai	nd Wastes	Inventory	/ Matrix I	Report				-
	TEWAY GENERATING STATION Ave, Antioch 94509			Chemical Loca Water Tre		lding / Fir	e Water Pump	House	CERS ID Facility I	10018894 D 07-000-773723 Submitted on 2/27	/2023 11:46 AM
OOT Code/Fire Haz. Class	Common Name	Unit	_	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Component N		Hazardous Components (For mixture only) % Wt	EHS CAS No.
ombustible Liquid, Class II	CAS No 68476-34-6 Map: Figure 2 Grid: C1	Gallons State Liquid Type Mixture	S 500 Storage Container Tank Inside Building Days on Site: 365	500	500 Pressue Ambient Temperature Ambient		- Physical Flammable - Health Carcinogenicity - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Specific Target Organ Toxicity - Health Aspiration Hazard	Diesel Fuel		100%	
OOT: 8 - Corrosives (Liquids and colids) Corrosive, Water Reactive, Class	Interstate Workaholic Lead Acid Battery CAS No Map: Figure 2 Grid: C1	State Liquid Type	Storage Container Other Days on Site: 365	4.5	9 Pressue Ambient Temperature Ambient	Waste Code	- Physical Explosive - Physical Corrosive To Metal - Health Carcinogenicity - Health Acute Toxicity - Health Reproductive Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation - Health Specific Target Organ	Sulfuric Acid		35%	7439-92-1

Printed on 3/15/2023 4:20 PM Page 46 of 49

Facility Name P	PG&E PG&E GATEWAY GENERATING STATION			Chemical Loca Water Tre	tion eatment Cho	emical Sto	rage	CERS ID Facility I	10018894 D 07-000-773723	
OT Code/Fire Haz. Class	225 Wilbur Ave, Antioch 94509 SS Common Name	Unit	Max. Daily	Quantities Largest Cont.	Avg. Daily	Annual Waste Amount	Federal Hazard Categories	Status Component Name	Submitted on 2/2 Hazardous Component (For mixture only) % Wt	•
	NALCO 7408 CAS No Map: Figure 2 Grid: C2	Liquid Type	65 Storage Container Plastic/Non-metal Days on Site: 365	65 lic Drum	65 Pressue Ambient Temperature Ambient	Waste Code	- Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye Irritation	Sodium Bisulfite Proprietary	60% 70%	7631-90-5
Corrosive	NALCO Stabrex ST20 CAS No Map: Figure 2 Grid: C2	Liquid Type	65 Storage Container Plastic/Non-metal Days on Site: 365		65 Pressue Ambient Temperature Ambient	Waste Code	- Physical	Sodium Hydroxide Proprietary	5% 99%	1310-73-2

Printed on 3/15/2023 4:20 PM Page 47 of 49

			Hazardo	ous Materials	And Waste	s Inventory	y Matrix	Report			
CERS Business/Org.	PG&E				Chemical Loca	ntion			CERS ID	10018894	
Facility Name	PG&E GAT	EWAY GENERATING STATION			WSAC Cho	em Feed Ski	id		Facility I	D 07-000-773723	3
	3225 Wilbur A	Ave, Antioch 94509							Status	Submitted on 2/2	7/2023 11:46 AM
					Quantities		Annual Waste	Federal Hazard		Hazardous Component (For mixture only)	s
DOT Code/Fire Haz. Cla	ass	Common Name	Unit	Max. Daily	Largest Cont.	Avg. Daily	Amount	Categories	Component Name	% Wt	EHS CAS No.
DOT: 8 - Corrosives (Solids)	Liquids and	NALCO 3D TRASAR 3DT447 CAS No	Gallons	Storage Container	110	110 Pressue	Waste Cod	- Health Skin Corrosion le Irritation	Phosphoric Acid Sulfuric Acid	5% 5%	7664-38-2 ✓ 7664-93-9
Corrosive		Map: Figure 2 Grid: C3	Liquid Type Mixture	Plastic/Non-meta Days on Site: 365		Ambient Temperature Ambient			Tolyltriazole	5%	29385-43-1

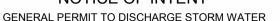
Printed on 3/15/2023 4:20 PM Page 48 of 49

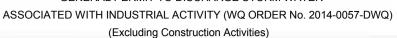
CERS Business/Org.	PG&E PG&E GATEWAY GENERATING STATION			Chemical Loca WSAC Che	emical Feed	Skid		CERS ID Facility I	10018894 D 07-000-77372	3
	3225 Wilbur Ave, Antioch 94509							Status	Submitted on 2/2	•
			-	Quantities		Annual Waste	Federal Hazard		(For mixture only)	
OOT Code/Fire Haz. C	Class NALCO Stabrex ST70 CAS No Map: Figure 2 Grid: C3	Liquid Type	Max. Daily 110 Storage Container Plastic/Non-metal Days on Site: 365	110	Avg. Daily 110 Pressue Ambient Temperature Ambient	Waste Code	categories - Physical - Corrosive To Metal - Health Acute Toxicity - Health Skin Corrosion Irritation - Health Respiratory Skin Sensitization - Health Serious Eye Damage Eye	Sodium Hydroxide Proprietary	% Wt 5% 99%	EHS CAS No. 1310-73-2

Printed on 3/15/2023 4:20 PM Page 49 of 49

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 14


Exhibit 6 Copy of Notice of Intent (NOI) and Revised SWPPP (October 2018) to comply with the requirements of Industrial General Permit (SOIL & WATER-3) No changes relative to submitted Exhibit 6 in ACR #13



Title: Senior Plant Manager

State Water Resources Control Board

NOTICE OF INTENT

EDMUND G. BROWN JR.

WDID: 5S07I021950 Status: Active Operator Information Type: Private Business Name: Pacific Gas Electric Company Contact Name: _____ Tim Wisdom Address: PO Box 770000 Title: Plant Manager 925-522-7812 Address 2: Phone Number: City/State/Zip: San Francisco CA 94177 Email Address: T1WY@pge.com Federal Tax ID: Facility Information Level: Contact Name: Diana Furman Title: Environmental Compliance Manager Site Name: Gateway Generating Station Address: 3225 Wilbur Ave Site Phone #: 925-522-7838 City/State/Zip: Antioch CA 94509 Contra Costa County: Email Address: dmwr@PGE.com Latitude: 38.01228 Longitude: -121.75859 Site Size: 32.5 Acres Industrial Area Exposed to Storm Water: 22 Acres Percent of Site Impervious (Including Rooftops): SIC Code Information 1. 4911 Electric Services Additional Information Receiving Water: San Joaquin River Indirectly Flow: Storm Drain System: Compliance Group: RWQCB Jurisdiction: Region 5S - Sacramento Phone: 916-464-3291 r5s_stormwater@waterboards.ca.gov Email: Certification Name: Alvin Thoma Date: October 12, 2016

Stormwater Pollution Prevention Plan

Gateway Generating Station

WDID#: 5S07I021950

Facility Address: 3225 Wilbur Avenue, Antioch, CA 94509

Facility Contact:
Angel B. Espiritu, Environmental Compliance Manager
Pacific Gas & Electric Company
(925) 522-7838

Prepared for

Storm Water Quality Group 3401 Crow Canyon Road, San Ramon, CA Jeremy Laurin, Storm Water Work Supervisor (925) 719-4466

Initial Preparation Date: December 2014

Revision Date: October 2018

EXECUTIVE SUMMARY

This storm water pollution prevention plan (SWPPP) was prepared in accordance with the requirements of the California State Water Resources Control Board (SWRCB) Industrial Storm Water Permit for Discharges Associated with Industrial Activity (Order No. 2014-0057-DWQ) which was adopted on April 1, 2014. This permit replaces Order No. 97-03-DWQ which had been in effect from August 1, 1997 through June 30, 2015.

This SWPPP identifies and evaluates all sources of pollutants that may affect the quality of industrial storm water discharges and authorized non-storm water discharges, identifies and describes the minimum best management practices (BMPs) and any advanced BMPs implemented to reduce or prevent pollutants in industrial storm water discharges and authorized non-storm water discharges.

Pacific Gas and Electric Company shall fully implement this SWPPP by July 1, 2015. The SWPPP will be revised whenever necessary and will be certified and submitted electronically to the SWRCB via the Storm Water Multi-Application and Report Tracking System (SMARTS).

TABLE OF CONTENTS

			Page		
LIST	CUTIV FOF TA		i iv iv		
1.	INTI	RODUCTION	1		
	1.1	Background and Requirements	1		
	1.2	SWPPP Performance Standards	2		
	1.3	SWPPP Implementation and Revisions	2		
	1.4 1.5	General Facility Information Pollution Prevention Team	2 2 2 3		
2.		LAYOUT AND EXISTING FACILITY PLANS (PERMIT SECTION X.E)	5		
3.	LIST	OF INDUSTRIAL MATERIALS (PERMIT SECTION X.F)	7		
	3.1	List of Industrial Materials Handled at the Facility	7		
4.	DES	CRIPTION OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X	.F		
	AND	G)	12		
	4.1	Industrial Processes	12		
	4.2	Material Receiving, Shipping, and Handling	13		
	4.3	Dust and Particle Generating Activities	14		
	4.4	Significant Spills and Leaks	14		
	4.5 4.6	Non-Storm Water Discharges Erodible Surfaces	14 15		
	4.0	Erodible Surfaces	13		
5.	ASSESSMENT OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.G.2)16				
	5.1	Narrative Assessment of Likely Pollutants Present in Storm Water Discharges	16		
	5.2	Identification of Additional BMPs	16		
	5.3 5.4	Identification of Drainage Areas with No Exposure Identification of Additional Parameters	16 16		
6.	STO	RM WATER BEST MANAGEMENT PRACTICES (PERMIT SECTION X.H)	17		
	6.1	Minimum BMPs (PERMIT SECTION X.H.1)	17		
	0.1	6.1.1 Good Housekeeping	17		
		6.1.2 Spill and Leak Spill and Leak Prevention	18		
		6.1.3 Spill and Leak Response	18		
		6.1.4 Material Handling and Waste Management	19		
		6.1.5 Erosion and Sediment Controls	19		
		6.1.6 Employee Training Program	19		
	6.3	6.1.7 Quality Assurance and Record-Keeping	20		
	6.2	Advanced BMPs (Permit Section X.H.2)	20		
		6.2.1 Exposure Minimization BMPs 6.2.2 Storm Water Containment and Disaberge Reduction PMPs	20		
		6.2.2 Storm Water Containment and Discharge Reduction BMPs6.2.3 Treatment Control BMPs	20 20		
		0.2.3 Freathent Control Divir 8	∠0		

TABLE OF CONTENTS

		Page
	6.2.4 Other Advanced BMPs	21
7.	TEMPORARY SUSPENSION OF ACTIVITIES (PERMIT SECTION X.H.3)	22
8.	BMP SUMMARY (PERMIT SECTIONS X.H.4 AND 5)	23
9.	MONITORING IMPLEMENTATION PLAN (PERMIT SECTION X.I)	25
10.	ANNUAL REPORTING (PERMIT SECTIONS XV AND XVI)	29
REFE	RENCES	30
APPE		Activities
APPE APPE	NDIX D – Training Log NDIX E – Industrial Storm Water Facility Inspection and Visual Observation Form - Annual Evaluation Form - Sampling Log	
APPE	NDIX F – General Permit Attachment H "Sample Collection and Handling Instruc	nons" and

APPENDIX H – ERA Evaluation(s) and Report(s)

Example Chain of Custody Form

APPENDIX I – Advanced Treatment System (Chemical & Filtration) Operating Manual, including the Gateway Generation Station Quick Operations Guide and Operating Log

LIST OF TABLES

Table No.	Title
I	Pollution Prevention Team
II	Industrial Materials Handled at the Facility
III	BMP Summary
IV	NAL Values

LIST OF FIGURES

Figure No.	Title
1	Site Location Map
2	Facility Details
3	Storm Water Flow and BMP Map

ACRONYMS AND ABBREVIATIONS

AST Aboveground Storage Tank
BMP Best Management Practice
CFR Code of Federal Regulations

COC Chain of Custody
CWA Clean Water Act

DDT Dichlorodiphenyltrichloroethane

ECM Environmental Compliance Manager

ELAP Environmental Laboratory Accreditation Program

ELG Effluent Limitation Guideline ERA Exceedance Response Action

General Permit Industrial Storm Water Permit for Discharges Associated with Industrial Activity

HMBP Hazardous Materials Business Plan

LRP Legally Responsible Person

mg/L Milligrams per liter
NAL Numeric Action Level

NEC No Exposure Certification

NOI Notice of Intent

NOT Notice of Termination

NPDES National Pollutant Discharge Elimination System

NSWD Non-Storm Water Discharge

OSHA Occupational Health and Safety Administration

PG&E Pacific Gas and Electric Company

PPT Pollution Prevention Team

PRDs Permit Registration Documents

QISP Qualified Industrial Storm Water Practitioner

QSE Qualifying Storm Event

RWQCB Regional Water Quality Control Board

SIC Standard Industrial Classification

SMARTS Storm Water Multi-Application and Report Tracking System

SPCC Spill Prevention Control and Countermeasure

SWPPP Storm Water Pollution Prevention Plan SWRCB State Water Resources Control Board

WDID Waste Discharge Identification

STORM WATER POLLUTION PREVENTION PLAN SIGNATURE AND CERTIFICATION

I am duly authorized to sign reports required by the California State Water Resources Control Board Industrial Storm Water Permit for Discharges Associated with Industrial Activity. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Tim Wisdom, Sr. Plant Manager

Feb-10, 2017

1. INTRODUCTION

This industrial storm water pollution prevention plan (SWPPP) for Pacific Gas and Electric Company's (PG&E) Gateway Generating Station (facility) was prepared in accordance with the requirements of the California State Water Resources Control Board Industrial Storm Water Permit for Discharges Associated with Industrial Activity ("General Permit," Order NPDES No. CAS000001). A copy of the General Permit (Order No. 2014-0057-DWQ) dated April 1, 2014, is attached as Appendix A.

