<table>
<thead>
<tr>
<th>Docket Number:</th>
<th>19-AB-2127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Implementation of AB 2127 Electric Vehicle Charging Infrastructure Assessments</td>
</tr>
<tr>
<td>TN #:</td>
<td>245156</td>
</tr>
<tr>
<td>Document Title:</td>
<td>FLO Comments on VGI Funding Concepts</td>
</tr>
<tr>
<td>Description:</td>
<td>N/A</td>
</tr>
<tr>
<td>Filer:</td>
<td>System</td>
</tr>
<tr>
<td>Organization:</td>
<td>FLO</td>
</tr>
<tr>
<td>Submitter Role:</td>
<td>Public</td>
</tr>
<tr>
<td>Submission Date:</td>
<td>8/17/2022 1:25:36 PM</td>
</tr>
<tr>
<td>Docketed Date:</td>
<td>8/17/2022</td>
</tr>
</tbody>
</table>
FLO Comments on VGI Funding Concepts

Comment letter attached. Thank you for your consideration!

Additional submitted attachment is included below.
August 17, 2022

California Energy Commission
1516 Ninth Street
Sacramento, CA 95814
Docket: 19-AB-2127

Re: FLO Comments on CEC’s VGI Market Status and Funding Concepts

On behalf of FLO EV Charging, I am pleased to comment on the California Energy Commission’s (CEC) proposed funding concepts for Vehicle-Grid Integration projects. FLO strongly supports the CEC’s focus on advancing Vehicle-Grid Integration technology through research and development, pilots, and demonstration projects and is pleased to see the CEC suggest a multitude of funding concepts.

FLO is a leading North American electric vehicle (EV) charging network operator and a smart charging solutions provider. We fight climate change by accelerating EV adoption through a vertically integrated business model and delivering EV drivers the most dependable charging experience from curbside to countryside. Every month, we enable more than 750,000 charging events thanks to over 65,000 fast and level 2 EV charging stations deployed at public, private and residential locations. FLO operates across North America and our high-quality charging stations are assembled with care in Michigan and Quebec.

In particular, FLO is supportive of and interested in funding concept number 1: Responsive, Easy Charging ProDucts With Dynamic Signals (REDWDS). Projects like REDWDS holds promise to pilot industry solutions that are scalable and easy-to-use, facilitating further access to flexible demand and energy resources, such as EV charging, distributed energy, and renewable energy. Our comment letter seeks to provide technical guidance to this proposed concept, in response to the CEC’s questions at the workshop.

I. Is $200K a reasonable amount to meaningfully support development?

FLO believes allocating $200K for the first phase of REDWDS may be too low and potentially underestimates the extensive frontend and backend software development work. It will be critical to update the OCPP websocket URL to make it more accessible to the customer. To connect the charger to another backend for purposes of VGI, the customer needs the ability to modify this address, but most charger manufacturers do not currently allow for this on a residential hardware, making interoperability between systems impossible. Supporting transactive energy rates also require more complex software algorithms. Given these combined workloads, we recommend the CEC consider increasing the award to $500K for phase 1 to cover these costs.

Furthermore, software-hardware interoperability, and thus using OCPP, is critical for project scalability; FLO supports requiring OCPP certification. To enhance customers’ ability to switch to another charging network or service provider, we recommend the CEC specify the following additional OCPP-related requirements in the solicitation:

- Funding applicants must present a simple and streamlined process for the customer to switch to another provider if needed.
- Chargers must be remotely upgradeable to support future versions of OCPP.
- Chargers must be able to be ported to another charging network without replacement of hardware or manual on-site reconfiguration.
• Funding applicants are prohibited from any contractual provisions restricting customers’ ability to switch charging networks.

II. Is it appropriate to require 50 percent of deployments with customers enrolled in current or upcoming dynamic rates?

FLO believes this requirement is appropriate. Dynamic or transactive energy rates provide more value to the grid compared to time-varying rates due to the additional flexibility it creates. Active control of flexible energy consumption can adapt better with intermittent renewables, and thus provide more opportunity to integrate these resources to the grid. This value provided to the grid through EV chargers has the potential to be monetized, which can further incentivize and scale EV charging deployment.

III. Are there other costs associated with development and deployment of charging products that should be included as eligible costs?

Based on our experience, the process and effort required to enroll and onboard new customers is often underestimated. Identifying and locating new customers and targeting existing customers to provide a pool of potential participants to a utility can be complex and are two very distinct streams of work. Often, to be successful, this work requires an easy-to-use platform and incentives for customers to complete registration (both for the charger and the demand response program). All the while, the charging network operator must be careful to protect privacy data and track consent forms signed by the customers. These are just a few examples of the additional kinds of work that did not seem to be captured by the CEC’s specified eligible costs, particularly for stage II. We would recommend the CEC make that very clear by amending slide 15’s stated eligible costs for stage II as follows: “labor, development of resources, and administration for education/outreach/customer enrollment”.

Thank you for your consideration,

[electronically submitted]

Cory Bullis
Senior Public Affairs Manager
FLO EV Charging