<table>
<thead>
<tr>
<th>DOCKETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docket Number: 17-MISC-01</td>
</tr>
<tr>
<td>Project Title: California Offshore Renewable Energy</td>
</tr>
<tr>
<td>TN #: 243115</td>
</tr>
<tr>
<td>Document Title: Presentation - Workshop for AB 525 Wind Energy Goals</td>
</tr>
<tr>
<td>Description: Presentation on Offshore Wind Energy Development off the California Coast: Maximum Feasible Capacity and Megawatt Planning Goals for 2030 and 2045</td>
</tr>
<tr>
<td>Filer: susan fleming</td>
</tr>
<tr>
<td>Organization: California Energy Commission</td>
</tr>
<tr>
<td>Submitter Role: Commission Staff</td>
</tr>
<tr>
<td>Submission Date: 5/17/2022 3:28:28 PM</td>
</tr>
<tr>
<td>Docketed Date: 5/17/2022</td>
</tr>
</tbody>
</table>
Offshore Wind Energy Development off the California Coast: Maximum Feasible Capacity and Megawatt Planning Goals for 2030 and 2045

Presenter: Rhetta deMesa, Siting, Transmission and Environmental Protection Division
Date: May 18, 2022
California's Climate and Clean Energy Policies

Offshore wind energy can advance California’s progress toward its statutory renewable energy and climate mandates.

- Raise GHG emissions reduction targets to 40% below 1990 levels by 2030 (SB 32, 2016)
- Require all retail electricity to come from eligible renewable energy resources and zero-carbon resources by 2045 (SB 100, 2018)
- Increase the 2030 Renewables Portfolio Standard goal to 60% (SB 100, 2018)

<table>
<thead>
<tr>
<th>California Clean Electricity Resources</th>
<th>Existing Resources</th>
<th>Projected New Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2019*</td>
<td>2030**</td>
</tr>
<tr>
<td>Solar (Utility-Scale)</td>
<td>12.5 GW</td>
<td>16.9 GW</td>
</tr>
<tr>
<td>Solar (Customer)</td>
<td>8.0 GW</td>
<td>12.5 GW</td>
</tr>
<tr>
<td>Storage (Battery)</td>
<td>0.2 GW</td>
<td>9.5 GW</td>
</tr>
<tr>
<td>Storage (Long Duration)</td>
<td>3.7 GW</td>
<td>0.9 GW</td>
</tr>
<tr>
<td>Wind (Onshore)</td>
<td>6.0 GW</td>
<td>8.2 GW</td>
</tr>
<tr>
<td>Wind (Offshore)</td>
<td>0 GW</td>
<td>0 GW</td>
</tr>
<tr>
<td>Geothermal</td>
<td>2.7 GW</td>
<td>0 GW</td>
</tr>
<tr>
<td>Biomass</td>
<td>1.3 GW</td>
<td>0 GW</td>
</tr>
<tr>
<td>Hydrogen Fuel Cells</td>
<td>0 GW</td>
<td>0 GW</td>
</tr>
<tr>
<td>Hydro (Large)</td>
<td>12.3 GW</td>
<td>N/A*</td>
</tr>
<tr>
<td>Hydro (Small)</td>
<td>1.8 GW</td>
<td>N/A*</td>
</tr>
<tr>
<td>Nuclear</td>
<td>2.4 GW</td>
<td>N/A*</td>
</tr>
</tbody>
</table>
Assembly Bill 525 Legislative Findings

- Advance climate and energy goals
- Diversify energy portfolio
- Realize environmental, economic, and workforce development benefits
- Contribute to grid reliability
- Advance workforce training opportunities
- Ensure protection of coastal and marine ecosystems
- Consider impacts to ocean users & communities.
Assembly Bill 525 Strategic Plan Priorities

- Emphasize near-term actions to accommodate jobs and economic development
- Strive for compatibility with harbor tenants and ocean users
- Ensure benefits compliment other local industries
- Improve port infrastructure to support land-based work for local workforce
- Consult with labor organizations and apprenticeship programs.
Assembly Bill 525 Strategic Plan Timeline

June 1, 2022
Evaluate and quantify maximum feasible capacity and establish megawatt planning goals for 2030 and 2045

December 31, 2022
1) Complete and submit a preliminary assessment of economic benefits as they relate to seaport investments and workforce development needs
2) Complete and submit a permitting roadmap

June 30, 2023
Develop a strategic plan for offshore wind off the California coast in federal waters

Strategic Plan Chapters:
1. Identification of sea space
2. Economic and workforce development and identification of port space and infrastructure
3. Transmission planning
4. Permitting
5. Potential impacts on coastal resources, fisheries, Native American and Indigenous peoples, and national defense, and strategies for addressing them
Offshore Wind Technology Overview