This SWPPP will be modified whenever there is a change in operation, maintenance or construction which may affect the discharge of pollutants to surface water. It will also be amended if it is found ineffective in achieving the stated objectives listed in the General Permit.

1.1 Background and Requirements

The Federal Clean Water Act (CWA) prohibits discharges from point sources to waters of the United States, unless the discharges are in compliance with a National Pollutant Discharge Elimination System (NPDES) permit. In 1987, the CWA was amended to establish a framework for regulating municipal storm water discharges and discharges associated with industrial activity under the NDPES program. Industrial storm water discharges are regulated pursuant to CWA section 402(p)(3)(A). This provision requires NPDES permits for industrial storm water discharges to comply with technology-based effluent limitations and water quality-based limitations, as well as implement best management practices (BMPs).

On April 17, 1997, the California State Water Resources Control Board (SWRCB) issued NPDES General Permit for Industrial Storm Water Discharges, Excluding Construction Activities, Water Quality Order 97-03-DWQ (previous permit). The current General Permit, Order 2014-0057-DWQ, rescinds the previous permit and serves as the statewide general permit for industrial storm water discharges. The General Permit requires dischargers to:

- Eliminate unauthorized non-storm water discharges (NSWDs);
- Develop and implement SWPPPs that include BMPs;
- Implement minimum BMPs, and advanced BMPs as necessary, to achieve compliance with the effluent and receiving water limitations of this General Permit;
- Conduct monitoring, including visual observations and analytical storm water monitoring for indicator parameters;
- Compare monitoring results for monitored parameters to applicable numeric action levels (NALs) derived from the U.S. EPA 2008 Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (2008 MSGP) and other industrial storm water discharge monitoring data collected in California;
- Perform the appropriate Exceedance Response Actions (ERAs) when there are exceedances of the NALs; and
- Certify and submit all permit-related compliance documents via the Storm Water Multiple Application and Report Tracking System (SMARTS). Dischargers shall certify and submit these documents which include, but are not limited to, Permit Registration Documents (PRDs) including Notices of Intent (NOIs), No Exposure Certifications (NECs), and SWPPPs, as well as Annual Reports, Notices of Termination (NOTs), Level 1 ERA Reports, and Level 2 ERA Technical Reports.

Copies of all PRDs are included in Appendix B.

1.2 SWPPP Performance Standards

This SWPPP identifies and evaluates all sources of pollutants from the facility that may affect the quality of industrial storm water discharges and authorized NSWDs. Additionally, this SWPPP identifies and describes the minimum BMPs and any advanced BMPs implemented to reduce or prevent pollutants in industrial storm water discharges and authorized NSWDs. BMPs will be selected to achieve compliance with this General Permit and will identify and describe conditions or circumstances which may require future revisions to be made to the SWPPP. A copy of the SWPPP shall be maintained at the facility.

1.3 SWPPP Implementation and Revisions

PG&E shall fully implement this SWPPP by July 1, 2015. The SWPPP shall be revised whenever necessary and will be certified and submitted electronically to the SWRCB via SMARTS within 30 days whenever the SWPPP contains significant revisions. Minor revisions are not required to be entered into SMARTS more than once every three months within a given reporting year. A log of all SWPPP revisions is included in Appendix C.

1.4 General Facility Information

Facility Name: Gateway Generating Station

Facility Address: 3225 Wilbur Avenue, Antioch CA 94509

Telephone Number: (925) 522-7838

Standard Industrial Classification (SIC) Code: 4911 (Electric Power Generating Facility)

Waste Discharge Identification (WDID) Number: 5S07I021950

Scheduled Facility Operating Hours: 24 hours/7 days (2 shifts)

Size of Facility: Approximately 32.5 acres

The facility is located in unincorporated Contra Costa County (within the City of Antioch's Sphere of Influence), on Wilbur Avenue, 1 mile northeast of Antioch, on the southern shore of the San Joaquin River (Figure 1). The operating portion of the site area is approximately 22 acres. The facility is a natural gas-fired, combined cycle, combustion turbine power plant with a nominal generation capacity of 530 megawatts. The facility includes the following building structures and areas:

- Two Combustion Turbine Electrical Generators;
- Steam Powered Electrical Generator:
- Wet Surface Air Cooler (Wet SAC);
- Fin Fan (Close-loop Cooling System);
- Air Cooled Condenser;
- Plant Services Building;
- Laydown Area for Equipment/Parts Staging;
- Warehouse;

- Hazardous Materials Storage Shed;
- Hazardous Waste Accumulation Storage Shed; AND
- Water Treatment Building.

Percent Impervious: ~28%

Facility Contact:

Name: Angel Espiritu

Title: Environmental Compliance Manager Company: Pacific Gas and Electric Company

Phone: (925)522-7838 Email: ABE4@pge.com

Street Address: 3225 Wilbur Ave

City: Antioch State: California Zip Code: 94509

1.5 Pollution Prevention Team

PG&E has identified a Pollution Prevention Team responsible for assisting with the implementation of this SWPPP and for conducting all monitoring required under the General Permit. The specific individuals (and job title) that are responsible for developing, implementing, and revising this SWPPP and conducting monitoring are identified in the Table 1.

Table I Pollution Prevention Team

Name of Person	Title/Position	Responsibilities, Duties, and Activities	
Jeremy Laurin	Water Quality Subject Matter Expert	Supervise SWPPP development and implementation; provide support and training to the ECM and Plant Manager; review of any documents uploaded to SMARTS; interface with the Regional and/or State Water Quality Control Boards when necessary. Facility lead for storm water permit compliance,	
Angel Espiritu	Environmental Compliance Manager (ECM)		
Name of Person Title/Position		Responsibilities, Duties, and Activities	
Steve Royall Director, Fossil Generation		Legally Responsible Party (LRP); responsible for certification of Notice of Intent (NOI) within SMARTS.	
Tim Wisdom	Sr. Plant Manager	Duly Authorized Representative (DAR); responsible for certification of documents within SMARTS.	
Aman Singh Maintenance Supervisor		BMP Implementation and maintenance.	
David J. Hammond	Operations Supervisor	BMP Implementation and maintenance.	

David Thurston	Plant Engineer	Engineering guidance, supervision and review of BMPs.
Doug Welch or available on-shift Power Plant Technician	Plant Chemist or available on shift power plant technician	Storm water inspections and sampling.

In the event that the Environmental Compliance Manager or other positions responsible for SWPPP implementation are temporarily unavailable to conduct storm water activities due to vacation, illness, out of town business or other absences, backup personnel will implement the SWPPP and conduct required monitoring. PG&E will train all backup personnel so they are familiar with storm water requirements.

The Environmental Compliance Manager, through the Operations or Maintenance Supervisor, will notify the backup PPT member of any expected absences. If the backup PPT member is unavailable, a tertiary individual will be selected and trained to perform the tasks necessary during the primary and secondary PPT member's absence. The backup PPT member has been trained to complete Environment Compliance Manager's tasks when the ECM is unexpectedly absent.

PG&E will ensure that this SWPPP is implemented and revised as necessary to be consistent with applicable municipal, state, and federal requirements that pertain to the requirements in the General Permit.

2. SITE LAYOUT AND EXISTING FACILITY PLANS (PERMIT SECTION X.E)

PG&E has prepared three figures illustrating the information required by the General Permit. These include Figure 1 Site Location Map, Figure 2 Facility Details Map, and the Figure 3 Storm Water Flow and BMP Map. The maps present the following information where applicable:

- Site location;
- North arrow;
- Facility boundary;
- Drainage areas;
- Portions of any drainage area impacted by discharges from surrounding areas;
- Direction of flow within each drainage area;
- On-facility surface water bodies;
- Areas of soil erosion;
- Nearby water bodies (e.g., rivers, lakes, wetlands);
- Municipal storm drain inlets;
- Location of storm water collection and conveyance systems;
- Points of discharge;
- Sampling locations;
- Structural control measures;
- Impervious areas;
- Locations of directly exposed materials;
- Locations of significant spills and leaks;
- Areas of industrial activity;
- Industrial storage areas/storage tanks;
- Shipping and receiving areas;
- Fueling areas;
- Vehicle and equipment storage/maintenance areas;
- Material handling/processing areas;
- Waste treatment and disposal areas;
- Dust or particulate generating areas;
- Cleaning and material reuse areas; and
- Other areas of industrial activity.

Storm water in Drainage Area A is generally conveyed from the south to the north. Surface run-off travels to drain inlets and/or rock-lined ditches which connect to a covered drainage conveyance into a concrete structure with flow valves. The valves on the outlet structure are typically left open to allow the discharge of stormwater in the wet season. The valves are typically left closed in the dry season to

provide an additional measure to capture potential pollutants if a spill occurred. Stormwater in Drainage Area B is contained in a depression centrally located in the drainage area and does not discharge. Additionally, there is no industrial activity in Drainage Area B. The facility details are shown on Figure 2.

3. LIST OF INDUSTRIAL MATERIALS (PERMIT SECTION X.F)

3.1 List of Industrial Materials Handled at the Facility

The following table lists the industrial materials stored or handled at the facility (as detailed in the Hazardous Materials Business Plan):

Table II Industrial Materials Handled at the Facility

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Aqueous Ammonia (29%)	Aboveground Storage Tank (AST)	Weekly	Aqueous Ammonia Storage Area	18,000 gallons
Pre-blended Phosphate/Caustic (Soap)	Tote	Daily	Plant Services Building	460 gallons
Sodium Bisulfite	Tote	Monthly	Water Treatment Building	50 gallons
Stabilized Bromine/Sodium Hydroxide	Tote Monthly		Water Treatment Building and Wet SAC	110 gallons
Sulfuric Acid	Tote	Semi-annual	Wet SAC	35 gallons
Corrosion/Scale Inhibitor/Sodium Hydroxide	Tote	Semi-annual	Wet SAC	110 gallons
Chlorine Scavenger	Tote	Monthly	Water Treatment Building	65 gallons
Mineral Oil	Transformers	As needed	Transformers (throughout the site) and the inlet chiller	58,000 gallons
Diesel Fuel No. 2	AST	Weekly	Water Treatment Building	500 gallons
Turbine Oil	Within Turbines / Drums	As needed	Combustion Turbines, Steam Turbine, Hazardous Materials / Waste Storage Shed	17,000 gallon

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Mixed Oil Drum		As needed	Hazardous Materials / Waste Storage Shed	55 gallon
Hydraulic Oil	Steam Turbine	As needed	Steam Turbine	130 gallons
Liquid Carbon Dioxide	Cylinder	As needed	Combustion Generators and CO2 Bulk Storage	36,000 gallons
Argon	Cylinder	As needed	Combustion Turbines	1,344 cubic feet
EPA Protocol Gases (Carbon Monoxide / Nitrogen / Oxygen / Nitric Oxide)	Cylinder	As needed	Combustion Turbines	4,896 cubic feet
Helium	Cylinder	As needed	Combustion Turbines and Gas Conditioning Station	2,200 cubic feet
Oxygen	Cylinder	As needed	Combustion Turbines	1,124 cubic feet
Hydrogen	Cylinder	As needed	Tube Trailer and Gas Conditioning Station	134,200 cubic feet
Nitrogen	Cylinder	As needed	Combustion Turbines, Steam Turbine, Inlet Chiller	8,735 cubic feet
Propane Cylinder		As needed	Combustion Turbines and Plant Services Building	60 pounds
Acetylene	Cylinder	As needed	Plant Services Building	1,700 cubic feet
Petroleum Distillates	Within Transformer	As needed	Spare GSU Transformer	14,000 gallon
Refined Petroleum Oil	Drum	As needed	Spare GSU Transformer	55 gallons

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Dielectric Fluid	Transformer housing	As needed	Plant Services Building Transformers, Water Treatment Building, Combustion Turbines, Main Electrical Control Enclosure and Inlet Chiller	4,800 gallons
Gear Lubricant	Gear Boxes (36) and Drums	As needed	Air Cooled Condenser Gear Boxes (36), Warehouse and Hazardous Materials / Waste Storage Shed	540 gallons
Lead Acid Batteries	Within Electrical Equipment	As needed	Combustion Turbines	48,000 pounds
Lead Calcium Batteries	Within Electrical Equipment	As needed	Switchyard	90 gallons
Sulfur Hexafluoride	Internally within breakers	As needed	Sulfur Hexafluoride Breakers	774 pounds
Carbon Dioxide, Gas	Cylinders	As needed	Stormwater Treatment System	6,620 cubic feet
HaloKlear BHR-50	Plastic Tote	As needed	Stormwater Treatment System	275 gallons
Yardney 3660 Media Filter (glass media beads)	Within Equipment	As needed	Stormwater Treatment System	6,300 pounds
Sodium Hydroxide	Plastic Container	As needed	Stormwater Treatment System	30 gallons
Non-hazardous trash	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Metal scraps for recycling	Roll-off bin with tarp cover	Weekly	Laydown area	20 yards

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Wood Pallets	Outside	Daily	Laydown	50 to 100 total
Plastics	In enclosed dumpster	Daily	Laydown in roofed area	3 yards
Recyclables	Lecyclables In enclosed dumpster		Laydown in roofed area	3 yards
Cardboard	In enclosed cardboard compactor	Daily	Laydown in roofed area	3 yards
RCRA Waste (i.e., waste absorbent)	In secondary- contained drums within covered waste storage area	As needed	Hazardous Materials / Waste Storage Sheds	55 gallons
Non-RCRA Waste (i.e. oily debris)	In secondary- contained drums within covered waste storage area	As needed	Hazardous Materials / Waste Storage Sheds	55 gallons
Universal Waste (i.e., batteries and fluorescent light bulbs)	Bins	As needed	Hazardous Materials / Waste Storage Sheds	5 pounds
Monoethanolamine (30%-60%)	Tote	As needed	Northeast corner of Air Cooled Condenser (ACC)	400 gallons
Cooling Water Inhibitor (3DTRASAR)	Tote	As needed	Water Treatment Building	110 gallons
Antiscalant (Avista Vitec)	Drum	As needed	Water Treatment Building	60 gallons
Antifungal/bacteria/slime (Stabrex)	Tote	As needed	Water Treatment Building	110 gallons
Simple Green	2.5 gallon Containers	As needed	East of the Plant Services Building	10 gallons
Reclaimed water	Tanks	Daily	East of the Water Treatment Building	140,000 gallons
Wastewater	Tank	Daily	East of the Water Treatment Building	40,000 gallons

Material	How Stored	Receiving/Shipping and Handling Frequency	Storage Location	Typical Quantities
Turbine Cleaning Fluid	Tote	As needed	Parts and Miscellaneous Storage Building	250 gallons
Various solvents, degreasers, paints, adhesives, etc.	Fire Cabinet	As needed	East of the Plant Service Building	Typically less than 1 gallon each

4. DESCRIPTION OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.F AND G)

4.1 Industrial Processes

Gateway Generating Station facility manufactures electricity through the use of two natural gas fired combustion turbines and a steam powered generator. The industrial materials utilized throughout the facility are detailed in Table II. All industrial processes associated with manufacturing occur at locations denoted on Figure 2.

Industrial materials imported to the site are imported directly into the warehouse, directly to aqueous ammonia storage tank, the water treatment plant and the wet surface air cooler. Handling, shipping and receiving of hazardous materials including waste occurs at the frequencies denoted in Table II above. Storage areas identified in Table II are also denoted in Figure 2. These areas are further described as follows.

The aqueous ammonia is stored in an area that houses two 20,000 gallon capacity tanks. These tanks sit above grade within a secondary containment unit and a sump. This area has sufficient storage capacity to meet the facility's Risk Management Plan requirements. Storm water that collects in this sump is discharged to the sanitary sewer per a separate permit. This storage area has its own loading ramp that drains to the secondary containment sump below the tanks.

The hazardous materials storage shed, hazardous waste storage shed and hazardous materials accumulation shed are all covered sheds with secondary containment that meets the facilities hazardous materials business plan (HMBP) and SPCC plan requirements. The various oils the facility uses are stored within these sheds in 55 gallon drums. In addition to those drums universal waste and used absorbent is also stored within these sheds. Materials and wastes are moved using services vehicles.

All hazardous materials associated with the water treatment plant including the diesel fuel used for the emergency fire water system are housed in a roofed water treatment building. Secondary containment for these materials is provided. All of the ASTs within this area are filled by bulk delivery.

There are various transformers throughout the facility. These transformers are filled with dielectric oil and are housed in secondary containment that meets the facility's SPCC plan requirements.

Various hazardous materials are stored adjacent to the wet surface air cooler. These materials are all stored in sealed tanks within secondary containment. These tanks are filled by bulk delivery.

Trash, recyclable materials, and cardboard are accumulated in three separate dumpsters. The dumpsters have lids which are closed when the dumpsters are not actively used. To further isolate the dumpsters from exposure to storm water, they are housed under a roof.

Metals for recycling are accumulated in a roll off bin or bins and are covered when not actively in-use.

Various pressurized gases are stored throughout the facility for various uses. These pressurized gases are stored according to all applicable HMBP requirements.

Various batteries are stored throughout the facility for various uses. These batteries are stored in roofed buildings and according to all applicable HMBP requirements.

4.2 Material Receiving, Shipping, and Handling

Receiving

The facility receives regular deliveries of the materials listed in Table II. The materials stored in larger tanks are delivered by service trucks and are directly loaded into the respective vessels. Receiving and loading of materials (e.g., fuels, fuel additives, oils, and ammonia) is performed at the respective material storage areas. Other sources include smaller quantities of oils used in transformers, sulfuric acid used in batteries, and oils used in miscellaneous equipment and machines which are delivered to their various storage locations throughout the facility, including but not limited to the warehouse, plant services building, parts and miscellaneous storage building, and the water treatment building.

Material Handling

The primary function of the power plant facility is to generate electricity through a combined-cycle process utilizing natural gas as fuel. The potential pollutants at the facility are used in ancillary functions such as lubricants, aqueous ammonia for emissions control, and other various maintenance fluids. Most materials and wastes are transported via on-site pipe networks. For example, potable water is piped to the facility from a municipal water purveyor to the water treatment area and then transferred from the treatment plant to the boilers and other heat exchange equipment. Used water is conveyed to the sanitary sewer. Small quantities of other materials and wastes, typically for maintenance activities, are moved using services vehicles. There is a seldom used parts cleaning machine that is located outdoors, immediately east of the plant services building.

Waste

General trash is accumulated in dumpsters located north of the inlet chiller. The waste dumpster area is equipped with a storm resistant shelter. Trash is transferred to a collection facility by a service vendor.

Metals for recycling are accumulated in two dumpsters that are equipped with lids. One metal disposal dumpster is located near the trash dumpsters and the other is located east of the parts and miscellaneous storage building. Occasionally, roll-off dumpsters are placed near the warehouse during maintenance and repair operations.

Hazardous waste is temporarily stored onsite in storage sheds located east of the plant service building and the south-east corner of the warehouse. The majority of hazardous waste produced at the facility is waste oil sludge and used lubricating oil. Hazardous waste is picked up by a waste disposal vendor as necessary, though typically picked up more frequently; the hazardous waste vendor is on 90-day maximum schedule. An industrial service vendor visits the site weekly to perform a required weekly inspection and schedule waste pick-up.

The water-side effluent from the oil/water separator is conveyed to the sanitary sewer along with other waste water generated from plant operation. The oily sludge effluent is transported offsite for proper disposal.

Portable toilets are commonly placed onsite in various locations for construction and maintenance projects and are serviced regularly by a service vendor.

Shipping

The industrial product produced at the facility is electricity and therefore shipping of industrial products does not occur at this facility. The electricity generated at the facility is transmitted through the substation located west of the facility.

4.3 Dust and Particle Generating Activities

PG&E does not conduct any activities that generate dust and/or particles. The vents located on the combustion turbines are designed only for heat dissipation. The active areas of the site are paved or covered in gravel to prevent dusting.

4.4 Significant Spills and Leaks

Significant spills and leaks include any toxic chemicals identified in 40 Code of Federal Regulations (CFR) Section 302 that are discharged into the facilities' storm water conveyance system as reported on U.S. EPA Form R, as well as spills or leaks of oil and hazardous substances in excess of reportable quantities (40 CFR §§ 110, 117, and 302). PG&E contracts with a service vendor to respond to any significant spills of fuels, oil or other materials. During the routine monthly inspections, PG&E will evaluate the facility in areas where spills and leaks could potentially occur during material delivery, unloading, loading, transport, storage/containment, or use. There have not been any significant spills or leaks of industrial materials at this facility in the last five years that had potential to be discharged from the facility.

In accordance with the facility SPCC Plan and the General Permit, in the event that significant spills or leaks occur in the future, for each potential discharge PG&E will record and document the following information: the location, characteristics, and approximate quantity of the materials spilled or leaked; approximate quantity of the materials discharged from the facility's storm water conveyance system; the cleanup or remedial actions that have occurred or are planned; the approximate remaining quantity of materials that have the potential to be discharged; and the preventive measures taken to ensure spills or leaks of the material do not reoccur.

4.5 Non-Storm Water Discharges

A NSWD is any water discharged at the Facility which is not the direct result of a rain event. Examples include process water, cooling water, wash water, and sanitary wastewater. Certain limited categories of NSWDs are considered to be authorized by the General Permit (as long as they are not in violation of any Basin Plan, municipal agency ordinance, or other statewide water quality control plans or policy requirements), including: fire hydrant flushing; potable water sources; drinking fountain water; refrigeration, air conditioning, and compressor condensate; irrigation drainage and landscape watering; uncontaminated natural springs, groundwater, and foundation/footing drainage; seawater infiltration; and incidental windblown mist from cooling towers.

Authorized NSWDs at the Gateway Generating Station facility are expected to be prevented or minimized and would occur at an unknown frequency if they arise with the exception of the fire system flushing. The fire system is flushed annually and the quantity of water would be equal to the amount in the system or necessary to flush the system. Expected authorized NSWDs include:

- Fire system flushing water;
- Irrigation water;
- Eve wash system flushing and testing water; and
- Air conditioning or compressor condensate.

The NSWDs listed above are authorized by the General Permit if all of the following conditions are met:

- The NSWDs are in compliance with Regional Water Quality Control Board (RWQCB) requirements;
- The NSWDs are in compliance with local agency ordinances and/or requirements;
- BMPs are specifically included in the SWPPP to (1) prevent or reduce the contact of NSWDs with significant materials or equipment and (2) minimize, to the extent practicable, the flow or volume of NSWDs;
- The NSWDs do not contain significant quantities of pollutants;
- The monitoring program includes quarterly visual observations of each NSWD and its sources to ensure that BMPs are being implemented and are effective; and
- The NSWDs are reported and described annually as part of the Annual Report.

As part of the routine monthly site inspections, PG&E will conduct an evaluation of the facility to identify any NSWDs, sources, and drainage areas. The inspection will include an evaluation of all storm drain inlets to identify connections to the storm water conveyance system; and a description of any NSWDs and how any which have occurred and have been eliminated. In the event that NSWDs are discovered, they will be described on the inspection form located in Appendix E of the SWPPP. This description will include the source, quantity, frequency, and characteristics of the NSWDs, associated drainage area, and whether it is an authorized or unauthorized NSWD.

Potential unauthorized NSWDs at the Gateway Generating Station Facility include:

- Secondary containment failure;
- Pipeline leak, rupture, or failure;
- Contaminated water in sumps;
- Leaks or spills from portable restrooms; and
- Leaks or spills from service vehicles or portable equipment.

Unauthorized NSWDs have been eliminated or prevented through the use of sumps, secondary containment structures, an oil/water separator, drains that convey waste to the oil/water separator, controlled site access, and the placement and maintenance of numerous spill clean-up kits throughout the facility.

4.6 Erodible Surfaces

There are three vegetated areas (Figure 3) that may be considered erodible surfaces at the facility. The only unpaved areas within the active facility exposed to storm water are flat gravel-capped surfaces between structures and adjacent to roadways, and three vegetated surfaces on the northeastern edge of the property.

The southern portion of the facility is inactive and self-contained, with a berm which surrounds the entire perimeter. This area has also been graded into a depression and decompacted to help increase infiltration of any storm water that lands within the area.

5. ASSESSMENT OF POTENTIAL POLLUTANT SOURCES (PERMIT SECTION X.G.2)

5.1 Narrative Assessment of Likely Pollutants Present in Storm Water Discharges

PG&E conducts frequent preventive maintenance to ensure that plant machinery, equipment and storage vessels are in good working order. The most likely potential pollutants in storm water discharges are the materials listed in Table II. Approximately 28 storm water catch basins drain the site and are located throughout the facility and in proximity to material storage areas. PG&E has implemented BMPs to control the offsite migration of potential pollutants by following good housekeeping, requiring immediate cleanup of spills, and by installing filter screens (Dandy Pops®) in storm water catch basins on the site, as appropriate. The filter screens are cleaned and/or replaced as needed.

5.2 Identification of Additional BMPs

In the event that conditions change or monitoring results indicate a need, PG&E will consider identifying additional BMPs to address the changed conditions or constituents of concern.

5.3 Identification of Drainage Areas with No Exposure

There is one drainage area at the facility with no exposure, as indicated on Figure 2. The southern area meets the requirements for no exposure, as there are no industrial activities occurring within it.

5.4 Identification of Additional Parameters

In addition to the standard parameters required for all industrial facilities (pH, oil & grease, and total suspended solids), PG&E will continue to analyze for total iron, as per the SIC code 4911 requirements of Table 1 and Attachment A of the General Permit.

The facility drains to the Delta Waterways (western portion) which is in the HUC 10 watershed of the site. The 303(d) listed impairments for the Delta include: Chlordane; Chlorpyrifos; Dichlorodiphenyltirchloroethane (DDT); Diazinon; Dieldrin; Dioxin; Dioxin compounds (including 2,3,7,8-TCDD); Disulfoton; Electrical Conductivity; Escherichia coli (E. coli); Furan Compounds; Group A Pesticides; Invasive Species; Mercury; Organic Enrichment/Low Dissolved Oxygen; Oxygen, Dissolved; Low Dissolved Oxygen; Pathogens; PCBs (Polychlorinated biphenyls) (dioxin-like); PCBs (Polychlorinated biphenyls); Selenium; and Unknown Toxicity. The sources of the impairments listed are primarily caused by agricultural sources or mineral resource extraction and the Gateway Generating Station does not have the potential to discharge most of the pollutants; however, electrical conductivity may be an exception.

Electrical Conductivity is a measure of the ability of water to pass an electrical current. Conductivity in water is affected by the presence of inorganic dissolved solids such as chloride, nitrate, sulfate, and phosphate anions (ions that carry a negative charge) or sodium, magnesium, calcium, iron, an aluminum cations (ions that that carry a positive charge). Though the General Permit does not have a Numeric Action Level for electrical conductivity, the facility has the potential to discharge inorganic dissolved solids and analytical results may be beneficial as an indicator of other pollutant concerns; therefore, the facility will also collect and analyze samples for electrical conductance.

6. STORM WATER BEST MANAGEMENT PRACTICES (PERMIT SECTION X.H)

This section describes the BMPs implemented and maintained as a result of the activities assessment in Section 4. The current BMPs, when properly maintained, are effective for the operations at the facility. BMPs are divided into minimum and advanced measures.

6.1 Minimum BMPs (PERMIT SECTION X.H.1)

6.1.1 Good Housekeeping

- Monthly Visual Inspections. Once per calendar month, PG&E inspects all outdoor areas associated with industrial activity, including storm water discharge locations, drainage areas, conveyance systems, waste handling/disposal areas, and perimeter areas impacted by off-facility materials or storm water run-on to determine housekeeping needs. Any identified debris, waste, spills, tracked materials, or leaked materials identified during the inspections are cleaned and disposed of properly.
- **Tracking Control.** Although there is low potential for tracking of sediment at the facility, paved surfaces are swept on a monthly basis. Additionally sweeping will occur as needed.
- **Dust Control.** PG&E's power generation process does not generate dust, and the surface of the site is either paved, has a gravel cap, or is vegetated. Therefore, there is no need to implement dust control at this facility.
- Cleaning Areas Impacted by Rinse/Wash Waters. No washing or rinsing of equipment is performed at the facility. Parts are washed within an enclosed parts washer, within the roofed Plant Services building.
- Industrial Materials Storage Control. The facility stores all materials and performs all activities that involve hazardous materials under roofed areas (buildings or storage containers), within secondary containment, or during dry weather, if possible.
- Control of Non-Solid Industrial Materials/Wastes. The facility contains all stored non-solid industrial materials or wastes (e.g., fuel, waste oil) that can be transported or dispersed by wind or contact with storm water. Spill kits are maintained appropriately and allow for immediate response to spills. In addition, all materials are stored within secondary containment to prevent any spilled or leaked material from being transported by storm water. Numerous secondary containment structures have been designed and constructed throughout the facility to contain spills, leaks, or ruptures from various tanks and oil filled equipment. The secondary containment structures have been designed per SPCC requirements to contain the capacity of either 100 percent of the largest tank or 10 percent of all tanks or containers stored within the containment. Additional material and waste control information is included in the facility's Spill Prevention Control and Countermeasure (SPCC) Plan.
- Control of Rinse/Wash Water Disposal. No washing or rinsing is performed at the facility. The facility prevents the disposal of any industrial materials into the storm water conveyance system by maintaining spill kits appropriately and immediately responding to spills.
- Minimize Storm Water Discharges from Non-Industrial Areas. A non-industrial area exists within the facility, as denoted on Figure 2. This area is self-contained, with a berm surrounding the entire perimeter of this portion. This area has also been graded into a

- depression and decompacted to help increase infiltration of any storm water that lands within the area, as described in Section 4.5.
- Minimize Authorized NSWDs from Non-Industrial Areas. A non-industrial area exists within the facility and no authorized NSWDs occur from it.

6.1.2 Spill and Leak Spill and Leak Prevention

The facility implements the following preventative maintenance measures:

- PG&E has identified the following outdoor equipment at the Facility which may spill or leak pollutants, as follows:
 - Containment areas, tanks and containers storing hazardous materials or wastes
 - Oil-filled electrical equipment and oil-filled operating equipment in the Radiator Area, and Transformer Yard
 - Service vehicles (when transporting materials such as drums of waste oil)
- Monthly observations of containment areas, tanks, equipment and systems are conducted to detect leaks, or identify conditions that may result in the development of leaks.
- The facility maintains a schedule for conducting routine maintenance of identified equipment and systems. There is a daily inspection of all equipment at the facility, monthly preventative maintenance and periodic servicing. Daily inspections are informal visual inspections by operators, and are not documented. Service vehicles are not washed on site.
- The facility has defined procedures for prompt maintenance and repair of equipment, and maintenance of systems when conditions exist that may result in the development of spills or leaks.
- The facility utilizes forklifts and golf carts that are loaned to the facility from PG&E Fleet. Fleet vehicles are repaired and maintained by the Fleet group.
- The manufacturer of the power generation equipment requires maintenance of equipment after a specified number of operating hours and therefore the facility conducts two shutdowns per year to maintain the facility's power generation equipment.

6.1.3 Spill and Leak Response

PG&E has established the following protocols to respond to spills and leaks:

- The facility has developed procedures to minimize spills and leaks. The facility has a SPCC Plan that addresses storage of materials and wastes.
- The facility has established spill and leak response procedures to prevent industrial materials from discharging through the storm water conveyance system. Spilled or leaked industrial materials are cleaned up promptly and disposed of properly.
- The facility has identified and described all necessary and appropriate spill and leak response equipment, locations of spill and leak response equipment, and spill/leak response equipment maintenance procedures, in the facility's HMBP and SPCC plans. Spill kits are maintained throughout the facility and denoted in maps located in the facility's HMBP.

- The facility has designated and trained appropriate spill and leak response personnel, identified as the PPT in Table 1 above. Spill and leak response personnel are trained annually, at a minimum. Plant operations personnel are responsible for spill cleanup; an outside vendor is used to respond to significant spills. Spill response personnel receive OSHA hazard communication training and spill training consistent with the hazardous materials business plan and SPCC plan.
- Powered industrial truck maintenance shall be performed on tarps or other impervious materials to capture spills.

6.1.4 Material Handling and Waste Management

PG&E has a robust program for addressing material handling and waste management, as follows:

- The facility minimizes the handling of industrial materials or wastes that can be readily mobilized by contact with storm water during storm events through the use of awnings at loading docks.
- The facility appropriately contains stored non-solid industrial materials or wastes (e.g., lubricant oil) that can be transported or dispersed by the wind or contact with storm water by storing these materials in secondary containment with water tight lids.
- Industrial waste disposal containers (dumpsters and metal waste recycling bins) and industrial material storage containers that contain industrial materials are covered with lids or plastic tarps when not in use.
- Site run-on and storm water generated from within the facility is diverted away from material storage areas.
- Spills of industrial materials or wastes that occur during handling are cleaned up in accordance with the spill response procedures.
- Outdoor material or waste handling equipment or containers that can be contaminated by contact with industrial materials or wastes are inspected and cleaned, as appropriate.

6.1.5 Erosion and Sediment Controls

Erosion is not a significant issue at the site because approximately 28 percent is paved and the remainder is covered with a gravel cap or is vegetated (Figure 3). Therefore, erosion is not a problem at the site, and the facility does not implement erosion and sediment controls.

6.1.6 Employee Training Program

PG&E employees responsible for implementing the storm water program at the Facility will receive annual storm water training. The facility has identified which personnel require training (per Section 1.5), their responsibilities, and the type of training they will receive, and will prepare or acquire appropriate training materials and establish a schedule for providing the training. All participants will sign a Training Log that will be kept in Appendix D. This documentation will be maintained with the SWPPP. Annual training is required once every calendar year. At a minimum, training will cover the following topics:

- BMP implementation;
- BMP effectiveness evaluations:
- Visual observations; and

Monitoring activities.

In the event the Facility enters Level 1 status (see Section 9), appropriate team members will be trained by a Qualified Industrial SWPPP Practitioner (QISP). A QISP must complete a SWRCB-approved training course and assist in the preparation of ERAs for Level 1 and 2 status designations which are described in further detail in Section 9 of this SWPPP.

6.1.7 Quality Assurance and Record-Keeping

PG&E has done [and will continue to perform] the following to retain proper quality assurance and record-keeping:

- The facility has developed and implemented management procedures to ensure that appropriate staff implements all elements of the SWPPP, including the Monitoring Implementation Plan;
- The facility has developed a method of tracking and recording the implementation of BMPs identified in the SWPPP, through the monthly inspection process; and
- The facility will maintain the BMP implementation records, training records and records related to any spills and clean-up related response activities for a minimum of five years.

6.2 Advanced BMPs (Permit Section X.H.2)

In addition to the minimum BMPs described above in Section 6.1 and in Section X.H.1 of the General Permit, the facility will, to the extent feasible, implement and maintain any advanced BMPs necessary to reduce or prevent discharges of pollutants in its storm water discharge in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.

6.2.1 Exposure Minimization BMPs

The facility has installed permanent storm resistant shelters to prevent contact of storm water with certain kinds of materials. These areas include the hazardous materials/waste storage sheds, and the Laydown area (e.g., for waste and recycling dumpsters).

6.2.2 Storm Water Containment and Discharge Reduction BMPs

These BMPs include structures that divert, infiltrate, reuse, contain, retain, or reduce the volume of storm water runoff. As described in Section 4.5, the facility includes gravel caps to areas that haven't been paved or are not roofed which may increase infiltration at the site and prevent erosion. Additional BMPs will be explored and implemented as needed.

6.2.3 Treatment Control BMPs

• Oil/Water Separator. The site is equipped with an oil/water separator; however, since the effluent from the oil/water separator is conveyed to the municipal sanitary sewer (which is permitted through the publicly owned treatment works), this water is not considered storm water discharge. The oil (if any) is separated and sent offsite for proper disposal. The coalescer packs are inspected regularly and cleaned if indicated by inspection.

- **Parts Cleaner.** The site is equipped with a parts cleaner that is located outdoors on the east side of the maintenance shop. The manufacturer inspects the washer and replaces the solvent as necessary.
- **Drain Inlet Filters.** Filter screens (Dandy Pops®) are installed in storm water catch basins on the site, as appropriate, to capture sediment. The filter screens are cleaned and/or replaced as needed.
- Stormwater Chemical Treatment/Filtration System. The site is equipped with a standard chemical treatment and filtration system for the stormwater prior to discharge. The treatment system is located immediately adjacent to the existing outfall, E-006, to allow treatment of all of Gateway Generating Station's stormwater prior to discharge into the river. The system is expected to reduce the total iron content of the storm water effluent to less than or equal to 1 ppm.

Design of the system was precluded by volume-based calculations to meet the provisions of the IGP (see memo dated October 12, 2016 found in Appendix H). The volume of runoff produced from an 85th percentile 24-hour storm event and 85th Percentile Hourly Rainfall Intensity per the IGP, as determined from local, historical rainfall records produces a maximum of 229,562 gallons. The design volume processing rate of the treatment system is 468,895 gallons, both meeting and exceeding the volume-based calculations of the IGP.

Treatment steps for the treatment system are as follows:

- 1. The storm water is pH adjusted to allow the iron to precipitate out of the stormwater,
- 2. A chemical flocculating agent is added to clump the iron particles together,
- 3. The stormwater is settled and pumped over a series of small weirs to capture the solids,
- 4. Stormwater is then passed through the media filters for finer particulate removal,
- 5. The water is monitored real-time to assure it meets discharge criteria, if it does not meet pH or turbidity criteria, it is recirculated, and,
- 6. The treated stormwater is discharged into the San Joaquin River.

6.2.4 Other Advanced BMPs

At this time, the Facility does not implement other advanced BMPs. In the event that conditions change or monitoring results indicate a need, PG&E will consider additional advanced BMPs to address the changed conditions or constituents of concern.

7. TEMPORARY SUSPENSION OF ACTIVITIES (PERMIT SECTION X.H.3)

PG&E's Gateway Generating Station operates two shifts, seven days a week. The facility does not have any plans to suspend industrial activities for ten or more consecutive calendar days in any given year. Therefore, this section of the General Permit is not applicable.

8. BMP SUMMARY (PERMIT SECTIONS X.H.4 AND 5)

The following table summarizes each identified area of industrial activity, the associated industrial pollutant sources, the industrial pollutants, and the BMPs implemented. The approximate boundaries of Drainage Areas A and B are shown on Figure 2. The PPT identified in Section 1.5 is responsible for implementing all BMPs at the site. Some of the BMPs described below require the use of mechanical equipment, such as forklifts, in order to perform maintenance activities on the BMPs. PPT members are authorized to use the required equipment or to obtain the help of other facility staff to maintain the BMPs onsite. The facility mechanics are responsible for maintaining the mechanical equipment throughout the facility.

To retain effectiveness during and after significant weather conditions, certain BMPs need to be inspected more frequently than monthly. These BMPs will be informally inspected by PPT members during large rain events or following rain events.

Table III BMP Summary

Drainage Area	BMPs Implemented	Associated Industrial Pollutant Sources	Potential Industrial Pollutants	Frequency of BMP Implementation
	Spill kit	Oil Filled Equipment (Transformers)	Petroleum hydrocarbons, heavy metals	As needed
Combustion turbines	Secondary containment	Aqueous Ammonia for exhaust system	Aqueous Ammonia	As needed
	Check dams	All facility pollutants	Suspended Sediment	As needed
	Spill kits	Truck access	Petroleum hydrocarbons, heavy metals	As needed
Oil and Universal Waste Storage	Parts Cleaner	Part Cleaning	Solvents, lubricants, metals	As needed
Used Oil / Hazardous Waste Storage	Spill kits and secondary containment	Spills during shipping and receiving	Petroleum hydrocarbons, heavy metals	As needed
	Covered forklift parking	Forklift	Vehicle related pollutants	Daily
Water Treatment	Spill kit	Truck access	Petroleum hydrocarbons, heavy metals	As needed
Plant	Spill kits and secondary containment	Spills during shipping and receiving	Diesel, various chemicals	As needed
	Fueling Sump	Fuel	Petroleum	Permanent
Trash and Scrap Metal Dumpsters	Dumpsters have lids, roll offs are tarped	Spills during shipping and receiving	Metals and non- petroleum waste	Cover daily when not in use
Wetai Dampsters	Storm resistant shelter	Waste	Metals, oils, suspended solids	Permanent

Warehouse	Run-on diversions	Run-on from neighboring facilities	Iron	Permanent
Discharge Location	Valves and Concrete Containment	All facility pollutants	All potential pollutants	Permanent
Location	Treatment and filtration	ponutants	ponutants	As needed
	Drain inlet filters	All pollutant sources	All potential pollutants	Permanent
	Rock-lined ditches Sou		Suspended solids	Permanent
	Site has access control and security 24 hours a day, 7 days a week	All pollutant sources	All potential pollutants	As needed
All Drainage	Oil/Water Separator	All pollutants	Oils and Grease	Daily
Areas	Oil absorbent socks around various drain inlets	All pollutant sources	Oils and Grease	Daily
	Powder coated drain inlet grates	Rusting grates	Iron	Permanent
	"No Dumping, Drains to Delta Signs"	Illicit dumping	All potential pollutants	Permanent

9. MONITORING IMPLEMENTATION PLAN (PERMIT SECTION X.I)

As described above in Section 1.5, PG&E has assembled a PPT that includes members assigned to conduct storm water monitoring. The facility has one industrial discharge location which is also the sampling location. The discharge location (Sample Location E-006) is located at the northern perimeter of the facility. Analytical monitoring and visual observations will be conducted at the sampling location shown on Figure 2.

Procedures for Monthly Visual Observations

PG&E will conduct visual observations within the drainage area at the facility at least once per calendar month, which will include an evaluation of:

- Presence or indications of prior, current, or potential unauthorized NSWDs and their sources;
- Authorized NSWDs, sources, and associated BMPs; and
- Outdoor industrial equipment and storage areas, outdoor industrial activities areas, BMPs, and all other potential source of industrial pollutants.

Monthly visual observations will be conducted during daylight hours of scheduled facility operating hours and on days without precipitation. Visual observations will be recorded on the form provided in Appendix E. Information to be recorded will include the date, approximate time, locations observed, presence and probable source of any observed pollutants, name of person(s) that conducted the observations, and any response actions and/or additional SWPPP revisions necessary in response to the visual observations. To ensure adequate documentation of response action completion, a PPT member will initial and date the documented response action when the action is complete. If a monthly visual observation is not conducted, PG&E will provide an explanation in the Annual Report.

Procedures for Sampling Event Visual Observations

PG&E will conduct visual observations at the same time sampling occurs at a discharge location. At each discharge location where a sample is obtained, PG&E will observe the discharge of storm water associated with industrial activity and record these observations on the form provided in Appendix E. The same types of information will be recorded as for the monthly inspections. The following items will be observed and recorded:

- The appearance of storm water discharged from containment sources (e.g., secondary containment or sumps) at the time that the discharge is sampled;
- The presence or absence of floating and suspended materials, oil and grease, discolorations, turbidity, odors, trash/debris, and source(s) of any discharged pollutants.

In the event that a discharge location is not visually observed during a sampling event, PG&E will record which discharge locations were not observed during sampling or that there was no discharge from the discharge location and will provide an explanation in the Annual Report for uncompleted sampling event visual observations. PG&E will revise BMPs as necessary if the visual observations indicate pollutant sources have not been adequately addressed in the SWPPP. If any response actions are noted during Sampling Event Visual Observations, a PPT member will initial and date the documented response action when the action is complete.

Sampling and Analysis

Samples will be collected during Qualifying Storm Events (QSE). A QSE is defined as a precipitation event that produces a discharge for at least one drainage area and is preceded by 48 hours with no discharge from any Facility drainage area. PG&E will collect and analyze storm water samples from two QSEs within the first half of each reporting year (July 1 to December 31), and two QSEs within the second half of each reporting year (January 1 to June 30). Samples will be collected within four hours of the start of discharge at the E006 discharge/sampling location shown on Figure 2. The sampling point at E006 is upstream from the actual discharge into the San Joaquin River (Outfall), due to the comingling of our discharge with the neighboring industrial facility just after E006 and prior to Outfall.

Sampling will be performed in accordance with requirements of the General Permit. Use caution when collecting samples at night and do not collect samples without sufficient lighting. Samples will be collected and analyzed for pH, oil and grease, total suspended solids, and total iron (based on the facility's SIC code listed in Table 1 of the General Permit for additional analytical parameters). Sampling results will be compared to two types of NAL values based on the specific parameter to determine whether either type of NAL has been exceeded for each applicable parameter. Annual NAL exceedances are based on analytical results for the entire facility for the reporting year, while Instantaneous NAL exceedances are based on analytical results from each distinct sample. The table below describes test methods, reporting units, and NAL values:

Table IV NAL Values

Parameter	Test Method	Reporting Units	Annual NAL	Instantaneous Maximum NAL
рН	Portable instrument*	pH units	N/A	<6.0 or >9.0
Oil and Grease	EPA 1664A	mg/L	15	25
Total Suspended Solids	SM 2540-D	mg/L	100	400
Total Iron	EPA 200.7	mg/L	1.0	
Electrical Conductivity			N/A	N/A

^{*}The pH screen will be performed as soon as practicable, but no later than 15 minutes after the sample is collected and will be analyzed using a calibrated portable instrument for pH.

All instruments used for pH measurement will be properly calibrated in accordance with the manufacturer's instructions and recommended frequency, and copies of the calibration records will be maintained onsite. Samples for total iron, total suspended solids, oil and grease, and electrical conductivity will be analyzed by an analytical laboratory that is Environmental Laboratory Accreditation Program (ELAP)-certified. All samples will be collected in accordance with Attachment H of the General Permit ("Sample Collection and Handling Instructions") and handled under proper Chain-of-Custody (COC) protocols. General Permit Attachment H and an example COC are included in Appendix F.

Though there are Effluent Limitation Guidelines (ELGs) for Electric Power Generation facilities, which require copper and chlorine analysis, the regulation only applies to runoff from coal storage piles and therefore the ELGs for Electric Power Generation do not apply to this facility because coal is not stored or used at the facility.

Exceedance Response Actions

ERAs are required when an NAL exceedance occurs for any parameter. At the beginning of NOI coverage, PG&E will enter as a Baseline status for all parameters designated in Table IV above. If sampling results indicate an NAL exceedance [either annual or instantaneous] for any parameter listed in Table IV, the status will move up to Level 1 for that parameter on July 1st following the reporting year during which the exceedance occurred (i.e., if there was an instantaneous exceedance on September 30, 2015, Level 1 would begin on July 1, 2016). Moving to Level 1 status triggers two actions: a Level 1 ERA Report, both prepared with assistance of a QISP.

- A Level 1 ERA Evaluation, due by October 1 following commencement of Level 1 status, consists of completing an evaluation of the industrial pollutant sources at the facility that may be related to the NAL exceedance and evaluate all BMPs to determine if revisions are necessary to prevent future NAL exceedances.
- A Level 1 ERA Report, due by January 1 following commencement of Level 1 status, is prepared after the Level 1 ERA Evaluation and consists of revising the SWPPP as necessary to implement any additional BMPs identified in the Evaluation and submitting via SMARTS the Level 1 ERA Report with details regarding SWPPP revisions and the results of the Evaluation.

A Level 1 status for any exceeded parameter will return to Baseline status once the Level 1 ERA Report has been completed, additional BMPs have been implemented, and results from four consecutive QSEs indicate no additional NAL exceedances for that parameter.

The status for any exceeded parameter will change to Level 2 if sampling results indicate an NAL exceedance for that same parameter while in Level 1 (i.e., if Level 1 was implemented on July 1, 2015 and an exceedance occurred on December 1, 2015, Level 2 would be triggered on July 1, 2016). Moving to Level 2 status triggers two actions: a Level 2 ERA Action Plan and a Level 2 ERA Technical Report, both prepared with assistance of a QISP.

- A Level 2 ERA Action Plan, due by January 1 following the reporting year during which the NAL exceedance occurred, consists of a schedule and description of implementing a particular demonstration, as described in the Level 2 Technical Report, in response to the NAL exceedance.
- A Level 2 ERA Technical Report, due by January 1 of the reporting year following the submittal of the Level 2 ERA Action Plan, describes one or more of the demonstrations in response to the NAL exceedance: Industrial Activity BMPs Demonstration, Non-Industrial Pollutant Source Demonstration, and/or Natural Background Pollutant Source Demonstration (as described in the General Permit Section XII.D.2).
- A Level 2 ERA Technical Report may be prepared and submitted at any time, whether or not the Facility is required to submit such a report.

A new Level 2 NAL exceedance is any Level 2 NAL exceedance for 1) a new parameter in any drainage area, or 2) the same parameter that is being addressed in an existing Level 2 ERA Action Plan in a different drainage area.

NAL exceedances, in and of themselves, are not violations of the General Permit. Failure to comply with the Level 1 status and/or Level 2 status ERA requirements is in violation of the General Permit.

PG&E Gateway Generation Station ERA Status

Reporting	ERA Level	Parameter	Level 1 ERA	Level 1 ERA	Level 2 ERA	Level 2 ERA
Year	Status		Evaluation	Report	Action Plan	Technical
			Completion	Submittal	Submittal	Report
			Date	Date	Date	Submittal
						Date

2015-	Baseline	N/A	N/A	N/A	N/A	N/A
2016						
2016-	Level 1	Iron, Total	09/27/2016	12/30/2016	N/A	N/A
2017						

See Appendix H for the ERA Evaluation(s) and Report(s)

Reporting

PG&E will submit all sampling and analytical results via SMARTS within 30 days of obtaining all results for each sampling event. In the event a sample's analytical result is reported by the laboratory as non-detect or less than the method detection limit, the method detection limit will be provided. A value of zero will not be reported.

PG&E will provide the sample analytical results reported by the laboratory as below the minimum level (often referred to as the reporting limit) but above the method detection limit. Reported analytical results from multiple discharge points will be averaged automatically by SMARTS. For any calculations required by this General Permit, SMARTS will assign a value of zero for all results less than the minimum level as reported by the laboratory.

10. ANNUAL REPORTING (PERMIT SECTIONS XV AND XVI)

PG&E will conduct an Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation) each reporting year (July 1 to June 30). If the Annual Evaluation is conducted fewer than eight months, or more than sixteen months, after the previous Annual Evaluation, the facility will document the justification for doing so. Within 90 days of the Annual Evaluation, PG&E will revise the SWPPP, as appropriate, and implement the revisions. At a minimum, the Annual Evaluation will cover the following:

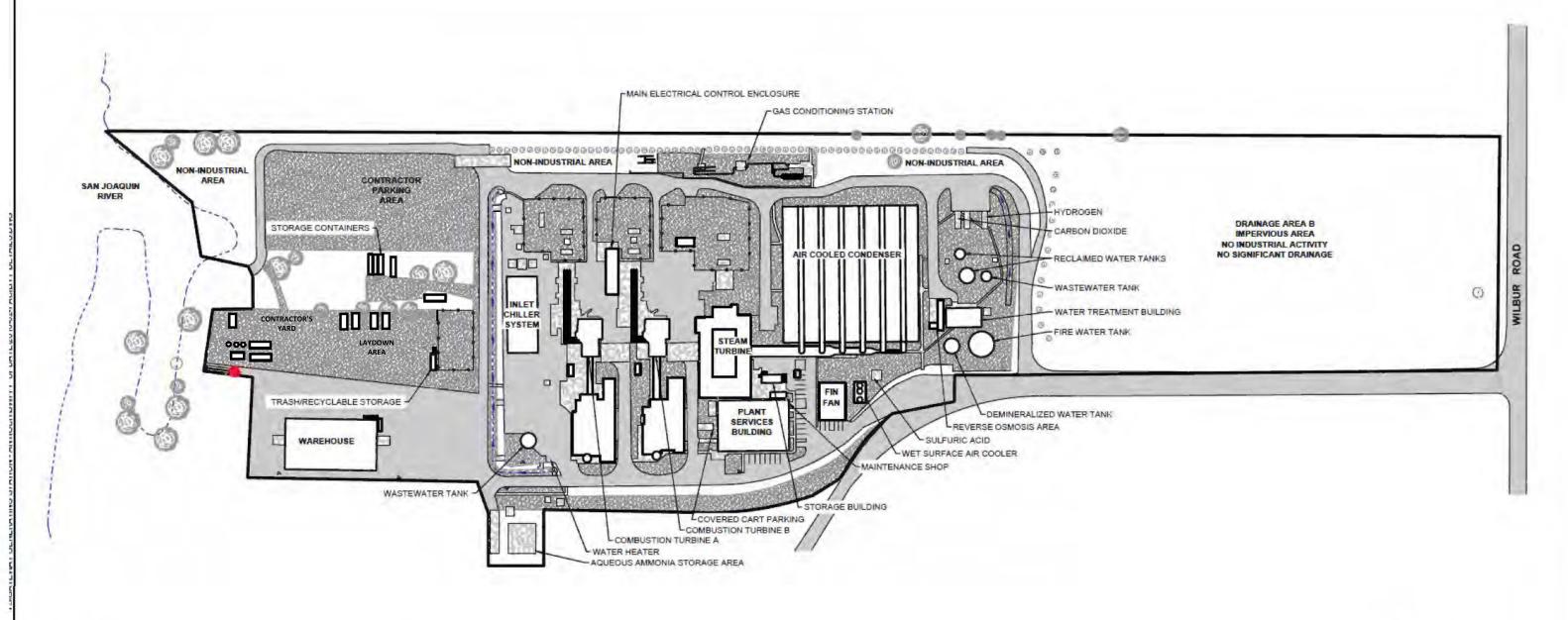
- Review of all sampling, visual observation, and inspection records conducted during the previous reporting year;
- Inspection of all areas of industrial activity and associated potential pollutant sources for evidence of, or the potential for, pollutants entering the storm water conveyance system;
- Inspection of all drainage areas previously identified as having no exposure to industrial activities and materials in accordance with the definitions in Section XVII;
- Inspection of equipment needed to implement the BMPs;
- Inspection of all site BMPs;
- Review and effectiveness assessment of all BMPs for each area of industrial activity and associated potential pollutant sources to determine if the BMPs are properly designed, implemented, and are effective in reducing and preventing pollutants in industrial storm water discharges and authorized NSWDs; and
- Assessment of any other factors needed to comply with the requirements in Section XVI.B.

Information gathered during the Annual Evaluation will be recorded on the form provided in Appendix E.

Annual Report

PG&E will certify and submit via SMARTS an Annual Report no later than July 15th following each year. The Annual Report will be created by the Environmental Compliance Manager, reviewed by the Subject Matter Expert, and certified by the Legally Responsible Party. The Annual Report will include the following:

- A Compliance Checklist that indicates compliance with all applicable requirements of the General Permit;
- An explanation for any non-compliance of requirements within the reporting year;
- Identification of all revisions made to the SWPPP within the reporting year; and
- The date of the Annual Evaluation.


Copies of the Annual Report are included in Appendix G.

REFERENCES

- 1. California State Water Resources Control Board. Industrial Storm Water Permit for Discharges Associated with Industrial Activity (Order No. 2014-0057-DWQ). 2014.
- 2. Excerpts from Gateway Generating Facility Hazardous Materials Business Plan.
- 3. Spill Prevention, Control, and Countermeasures Plan for Gateway Generating Station, initially prepared by CH2MHill January 12, 2009 and revised August 2, 2013.

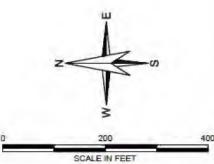
STORM WATER DISCHARGE/SAMPLING POINT

FACILITY BOUNDARY

CO-MINGLED OUTFALL POINT

ASPHALT CONCRETE

CONCRETE

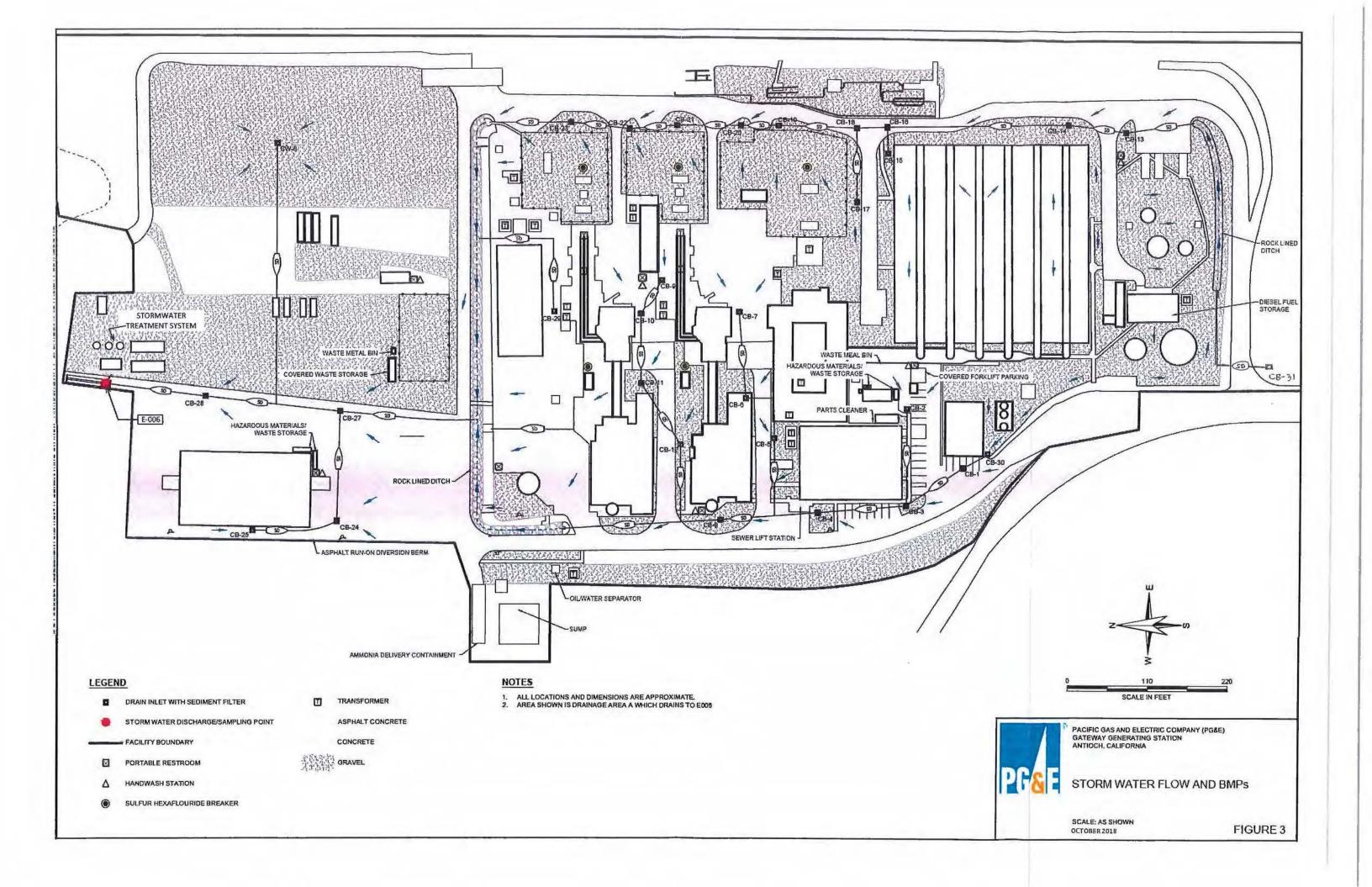

12/04/05

GRAVEL

TREENEGETATION

NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.



PACIFIC GAS AND ELECTRIC COMPANY (PG&E) GATEWAY GENERATING STATION ANTIOCH, CALIFORNIA

FACILITY DETAILS

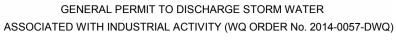
SCALE: AS SHOWN FEBRUARY 2017

FIGURE 2

APPENDIX A

General Permit for Storm Water Discharges Associated with Industrial Activities (State Water Resources Control Board Order 2014-0057-DWQ)

APPENDIX B


Permit Registration Documents

State Water Resources Control Board

NOTICE OF INTENT

(Excluding Construction Activities)

WDID: 5S07l02	1950	Status: Active	
Operator Inform	nation	Т	ype: Private Business
Name:	Pacific Gas Electric Company	Contact Name:	Tim Wisdom
Address:	PO Box 770000	Title:	Plant Manager
Address 2:		Phone Number:	925-522-7812
City/State/Zip:	San Francisco CA 94177	Email Address:	T1WY@pge.com
deral Tax ID:			
Facility Informa	ation	Le	evel:
ontact Name:	Angel Espiritu	Title:	Environmental Compliance Manager
Site Name: Ga	teway Generating Station		
Address: 322	25 Wilbur Ave		
city/State/Zip:	Antioch CA 94509	Site Phone #:	925-522-7838
County:	Contra Costa	Email Address:	abe4@PGE.com
Latitude: 38	8.01228 Longitude: -121.75859	Site Size:	32.5 Acres
	Industrial Area Expo	osed to Storm Water:	22 Acres
1. 4911			
3			
Additional Info	rmation		
Receiving Wa	ater: San Joaq	uin River	Flow: Indirectly
Storm Drain Sys	tem:		
Compliance Gre	oup:		
RWQCB Jurisdic	tion: Region 5S - Sacramento		
Phone:	916-464-3291	Email:	r5s_stormwater@waterboards.ca.gov
Certification			
Name: ste	phen royall	Date: .	June 14, 2017

State Water Resources Control Board

NOTICE OF INTENT

GENERAL PERMIT TO DISCHARGE STORM WATER ASSOCIATED WITH INDUSTRIAL ACTIVITIES (WQ ORDER No. 2014-0057-DWQ) (Excluding Construction Activities)

WDID: 5S07I021950 Status: Active

Operator Information Type: Private Business

Name: Pacific Gas Electric Company Contact Name: Benjamin Stanley

Address: PO Box 770000 Title: Senior Plant Manager

Address 2: Phone #: 925-522-7812

City/State/Zip: San Francisco CA 94177 Email: BESN@pge.com

Federal Tax ID: 94-0742640

Facility Information Level:

Site Name: Gateway Generating Station Contact Name: Angel Espiritu

Address: 3225 Wilbur Ave Title: Environmental Compliance Manag

City/State/Zip: Antioch CA 94509 Site Phone #: 925-522-7838

County: Contra Costa Email: ABE4@PGE.com

Latitude: 38.01228 Longitude: -121.75859 Emergency:

Total Site Size: 32.5 Acres Percent of Site Impervious (including rooftops): 28 %

Industrial Area exposed to Storm Water: 22 Acres

SIC Code(s)

Primary SIC: 4911 Electric Services

Secondary SIC:

Tertiary SIC:

Additional Information

Receiving Water: San Joaquin River Water Flow: Indirectly

Storm drain system: Compliance Group:

RWQCB Jurisdiction: Region 5S - Sacramento

Phone: 916-464-3291 Email: r5s_stormwater@waterboards.ca.gov

Certification

Name Benjamin Stanley Date: June 03, 2015

Title: Senior Plant Manager

Attachments Meta Data Information:

Attachment ID	File Name	File Description	File Hash	File Size	Date Attached	Attachment Type
1393445			e4101d3683ba9ccd e463ee75ce71789 3ca19ad7dfa27b69 cde4b24692d959		2015-05-04 07:10:34.0	Other

APPENDIX C

SWPPP Amendment Form

SUMMARY OF SWPPP AMENDMENTS OR REVISIONS

Section and Page	Summary of Revision	Date	Name/Title
Entire Document	Preparation of the SWPPP under the 2014 IGP	Dec-14	Nancy E. Gardiner, CPESC, QSD/QSP Haley & Aldrich, Inc.
Various	Subsequent to performing a stormwater compliance assessment for the vacility, revisions, additions, and updates were made to the SWPPP and site maps.	3/14/2016	Alicia Brenner, CPESC, CESSWI, QSD/P, QISP BTConsulting, Inc.
Cover page, Section 1.4 (pg 3), Section 1.5 (pg 3), Appendix B NOI	Update contact information: Facility Contact, Plant Manager & Operations Supervisor	6/23/2016	Diana Furman, ECM
Section 3.1, Table II (pg. 7), Section 4.1 (pg. 11)	Removed anhydrous ammonia, this is no longer used or stored at the facility	6/23/2016	Diana Furman, ECM
Section 5.4 (pg. 15)	Reviewed and evaluated the site for the updated 303(d) listed impairments. SWPPP updated and now includes all 303(d) impairments listed on SMARTS.	7/1/2016	Diana Furman, ECM
\$ 6.1.6 pg18	Include clarification for annual training	11/14/16	DIANA FURMAN, ECI
AppendixE	Revised form template	12/8/2016	DIANA FURMAN ECM
§1.5 Table I pa	3 Updated contact info for plant manager	- 12/30/2016	DIANA FURMAN ECM
Sect 1.4(p.7)	Facility Contact info & Holluten Accounting Jeon were updated	5/31/2017	Angel ESPIRITY/
Post phy Fig. 3	- hipdated Revision date - updated Table 1 - updated map	10/3/2016	Angel Espirita ECM

APPENDIX D

Training Log, including training material

SWPPP Training Log

Name of Trainer:		
Location of Training:	Date of Training:	
Signature of Trainer:		
Topics covered:		
☐ SWPPP Compliance Responsibilities		
☐ BMP Implementation and Maintenance		
☐ BMP Effectiveness Evaluations		
☐ Visual Observations		
☐ Monitoring Activities		
☐ SMARTS Reporting		

Name	Title	Company	Signature

APPENDIX E

Industrial Storm Water Facility Inspection and Visual Observation Form Annual Evaluation Form Sampling Log

Industrial Storm Water Facility Inspection and Visual Observation Form

	General Information											
Facility 1	Name	Gateway	Generating Stati	ion								
WDID N	lo.	5S07I021	950									
Date of 1	Inspection			Start/End Time								
Inspecto	r's Name(s)											
Inspecto	r's Title(s)											
Inspecto	r's Contact Information											
Inspecto	Inspector's Qualifications											
Inspector's Signature												
Type of Inspection												
Weather Information												
Weather at time of this inspection? □ Clear □ Cloudy □ Rain □ Sleet □ Fog □ Snow □ High Winds □ Other: Temperature:												
	a sampling event visual of Time Storm Began:	bservation,	Rain Gauge		Rain Gauge II):						
	Time Discharge Began:		_	scharge Ended Greater T	C							
			Visual Obs	ervations								
Are ther	re any spills/leaks observe	ed at the tim										
If yes, do			o or anspection									
Have an If yes, do	y previously unidentified escribe:	discharges	of pollutants oc	ccurred since the last in	spection? □Yes	□No						
If yes, no	te any discharges occurring the the presence of any of any of any of the materials Sheen are all checked above:	the followir	ıg:		Debris							
			Outfall Obs	servations								
Outfall No.	Observations	Is NSWD Present?	Potential Source(s) of NSWD	Corrective Action	Person Contacted	Date Corrective Action Completed						
E-006	E-006 □Yes □No											
		□Yes										
		□No										
		□Yes										

¹ Monthly visual observations will be conducted during daylight hours of normally scheduled facility operation and on days without precipitation. Sampling event visual observations will be recorded at the same time sampling occurs at a discharge location.
² For monthly visual observations, pages 1-5 need to be completed. For sampling event visual observations, pages 1-2 need to be completed.

BMP Control Measures

- Number the structural storm water control measures identified in your SWPPP below (add as many control measures as are implemented on-site).
- Describe corrective actions initiated, date completed, and note the person that completed the work.

	Structural Control	Control	If No, In Need	Corrective Action Needed	Date	Initials of
	Measure	Measure is	of Maintenance,	and Notes	Corrective Action	Person
		Operating	Repair, or	(identify needed	Completed	Responsible for the
		Effectively?	Replacement?	maintenance and repairs, or	Completed	Correction
				any failed control measures		Action
				that need replacement)		
1		□Yes	☐ Maintenance			
	Drain Inlets	□No	☐ Repair			
			☐ Replacement			
2	Secondary Containment:	□Yes	☐ Maintenance			
	Transformers	□No	☐ Repair			
			☐ Replacement			
3	Secondary Containment:	□Yes	☐ Maintenance			
	Turbines/Oil-filled	□No	☐ Repair			
	Equipment		☐ Replacement			
4	Secondary Containment:	□Yes	☐ Maintenance			
	Firewater Pump Bldg	□No	☐ Repair			
			☐ Replacement			
5	Secondary Containment:	□Yes	☐ Maintenance			
	Hazardous	□No	☐ Repair			
	Material/Waste Sheds		☐ Replacement			
6		□Yes	☐ Maintenance			
	Trash/Scrap Dumpsters	□No	☐ Repair			
			☐ Replacement			
7		□Yes	☐ Maintenance			
	Oil/Used Oil Storage	□No	☐ Repair			
			☐ Replacement			
8		□Yes	☐ Maintenance			
	Ditches/Outfall	□No	☐ Repair			
			☐ Replacement			
9		□Yes	☐ Maintenance			
	Iron Treatment System	□No	☐ Repair			
			☐ Replacement			
10		□Yes	☐ Maintenance			
		□No	☐ Repair			
			☐ Replacement			

Areas of Industrial Materials or Activities exposed to storm water

Below is a list of areas that should be assessed during routine inspections. Customize this list as needed for the specific types of industrial materials or activities at your facility.

	Area/Activity	Inspected?	Controls Adequate (appropriate, effective, and operating)?	Corrective Action Needed and Notes	Date Corrective Action Completed	Initials of Person Responsible for the Correction Action
1	Material loading/unloading and storage areas	□Yes □No □ N/A	□Yes □No			
2	Equipment operations and maintenance areas	□Yes □No □ N/A	□Yes □No			
3	Fueling areas	□Yes □No □ N/A	□Yes □No			
4	Outdoor vehicle and equipment washing areas	□Yes □No □ N/A	□Yes □No			
5	Waste handling and disposal areas	□Yes □No □ N/A	□Yes □No			
6	Erodible areas/construction	□Yes □No □ N/A	□Yes □No			
7	Non-storm water/ illicit connections*	□Yes □No □ N/A	□Yes □No			
8	Dust generation and vehicle tracking	□Yes □No □ N/A	□Yes □No			
9	General Housekeeping	□Yes □No □ N/A	□Yes □No			
10		□Yes □No □ N/A	□Yes □No	and characteristics of the non-sto		

^{*}Include a description of the source, quantity, frequency, and characteristics of the non-storm water discharges, associated drainage area, and whether it is an authorized or unauthorized non-storm water discharge.

BMP Implementation Tracking and Recording							
Describe all BMP implementation and/or maintenance that occurred since the last inspection here.							

Non-Compliance
Describe any incidents of non-compliance observed and not described above:
Additional Control Measures** Describe any additional control measures needed to comply with the permit requirements:
Describe any additional control incastics needed to comply with the permit requirements.
**Additional Control Measures include the following categories as described in the General Permit:
Minimum BMPs: Good Housekeeping; Preventative Maintenance; Spill and Leak Protection; Material Handling and Waste Management; Erosion and Sediment Controls; Employee Training; and Quality Assurance and Record Keeping
Advanced BMPs: Exposure Minimization; Storm Water Containment and Discharge Reduction; and Treatment Control
Notes
Use this space for any additional notes or observations from the inspection:

Annual Compliance Evaluation Form

	General Informat	ion	
Facility Name:		Evaluation Date:	
Facility Location:		WDID#:	
Is the SWPPP Onsite?	Yes T No T NA T	Is the NOI Onsite?	Yes Γ No Γ NA Γ
	Document Review Info	ormation	
Have all sampling r	ecords from the previous reporting year been review	ewed?	Yes No NA NA
	Oocument any trends, concerns, or notable informa	uion about sampling re	cords here.
reviewed?	ervation and inspection records from the previous ocument any trends, concerns, or notable information		Yes No NA NA
Have all industrial s	activity areas and associated potential pollutant so	urces heen inspected	
for evidence of or the	ne potential for, pollutants entering the storm water	r conveyance system?	Yes No NA NA
	ent any trends, concerns, or notable information at		d pollutants here.
and materials been	'		Yes T No T NA T
Di	ocument any trends, concerns, or notable informat	ion about no exposure	areas here.
	needed to implement BMPs been inspected?		Yes T No T NA T
Docume	nt any trends, concerns, or notable information abo	out BMP implementatio	on equipment here.

Annual Compliance Evaluation Form

Have all BMPs been inspected?		Yes No No	NA C					
Document any trends, concerns, or notable	e information about BMPs h	ere.						
Has a review and effectiveness assessment of all BMPs been con industrial activity and associated pollutant potential sources to determine the properly designed, implemented, and are effective in reducing and industrial storm water discharges and authorized non-stormwater of	ermine if the BMPs are preventing pollutants in	Yes □ No □	NA C					
Document any trends, concerns, or notable inform	mation about BMP effective	ness here.						
Has the SWPPP been reviewed to ensure the information within is accurate for current operations and personnel? Yes No NA NA								
Document any trends, concerns, or notable infor	mation about SWPPP revis	ions here.						
Have any other factors needed to comply with the requirements of assessed?	the General Permit been	Yes No No	NA 「					
Document any other trends, concerns,	or notable information here							
Inspector Information								
Evaluator Name:	Evaluator Title:							
Signature:		Report Date:						

Sampling Field Log

General Information									
Facility Name:									
Date:		Event Start Time:							
Sampler:		Rainfall Amount:	☐ Today ☐ Storm						
Sampling Event Type:	Storm Water	□ Non-storm water	Storm Water & NSWD						
	pH Sampl	ing Information							
Method:	Litmus Paper Test Kit Portable Instrument	Portable Instrument Calibration Date/Time:							
	Field pH and Tu	rbidity Measurements							
Were field dupliates taken?	Yes	□ No							
Discharge Location	% Total Daily Flow	рН	Time						
Sum % Flow (Must = 100)	0								
рН	I Calculated Average:	#NUM!							
	Other Paramete	ers (check those collected)	-						
Oil and Grease	Oth	ner:							
Total Suspended Solids (TSS)	Oth	ner:							
Other:	Oth	ner:							
Other:	Oth	ner:							
Was a chain of custody completed? Yes No									
Additio	nal Sampling No	tes/Exception Docume	entation						
Estimated Event End:									

APPENDIX F

General Permit Attachment H "Sample Collection and Handling Instructions" and Example Chain of Custody Form

ATTACHMENT H

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES
ASSOCIATED WITH INDUSTRIAL ACTIVITIES
(GENERAL PERMIT)

For more detailed guidance, Dischargers should refer to the U.S. EPA's "Industrial Stormwater Monitoring and Sampling Guide," dated March 2009, available at: http://www.epa.gov/npdes/pubs/msgp monitoring guide.pdf and the "NPDES Storm Water Sampling Guidance Document," dated July 1992, available at: http://www.epa.gov/npdes/pubs/owm0093.pdf.

- 1. Identify the sampling parameters required to be tested and the number of storm water discharge points that will be sampled. Request the analytical testing laboratory to provide the appropriate number and type of sample containers, sample container labels, blank chain of custody forms, and sample preservation instructions.
- 2. Determine how samples will be transported to the laboratory. The testing laboratory should receive samples within 48 hours of the physical sampling (unless otherwise required by the laboratory). The Discharger may either deliver the samples to the laboratory, arrange for the laboratory to pick up the samples, or overnight ship the samples to the laboratory. All sample analysis shall be done in accordance with 40 Code of Federal Regulations part 136. Samples for pH have a holding time of 15 minutes.¹
- 3. Qualified Combined Samples shall be combined by the laboratory and not by the Discharger. Sample bottles must be appropriately labeled to instruct the laboratory on which samples to combine.
- 4. Unless the Discharger can provide flow weighted information, all combined samples shall be volume weighted.
- For grab samples, use only the sample containers provided by the laboratory to collect and store samples. Use of any other type of containers may contaminate samples.
- 6. For automatic samplers that are not compatible with bottles provided by the laboratory, the Discharger is required to send the sample container included with the automatic sampler to the laboratory for analysis.

-

¹ 40 C.F.R. section 136.3, Table II - Required Containers, Preservation Techniques, and Holding Times.

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

- 7. The Discharger can only use automatic sampling device to sample parameters that the device is designed to. For pH, Dischargers can only use automatic sampling devices with the ability to read pH within 15 minutes of sample collection.
- 8. The Discharger is prohibited from using an automatic sampling device for Oil and Grease, unless the automatic sampling device is specifically designed to sample for Oil and Grease.
- 9. To prevent contamination, do not touch inside of sample container or cap or put anything into the sample containers before collecting storm water samples.
- 10. Do not overfill sample containers. Overfilling can change the analytical results.
- 11. Tightly screw on the cap of each sample container without stripping the threads of the cap.
- 12. Complete and attach a label for each sample container. The label shall identify the date and time of sample collection, the person taking the sample, and the sample collection location or discharge point. The label should also identify any sample containers that have been preserved.
- 13. Carefully pack sample containers into an ice chest or refrigerator to prevent breakage and maintain temperature during shipment. Remember to place frozen ice packs into shipping containers. Samples should be kept as close to 4 degrees Celsius (39 degrees Fahrenheit) as possible until arriving to the laboratory. Do not freeze samples.
- 14. Complete a Chain of Custody form for each set of samples. The Chain of Custody form shall include the Discharger's name, address, and phone number, identification of each sample container and sample collection point, person collecting the samples, the date and time each sample container was filled, and the analysis that is required for each sample container.
- 15. Upon shipping/delivering the sample containers, obtain both the signatures of the persons relinquishing and receiving the sample containers.
- 16. Dischargers shall designate and train personnel to collect, maintain, and ship samples in accordance with the sample protocols and laboratory practices.
- 17. Refer to Table 1 in the General Permit for test methods, detection limits, and reporting units.
- 18. All sampling and sample preservation shall be in accordance with 40 Code of Federal Regulations part 136 and the current edition of "Standard Methods for

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

the Examination of Water and Wastewater" (American Public Health Association). All monitoring instruments and equipment (including Discharger field instruments for measuring pH or specific conductance if identified as an additional sampling parameter) shall be calibrated and maintained in accordance with manufacturers' specifications to ensure accurate measurements. All laboratory analyses shall be conducted according to approved test procedures under 40 Code of Federal Regulations part 136, unless other test procedures have been specified by the Regional Water Quality Control Board. All metals shall be reported as total metals. Dischargers may conduct their own field analysis of pH (or specific conductance if identified as an additional sampling parameter) if the Discharger has sufficient capability (qualified and trained employees, properly calibrated and maintained field instruments, etc.) to adequately perform the field analysis. With the exception of field analysis conducted by Dischargers for pH (or specific conductance if identified as an additional sampling parameter), all analyses shall be sent to and conducted at a laboratory certified for such analyses by the California Department of Public Health. Dischargers are required to report to the Water Board any sampling data collected more frequently than required in this General Permit (Section XXI.J.2)

GGS Stormwater Treatment System Operations Recordkeeping Log

Discharge	Date/Time	Disc Flow Me	charge Volur ter Readings	ne - (100 gal)	Discharge Iron or mg	/L)	Discharg	ge pH Probe (Turbidity Probe (NTU)		Operator	Comments
Start	End	Initial	Final	Total	Date/Time	Bench Kit Reading	Date/Time	Handheld Reading	Date/Time	Handheld Reading	Initials	comments

Flow Meter Readings to be taken prior to beginning of discharge and after discharge ends.

Discharge if iron level is less than 1 ppm.

Perform accuracy checks on pH and turbidity probes at least twice per discharge event. Do not perform accuracy checks during backwash; meters are inaccurate during this time.

Accuracy for pH ±0.5 s.u.

Accuracy for turbidity ±15-20 NTU

Allowable pH discharge range: 6.0-9.0 s.u.

Normal pH range at pretreatment probe (i.e. weir tank): 8.8-9.3 s.u.

CHAIN OF CUSTODY FORM

Client Name:		Project:					ANALYSIS REQUIRED																
Laboratory: Laboratory Contact:																					Field readings: (Include units) Time of readings		
																					pH pH unit		
					Contact:																		
Sampler:																					Field readings QC: Checked by:		
										Total Iron											Date		
Sample Description	Sample Matrix	Container Type	# of Cont.	Sample I.D.	Sampling Date/Time	Preservative	Bottle #	Total Suspended Solids	Oil &	Tota											Comments		
Outfall 001	W																						
Outfall 002	W																						
Outfall 003	W																						
Duplicate	W																						
Relinquished	l Dv			Date/Time:			Received E	21/				Date	o/Timo	•	Turn	aroun	d timo	· (Cho	ok)				
Temiquished by																	Turn-around time: (Check) 24 Hour: 72 Hour: 10 Day: 48 Hour: 5 Day: Normal:						
Relinquished By				Date/Time: Received													Sample Integrity: (Check) Intact: On Ice:						
Relinquished By				Date/Time:	Received E	ived By Date/Time:																	

APPENDIX G

Annual Reports

APPENDIX H

ERA Evaluations and Reports

APPENDIX I

Advanced Treatment System (Chemical & Filtration) Operating Manual, including the Gateway Generation Station Quick Operations Guide and Operating Log

Gateway Generating Station (00-AFC-1C)

Annual Compliance Report No. 14

Exhibit 7
Biological Record Summaries
(BIO-2)

Gateway Generating Station California Energy Commission 2022 Annual Biological Compliance Report

Date: March 6, 2023

Project Name: Gateway Generating Station 2022 Biological Resources Support Project

Project No: D31321CU

Attention: Angel Espiritu/PG&E Gateway Generating Station Compliance Manager

Company: Pacific Gas and Electric Company

Prepared By: Gateway Generating Station Designated Biologist

Scott Lindemann/Jacobs

Copies To: Jerry Salamy/Jacobs Project Manager

Amy Krisch Co-Designated Biologist/PG&E

1. Introduction

The California Energy Commission's (CEC) Condition of Certification (COC) for the Gateway Generating Station (GGS) 2022 Environmental On-call Support Project (the Project) requires Pacific Gas and Electric Company (PG&E) to designate a biologist to supervise compliance with mitigation measures outlined in the CEC-approved Biological Resources Mitigation, Implementation, and Monitoring Plan (BRMIMP) and submit compliance reports during GGS's operations phase. This Gateway Generating Station (GGS) Annual 2022 Biological Resources Compliance Report fulfills COC BIO-2. This report covers the reporting period from January 1, 2022, to December 31, 2022 (the 2022 Reporting Period). GGS complied with all biological resource COCs, and the measures specified in the BRMIMP during the Reporting Period.

1.1 Project Location

The GGS site is located at 3225 Wilbur Avenue in the city of Antioch, Contra Costa County, California. The facility is on the southern side of the San Joaquin River, approximately 0.4 miles west of Highway 160, and in Section 16, Township 02 north, Range 02 east (Mt. Diablo Meridian) on the Antioch North U.S. Geological Survey (USGS) topographic quadrangle. GPS coordinates for the approximate site center are: 38.016757°, -121.758799° (WGS 84).

1.2 Background

On December 19, 2006, Pacific Gas and Electric Company (PG&E) filed a petition (TN 38720) with the CEC requesting to amend the CEC Decision to eliminate the use of San Joaquin River water as the cooling source for the GGS Project (formerly known as the Contra Costa Power Plant Unit 8 Project). The petition also proposed ten associated project design changes at the project site. The 530-megawatt project was originally certified by the CEC on May 30, 2001, and a BRMIMP was prepared for the Project (URS Corporation 2001). Construction of the facility started late in 2001 and was suspended in February of 2002 due to financial difficulties, with approximately seven percent of construction completed. On July 19, 2006, the CEC approved the addition of

PG&E as co-owner of the project with Mirant Delta, LLC (CEC 2006). On December 4, 2006, PG&E filed a petition to remove Mirant as a co-owner and change the name of the facility to the Gateway Generating Station. Construction was restarted in January 2007 with PG&E as the project proponent. GGS construction, including restoration activities, was completed in June 2009.

After PG&E became the project owner/operator, the project was re-designed to avoid biological resource impacts to the extent feasible through development of mitigation and protection measures for the new design. These mitigation and protection measures reduced biological resource impacts so that no agency permits were required. These changes resulted in BRMIMP Conditions BIO-7, 10 and 11 being eliminated; also, additional minor changes were made to Conditions 5, 6 and 9 (CEC 2007).

The GGS was designed to avoid biological resources to the greatest extent through the development of mitigation and protection measures in consultation with the U.S. Fish and Wildlife Service (USFWS), U.S. Army Corps of Engineers (USACE), California Department of Fish and Wildlife (CDFW), Central Valley Regional Water Quality Control Board (CVRWQCB), and the CEC. Applicable COCs were complied with during construction and continue to be implemented during GGS operations, including routine maintenance and outage events.

2. Results

PG&E complied with the biological resource COCs during the Reporting Period. The CEC-approved Designated Biologist (DB) or Biological Monitor (BM) performed predisturbance surveys, established no-disturbance buffers to protect nesting birds within the facility when necessary, and coordinated with GGS staff to avoid or minimize impacts to the environment. GGS also complied with all measures specified in the BRMIMP during the Reporting Period.

All new GGS employees and contract workers received the CEC-approved Worker Environmental Awareness Training (WEAP) via video and daily tailgate training with the DB or the PG&E GGS Compliance Manager (CM) Angel Espiritu. The DB remained on call throughout the Reporting Period.

The on-call monitoring and compliance efforts for the 2022 calendar year are documented in chronological order below and within **Appendix A**, Site Photos.

- February 2: DB Rick Crowe was contacted concerning the observation of a bird nest containing 2 eggs under some pipe insulation (Appendix A Photo 1). GGS was undergoing its planned maintenance outage when this nest was discovered. All work was stopped in the area and a barricade was set to mark the no-disturbance buffer until the status of the nest could be determined.
- February 3: DB Rick Crowe confirmed the nest that was discovered the previous day was abandoned, noting the old nest materials and lack of nesting activity in the nest vicinity. The abandoned nest was disposed of by GGS staff, and the barricade removed.
- March 22: DB Scott Lindemann conducted a nesting bird survey for the I-300C Gateway Valve Lot Grounding Install Project, a gas transmission project that took place on the GGS property. The DB observed an active California scrub jay (Aphelocoma californica) nest immediately adjacent to the I-300C Gateway Valve

Lot Grounding Install work area (**Appendix A Photo 2**). The GGS CM was notified of the nest location and a 75-foot no-disturbance buffer around the nest was set with red on white barricade tape (**Appendix A Photo 3**). The nest was in an ornamental shrub, a Japanese pittosporum (*Pittosporum tobira*), immediately south of a large oak tree (*Quercus* sp.) along the eastern fence line of GGS. The nest was five feet off the ground and contained five eggs. The female scrub jay was observed incubating, foraging, and mobbing a nearby fox squirrel (*Sciurus niger*) that approached the nest. The male scrub jay was observed foraging and guarding the nest territory. The surrounding area has a moderate to high level of baseline disturbance, as several trucks and golf carts passed within five feet of the nest on the adjacent property to the east. While the nest is also adjacent to the PG&E contractor parking lot, no PG&E personnel or contractors were observed going near the nest. The 75-foot buffer for this species overlapped about 25 percent of the proposed work area, and some of the proposed staging area. The I-300C Gateway Valve Lot Grounding Install Project was delayed until after this nest fledged.

- May 12: Biological Monitor (BM) Sean O'Neal conducted the pre-mowing nesting bird survey. A killdeer (Charadrius vociferus) nest was detected in a graveled area by the eastern fence (Appendix A Photo 4). The nest was approximately 80 feet from any potentially disturbing activities. The California scrub jay nest identified by DB Scott Lindemann on March 22 was no longer active, however a pair of California scrub jays in a tree adjacent to the nest exhibited territorial behavior when approached. No nesting activity was observed from the breeding California scrub jay pair. The pair may be the same breeding pair from March 22 caring for fledglings nearby. Therefore, there were no restrictions on the mowing resulting from this nesting bird survey.
- June 8: DB Rick Crowe and Jacobs Biologist Danny Rivas were on site to follow-up on the breeding California scrub jay pair and the killdeer nest observed on May 12th. The western scrub jay nest was found to be empty (Appendix A Photo 5), additionally there were no sign of recent occupancy or young or adult California scrub jays in the area around the nest. The protective flagging surrounding the California scrub jay nest was removed and made clear to work in. The killdeer nest was no longer present at the noted location and no killdeer were observed. Since this nest was first observed back on March 22, it is likely the eggs either hatched or the nest was predated. The area southeast of GGS was surveyed for ground squirrel burrows with none observed. The area under the ACC was surveyed for potential bird carcasses, and no bird carcasses observed.

3. References

California Energy Commission (CEC). 2006. Order Approving Addition of Pacific Gas and Electric Company as Co-Owner and Operator with Mirant Delta, LLC on Contra Costa Power Plant Unit 8 Project; Extension of Construction Milestones; and Four Modifications to the Facility. Docket No. 00-AFC-1C, Order No. [Not Given]. July 19.

California Energy Commission (CEC). 2007. Order Amending the Energy Commission Decision to Eliminate the Use of San Joaquin River Water as the Cooling Water Source and Complete Ten Associated Project Design Changes. Docket No. 00-AFC-1C, Order No. 07.0801-2. August 1.

URS Corporation. 2001. Biological Resources Mitigation, Implementation, and Monitoring Plan for Contra Costa Power Plant Unit 8 Project. Prepared for Mirant Delta LLC. Revised Version, August.

Appendix A Site Photos

Photo 1: Abandoned bird nest discovered under pipe insulation by GGS personnel in the facility on February 2nd, 2022.

Photo 2: California scrub jay nest observed in a Japanese pittosporum shrub along the eastern fence line on March 12th, 2022.

Internal A-1

Photo 3: 75 foot no-disturbance buffer surrounding the California scrub jay nest location on March 22nd, 2022.

Photo 4: Active killdeer nest on gravel area by the eastern fence observed on May 12th, 2022.

Internal A-2

Photo 5: Empty California scrub jay nest observed on June 8th, 2022.

Internal A-3