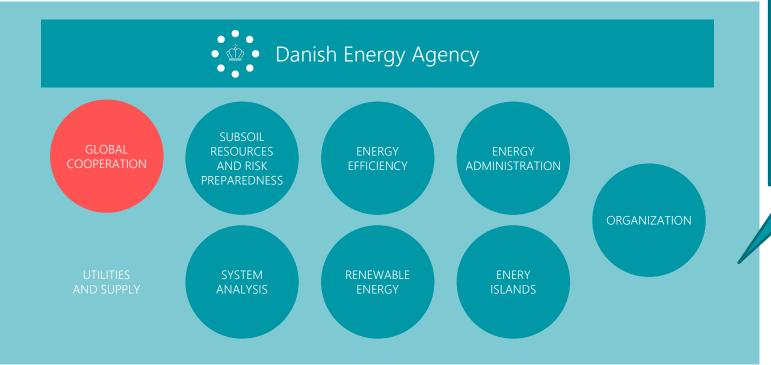
DOCKETED				
Docket Number:	17-MISC-01			
Project Title:	California Offshore Renewable Energy			
TN #:	247367			
Document Title:	Title: DEA Presentation for November 10, 2022 AB 525 Offshore Wind Workshop on Transmission			
Description:	Danish Lessons Learned on Grid Connection of Offshore Wind Farms, Jeppe Lundbæk			
Filer:	Rhetta DeMesa			
Organization:	California Energy Commission			
Submitter Role:	Commission Staff			
Submission Date:	11/10/2022 8:07:52 AM			
Docketed Date:	11/10/2022			

Danish lessons learned on grid connection of offshore wind farms


CEC workshop on offshore wind transmission,
10 November 2022

Chief Advisor Jeppe Lundbæk Danish Energy Agency

THE DANISH ENERGY AGENCY (DEA)

A government agency under the Ministry of Climate, Energy and Utilities

DEA (OSW):

- Regulation
- MSP
- Site selection
- Tender/solicit ation
- Grid planning together with TSO
- Permitting

11/8/2022 Page 2

DK STATUS AND TARGETS – ENERGY AND CLIMATE POLICY

Vision of a climate neutral society in 2050

- size of NH and VT combined
- population of MA

Status

53%Green electricity in 2022

~3%
WIND POWER
CURTAILMENT

99.996%
SECURITY OF
SUPPLY

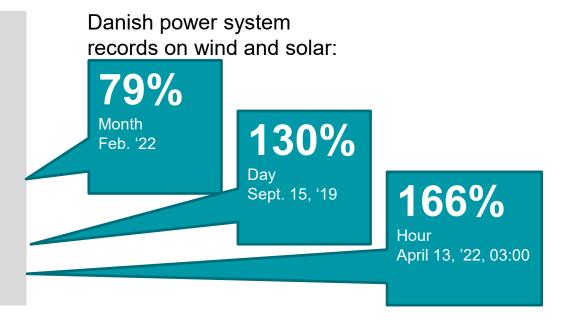
Fargets

100% Green electricity by 2030

70%GHG reduction by 2030

Climate neutrality by 2050

DK WIND AND SOLAR DRIVEN SYSTEM


Installed capacity, 2	2021
-----------------------	------

Onshore wind: 4.7 GW
Offshore wind: 2.3 GW
PV solar: 1.4 GW
Thermal: 6.0 GW

Interconnectors: 7.0 GW

Peak demand: 7.0 GW

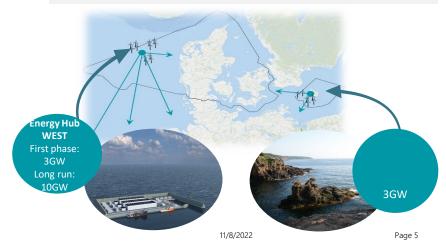
(5.6 mill. people)

Page 4

DK PLANS FOR BUILD OUT OF OFFSHORE WIND

2030: 13 GW

OSW in operation: 2,3 GW (split over 15 offshore wind farms over 30 years)


OSW under construction: 1,4 GW

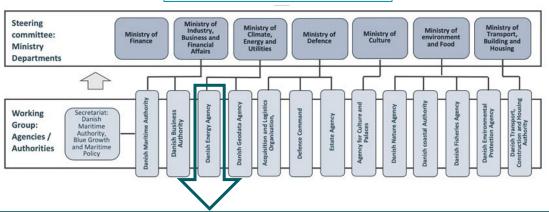
Before 2030: planned: 9,2 GW

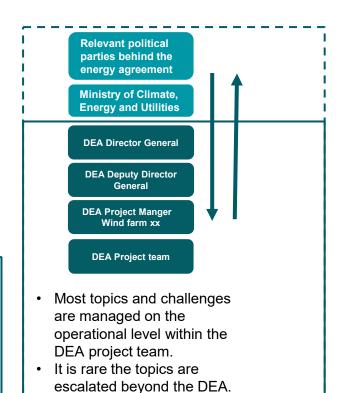
After 2030: Energy islands North Sea (10 GW) Baltic sea (3GW)

Long term target: >35 GW total capacity in 2050

DK REGULATION FOR OSW AND GRID CONNECTION

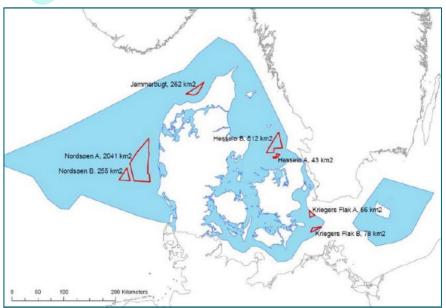
DK process in a nutshell (centrally planned transmission for OSW):

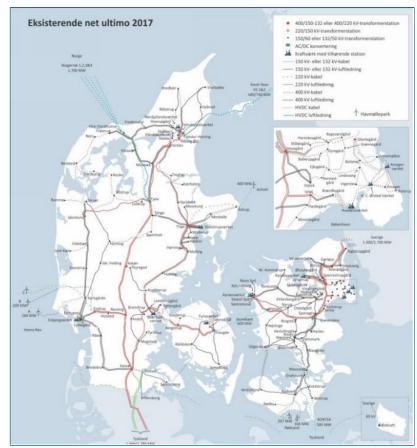

- Political agreement on building OSW farms
- DEA responsible for planning OSW
- DEA mandates TSO (Energinet) to plan required grid connection for the wind farm
 - Order by DEA/Ministry to TSO to start planning (beginning of tender process)
 - Order (§4) and business case approval by Ministry (end of tender process)
- Guaranteed grid access: as part of the tender process it is agreed between the bidders and TSO when the first power should be delivered (specified in the concession agreement)
- As part of the concession agreement it is specified that the concession winner will be compensated if the TSO delivers grid infrastructure too late
- Concession winner/developer subject to penalty, if wind farm is not build on time (this time is specified in the contract)


GOVERNANCE AND DECISION-MAKING – ONE-STOP-SHOP

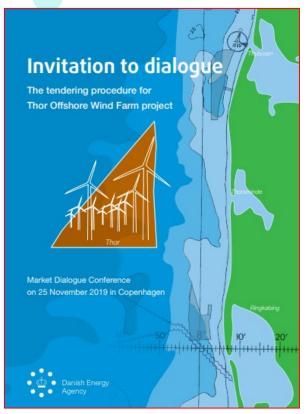
Political parties/agreement

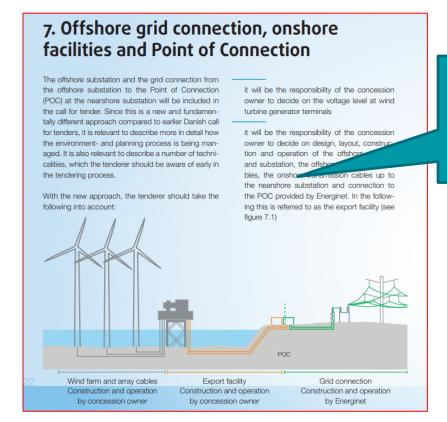
- In relation to planning and tendering for the development of offshore wind farms the Danish Energy Agency (DEA) is the authority in charge.
- The DEA coordinates with the relevant authorities, which provide input to the DEA on their respective and relevant regulations.



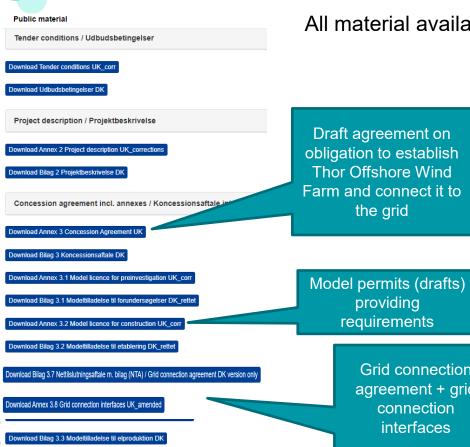


EARLY ANALYSIS OF GRID – DEA AND TSO COORDINATE


Identifying best match between wind farm and onshore grid:


- Focus on less need for upgrades
- Focus on best onshore cable corridors (landowners, environment, planning issues)

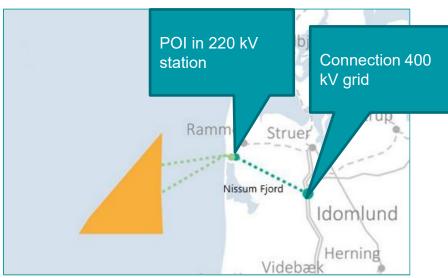
TENDER COMBINING WIND FARM AND GRID CONNECTION



Robust market
dialogue with
developers ensures
better informed project
+ less risk premiums

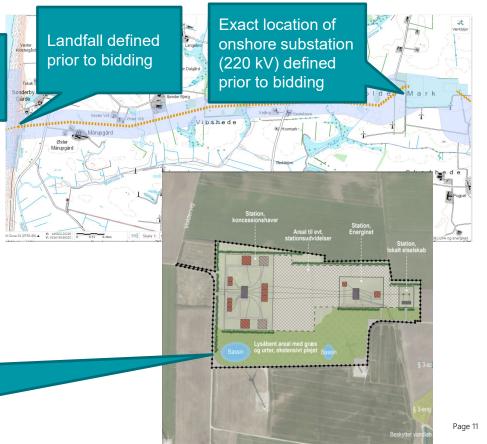
CASE: THOR TENDER – TENDER MATERIAL

All material available in the the electronic tendering system

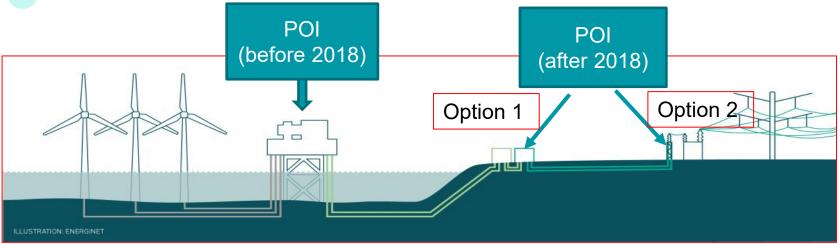

Grid connection agreement + grid

- Roughly a total of approx. 20 different documents
- The tendering material is subject to a Q&A process with pre-qualified bidders
- Potentially addressed modifications and comments from the Q&A process will be incorporated in the relevant documents
- This process strengthens the robustness of the tendering material, provides transparency, decreases risk, ultimately leading to lower risk premiums

11/8/2022 Page 10



LANDFALL, RIGHTS OF WAY, POI, SPECIFIED IN TENDER


POI details defined prior to bidding:

- Ownership boundaries
- Max. MW connected
- Settlement metering

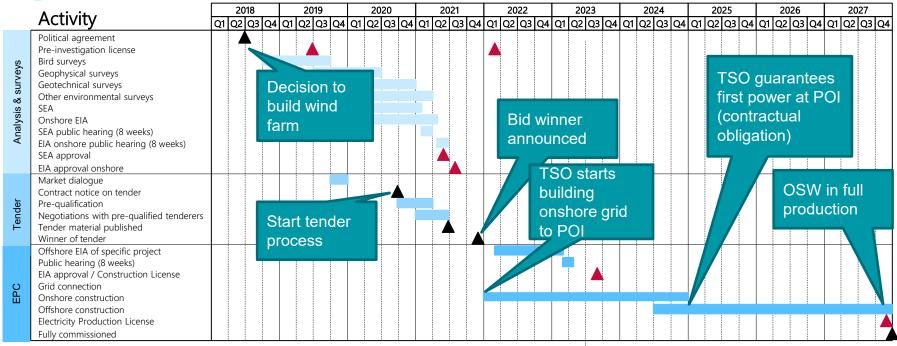
EVOLUTION IN LOCATION OF DK TRANSMISSION POI'S

Paradigm shift in location of POI:

- Prior to 2018, TSO building offshore substation and export cables
- After 2018, developer to build offshore substation and export cables forward to POI onshore
- Rule of law: collective grid build and owned by TSO

Argument:

- Developer better at cost-optimizing offshore grid than TSO
- Possibilities of doing storage (ptx, batteries)

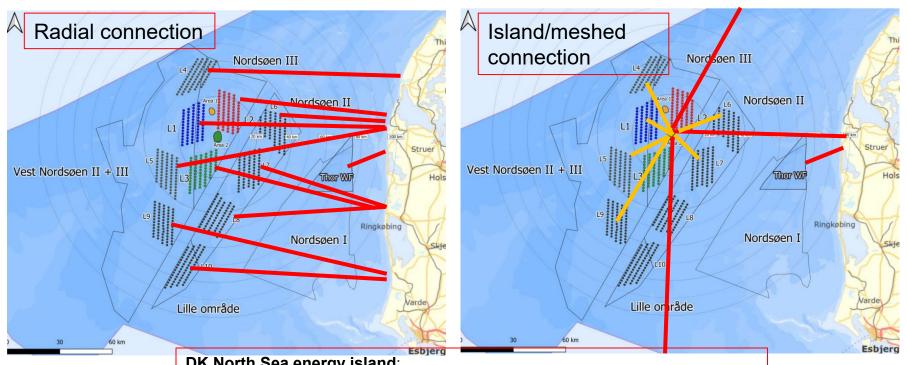


11/8/2022 Page 12

CASE: THOR OSW TIME TABLE

8-9 years from decision to fully operational wind farm

^{*} The political agreement based on the rough and fine screening in 2017 and 2018. Licensing duration from Political agreement to SEA: 35 months Licensing duration from Political agreement to Construction License: expected 62 months



▲ General milestone
▲ Permit milestone
(some expected)

<table. process="" thor=""></table.>							
'17~'18	'18	′19~′21	'21~'23	'27			
Rough Screening → Fine Screening	Political Energy Agreement	Preliminary Surveys SEA, Tender process	EIA	Operation			

RADIAL VS MESHED GRID / ENERGY ISLAND

DK North Sea energy island:

- Possible to source large wind resources in an optimal way
- Easier export of power to other markets
- Less cables going onshore = less trouble onshore with landowners
- Distance to shore and use of HVDC cables fewer more economic

11/8/2022

COSTS AND FINANCING

Tenders/solicitations as contract-for-difference for 50.000 full load hours (incl. on and offshore connection costs)

Winning bid:

- Horns Rev 3, 2015: 770 DKK/MWh (102 USD/MWh)
- Kriegers Flak, 2016: 372 DKK/MWh (50 USD/MWh)
- Thor, 2021: 0 DKK/MWh (0 USD/MWh)

Annual costs for Danish households (at time of tender):

- Horns Rev 3 (400 MW): 45 DKK pr. year (6 USD pr. year)
- Kriegers Flak (600 MW): 10 DKK pr. year (1,4 USD pr. year)
- Thor (1000 MW): 0 DKK pr. year (0 USD pr. year)

Assumptions:

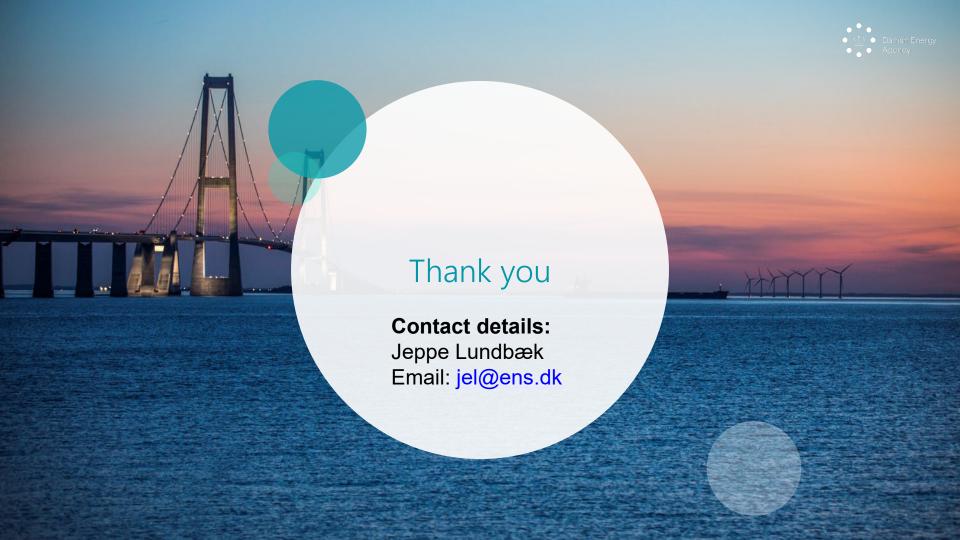
Based on expected lifetime of 25 years
Electricity market price of 300 DKK/MWh
33 TWh annual Danish consumption
Household 4 MWh of consumption
Current prices and not taking current energy crisis into account.

11/8/2022 Page 15

KEY TAKEAWAYS AND DANISH LESSONS LEARNED

Transparency and thus de-risking:

- Well planned and early identified POI's and ownership boundaries provides transparency for bidders, thus reducing risk premiums
- Well planned cable corridors being exposed to robust market dialogue and environmental processes builds up buy-in from developers, and helps reduce local resistance and possible appeal cases
- Guaranteed grid access: the TSO has identified when first power can be delivered, thus reducing risk premiums (compensation if TSO is late)
- A coordinated process bringing together key players (central procurement unit for wind farm, TSO/ISO, permitting authorities, etc.) ensures faster/smarter plan with less risk of failure


Saving time:

 Well planned tender processes tying in links between wind farm and onshore grid/POIs help reduce time by enabling working in parallel processes.

Saving costs:

All the above results in less risk premiums = lower bid prices/rate payer costs.