Spar-Buoy
- Cylindrical vertical platform with large draft
- Improved stability from ballast in lower part of platform
- Deep draft can limit port access

Catenary
- Commonly used with spar, semi-submersible, barge platforms
- Line forms a characteristic "S" shape between the platform and seafloor
- Each line segmented into light synthetic rope and heavy chain
- Line 3-5 times water depth resulting in largest physical footprint
- Installation relatively simple

Anchor point
- Drag-embedded
 - Function similar to boating anchors
 - Require cohesive sandy sediment with adequate soil layering and depth, no bedrock
 - Simple to install and remove

Tension Leg Platform (TLP)
- Tension in mooring lines and submerged buoyancy tank results in high stability
- High vertical loads due to tension
- Instability during assembly

Taut-leg
- Commonly used with TLP
- Lines pretensioned until taut and terminate at an angle with the seabed
- Tension results in large amount of force acting on anchors from wave action
- Synthetic or wire ropes with higher elasticity required

Piled (or drilled and grouted)
- Permanently piled or drilled and grouted into seabed
- Require cohesive sediment without rocks or boulders at the installation site
- High vertical load capacity and siting precision
- More complex installation compared to other anchor types

Suction caisson
- Embedded into seabed by negative pressure
- Require equal depth of non-consolidated clay and/or sands
- Technology and installation well understood from oil and gas

Gravity anchor
- Deadweight anchor
- Suitable for rocky or sandy soils with high bearing capacity
- Can be reused or repurposed
- May not require a crane for installation

Semi-Submersible
- Combines elements of other technologies
- Distributes buoyancy widely at the surface to achieve high stability
- Wider subsea platform results in higher exposure to wind and sea conditions

Semi-taut
- Most commonly used on semi-submersible platforms
- Compromise between catenary and taut leg in relation to stability and forcing
- Requires synthetic fibers, chains, or wire moorings
- Intermediate benthic footprint

Source: Maxwell et al. 2022
Example of a Floating Offshore Wind Energy Development

Source: Maxwell et al. 2022
June 1, 2022, Requirement

- Evaluate and quantify the maximum feasible capacity of offshore wind to achieve reliability, ratepayer, employment, and decarbonization benefits
- Establish megawatt offshore wind planning goals for 2030 and 2045
Defining Maximum Feasible Capacity

- CEC’s governing regulations define “feasible” as:

 “Capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, legal, social, and technological factors.”

- Totality of the AB 525 legislative findings.
Achieving Reliability, Ratepayer, Employment, and Decarbonization Benefits

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
</table>
| Reliability | • Complementary generation profile to other renewables
 • Variability a potential challenge to grid integration
 • Considerations from CPUC’s Integrated Resource Plan (IRP) |
| Ratepayer | • A projected 44% decline in levelized cost of energy, on average, due to technology innovation, economies of scale, and industry learnings
 • Considerations from CPUC’s IRP and the California Independent System Operator’s 2021-2022 Transmission Planning Process |
| Employment | • Increased in-state manufacturing substantially increases employment and economic benefits
 • Industry recommendation that 8 gigawatts over the next 10-years likely to encourage investments in manufacturing and supply chain |
| Decarbonization | • Expands the diversity of the renewable energy portfolio
 • Potential reduction of need for gas-fired power plants in evening hours
 • Considerations from SB 100 and CPUC’s IRP |
Maximum Feasible Capacity Report Findings

- References 21,800 megawatts (21.8 GW) of **technically feasible** offshore wind potential
- Does not represent the quantification of maximum feasible capacity for offshore wind; it is the total capacity that has been studied in existing reports
- Sets a reference point for AB 525 strategic plan evaluations of:
 - Sea space
 - Impacts
 - Transmission
 - Waterfront facilities and port infrastructure
 - Workforce and supply chain

Source: NREL, November 2020
Offshore Wind Megawatt Planning Goals

- 3,000 megawatts by 2030
- 10,000-15,000 megawatts by 2045

Preliminary planning goals do not fully account for impacts on coastal resources and ocean users.
Required Factors for Establishing Megawatt Offshore Wind Planning Goals

1. Findings from the Joint Agency 2021 SB100 Report
2. Need to initiate long-term transmission and infrastructure planning
3. Need for renewable energy to accommodate California’s shifting peak load
4. Generation profile of offshore wind off the coast of California
5. Potential impacts on coastal resources, fisheries, Native American and Indigenous peoples, and national defense and strategies to address them
6. Potential to attract supply chain manufacturing for components in the Pacific region
7. Need for economies of scale to reduce costs of floating offshore wind
8. NREL finding that California has 200 GW of offshore wind technical power potential
9. Need to develop skilled and trained offshore wind workforce
10. Availability of federal tax incentives
11. Opportunity for California to participate in federal offshore wind megawatt goals
12. Executive actions from the Governor
1. Findings from the 2021 Joint Agency SB 100 Report

Key Findings:

• Includes 10 GW of OSW in 2045

• Need for sustained record setting build rates of new renewable and zero-carbon resources

• Diversifying resource portfolio could save $1 billion in total resource cost

• Additional work is needed to understand the potential of emerging technologies including offshore wind
2. Need for Long Term Infrastructure Planning

CAISO 20 Year Outlook

- 10 GW of Offshore Wind: North Coast (4 GW) and South-Central Coast (6 GW)

CPUC

- IRP: 8.3 GW of Offshore Wind:
 - Humboldt 1.6 GW
 - Morro Bay 2.3 GW
 - Diablo Canyon 4.4 GW

- CPUC’s preferred system planning identified 1.7 GW by 2032

Humboldt State University

- Humboldt Call Area:
 - Evaluated project scenarios 30 MW to 1.86 GW
 - 2030 estimated load
 - Transmission upgrades required for fully deliverable
On average offshore wind complements solar both daily and seasonally but can be variable.

Example of Variability in Offshore Wind Power Generation Profile
Scenario for the Humboldt Call Area
(Assuming 144 MW Nameplate Capacity)

Source: Schatz Energy Research Center
5. Potential Impacts to Consider and Address (con't)

- Requires the CEC to consider potential impacts to:
 - Coastal resources
 - Fisheries
 - Native American and Indigenous peoples
 - National defense
- And strategies to address those impacts
Establishing Offshore Wind Planning Goals
Factors 6-12

6. Need to develop a skilled and trained offshore wind workforce
7. Potential to attract supply chain manufacturing for components in the Pacific region
8. Need for economies of scale to reduce costs of floating offshore wind
9. Availability of federal tax incentives
10. NREL finding that California has 200 GW of offshore wind technical power potential
11. Opportunity for California to participate in federal offshore wind megawatt goals
12. Executive actions from the Governor
Maximum Feasible Capacity and Offshore Wind Megawatt Planning Goals

<table>
<thead>
<tr>
<th>Preliminary Planning Goal</th>
<th>Preliminary Nameplate Capacity (Proposed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum feasible capacity of offshore wind to achieve reliability, ratepayer, employment, and decarbonization benefits</td>
<td>Maximum feasible capacity to be determined in strategic plan, but nearly 21,800 megawatts (21.8 GW) of studied technical potential is the current reference point for AB 525 strategic plan</td>
</tr>
<tr>
<td>Offshore wind megawatt planning goal for 2030</td>
<td>3,000 megawatts</td>
</tr>
<tr>
<td>Offshore wind megawatt planning goal for 2045</td>
<td>10,000-15,000 megawatts</td>
</tr>
</tbody>
</table>

Preliminary planning goals do not fully account for factors including impacts on coastal resources and ocean users.
Public Comments from the March 3, 2022 Workshop

• Provided a range for suggested planning goals, starting at 3 GW in 2030 and scaling to between 10-18 GW by 2045.

• Emphasized the importance of the planning goals in sending market signals necessary to drive investments

• Suggested goals should be robust enough to drive economies of scale

• Recommended goals align with environmentally and socially responsible offshore wind development – avoid, minimize, or mitigate adverse impacts
Public Comments Received on Draft Report

- Overall supportive of proposed planning goals
- Expand definition of maximum feasible capacity
- Establish maximum feasible capacity following the sea space analysis
- Increase 2045 planning goal to 20 GW or higher
Next Steps for Draft Report

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Key Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Public Workshop</td>
<td>March 3, 2022</td>
</tr>
<tr>
<td>Release Draft Report</td>
<td>May 6, 2022</td>
</tr>
<tr>
<td>Written Comments on Draft Report Due</td>
<td>May 16, 2022</td>
</tr>
<tr>
<td>Public Workshop on Draft Report</td>
<td>May 18, 2022</td>
</tr>
<tr>
<td>Draft Report Revisions from Feedback</td>
<td>May 18-23, 2022</td>
</tr>
<tr>
<td>Consideration at CEC Business Meeting</td>
<td>May 24, 2022</td>
</tr>
</tbody>
</table>
AB 525 Interim Requirements Next Steps

<table>
<thead>
<tr>
<th>Next Steps</th>
<th>Starting June 1, 2022</th>
<th>June - October, 2022</th>
<th>October - December, 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continue Work on December Interim Requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank You