DOCKETED	
Docket Number:	85-AFC-01C
Project Title:	Compliance - Watson Cogeneration Company AFC
TN #:	242936
Document Title:	Annual Compliance Report - 2021
Description:	N/A
Filer:	Anwar Ali
Organization:	Watson Cogen Company
Submitter Role:	Commission Staff
Submission Date:	5/5/2022 4:24:14 PM
Docketed Date:	5/5/2022

Darrin Fost Business Manager 310.816.8812

March 31, 2022

Mr. Anwar Ali Compliance Project Manager California Energy Commission 1516 Ninth Street Sacramento, CA 95814

Subject: 2021 Annual Compliance Report

Watson Cogeneration Project (85-AFC-01C)

Dear Mr. Ali,

Attached is the Annual Compliance Report for 2021 pursuant to the requirements of the California Energy Commission's Conditions of Certification for the Watson Cogeneration Company.

If you have any questions regarding this report, please contact me via telephone at (310) 816-8812 or via e-mail at DFost@Marathonpetroleum.com.

Sincerely,

Darrin Fost

Darrin Fost Business Manager Watson Cogeneration Company

AIR QUALITY CONDITIONS OF CERTIFICATION

AQ-25 A continuous monitoring system must be installed and operated to monitor and record the fuel consumption and the mass ratio of steam-to-fuel for each fuel being fired in each gas Turbines 1, 2, 3, 4 and 5. This system must be accurate to within +5.0 percent and calibrated once every 12 months.

Verification: The owner/operator shall maintain records of continuous fuel consumption and the steam-to-fuel mass ratio monitoring. These records will be maintained on file for at least two years and shall be made available to the SCAQMD and CEC staff upon request. CEM Relative Accuracy Test report will be submitted to the CEC annually.

Response: Instrumentation is in place for the purpose of continuous monitoring and recording of fuel consumption and steam injection to each of the four gas turbines at the facility (#5 was never constructed). The systems undergo regular calibration. A summary of fuel consumption and steam injection to each of the turbines is included below.

AQ-25		Unit 91						Unit 92			
	NG/RFG	Butane	Total Fuel	DeNOx Steam	Steam: Fuel	NG/RFG	Butane	Total Fuel	DeNOx Steam	Steam : Fuel	
	lb/sec	lb/sec	Ib/sec	lb/sec	<u>Ratio</u>	lb/sec	lb/sec	Ib/sec	lb/sec	<u>Ratio</u>	
Jan-21	11.384	0.204	11.587	14.163	1.222	11.479	0.583	12.063	14.228	1.180	
Feb-21	9.077	2.560	11.636	14.508	1.247	8.710	2.647	11.357	13.652	1.357	
Mar-21	11.303	0.266	11.569	14.272	1.234	11.573	0.615	12.188	14.433	1.184	
Apr-21	11.453	0.005	11.458	14.191	1.238	10.136	0.523	10.659	12.748	1.487	
May-21	11.270	0.084	11.354	14.043	1.237	10.937	1.118	12.055	14.350	1.190	
Jun-21	11.340	0.003	11.343	14.081	1.241	10.377	0.538	10.915	13.044	1.291	
Jul-21	11.222	0.007	11.229	13.996	1.246	11.216	0.496	11.712	14.142	1.208	
Aug-21	11.142	0.003	11.146	13.864	1.244	11.241	0.488	11.729	14.118	1.203	
Sep-21	7.972	0.088	8.060	10.517	2.190	9.581	0.458	10.040	12.275	1.819	
Oct-21	11.147	0.139	11.286	14.192	1.259	11.435	0.548	11.983	14.422	1.204	
Nov-21	10.349	0.116	10.465	12.976	1.466	11.342	0.571	11.913	14.260	1.197	
Dec-21	10.933	0.293	11.226	13.503	1.334	11.544	0.722	12.266	14.295	1.165	
AQ-25			Unit	93		Unit 94					
	NG/RFG	<u>Butane</u>	Total Fuel	<u>DeNOx Steam</u>	Steam : Fuel	NG/RFG	<u>Butane</u>	Total Fuel	<u>DeNOx Steam</u>	Steam : Fuel	
	<u>Ib/sec</u>	<u>lb/sec</u>	<u>Ib/sec</u>	<u>lb/sec</u>	<u>Ratio</u>	<u>lb/sec</u>	<u>lb/sec</u>	<u>Ib/sec</u>	<u>lb/sec</u>	<u>Ratio</u>	
Jan-21	10.309	0.456	10.765	12.568	1.191	11.287	0.196	11.483	14.085	1.227	
Feb-21	10.477	0.379	10.856	13.478	1.249	10.921	0.153	11.074	14.000	1.271	
Mar-21	11.285	0.526	11.811	13.774	1.166	3.343	0.111	3.454	5.296	4.844	
Apr-21	11.148	0.519	11.667	13.594	1.165	11.566	0.246	11.812	14.424	1.221	
May-21	10.983	0.512	11.495	13.351	1.161	11.497	0.138	11.635	14.338	1.232	
Jun-21	10.992	0.574	11.566	13.440	1.162	11.462	0.101	11.564	14.346	1.241	
Jul-21	10.819	0.614	11.433	13.220	1.156	11.407	0.119	11.526	14.348	1.245	
Aug 21	40.000	0.701	11.391	12.996	1.141	11.304	0.114	11.419	14.164	1.240	
Aug-21	10.689	0.701	11.331	12.550							
Sep-21	10.689	0.701	11.609	14.535	1.251	11.485	0.202	11.687	14.634	1.252	
—						11.485 11.182	0.202 0.123	11.687 11.305	14.634 14.079	1.252 1.245	
Sep-21	10.944	0.665	11.609	14.535	1.251			1			

AQ-42 No more than one of the cogeneration units 1, 2, 3, 4 or 5 shall startup or shutdown in any one day. For Turbine Trains 1, 2, 3 and 4, start up shall not exceed 8 hours and

shutdown shall not exceed 4 hours. For Turbine Train 5, neither start up nor shutdown shall exceed 4 hours in duration.

Verification: The owner/operator shall maintain an operation log for the facility which, at a minimum, will identify startup and shutdown occurrences for each cogeneration unit. The owner/operator shall submit in its Annual Compliance Report to the CEC a summary of the operational log demonstrating compliance with this condition 5. (97-0924-4; 88-0525-18b)

Response: In the 2021 calendar year, APPC/Watson had 15 startups and 16 shutdowns. No startups exceeded an 8 hour duration and no shutdowns exceeded a 4 hour duration. Startup and shutdown dates shown in the tables below.

AQ-4	AQ-42: Shutdown Summary - 2021							
Unit	Date	Duration < 4 Hours						
93	1/15/2021	Yes						
93	2/12/2021	Yes						
92	2/26/2021	Yes						
94	3/5/2021	Yes						
94	3/22/2021	Yes						
92	4/9/2021	Yes						
92	6/21/2021	Yes						
92	7/14/2021	Yes						
92	9/18/2021	Yes						
91	9/22/2021	Yes						
94	10/5/2021	Yes						
94	11/5/2021	Yes						
92	11/20/2021	Yes						
93	11/27/2021	Yes						
91	11/28/2021	Yes						
93	12/3/2021	Yes						

AQ-4	AQ-42: Startup Summary – 2021							
Unit	Date	Duration < 8 Hours						
93	1/17/2021	Yes						
93	2/13/2021	Yes						
92	2/28/2021	Yes						
94	3/20/2021	Yes						
94	3/29/2021	Yes						
92	4/13/2021	Yes						
92	6/24/2021	Yes						
92	7/15/2021	Yes						
92	9/23/2021	Yes						
91	10/1/2021	Yes						
94	10/6/2021	Yes						
94	11/9/2021	Yes						
92	11/20/2021	Yes						
93	11/27/2021	Yes						
91	12/2/2021	Yes						

AQ-43 The duct burner of the cogeneration units 1, 2, 3, 4 and 5 shall not be fired during the startup mode of operation.

Verification: The owner/operator shall maintain an operation log for the facility which, at minimum will identify the hours of operation of the duct burners. The owner/operator shall submit in its Annual Compliance Report to the CEC a summary of the operational log demonstrating compliance with this condition.

Response: During the 2021 calendar year, APPC/Watson had 15 startups. Duct burners were not fired during the startup mode of operation for any of the 15 startup events. Startup dates shown in the table below.

AQ-4	3: Startup	
Sumr	mary - 2021	
		Duct Fuel After
Unit	Date	Startup
93	1/17/2021	Yes
93	2/13/2021	Yes
92	2/28/2021	Yes
94	3/20/2021	Yes
94	3/29/2021	Yes
92	4/13/2021	Yes
92	6/24/2021	Yes
92	7/15/2021	Yes
92	9/23/2021	Yes
91	10/1/2021	Yes
94	10/6/2021	Yes
94	11/9/2021	Yes
92	11/20/2021	Yes
93	11/27/2021	Yes
91	12/2/2021	Yes

BIOLOGICAL RESOURCES CONDITIONS OF CERTIFICATION

APPC shall monitor daily the zinc content, total volume and duration of all discharges from the ARCO Watson Refinery into the Dominguez Channel, which contain commingled cogeneration project cooling tower blowdown. The initial period of monitoring shall cover the first three years during which water is discharged into the Dominguez Channel. The need for subsequent monitoring will be determined by the CEC based on an evaluation of the zinc content of samples collected during the first three years of discharge. APPC shall take remedial action if monitored zinc levels exceed the EPA standard for salt water aquatic life.

Verification: APPC shall notify the CEC within 30 days of any discharge which exceeds EPA levels for zinc describing the cause of the exceedance and action taken to prevent similar occurrences. APPC shall submit written reports for the first three years during which APPC discharges to Dominguez Channel. The report shall contain the date, time, volume, duration and zinc content of the discharge. These reports can be appended to the annual compliance report for the years during which discharges to Dominguez Channel occurred. The reports shall be Submitted to the CEC and the Port of Los Angeles.

Response: APPC/Watson does not have its own NPDES permit. Low Volume Waste (LVW; boiler blowdown) from the Cogen are authorized to be discharged to the Dominguez Channel under the Marathon Los Angeles Refinery – Carson Operations NPDES permit (Order No. R4-

2015-0295, NPDES No. CA0000680). Zinc is listed in the permit with an effluent limitation; therefore, a discharge would be analyzed for zinc. A copy of the annual NPDES report has been included at the end of this annual compliance report.

COGENERATION CONDITIONS OF CERTIFICATION

COG-1 ARCO Petroleum Products Company (APPC) shall operate the facility as a cogeneration system in accordance with the definition of cogeneration contained in PRC Section 25134(a) and (b) and Title 18 CFR, Section 292.205(a)(1) and (a)(2)(i)(B).

Verification: APPC shall file with the CEC during each calendar year an annual report in which monthly average values of the following plant operating parameters will be given:

- a. Gas turbine, MW (gross) at the generator terminals for each unit
- b. Gas turbine operating hours for each unit
- c. For each CTG and each HRSG duct burner provide fuel input including:
 - type, natural gas, refinery gas or butane
 - rate, lb/hr
 - heating value (low), Btu/lb
 - firing hours
- d. Inlet air flow, lb/hr
- e. Combustion turbine exhaust gas temperature, Deg F
- f. NOx steam injection rate, lb/hr
- g. Stack exiting flue gas temperature, Deg F
- h. Steam turbine, MW (gross)
- i. Steam turbine operating hours
- j. Plant auxiliary load, MW (total)
- k. For the process steam:
 - process steam demand, lb/hr
 - demand hours
 - process steam temperature (Deg F), quality (%), pressure (PSIA)and enthalpy (Btu/lb) at plant boundary
- I. Feedwater rate (lb/hr), temperature (Deg F)
- m. Condensate return rate (lb/hr), temperature (Deg F)
- n. Process steam from auxiliary boilers, lb/hr; auxiliary boiler's operating hours

Or APPC may, with CEC concurrence, submit the following operating parameters:

- o. Monthly fuel use (includes quantity and Btu value) as evidenced by an invoice from the gas supplier
- p. Monthly electrical sales (includes kWh) as evidenced by an invoice to Southern California Edison Company
- q. Monthly steam sales (includes quantity and Btu value) as evidenced by an invoice (or equivalent) to APPC
- r. If the rate of items o, p, or q above differs by more than +5, +15, and +10 percent, respectively, from rated conditions, APPC shall provide, at the specific written request of the CEC Staff, an explanation of such anomaly
- s. Feedwater rate (lb/hr) and temperature (Deg F)
- t. Condensate return rate (lbs/hr) and temperature (Deg F)
- u. Process steam from auxiliary boilers, lb/hr; auxiliary boiler's operating hours.

Not less than thirty (30) days prior to the scheduled date for the CEC Decision on the AFC, APPC shall notify the CEC of APPC's preference for either conditions a-n, or o-u.

This report shall also provide information for each month on any partial or total power and/or process steam production curtailment, including duration of curtailment and reasons for curtailment. The report shall be certified by the plant manager.

Response: Monthly average values of the above listed plant operating parameters are included in the tables below. Please note that parameter n. (auxiliary boilers) is not applicable, as there are no auxiliary boilers at this location.

COG-1 (a-n)							Unit	91						
Subsection:	a	b				С	Onic	<u> </u>			d	е	f	g
					GTG	-			HRSG		Inlet	GTG	DeNOx	Stack
			NG/RFG	Butane	Total	HHV	Firing	NG/RFG	HHV	Firing	Air Flow	Exhaust	Steam	Exhaust
	MW	Op Hours	<u>lb/hr</u>	<u>lb/hr</u>	<u>lb/hr</u>	BTU/lb	<u>Hours</u>	<u>lb/hr</u>	BTU/lb	<u>Hours</u>	<u>lb/hr</u>	<u>deg F</u>	<u>lb/sec</u>	<u>deg F</u>
Jan-21	85.3	744	40982	733	41715	19692	744	4962	19692	744	2293699	1010	14.2	332
Feb-21	85.3	672	32676	9214	41890	20139	672	4801	20139	672	2293699	1012	14.5	332
Mar-21	85.8	743	40692	958	41650	20050	743	9832	20050	743	2293699	1023	14.3	330
Apr-21	85.0	720	41231	17	41248	20024	720	4830	20024	720	2293699	1023	14.2	332
May-21	84.4	744	40573	302	40875	20236	744	3472	20236	744	2293699	1022	14.0	333
Jun-21	83.9	720	40824	12	40836	20251	720	5707	20251	720	2293699	1027	14.1	332
Jul-21	82.3	744	40400	26	40426	20282	744	4378	20282	744	2293699	1027	14.0	333
Aug-21	81.9	744	40112	12	40125	19905	744	3867	19905	744	2293699	1030	13.9	332
Sep-21	60.8 82.7	512 732	28700	317	29017 40629	21034	512 732	3931 3805	21034	512	2293699 2293699	754 1000	10.5 14.2	262
Oct-21 Nov-21	79.6	648	40130 37256	500 417	37673	20643 19989	648	4760	20643 19989	731 648	2293699	921	13.0	333 313
Dec-21	81.2	704	39359	1055	40414	19665	704	9470	19665	704	2293699	962	13.5	318
COG-1 (a-n)	01.2	704	33333	1033	40414	13003	Unit		19003	704	2233033	302	13.3	310
Subsection:	a	b				С	Oilit	<i></i>			d	е	f	g
Subsection.	u	-			GTG				HRSG		Inlet	GTG	DeNOx	Stack
			NG/RFG	Butane	Total	HHV	Firing	NG/RFG	HHV	Firing	Air Flow	Exhaust	Steam	Exhaust
	MW	Op Hours	lb/hr	lb/hr	lb/hr	BTU/lb	Hours	lb/hr	BTU/lb	Hours	lb/hr	deg F	Ib/sec	deg F
Jan-21	87.6	744	41326	2100	43426	19692	744	4962	19692	744	2293699	1028	14.2	341
Feb-21	84.0	634	31357	9529	40886	20139	634	4801	20139	670	2293699	985	13.7	334
Mar-21	88.2	743	41662	2213	43875	20050	743	9832	20050	742	2293699	1033	14.4	338
Apr-21	76.5	634	36489	1883	38372	20024	634	4830	20024	633	2293699	919	12.7	314
May-21	86.9	744	39374	4023	43398	20236	744	3472	20236	744	2293699	1031	14.4	341
Jun-21	78.1	656	37356	1937	39293	20251	656	5707	20251	683	2293699	965	13.0	329
Jul-21	84.0	735	40377	1787	42164	20282	735	4378	20282	734	2293699	1026	14.1	340
Aug-21	84.5	744	40467	1756	42223	19905	744	3867	19905	743	2293699	1037	14.1	340
Sep-21	71.7	602	34492	1651	36143	21034	602	3931	21034	598	2293699	890	12.3	310
Oct-21	86.6	744	41166	1971	43137	20643	744	3805	20643	744	2293699	1032	14.4	342
Nov-21	85.9	713	40830	2057	42887	19989	713	4760	19989	720	2293699	1024	14.3	340
Dec-21														
	87.5	744	41557	2599	44156	19665	744	9470	19665	744	2293699	1028	14.3	338
COG-1 (a-n)			41557	2599	44156		744 Unit		19665	744				
	87.5 a	b	41557	2599		19665 c				744	d	е	f	g
COG-1 (a-n)					GTG	C	Unit	93	HRSG		d Inlet	e GTG	f DeNOx	g Stack
COG-1 (a-n)	a	b	NG/RFG	Butane	GTG Total	c HHV	Unit !	93 NG/RFG	HRSG HHV	Firing	d Inlet Air Flow	e GTG Exhaust	f DeNOx Steam	g Stack Exhaust
COG-1 (a-n) Subsection:	а <u>МW</u>	b Op Hours	NG/RFG <u>lb/hr</u>	Butane <u>Ib/hr</u>	GTG Total <u>lb/hr</u>	C HHV BTU/Ib	Firing Hours	NG/RFG	HRSG HHV BTU/Ib	Firing Hours	d Inlet Air Flow Ib/hr	e GTG Exhaust deg F	f DeNOx Steam Ib/sec	g Stack Exhaust deg F
COG-1 (a-n) Subsection: Jan-21	<u>MW</u> 75.2	b Op Hours 705	NG/RFG lb/hr 37113	Butane <u>Ib/hr</u> 1641	GTG Total <u>lb/hr</u> 38755	HHV BTU/lb 19692	Firing Hours 705	93 NG/RFG <u>lb/hr</u> 4411	HRSG HHV BTU/lb 19692	Firing Hours 704	d Inlet Air Flow Ib/hr 2293699	e GTG Exhaust deg F 949	f DeNOx Steam Ib/sec 12.6	g Stack Exhaust deg F 334
COG-1 (a-n) Subsection:	<u>MW</u> 75.2 79.7	b Op Hours	NG/RFG <u>lb/hr</u>	Butane <u>Ib/hr</u>	GTG Total <u>lb/hr</u>	C HHV BTU/Ib	Firing Hours	NG/RFG	HRSG HHV BTU/Ib	Firing Hours	d Inlet Air Flow Ib/hr	e GTG Exhaust deg F	f DeNOx Steam Ib/sec	g Stack Exhaust deg F
Subsection: Jan-21 Feb-21 Mar-21	<u>MW</u> 75.2	b Op Hours 705 652	NG/RFG b/hr 37113 37717	Butane <u>lb/hr</u> 1641 1365	GTG Total <u>lb/hr</u> 38755 39081	HHV BTU/lb 19692 20139	Firing Hours 705 652	NG/RFG lb/hr 4411 4352	HRSG HHV BTU/lb 19692 20139	Firing Hours 704 650	d Inlet Air Flow <u>lb/hr</u> 2293699 2293699	e GTG Exhaust deg F 949	f DeNOx Steam lb/sec 12.6 13.5	g Stack Exhaust deg F 334 340
Subsection: Jan-21 Feb-21	a MW 75.2 79.7 82.9	b Op Hours 705 652 743	NG/RFG <u>lb/hr</u> 37113 37717 40627	Butane b/hr 1641 1365 1892	GTG Total b/hr 38755 39081 42520	HHV BTU/lb 19692 20139 20050	Firing Hours 705 652 743	NG/RFG lb/hr 4411 4352 10208	HRSG HHV BTU/lb 19692 20139 20050	Firing Hours 704 650 743	d Inlet Air Flow <u>lb/hr</u> 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023	f DeNOx Steam Ib/sec 12.6 13.5 13.8	g Stack Exhaust deg F 334 340 340
Jan-21 Feb-21 Mar-21 Apr-21	MW 75.2 79.7 82.9 81.3	0p Hours 705 652 743 720	NG/RFG b/hr 37113 37717 40627 40133	Butane <u>lb/hr</u> 1641 1365 1892 1869	GTG Total Ib/hr 38755 39081 42520 42002	HHV BTU/lb 19692 20139 20050 20024	Firing Hours 705 652 743 720	93 NG/RFG <u>Ib/hr</u> 4411 4352 10208 4884	HRSG HHV BTU/lb 19692 20139 20050 20024	Firing Hours 704 650 743 720	d Inlet Air Flow Ib/hr 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023	f DeNOx Steam Ib/sec 12.6 13.5 13.8	g Stack Exhaust deg F 334 340 340 341
Jan-21 Feb-21 Mar-21 Apr-21 May-21 May-21	MW 75.2 79.7 82.9 81.3 80.2	Op Hours 705 652 743 720 744	NG/RFG lb/hr 37113 37717 40627 40133 39538	Butane b/hr 1641 1365 1892 1869 1843	GTG Total lb/hr 38755 39081 42520 42002 41381	HHV BTU/lb 19692 20139 20050 20024 20236	Firing Hours 705 652 743 720 744	NG/RFG lb/hr 4411 4352 10208 4884 3433	HRSG HHV BTU/lb 19692 20139 20050 20024 20236	Firing Hours 704 650 743 720 744	d Inlet Air Flow <u>lb/hr</u> 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023	f DeNOx Steam <u>lb/sec</u> 12.6 13.5 13.8 13.6	g Stack Exhaust deg F 334 340 340 341 341
Jan-21 Feb-21 Mar-21 May-21 Jun-21 Jun-21 Jun-21 Jun-21 Jun-21 Aug-21	MW 75.2 79.7 82.9 81.3 80.2 79.9	0p Hours 705 652 743 720 744 720	NG/RFG <u>lb/hr</u> 37113 37717 40627 40133 39538 39571	Butane b/hr 1641 1365 1892 1869 1843 2066	GTG Total lb/hr 38755 39081 42520 42002 41381 41637	HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905	Firing Hours 705 652 743 720 744 720	NG/RFG b/hr 4411 4352 10208 4884 3433 5690	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251	Firing Hours 704 650 743 720 744 720	d Inlet Air Flow <u>lb/hr</u> 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1023 1027	f DeNOx Steam <u>lb/sec</u> 12.6 13.5 13.8 13.6 13.4	g Stack Exhaust deg F 334 340 340 341 341 341 341
Jan-21 Feb-21 Mar-21 Jun-21 Jun-21 Jun-21 Jun-21 Jul-21 Jul-21 Sep-21	MW 75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2	0p Hours 705 652 743 720 744 720 744 744 720	NG/RFG lb/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793	C BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034	Firing Hours 705 652 743 720 744 720	NG/RFG b/hr 4411 4352 10208 4884 3433 5690 4313 3744 7390	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034	Firing Hours 704 650 743 720 744 720 744 720	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1023 1027 1029 1029	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0	g Stack Exhaust deg F 334 340 340 341 341 341 341 341
Jan-21 Feb-21 Mar-21 Apr-21 Jul-21 Jul-21 Aug-21 Sep-21 Oct-21	MW 75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5	0p Hours 705 652 743 720 744 720 744 720 744	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797	C BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643	Firing Hours 705 652 743 720 744 720 744 720 744	NG/RFG b/hr 4411 4352 10208 4884 3433 5690 4313 3744 7390 4038	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643	Firing Hours 704 650 743 720 744 720 744 720 744	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1023 1027 1029 1029 1029	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0 14.5	g Stack Exhaust deg F 334 340 341 341 341 341 341 341 341
Jan-21 Feb-21 Mar-21 May-21 Jul-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21	a MW 75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4	0p Hours 705 652 743 720 744 720 744 720 744 720 744 696	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989	Firing Hours 705 652 743 720 744 720 744 720 744 720 744 696	NG/RFG b/hr 4411 4352 10208 4884 3433 3744 7390 4038 5545	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989	Firing Hours 704 650 743 720 744 720 744 720 744 695	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1023 1027 1029 1029 1029	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.2 13.0 14.5 14.3	g Stack Exhaust deg F 334 340 340 341 341 341 341 341 341 343
Jan-21 Feb-21 Mar-21 Apr-21 Jul-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21	MW 75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5	0p Hours 705 652 743 720 744 720 744 720 744	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797	C BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643	Firing Hours 705 652 743 720 744 720 744 720 744 696 59	NG/RFG b/hr 4411 4352 10208 4884 3433 55690 4313 3744 7390 4038 5545 970	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643	Firing Hours 704 650 743 720 744 720 744 720 744	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1023 1027 1029 1029 1029	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0 14.5	g Stack Exhaust deg F 334 340 341 341 341 341 341 341 341
GOG-1 (a-n) Subsection: Jan-21 Feb-21 Mar-21 Apr-21 Jun-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21 COG-1 (a-n)	a 75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6	0p Hours 705 652 743 720 744 720 744 720 744 696 59	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797	C HHV BTU/Ib 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665	Firing Hours 705 652 743 720 744 720 744 720 744 720 744 696	NG/RFG b/hr 4411 4352 10208 4884 3433 55690 4313 3744 7390 4038 5545 970	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989	Firing Hours 704 650 743 720 744 720 744 720 744 695	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1023 1027 1029 1029 1029 1029 1025 992	f DeNOx Steam Ib/sec 12.6 13.5 13.8 13.6 13.4 13.2 13.0 14.5 14.3 13.7	g Stack Exhaust deg F 334 340 340 341 341 341 341 341 341 343 348 388
Jan-21 Feb-21 Mar-21 Apr-21 Jul-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21	a MW 75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4	0p Hours 705 652 743 720 744 720 744 720 744 720 744 696	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989	Firing Hours 705 652 743 720 744 720 744 720 744 696 59	NG/RFG b/hr 4411 4352 10208 4884 3433 55690 4313 3744 7390 4038 5545 970	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665	Firing Hours 704 650 743 720 744 720 744 720 744 695	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1023 1027 1029 1029 1029 1029 1025 992 136	f DeNOx Steam Ib/sec 12.6 13.5 13.8 13.6 13.4 13.2 13.0 14.5 14.3 13.7 1.3	g Stack Exhaust deg F 334 340 340 341 341 341 341 341 341 343 388 88
GOG-1 (a-n) Subsection: Jan-21 Feb-21 Mar-21 Apr-21 Jun-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21 COG-1 (a-n)	a 75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6	0p Hours 705 652 743 720 744 720 744 720 744 696 59	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516 3294	Butane bb/hr 1641 1365 1892 1869 1843 2066 2525 2393 2290 2236 323	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41793 41797 40752 3617	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665	Firing Hours 705 652 743 720 744 720 744 720 744 696 59 Unit	NG/RFG Ib/hr	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 20282 20382 21034 20643 19989 19665	Firing Hours 704 650 743 720 744 720 744 720 744 695 60	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2093699 2293699 2193699 2293699 2193699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1027 1029 1029 1029 1029 1025 992 136	f DeNOx Steam Ib/sec 12.6 13.5 13.8 13.6 13.4 13.2 13.0 14.5 14.3 13.7 1.3	g Stack Exhaust deg F 334 340 340 341 341 341 341 341 343 338 88
GOG-1 (a-n) Subsection: Jan-21 Feb-21 Mar-21 Apr-21 Jun-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21 COG-1 (a-n)	a MW 75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6	0p Hours 705 652 743 720 744 720 744 720 744 696 59	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG	Butane lb/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236 323 Butane	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C	Firing Hours 705 652 743 720 744 720 744 720 744 696 59 Unit:	NG/RFG Ib/hr	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV	Firing Hours 704 650 743 720 744 720 744 720 744 695 60	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2193699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1027 1029 1029 1029 1029 1025 992 136 e GTG Exhaust	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.2 13.0 14.5 14.3 13.7 1.3	g Stack Exhaust deg F 334 340 340 341 341 341 341 341 343 338 88 g Stack Exhaust
Jan-21 Feb-21 Mar-21 Apr-21 Jun-21 Jun-21 Jun-21 Jun-21 Jun-21 Oct-21 Nov-21 Dec-21 COG-1 (a-n) Subsection:	a 75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6	b	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG b/hr	Butane lb/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236 323 Butane lb/hr	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/lb	Firing Hours 705 652 743 720 744 720 744 744 696 59 Unit:	NG/RFG Ib/hr	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV BTU/lb	Firing Hours 704 650 743 720 744 720 744 740 740 695 60 Firing Hours	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 219169 d Inlet Air Flow Ib/hr	e GTG Exhaust deg F 949 992 1023 1023 1027 1029 1029 1029 1025 992 136 e GTG Exhaust deg F	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam lb/sec	## Stack Exhaust
Jan-21 Feb-21 Mar-21 Jun-21 Jun-21 Jun-21 Jun-21 Jun-21 Oct-21 Nov-21 Dec-21 COG-1 (a-n) Subsection:	mw/75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6 mw/84.5	Dp Hours 705 652 743 720 744 720 744 720 744 696 59 D	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516 3294	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236 323 Butane b/hr 705	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr 41339	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/lb 19692	Firing Hours 705 652 743 720 744 720 744 720 744 696 59 Unit:	NG/RFG b/hr 4411 4352 10208 4884 3433 5690 4313 3744 7390 4038 5545 970 94 NG/RFG b/hr 4922	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV BTU/lb 19692	Firing Hours 704 650 743 720 744 720 744 744 720 744 695 60 Firing Hours 744	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1027 1029 1029 1029 1025 992 136 e GTG Exhaust deg F 1024	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam lb/sec 14.1	## Stack Exhaust deg F 334 340 341 341 341 341 343 338 88 ## ## ## ## ## ## ## ## ## ## ## ## #
Jan-21 Feb-21 Mar-21 Jul-21 Jul-21 Jul-21 Aug-21 Sep-21 Oct-21 Dec-21 COG-1 (a-n) Subsection: Jan-21 Feb-21	mW/75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6 a MW/84.5 84.4	705 652 743 720 744 720 744 744 720 744 696 59 b	NG/RFG b/hr 37113 37717 40627 40627 40133 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG b/hr 40634 39317	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236 323 Butane b/hr 705 551	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr 41339 39868	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/lb 19692 20139	Firing Hours 705 652 743 720 744 720 744 720 744 696 59 Unit:	NG/RFG b/hr 4411 4352 10208 4884 3433 5690 4313 3744 7390 4038 5545 970 94 NG/RFG b/hr 4922 4821	HRSG HHV BTU/lb 19692 20139 20050 200236 20225 20228 19905 21034 20643 19989 19665 HRSG HHV BTU/lb 19692 20139	Firing Hours 704 650 743 720 744 720 744 720 744 695 60 Firing Hours 744 672	d Inlet Air Flow b/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1027 1029 1029 1029 1025 992 136 e GTG Exhaust deg F 1024 1023	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam lb/sec 14.1 14.0	## Stack Exhaust
Jan-21 Feb-21 Mar-21 Jul-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21 COG-1 (a-n) Subsection: Jan-21 Feb-21 Mar-21	mW/75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6 a MW/84.5 84.4 26.0	Dp Hours 705 652 743 720 744 720 744 696 59 Dp Hours 744 672 219 744 672 219	NG/RFG b/hr 37113 37717 40627 40123 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG b/hr 40634 39317 12036	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236 323 Butane b/hr 705 551 399	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr 41339 39868 12436	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/lb 19692 20139 20050	Firing Hours 705 652 743 720 744 720 744 720 744 696 59 Unit: Firing Hours 744 672	NG/RFG b/hr	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV BTU/lb 19692 20139 20050	Firing Hours 704 650 743 720 744 720 744 744 695 60 Firing Hours 744 672 211	d Inlet Air Flow Ib/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1027 1029 1029 1029 1025 992 136 Exhaust deg F 1024 1023	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam lb/sec 14.1 14.0 5.3	## Stack Exhaust deg F 334 340 341 341 341 341 341 341 341 341 341 345 88 ## ## ## ## ## ## ## ## ## ## ## ## #
Jan-21 Feb-21 Mar-21 Jul-21 Jul-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21 COG-1 (a-n) Subsection: Jan-21 Feb-21 Agr-21 Agr-21 Agr-21 Agr-21	mW/75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6 a MW/84.5 84.4 26.0 85.7	Dp Hours 705 652 743 720 744 720 744 696 59 Dp Hours 744 672 219 720	NG/RFG b/hr 37113 37717 40627 40123 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG b/hr 40634 39317 12036 41637	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236 323 Butane b/hr 705 551 399 884	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr 41339 39868 12436 42522	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/lb 19692 20139 20050 20024	Firing Hours 705 652 743 720 744 720 744 720 744 696 59 Unit: Firing Hours 744 672 219	NG/RFG b/hr 4411 4352 10208 4884 3433 5690 4313 3744 7390 4038 5545 970 94 NG/RFG b/hr 4922 4821 614 4902	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV BTU/lb 19692 20139 20050 20024	Firing Hours 704 650 743 720 744 720 744 720 744 695 60 Firing Hours 744 672 211 720	d Inlet Air Flow b/hr 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699 2293699	e GTG Exhaust deg F 949 992 1023 1023 1027 1029 1029 1029 1025 992 136 e GTG Exhaust deg F 1024 1023	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam lb/sec 14.1 14.0 5.3 14.4	## Stack Exhaust deg F 334 340 341 341 341 341 341 341 341 341 341 345 88 ## ## ## ## ## ## ## ## ## ## ## ## #
Jan-21 Feb-21 Mar-21 Jul-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21 COG-1 (a-n) Subsection: Jan-21 Feb-21 Mar-21	mW/75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6 a MW/84.5 84.4 26.0	Dp Hours 705 652 743 720 744 720 744 696 59 Dp Hours 744 672 219 744 672 219	NG/RFG b/hr 37113 37717 40627 40123 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG b/hr 40634 39317 12036	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236 323 Butane b/hr 705 551 399	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr 41339 39868 12436	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/lb 19692 20139 20050	Firing Hours 705 652 743 720 744 720 744 720 744 696 59 Unit: Firing Hours 744 672	NG/RFG b/hr	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV BTU/lb 19692 20139 20050	Firing Hours 704 650 743 720 744 720 744 744 695 60 Firing Hours 744 672 211	d Inlet Air Flow Ib/hr 2293699	e GTG Exhaust deg F 949 992 1023 1023 1027 1029 1029 1029 1025 992 136 Exhaust deg F 1024 1023	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam lb/sec 14.1 14.0 5.3	## Stack Exhaust deg F 334 340 341 341 341 341 341 341 341 341 341 345 88 ## ## ## ## ## ## ## ## ## ## ## ## #
Jan-21 Feb-21 Mar-21 Jul-21 Jul-21 Aug-21 Sep-21 Oct-21 Nov-21 Dec-21 COG-1 (a-n) Subsection: Jan-21 Feb-21 Mar-21 May-21 Jul-21 Aug-21	mW/75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6 a MW/84.5 84.4 26.0 85.7 85.4	Dp Hours 705 652 743 720 744 720 744 696 59 Dp Hours 744 672 219 720 744 672 219 720 744 744 745	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG b/hr 40634 39317 12036 41637 41389	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236 323 Butane b/hr 705 551 399 884 496	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr 41339 39868 12436 42522 41885	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/lb 19692 20139 20050 20024 20236	Firing Hours 705 652 743 720 744 720 744 720 744 696 59 Unit: Firing Hours 744 672 219 720 744	NG/RFG b/hr	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV BTU/lb 19692 20139 20050 20024 20236	Firing Hours 704 650 743 720 744 720 744 720 744 695 60 Firing Hours 744 672 211 720 744	d Inlet Air Flow Ib/hr 2293699	e GTG Exhaust deg F 949 992 1023 1023 1027 1029 1029 1029 1025 992 136 e GTG Exhaust deg F 1024 1023	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam lb/sec 14.1 14.0 5.3 14.4 14.3	## Stack Exhaust deg F 334 340 341 341 341 341 343 338 88 ## ## ## ## ## ## ## ## ## ## ## ## #
Jan-21 Feb-21 May-21 Jul-21 Sep-21 Oct-21 Nov-21 Dec-21 COG-1(a-n) Subsection: Jan-21 Feb-21 May-21 Jun-21 Jun-21 Jun-21 Jun-21 Jun-21 Jun-21 Jun-21 Jun-21 Jun-21	mw/75.2 79.7 82.9 81.3 80.2 79.7 76.8 79.2 79.5 77.4 6.6 a mw/84.5 84.4 26.0 85.7 85.4 84.8	Dp Hours 705 652 743 720 744 720 744 720 744 696 59 b Op Hours 744 672 219 720 744 720	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG b/hr 40634 39317 12036 41637 41389 41264	Butane b/hr 1641 1365 1892 1869 1843 2066 2210 2525 2393 2290 2236 323 Butane b/hr 705 551 399 884 496 364	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr 41339 39868 12436 42522 41885 41629	C HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/lb 19692 20139 20050 20024 20236 20251	Firing Hours 705 652 743 720 744 720 744 720 744 696 59 Unit: Firing Hours 707 407 407 407 407 407 407 407 407 407	NG/RFG b/hr 4411 4352 10208 4884 3433 35690 4313 3744 7390 4038 5545 970 94 NG/RFG b/hr 4922 4821 614 4902 3407 5715	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251	Firing Hours 704 650 743 720 744 744 720 744 695 60 Firing Hours 744 672 211 720 744 720	d Inlet Air Flow Ib/hr 2293699	e GTG Exhaust deg F 949 992 1023 1023 1027 1029 1029 1029 1025 992 136 e GTG Exhaust deg F 1024 1025	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam lb/sec 14.1 14.0 5.3 14.4 14.3 14.3	## Stack Exhaust deg F 334 340 341 341 343 338 88 ## ## ## ## ## ## ## ## ## ## ## ## #
GOG-1 (a-n) Subsection: Jan-21 Feb-21 Mar-21 Jul-21 Jul-21 Sep-21 Oct-21 Nov-21 Dec-21 COG-1 (a-n) Subsection: Jan-21 Feb-21 Mar-21 Apr-21 Jul-21 Jul-21 Jul-21 Jul-21 Jul-21	mw/75.2 79.7 82.9 81.3 80.2 79.7 76.8 79.2 79.5 77.4 6.6 a mw/84.5 84.4 26.0 85.7 85.4 84.8 83.7	Op Hours 705 652 743 720 744 720 744 696 59	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG b/hr 40634 40637 41389 41264 41066	Butane bb/hr 1641 1365 1892 1869 1843 2066 2525 2393 2290 2236 323 Butane bb/hr 705 5551 399 884 496 364 429	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr 41339 39868 12436 42522 41885 41629 41495	C HHV BTU/Ib 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/Ib 19692 20139 20050 20024 20236 20251 20282	Firing Hours 705 652 743 720 744 744 720 744 744 720 744 696 59 Unit: Firing Hours 744 672 219 720 744 720 744 744 744	NG/RFG b/hr	HRSG HHV BTU/Ib 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV BTU/Ib 19692 20139 20050 20024 20236 20251 20282	Firing Hours 704 650 743 720 744 744 720 744 695 60 Firing Hours 744 695 211 720 744 744 720 744 744 744 744 745 744 744 745 744 744	d Inlet Air Flow Ib/hr 2293699	e GTG Exhaust deg F 949 992 1023 1023 1023 1027 1029 1029 1029 1025 992 136 e GTG Exhaust deg F 1023 367 1035	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam lb/sec 14.1 14.0 5.3 14.4 14.3 14.3 14.3	g Stack Exhaust deg F 334 340 340 341 341 341 341 341 343 338 88 g Stack Exhaust deg F 350 181 340 341 340
Jan-21 Feb-21 May-21 Jul-21 Aug-21 Jul-21 Jul-21	mw/75.2 79.7 82.9 81.3 80.2 79.9 77.7 76.8 79.2 79.5 77.4 6.6 a mw/84.5 84.4 26.0 85.7 85.4 84.8 83.7 83.1	Op Hours 705 652 743 720 744 720 744 696 59 Op Hours 744 672 219 720 744 720 744 720 744 720 744 720 744 720 744 744 744 744 744 744 744 744 744 744 744 744 744 744 745 765	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG b/hr 40634 40637 41389 41264 41066 40695	Butane bb/hr 1641 1365 1892 1869 1843 2066 2525 2393 2290 2236 323 Butane bb/hr 705 5551 399 884 496 364 429 412	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr 41339 39868 12436 42522 41885 41629 41495 41107	C HHV BTU/Ib 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/Ib 19692 20139 20050 20024 20236 20251 20282 19905	Firing Hours 705 652 743 720 744 744 720 744 744 696 59 Unit: Firing Hours 744 672 219 720 744 744 740 744 744 744	NG/RFG b/hr	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905	Firing Hours 704 650 743 720 744 744 744 744 7695 60 Firing Hours 744 695 211 720 744 720 744 744 744 744 744	d Inlet Air Flow Ib/hr 2293699	e GTG Exhaust deg F 949 992 1023 1023 1023 1027 1029 1029 1029 1025 992 136 Exhaust deg F 1023 367 1035 1038	f DeNOx Steam lb/sec 12.6 13.5 13.8 13.6 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam lb/sec 14.1 14.0 5.3 14.3 14.3 14.3 14.3 14.3	g Stack Exhaust deg F 334 340 340 341 341 341 341 341 343 338 88 g Stack Exhaust deg F 350 181 340 341 341 340 340 340 340 340
Jan-21	mw/5.2 79.7 82.9 81.3 80.2 79.7 76.8 79.2 79.5 77.4 6.6 a mw/84.5 84.4 26.0 85.7 85.4 84.8 83.7 83.1 84.8	Name	NG/RFG b/hr 37113 37717 40627 40133 39538 39571 38950 38481 39400 39507 38516 3294 NG/RFG b/hr 40634 39317 12036 41637 41389 41264 41066 40695 41346	Butane bb/hr 1641 1365 1892 1869 1843 2066 2525 2393 2290 2236 323 Butane bb/hr 705 551 399 884 496 364 429 412 726	GTG Total b/hr 38755 39081 42520 42002 41381 41637 41160 41006 41793 41797 40752 3617 GTG Total b/hr 41339 39868 12436 42522 41885 41629 41495 41107 42072	C HHV BTU/Ib 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 C HHV BTU/Ib 19692 20139 20024 20236 20251 20282 19905 20024 20236 20251 20282 19905 21034	Firing Hours 705 652 743 720 744 720 744 720 744 696 59 Unit Firing Hours 744 672 720 744 744 720 744 744 720 744 720 744 720	93 NG/RFG b/hr 4411 4352 10208 4884 3433 5690 4313 3744 7390 4038 5545 970 94 NG/RFG b/hr 4922 4821 4902 4821 4902 3407 5715 4366 3769 7283	HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905 21034 20643 19989 19665 HRSG HHV BTU/lb 19692 20139 20050 20024 20236 20251 20282 19905	Firing Hours 704 650 743 720 744 720 744 744 720 744 695 60 Firing Hours 744 672 211 720 744 720 744 720 744 720	d Inlet Air Flow Ib/hr 2293699	e GTG Exhaust deg F 949 992 1023 1023 1023 1025 1029 1029 1025 992 136 Exhaust deg F 1024 1023 1024 1023 1024 1023 1024 1023 1035 1038 1038 1038 1038	f DeNOx Steam b/sec 12.6 13.5 13.8 13.6 13.4 13.4 13.2 13.0 14.5 14.3 13.7 1.3 f DeNOx Steam b/sec 14.1 14.0 5.3 14.4 14.3 14.3 14.3 14.3 14.3	g Stack Exhaust deg F 334 340 340 341 341 341 341 341 341 341 341 341 341

COG-1 (a-n)	STG 1		S	STG 2 Plant L			Load 600# Steam				150# 5	Steam	
Subsection:	h	i	h	i	j			k				k	
	MW	<u>Hours</u>	MW	<u>Hours</u>	<u>MW</u>	mlb/hr	<u>Hours</u>	<u>PSIG</u>	deg F	mlb/hr	<u>Hours</u>	<u>PSIG</u>	deg F
Jan-20	15	733	1	63	81	1136	744	620	750	0.106	744	152	358
Feb-20	10	436	6	245	83	1117	672	620	750	0.106	672	152	358
Mar-20	15	735	0	0	82	1125	744	620	749	0.109	744	152	358
Apr-20	0	15	16	708	84	1148	720	620	749	0.087	720	152	358
May-20	0	0	16	737	87	1095	744	620	749	0.079	744	152	358
Jun-20	5	177	15	611	88	1135	720	620	749	0.065	720	152	358
Jul-20	1	42	17	714	89	1094	744	620	749	0.048	744	152	358
Aug-20	0	0	19	733	89	1061	744	620	749	0.083	744	152	358
Sep-20	0	8	19	684	83	1077	720	619	749	0.358	720	152	359
Oct-20	11	374	11	375	89	1031	744	620	749	0.147	744	152	358
Nov-20	18	714	0	0	89	1068	720	620	750	0.197	720	152	358
Dec-20	0	15	15	708	87	1078	744	620	749	0.194	744	152	358

COG-1 (a-n)	Total Fee	dwater	Total Co	Total Condensate		
Subsection:	- 1	_	m	m m		
	mlb/hr	deg F	mlb/hr	deg F		
Jan-20	1742	250	458	-	N/A	
Feb-20	1701	250	451	-	N/A	
Mar-20	1604	250	440	-	N/A	
Apr-20	1711	250	488	-	N/A	
May-20	1682	250	463	-	N/A	
Jun-20	1725	250	511	-	N/A	
Jul-20	1672	250	435	-	N/A	
Aug-20	1651	250	421	-	N/A	
Sep-20	1651	250	478	-	N/A	
Oct-20	1628	250	482	-	N/A	
Nov-20	1618	250	466	-	N/A	
Dec-20	1515	250	477	-	N/A	

DEMAND CONFORMANCE CONDITIONS OF CERTIFICATION

DC-2 The Energy Commission shall retain jurisdiction to require ARCO to periodically report on the performance of its facility and the payments made by SCE to purchase power from the facility.

Verification: On an annual basis following construction, ARCO shall report the monthly generation provided to SCE and the monthly payments received from SCE. Payments shall be disaggregated by capacity (firm and as-available), start-up and energy. ARCO shall provide the CEC a copy of the Prescribed Dispatch Schedule for the facility.

Response: Monthly values for generation provided to SCE and monthly payments disaggregated by capacity (firm and as-available) are included in the table below. Watson no

longer follows a Prescribed Dispatch Schedule from SCE. All power is baseload firm under current PPA.

	Demand Conformance Conditions of Certification DC-2								
	SCE Sales	Energy	Capacity Payment -	Capacity Payment -					
Month	Volume	Payment	Firm	As Available					
	MWh	\$	\$	\$					
Jan-21	194,013	\$7,269,413.13	\$356,734.55	\$0.00					
Feb-21	172,199	\$40,122,362.69	\$355,194.56	\$0.00					
Mar-21	153,924	\$5,258,991.32	\$292,392.21	\$0.00					
Apr-21	182,194	\$6,540,791.41	\$350,015.94	\$0.00					
May-21	191,870	\$6,806,381.26	\$356,232.96	\$0.00					
Jun-21	181,174	\$8,875,489.82	\$3,712,862.01	\$0.00					
Jul-21	185,437	\$11,274,822.60	\$3,790,164.81	\$0.00					
Aug-21	185,300	\$11,164,564.13	\$3,790,130.74	\$0.00					
Sep-21	161,609	\$11,925,991.17	\$2,837,845.22	\$0.00					
Oct-21	191,417	\$11,174,273.32	\$353,569.67	\$0.00					
Nov-21	170,019	\$9,536,452.04	\$316,411.78	\$0.00					
Dec-21	<u>135,886</u>	<u>\$9,149,258.54</u>	<u>\$351,392.46</u>	<u>\$0.00</u>					
Total	2,105,042	\$139,098,791.43	\$16,862,946.91	\$0.00					

PUBLIC HEALTH CONDITIONS OF CERTIFICATION

PH-2 APPC shall comply with all emission regulations established by the U.S. Environmental Protection Agency (EPA), South Coast Air Quality Management District (SCAQMD), and the California Air Resources Board (CARB) regarding the use of a non-chromium treatment method as an anti-fouling/corrosive agent in the cooling towers, and the prohibition of Hexavalent Chromium additives.

Verification: APPC shall submit to the CEC, within the Annual Compliance Report, documentation of their compliance with all EPA, SCAQMD, and CARB emission regulations for use of antifouling/corrosive agents in the cooling towers.

Response: In compliance with EPA, SCAQMD and CARB emission regulations for the use of antifouling/corrosive agents in cooling towers, APPC/Watson does not use any chemical products that contain chromium in its cooling towers. It is currently using Solenis Performax CC6200, a non-chromium product, as an anti-fouling agent in its cooling towers.

POWER PLANT RELIABILITY CONDITIONS OF CERTIFICATION

RELI-3 APPC shall file with the CEC an annual report documenting the plant availability and capacity factors achieved.

Verification: Beginning with commercial operation, APPC shall file an annual report containing the following:

- a. Operating hours, outage hours, cause of outage and downtime for each piece of major equipment including the following:
 - Combustion turbine/generators Heat recovery steam generators
 - Feedwater pumps
 - Steam turbine/generators
 - Condensers
 - Condensate pumps
 - Cooling water pumps
 - Controls
- b. For each forced outage, a precise identification of the equipment whose failure resulted in the forced outage and the resulting forced outage hours.
- c. Identification of equipment or other causes (such as curtailment) for which planned outage was instituted in any given month.
- d. Annual plant availability and capacity factors, per EPRI definitions.

Response: Information regarding operating hours, outage causes, downtime and annual plant availability and capacity factors are shown in the two tables below.

	RELI-3: Power Plant Reliability - 2021								
CEC Generator Unit ID	Event Type	Start Date	End Date	Duration	Cause Code				
GN91	U2 - Forced - Delayed	09/22/2021 08:27 PPT	10/01/2021 11:58 PPT	3:31	6090 - Other HRSG tube Problems				
GN91	U2 - Forced - Delayed	11/28/2021 00:50 PPT	12/02/2021 16:38 PPT	15:48	6090 - Other HRSG tube Problems				
GN92	MO - Maintenance	04/09/2021 21:00 PPT	04/13/2021 12:11 PPT	87:11:00	6090 - Other HRSG tube Problems				
GN92	U1 - Forced - Immediate	06/21/2021 20:38 PPT	06/24/2021 02:46 PPT	54:08:00	4700 - Generator voltage control				
GN92	U2 - Forced - Delayed	07/14/2021 23:21 PPT	07/15/2021 08:42 PPT	9:21:00	3649 - Other AC instrument power problems				
GN92	U3 - Forced - Postponed	09/18/2021 11:07 PPT	09/23/2021 09:42 PPT	22:35	4805 - Generator Bus Duct Cooling System				
GN92	MO - Maintenance	11/20/2021 08:12 PPT	11/20/2021 15:17 PPT	7:05:00	3610 - Switchyard circuit breakers - (not outside management control)				
GN93	U1 - Forced - Immediate	02/12/2021 15:05 PPT	02/13/2021 12:16 PPT	21:11	5041 - Fuel piping and valves A				
GN93	PO - Planned	11/26/2021 21:08 PPT	11/27/2021 21:33 PPT	0:25	5260 - Major overhaul (use for non-specific overhaul only; see page B-1) A				
GN93	PO - Planned	12/03/2021 11:50 PPT	01/01/2022 00:00 PPT	684:10:00	5260 - Major overhaul (use for non-specific overhaul only; see page B-1) A				
GN94	PO - Planned	03/05/2021 21:05 PPT	03/19/2021 14:40 PPT	16:35	5670 - Hot end inspection A				
GN94	U1 - Forced - Immediate	03/19/2021 15:08 PPT	03/20/2021 01:32 PPT	10:24:00	4307 - Automatic turbine control systems - electro-hydraulic - digital				
GN94	U2 - Forced - Delayed	03/20/2021 09:13 PPT	03/20/2021 21:27 PPT	12:14:00	0530 - Other main steam system problems				
GN94	U1 - Forced - Immediate	03/22/2021 05:17 PPT	03/29/2021 12:38 PPT	7:21	4307 - Automatic turbine control systems - electro-hydraulic - digital				
GN94	U1 - Forced - Immediate	10/05/2021 17:10 PPT	10/06/2021 10:52 PPT	17:42:00	3980 - Programmable Logic Controller (PLC)				
GN94	U2 - Forced - Delayed	11/05/2021 21:17 PPT	11/09/2021 14:40 PPT	90:23:00	6090 - Other HRSG tube Problems				
GN95	RS - Reserve Shutdown	02/01/2021 16:42 PPT	02/11/2021 07:36 PPT	230:54:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	04/01/2021 15:09 PPT	06/14/2021 13:12 PPT	1774:03:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	06/20/2021 09:10 PPT	06/28/2021 08:22 PPT	191:12:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	06/30/2021 23:02 PPT	07/12/2021 12:35 PPT	277:33:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	07/13/2021 06:12 PPT	07/26/2021 18:46 PPT	324:34:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	07/26/2021 20:13 PPT	07/27/2021 15:39 PPT	19:26:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	07/27/2021 22:07 PPT	07/28/2021 18:22 PPT	20:15:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	07/28/2021 21:05 PPT	07/29/2021 10:58 PPT	13:53:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	07/30/2021 22:07 PPT	08/15/2021 18:10 PPT	380:03:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	08/15/2021 20:04 PPT	09/08/2021 16:42 PPT	572:38:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	09/08/2021 20:31 PPT	09/09/2021 16:30 PPT	19:59:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	09/10/2021 08:05 PPT	10/01/2021 14:29 PPT	510:24:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	10/01/2021 19:02 PPT	10/16/2021 14:25 PPT	355:23:00	0000 - Reserve shutdown				
GN95	RS - Reserve Shutdown	12/01/2021 15:58 PPT	01/01/2022 00:00 PPT	728:02:00	0000 - Reserve shutdown				
GN96	PO - Planned	01/01/2021 00:00 PPT	01/28/2021 15:35 PPT	663:35:00	4830 - Major overhaul (720 hrs or longer) (use for non-specific overhaul only; see page B-1)				
GN96	RS - Reserve Shutdown	02/11/2021 09:03 PPT	04/15/2021 13:17 PPT	1515:14:00	0000 - Reserve shutdown				
GN96	U1 - Forced - Immediate	09/17/2021 19:58 PPT	09/17/2021 21:23 PPT	1:25:00	4041 - HP steam turbine thrust bearings				
GN96	RS - Reserve Shutdown	09/22/2021 08:13 PPT	09/23/2021 11:52 PPT	27:39:00	0000 - Reserve shutdown				
GN96	RS - Reserve Shutdown	10/16/2021 18:43 PPT	12/01/2021 15:41 PPT	1101:58:00	0000 - Reserve shutdown				

RELI-3: Operating Hours and Availability - 2021								
CEC Generator Unit ID	2021 Operating Hours	2021 Availability						
GN91	8,427	96.2%						
GN92	8,435	96.2%						
GN93	7,990	91.3%						
GN94	8,125	92.8%						
GN95	3,358	38.5%						
GN96	5,821	66.3%						

PUBLIC AND WORKER SAFETY CONDITIONS OF CERTIFICATION

SAFETY-11 APPC and the Los Angeles County Fire Department shall annually reexamine the fire protection program.

Verification: APPC shall note and summarize the joint re-examination to the fire protection program in its annual compliance report to the CEC.

Response: APPC/Watson's fire protection program is covered by a permit issued by the County of Los Angeles Fire Department and follows their standard review/renewal cycle. This review/renewal process is jointly conducted with the on-site Fire Chief responsible for the APPC/Watson facility. Fire protection equipment at the facility is inspected, tested and maintained in accordance with NFPA, ANSI and OSHA standards.

SAFETY-13 APPC shall facilitate onsite worker safety inspections conducted by Cal/DOSH during construction and operation of the facility when an employee complaint has been received.

Verification: APPC shall request Cal/DOSH to notify the CEC in writing in the event of a violation that will involve Cal/DOSH action affecting the construction and operation schedule and shall notify the CEC of the necessary corrective action. APPC shall note any Cal/DOSH inspections and actions in its periodic compliance reports.

Response: In the calendar year of 2021, APPC/Watson Cogen has not had any violations and has not received any complaints that would warrant reporting to Cal/DOSH.

TRAFFIC AND TRANSPORTATION CONDITIONS OF CERTIFICATION

TRANS-1 ARCO Petroleum Products Corporation (APPC) shall comply with the California Department of Transportation (Caltrans) and Los Angeles County restrictions on oversize or overweight vehicles using state, county and City of Carson roadways. APPC shall obtain overload permits, as necessary, from Caltrans and the County of Los Angeles.

Verification: APPC shallow in its annual compliance report, notify the California Energy Commission (CEC) of any overload permits obtained from Caltrans and the County of Los Angeles.

Response: In the 2021 calendar year, APPC/Watson is not aware of any overload permits being obtained from Caltrans and the County of Los Angeles.

TRANS-2 APPC shall comply with the City of Carson encroachment and excavation permit and franchise requirements for installation of utility services (transmission line, natural gas pipeline) of the proposed project in or over city-owned rights-of-way.

Verification: APPC shall, in its annual compliance report, notify the CEC that the requirements for obtaining encroachment and excavation permits from the City of Carson have been satisfied. APPC shall file any required or requested information with the City of Carson.

Response: In the 2021 calendar year, APPC/Watson is not aware of any filings for encroachment and/or excavation permits from the City of Carson.

WASTE MANAGEMENT CONDITIONS OF CERTIFICATION

WASTE-5 If APPC intends to store hazardous wastes on-site for more than 90 days, it shall obtain a determination from DHS that the requirements of a hazardous waste facility have been satisfied. Storage of such wastes shall be in accordance with DHS regulations. APPC shall file any required or requested information with the Los Angeles County Fire Department, Hazardous Materials Unit.

Verification: APPC shall notify the CEC in the Annual Compliance Report if APPC applies for, or obtains, a Hazardous Waste Facility permit.

Response: APPC/Watson does not store bulk hazardous waste onsite for more than 90 days and therefore does not require a Hazardous Waste Facility Permit.

WASTE-6 APPC shall ensure that hazardous wastes are hauled by a permitted hazardous wastes hauler and disposed of in a proper manner at a site permitted by DHS and the Regional Water Quality Control Board, Los Angeles Region, for the disposal of hazardous wastes.

Verification: In the Annual Compliance Report, APPC shall submit to the CEC a verification that hazardous wastes have been transported by a DHS-licensed hazardous waste hauler, and that the wastes were disposed of at appropriate sites.

Response: Hazardous waste generated by APPC/Watson is transported by a DTSC licensed hazardous waste hauler and is disposed of in a proper manner at permitted hazardous waste facilities.

WATER QUALITY CONDITIONS OF CERTIFICATION

WQ-4 The project owner shall provide a copy of the revised or new National Pollutant Discharge Elimination System Permit for the Watson Cogeneration Project and the ARCO Los Angeles Refinery approved by the Los Angeles Regional Water Quality Control Board to the CEC Compliance Project Manager. The project owner shall also provide a copy of the annual monitoring report required by the NPDES Permit for all wastewater, with the exception of stormwater runoff, that is commingled with cooling tower blowdown from the Watson Cogeneration Plant and discharged to the Dominguez Channel.

Verification: The project owner shall provide a copy of the new NPDES Permit to the CEC Compliance Project Manager within one month of its approval by the Los Angeles Regional Water Quality Control Board. Annual NPDES Permit monitoring reports shall be provided to the CEC Compliance Project Manager with the annual compliance report.

Response: Annual NPDES reports for the Carson facility are submitted electronically on the California Integrated Water Quality System (CIWQS). A copy of the annual NPDES report has been included at the end of this annual compliance report. A copy of the updated NPDES permit can be provided if requested by the CEC.

WATER RESOURCES CONDITIONS OF CERTIFICATION

WATER-3 The project owner will demonstrate that all feasible and practical measures to reduce additional water demand have been incorporated into the design of the fifth train. The measures may include, but are not limited to, recycling and reuse.

Verification: The project owner shall submit a report discussing all measures, whether adopted or not, considered to reduce project water demand. This report shall be contained in the first annual compliance report following the start of operation of the fifth train.

Response: Water-3 is not applicable as APPC/Watson did not construct a fifth train.

Tesoro Refining & Marketing Company LLC

A subsidiary of Marathon Petroleum Corporation

Los Angeles Refinery – Carson Operations 2350 E. 223rd Street Carson, California 90810 310-816-8100

January 31, 2022

VIA CIWQS Upload

California Regional Water Quality Control Board Los Angeles Region 320 W. 4th Street, Suite 200 Los Angeles, CA 90013 NPDES Permit No. CA0000680 Order No. R4-2015-0259

NO DISCHARGE DURING REPORTING PERIOD

Re: 2021 Annual NPDES Self-Monitoring Report

Tesoro Refining and Marketing Company LLC Los Angeles Refinery – Carson Operations 1801 East Sepulveda Boulevard, Carson, California

To Whom It May Concern:

Please find enclosed the Annual NPDES Self-Monitoring Report for the Tesoro Los Angeles Refinery – Carson Operations for the period of January 1, 2021 through December 31, 2021.

During the 2021 reporting period all process wastewater and wastewater commingled with storm water was discharged to the Los Angeles Sanitation District (LACSD) in compliance with Industrial Wastewater Permit No. 21299. Discharge of Low Volume Waste to the Dominguez Channel from any of the permitted Outfalls did not occur during the 2021 reporting period.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions, please contact me at 310-847-3920.

Sincerely,

Nate Busch

HES Professional

ecc: 2021 LARC Annual NPDES Report

NPDES Annual Self-Monitoring Report

Tesoro Refining & Marketing Company LLC Tesoro Los Angeles Refinery – Carson Operations 1801 East Sepulveda Boulevard Carson, California 90749

NPDES Permit No. CA0000680 Order No. R4-2015-0259

Reporting Period: January 1, 2021 – December 31, 2021

Report Prepared On: January 31, 2022

Table of Contents

Part 1 – Compliance Summary	2
Part 2 – Summary of Monitoring Parameters	
Part 3 – Other Monitoring	2
Certification	4
Attachments	
Attachment 1: Annual Comprehensive Site Compliance Evaluation	
Attachment 2: Annual Rainfall Data	

Attachment 3: Sediment Monitoring Report

Part 1 – Compliance Summary

1. NPDES Permit Compliance Summary

There were <u>no discharges of Low Volume Wastes</u> through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel at the Los Angeles Refinery – Carson Operations (LARC) in calendar year 2021. Therefore, there were no violations of the discharge limits or Waste Discharge Requirements (WDRs).

2. NPDES Incident Release Report

There were no incidental releases to the Dominguez Channel Estuary during calendar year 2021.

Part 2 – Summary of Monitoring Parameters

1. Presentation of Effluent Monitoring Data

There were <u>no discharges of Low Volume Wastes</u> through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel Estuary at LARC in calendar year 2021. Therefore, no effluent monitoring was required.

2. Changes in Discharge

There were <u>no discharges of Low Volume Wastes</u> through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel at LARC in calendar year 2021. There were no changes in the discharge as described in Order R4-2015-0259.

Part 3 – Other Monitoring

1. SWPPP, BMPP, and Spill Contingency Plan and Effectiveness Report

There were no discharges of Low Volume Wastes through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel Estuary at LARC in calendar year 2021. Therefore, there were no issues with the effectiveness of the SWPPP, BMPP, or Spill Contingency Plan.

However, internal policy dictates the annual review of all facility environmental plans. The Storm Water Pollution Prevention Plan (SWPPP) and Best Management Practices Plan (BMPP) were reviewed in November 2021 (see Attachment 1). The Spill Contingency Plan (Spill Prevention Control & Countermeasure (SPCC) Plan) was reviewed in December 2021.

2. Chemical Use Report

See Table 2 for the chemical usage report summarizing the quantities of all chemicals which are used at the facility and which are discharged or have the potential to be discharged. There were no discharges of Low Volume Wastes, including chemicals,

through Discharge Points 001, 002, 003, 004 or 005 to the Dominguez Channel Estuary at LARC in calendar year 2021. The Refinery diverts cooling tower blowdown, boiler blowdown, and commingled storm water / wastewater to the wastewater treatment system before discharging to the Los Angeles County Sanitation District (LACSD Permit No. 21299).

TABLE 2: 2021 Chemical Usage

Baker Hughes Chemical	Description	2021 Usage (lb)				
LFS3301R	Dispersant	165964				
BPR45142	Antifoam	15322				
BPR81300	Filmer	13039				
BPR81232	Filmer	77728				
BPR44865R1	Dispersant/Settling Aid	34517				
BPR27140	Demulsifier	156354				
BPR81156R	Neutralizer	226397				
XERIC7021	Demulsifier	5300				
LFS3758	Antifoulant	14435				
FSTP5025	Antifoam	58437				
T9715	Silver Strip	202				
T4695	Antioxidant	43088				
SX9252	H2S Scavenger	25500				
SX9200	H2S Scavenger	3524				
SX9272M	H2S Scavenger	3175				
XCIDE102	Biocide	80				
T1347	Cetane Improver	391090				
Performax DC5511	Dispersant	208491				
Millsperse MS7400	CS corrosion inhibitor	105009				
Performax CC6200	Yellow metal corrosion inhibitor	94000				
Performax SR8315	Biodispersant	25626				
Biosperse CN2150	Biocide	21292				
Drewplus L-718	Antifoam	11783				
Drewgard 315	Closed Loop	3253				

3. Receiving Water Monitoring

There were <u>no discharges of Low Volume Wastes</u> through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel Estuary at LARC in calendar year 2021. Therefore, no receiving water sampling and associated visual observation was required.

Visual observations of the upstream and downstream receiving water sampling points was performed during 2021. Visual observations were performed at least monthly during January through December. No findings related to facility operations were reported on the visual observation logs.

4. Annual Comprehensive Compliance Evaluation

The Annual Comprehensive Compliance Evaluation (ACCE) was conducted by qualified personnel on January 20, 2022. See Attachment 1 for documentation.

5. Storm Water / Rainfall Monitoring

The daily rainfall data for calendar year 2021 are included in Attachment 2.

6. Sediment Monitoring

Although there were <u>no discharges of Low Volume Wastes</u> through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel at LARC in calendar year 2021, sediment monitoring was conducted on September 8, 2021 and November 3, 2021. A copy of the report is included in Attachment 3.

Certification

We report that there were no discharges of Low Volume Wastes through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 at LARC to the Dominguez Channel during the reporting period of January 1, 2021 – December 31, 2021, under the above-mentioned order.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Robert Nguyen
(Print Name)
Environmental Manager
(Title)
Certified via CIWQS
(Signature)

Annual Comprehensive Site Compliance Evaluation (ACSCE)										
Facility Name:	LAR - Carson Operations	Date: 1/25/2-2								
Inspector's Name/Signature:	Nate Busch	Inspector's Title:	HES Professional							
Has it been 8-16 m	onths since the last Annual Evaluation?			YES NO NA						
Was a review of al	l sampling, visual observations, and inspection re	ecords conducted during the previous	reporting year?	YES NO NA						
Were all industrial water conveyance s	activities and associated potential pollutants sou system?	rces inspected for evidence of, or the	potential for, entering the storm	YES NO NA						
Were all drainage a	areas previously identified as having no exposure	e to industrial activities and materials	inspected?	YES NO NA						
Was all equipment	used to implement BMPs inspected?			YES NO NA						
Were all BMPs ins	spected?			YES NO NA						
Was the Storm Wa	ter Pollution Prevention Plan and Monitoring Im	plementation Plan reviewed?		YES NO N/A						
Are revisions to the	☐ YES ☑NO ☐ N/A									

Section/Page Number	Date Revised or Planned Date of Revision	Revision Description

	Annual Comprehensive S	ite Compli	ance Evaluation (A	ACSCE) continued			
Attach an explan	Page 2 of 2						
Potential Pollutant Source/Industrial Activity as identified in your SWPPP) Northeast Area Flares Cooling Towers	Have any BMPs not been fully implemented?	☐ YES NO	If yes, to any of the three	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
	Are any BMPs not effective in reducing and preventing pollutants in storm water discharges and NSWDs?	☐ YES NO	questions, complete the next two				
-Discharge Points 1, 2, & 3	Are additional/revised BMPs necessary?	☐ YES NO	columns of this form.				
Potential Pollutant Source/Industrial Activity (as identified in your SWPPP)	Have any BMPs not been fully implemented?	□ yes □ No	If yes, to any of the three	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
Northwest Area -Flares -Cooling Towers -Cogen	Are any BMPs not effective in reducing and preventing pollutants in storm water discharges and NSWDs?	□ YES ☑ NO	questions, complete the next two				
-Maintenance -Discharge Points 4 & 5	Are additional/revised BMPs necessary?	□ yes □ No	columns of this form.				
Potential Pollutant Source/Industrial Activity (as identified in your SWPPP)	Have any BMPs not been fully implemented?	☐ YES NO	If yes, to any of the three	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
Γank Farms	Are any BMPs not effective in reducing and preventing pollutants in storm water discharges and NSWDs?	□ yes ☑ No	questions, complete the next two				
	Are additional/revised BMPs necessary?	☐ YES NO	form.				

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

967 CXUS56 KLOX Ø11255 CF6LGB PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: JANUARY
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

1 70 43 57 1 8 0 0.00 M M 3.7 14 290 M M 0 8 1 2 62 46 54 -2 11 0 0.00 M M 1.8 8 170 M M 0 1 1 8 63 47 55 -1 10 0.00 M M 2.1 9 200 M M 2 18 2 63 4 65 4 -2 11 0 0.00 M M 2.7 17 300 M M 2 18 2 66 3 49 56 0 9 0 0.00 M M 2.3 8 170 M M 1 128 1 6 6 8 46 57 1 8 0 0.00 M M 2.2 10 150 M M 1 128 1 6 6 68 46 57 1 8 0 0.00 M M 2.4 10 190 M M 3 128 1 7 7 7 0 46 58 2 7 0 0.00 M M 2.4 10 190 M M 3 128 1 8 64 48 56 -1 9 0 0.00 M M 1.4 12 180 M M 3 128 1 8 64 48 56 -1 9 0 0.00 M M 2.4 10 190 M M 5 128 1 1 7 7 0 0.00 M M 3.2 13 290 M M 0 1 1 1 28 1 1 7 5 44 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 1 1 7 5 44 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 1 1 7 7 44 58 1 7 0 0.00 M M 3.2 13 290 M M 0 1 1 1 7 7 4 3 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 1 1 7 7 4 3 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 1 1 7 7 4 4 60 3 5 0 0.00 M M 2.3 10 10 10 10 10 10 10 10 10 10 10 10 10		TEMPE						:PCPN:		SNOW:	WII				SHINE			:PK	3917
1 70 43 57 1 8 0 0.00 M M 3.7 14 290 M M 0 8 1 2 62 46 54 -2 11 0 0.00 M M 1.8 8 170 M M 0 1 1 3 60 47 54 -2 11 0 0.00 M M 2.1 9 200 M M 5 128 1 4 63 47 55 -1 10 0 0.00 M M 2.7 17 300 M M 2 18 2 5 63 49 56 0 9 0 0.00 M M 2.3 8 170 M M 4 18 1 6 68 46 57 1 8 0 0.00 M M 2.3 8 170 M M 4 18 1 6 68 46 57 1 8 0 0.00 M M 2.2 10 150 M M 1 1 128 1 7 70 46 58 2 7 0 0.00 M M 2.4 10 190 M M 3 128 1 8 64 48 56 -1 9 0 0.00 M M 2.4 10 190 M M 5 128 1 9 73 43 58 1 7 0 0.00 M M 1.9 10 320 M M 4 128 1 10 72 48 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 11 75 44 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 12 72 44 58 1 7 0 0.00 M M 3.2 13 290 M M 0 1 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 14 83 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 1 15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M 0 0 1 16 82 49 66 9 0 1 0.00 M M 3.4 9 310 M 0 0 1 17 87 53 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.4 9 310 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 20 77 56 67 10 0 2 0.00 M M 3.8 10 130 M M 2 1 21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 1 22 61 52 57 0 8 8 0 0.00 M M 3.6 13 200 M M 0 1 24 58 41 50 -7 15 0 0.37 M M 3.0 12 290 M M 0 1 25 55 44 6 50 -7 15 0 0.37 M M 3.0 12 290 M M 1 1 1 2 25 55 41 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 1 2 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 1 2 27 59 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 2 29 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 2 29 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 2 29 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 2 29 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 2 29 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 2 29 57 46 52 -5 13 0 0.00 M M 4.5 10 300 M M 0 1										9	10	11	12						
1 70 43 57 1 8 0 0.00 M M 3.7 14 290 M M 0 8 1 2 62 46 54 -2 11 0 0.00 M M 1.8 8 170 M M 0 1 3 60 47 54 -2 11 0 0.00 M M 2.1 9 200 M M 5 128 1 4 63 47 55 -1 10 0 0.00 M M 2.7 17 300 M M 2 18 2 5 63 49 56 0 9 0 0.00 M M 2.3 8 170 M M 4 18 1 6 68 46 57 1 8 0 0.00 M M 2.2 10 150 M M 1 128 1 7 70 46 58 2 7 0 0.00 M M 2.2 10 150 M M 1 128 1 8 64 48 56 -1 9 0 0.00 M M 1.4 12 180 M M 3 128 1 9 73 43 58 1 7 0 0.00 M M 1.9 10 320 M M 4 128 1 11 75 44 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 11 75 44 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 12 72 44 58 1 7 0 0.00 M M 3.2 14 290 M M 0 1 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 16 82 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.4 9 310 M M 0 1 19 69 52 61 4 4 0 0.00 M M 3.8 10 130 M 1 2 21 68 53 61 4 4 0 0.00 M M 3.8 10 130 M 1 2 21 68 53 61 4 4 0 0.00 M M 3.8 10 130 M 1 2 21 68 53 61 4 4 0 0.00 M M 3.8 10 130 M 1 2 22 65 55 41 48 -9 17 0 0.00 M M 3.6 13 200 M M 0 1 22 75 946 53 -4 12 0 0.00 M M 5.2 13 210 M M 0 1 22 75 946 53 -4 12 0 0.00 M M 3.6 13 200 M M 0 1 22 75 946 53 -4 12 0 0.00 M M 3.6 13 200 M M 0 1 22 75 946 53 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 1 31 77 47 75 48 50 -7 15 0 T M M 4.5 15 340 M M 8 13 1 31 77 47 75 48 50 -7 15 0 T M M 4.5 15 340 M M 8 13 1 31 77 47 75 48 50 -7 15 0 0.00 M M 6.0 14 120 M M 8 13 1 32 75 946 53 -4 12 0 0.00 M M 6.5 17 290 M M 8 13 1 31 77 47 75 946 53 -4 12 0 0.00 M M 6.5 17 290 M M 8 13 1 31 77 47 75 946 53 -4 12 0 0.00 M M 6.5 17 290 M M 8 13 1 31 77 47 75 946 53 -4 12 0 0.00 M M 7.7 12 290 M M 0 1 1	DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW					MIN	PSBL	5-5	WX.	SPD	DR
2 62 46 54 -2 11 0 0.00 M M 1.8 8 170 M M 0 1 1 1 3 60 47 54 -2 11 0 0.00 M M 2.1 9 200 M M 5 128 1 4 63 47 55 -1 10 0 0.00 M M 2.7 17 300 M M 2 18 2 5 63 49 56 0 9 0 0.00 M M 2.3 8 170 M M 4 18 1 6 68 46 57 1 8 0 0.00 M M 2.2 10 150 M M 1 128 1 7 70 46 58 2 7 0 0.00 M M 2.4 10 190 M M 5 128 1 7 70 46 58 2 7 0 0.00 M M 1.4 12 180 M M 3 128 1 8 64 48 56 -1 9 0 0.00 M M 1.4 12 180 M M 5 128 1 9 73 43 58 1 7 0 0.00 M M 1.9 10 320 M M 4 128 1 10 72 48 60 3 5 0 0.00 M M 3.2 13 290 M M 0 11 75 44 60 3 5 0 0.00 M M 3.2 13 290 M M 0 11 75 44 60 3 5 0 0.00 M M 2.3 12 310 M 0 1 12 72 44 58 1 7 0 0.00 M M 2.3 12 310 M M 0 1 1 13 77 43 60 3 5 0 0.00 M M 2.3 10 100 M M 0 1 1 13 77 43 60 3 5 0 0.00 M M 2.8 10 160 M M 0 1 1 15 91 49 70 13 0 5 0.00 M M 2.8 10 160 M M 0 1 1 18 74 48 61 4 4 0 0.00 M M 2.6 12 200 M M 0 1 1 18 74 48 61 4 4 0 0.00 M M 3.0 12 290 M M 0 1 1 19 69 52 61 4 4 0 0.00 M M 3.8 12 290 M M 0 1 1 19 69 52 61 4 4 0 0.00 M M 3.8 12 290 M M 0 1 1 19 69 52 61 4 4 0 0.00 M M 3.8 12 290 M M 0 1 1 19 69 52 61 4 4 0 0.00 M M 3.8 12 290 M M 0 1 1 19 69 52 61 4 4 0 0.00 M M 3.8 12 290 M M 0 1 1 19 69 52 61 4 4 0 0.00 M M 3.8 12 290 M M 0 1 1 19 69 52 61 4 4 0 0.00 M M 3.8 12 290 M M 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	==	4==4:				222													===
3 60 47 54 -2 11 0 0.00 M M 2.1 9 200 M M 5 128 1 4 63 47 55 -1 10 0 0.00 M M 2.7 17 300 M M 2 18 2 5 63 49 56 0 9 0 0.00 M M 2.3 8 170 M M 4 18 1 6 68 46 57 1 8 0 0.00 M M 2.2 10 150 M M 1 128 1 7 70 46 58 2 7 0 0.00 M M 1.4 12 180 M M 3 128 1 8 64 48 56 -1 9 0 0.00 M M 1.4 12 180 M M 3 128 1 8 64 48 56 -1 9 0 0.00 M M 1.9 10 320 M M 4 128 1 10 72 48 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 11 75 44 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 12 72 44 58 1 7 0 0.00 M M 3.2 14 290 M M 0 1 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 16 82 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.4 9 310 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 20 77 56 67 10 0 2 0.00 M M 3.8 10 130 M M 2 1 21 68 53 61 4 4 0 0.00 M M 3.8 10 130 M M 0 1 22 61 52 57 0 8 0 0.00 M M 3.6 13 200 M M 2 2 24 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 2 2 25 55 41 48 -9 17 0 0.37 M M 3.0 12 290 M M 0 1 27 59 46 53 -4 12 0 0.00 M M 5.2 13 210 M M 0 1 1 27 59 46 53 -4 12 0 0.00 M M 5.2 13 210 M M 1 1 1 2 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 2 29 57 46 52 -5 13 0 0.34 M M 4.5 16 300 M M 8 13 1 1 31 77 47 59 2 6 0 0.00 M M 4.5 16 300 M M 0 1 1 31 77 47 59 2 6 0 0.00 M M 4.5 16 300 M M 0 1 1	1	70	43	57	1	8	0	0.00	M	М	3.7	7 14	290	М	М	0	8	16	29
4 63 47 55 -1 10 0 0.00 M M 2.7 17 300 M M 2 18 2 18 5 63 49 56 0 9 0 0.00 M M 2.3 8 170 M M 4 18 1 6 68 46 57 1 8 0 0.00 M M 2.1 150 M M 1 128 1 7 70 46 58 2 7 0 0.00 M M 1.4 12 180 M M 3 128 1 8 64 48 56 -1 9 0 0.00 M M 1.4 12 180 M M 5 128 1 9 73 43 58 1 7 0 0.00 M M 1.9 10 320 M M 4 128 1 10 72 48 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 1 75 44 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 1 77 43 60 3 5 0 0.00 M M 2.3 12 310 M M 0 1 1 1 3 77 43 60 3 5 0 0.00 M M 2.3 12 310 M M 0 1 1 1 75 44 60 3 5 0 0.00 M M 2.3 12 310 M M 0 1 1 1 75 44 58 1 7 0 0.00 M M 2.3 12 310 M M 0 1 1 1 75 7 43 60 3 5 0 0.00 M M 2.3 12 310 M M 0 1 1 1 75 7 43 60 3 5 0 0.00 M M 2.3 12 310 M M 0 1 1 1 75 7 43 60 3 5 0 0.00 M M 2.3 12 310 M M 0 1 1 1 75 7 43 60 3 5 0 0.00 M M 2.3 12 310 M M 0 1 1 1 75 7 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 1 1 7 87 53 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 1 1 7 87 53 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 1 1 7 87 53 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 1 1 87 53 70 13 0 5 0.00 M M 3.8 10 130 M M 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	62	46	54	-2	11	0	0.00	M	M	1.8	8 8	170	M	M	0	1	13	29
5 63 49 56 0 9 0 0 0 0 M M 2.3 8 170 M M 4 18 1 6 68 46 57 1 8 0 0.00 M M 2.2 10 150 M M 1 128 1 7 70 46 58 2 7 0 0 0.00 M M 1.4 12 180 M M 3 128 1 8 64 48 56 -1 9 0 0.00 M M 2.4 10 190 M M 5 128 1 9 73 43 58 1 7 0 0.00 M M 1.9 10 320 M M 4 128 1 10 72 48 60 3 5 0 0.00 M M 3.2 13 290 M M 0 11 75 44 60 3 5 0 0.00 M M 3.2 13 290 M M 0 11 75 44 58 1 7 0 0.00 M M 3.2 14 290 M M 0 11 75 44 58 1 7 0 0.00 M M 3.2 14 290 M M 0 11 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 11 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 11 15 91 49 70 13 0 5 0.00 M M 3.2 14 290 M M 0 11 15 91 49 70 13 0 5 0.00 M M 3.2 10 160 M M 0 11 17 87 53 70 13 0 5 0.00 M M 3.4 9 310 M M 0 11 17 87 53 70 13 0 5 0.00 M M 3.8 10 130 M 0 11 18 74 48 61 4 0 0.00 M M 3.8 10 130 M M 0 11 19 69 52 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 2 2 2 2 2 6 1 52 57 0 8 0 0.00 M M 3.0 12 290 M M 0 1 1 2 2 5 5 5 41 48 -9 17 0 0.37 M M 3.0 12 290 M M 1 1 1 2 2 2 5 5 5 41 48 -9 17 0 0.07 M M 3.0 12 290 M M 1 1 1 2 2 2 5 5 5 41 48 -9 17 0 0.00 M M 6.2 15 200 M M 1 1 1 2 2 2 5 5 5 41 48 -9 17 0 0.00 M M 6.5 17 290 M M 1 1 1 2 2 5 5 5 41 48 -9 17 0 0.00 M M 6.5 17 290 M M 1 1 1 2 2 5 5 5 41 48 -9 17 0 0.00 M M 6.5 17 290 M M 1 1 1 2 2 5 5 5 41 48 -9 17 0 0.00 M M 6.5 17 290 M M 1 1 1 2 2 5 5 5 46 52 -5 13 0 0.34 M M 6.5 17 290 M M 1 1 1 2 2 5 5 5 46 52 -5 13 0 0.04 M M 6.5 17 290 M M 1 1 1 2 2 5 5 5 46 52 -5 13 0 0.04 M M 6.5 17 290 M M 1 1 1 2 2 5 5 5 46 52 -5 13 0 0.04 M M 6.5 17 290 M M 1 1 1 2 2 5 5 5 46 52 -5 13 0 0.04 M M 6.5 17 290 M M 1 1 1 2 2 5 5 5 46 52 -5 13 0 0.04 M M 6.5 17 290 M M 1 1 1 2 2 5 5 5 46 52 -5 13 0 0.04 M M 6.5 17 290 M M 1 1 1 1 2 2 5 5 5 46 52 -5 13 0 0.04 M M 6.5 17 290 M M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	60	47	54	-2	11	0	0.00	M	M	2.:	1 9	200	M	M	5	128	11	20
6 68 46 57 1 8 0 0.00 M M 2.2 10 150 M M 1 128 1 7 70 46 58 2 7 0 0.00 M M 1.4 12 180 M M 3 128 1 8 64 48 56 -1 9 0 0.00 M M 1.4 12 180 M M 5 128 1 9 73 43 58 1 7 0 0.00 M M 1.9 10 320 M M 4 128 1 10 72 48 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 11 75 44 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 12 72 44 58 1 7 0 0.00 M M 2.3 12 310 M M 0 1 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 14 83 49 66 9 0 1 0.00 M M 3.2 14 290 M M 0 1 15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 16 82 49 66 9 0 1 0.00 M M 2.6 12 200 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 1 22 61 52 57 0 8 0 0.00 M M 3.6 13 200 M M 0 1 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 3 1 24 58 41 50 -7 15 0 0.37 M M 3.0 12 290 M M 5 1 25 55 41 48 -9 17 0 0.07 M M 3.3 12 290 M M 5 1 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 27 59 46 53 -4 12 0 0.00 M M 6.5 17 290 M M 1 29 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 6 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	4	63	47	55	-1	10	0	0.00	M	M	2.	7 17	300	M	M	2	18	20	30
7 70 46 58 2 7 0 0.00 M M 1.4 12 180 M M 3 128 1 8 64 48 56 -1 9 0 0.00 M M 2.4 10 190 M M 5 128 1 9 73 43 58 1 7 0 0.00 M M 1.9 10 320 M M 4 128 1 10 72 48 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 11 75 44 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 12 72 44 58 1 7 0 0.00 M M 2.3 12 310 M M 0 1 13 77 43 60 3 5 0 0.00 M M 2.3 12 310 M M 0 1 14 83 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 1 15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 16 82 49 66 9 0 1 0.00 M M 3.4 9 310 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.8 10 130 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 1 22 61 52 57 0 8 0 0.00 M M 3.6 13 200 M M 0 1 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 0 1 24 58 41 50 -7 15 0 T M M 13.3 31 290 M M 3 1 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 1 27 59 46 53 -4 12 0 0.00 M M 5.2 13 210 M M 1 1 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 29 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 20 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 20 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 20 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 21 50 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 22 57 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 23 54 46 50 -7 15 0 0 0.00 M M 6.0 14 120 M M 5 1 24 58 41 50 -7 15 0 0.00 M M 6.5 17 290 M M 1 1 1 25 59 46 53 -4 12 0 0.00 M M 6.5 17 290 M M 1 1 1 26 56 39 48 -9 17 0 0.00 M M 6.5 17 290 M M 1 1 1 27 59 46 52 -5 13 0 0.49 M M 6.5 10 300 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 0 1	5	63	49	56	0	9	0	0.00	M	M	2.	3 8	170	M	M	4	18	11	21
8 64 48 56 -1 9 0 0.00 M M 2.4 10 190 M M 5 128 1 9 73 43 58 1 7 0 0.00 M M 1.9 10 320 M M 4 128 1 10 72 48 60 3 5 0 0.00 M M 3.2 13 290 M M 0 11 75 44 60 3 5 0 0.00 M M 3.2 14 290 M M 0 12 72 44 58 1 7 0 0.00 M M 2.3 12 310 M M 0 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 14 83 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M M 0 16 82 49 66 9 0 1 0.00 M M 2.6 12 200 M M 0 17 87 53 70 13 0 5 0.00 M M 3.0 12 290 M M 0 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 0 19 69 52 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 2 22 61 52 57 0 8 0 0.00 M M 3.6 13 200 M M 0 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 0 24 58 41 50 -7 15 0 0.37 M M 3.0 12 290 M M 1 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 1 26 56 39 48 -9 17 0 0.17 M M 13.3 31 290 M M 1 27 59 46 53 -4 12 0 0.00 M M 5.2 13 210 M M 1 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 30 63 42 53 -4 12 0 0.00 M M 6.5 17 290 M M 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 72 45 59 46 52 -5 13 0 0.34 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 72 45 59 46 52 53 -4 12 0 0.00 M M 4.5 10 300 M M 0 31 72 45 59 46 52 53 -4 12 0 0.00 M M 4.5 10 300 M M 0 31 72 45 59 46 52 53 -4 12 0 0.00 M M 4.5 10 300 M M 0 31 72 45 59 50 50 50 50 50 50 50 50 5	6	68	46	57	1	8	0	0.00	M	M	2.2	2 10	150	M	M	1	128	12	16
9 73 43 58 1 7 0 0.00 M M 1.9 10 320 M M 4 128 1 10 72 48 60 3 5 0 0.00 M M 3.2 13 290 M M 0 11 75 44 60 3 5 0 0.00 M M 3.2 14 290 M M 0 12 72 44 58 1 7 0 0.00 M M 2.3 12 310 M M 0 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 14 83 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 15 91 49 70 13 0 5 0.00 M M 2.8 10 160 M M 0 16 82 49 66 9 0 1 0.00 M M 2.6 12 200 M M 0 17 87 53 70 13 0 5 0.00 M M 3.4 9 310 M M 0 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 0 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 2 1 19 69 52 61 4 4 0 0.00 M M 3.6 13 200 M M 0 21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 22 61 52 57 0 8 0 0.00 M M 3.6 13 200 M M 0 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 7 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 1 24 58 41 50 -7 15 0 0.37 M M 3.0 12 290 M M 1 25 55 41 48 -9 17 0 0.00 M M 6.2 15 220 M M 7 26 56 39 48 -9 17 0 0.00 M M 6.2 15 220 M M 7 27 59 46 52 -5 13 0 0.34 M M 5.2 13 210 M M 1 28 61 43 52 -5 13 0 0.34 M M 6.5 17 290 M M 1 29 57 46 52 -5 13 0 0.34 M M 6.5 17 290 M M 1 31 71 47 59 2 6 0 0.00 M M 4.5 15 340 M M 8 13 30 63 42 53 -4 12 0 0.00 M M 4.5 15 340 M M 8 13 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 70 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 70 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 70 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 70 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 70 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 70 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 70 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 70 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 70 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 31 70 47 50 40 40 40 40 40 40 40	7	70	46	58	2	7	0	0.00	M	M	1.4	4 12	180	M	M	3	128	15	18
10 72 48 60 3 5 0 0.00 M M 3.2 13 290 M M 0 1 11 75 44 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 12 72 44 58 1 7 0 0.00 M M 2.3 12 310 M M 0 1 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 14 83 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 1 15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 16 82 49 66 9 0 1 0.00 M M 2.6 12 200 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.0 12 290 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M 0 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 2 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 3.6 13 200 M M 0 1 22 61 52 57 0 8 0 0.00 M M 3.6 13 200 M M 0 1 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 1 24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 4 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 22 25 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 22 26 51 52 57 0 8 0.34 M M 5.2 13 210 M M 1 1 1 22 27 59 46 53 -4 12 0 0.00 M M 6.5 17 290 M M 1 1 1 22 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 4.5 15 340 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 4.5 10 300 M M 0 1 1 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 1 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	8	64	48	56	-1	9	0	0.00	M	M	2.4	4 10	190	M	M	5	128	12	19
11 75 44 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 12 72 44 58 1 7 0 0.00 M M 2.3 12 310 M M 0 1 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 14 83 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 1 15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 16 82 49 66 9 0 1 0.00 M M 2.6 12 200 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.0 12 290 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 9.7 23 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 3.6 13 200 M M 0 1 22 61 52 57 0 8 0 0.00 M M 3.6 13 200 M M 0 1 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 0 1 24 58 41 50 -7 15 0 0.37 M M 3.0 12 290 M M 1 1 1 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 4 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 23 2 25 55 41 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	9	73	43	58	1	7	0	0.00	M	M	1.5	9 10	320	M	M	4	128	12	31
12 72 44 58 1 7 0 0.00 M M 2.3 12 310 M M 0 1 13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 14 83 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 1 15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 16 82 49 66 9 0 1 0.00 M M 2.6 12 200 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.0 12 290 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 9.7 23 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 3.6 13 200 M M 0 1 22 61 52 57 0 8 0 0.00 M M 3.6 13 200 M M 0 1 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 25 55 41 48 -9 17 0 0.07 M M 13.3 31 290 M M 3 1 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 27 59 46 53 -4 12 0 0.00 M M 6.5 17 290 M M 1 29 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 31 71 47 59 2 6 0 0.00 M M 2.7 12 290 M M 0 1 31 71 47 59 2 6 0 0.00 M M 2.7 12 290 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	10	72	48	60	3	5	0	0.00	M	M	3.3	2 13	290	M	M	0		15	29
13 77 43 60 3 5 0 0.00 M M 3.2 14 290 M M 0 1 14 83 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 1 15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 16 82 49 66 9 0 1 0.00 M M 2.6 12 200 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.0 12 290 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 9.7 23 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 3.6 13 200 M M 0 1 22 61 52 57 0 8 0 0.00 M M 3.6 13 200 M M 0 1 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 1 24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 25 55 41 48 -9 17 0 0.00 M M 3.3 31 290 M M 3 1 4 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 4.5 10 300 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	11	75	44	60	3	5	0	0.00	M	M	3.2	2 14	290	M	M	0		17	30
14 83 49 66 9 0 1 0.00 M M 2.8 10 160 M M 0 1 15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 16 82 49 66 9 0 1 0.00 M M 2.6 12 200 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.0 12 290 M M 0 1 18 74 48 61 4 4 0 0.00 M M 10.8 32 80 M M 2 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 9.7 23 80 M M 2 2 21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 1 22 61 52 57 0 8 0 0.00 M M 6.2 15 220 M M 7 1 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 1 24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 4 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 4.5 16 300 M M 0 1 31 71 47 59 2 6 0 0.00 M M 2.7 12 290 M M 0 1 31 71 47 59 2 6 0 0.00 M M 2.7 12 290 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	12	72	44	58	1	7	0	0.00	M	M	2.3	3 12	310	M	M	0		14	31
15 91 49 70 13 0 5 0.00 M M 3.4 9 310 M M 0 1 16 82 49 66 9 0 1 0.00 M M 2.6 12 200 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.0 12 290 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 5 8 20 77 56 67 10 0 2 0.00 M M 9.7 23 80 M M 2 21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 22 61 52 57 0 8 0 0.00 M M 6.2 15 220 M M 7 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 26 56 39 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 27 59 46 53 -4 12 0 0.00 M M 5.2 13 210 M M 1 29 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 30 63 42 53 -4 12 0 0.00 M M 4.5 15 340 M M 8 13 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	13	77	43	60	3	5	0	0.00	M	M	3.2	2 14	290	M	M	0		17	29
16 82 49 66 9 0 1 0.00 M M 2.6 12 200 M M 0 1 17 87 53 70 13 0 5 0.00 M M 3.0 12 290 M M 0 1 18 74 48 61 4 4 0 0.00 M M 10.8 32 80 M M 2 1 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 5 8 20 77 56 67 10 0 2 0.00 M M 9.7 23 80 M M 2 21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 1 22 61 52 57 0 8 0 0.00 M M 6.2 15 220 M M 7 1 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 1 24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 129 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 30 63 42 53 -4 12 0 0.00 M M 6.5 17 290 M M 8 13 31 71 47 59 2 6 0 0.00 M M 2.7 12 290 M M 8 13 31 71 47 59 2 6 0 0.00 M M 2.7 12 290 M M 0 1	14	83	49	66	9	0	1	0.00	M	M	2.8	3 10	160	M	M	0		13	15
17 87 53 70 13 0 5 0.00 M M 3.0 12 290 M M 0 1 18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 1 1 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 9.7 23 80 M M 2 2 2 1 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 1 2 61 52 57 0 8 0 0.00 M M 6.2 15 220 M M 7 1 2 3 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 1 2 4 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 5 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 4 2 6 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 2 7 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 2 8 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 2 2 9 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 8 13 1 3 1 3 1 6 3 4 2 53 -4 12 0 0.00 M M 6.5 17 290 M M 8 13 1 3 1 3 1 6 3 4 2 53 -4 12 0 0.00 M M 6.5 17 290 M M 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1	15	91	49	70	13	0	5	0.00	M	M	3.4	4 9	310	M	M	0		11	28
18 74 48 61 4 4 0 0.00 M M 3.8 10 130 M M 2 1 1 19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 9.7 23 80 M M 2 2 21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 2 22 61 52 57 0 8 0 0.00 M M 6.2 15 220 M M 7 1 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 1 24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 4 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 12 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 2 29 57 46 52 -5 13 0 0.49 M M 6.5 17 290 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 4.5 15 340 M M 8 13 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	16	82	49	66	9	0	1	0.00	M	M	2.6	5 12	200	M	M	0		14	200
19 69 52 61 4 4 0 0.00 M M 10.8 32 80 M M 5 8 4 20 77 56 67 10 0 2 0.00 M M 9.7 23 80 M M 2 21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 22 61 52 57 0 8 0 0.00 M M 6.2 15 220 M M 7 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 426 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 30 63 42 53 -4 12 0 0.00 M M 4.5 10 300 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	17	87	53	70	13	0	5	0.00	M	M	3.6	3 12	290	M	M	0		15	7
20 77 56 67 10 0 2 0.00 M M 9.7 23 80 M M 2 22 16 85 361 4 4 0 0.00 M M 3.6 13 200 M M 0 12 22 61 52 57 0 8 0 0.00 M M 6.2 15 220 M M 7 12 3 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 12 4 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 42 6 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 12 7 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 12 8 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 13 0 63 42 53 -4 12 0 0.00 M M 4.5 15 340 M M 8 13 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	18	74	48	61	4	4	0	0.00	M	M	3.8	3 10	130	M	M	2	1	16	14
21 68 53 61 4 4 0 0.00 M M 3.6 13 200 M M 0 1 1 2 2 61 52 57 0 8 0 0.00 M M 6.2 15 220 M M 7 1 1 2 3 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 1 2 4 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 5 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 4 2 6 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 2 7 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 2 8 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 2 9 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 4.5 15 340 M M 8 13 1 3 1 7 1 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	19	69	52	61	4	4	0	0.00	M	M	10.8	3 32	80	M	M	5	8	43	7
22 61 52 57 0 8 0 0.00 M M 6.2 15 220 M M 7 1 23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 1 24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 4 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 12 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 2 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 2.7 12 290 M M 0 1 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	20	77	56	67	10	0	2	0.00	M	M	9.	7 23	80	M	M	2		29	8
23 54 46 50 -7 15 0 0.37 M M 3.0 12 290 M M 8 13 1 24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 4 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 2.7 12 290 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 SM 2115 1446 242 14 1.37 M 128.5 M 70	21	68	53	61	4	4	0	0.00	M	M	3.6	5 13	200	M	M	0		15	190
24 58 41 50 -7 15 0 T M M 4.5 16 260 M M 4 123 2 25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 4 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 2.7 12 290 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 SM 2115 1446 242 14 1.37 M 128.5 M 70	22	61	52	57	0	8	0	0.00	M	M	6.2	2 15	220	M	M	7		19	24
25 55 41 48 -9 17 0 0.17 M M 13.3 31 290 M M 3 1 4 26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 2.7 12 290 M M 0 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 SM 2115 1446 242 14 1.37 M 128.5 M 70	23	54	46	50	-7	15	0	0.37	M	M	3.6	12	290	M	M	8	13	16	270
26 56 39 48 -9 17 0 0.00 M M 5.2 13 210 M M 1 1 1 27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 2 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 2.7 12 290 M M 0 1 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	24	58	41	50	-7	15	0	T	M	M	4.5	5 16	260	M	M	4	123	21	27
27 59 46 53 -4 12 0 0.00 M M 6.0 14 120 M M 5 1 28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 2 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 2.7 12 290 M M 0 1 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1	25	55	41	48	-9	17	0	0.17	M	M	13.3	3 31	290	M	M	3	1	43	28
28 61 43 52 -5 13 0 0.49 M M 6.5 17 290 M M 1 1 2 29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 2.7 12 290 M M 0 1 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 5 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	26	56	39	48	-9	17	0	0.00	M	M	5.2	2 13	210	M	M	1		17	200
29 57 46 52 -5 13 0 0.34 M M 4.5 15 340 M M 8 13 1 30 63 42 53 -4 12 0 0.00 M M 2.7 12 290 M M 0 1 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 	27	59	46	53	-4	12	0	0.00	M	M	6.6	14	120	M	M	5		18	14
30 63 42 53 -4 12 0 0.00 M M 2.7 12 290 M M 0 1 1 31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 	28	61	43	52	-5	13	0	0.49	M	M	6.5	5 17	290	M	M	1	1	23	140
31 71 47 59 2 6 0 0.00 M M 4.5 10 300 M M 0 1 	29	57	46	52	-5	13	0	0.34	M	M	4.5	5 15	340	M	M	8	13	18	310
SM 2115 1446	30	63	42	53	-4	12	0	0.00	M	M	2.7	7 12	290	M	M	0	1	13	280
SM 2115 1446 242 14 1.37 M 128.5 M 70	~~			-									7777	1 - 1					280
***************************************	-27		0 N N			- Y /V-5			100	7			====				12292	=====	
AV 68.2 46.6 4.1 FASTST M M 2 MAX(M										****								IAX (MPI	

43 70

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

STATION: LONG BEACH AIRPORT CA

MONTH: YEAR:

JANUARY 2021

LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA]	[PRECIPIT	ATION DATA]
AVERAGE MONTHLY: 57	4 TOTAL FOR	MONTH: 1.37
DPTR FM NORMAL: 6	7 DPTR FM N	ORMAL: -1.23
HIGHEST: 91 ON 1	GRTST 24H	R 2.32 ON 28-29
LOWEST: 39 ON 2		
	SNOW, ICE	PELLETS, HAIL
	TOTAL MON	TH: M
	GRTST 24H	R M ON M
	GRTST DEP	TH: M ON M
[NO. OF DAYS WITH]	[WEATHER	- DAYS WITH]
MAX 32 OR BELOW:	0.01 INCH	OR MORE: 4
MAX 90 OR ABOVE:	0.10 INCH	OR MORE: 4
MIN 32 OR BELOW:	0.50 INCH	OR MORE: 0
MIN Ø OR BELOW:		
[HDD (BASE 65)]		
TOTAL THIS MO. 24		
DPTR FM NORMAL -1		
TOTAL FM JUL 1 57	CLOUDY (S	CALE 8-10) 0
DPTR FM NORMAL -9		
[CDD (BASE 65)]		
TOTAL THIS MO. 1		
DPTR FM NORMAL 1		
TOTAL FM JAN 1		
DPTR FM NORMAL 1	LOWEST S	LP 29.69 ON 25

SYMBOLS USED IN COLUMN 16

1 = FOG OR MIST 2 = FOG REDUCING VISIBILITY

TO 1/4 MILE OR LESS 3 = THUNDER

4 = ICE PELLETS

5 = HAIL

6 = FREEZING RAIN OR DRIZZLE

7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS

8 = SMOKE OR HAZE

9 = BLOWING SNOW

X = TORNADO

[REMARKS] #FINAL-01-21# These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Monthly)

```
410
CXUS56 KLOX 011730
CLMLGB
```

CLIMATE REPORT NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD 930 AM PST MON FEB 01 2021

...THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF JANUARY 2021...

CLIMATE NORMAL PERIOD: 1981 TO 2010 CLIMATE RECORD PERIOD: 1958 TO 2021

WEATHER		Water State of the			T LAST YEAR'S
	VALUE	DATE(S)	VALUE	FROM NORMA	VALUE L
TEMPERATURE (F)	******	*******			
HIGHEST		01/15			
LOWEST	39	01/26			
AVG. MAXIMUM	68.2	22,50	67.4	0.8	
	46.6			0.5	
MEAN	57.4			0.7	
DAYS MAX >= 90					
DAYS MAX <= 32	0				
DAYS MIN <= 32	0				
DAYS MIN <= 0	0				
PRECIPITATION (
TOTALS	1.37		2.60	-1.23	
DAILY AVG.	0.04				
DAYS >= .01	4				
DAYS >= .10	4				
DAYS >= .50	0				
DAYS >= 1.00	0				
GREATEST					
24 HR. TOTAL		01/28 TO	01/29		
STORM TOTAL	0.49				
DEGREE DAYS					
(이) 로 로마인 구경, (이) 이 시간 (c)	242		259	-17	262
SINCE 7/1	579		676		100
COOLING TOTAL	14		3		79.5.7
SINCE 1/1	14		3	11	
	*****	******		****	
WIND (MPH)					
AVERAGE WIND SP	PEED		4.1		
HIGHEST WIND SP	EED/DIR	ECTION	32/080	DATE	01/19
HIGHEST GUST SP	EED/DIR	ECTION	43/070	DATE	01/19

43/280

01/25

SKY COVER

POSSIBLE SUNSHINE (PERCENT) MM
AVERAGE SKY COVER 0.22
NUMBER OF DAYS FAIR 21
NUMBER OF DAYS PC 8
NUMBER OF DAYS CLOUDY 2

AVERAGE RH (PERCENT) 61

WEATHER CONDITIONS. NUMBER OF DAYS WITH 0 THUNDERSTORM 3 MIXED PRECIP HEAVY RAIN 1 RAIN 4 FREEZING RAIN 0 LIGHT RAIN 5 0 HAIL 0 LT FREEZING RAIN 0 SNOW 0 HEAVY SNOW LIGHT SNOW 0 SLEET 0 FOG W/VIS <= 1/4 MILE FOG 15 6 9 HAZE

⁻ INDICATES NEGATIVE NUMBERS.

R INDICATES RECORD WAS SET OR TIED.

MM INDICATES DATA IS MISSING.

T INDICATES TRACE AMOUNT.

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

353
CXUSS6 KLOX Ø11255
CF6LGB
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: FEBRUARY
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

	TEMPE						:PCPN:		NOW:	WIN	F			SHINE	71.27		:PK 1	
1	2	3	4		6A		7	8	9 12Z	10	11	12 2MIN		14		16		
DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	DPTH	SPD	SPD	DIR	MIN	PSBL	5-5	WX	SPD	DR
===								====						****			*****	
1	71	57	64	7	1	0	Ţ	M	M	100000		300	M	М	6		13	306
2	70	51	61	4	4	0	0.00	M	M	4.5	18	300	M	M	2		20	296
3	65	50	58	1	7		0.00	M	M	3.8	14	280	M	M	4	128	18	276
4	67	50	59	2	6	0	0.00	M	M	4.2	13	290	M	M	5	1	14	296
5	70	48	59	2	6	0	0.00	M	M	3.3	13	290	M	M	0	18	14	296
6	74	45	60	3	5	0	0.00	M	M	2.6	10	290	M	M	0	18	12	300
7	64	48	56	-1	9	0	0.00	M	M			200	M	M	4	128	11	216
8	59	50	55	-2	10	0	0.00	M	M	4.6	12	200	M	M	6	18	14	176
9	59	53	56	-1	9	0	0.00	M	M	4.1	10	180	M	M	7		14	176
10	62	50	56	-1	9	0	0.00	M	M	2.4	1 10	210	M	M	5	18	14	236
11	65	46	56	-1	9	0	0.00	M	M	3.9	15	290	M	M	0	18	18	296
12	67	51	59	2	6	0	0.05	M	M	8.6	29	310	M	M	4	1	34	316
13	62	50	56	-1	9	0	0.00	M	M	7.3	18	320	M	M	5		24	296
14	70	53	62	4	3	0	0.00	M	M	13.8	28	290	M	M	0		32	296
15	62	48	55	-3	10	0	0.00	M	M	4.6	13	180	M	M	1		18	176
16	70	52	61	3	4	0	0.00	M	M	7.2	2 23	320	M	M	3	18	29	326
17	66	46	56	-2	9	0	0.00	M	M	4.6	17	260	M	M	0		24	266
18	70	50	60	2	5	0	0.00	M	M	7.8	20	80	M	M	0		25	86
19	71	44	58	0	7	0	0.00	M	M	3.1	13	290	M	M	0		14	226
20	72	45	59	1	6	0	0.00	M	M	7.8	30	310	M	M	1		37	356
21	76	44	60	2	5	0	0.00	M	M	5.8	18	290	M	M	0		21	286
22	84	49	67	9	0	2	0.00	M	M	5.6	16	300	M	M	0		25	96
23	75	47	61	3	4	0	0.00	M	M	3.4	12	310	M	M	0	1	14	286
24	67	50	59	1	6	0	0.00	M	M	3.6	10	210	M	M	1	1	M	1
25	77	48	63	5	2		0.00	M	M	3.8	14	290	M	M	1	18	17	316
26	72	44	58	0	7	0	0.00	M	M	3.5	13	200	M	M	0		16	226
27	69	48	59	1	6		0.00	M	M			290	M	M	2			296
28	74	47	61	3	4	0	0.00	M	M	- 237	21	100	M	M	0		27	86
	1930				168	2	0.05			139.9		====	M		57			TEE
															W. S.			
AV	68.9	48.	7					MTCC				STST 310	M	M	2		MAX (MP) 37 350	H)

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

STATION: LONG BEACH AIRPORT CA

MONTH: FEBRUARY YEAR: 2021 LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA]	[PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 58.8 DPTR FM NORMAL: 1.2 HIGHEST: 84 ON 22 LOWEST: 44 ON 26,2	DPTR FM NORMAL: -3.04 2 = FOG REDUCING VISIBILITY GRTST 24HR 0.05 ON 12-12 TO 1/4 MILE OR LESS 1 3 = THUNDER
	SNOW, ICE PELLETS, HAIL TOTAL MONTH: M GRTST 24HR M ON M GRTST DEPTH: M ON M TOTAL MONTH: M GRTST DEPTH: M ON M TOTAL MONTH: M TOTAL MO
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH] 9 = BLOWING SNOW X = TORNADO
MAX 32 OR BELOW: 0 MAX 90 OR ABOVE: 0 MIN 32 OR BELOW: 0	0.01 INCH OR MORE: 1 0.10 INCH OR MORE: 0 0.50 INCH OR MORE: 0
MIN Ø OR BELOW: Ø	1.00 INCH OR MORE: 0

[HDD (BASE 65)]

TOTAL THIS MO. 168 CLEAR (SCALE 0-3) 18 -44 PTCLDY (SCALE 4-7) 10 DPTR FM NORMAL 747 TOTAL FM JUL 1 CLOUDY (SCALE 8-10) 0 DPTR FM NORMAL -145

[CDD (BASE 65)]

TOTAL THIS MO. 2

DPTR FM NORMAL -3 [PRESSURE DATA]

TOTAL FM JAN 1 HIGHEST SLP 30.33 ON 18 16 DPTR FM NORMAL 13 LOWEST SLP 29.81 ON 13

[REMARKS] #FINAL-02-21# These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Monthly)

```
992
CXUS56 KLOX 011730
CLMLGB
CLIMATE REPORT
NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD
930 AM PST MON MAR 01 2021
... THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF FEBRUARY 2021...
CLIMATE NORMAL PERIOD: 1981 TO 2010
CLIMATE RECORD PERIOD: 1958 TO 2021
                                NORMAL DEPART
WEATHER
               OBSERVED
                                                LAST YEAR'S
               VALUE DATE(S) VALUE
                                       FROM
                                                VALUE
                                       NORMAL
TEMPERATURE (F)
HIGHEST
                 84 02/22
LOWEST
                 44 02/19
                     02/21
                     02/26
                                         1.7
AVG. MAXIMUM 68.9
                                 67.2
AVG. MINIMUM
               48.7
                                 48.0
                                         0.7
MEAN
               58.8
                                 57.6
                                         1.2
DAYS MAX >= 90
DAYS MAX <= 32
DAYS MIN <= 32
DAYS MIN <= 0
PRECIPITATION (INCHES)
TOTALS
                              3.09
                                        -3.02
DAILY AVG.
               0.00
DAYS >= .01
                2
DAYS >= .10
                0
DAYS >= .50
                 0
DAYS >= 1.00
GREATEST
24 HR. TOTAL
             0.05
                     02/12 TO 02/12
STORM TOTAL
               0.05
DEGREE DAYS
                                  212
                                         -44
                                                  185
HEATING TOTAL
                168
                                        -145
                                                  829
SINCE 7/1
                747
                                  892
                2
COOLING TOTAL
                                    5
                                          -3
                                                  12
SINCE 1/1
                16
                                   3
                                          13
                                                  12
WIND (MPH)
AVERAGE WIND SPEED
                              5.0
HIGHEST WIND SPEED/DIRECTION
                              30/310
                                       DATE 02/20
HIGHEST GUST SPEED/DIRECTION
                              37/350
                                       DATE 02/20
```

0

0

0

0

0

0

2

SKY COVER

LIGHT SNOW

POSSIBLE SUNSHINE (PERCENT) MM
AVERAGE SKY COVER 0.20
NUMBER OF DAYS FAIR 20
NUMBER OF DAYS PC 8
NUMBER OF DAYS CLOUDY 0

AVERAGE RH (PERCENT) 59

WEATHER CONDITIONS. NUMBER OF DAYS WITH THUNDERSTORM 0 MIXED PRECIP HEAVY RAIN 0 RAIN LIGHT RAIN 1 FREEZING RAIN LT FREEZING RAIN 0 HAIL HEAVY SNOW 0 SNOW

0

SLEET

FOG W/VIS <= 1/4 MILE

FOG 13 HAZE 9

- INDICATES NEGATIVE NUMBERS.

R INDICATES RECORD WAS SET OR TIED.

MM INDICATES DATA IS MISSING.

T INDICATES TRACE AMOUNT.

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000 CXUS56 KLOX 011155 CF6LGB PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: MARCH
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

	TEMPE	40.	300				:PCPN:		SNOW: WIND				:SUNSHINE: SKY					
1	2	3	4		6A		7	8	9 12Z	10	11	12 2MIN	13	14		16		18
70	2 11 11 1		4.79		7 100	F3/41	WTR	×1117	65.019	SPD	SPD	DIR	1060	PSBL		0.465	SPD	211
1	73	47	60	2	5	0	0.00	М	м	4.6	5 14	70	М	M	0	8	18	76
2	73	44	59	0	6		0.00	M	M	- 00 G		200	M	M	0		14	
3	59	45	52	-7	13	0	0.48	M	M	4.	20	40	M	M	5	13	23	4
4	65	43	54	-5	11	- 697	0.00	M	M	4.7	7 15	290	M	M	0		19	280
5	78	47	63	4	2	0	0.00	M	M	6.4	1 18	280	M	M	0		23	296
6	68	48	58	-1	7	0	0.00	M	M	4.8	3 16	290	M	M	0	1	19	296
7	62	51	57	-2	8	0	0.00	M	M	3.4	1 12	190	M	M	6		17	200
8	66	51	59	0	6	0	0.00	M	M	4.8	18	290	M	M	6		22	31
9	63	46	55	-4	10	0	0.00	M	M	6.7	7 23	280	M	M	1		30	290
10	59	48	54	-5	11	0	0.60	M	M	7.3	L 20	280	M	M	7	13	26	290
11	57	45	51	-8	14	0	0.21	M	M	4.6	5 14	220	M	M	4	1	19	236
12	60	42	51	-8	14	0	0.00	M	M	4.5	18	290	M	M	1		21	30
13	62	45	54	-5	11	0	0.00	M	M	4.6	5 15	290	M	M	2	8	21	250
14	61	51	56	-3	9	0	0.00	M	M	6.6	16	290	M	M	8		18	296
15	57	47	52	-8	13	0	0.18	M	M	12.6	5 25	290	M	M	6	1	40	250
16	58	45	52	-8	13	0	0.00	M	M	5.9	15	290	M	M	0		M	1
17	65	44	55	-5	10	0	0.00	M	M	3.9	13	300	M	M	0		M	1
18	67	48	58	-2	7	0	0.00	M	M	4.5	17	290	M	M	0		M	- 1
19	72	49	61	1	4	0	0.00	M	M	5.5	18	290	M	M	0		24	296
20	65	52	59	-1	6	0	0.00	M	M	4.7	7 17	290	M	M	3	1	20	296
21	68	49	59	-1	6	0	0.00	M	M	5.3	18	280	M	M	0		23	296
22	65	48	57	-3	8	0	0.00	M	M	4.5	13	300	M	M	0		16	186
23	68	53	61	1	4	0	0.00	M	M	9.9	30	290	M	M	3		36	296
24	73	47	60	0	5	0	0.00	M	M	7.2	2 21	280	M	M	0	1	32	266
25	60	52	56	-4	9	0	0.00	M	M	7.5	13	260	M	M	6		21	286
26	65	48	57	-3	8	0	0.00	M	M	5.2	17	290	M	M	2		23	296
27	79	47	63	3	2	0	0.00	M	M	4.8	15	300	M	M	0		M	1
28	89	50	70	10	0	5	0.00	M	M	5.4	1 23	290	M	M	0		27	290
29	74	51	63	3	2	0	0.00	M	M	4.5	15	200	M	M	0		21	210
30	69	54	62	1	3	0	0.00	M	M	5.5	13	200	M	M	3		17	176
31	88	53	71	10	0	6	0.00	М	М	1 3 5 4 5 1	20	U 1570	M	М	0	18	25	86
SM	2088	149	90		227	11	1.47	1		174.4	1		M		63			
	67.4						*=====					STST	М	M	2		MAX (MPI	

40 250

NOTES

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

STATION: LONG BEACH AIRPORT CA

MONTH: MARCH
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

	LONGITOL	DE: 118 9 W
[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 57.7 DPTR FM NORMAL: -1.9 HIGHEST: 89 ON 28 LOWEST: 42 ON 12	GRTST 24HR 0.66 ON 10-11 SNOW, ICE PELLETS, HAIL TOTAL MONTH: M GRTST 24HR M ON M	2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH]	9 = BLOWING SNOW X = TORNADO
	0.01 INCH OR MORE: 4 0.10 INCH OR MORE: 4 0.50 INCH OR MORE: 1 1.00 INCH OR MORE: 0	
[HDD (BASE 65)] TOTAL THIS MO. 227 DPTR FM NORMAL 48 TOTAL FM JUL 1 974 DPTR FM NORMAL -95	CLEAR (SCALE 0-3) 22 PTCLDY (SCALE 4-7) 8 CLOUDY (SCALE 8-10) 1	
[CDD (BASE 65)]		

[PRESSURE DATA]

HIGHEST SLP 30.28 ON 14

LOWEST SLP 29.78 ON 23

[REMARKS] #FINAL-03-21#

TOTAL THIS MO.

DPTR FM NORMAL

TOTAL FM JAN 1

DPTR FM NORMAL

11

27

9

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Monthly)

```
000
CXUS56 KLOX 011630
CLMLGB
```

CLIMATE REPORT NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD 930 AM PDT THU APR 01 2021

... THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF MARCH 2021...

CLIMATE NORMAL PERIOD: 1981 TO 2010 CLIMATE RECORD PERIOD: 1958 TO 2021

WEATHER	OBSERVED			DEPAR	T LAST YEAR'S
	VALUE	DATE(S)	VALUE	FROM NORMA	Charles -
				*****	***********
TEMPERATURE (F)					
HIGHEST	89	03/28			
LOWEST	42	03/12	Law Co.	414	
AVG. MAXIMUM				-1.2	
AVG. MINIMUM	48.1			-2.4	
	57.8		59.6	-1.8	
DAYS MAX >= 90					
DAYS MAX <= 32					
DAYS MIN <= 32	100				
DAYS MIN <= 0	0				
PRECIPITATION (INCHES)				
TOTALS	1.47		1.87	-0.40	
DAILY AVG.	0.05				
DAYS >= .01	4				
DAYS >= .10	4				
DAYS >= .50	1				
DAYS >= 1.00	0				
GREATEST					
	0.66	03/10 TO	03/11		
CONTRACTOR OF THE PROPERTY OF	0.60	31000 0			
DEGREE DAYS					
	227		179	48	199
SINCE 7/1	974		1069	-95	1.70.0
			1009	1	1
COOLING TOTAL SINCE 1/1	11 27		18	9	13
			44.44.444		
WIND (MPH)					
AVERAGE WIND SP	EED		5.6		
HIGHEST WIND SP			30/290	DATE	03/23
CATALON AND SOUTH AND SOUTH AND	PEED/DIRECTION		40/250	DATE	25.00

SKY COVER

HAZE

POSSIBLE SUNSHINE (PERCENT) MM
AVERAGE SKY COVER 0.21
NUMBER OF DAYS FAIR 23
NUMBER OF DAYS PC 7
NUMBER OF DAYS CLOUDY 1

AVERAGE RH (PERCENT) 61

WEATHER CONDITIONS. NUMBER OF DAYS WITH MIXED PRECIP 0 THUNDERSTORM 2 HEAVY RAIN 3 RAIN 3 LIGHT RAIN FREEZING RAIN 0 4 LT FREEZING RAIN 0 HAIL 0 HEAVY SNOW 0 SNOW 0 LIGHT SNOW 0 SLEET 0 FOG W/VIS <= 1/4 MILE FOG 8

3

⁻ INDICATES NEGATIVE NUMBERS.

R INDICATES RECORD WAS SET OR TIED.

MM INDICATES DATA IS MISSING.

T INDICATES TRACE AMOUNT.

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000
CXUS56 KLOX 011155
CF6LGB
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: APRIL
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

	TEMPERATURE IN F:						:PCPN:		SNOW:	WIN				SHINE			:PK WND		
1	2	3	4	5	6A	6B	7	8	9 12Z	10 AVG	11	12	13	14	15	16		18	
							WTR		DPTH	SPD	SPD	DIR		PSBL			SPD		
1 2	90 66	59 55	75 61	14 0	0 4	_	0.00	M M	M M			290 150	M M	M M	9	1	_	290 150	
3	73	54	64	3	1	_	0.00	M	M			280	M	M	_	18	M	M	
4	75	50	63	2	2	_	0.00	М	М		_	290	М	М		18		290	
5	68	53	61	0	4	_	0.00	М	М			310	M	М	2	-0	M	M	
6	68	55	62	1	3	_	0.00	М	М			300	М	М	4		15	180	
7	76	54	65	4	0	0	0.00	М	М			290	М	М	0		М	М	
8	73	54	64	2	1	0	0.00	М	М	5.0	18	300	М	М	1	18	22	310	
9	71	53	62	0	3	0	0.00	М	М	5.4	9	300	М	М	3	1	М	М	
10	75	54	65	3	0	0	0.00	М	М	5.2	10	300	М	М	2	1	М	М	
11	69	57	63	1	2	0	0.00	М	М	5.4	10	150	М	М	7	8	М	М	
12	66	58	62	0	3	0	0.00	М	М	6.7	' 13	220	М	М	10		16	220	
13	64	57	61	-1	4	0	Т	М	М			220	М	М	10		_	200	
14	63	54	59	-3	6	_	0.00	М	М		_	220	М	М	4			190	
15	67	49	58	-4	7	_	0.00	М	М			290	М	М	2			290	
16	69	54	62	0	3	_	0.00	М	М		_	200	М	М	_	8		210	
17	71	54	63	0	2	_	0.00	М	М			300	М	М	3		18	260	
18	87	54	71	8	0	_	0.00	М	М			270	М	М	_	18		280	
19	85	54	70	7	0	_	0.00	М	М		_	280	М	М	0			290	
20 21	64 66	57 57	61 62	-2 -1	4	_	0.00	М	М		_	120 160	М	М	5 9			190 200	
21	62	57 58	60	-3	3 5	_	0.01	M M	M M			290	M M	M M	9 10		23 M	200 M	
23	65	57	61	-3 -2	4	_	0.00	M	M			200	M	M	8			190	
24	66	55	61	-3	4		0.00	M	M		_	300	M	M	7			290	
25	66	55	61	-3	4	0	T	М	М			290	М	М	5			290	
26	66	55	61	-3	4	_	0.01	М	М		_	290	M	М	7			270	
27	67	53	60	-4	5	_	0.00	М	M			280	М	M		8		280	
28	84	51	68	4	0	_	0.00	М	М		_	280	М	М	0	-	_	290	
29	89	55	72	8	0	7	0.00	М	М			290	М	М	0		27	280	
30	89 ====	58	74	10	0		0.00	M	M			300	M	M	0		_	280	
SM	2160	164	1 3		78	40	0.02	 M	1 :	175.8	3	====	М		111	==	======	=	
	72.6			===:	====	====	=====	MISC	:====: }	5.9	FA	==== STST 270	==== M	===== M	4	#	====== MAX(MPH 33 280	 H)	

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6), PAGE 2

STATION: LONG BEACH AIRPORT CA

1 = FOG OR MIST

8 = SMOKE OR HAZE

9 = BLOWING SNOW X = TORNADO

3 = THUNDER 4 = ICE PELLETS

5 = HAIL

2 = FOG REDUCING VISIBILITY

TO 1/4 MILE OR LESS

6 = FREEZING RAIN OR DRIZZLE

VSBY 1/2 MILE OR LESS

7 = DUSTSTORM OR SANDSTORM:

MONTH: APRIL
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16

AVERAGE MONTHLY: 63.4
DPTR FM NORMAL: 1.0
HIGHEST: 90 ON 1
LOWEST: 49 ON 15

TOTAL FOR MONTH: 0.02 DPTR FM NORMAL: -0.58 GRTST 24HR 0.01 ON 21-21

GRTST 24HR 0.01 ON 21-21

SNOW, ICE PELLETS, HAIL TOTAL MONTH: M

GRTST 24HR M ON M GRTST DEPTH: M ON M

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0 0.01 INCH OR MORE: 2
MAX 90 OR ABOVE: 1 0.10 INCH OR MORE: 0
MIN 32 OR BELOW: 0 0.50 INCH OR MORE: 0
MIN 0 OR BELOW: 0 1.00 INCH OR MORE: 0

[HDD (BASE 65)]

TOTAL THIS MO. 78 CLEAR (SCALE 0-3) 17
DPTR FM NORMAL -28 PTCLDY (SCALE 4-7) 8
TOTAL FM JUL 1 1052 CLOUDY (SCALE 8-10) 5

DPTR FM NORMAL -124

[CDD (BASE 65)]
TOTAL THIS MO. 40

DPTR FM NORMAL 11 [PRESSURE DATA]
TOTAL FM JAN 1 67 HTGHEST SLP 30 1

TOTAL FM JAN 1 67 HIGHEST SLP 30.14 ON 3 DPTR FM NORMAL 20 LOWEST SLP 29.72 ON 11

[REMARKS] #FINAL-04-21# These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Monthly)

```
000
CXUS56 KLOX 011630
CLMLGB
CLIMATE REPORT
NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD
930 AM PDT SAT MAY 01 2021
...THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF APRIL 2021...
CLIMATE NORMAL PERIOD: 1981 TO 2010
CLIMATE RECORD PERIOD: 1958 TO 2021
WEATHER
              OBSERVED
                              NORMAL DEPART
                                             LAST YEAR'S
              VALUE DATE(S) VALUE
                                             VALUE
                                     FROM
                                     NORMAL
......
TEMPERATURE (F)
               90 04/01
HIGHEST
              49
LOWEST
                    04/15
                              71.7
53.2
AVG. MAXIMUM 72.0
                                      0.3
AVG. MINIMUM 54.8
                                      1.6
MEAN
              63.4
                              62.4
                                      1.0
DAYS MAX >= 90
DAYS MAX <= 32
DAYS MIN <= 32
                0
DAYS MIN <= 0
PRECIPITATION (INCHES)
TOTALS
             0.02
                               0.60
                                    -0.58
DAILY AVG.
             0.00
DAYS >= .01
DAYS >= .10
                0
DAYS >= .50
                0
DAYS >= 1.00
GREATEST
24 HR. TOTAL
             0.01
                    04/21 TO 04/21
                    04/26 TO 04/26
                    04/21 TO 04/21
                    04/26 TO 04/26
STORM TOTAL
              0.01
DEGREE DAYS
            78
HEATING TOTAL
                               106
                                      -28
                                             104
              1052
                               1176
                                      -124
                                              1132
SINCE 7/1
COOLING TOTAL 40
                               29
                                       11
                                               39
                                47
SINCE 1/1
              67
                                       20
                                               52
WIND (MPH)
                            5.9
AVERAGE WIND SPEED
HIGHEST WIND SPEED/DIRECTION
                                     DATE 04/18
                            25/270
```

25/280 04/28 HIGHEST GUST SPEED/DIRECTION 33/280 DATE 04/18 33/290 04/28

SKY COVER

POSSIBLE SUNSHINE (PERCENT) MM
AVERAGE SKY COVER 0.37
NUMBER OF DAYS FAIR 17
NUMBER OF DAYS PC 8
NUMBER OF DAYS CLOUDY 5

AVERAGE RH (PERCENT) 63

WEATHER CONDITIONS. NUMBER OF DAYS WITH

THUNDERSTORM	0	MIXED PRECIP	0
HEAVY RAIN	0	RAIN	0
LIGHT RAIN	2	FREEZING RAIN	0
LT FREEZING RAIN	0	HAIL	0
HEAVY SNOW	0	SNOW	0
LIGHT SNOW	0	SLEET	0
FOG	7	FOG W/VIS <= 1/4 MILE	0
HAZF	7		

INDICATES NEGATIVE NUMBERS.

R INDICATES RECORD WAS SET OR TIED.

MM INDICATES DATA IS MISSING.

T INDICATES TRACE AMOUNT.

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000
CXUS56 KLOX 011155
CF6LGB
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: MAY
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

TEMPERATURE IN F:							:PCPN:	:	SNOW:	W: WIND :S		:SUNSHINE: SKY				:PK WND		
1	2	3	4	5	6A	6B	7	8	9 12Z	10 AVG	11 MY	12 2MIN	13	14	15	16		18
	MAX						WTR		DPTH	SPD	SPD	DIR					SPD	
1	67	58	63	-1	2	_	0.00	М	М			150	М	М		1	_	150
2	67	59	63	-1	2		0.00	М				160	М	М	5			150
3	75	59	67	3	0		0.00	М				290	М	М	3		М	М
4	79	60	70	5	0		0.00	M				310	М	М	4	4.0	М	М
5	78	60	69	4	0		0.00	М				200	М	М	5	18	_	320
6	70	60	65	0	0		0.00	М				200	М	М	6			180
7 8	69 71	60	65	0	0		0.00	М				280 190	М	М	8			220 200
9	71 68	60 60	66 64	1 -1	0 1		0.00	M M				290	M M	M M	5 7			170
10	67	60	64	-1	1	0	0.00 T	M				210	M	M		18		190
11	73	61	67	2	0	_	0.00	M				280	M	M	7	10	_	290
12	73	61	67	2	0		0.00	M				290	M	М	6	8		250
13	70	60	65	0	0		0.00	М				320	М	М	_	8	M	230 M
14	71	60	66	1	0		0.00	M				300	М	М	5	Ü		300
15	69	60	65	-1	0		0.00	M				200	M	М	9			210
16	66	58	62	-4	3		0.00	М		5.9		190	М	М	10		 M	M
17	68	59	64	-2	1	0	0.00	М	М	5.3	3 10	290	М	М	8		М	М
18	71	59	65	-1	0	0	0.00	М	М			190	М	М	5		М	М
19	71	60	66	0	0	1	0.00	М	М	6.2	2 12	190	М	М	5		17	190
20	70	59	65	-1	0	0	0.00	М	М	7.2	2 13	200	М	М	6		М	М
21	73	56	65	-1	0	0	T	Μ	М	8.6	5 16	270	М	М	2		24	220
22	68	52	60	-6	5	0	0.00	М	М	5.8	3 14	230	М	М	1		21	220
23	74	54	64	-2	1	0	0.00	М	М	5.3	3 15	300	М	М	0			290
24	87	56	72	6	0	7	0.00	М	М			290	М	М	0		25	290
25	77	59	68	2	0	3	0.00	М	М			170	М	М	0		М	М
26	69	62	66	0	0		0.00	М	М			160	М	М	5	8		140
27	72	59	66	0	0		0.00	М			_	190	М	М	3			200
28	73	59	66	0	0		0.00	М				310	М	М	4			310
29	69	59	64	-2	1	_	0.00	М			_	300	М	М	8			290
30	68	61	65	-1	0		0.00	М				180	М	М	8			190
31	70 =====	60	65 	-1 		_	0.00	M 				200	M	M 			18 	200
SM	2213	183	30		17	31	Т	I	M :	191.	5		М		161			
	 71.4			====	====	====	=====	====:	=====			====: STST	==== M	 M	==== 5	====	====== MAX(MPH	-=== 1)

21 290 MISC --->

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6), PAGE 2

LONG BEACH AIRPORT CA STATION:

1 = FOG OR MIST

4 = ICE PELLETS

8 = SMOKE OR HAZE 9 = BLOWING SNOW

3 = THUNDER

X = TORNADO

5 = HAIL

2 = FOG REDUCING VISIBILITY

TO 1/4 MILE OR LESS

6 = FREEZING RAIN OR DRIZZLE

VSBY 1/2 MILE OR LESS

7 = DUSTSTORM OR SANDSTORM:

MONTH: MAY YEAR: 2021 LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16

AVERAGE MONTHLY: 65.2 TOTAL FOR MONTH: Τ DPTR FM NORMAL: -0.3 DPTR FM NORMAL: -0.26 87 ON 24 GRTST 24HR T ON 10-10 HIGHEST: LOWEST: 52 ON 22

SNOW, ICE PELLETS, HAIL

GRTST 24HR Μ ON Μ GRTST DEPTH: M ON М

TOTAL MONTH: M

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0.01 INCH OR MORE: MAX 90 OR ABOVE: 0.10 INCH OR MORE: 0 MIN 32 OR BELOW: 0 0.50 INCH OR MORE: 0 MIN Ø OR BELOW: 1.00 INCH OR MORE: 0

[HDD (BASE 65)]

TOTAL THIS MO. 17 CLEAR (SCALE 0-3) 7 DPTR FM NORMAL PTCLDY (SCALE 4-7) -23 CLOUDY (SCALE 8-10) TOTAL FM JUL 1 1069 DPTR FM NORMAL -101

[CDD (BASE 65)] TOTAL THIS MO. 31

DPTR FM NORMAL [PRESSURE DATA] -24

TOTAL FM JAN 1 98 HIGHEST SLP 30.12 ON 23 DPTR FM NORMAL LOWEST SLP 29.81 ON 2 -8

[REMARKS] #FINAL-05-21# These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Monthly)

```
000
CXUS56 KLOX 011630
CLMLGB
CLIMATE REPORT
NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD
930 AM PDT TUE JUN 01 2021
...THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF MAY 2021...
CLIMATE NORMAL PERIOD: 1991 TO 2020
CLIMATE RECORD PERIOD: 1958 TO 2021
WEATHER
            OBSERVED
                           NORMAL DEPART
                                         LAST YEAR'S
            VALUE DATE(S) VALUE
                                         VALUE
                                  FROM
                                  NORMAL
TEMPERATURE (F)
              87 05/24
HIGHEST
LOWEST
             52
                  05/22
AVG. MAXIMUM 71.4
                            73.1 -1.7
                            57.9
AVG. MINIMUM 59.0
                                   1.1
MEAN
            65.2
                            65.5
                                   -0.3
DAYS MAX >= 90
DAYS MAX <= 32
DAYS MIN <= 32
DAYS MIN <= 0
PRECIPITATION (INCHES)
TOTALS
                            0.26
                                 -0.26
               Τ
DAILY AVG.
DAYS >= .01
DAYS >= .10
DAYS >= .50
DAYS >= 1.00
GREATEST
           Т
24 HR. TOTAL
                  05/21 TO 05/21
STORM TOTAL
            0.00
DEGREE DAYS
           17
HEATING TOTAL
                             40
                                   -23
SINCE 7/1
             1069
                                   -101
                                          1134
                            1170
           30
                                   -25
COOLING TOTAL
                             55
                                           117
SINCE 1/1
              98
                             106
                                    -8
                                           169
WIND (MPH)
AVERAGE WIND SPEED
                          6.2
HIGHEST WIND SPEED/DIRECTION
                          21/290
                                  DATE 05/24
HIGHEST GUST SPEED/DIRECTION
                          25/290
                                  DATE 05/24
```

POSSIBLE SUNSHINE (PERCENT) MM
AVERAGE SKY COVER 0.50
NUMBER OF DAYS FAIR 7
NUMBER OF DAYS PC 17
NUMBER OF DAYS CLOUDY 7

AVERAGE RH (PERCENT) 67

WEATHER CONDITIONS. NUMBER OF DAYS WITH

THUNDERSTORM	0	MIXED PRECIP	0
HEAVY RAIN	0	RAIN	0
LIGHT RAIN	2	FREEZING RAIN	0
LT FREEZING RAIN	0	HAIL	0
HEAVY SNOW	0	SNOW	0
LIGHT SNOW	0	SLEET	0
FOG	3	FOG W/VIS <= 1/4 MILE	0
HAZE	5		

⁻ INDICATES NEGATIVE NUMBERS.

R INDICATES RECORD WAS SET OR TIED.

MM INDICATES DATA IS MISSING.

T INDICATES TRACE AMOUNT.

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

007
CXUS56 KLOX 011155
CF6LGB
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: JUNE
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

	TEMPERATURE IN F:						:PCPN:	PN: SNOW: WIND :SUNSHINE: SK										
1	2	3	4	5	6A	6B	7	8	9 12Z	10	11	====: 12 2MIN	13	14	15	16		18
DY ===	MAX						WTR		DPTH	SPD	SPD	DIR		PSBL			SPD	DR ====
1	76	61	69	2	0	4	0.00	М	М	5.5	5 10	320	М	М	6	8	М	М
2	77	59	68	1	0		0.00	М	М			170	М	М	_	18	M	М
3	70	59	65	-2	0	0	0.00	М	М			180	М	М		1	М	М
4	68	60	64	-3	1	0	0.00	М	М	5.5	12	190	М	М	3		16	230
5	75	60	68	1	0	3	0.00	М	М	6.2	10	290	М	М	4		М	М
6	68	61	65	-2	0	0	0.00	М	М	6.3	3 13	170	М	М	6		17	170
7	67	59	63	-4	2	0	Т	М	М	7.6	14	160	М	М	10	18	19	120
8	73	60	67	0	0	2	0.00	М	М	6.5	15	290	М	М	4		19	300
9	75	61	68	0	0	_	0.00	М	М			290	М	М	0		_	290
10	77	57	67	-1	0		0.00	М	М			290	М	М	0		23	_
11	82	57	70	2	0	_	0.00	М	М			300	М	М	0		М	М
12	85	59	72	4	0		0.00	М	М		_	280	М	М	0		М	М
13	83	61	72	4	0		0.00	М	М			290	М	М	2	_	М	М
14	87	62	75	7	0	_	0.00	М	М			290	М	М	_	8	М	M
15	87	63	75	7	0		0.00	М	М			140	М	М	0			150
16	74	64	69	0	0		0.00	М	М			160	М	М		18		150
17	73	62	68	-1	0		0.00	М	М			210	М	М	6			170
18	72	63	68	-1	0	_	0.00	М	М			180	М	М	_		_	190
19	78 72	63	71	2	0	_	0.00	М	М			300	М	М	_	18		300
20 21	72 79	62 62	67 71	-2 1	0 0		0.00	M M	M M			150 300	M M	M M	4 3	18		150 310
22	79 78	61	70	0	0	_	0.00	M	M			300	M	M	9		_	290
23	81	62	70	2	0	_	0.00	M	M			290	M	M	0			280
24	76	61	69	-1	0		0.00	M	M			300	M	M	2			310
25	80	60	70	0	0		0.00	М	М			220	М	М	0			220
26	82	61	72	2	0		0.00	M	M			310	M	M	0			180
27	74	62	68	-3	0		0.00	М	M			150	М	М	_	1		160
28	74	64	69	-2	0		0.00	М	М			180	М	М		1	_	180
29	69	64	67	-4	0		0.00	М	М			200	М	М	10			190
30	74	63	69	-2	0	4	0.00	M	M	6.3	3 14	180	М	M	6		18	170
SM	2286	5 183	33			121	T			188.5	5		М		102	==	== = :	=
	76.2			-==:	===:	-===	=====	MISO	===== C	6.3	B FA	==== STST 290	==== M	===== M	3	====	MAX(MPH 26 290	-=== H)

```
NOTES:
```

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6), PAGE 2

STATION: LONG BEACH AIRPORT CA

JUNE MONTH: YEAR: 2021 LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16

AVERAGE MONTHLY: 68.6 TOTAL FOR MONTH: Τ 1 = FOG OR MIST

DPTR FM NORMAL: -0.1 DPTR FM NORMAL: -0.07 2 = FOG REDUCING VISIBILITY 87 ON 15,14 GRTST 24HR T ON 7-7 HIGHEST: TO 1/4 MILE OR LESS

LOWEST: 57 ON 11,10

> SNOW, ICE PELLETS, HAIL 4 = ICE PELLETS 5 = HAIL

TOTAL MONTH: M

GRTST 24HR Μ ON

6 = FREEZING RAIN OR DRIZZLE GRTST DEPTH: M ON 7 = DUSTSTORM OR SANDSTORM: Μ VSBY 1/2 MILE OR LESS

> 8 = SMOKE OR HAZE 9 = BLOWING SNOW

X = TORNADO

3 = THUNDER

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0.01 INCH OR MORE: 0 a MAX 90 OR ABOVE: 0 0.10 INCH OR MORE: 0 MIN 32 OR BELOW: 0.50 INCH OR MORE: 0 MIN Ø OR BELOW: 0 1.00 INCH OR MORE: 0

[HDD (BASE 65)]

TOTAL THIS MO. 3 CLEAR (SCALE 0-3) 15 PTCLDY (SCALE 4-7) 13 DPTR FM NORMAL -3 TOTAL FM JUL 1 CLOUDY (SCALE 8-10) 2 1072

DPTR FM NORMAL -97

[CDD (BASE 65)] TOTAL THIS MO. 121

DPTR FM NORMAL 4 [PRESSURE DATA]

TOTAL FM JAN 1 219 HIGHEST SLP 30.10 ON 10 DPTR FM NORMAL -4 LOWEST SLP 29.68 ON 27

[REMARKS] #FINAL-06-21# These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Monthly)

```
000
CXUS56 KLOX 011630
CLMLGB
CLIMATE REPORT
NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD
930 AM PDT THU JUL 01 2021
...THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF JUNE 2021...
CLIMATE NORMAL PERIOD: 1991 TO 2020
CLIMATE RECORD PERIOD: 1958 TO 2021
WEATHER
             OBSERVED
                            NORMAL DEPART
                                           LAST YEAR'S
             VALUE DATE(S) VALUE
                                           VALUE
                                   FROM
                                   NORMAL
 TEMPERATURE (F)
               87
                   06/14
HIGHEST
                   06/15
LOWEST
               57
                   06/10
                   06/11
AVG. MAXIMUM 76.2
                             76.1
                                     0.1
AVG. MINIMUM
             61.1
                             61.3
                                    -0.2
                             68.7
                                     0.0
MEAN
             68.7
DAYS MAX >= 90
DAYS MAX <= 32
DAYS MIN <= 32
DAYS MIN <= 0
PRECIPITATION (INCHES)
TOTALS
                             0.07
                                   -0.07
               Т
DAILY AVG.
DAYS \Rightarrow .01
               0
DAYS >= .10
DAYS >= .50
DAYS >= 1.00
GREATEST
              Т
24 HR. TOTAL
                   06/07 TO 06/07
STORM TOTAL
             0.00
DEGREE DAYS
            3
HEATING TOTAL
                               6
                                     - 3
SINCE 7/1
             1072
                             1169
                                     -97
                                           1134
            121
COOLING TOTAL
                              117
                                     4
                                            155
SINCE 1/1
             219
                              223
                                            324
WIND (MPH)
AVERAGE WIND SPEED
                           6.3
HIGHEST WIND SPEED/DIRECTION
                          21/290
                                   DATE 06/09
HIGHEST GUST SPEED/DIRECTION
                          26/290
                                   DATE 06/09
```

SKY COVER

POSSIBLE SUNSHINE (PERCENT) MM
AVERAGE SKY COVER 0.34
NUMBER OF DAYS FAIR 16
NUMBER OF DAYS PC 12
NUMBER OF DAYS CLOUDY 2

AVERAGE RH (PERCENT) 69

WEATHER CONDITIONS. NUMBER OF DAYS WITH

THUNDERSTORM	0	MIXED PRECIP	0
HEAVY RAIN	0	RAIN	0
LIGHT RAIN	0	FREEZING RAIN	0
LT FREEZING RAIN	0	HAIL	0
HEAVY SNOW	0	SNOW	0
LIGHT SNOW	0	SLEET	0
FOG	10	FOG W/VIS <= 1/4 MILE	0
HAZE	7		

⁻ INDICATES NEGATIVE NUMBERS.

MM INDICATES DATA IS MISSING.

T INDICATES TRACE AMOUNT.

R INDICATES RECORD WAS SET OR TIED.

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

Climatological Report (Monthly)

```
000
CXUS56 KLOX 011630
CLMLGB
CLIMATE REPORT
NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD
930 AM PDT SUN AUG 01 2021
...THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF JULY 2021...
CLIMATE NORMAL PERIOD: 1991 TO 2020
CLIMATE RECORD PERIOD: 1958 TO 2021
WEATHER
             OBSERVED
                             NORMAL DEPART
                                            LAST YEAR'S
             VALUE DATE(S)
                                            VALUE
                             VALUE
                                    FROM
                                    NORMAL
 TEMPERATURE (F)
                   07/19
HIGHEST
               89
                   07/20
LOWEST
                   07/05
              61
AVG. MAXIMUM
             81.7
                              81.4
                                     0.3
                              64.9
AVG. MINIMUM
             65.7
                                      0.8
MEAN
             73.7
                              73.1
                                      0.6
DAYS MAX >= 90
DAYS MAX <= 32
                0
DAYS MIN <= 32
DAYS MIN <= 0
PRECIPITATION (INCHES)
TOTALS
             0.03
                              0.05
                                    -0.02
DAILY AVG.
             0.00
DAYS >= .01
                1
DAYS >= .10
                0
DAYS >= .50
DAYS >= 1.00
GREATEST
24 HR. TOTAL
             0.03
                   07/26 TO 07/26
STORM TOTAL
             0.03
DEGREE DAYS
HEATING TOTAL
SINCE 7/1
               0
                                0
                                       0
                                               0
COOLING TOTAL
              275
                               253
                                       22
                                             242
              494
SINCE 1/1
                               476
                                      18
                                             566
WIND (MPH)
AVERAGE WIND SPEED
                           5.9
HIGHEST WIND SPEED/DIRECTION
                           17/290
                                    DATE 07/01
                           17/290
                                         07/18
HIGHEST GUST SPEED/DIRECTION
                           20/190
                                    DATE 07/10
```

20/290	07/18
20/310	07/19
20/290	07/30

SKY COVER

POSSIBLE SUNSHINE (PERCENT) MM
AVERAGE SKY COVER 0.19
NUMBER OF DAYS FAIR 24
NUMBER OF DAYS PC 7
NUMBER OF DAYS CLOUDY 0

AVERAGE RH (PERCENT) 67

WEATHER CONDITIONS. NUMBER OF DAYS WITH

THUNDERSTORM	0	MIXED PRECIP	0
HEAVY RAIN	0	RAIN	0
LIGHT RAIN	1	FREEZING RAIN	0
LT FREEZING RAIN	0	HAIL	0
HEAVY SNOW	0	SNOW	0
LIGHT SNOW	0	SLEET	0
FOG	12	FOG W/VIS <= 1/4 MILE	0
HAZF	16		

⁻ INDICATES NEGATIVE NUMBERS.

R INDICATES RECORD WAS SET OR TIED.

MM INDICATES DATA IS MISSING.

T INDICATES TRACE AMOUNT.

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

150
CXUS56 KLOX 011155
CF6LGB
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: JULY
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

TEMPERATURE IN F:						PCPN:		SNOW:	WI	ND		:SUNS	SHINE	: SK	Y	:PK V	NND	
1	2	3	4	5	6A	6B	7	8	9 12Z	 10 ΔVG	11 MX	12 2MIN	13	14	15	16	5 17	18
					HDD		WTR		DPTH	SPD	SPD	DIR					SPD	
1	84	63	74	3	0	9	0.00	М	М			290	М	М	4			290
2	82	64	73	1	0		0.00	М	М			310	М	М		18		180
3	84	64	74	2	0		0.00	М	М			310	М	М		18		310
4	80	62	71	-1	0		0.00	М	М			290	М	М		8		290
5	80	61	71	-1	0		0.00	М	М			300	М	М		18		320
6	80	62	71	-1	0	_	0.00	М	М			290	М	М	-	8	_	300
7	73	64	69	-3	0		0.00	М	М			170	М	М	3			180
8 9	78 87	65 67	72 77	0	0		0.00	М	М		_	160	М	М	1			160 150
10	83	67	77 75	4 2	0 0		0.00	M M	M M			290 180	M M	M M	0 0		_	190
11	77	66	72	-1	0		0.00	M	M			190	M	M	1			180
12	74	66	70	-3	0		0.00	M	M			190	M	M	3			220
13	82	67	75	2	0	_	0.00	М	М			160	M	M		18		170
14	77	68	73	0	0		0.00	М	М			190	М	М	2	10		180
15	83	67	75	2	0		0.00	M	M			290	М	M		8		280
16	85	67	76	3	0		0.00	M	М			300	M	М	2	Ū		320
17	86	67	77	3	0		0.00	М	M			320	М	М	1			290
18	87	68	78	4	0		0.00	М	М			290	М	М	0			290
19	89	69	79	5	0	14	0.00	М	М	5.8	3 16	300	М	М	0	8		310
20	89	67	78	4	0	13	0.00	М	М	5.5	5 15	290	М	М	0	18	18	280
21	87	67	77	3	0	12	0.00	М	М	6.6	13	280	М	М	0	18	17	290
22	78	68	73	-1	0	8	0.00	М	М	6.8	3 13	200	М	М	4	18	18	200
23	81	67	74	0	0	9	0.00	М	М	5.3	1 12	300	М	М	5	18	15	190
24	79	67	73	-1	0	8	0.00	М	М	4.3	3 13	180	М	М	2		15	180
25	77	67	72	-2	0	7	0.00	М	М	5.8	3 14	180	М	М	2		18	190
26	77	67	72	-2	0	7	0.03	М	М			200	М	М	6		_	190
27	81	66	74	0	0	9	0.00	М	М			290	М	М	5	8		290
28	85	65	75	1	0		0.00	М	М			290	М	М	0			290
29	83	64	74	0	0		0.00	М	М			300	М	М	0	18		300
30	84	64	74	0	0		0.00	М	М			300	М	М	0	18		290
31	80 ====	64 	72 	-2 ====	0 ====	7 ====	0.00	M ====	M =====	7.2 ====	2 16 ====	310	M ====	M =====	0 ====	18 ====	19 	310
SM	2532					275	0.03			182.7			M		59			
AV	81.7	7 65		-===	====	==:	=====	====:	====:			STST	==== M	 M	2	-===	MAX(MPH	

```
MISC ----> # 17 290 # 20 190
```

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6), PAGE 2

STATION: LONG BEACH AIRPORT CA

MONTH: JULY
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16

AVERAGE MONTHLY: 73.7 TOTAL FOR MONTH: 0.03

DPTR FM NORMAL: 0.6 DPTR FM NORMAL: -0.02 HIGHEST: 89 ON 20,19 GRTST 24HR 0.03 ON 26-26

LOWEST: 61 ON 5

SNOW, ICE PELLETS, HAIL

TOTAL MONTH: M

GRTST 24HR M ON M GRTST DEPTH: M ON M

1 = FOG OR MIST

2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS

3 = THUNDER

X = TORNADO

4 = ICE PELLETS

5 = HAIL

6 = FREEZING RAIN OR DRIZZLE
7 = DUSTSTORM OR SANDSTORM:
 VSBY 1/2 MILE OR LESS

8 = SMOKE OR HAZE 9 = BLOWING SNOW

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0 0.01 INCH OR MORE: 1 MAX 90 OR ABOVE: 0 0.10 INCH OR MORE: 0 MIN 32 OR BELOW: 0 0.50 INCH OR MORE: 0 MIN 0 OR BELOW: 0 1.00 INCH OR MORE: 0

[HDD (BASE 65)]

TOTAL THIS MO. 0 CLEAR (SCALE 0-3) 24
DPTR FM NORMAL 0 PTCLDY (SCALE 4-7) 7
TOTAL FM JUL 1 0 CLOUDY (SCALE 8-10) 0

DPTR FM NORMAL

[CDD (BASE 65)] TOTAL THIS MO. 275

DPTR FM NORMAL 22 [PRESSURE DATA]

TOTAL FM JAN 1 494 HIGHEST SLP 30.05 ON 23 DPTR FM NORMAL 18 LOWEST SLP 29.77 ON 7

[REMARKS]

#FINAL-07-21#

Climatological Report (Monthly)

Issued by NWS

<u>Home</u> | **Current Version** | <u>Previous Version</u> | <u>Graphics & Text</u> | <u>Print</u> | <u>Product List</u> | <u>Glossary On</u> Versions: **1** <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u> <u>11</u> <u>12</u> <u>13</u> <u>14</u> <u>15</u> <u>16</u> <u>17</u> <u>18</u> <u>19</u> <u>20</u> <u>21</u> <u>22</u> <u>23</u> <u>24</u>

```
000
CXUS56 KLOX 011630
CLMLGB
CLIMATE REPORT
NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD
930 AM PDT WED SEP 01 2021
...THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF AUGUST 2021...
CLIMATE NORMAL PERIOD: 1991 TO 2020
CLIMATE RECORD PERIOD: 1958 TO 2021
WEATHER
                OBSERVED
                                  NORMAL
                                          DEPART
                                                    LAST YEAR'S
                VALUE
                        DATE(S)
                                  VALUE
                                          FROM
                                                   VALUE
                                          NORMAL
TEMPERATURE (F)
HIGHEST
                  94
                       08/26
LOWEST
                  62
                       08/28
                       08/29
AVG. MAXIMUM
                83.2
                                   83.2
                                            0.0
AVG. MINIMUM
                65.4
                                   65.5
                                           -0.1
                74.3
                                   74.3
                                            0.0
MEAN
DAYS MAX >= 90
                   4
DAYS MAX <= 32
                   0
DAYS MIN <= 32
                   0
DAYS MIN <= 0
PRECIPITATION (INCHES)
TOTALS
                0.04
                                   0.01
                                           0.03
                0.00
DAILY AVG.
DAYS \Rightarrow .01
                   1
DAYS >= .10
DAYS >= .50
                   0
DAYS >= 1.00
                   0
GREATEST
 24 HR. TOTAL
                0.04
                       08/21 TO 08/21
STORM TOTAL
                0.04
DEGREE DAYS
HEATING TOTAL
                   0
                                      0
                                                       0
                                      0
                                              0
                                                       0
SINCE 7/1
                   0
COOLING TOTAL
                 296
                                    290
                                              6
                                                      347
                 790
SINCE 1/1
                                                     913
WIND (MPH)
AVERAGE WIND SPEED
                                5.7
HIGHEST WIND SPEED/DIRECTION
                                18/290
                                          DATE 08/01
                                18/290
                                                08/14
HIGHEST GUST SPEED/DIRECTION
                                          DATE 08/01
                                23/290
```

SKY COVER

POSSIBLE SUNSHINE (PERCENT) MM
AVERAGE SKY COVER 0.24
NUMBER OF DAYS FAIR 22
NUMBER OF DAYS PC 8
NUMBER OF DAYS CLOUDY 1

AVERAGE RH (PERCENT) 66

WEATHER CONDITIONS. NUMBER OF DAYS WITH

MIXED PRECIP THUNDERSTORM 0 0 **HEAVY RAIN** 0 RAIN 0 LIGHT RAIN 3 FREEZING RAIN 0 LT FREEZING RAIN 0 HAIL 0 **HEAVY SNOW** 0 SNOW 0 LIGHT SNOW 0 **SLEET** 0 FOG 16 FOG W/VIS <= 1/4 MILE 1 HAZE 16

- INDICATES NEGATIVE NUMBERS.

R INDICATES RECORD WAS SET OR TIED.

MM INDICATES DATA IS MISSING. T INDICATES TRACE AMOUNT.

\$\$

National Weather Service Los Angeles, CA Weather Forecast Office 520 North Elevar Street Oxnard, CA 93030 805-988-6610 Page Author: LOX Webmaster

Web Master's E-mail: w-lox.webmaster@noaa.gov

Page last modified: Jun 8th, 2021 18:51 UTC

Disclaimer
Credits
Glossary
Privacy Policy
About Us

Career Opportunities

WFO Monthly/Daily Climate Data

Issued by NWS

<u>Home | Current Version | Previous Version | Graphics & Text | Print | Product List | Glossary On Versions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50</u>

000 CXUS56 KLOX 011155 CF6LGB

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: AUGUST
YEAR: 2021
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

1						:PCPN: SNOW: WIND :SUNSHINE: SKY						:PK WND						
1	2	3	4	5	6A	6B	7	8	9 12Z	10	11	12 2MIN	13	14	15	16		18
DY ===	MAX ====	MIN	AVG	DEP	HDD	-	WTR			SPD	SPD	DIR		PSBL	S-S		SPD	
1	89	63	76	2	0	11	0.00	М	М	6.3	3 18	290	М	М	0		23	296
2	92	64	78	4	0		0.00	М	M		-	290	M	M	_	8		296
3	89	64	77	3	0	12	0.00	М	М			300	М	М	0	8	18	296
4	85	65	75	1	0	10	0.00	М	М	5.9	15	310	М	М	0			316
5	85	65	75	1	0	10	0.00	М	М	5.8	3 13	200	М	М	0	18	16	196
6	73	66	70	-4	0	5	0.00	М	М	6.2	2 12	170	М	М	7	1	21	200
7	76	64	70	-4	0	5	0.00	М	М	5.4	1 12	170	М	М	6	1	15	196
8	83	65	74	0	0		0.00	М	М			290	М	М	5		_	176
9	85	66	76	2	0		0.00	М	М			290	М	М	1		_	296
10	86	63	75	1	0	_	0.00	М	М		_	290	М	М		18	_	300
11	91	68	80	6	0	15	T	М	М			290	М	М	0			296
12	91	68	80	6	0		0.00	М	М			310	М	М	0			210
13	83	66	75	1	0	_	0.00	М	М		_	290	М	М	1		_	216
14	87	68	78	4	0		0.00	М	М			290	М	М		8		296
15	88	67	78	4	0		0.00	М	М			190	М	М	0	10		200
16	80	68	74 72	0	0		0.00	М	М			220	М	М		18		216
17 18	77 77	68 69	73 73	-1 -1	0 0	8	0.00 T	М	М			200 210	М	М	6 10	1	_	216 186
19	80	67	73 74	-1	0	_	0.00	M M	M M			210	М	M M	2	1	_	236
20	78	68	73	-1	0		0.00	M	M			290	M M	M	5			196
21	75	65	70	-1 -4	0		0.04	M	M			300	M	M	7	18	_	160
22	77	66	72	-2	0	_	0.00	M	M			310	M	M	6	10	_	316
23	77	63	70	-4	0		0.00	М	M			310	М	M	_	18	_	196
24	81	63	72	-2	0		0.00	M	М			290	M	M	0			296
25	87	64	76	2	0		0.00	М	М			300	М	М		1		296
26	94	66	80	6	0		0.00	М	М	4.7	7 17	310	М	М	0	18	21	296
27	89	64	77	3	0	12	0.00	М	М	6.6	15	300	М	М	0	18	18	300
28	87	62	75	1	0	10	0.00	М	М	4.7	7 12	150	М	М	3	128	3 16	156
29	84	62	73	-1	0	8	0.00	М	М			300	М	М	3	18		300
30	79	65	72	-2	0	7	0.00	М	М	5.4	1 12	170	М	М	1	18	16	176
31 ===	74	65	70	-4 	0		0.00	M ====	M 			220	M ====	M 	-	8	14 	200
SM	2579	202	27		0	296	0.04	ı	1 :	175.9	9		М		74			
	83.2			===:			=====	MISO	3	5.7 +	7 FA # 18	STST 290	==== M	===== M	2		MAX(MPH 23 290	H)

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6), PAGE 2

STATION: LONG BEACH AIRPORT CA

MONTH: **AUGUST** YEAR: 2021 33 49 N LATITUDE: LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16

AVERAGE MONTHLY: 74.3 TOTAL FOR MONTH: 0.04 1 = FOG OR MIST

DPTR FM NORMAL: 2 = FOG REDUCING VISIBILITY DPTR FM NORMAL: 0.0 0.03 HIGHEST: 94 ON 26 GRTST 24HR 0.04 ON 21-21 TO 1/4 MILE OR LESS

LOWEST: 62 ON 29,28 3 = THUNDER

SNOW, ICE PELLETS, HAIL 4 = ICE PELLETS

5 = HAILTOTAL MONTH: M GRTST 24HR M ON Μ

6 = FREEZING RAIN OR DRIZZLE GRTST DEPTH: M ON 7 = DUSTSTORM OR SANDSTORM: М VSBY 1/2 MILE OR LESS

> 8 = SMOKE OR HAZE9 = BLOWING SNOW

X = TORNADO

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0 0.01 INCH OR MORE: 1 MAX 90 OR ABOVE: 4 0.10 INCH OR MORE: 0 MIN 32 OR BELOW: 0 0.50 INCH OR MORE: 0 MIN Ø OR BELOW: 0 1.00 INCH OR MORE: 0

[HDD (BASE 65)]

TOTAL THIS MO. 0 CLEAR (SCALE 0-3) 22 DPTR FM NORMAL PTCLDY (SCALE 4-7) 0 8 CLOUDY (SCALE 8-10) TOTAL FM JUL 1 0 1

DPTR FM NORMAL а

[CDD (BASE 65)] TOTAL THIS MO.

296 DPTR FM NORMAL [PRESSURE DATA] 6

TOTAL FM JAN 1 790 HIGHEST SLP 30.09 ON 14 DPTR FM NORMAL 24 LOWEST SLP 29.66 ON 27

[REMARKS] #FINAL-08-21#

National Weather Service Los Angeles, CA Weather Forecast Office 520 North Elevar Street Oxnard, CA 93030 805-988-6610 Page Author: LOX Webmaster

Web Master's E-mail: w-lox.webmaster@noaa.gov Page last modified: Jun 8th, 2021 18:51 UTC

Disclaimer Credits Glossary **Privacy Policy** About Us

Career Opportunities

WFO Monthly/Daily Climate Data

Issued by NWS

<u>Home</u> | **Current Version** | <u>Previous Version</u> | <u>Graphics & Text</u> | <u>Print</u> | <u>Product List</u> | <u>Glossary On</u> Versions: **1** 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

000 CXUS56 KLOX 011155 CF6LGB

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: SEPTEMBER YEAR: 2021 LATITUDE: 33 49 N

LATITUDE: 33 49 N LONGITUDE: 118 9 W

	TEMPERATURE IN F:						:PCPN:	SNOW:		WIND :SUNSHINE: SKY					:PK WND			
1	2	3	4	5	6A	6B	7	8	9 12Z	10	11	12 2MIN	13	14	15	16		18
							WTR		DPTH	SPD	SPD	DIR					SPD	
1	75	66	71	-3	0	6	0.00	М	М	5.6	12	190	М	М	7	8	18	196
2	77	65	71	-3	0	_	0.00	M	М			300	M	M	6	•	_	296
3	81	64	73	-1	0		0.00	М	М			280	М	М	_	8		300
4	92	62	77	3	0		0.00	М	М			300	М	М		18		300
5	97	64	81	7	0		0.00	М	М			300	Μ	М	0	18		300
6	78	68	73	-1	0	8	0.00	М	М	6.4	15	150	Μ	М	5	8	19	156
7	79	68	74	0	0	9	0.00	М	М	5.3	3 13	300	Μ	М	1	18	16	216
8	85	66	76	2	0	11	0.00	М	М	6.4	14	320	Μ	М	2	18	16	316
9	91	65	78	4	0	13	0.00	М	М	5.4	13	310	Μ	М	1	138	3 14	196
10	88	65	77	3	0	12	T	М	М	6.5	5 14	310	Μ	М	1	18		300
11	92	68	80	6	0	15	0.00	М	М	6.6	18	300	Μ	М	0			300
12	89	61	75	1	0	10	0.00	М	М			300	Μ	М	0	18	20	296
13	85	59	72	-2	0		0.00	М	М			310	Μ	М	3	18		296
14	76	60	68	-6	0	3	0.00	М	М	4.7	10	310	Μ	М	2	1		216
15	79	61	70	-3	0		0.00	М	М			290	Μ	М	4	8		176
16	76	61	69	-4	0	4	0.00	М	М	6.6	15	300	М	М	4			296
17	74	61	68	-5	0	3	0.00	М	М	5.5	5 13	290	М	М	3			176
18	77	61	69	-4	0		0.00	М	М			290	М	М	3			300
19	73	58	66	-7	0	1	0.00	М	М			190	М	М	1	18		186
20	77	60	69	-4	0		0.00	М	М			180	М	М	0	18		200
21	98	64	81	8	0		0.00	М	М			290	М	М	0			296
22	89	68	79	7	0		0.00	М	М		_	300	М	М	0			296
23	82	63	73	1	0		0.00	М	М			310	М	М		8		296
24	79	61	70	-2	0		0.00	М	М			320	М	М		18		316
25	78	62	70	-2	0		0.00	М	М			280	М	М		1		296
26	70	62	66	-6	0		0.00	М	М			290	М	М	10			246
27	70	62	66	-6	0		0.00	М	М			180	М	М	10			200
28	72	63	68	-3	0		0.00	М	М			300	М	М	8			186
29	76	60	68	-3	0		0.00	М	М			290	М	М		18		326
30 ===	94 	58 ====	76 	5 ====	0 		0.00 =====	M ====	M :====			290 ====	M =====	M 	0 	18 ====	23 ======	296 ====
_	2449		-			224	T			162.2		:===-	M		79	===-	======	===-
	81.6							MIS	C	5.4 ->	FA 23	STST 300	М	М	3		MAX(MPI 27 290	H)

NOTES:

LAST OF SEVERAL OCCURRENCES

TO 1/4 MILE OR LESS

6 = FREEZING RAIN OR DRIZZLE

VSBY 1/2 MILE OR LESS

7 = DUSTSTORM OR SANDSTORM:

COLUMN 17 PEAK WIND IN M.P.H.

```
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6), PAGE 2
```

STATION: LONG BEACH AIRPORT CA

3 = THUNDER

5 = HAIL

4 = ICE PELLETS

8 = SMOKE OR HAZE

9 = BLOWING SNOW X = TORNADO

SEPTEMBER MONTH: YEAR: 2021 LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16 AVERAGE MONTHLY: 72.3 TOTAL FOR MONTH: Т 1 = FOG OR MIST 2 = FOG REDUCING VISIBILITY

DPTR FM NORMAL: -0.8 DPTR FM NORMAL: -0.08 GRTST 24HR T ON 10-10 HIGHEST: 98 ON 21

58 ON 30,19 LOWEST:

> SNOW, ICE PELLETS, HAIL TOTAL MONTH: M

GRTST 24HR Μ ON ON Μ

GRTST DEPTH:

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0.01 INCH OR MORE: a a MAX 90 OR ABOVE: 0.10 INCH OR MORE: 0 6 MIN 32 OR BELOW: 0 0.50 INCH OR MORE: 0 MIN Ø OR BELOW: 0 1.00 INCH OR MORE:

[HDD (BASE 65)]

TOTAL THIS MO. 0 CLEAR (SCALE 0-3) 19 DPTR FM NORMAL PTCLDY (SCALE 4-7) -1 0 CLOUDY (SCALE 8-10) TOTAL FM JUL 1

DPTR FM NORMAL 0

[CDD (BASE 65)] TOTAL THIS MO. 224

DPTR FM NORMAL -21 [PRESSURE DATA]

TOTAL FM JAN 1 1014 HIGHEST SLP 30.08 ON 18 DPTR FM NORMAL 3 LOWEST SLP 29.78 ON 8

[REMARKS] #FINAL-09-21#

National Weather Service Los Angeles, CA Weather Forecast Office 520 North Elevar Street Oxnard, CA 93030 805-988-6610 Page Author: LOX Webmaster

Web Master's E-mail: w-lox.webmaster@noaa.gov Page last modified: Jun 8th, 2021 18:51 UTC

Disclaimer Credits Glossary Privacy Policy

Career Opportunities

About Us

Climatological Report (Monthly)

Issued by NWS

<u>Home</u> | **Current Version** | <u>Previous Version</u> | <u>Graphics & Text</u> | <u>Print</u> | <u>Product List</u> | <u>Glossary On Versions</u>: **1** <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u> <u>11</u> <u>12</u> <u>13</u> <u>14</u> <u>15</u> <u>16</u> <u>17</u> <u>18</u> <u>19</u> <u>20</u> <u>21</u> <u>22</u> <u>23</u>

```
000
CXUS56 KLOX 011630
CLMLGB
CLIMATE REPORT
NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD
930 AM PDT FRI OCT 01 2021
...THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF SEPTEMBER 2021...
CLIMATE NORMAL PERIOD: 1991 TO 2020
CLIMATE RECORD PERIOD: 1958 TO 2021
WEATHER
                OBSERVED
                                 NORMAL
                                         DEPART
                                                   LAST YEAR'S
                VALUE
                       DATE(S)
                                 VALUE
                                         FROM
                                                  VALUE
                                         NORMAL
TEMPERATURE (F)
                  98
                       09/21
HIGHEST
                       09/19
LOWEST
                  58
                       09/30
AVG. MAXIMUM
                81.6
                                   82.4
                                          -0.8
AVG. MINIMUM
               62.9
                                  63.9
                                          -1.0
                                  73.1
                                          -0.8
MEAN
                72.3
DAYS MAX >= 90
                  6
DAYS MAX <= 32
                   0
DAYS MIN <= 32
DAYS MIN <= 0
PRECIPITATION (INCHES)
TOTALS
                                   0.08
                                         -0.08
DAILY AVG.
                   Т
                  0
DAYS \Rightarrow .01
DAYS >= .10
DAYS >= .50
                  0
DAYS >= 1.00
GREATEST
 24 HR. TOTAL
                 Τ
                       09/10 TO 09/10
STORM TOTAL
                0.00
DEGREE DAYS
                                     1
                                             -1
                                                       0
HEATING TOTAL
                  0
                                     0
                                             0
                                                       0
SINCE 7/1
                  0
COOLING TOTAL
                224
                                    245
                                            -21
                                                     315
               1014
                                   1011
SINCE 1/1
                                             3
                                                    1228
WIND (MPH)
AVERAGE WIND SPEED
                                5.4
HIGHEST WIND SPEED/DIRECTION
                               23/300
                                         DATE 09/22
HIGHEST GUST SPEED/DIRECTION
                             27/290
                                         DATE 09/22
SKY COVER
POSSIBLE SUNSHINE (PERCENT)
                             MM
```

AVERAGE SKY COVER 0.26

NUMBER OF DAYS FAIR 21

NUMBER OF DAYS PC 6

NUMBER OF DAYS CLOUDY 3

AVERAGE RH (PERCENT) 66

WEATHER CONDITIONS. NUMBER OF DAYS WITH

THUNDERSTORM MIXED PRECIP 0 1 **HEAVY RAIN** 0 **RAIN** 0 LIGHT RAIN 0 FREEZING RAIN 0 LT FREEZING RAIN 0 HAIL 0 **HEAVY SNOW** 0 **SNOW** LIGHT SNOW 0 SLEET 0 FOG 15 FOG W/VIS <= 1/4 MILE 0 HAZE 18

- INDICATES NEGATIVE NUMBERS.

R INDICATES RECORD WAS SET OR TIED.

MM INDICATES DATA IS MISSING.

T INDICATES TRACE AMOUNT.

\$\$

National Weather Service Los Angeles, CA Weather Forecast Office 520 North Elevar Street Oxnard, CA 93030 805-988-6610

Page Author: LOX Webmaster

Web Master's E-mail: w-lox.webmaster@noaa.gov Page last modified: Jun 8th, 2021 18:51 UTC

Disclaimer Credits Glossary Privacy Policy About Us

Career Opportunities

National Weather Service Weather Forecast Office

Los Angeles, CA

WFO Monthly/Daily Climate Data

Issued by NWS

Home | Current Version | Previous Version | Text Only | Print | Product List | Glossary On Versions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

STATION:

000 CXUS56 KLOX 011155 CF6LGB

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

LONG BEACH AIRPORT CA MONTH: OCTOBER 2021 YEAR:

LATITUDE: 33 49 N LONGITUDE: 118 9 W

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

LONG BEACH AIRPORT CA STATION:

MONTH: **OCTOBER** YEAR: 2021 LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16

1 = FOG OR MIST

AVERAGE MONTHLY: 66.6 TOTAL FOR MONTH: 0.39
DPTR FM NORMAL: -1.8 DPTR FM NORMAL: -0.14 2 = FOG REDUCING VISIBILITY 94 ON 3, 2 GRTST 24HR 0.14 ON 23-23 HIGHEST: TO 1/4 MILE OR LESS 50 ON 26,13 3 = THUNDER

SNOW, ICE PELLETS, HAIL 4 = ICE PELLETS TOTAL MONTH: M 5 = HAIL

```
6 = FREEZING RAIN OR DRIZZLE
                             GRTST 24HR
                                              M ON
                                                              7 = DUSTSTORM OR SANDSTORM:
VSBY 1/2 MILE OR LESS
                             GRTST DEPTH: M ON
                                                              8 = SMOKE OR HAZE
                             [WEATHER - DAYS WITH]
[NO. OF DAYS WITH]
                                                              9 = BLOWING SNOW
                                                              X = TORNADO
MAX 32 OR BELOW:
                             0.01 INCH OR MORE:
MAX 90 OR ABOVE:
MIN 32 OR BELOW:
                       4
                             0.10 INCH OR MORE:
                             0.50 INCH OR MORE:
                       0
MIN 0 OR BELOW:
                             1.00 INCH OR MORE:
                                                      0
                       0
[HDD (BASE 65) ]
TOTAL THIS MO.
                            CLEAR (SCALE 0-3) 21
PTCLDY (SCALE 4-7) 9
                      35
DPTR FM NORMAL
                     16
TOTAL FM JUL 1
                             CLOUDY (SCALE 8-10) 1
                      35
                     18
DPTR FM NORMAL
[CDD (BASE 65) ]
TOTAL THIS MO.

DPTR FM NORMAL
                     92
                            [PRESSURE DATA]
HIGHEST SLP 30.18 ON 27
LOWEST SLP 29.61 ON 11
                    -32
TOTAL FM JAN 1 1106
DPTR FM NORMAL
                    -29
[REMARKS]
#FINAL-10-21#
```

Credits

National Weather Service Los Angeles, CA Weather Forecast Office 520 North Elevar Street Oxnard, CA 93030 805-988-6610

Page Author: LOX Webmaster

Web Master's E-mail: <u>w-lox.webmaster@noaa.gov</u> Page last modified: Nov 18th, 2021 21:12 UTC

<u>Disclaimer</u> **Privacy Policy** About Us Glossary Career Opportunities

National Weather Service Weather Forecast Office

Los Angeles, CA

Climatological Report (Monthly) Issued by NWS

 $\frac{||Home|||Current \ Version|||Previous \ Version|||Text \ Only, ||Print|||Product \ List|||Glossary \ On \ Versions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 \\$

versions: 1 2 3 4 5	00/09	10 11 12 13	14 15 16 1	16 19 20	<u> </u>		
000 CXUS56 KLOX 011 CLMLGB	.630						
CLIMATE REPORT NATIONAL WEATHE 930 AM PDT MON			ELES/OXNA	ARD			
THE LONG BEA	CH AIRP	ORT CA CLI	MATE SUMM	MARY FOR T	THE MONTH	OF OCTOBER	2021
CLIMATE NORMAL CLIMATE RECORD							
WEATHER	OBSERV	ED	NORMAL	DEPART	LAST YE	AR`S	
	VALUE	DATE(S)		FROM NORMAL			
TEMPERATURE (F)						• • • •	
HIGHEST	94	10/02					
		10/03					
LOWEST		10/13 10/26					
AVG. MAXIMUM AVG. MINIMUM MEAN	76.6	10, 20	77.7	-1.1			
AVG. MINIMUM	56.5		59.1 68.4	-2.6			
DAYS MAX >= 90	4		00.4	-1.8			
DAYS MAX <= 32	0						
DAYS MIN <= 32 DAYS MIN <= 0							
DATS FILM (= 0	O						
PRECIPITATION (INCHES)		0.53	0.14			
TOTALS DAILY AVG.	0.39		0.53	-0.14			
DAYS >= .01	5						
DAYS >= .10	2						
DAYS >= .50 DAYS >= 1.00 GREATEST	0						
24 HR. TOTAL STORM TOTAL		10/23 TO	10/23				
DEGREE DAYS							
HEATING TOTAL	35		19	16	4		
SINCE 7/1	35		17	18	4		
COOLING TOTAL SINCE 1/1	92 1106		124 1135	-32 -29	218 1446		
WIND (MPH)							
AVERAGE WIND SP	PEED		4.7				
HIGHEST WIND SE HIGHEST GUST SE	PEED/DIR PEED/DIR	ECTION ECTION	33/350 41/350	DATE 16	9/11 9/11		
SKY COVER							
POSSIBLE SUNSHI							
AVERAGE SKY COV NUMBER OF DAYS		0.24 21					
NUMBER OF DAYS NUMBER OF DAYS	PC	9					
AVERAGE RH (PER	RCENT)	61					
WEATHER CONDITI	ONS. NU						
THUNDERSTORM HEAVY RAIN			MIXED PRE RAIN	CIP		0 1	
LIGHT RAIN			FREEZING	RAIN		0	
LT FREEZING RAI	:N		HAIL			0	
HEAVY SNOW LIGHT SNOW		0 0	SNOW SLEET			0 0	
FOG		13	FOG W/VIS	S <= 1/4 N	MILE	1	
HAZE		9					
- INDICATES NE			IED.				

MM INDICATES DATA IS MISSING. T INDICATES TRACE AMOUNT.

National Weather Service Los Angeles, CA Weather Forecast Office 520 North Elevar Street Oxnard, CA 93030 805-988-6610

Page Author: LOX Webmaster

Web Master's E-mail: w-lox.webmaster@noaa.gov Page last modified: Nov 18th, 2021 21:12 UTC

<u>Disclaimer</u> Credits Glossary

Privacy Policy About Us Career Opportunities

National Weather Service Weather Forecast Office Los Angeles, CA

WFO Monthly/Daily Climate Data

Issued by NWS

Home | Current Version | Previous Version | Text Only | Print | Product List | Glossary On Versions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

000 CXUS56 KLOX 020031 RRA CF6LGB

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA NOVEMBER MONTH:

YEAR: 2021 LATITUDE: 33 49 N LONGITUDE: 118 9 W

TEMPERATURE IN F:						PCPN:		SNOW:	WIN				SHINE			:PK	WND	
1	2	3	4	5	6A	6B	7	8	9 12Z	10 AVG	11	12	13	14	15	16	17	18
							WTR							PSBL				
1	68	55	62	-4	3		0.00	М	М			300	М	М		18		310
2	68	55	62	-3	3		0.00	М	М			300	М	М		18		200
3	74	56	65	0	0		0.00	М	М			300	М	М		18		300
4	69	56	63	-2	_		0.00	М	М	3.6		130	М	М		128		180
5	66	56	61	-4	4		0.00	М	М			180	М	М	-	128		180
6	65	55	60	-4	5		0.00	М	М			310	М	М		18		280
7	67	56	62	-2	3		0.00	М	М			310	М	М		18		290
8	66	57	62	-2	3		0.00	М	М			230	М	М	-	18		230
9	69	55	62	-2	3		0.00	М	М			280	М	М		18		290
10	71	58	65	1	0		0.00	М	М			300	М	М		18		210
11	90	56	73	10	0		0.00	М	М			320	М	М		8		300
12 13	95 88	58	77	14	0		0.00	М	М			290	М	М	0			300 200
		58 55	73 73	10	0		0.00	М	M M			210 300	M	M M	0			300
14 15	90 81	54	68	11 6	0 0		0.00	M M	M			300	M M	M	-	18		290
16	63	56	60	-2	5		0.00	M	M			120	M	M		18		110
17	67	55	61	-1	4		0.00	M	M			310	M	M		18		300
18	66	51	59	-2	6		0.00	M	M			290	M	M		18		280
19	66	55	61	-2	4		0.00	M	M	3.4		300	M	M		18		210
20	67	56	62	1	3		0.00	M	M			290	M	M		18		300
21	86	52	69	8	0		0.00	M	M			100	M	M		18	25	80
22	86	56	71	11	0		0.00	М	М			310	М	М	0	10		310
23	72	55	64	4	1		0.00	М	М			180	М	М	0			160
24	73	51	62	2	3		0.00	М.	М.		16		М.	М.	0		22	60
25	80	52	66	6	0		0.00	M	М			100	M	М	0			100
26	80	48	64	5	1		0.00	М	М			290	М	М	0			290
27	76	47	62	3	3	0	0.00	М	М	2.2	. 9	170	М	М	0		11	190
28	79	50	65	6	0	0	0.00	М	М	2.9	13	310	М	М	1	18	14	300
29	75	47	61	2	4	0	0.00	М	М	1.8	7	290	М	М	0	128	9	190
30	69	51	60	2	5		0.00	М	М			150	М	М		128		150
SM	2232	162	22		65	50	0.00	1	1 :	112.8	:		М		85			
	74.4							====	-===:			==== STST	==== M	 M	3		===== ИАХ(МРІ	
								MIS	2	->	23	100				2	29 100	
==:											===	====						

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

STATION: LONG BEACH AIRPORT CA

1 = FOG OR MIST

4 = ICE PELLETS

MONTH: NOVEMBER YEAR: 2021 LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16

AVERAGE MONTHLY: 64.2 DPTR FM NORMAL: 2.2 HIGHEST:

TOTAL FOR MONTH: 0.00 DPTR FM NORMAL: -0.75 95 ON 12 GRTST 24HR 0.00 ON 1- 1 47 ON 29,27

2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER

LOWEST: SNOW, ICE PELLETS, HAIL TOTAL MONTH: M

```
6 = FREEZING RAIN OR DRIZZLE
                             GRTST 24HR
                                             M ON
                                                             7 = DUSTSTORM OR SANDSTORM:
VSBY 1/2 MILE OR LESS
                             GRTST DEPTH: M ON
                                                             8 = SMOKE OR HAZE
                             [WEATHER - DAYS WITH]
[NO. OF DAYS WITH]
                                                             9 = BLOWING SNOW
                                                             X = TORNADO
MAX 32 OR BELOW:
                             0.01 INCH OR MORE:
MAX 90 OR ABOVE:
MIN 32 OR BELOW:
                      3
                            0.10 INCH OR MORE:
                                                      0
                      0
                            0.50 INCH OR MORE:
MIN 0 OR BELOW:
                            1.00 INCH OR MORE:
                                                      0
                      0
[HDD (BASE 65) ]
TOTAL THIS MO.
                            CLEAR (SCALE 0-3) 16
PTCLDY (SCALE 4-7) 14
                     65
DPTR FM NORMAL
                    -53
TOTAL FM JUL 1
                    100
                            CLOUDY (SCALE 8-10) 0
DPTR FM NORMAL
                    -39
[CDD (BASE 65) ]
                     50
TOTAL THIS MO.
                            [PRESSURE DATA]
HIGHEST SLP 30.27 ON 25
LOWEST SLP 29.90 ON 23
DPTR FM NORMAL
                     21
TOTAL FM JAN 1 1156
DPTR FM NORMAL
                     -8
[REMARKS]
#FINAL-11-21#
```

National Weather Service Los Angeles, CA Weather Forecast Office 520 North Elevar Street Oxnard, CA 93030 805-988-6610

Page Author: LOX Webmaster

Web Master's E-mail: <u>w-lox.webmaster@noaa.gov</u> Page last modified: Nov 18th, 2021 21:12 UTC
 Disclaimer
 Privacy Policy

 Credits
 About Us

 Glossary
 Career Opportunities

National Weather Service Weather Forecast Office

Los Angeles, CA

Climatological Report (Monthly) Issued by NWS

000 CXUS56 KLOX 011730 CLMLGB CLIMATE REPORT NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD 930 AM PST WED DEC 01 2021 THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF NOVEMBER 2 CLIMATE NORMAL PERIOD: 1991 TO 2020 CLIMATE RECORD PERIOD: 1958 TO 2021 WEATHER OBSERVED NORMAL NORMAL NORMAL	
NATIONAL WEATHER SERVICE LOS ANGELES/OXNARD 930 AM PST WED DEC 01 2021	
THE LONG BEACH AIRPORT CA CLIMATE SUMMARY FOR THE MONTH OF NOVEMBER 2 CLIMATE NORMAL PERIOD: 1991 TO 2020 CLIMATE RECORD PERIOD: 1958 TO 2021 WEATHER OBSERVED NORMAL DEPART LAST YEAR`S VALUE DATE(S) VALUE FROM VALUE NORMAL	
CLIMATE NORMAL PERIOD: 1991 TO 2020 CLIMATE RECORD PERIOD: 1958 TO 2021 WEATHER OBSERVED NORMAL DEPART LAST YEAR`S VALUE DATE(S) VALUE FROM VALUE NORMAL	
CLIMATE RECORD PERIOD: 1958 TO 2021 WEATHER OBSERVED NORMAL DEPART LAST YEAR`S VALUE DATE(S) VALUE FROM VALUE NORMAL	021
NORMAL	
TEMPERATURE (F) HIGHEST 95 11/12 LOWEST 47 11/27 11/29	
AVG. MAXIMUM 74.4 72.5 1.9 AVG. MINIMUM 54.1 51.6 2.5	
MEAN 64.3 62.0 2.3	
DAYS MAX >= 90 3 DAYS MAX <= 32 0 DAYS MIN <= 32 0	
DAYS MIN <= 32 0 DAYS MIN <= 0 0	
PRECIPITATION (INCHES)	
TOTALS 0.00 0.75 -0.75 DAILY AVG. 0.00	
DAYS >= .01 0 DAYS >= .10 0	
DAYS >= .50 0	
DAYS >= 1.00 0 GREATEST	
24 HR. TOTAL 0.00 10/31 TO 10/31 STORM TOTAL 0.00	
DEGREE DAYS	
HEATING TOTAL 65 118 -53 126	
SINCE 7/1 100 139 -39 MM COOLING TOTAL 50 29 21 41 SINCE 1/1 1156 1164 -8 MM	
COOLING TOTAL 50 29 21 41 SINCE 1/1 1156 1164 -8 MM	
WIND (MPH)	
AVERAGE WIND SPEED 3.8	
HIGHEST WIND SPEED/DIRECTION 23/100 DATE 11/25 HIGHEST GUST SPEED/DIRECTION 29/100 DATE 11/25	
SKY COVER POSSIBLE SUNSHINE (PERCENT) MM AVERAGE SKY COVER 0.28	
NUMBER OF DAYS FAIR 16 NUMBER OF DAYS PC 12 NUMBER OF DAYS CLOUDY 2	
AVERAGE RH (PERCENT) 62	
WEATHER CONDITIONS. NUMBER OF DAYS WITH THUNDERSTORM 0 MIXED PRECIP 0	
HEAVY RAIN 0 RAIN 0 LIGHT RAIN 0 FREEZING RAIN 0	
LT FREEZING RAIN 0 HAIL 0	
HEAVY SNOW 0 SNOW 0 LIGHT SNOW 0 SLEET 0	
FOG 20 FOG W/VIS <= 1/4 MILE 4 HAZE 21	
- INDICATES NEGATIVE NUMBERS. R INDICATES RECORD WAS SET OR TIED. MM INDICATES DATA IS MISSING.	

Credits

T INDICATES TRACE AMOUNT.

\$\$

National Weather Service Los Angeles, CA Weather Forecast Office 520 North Elevar Street Oxnard, CA 93030 805-988-6610 Page Author: LOX Webmaster Web Master's E-mail: w-lox.webmaster@noaa.gov Page last modified: Nov 18th, 2021 21:12 UTC

Glossary

Privacy Policy About Us Career Opportunities

National Weather Service Weather Forecast Office Los Angeles, CA

WFO Monthly/Daily Climate Data

Issued by NWS

Home | Current Version | Previous Version | Text Only | Print | Product List | Glossary On Versions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

000 CXUS56 KLOX 011255 CF6LGB

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: DECEMBER 2021 YEAR: LATITUDE: 33 49 N LONGITUDE: 118 9 W

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

LONG BEACH AIRPORT CA STATION:

MONTH: DECEMBER YEAR: 2021 LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16

1 = FOG OR MIST

AVERAGE MONTHLY: 54.4 TOTAL FOR MONTH: 5.74 DPTR FM NORMAL: -2.3 DPTR FM NORMAL: 3.59 2 = FOG REDUCING VISIBILITY 69 ON 21,18 GRTST 24HR 2.42 ON 29-30 HIGHEST: TO 1/4 MILE OR LESS 3 = THUNDER 38 ON 15

SNOW, ICE PELLETS, HAIL 4 = ICE PELLETS

```
6 = FREEZING RAIN OR DRIZZLE
                            GRTST 24HR
                                             M ON
                                                             7 = DUSTSTORM OR SANDSTORM:
VSBY 1/2 MILE OR LESS
                            GRTST DEPTH: M ON
                                                             8 = SMOKE OR HAZE
                             [WEATHER - DAYS WITH]
[NO. OF DAYS WITH]
                                                             9 = BLOWING SNOW
                                                             X = TORNADO
MAX 32 OR BELOW:
                            0.01 INCH OR MORE: 11
MAX 90 OR ABOVE:
MIN 32 OR BELOW:
                      0
                            0.10 INCH OR MORE:
                            0.50 INCH OR MORE:
                      0
MIN 0 OR BELOW:
                            1.00 INCH OR MORE:
                                                     2
                      0
[HDD (BASE 65) ]
TOTAL THIS MO.
                    323
                            CLEAR (SCALE 0-3) 12
PTCLDY (SCALE 4-7) 15
DPTR FM NORMAL
                     62
TOTAL FM JUL 1
                    423
                            CLOUDY (SCALE 8-10) 4
DPTR FM NORMAL
                     21
[CDD (BASE 65) ]
TOTAL THIS MO.
                      0
                            [PRESSURE DATA]
HIGHEST SLP 30.27 ON 15
LOWEST SLP 29.70 ON 31
DPTR FM NORMAL
                     -2
TOTAL FM JAN 1 1156
DPTR FM NORMAL
                    -10
[REMARKS]
#FINAL-12-21#
```

National Weather Service Los Angeles, CA Weather Forecast Office 520 North Elevar Street Oxnard, CA 93030 805-988-6610

Page Author: LOX Webmaster

Web Master's E-mail: <u>w-lox.webmaster@noaa.gov</u> Page last modified: Nov 18th, 2021 21:12 UTC
 Disclaimer
 Privacy Policy

 Credits
 About Us

 Glossary
 Career Opportunities

National Weather Service Weather Forecast Office

Los Angeles, CA

Climatological Report (Monthly) Issued by NWS

CLIMATE REPORT NATIONAL WEATHER 030 AM PST SAT							
	JAN 01 2		ELES/OXNA	ARD			
THE LONG BEAG	CH AIRPO	RT CA CLIM	MATE SUMM	IARY FOR	THE MONTH	OF DECEMBER 2	2021
CLIMATE NORMAL F							
VEATHER	OBSERVE VALUE	D DATE(S)	VALUE	DEPART FROM NORMAL	LAST YEA	AR`S	
EMPERATURE (F)		• • • • • • • • •		• • • • • • • •	• • • • • • • • •	• • • •	
HIGHEST	69						
.OWEST	38						
OWEST AVG. MAXIMUM AVG. MINIMUM MEAN	62.3	,,	66.7 46.6	-4.4			
AVG. MINIMUM	46.5		46.6	-0.1			
MEAN	54.4		56.7	-2.3			
DAYS MAX >= 90 DAYS MAX <= 32	0						
DAYS MIN <= 32 DAYS MIN <= 0							
DAYS MIN <= 0	0						
PRECIPITATION (INCHES)						
OTALS	5.74		2.15	3.59			
OTALS DAILY AVG.	0.19						
DAYS >= .01 DAYS >= .10	11 6						
DAYS >= .10 DAYS >= .50	4						
DAYS >= 1.00	2						
GREATEST							
24 HR. TOTAL STORM TOTAL	2.42	12/29 TO 1	12/30				
DEGREE DAYS							
HEATING TOTAL	323			62			
HEATING TOTAL SINCE 7/1 COOLING TOTAL	423		402				
SINCE 1/1	บ 1156		2 1166	-2 -10	4 MM		
VIND (MPH)							
WEDACE LITHE COL	EED	4	1.2				
HIGHEST WIND SPI HIGHEST GUST SPI	ED/DIRE	CTION 2	29/290	DATE 1	2/14		
HIGHEST GUST SPI	EED/DIRE	CTION 3	38/270	DATE 1	2/14		
SKY COVER							
OSSIBLE SUNSHI	NE (PERC	ENT) MM					
VERAGE SKY COVI							
IUMBER OF DAYS I IUMBER OF DAYS I		13 13					
IUMBER OF DAYS (
AVERAGE RH (PERG	CENT)	73					
WEATHER CONDITION	ONS. NUM	BER OF DAY	/S WITH				
THUNDERSTORM			MIXED PRE	CIP		0	
HEAVY RAIN			RAIN	DATN		7	
.IGHT RAIN .T FREEZING RAIN	N		REEZING HAIL	VATIN		0	
HEAVY SNOW	•		SNOW			0	
IGHT SNOW			SLEET			0	
FOG HAZE		28 F 20	OG W/VIS	<= 1/4	WILE	3	
IMAE		20					

T INDICATES TRACE AMOUNT.

\$\$

National Weather Service Los Angeles, CA Weather Forecast Office 520 North Elevar Street Oxnard, CA 93030 805-988-6610 Page Author: LOX Webmaster

Web Master's E-mail: w-lox.webmaster@noaa.gov Page last modified: Nov 18th, 2021 21:12 UTC Disclaime Credits Glossary Privacy Policy
About Us
Career Opportunities

Dominguez Channel Estuary September 2021 Sediment Monitoring Report

Prepared for:

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations 1801 East Sepulveda Boulevard Carson, CA 90745

Prepared by:

WGR Southwest, Inc. 11021 Winners Circle, Suite 101 Los Alamitos, CA 90720

Date:

January 21, 2022

TESORO REFINING & MARKETING COMPANY LLC LOS ANGELES REFINERY – CARSON OPERATIONS DOMINGUEZ CHANNEL ESTUARY SEDIMENT MONITORING REPORT 2021

TABLE OF CONTENTS

1.0 Introduction	Introduction1					
2.0 Sediment Monit	Sediment Monitoring					
3.0 Laboratory Resi	2.0 Laboratory Results					
4.0 Executive Sumr	mary					
	<u>TABLES</u>					
Table 2.0:	Sediment Monitoring Field Observation and Analyses					
	<u>FIGURES</u>					
Figure 1:	Dominguez Channel Estuary Sediment Monitoring Locations					
	<u>ATTACHMENTS</u>					
Attachment 1:	Sediment Monitoring Field Logs					
Attachment 2, Table 1:	Sediment Monitoring Laboratory Result Summary Table					
Attachment 2, Table 2:	Sediment Monitoring Particle Grain Size Summary Table					
Attachment 3:	Sediment Monitoring Eurofins Calscience Analytical Laboratory Report					
Attachment 4:	Sediment Monitoring Aquatic Bioassay Analytical Laboratory Report					
Attachment 5:	Organic/Inorganic Analytical Validation Report					
Attachment 6:	Sediment Bioassay Data Validation Report					

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations Dominguez Channel Estuary September 2021 Sediment Monitoring Report Page 1 of 3

1.0 Introduction

On behalf of Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations (Tesoro LAR Carson), WGR Southwest, Inc. (WGR) conducted sediment monitoring of the Dominguez Channel Estuary in accordance with National Pollutant Discharge Elimination System Waste Discharge Requirements Permit Number CA0000680 Order Number R4-2015-0259 (WDR Permit). As required in Table E-7 of WDR Permit Attachment E, Monitoring and Reporting Program Number 5424 (MRP No. 5424), sediment monitoring is required at least once a year for all parameters and at least twice a year for Chronic Toxicity regardless of Tesoro LAR Carson discharge associated with the WDR Permit¹. Therefore, this report constitutes sediment monitoring for the first event of the 2021 reporting year, where the sediment samples collected were analyzed for all required parameters and all required monitoring (i.e. field observations and field analyses) was completed.

2.0 Sediment Monitoring

As shown in Figure 1, the WDR Permit designates seven sediment monitoring locations: SED-001, SED-002, SED-003, SED-004, SED-005, SED-006, and SED-007. WGR field personnel utilized an Ekman dredge and a Horiba U-50 Series Multi-Parameter Meter. According to historic Tesoro LAR Carson Sediment Monitoring Reports, samplers have been unable to collect sediment samples from SED-001 since 2003 and SED-002 since 2003.

Sediment monitoring was attempted at SED-001 and SED-002 sediment monitoring locations on September 8, 2021 and SED-003, SED-004, SED-005, SED-006 and SED-007 sediment monitoring locations on September 9, 2021. As detailed in the field logs (see Attachment 1), sediment samples and associated monitoring could only be feasibly completed at five of the seven sediment monitoring locations. Table 2.0 provides a summary of the field observations and analyses.

Table 2.0: Sediment Monitoring Field Observation and Analyses									
		Field Observations			Fi	eld A	nalys	ses	
Sample ID	Sediment Description	Biological Matter	Pollutants	pH (SU)	Salinity (PPT)	DO (mg/L)	SC (mS/Cm)	Turbidity (NTU)	Flow
SED-001	Not Sampled	Not Sampled	Not Sampled			-	-	-	-
SED-002	Not Sampled Not Sampled Not Sampled		Not Sampled						

¹ Tesoro LAR Carson did not discharge under the WDR Permit during the 2021 calendar year.

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations Dominguez Channel Estuary September 2021 Sediment Monitoring Report Page 2 of 3

Table 2.0: Sediment Monitoring Field Observation and Analyses										
	Field Observations						Field Analyses			
Sample ID	Sediment Description	Biological Matter	Pollutants	pH (SU)	Salinity (PPT)	DO (mg/L)	SC (mS/Cm)	Turbidity (NTU)	Flow	
SED-003	Dark in color, vegetation and debris, biological odor	Vegetation present	Trash present	7.82	24.76	9.11	37.6	20.7	1	
SED-004	Dark in color with vegetation and debris	Vegetation present	Trash present	7.62	19.46	14.74	31.4	39.3	1	
SED-005	Dark in color with vegetation and debris, biological odor	Vegetation present	Trash present	7.75	23.83	9.11	36.5	10.1	1	
SED-006	Dark in color	Vegetation present	Trash present	6.65	21.59	14.39	34.9	14.8	1	
SED-007 DO: Dissolved	Dark in color with some vegetation/debris, shells, salty, biological odor	Vegetation present	Trash present	7.77	19.96	12.39	32.3	81.4	1	

DO: Dissolved Oxygen SC: Specific Conductance

3.0 Laboratory Results

Table 2.0 summarizes the field observations and analyses for the September 2021 sediment monitoring event. Laboratory results are summarized in Attachment 2. The Eurofins Calscience laboratory report is in Attachment 3 and the Aquatic Bioassay laboratory report is in Attachment 4. Data validation reports for these laboratory analytical reports are in Attachment 5 and Attachment 6.

4.0 Executive Summary

Receiving water sediment monitoring and analysis was conducted independent of any discharge from Tesoro LAR Carson. Pollutant concentrations demonstrated in this report are

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations Dominguez Channel Estuary September 2021 Sediment Monitoring Report Page 3 of 3

not associated with any contribution from Tesoro LAR Carson to the receiving water. There are no pollutant concentration limits associated with this type of sampling as prescribed by the WDR Permit. Receiving water sediment monitoring and analysis was completed in compliance with the WDR Permit Attachment E, MRP No. 5424. As noted in the Organic/Inorganic Analytical Validation Report and the Sediment Bioassay Data Validation Report included in Attachment 5 and 6, respectively, analytical data obtained for this sampling event was deemed acceptable. No instances of non-compliance were identified.

FIGURE 1

DOMINGUEZ CHANNEL ESTUARY SEDIMENT MONITORING LOCATIONS

Figure 1: Dominguez Channel Estuary Sediment Monitoring Locations

ATTACHMENT 1

SEDIMENT MONITORING FIELD LOGS

	WGR Southwest, Inc. Field Log	Page 1 of 3 Date: 9/8/202/	
Project Nan	ne: LARC Sediment 2021	Field Personnel:	we Montdorgo
11.	nber: 021. ATC . 01	Field Personnel:	0
Clear !	tions/Project Discrepancies: Sunny Weather Light 82 F	+ Breeze	
Time		Field Notes	
13:30	Loaded truck at well meeting with Amber pr	e office. Co	/
13:55	Picked up water me	eter from F	ield Environ mental
15:10	equipment * Walked from 1	# trush along of brielge. In r is murky, i us to collect Attempts coase IE corner of be	embankment. Dater level is 52ft unable to see sample Unable to al packed up

	WGR Southwest, Inc.	Page 2 of 3
Duniant Mar	Field Log	Date: 9 9 202
Project Na		9
Project Nur Field Cond	nber: O2(. APC. 0(Field Peritions/Project Discrepancies:	sonner:
See	T9 1	
Time	Field Note	es
9:20	Arrived at SED-0010, Weather Vegetation & Trash along embankenen corner of bridge to center. Water railing. Water IS murky, cannot 24.63°C, 6.65 pH, 34.9 mS/cm 20.6 g/L TDS, 21.59 ppt. De	Sun, Clear, Water in Channel 4. Walked 146ff from DW 1 PUEL IS 24ff from bridge See bottom, Sediment dark in a 14.8 NTU, 14.39 mg L DO, con & Packed.
10:45	Left SED-006 for SED-007	
i0:55	5(off from SE corner of br	vegetation and shells deb
11:45	Left SED-007 for Home Depot	to get more Deron Water
12:42	Arrived at SED-DOH. Weather of from SE corner of bridge to from bridge railing. Trash & Wentenhamment Sediment churk in debnis, 25.78°C, 7.62 pH, 31/14.74 mg/L DD, 17.9 g/L TDS packed	center, 19ft to water egetation observed along color w/ some vegetation &
13:47	Left SED-004 for Lunch	

	WGR Southwest, Inc. Field Log		Page 3 of 3 Date: 9/9/2/
Project Nan	ne: LARC Sedment 2021	Field Personnel:	ave Mortelonen
Project Nur		Field Personnel:	9
Field Condi	tions/Project Discrepancies:		
See	Pg 1		
Time		Field Notes	
14:50	Arrived at SED-005. Was from NE corner. Water 15 et trash along embankement bottom. Sealiment dark in Bio Decomp color. 24.87 10.1 NTU, 9.11 mg 1 DO Deron & Pached.	23 ft from 6 - Water is mu	vojetation & debris
16:00	Left SED-005 for SE	ED-003	
16:10	Arrived at SED-003. W Water level is 21ft from	1 1	to renter of bridges
16:25	Left SED-003 to return prior to close.	water moter	to Field Environmente
17:15	Arrived at SED-003. Wead Trush observed along embour with regetation & debris. 28.06°C, 7.82 pH, 37.60 22.5 g/L 705, 24.760 pp	nSlem 2017	b Decomp.
18:10	Left SED-003 for WGE	2 Office	
18:46	Arrived at WGR Office.	- End of Da	ay

ATTACHMENT 2

SEDIMENT MONITORING LABORATORY RESULT SUMMARY TABLE AND PARTICLE GRAIN SIZE SUMMARY TABLE

Sample ID	SED-001	SED-002	SED-003	SED-004	SED-005	SED-006	SED-007
Date Sampled	NS	NS	9/9/2021	9/9/2021	9/9/2021	9/9/2021	9/9/2021
Time Sampled	NS	NS	17:55	13:30	15:45	10:25	11:30
Total Metals							
Cadmium (EPA 6020) (mg/Kg)	NS	NS	ND<2.82	ND<2.00	ND<2.31	ND<2.37	ND<2.37
Chromium (EPA 6020) (mg/Kg)	NS	NS	54.1	37.9	40.3	44.3	42.6
Copper (EPA 6020) (mg/Kg)	NS	NS	134	93.5	95.9	111	92.7
Lead (EPA 6020) (mg/Kg)	NS	NS	76.8	57.6	57.8	65.3	55.4
Nickel (EPA 6020) (mg/Kg)	NS	NS	19	13.3	14	14	13.4
Zinc (EPA 6020) (mg/Kg)	NS	NS	565	353	386	386	328
Mercury (EPA 7471A) (mg/Kg)	NS	NS	0.222	0.246	0.334	0.3590	0.206
Volatile/Semi-Volatile Organic Compounds							
Chlordane (EPA 8081A) (ug/Kg)	NS	NS	15	81	8.9	27	12
DDT (EPA 8081A) (ug/Kg, sum of 4,4'-DDT, 2,4'-DDT, 4,4'-DDE, 2,4'-DDE,	NS	NS	53.4	33.2	28.5	51	20.7
4,4'-DDD, and 2,4'-DDD)	INO	INO	33.4	33.2	26.5	31	20.7
PCBs (EPA 8082) (ug/Kg, sum of Arochlor 1016, Arochlor 1221, Arochlor 1232, Arochlor 1242, Arochlor 1248, Arochlor 1254, and Arochlor 1260)	NS	NS	360	199	240	198	300
PAHs (EPA 8270C) (mg/Kg, sum of acenaphthene, anthracene, 1,2-benzanthracene, 3,4-benzofluoranthene, benzo(k)fluoranthene, 1,12-benzoperylene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, and pyrene)	NS	NS	4.771	2.566	2.243	1.57	1.618
Total Petroleum Hydrocarbons (EPA 8015B) (mg/Kg)	NS	NS	800	1100	1500	2000	940
Sediment Grain Size (ASTM D4464)			Refer	to Attachme	nt 2, Table 2		
Total Organic Carbon (EPA 9060A) (mg/Kg)	NS	NS	49,900	38,800	44,200	41,500	33,700
Tributyltin (Krone et al.) (ug/Kg)	NS	NS	6.4	ND<5.8	ND<7.0	5.6	ND<7.9
Chronic Toxicity							
Eohaustorius estuarius (NOEC in mg/L)	NS	NS	100%	100%	100%	100%	100%
Mytilus galloprovincialis (NOEC in mg/L)	NS	NS	100%	100%	100%	100%	100%

NS = Not Sampled

ND = Non-Detect

NOEC = No Observed Effect Concentration

		Particle Size Distribution (Weight Percent)								
Sample ID	Mean Grain Size (mm)	Total Silt & Clay (0 - 0.0626 mm)	Clay (< 0.00391 mm)	Silt (0.00391 - 0.0625 mm)	Very Fine Sand (0.0625 - 0.125 mm)	Fine Sand (0.125 - 0.25 mm)	Medium Sand (0.25 - 0.5 mm)	Coarse Sand (0.5 - 1 mm)	Very Coarse Sand (1 - 2 mm)	Gravel (>2 mm)
SED-001	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SED-002	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SED-003	0.032	81.87	12.49	69.38	17.08	1.05	ND<0.01	ND<0.01	ND<0.01	ND<0.01
SED-004	0.034	79.99	11.66	68.33	19.25	0.76	ND<0.01	ND<0.01	ND<0.01	ND<0.01
SED-005	0.029	83.64	13.54	70.10	15.64	0.71	ND<0.01	ND<0.01	ND<0.01	ND<0.01
SED-006	0.040	75.76	7.33	68.44	21.91	2.32	ND<0.01	ND<0.01	ND<0.01	ND<0.01
SED-007	0.043	73.8	6.4	67.41	23.19	3.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01

NS = Not Sampled

ND = Non-Detect

ATTACHMENT 3

SEDIMENT MONITORING EUROFINS CALSCIENCE ANALYTICAL LABORATORY REPORT

ANALYTICAL REPORT

Eurofins Calscience LLC 7440 Lincoln Way Garden Grove, CA 92841 Tel: (714)895-5494

Laboratory Job ID: 570-69878-1

Client Project/Site: Tesoro LA Refinery

For:

WGR Southwest Inc 11021 Winners Circle Suite 101 Los Alamitos, California 90720

Attn: Chelsea Dreyer

Spilatul

Authorized for release by: 9/27/2021 4:34:31 PM
Sheila Luu, Project Mgmt. Assistant Sheila.Luu@eurofinset.com

Designee for

Xuan Dang, Project Manager I (714)895-5494 Xuan.Dang@eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

6

<u>و</u>

9

4 4

12

13

14

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery Laboratory Job ID: 570-69878-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	12
Surrogate Summary	33
QC Sample Results	35
QC Association Summary	46
Lab Chronicle	52
Certification Summary	57
Method Summary	58
Sample Summary	59
Chain of Custody	60
Receipt Checklists	61

A

5

7

9

10

12

4 /

Definitions/Glossary

Client: WGR Southwest Inc

Project/Site: Tesoro LA Refinery

Job ID: 570-69878-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
□1	MS and/or MSD recovery exceeds control limits

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Description

WS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

applicable.
F1 MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

EDL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DFR	Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Padiochemistry)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Eurofins Calscience LLC

Page 3 of 61 9/27/2021

6

6

10

11

14

Definitions/Glossary

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report.

TNTC Too Numerous To Count

3

Δ

5

7

9

11

12

14

Case Narrative

Client: WGR Southwest Inc Job ID: 570-69878-1
Project/Site: Tesoro LA Refinery

Job ID: 570-69878-1

Laboratory: Eurofins Calscience LLC

Narrative

Job Narrative 570-69878-1

Comments

No additional comments.

Receipt

The samples were received on 9/13/2021 1:50 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.9° C.

GC/MS Semi VOA

Method 8270C SIM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-178989 and 570-180052 and analytical batch 570-180477 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8270C SIM: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for preparation batch 570-178989 and 570-180052 and analytical batch 570-180477 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

Method Organotins SIM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-179948 and analytical batch 570-181787 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015B: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with preparation batch 570-179051 and analytical batch 570-179136 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Diesel Range Organics [C10-C28] and C23-C40 in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

Method 8081A: The following samples were diluted 5X due to the nature of the sample matrix: SED-003 (570-69878-1), SED-004 (570-69878-2), SED-005 (570-69878-3), SED-006 (570-69878-4) and SED-007 (570-69878-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6020: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-178989 and 570-181268 and analytical batch 570-181377 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 6020: Due to the high concentration of Zinc, the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 570-178989 and 570-181268 and analytical batch 570-181377 could not be evaluated for accuracy and precision. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method D4464: The sample duplicate precision for the following sample associated with analytical batch 570-181620 was flagged as being outside control limits due to a L.I.M.S. limitation: (570-70713-A-1) and (570-70713-A-1 DU). The mean grain size for the sample and

2

4

5

6

ا

9

11

13

14

Case Narrative

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery Job ID: 570-69878-1

Job ID: 570-69878-1 (Continued)

Laboratory: Eurofins Calscience LLC (Continued)

sample duplicate were within RPD acceptance criteria. Method D4464.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

6

8

9

11

12

14

Detection Summary

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

Client Sample ID: SED-003

Lab Sample ID: 570-69878-1

Analyte		Qualifier	RL	MDL	Unit	Dil Fac	D		Prep Type
Acenaphthene	0.046	J	0.057	0.0029	mg/Kg	2	₩	8270C SIM	Total/NA
Anthracene	0.10		0.057	0.0038	mg/Kg	2	₩	8270C SIM	Total/NA
1,2-Benzanthracene	0.28		0.057	0.0063	mg/Kg	2	₩	8270C SIM	Total/NA
Benzo[a]pyrene	0.45		0.057	0.0077	mg/Kg	2	₩	8270C SIM	Total/NA
3,4-Benzofluoranthene	0.43		0.057	0.0082	mg/Kg	2	☼	8270C SIM	Total/NA
Benzo[k]fluoranthene	0.40		0.057	0.0092	mg/Kg	2	₩	8270C SIM	Total/NA
1,12-Benzoperylene	0.35		0.057	0.0083	mg/Kg	2	☼	8270C SIM	Total/NA
Chrysene	0.55		0.057	0.0044	mg/Kg	2	₩	8270C SIM	Total/NA
Dibenz(a,h)anthracene	0.13		0.057	0.0060	mg/Kg	2	₩	8270C SIM	Total/NA
Fluoranthene	0.84		0.057	0.0055	mg/Kg	2	₩	8270C SIM	Total/NA
Fluorene	0.065		0.057	0.0047	mg/Kg	2	₩	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene	0.21		0.057	0.0071	mg/Kg	2	₩	8270C SIM	Total/NA
1-Methylnaphthalene	0.014	J	0.057	0.0041	mg/Kg	2	₩	8270C SIM	Total/NA
2-Methylnaphthalene	0.035	J	0.057	0.0041	mg/Kg	2	₩	8270C SIM	Total/NA
Naphthalene	0.030	J	0.057	0.0044	0 0	2	₩	8270C SIM	Total/NA
Phenanthrene	0.40		0.057	0.0048		2	 ∵	8270C SIM	Total/NA
Pyrene	0.92		0.057	0.0043	0 0	2		8270C SIM	Total/NA
Tributyltin	6.4	J	8.5		ug/Kg	1		Organotins SIM	Total/NA
C9-C10	12		14	11			. ∵.	8015B	Total/NA
C13-C14	15	·	14	11	mg/Kg	1	☼	8015B	Total/NA
C15-C16	110		14	11		1	☼	8015B	Total/NA
C17-C18	17		14	11			. ~. ∵	8015B	Total/NA
C19-C20	19		14	11	mg/Kg	1	₩	8015B	Total/NA
C21-C22	35		14	11	mg/Kg	1	☼	8015B	Total/NA
C23-C24	61		14	11	mg/Kg		. ∵. ‡	8015B	Total/NA
C25-C28	170		14	11	mg/Kg	1	₩	8015B	Total/NA
C29-C32	170		14	11		1		8015B	Total/NA
C33-C36			14	11	mg/Kg mg/Kg		₩ ₩	8015B	
C37-C40	130 50					1			Total/NA
	800		14	11	mg/Kg	1	☆	8015B 8015B	Total/NA Total/NA
C6-C44			14	11			.₩		
2,4'-DDD		J p	5.0		ug/Kg	5		8081A	Total/NA
2,4'-DDE	11		10	0.49	0 0	5		8081A	Total/NA
4,4'-DDD		F1	5.0	2.5				8081A	Total/NA
4,4'-DDE	21		5.0	0.36	0 0	5		8081A	Total/NA
Chlordane	15	J	25	1.6	0 0	5		8081A	Total/NA
Aroclor-1254	180	;	29		ug/Kg			8082	Total/NA
Aroclor-1260	180	F1	29		ug/Kg	1		8082	Total/NA
Chromium	54.1		5.63		mg/Kg	20	₩	6020	Total/NA
Copper	134		2.82		mg/Kg	20		6020	Total/NA
Lead	76.8	F1	2.82		mg/Kg	20	₩		Total/NA
Nickel	19.0		2.82		mg/Kg	20		6020	Total/NA
Zinc	565		14.1		mg/Kg	20		6020	Total/NA
Mercury	0.222	J	0.234	0.0380		1	₩	7471A	Total/NA
Carbon, Total Organic	49900		1430		mg/Kg	1	₩	9060A	Total/NA
Clay (less than 0.00391 mm)	12.49		0.01	0.01	%	1		D4464	Total/NA
Fine Sand (0.125 to 0.25mm)	1.05		0.01	0.01	%	1		D4464	Total/NA
Silt (0.00391 to 0.0625mm)	69.38		0.01	0.01	%	1		D4464	Total/NA
Total Silt and Clay (0 to 0.0626mm)	81.87		0.01	0.01	%	1		D4464	Total/NA
Very Fine Sand (0.0625 to 0.125 mm)	17.08		0.01	0.01	%	1		D4464	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Calscience LLC

9/27/2021

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Client Sample ID: SED-004

Lab Sample ID: 570-69878-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	0.0086	J	0.040	0.0020	mg/Kg	2	₩	8270C SIM	Total/NA
Anthracene	0.053		0.040	0.0026	mg/Kg	2	₩	8270C SIM	Total/NA
1,2-Benzanthracene	0.16		0.040	0.0044	mg/Kg	2	₩	8270C SIM	Total/NA
Benzo[a]pyrene	0.24		0.040	0.0054	mg/Kg	2	₩	8270C SIM	Total/NA
3,4-Benzofluoranthene	0.23		0.040	0.0057	mg/Kg	2	₩	8270C SIM	Total/NA
Benzo[k]fluoranthene	0.19		0.040	0.0064	mg/Kg	2	₩	8270C SIM	Total/NA
1,12-Benzoperylene	0.21		0.040	0.0058	mg/Kg	2	₩	8270C SIM	Total/NA
Chrysene	0.34		0.040	0.0031	mg/Kg	2	₩	8270C SIM	Total/NA
Fluoranthene	0.42		0.040	0.0038	mg/Kg	2	₽	8270C SIM	Total/NA
Fluorene	0.014	J	0.040	0.0033	mg/Kg	2	₽	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene	0.13		0.040	0.0049	mg/Kg	2	₽	8270C SIM	Total/NA
1-Methylnaphthalene	0.011	J	0.040	0.0028	mg/Kg	2	₩	8270C SIM	Total/NA
2-Methylnaphthalene	0.020	J	0.040	0.0028	mg/Kg	2	⊅	8270C SIM	Total/NA
Naphthalene	0.021	J	0.040	0.0031	mg/Kg	2	₩	8270C SIM	Total/NA
Phenanthrene	0.18		0.040	0.0033	mg/Kg	2	₽	8270C SIM	Total/NA
Pyrene	0.57		0.040	0.0030	mg/Kg	2		8270C SIM	Total/NA
C13-C14	8.7	J	10	7.7		1	₩	8015B	Total/NA
C15-C16	22		10	7.7	mg/Kg	1	₩	8015B	Total/NA
C17-C18	27		10	7.7	mg/Kg	1		8015B	Total/NA
C19-C20	120		10	7.7	mg/Kg	1	₩	8015B	Total/NA
C21-C22	96		10	7.7		1	₽	8015B	Total/NA
C23-C24	100		10	7.7		1	 ☆	8015B	Total/NA
C25-C28	240		10	7.7	0 0	1	₽	8015B	Total/NA
C29-C32	250		10	7.7	0 0	1	₩	8015B	Total/NA
C33-C36	180		10	7.7	mg/Kg	1		8015B	Total/NA
C37-C40	59		10	7.7	mg/Kg	1		8015B	Total/NA
C6-C44	1100		10	7.7			₩	8015B	Total/NA
2,4'-DDD			5.0	0.32		5		8081A	Total/NA
2,4'-DDE	0.63		10	0.48		5		8081A	Total/NA
4,4'-DDD	8.1	•	5.0	2.5		5		8081A	Total/NA
4,4'-DDE	22	- -	5.0	0.35	ug/Kg	5		8081A	Total/NA
Chlordane	81		25	1.6	ug/Kg	5		8081A	Total/NA
Aroclor-1254	89		20	9.9			₩	8082	Total/NA
Aroclor-1260	110		20		ug/Kg		. '''. ☆	8082	Total/NA
Chromium	37.9		4.00		mg/Kg	20	₩	6020	Total/NA
Copper	93.5		2.00		mg/Kg	20		6020	Total/NA
Lead	57.6		2.00		mg/Kg	20	. ~ . ☆	6020	Total/NA
Nickel	13.3		2.00		mg/Kg	20	~	6020	Total/NA
Zinc	353		10.0		mg/Kg	20		6020	Total/NA
Mercury	0.246		0.158	0.0256				7471A	Total/NA
Carbon, Total Organic	38800		995		mg/Kg			9060A	Total/NA
Carbon, Total Organic Clay (less than 0.00391 mm)	11.66		0.01	0.01		1	٦-,٢	D4464	Total/NA
Fine Sand (0.125 to 0.25mm)			0.01	0.01				D4464	Total/NA
Silt (0.00391 to 0.0625mm)	0.76					1		D4464	
SIII (U.UUSB I IU U.UUZSIIIIII)	68.33		0.01	0.01 0.01				D4464	Total/NA Total/NA
Total Silt and Clay (0 to 0.0626mm)	79.99		0.01	() () 4		1			

Client Sample ID: SED-005

Lab Sample ID: 570-69878-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Acenaphthene	0.0081 J	0.047	0.0024 mg/Kg	2 🌣 8270C SIM	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Calscience LLC

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery Job ID: 570-69878-1

Client Sample ID: SED-005 (Continued)

Lab Sample ID: 570-69878-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.058		0.047	0.0032	mg/Kg	2	☼	8270C SIM	Total/NA
1,2-Benzanthracene	0.13		0.047	0.0052	mg/Kg	2	₩	8270C SIM	Total/NA
Benzo[a]pyrene	0.22		0.047	0.0064	mg/Kg	2	₽	8270C SIM	Total/NA
3,4-Benzofluoranthene	0.26		0.047	0.0068	mg/Kg	2	₩	8270C SIM	Total/NA
Benzo[k]fluoranthene	0.17		0.047	0.0076	mg/Kg	2	₩	8270C SIM	Total/NA
1,12-Benzoperylene	0.16		0.047	0.0068	mg/Kg	2	☼	8270C SIM	Total/NA
Chrysene	0.31		0.047	0.0036	mg/Kg	2	₽	8270C SIM	Total/NA
Fluoranthene	0.36		0.047	0.0045	mg/Kg	2	₽	8270C SIM	Total/NA
Fluorene	0.017	J	0.047	0.0039	mg/Kg	2	₩	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene	0.090		0.047	0.0059	mg/Kg	2	₽	8270C SIM	Total/NA
1-Methylnaphthalene	0.012	J	0.047	0.0034	mg/Kg	2	₩	8270C SIM	Total/NA
2-Methylnaphthalene	0.025	J	0.047	0.0034	mg/Kg	2	₩	8270C SIM	Total/NA
Naphthalene	0.026	J	0.047	0.0036	mg/Kg	2	₩	8270C SIM	Total/NA
Phenanthrene	0.17		0.047	0.0040	mg/Kg	2	₩	8270C SIM	Total/NA
Pyrene	0.46		0.047	0.0035	mg/Kg	2	₩	8270C SIM	Total/NA
C15-C16	21		12	9.2	mg/Kg	1	₩	8015B	Total/NA
C17-C18	33		12	9.2	mg/Kg	1	☼	8015B	Total/NA
C19-C20	50		12	9.2	mg/Kg	1	. ∵	8015B	Total/NA
C21-C22	86		12	9.2	mg/Kg	1	₩	8015B	Total/NA
C23-C24	140		12	9.2	mg/Kg	1	₩	8015B	Total/NA
C25-C28	400		12	9.2	mg/Kg	1	₩.	8015B	Total/NA
C29-C32	420		12	9.2	mg/Kg	1	₽	8015B	Total/NA
C33-C36	250		12	9.2	mg/Kg	1	₩	8015B	Total/NA
C37-C40	98		12	9.2	mg/Kg	1	₩.	8015B	Total/NA
C41-C44	18		12	9.2	mg/Kg	1	₽	8015B	Total/NA
C6-C44	1500		12	9.2	mg/Kg	1	☼	8015B	Total/NA
2,4'-DDD	1.3	Jр	5.0	0.32	ug/Kg	5		8081A	Total/NA
2,4'-DDE	2.5	Jp	10	0.48	ug/Kg	5		8081A	Total/NA
4,4'-DDD	6.7	р	5.0	2.5	ug/Kg	5		8081A	Total/NA
4,4'-DDE	18		5.0	0.35	ug/Kg	5		8081A	Total/NA
Chlordane	8.9	Jр	25	1.6	ug/Kg	5		8081A	Total/NA
Aroclor-1254	130		24	12	ug/Kg	1	₽	8082	Total/NA
Aroclor-1260	110		24	12	ug/Kg	1	 ∵	8082	Total/NA
Chromium	40.3		4.63	0.694	mg/Kg	20	☼	6020	Total/NA
Copper	95.9		2.31	0.623	mg/Kg	20	₽	6020	Total/NA
Lead	57.8		2.31	0.498	mg/Kg	20		6020	Total/NA
Nickel	14.0		2.31		mg/Kg	20	₽	6020	Total/NA
Zinc	386		11.6		mg/Kg	20		6020	Total/NA
Mercury	0.334		0.208	0.0337		1		7471A	Total/NA
Carbon, Total Organic	44200		1190		mg/Kg			9060A	Total/NA
Clay (less than 0.00391 mm)	13.54		0.01	0.01		1		D4464	Total/NA
Fine Sand (0.125 to 0.25mm)	0.71		0.01	0.01		1		D4464	Total/NA
Silt (0.00391 to 0.0625mm)	70.10		0.01	0.01		1		D4464	Total/NA
Total Silt and Clay (0 to 0.0626mm)	83.64		0.01	0.01		1		D4464	Total/NA
Very Fine Sand (0.0625 to 0.125 mm)	15.64		0.01	0.01				D4464	Total/NA

Client Sample ID: SED-006

Lab Sample ID: 570-69878-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.031	J	0.047	0.0032	mg/Kg	2	₩	8270C SIM	Total/NA
1,2-Benzanthracene	0.087		0.047	0.0052	mg/Kg	2	₽	8270C SIM	Total/NA

This Detection Summary does not include radiochemical test results.

Page 9 of 61

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

Client Sample ID: SED-006 (Continued)

Lab Sample ID: 570-69878-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]pyrene	0.13		0.047	0.0064	mg/Kg	2	₩	8270C SIM	Total/NA
3,4-Benzofluoranthene	0.16		0.047	0.0068	mg/Kg	2	☼	8270C SIM	Total/NA
Benzo[k]fluoranthene	0.098		0.047	0.0076	mg/Kg	2	₽	8270C SIM	Total/NA
1,12-Benzoperylene	0.11		0.047	0.0069	mg/Kg	2	₩	8270C SIM	Total/NA
Chrysene	0.21		0.047	0.0037	mg/Kg	2	⊅	8270C SIM	Total/NA
Fluoranthene	0.29		0.047	0.0046	mg/Kg	2	₩	8270C SIM	Total/NA
Fluorene	0.015	J	0.047	0.0039	mg/Kg	2	₩	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene	0.069		0.047	0.0059	mg/Kg	2	₩	8270C SIM	Total/NA
1-Methylnaphthalene	0.0079	J	0.047	0.0034	mg/Kg	2	₩	8270C SIM	Total/NA
2-Methylnaphthalene	0.015	J	0.047	0.0034	mg/Kg	2	₩	8270C SIM	Total/NA
Naphthalene	0.018	J	0.047	0.0037	mg/Kg	2	⊅	8270C SIM	Total/NA
Phenanthrene	0.098		0.047	0.0040	mg/Kg	2	₩	8270C SIM	Total/NA
Pyrene	0.37		0.047	0.0035	mg/Kg	2	☼	8270C SIM	Total/NA
Tributyltin	5.6	J	7.0	3.5	ug/Kg	1	₩	Organotins SIM	Total/NA
C13-C14	13		12	9.1	mg/Kg	1	₩	8015B	Total/NA
C15-C16	22		12	9.1	mg/Kg	1	₩	8015B	Total/NA
C17-C18	22		12	9.1	mg/Kg	1	☼	8015B	Total/NA
C19-C20	33		12	9.1	mg/Kg	1	₩	8015B	Total/NA
C21-C22	79		12	9.1	mg/Kg	1	₩	8015B	Total/NA
C23-C24	180		12	9.1	mg/Kg	1	₩	8015B	Total/NA
C25-C28	580		12	9.1	mg/Kg	1	₩	8015B	Total/NA
C29-C32	640		12	9.1	mg/Kg	1	☼	8015B	Total/NA
C33-C36	350		12	9.1	mg/Kg	1	₩	8015B	Total/NA
C37-C40	140		12	9.1	mg/Kg	1	₽	8015B	Total/NA
C41-C44	28		12	9.1	mg/Kg	1	₩	8015B	Total/NA
C6-C44	2000		12	9.1	mg/Kg	1	₩	8015B	Total/NA
2,4'-DDD	5.2	p	5.0	0.32	ug/Kg	5		8081A	Total/NA
2,4'-DDE	5.8	Jр	9.9	0.48	ug/Kg	5		8081A	Total/NA
4,4'-DDD	23		5.0	2.5	ug/Kg	5		8081A	Total/NA
4,4'-DDE	17		5.0	0.35	ug/Kg	5		8081A	Total/NA
Chlordane	27		25	1.6	ug/Kg	5		8081A	Total/NA
Aroclor-1254	100		24	12	ug/Kg	1	☼	8082	Total/NA
Aroclor-1260	98		24	12	ug/Kg	1	☼	8082	Total/NA
Chromium	44.3		4.75	0.712	mg/Kg	20	₩	6020	Total/NA
Copper	111		2.37	0.639	mg/Kg	20	⊅	6020	Total/NA
Lead	65.3		2.37	0.510	mg/Kg	20	₩	6020	Total/NA
Nickel	14.0		2.37	0.641	mg/Kg	20	₽	6020	Total/NA
Zinc	386		11.9	11.0	mg/Kg	20	☼	6020	Total/NA
Mercury	0.359		0.195	0.0315	mg/Kg	1	₽	7471A	Total/NA
Carbon, Total Organic	41500		1190	412	mg/Kg	1	₽	9060A	Total/NA
Clay (less than 0.00391 mm)	7.33		0.01	0.01	%	1		D4464	Total/NA
Fine Sand (0.125 to 0.25mm)	2.32		0.01	0.01	%	1		D4464	Total/NA
Silt (0.00391 to 0.0625mm)	68.44		0.01	0.01	%	1		D4464	Total/NA
Total Silt and Clay (0 to 0.0626mm)	75.76		0.01	0.01	%	1		D4464	Total/NA
Very Fine Sand (0.0625 to 0.125 mm)	21.91		0.01	0.01	%	1		D4464	Total/NA

Client Sample ID: SED-007

Lab Sample ID: 570-69878-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	0.033	J	0.13	0.0089	mg/Kg	5	₩	8270C SIM	Total/NA
1,2-Benzanthracene	0.10	J	0.13	0.015	mg/Kg	5	₩	8270C SIM	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Client Sample ID: SED-007 (Continued)

Lab Sample ID: 570-69878-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]pyrene	0.13		0.13	0.018	mg/Kg	5	₩	8270C SIM	Total/NA
3,4-Benzofluoranthene	0.16		0.13	0.019	mg/Kg	5	₩	8270C SIM	Total/NA
Benzo[k]fluoranthene	0.12	J	0.13	0.022	mg/Kg	5	₩	8270C SIM	Total/NA
1,12-Benzoperylene	0.10	J	0.13	0.019	mg/Kg	5	₩	8270C SIM	Total/NA
Chrysene	0.22		0.13	0.010	mg/Kg	5	₩	8270C SIM	Total/NA
Fluoranthene	0.29		0.13	0.013	mg/Kg	5	₩	8270C SIM	Total/NA
Fluorene	0.017	J	0.13	0.011	mg/Kg	5	₩	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene	0.068	J	0.13	0.017	mg/Kg	5	₩	8270C SIM	Total/NA
2-Methylnaphthalene	0.027	J	0.13	0.0096	mg/Kg	5	₩	8270C SIM	Total/NA
Naphthalene	0.037	J	0.13	0.010	mg/Kg	5	₩	8270C SIM	Total/NA
Phenanthrene	0.11	J	0.13	0.011	mg/Kg	5	₩	8270C SIM	Total/NA
Pyrene	0.38		0.13	0.010	mg/Kg	5	₩	8270C SIM	Total/NA
C17-C18	19		14	10	mg/Kg	1	₩	8015B	Total/NA
C19-C20	33		14	10	mg/Kg	1	₩	8015B	Total/NA
C21-C22	54		14	10	mg/Kg	1	₩	8015B	Total/NA
C23-C24	92		14	10	mg/Kg	1	₩	8015B	Total/NA
C25-C28	260		14	10	mg/Kg	1	₩	8015B	Total/NA
C29-C32	270		14	10	mg/Kg	1	₩	8015B	Total/NA
C33-C36	160		14	10	mg/Kg	1	₩	8015B	Total/NA
C37-C40	59		14	10	mg/Kg	1	₩	8015B	Total/NA
C41-C44	14		14	10	mg/Kg	1	₩	8015B	Total/NA
C6-C44	940		14	10	mg/Kg	1	₩	8015B	Total/NA
2,4'-DDD	1.0	Jp	5.0	0.32	ug/Kg	5		8081A	Total/NA
2,4'-DDE	1.6	Jр	9.9	0.48	ug/Kg	5		8081A	Total/NA
4,4'-DDD	10	р	5.0		ug/Kg	5		8081A	Total/NA
4,4'-DDE	8.1	p	5.0	0.35	ug/Kg	5		8081A	Total/NA
Chlordane	12	Jр	25	1.6	ug/Kg	5		8081A	Total/NA
Aroclor-1254	110		27	13	ug/Kg	1	₩	8082	Total/NA
Aroclor-1260	190		27		ug/Kg	1	 ∵	8082	Total/NA
Chromium	42.6		5.45	0.818	mg/Kg	20	₩	6020	Total/NA
Copper	92.7		2.73	0.733	mg/Kg	20	₩	6020	Total/NA
Lead	55.4		2.73	0.586	mg/Kg	20	 ;;;	6020	Total/NA
Nickel	13.4		2.73		mg/Kg	20	₩	6020	Total/NA
Zinc	328		13.6	12.6	mg/Kg	20	₩	6020	Total/NA
Mercury	0.206	J	0.224	0.0362		1		7471A	Total/NA
Carbon, Total Organic	33700		1340		mg/Kg	1	₩	9060A	Total/NA
Clay (less than 0.00391 mm)	6.40		0.01	0.01	0 0	1		D4464	Total/NA
Fine Sand (0.125 to 0.25mm)	3.01		0.01	0.01		1		D4464	Total/NA
Silt (0.00391 to 0.0625mm)	67.41		0.01	0.01	%	1		D4464	Total/NA
Total Silt and Clay (0 to 0.0626mm)	73.80		0.01	0.01	%	1		D4464	Total/NA
Very Fine Sand (0.0625 to 0.125 mm)	23.19		0.01	0.01				D4464	Total/NA

This Detection Summary does not include radiochemical test results.

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-69878-1

Method: 8270C SIM - PAHs (GC/MS SIM)

Client Sample ID: SED-003 Date Collected: 09/09/21 17:55 Date Received: 09/13/21 13:50							Lab San	nple ID: 570-6 Matrix	9878-1 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.046	J	0.057	0.0029	mg/Kg	— <u></u>	09/17/21 18:49	09/20/21 21:52	2
Acenaphthylene	ND		0.057	0.048	mg/Kg	₩	09/17/21 18:49	09/20/21 21:52	2
Anthracene	0.10		0.057	0.0038	mg/Kg	₩	09/17/21 18:49	09/20/21 21:52	2
1,2-Benzanthracene	0.28		0.057	0.0063	mg/Kg	☼	09/17/21 18:49	09/20/21 21:52	2
Benzo[a]pyrene	0.45		0.057	0.0077	mg/Kg	₽	09/17/21 18:49	09/20/21 21:52	2
3,4-Benzofluoranthene	0.43		0.057	0.0082	mg/Kg	₩	09/17/21 18:49	09/20/21 21:52	2
Benzo[k]fluoranthene	0.40		0.057	0.0092	mg/Kg	₽	09/17/21 18:49	09/20/21 21:52	2
1,12-Benzoperylene	0.35		0.057	0.0083	mg/Kg	⇔	09/17/21 18:49	09/20/21 21:52	2
Chrysene	0.55		0.057	0.0044	mg/Kg	₩	09/17/21 18:49	09/20/21 21:52	2
Dibenz(a,h)anthracene	0.13		0.057	0.0060	mg/Kg	₽	09/17/21 18:49	09/20/21 21:52	2
Fluoranthene	0.84		0.057	0.0055	mg/Kg	₩	09/17/21 18:49	09/20/21 21:52	2
Fluorene	0.065		0.057	0.0047	mg/Kg	₽	09/17/21 18:49	09/20/21 21:52	2
Indeno[1,2,3-cd]pyrene	0.21		0.057	0.0071	mg/Kg	₽	09/17/21 18:49	09/20/21 21:52	2
1-Methylnaphthalene	0.014	J	0.057	0.0041	mg/Kg	₩	09/17/21 18:49	09/20/21 21:52	2
2-Methylnaphthalene	0.035	J	0.057	0.0041	mg/Kg	₩	09/17/21 18:49	09/20/21 21:52	2
Naphthalene	0.030	J	0.057	0.0044	mg/Kg	₩	09/17/21 18:49	09/20/21 21:52	2
Phenanthrene	0.40		0.057	0.0048	mg/Kg	₩	09/17/21 18:49	09/20/21 21:52	2
Pyrene	0.92		0.057	0.0043	mg/Kg	☼	09/17/21 18:49	09/20/21 21:52	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	70		22 - 130				09/17/21 18:49	09/20/21 21:52	2
Nitrobenzene-d5 (Surr)	44		20 - 145				09/17/21 18:49	09/20/21 21:52	2
p-Terphenyl-d14 (Surr)	90		33 - 147				09/17/21 18:49	09/20/21 21:52	2

Client Sample ID: SED-004 Lab Sample ID: 570-69878-2 Date Collected: 09/09/21 13:30 Matrix: Solid

Date Received: 09/13/21 1	3:50							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.0086 J	0.040	0.0020	mg/Kg	<u></u>	09/17/21 18:49	09/23/21 03:11	2
Acenaphthylene	ND	0.040	0.034	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Anthracene	0.053	0.040	0.0026	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
1,2-Benzanthracene	0.16	0.040	0.0044	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Benzo[a]pyrene	0.24	0.040	0.0054	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
3,4-Benzofluoranthene	0.23	0.040	0.0057	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Benzo[k]fluoranthene	0.19	0.040	0.0064	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
1,12-Benzoperylene	0.21	0.040	0.0058	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Chrysene	0.34	0.040	0.0031	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Dibenz(a,h)anthracene	ND	0.040	0.0042	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Fluoranthene	0.42	0.040	0.0038	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Fluorene	0.014 J	0.040	0.0033	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Indeno[1,2,3-cd]pyrene	0.13	0.040	0.0049	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
1-Methylnaphthalene	0.011 J	0.040	0.0028	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
2-Methylnaphthalene	0.020 J	0.040	0.0028	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Naphthalene	0.021 J	0.040	0.0031	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Phenanthrene	0.18	0.040	0.0033	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Pyrene	0.57	0.040	0.0030	mg/Kg	₩	09/17/21 18:49	09/23/21 03:11	2
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	61	22 - 130				09/17/21 18:49	09/23/21 03:11	2
Nitrobenzene-d5 (Surr)	36	20 - 145				09/17/21 18:49	09/23/21 03:11	2

Eurofins Calscience LLC

Page 12 of 61

G

3

4

6

Ö

10

12

13

14

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM) (Continued)

Client Sample ID: SED-004 Lab Sample ID: 570-69878-2 Date Collected: 09/09/21 13:30 **Matrix: Solid**

Date Received: 09/13/21 13:50

%Recovery Qualifier Limits Prepared Analyzed Dil Fac p-Terphenyl-d14 (Surr) 81 33 - 147 09/17/21 18:49 09/23/21 03:11

Client Sample ID: SED-005 Lab Sample ID: 570-69878-3 Date Collected: 09/09/21 15:45 **Matrix: Solid**

Date Received: 09/13/21 13:50

Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.0081 J	0.047	0.0024	mg/Kg	<u></u>	09/17/21 18:49	09/23/21 03:30	2
Acenaphthylene	ND	0.047	0.040	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Anthracene	0.058	0.047	0.0032	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
1,2-Benzanthracene	0.13	0.047	0.0052	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Benzo[a]pyrene	0.22	0.047	0.0064	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
3,4-Benzofluoranthene	0.26	0.047	0.0068	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Benzo[k]fluoranthene	0.17	0.047	0.0076	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
1,12-Benzoperylene	0.16	0.047	0.0068	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Chrysene	0.31	0.047	0.0036	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Dibenz(a,h)anthracene	ND	0.047	0.0050	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Fluoranthene	0.36	0.047	0.0045	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Fluorene	0.017 J	0.047	0.0039	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Indeno[1,2,3-cd]pyrene	0.090	0.047	0.0059	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
1-Methylnaphthalene	0.012 J	0.047	0.0034	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
2-Methylnaphthalene	0.025 J	0.047	0.0034	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Naphthalene	0.026 J	0.047	0.0036	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Phenanthrene	0.17	0.047	0.0040	mg/Kg	₩	09/17/21 18:49	09/23/21 03:30	2
Pyrene	0.46	0.047	0.0035	mg/Kg	☆	09/17/21 18:49	09/23/21 03:30	2

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	72		22 - 130	09/17/21 18:49	09/23/21 03:30	2
Nitrobenzene-d5 (Surr)	45		20 - 145	09/17/21 18:49	09/23/21 03:30	2
p-Terphenyl-d14 (Surr)	91		33 - 147	09/17/21 18:49	09/23/21 03:30	2

Client Sample ID: SED-006 Lab Sample ID: 570-69878-4 Date Collected: 09/09/21 10:25 **Matrix: Solid**

Date Received: 09/13/21 13:50

Date Received: 09/13/21 13:	:50							
Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	0.047	0.0024	mg/Kg	<u></u>	09/17/21 18:49	09/23/21 03:50	2
Acenaphthylene	ND	0.047	0.040	mg/Kg	☼	09/17/21 18:49	09/23/21 03:50	2
Anthracene	0.031 J	0.047	0.0032	mg/Kg	☆	09/17/21 18:49	09/23/21 03:50	2
1,2-Benzanthracene	0.087	0.047	0.0052	mg/Kg	₽	09/17/21 18:49	09/23/21 03:50	2
Benzo[a]pyrene	0.13	0.047	0.0064	mg/Kg	☼	09/17/21 18:49	09/23/21 03:50	2
3,4-Benzofluoranthene	0.16	0.047	0.0068	mg/Kg	₩	09/17/21 18:49	09/23/21 03:50	2
Benzo[k]fluoranthene	0.098	0.047	0.0076	mg/Kg	₩	09/17/21 18:49	09/23/21 03:50	2
1,12-Benzoperylene	0.11	0.047	0.0069	mg/Kg	₩	09/17/21 18:49	09/23/21 03:50	2
Chrysene	0.21	0.047	0.0037	mg/Kg	☼	09/17/21 18:49	09/23/21 03:50	2
Dibenz(a,h)anthracene	ND	0.047	0.0050	mg/Kg	₩	09/17/21 18:49	09/23/21 03:50	2
Fluoranthene	0.29	0.047	0.0046	mg/Kg	₩	09/17/21 18:49	09/23/21 03:50	2
Fluorene	0.015 J	0.047	0.0039	mg/Kg	☼	09/17/21 18:49	09/23/21 03:50	2
Indeno[1,2,3-cd]pyrene	0.069	0.047	0.0059	mg/Kg	₽	09/17/21 18:49	09/23/21 03:50	2
1-Methylnaphthalene	0.0079 J	0.047	0.0034	mg/Kg	☆	09/17/21 18:49	09/23/21 03:50	2
2-Methylnaphthalene	0.015 J	0.047	0.0034	mg/Kg	₩	09/17/21 18:49	09/23/21 03:50	2
Naphthalene	0.018 J	0.047	0.0037	mg/Kg	≎	09/17/21 18:49	09/23/21 03:50	2

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM) (Continued)

Nitrobenzene-d5 (Surr)

p-Terphenyl-d14 (Surr)

Client Sample ID: SED-006							Lab San	nple ID: 570-6	9878-4
Date Collected: 09/09/21 10:2	5							Matrix	: Solid
Date Received: 09/13/21 13:5	0								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phenanthrene	0.098		0.047	0.0040	mg/Kg	-	09/17/21 18:49	09/23/21 03:50	2
Pyrene	0.37		0.047	0.0035	mg/Kg	₩	09/17/21 18:49	09/23/21 03:50	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	56		22 - 130				09/17/21 18:49	09/23/21 03:50	2
Nitrobenzene-d5 (Surr)	34		20 - 145				09/17/21 18:49	09/23/21 03:50	2
p-Terphenyl-d14 (Surr)	80		33 - 147				09/17/21 18:49	09/23/21 03:50	2

Client Sample ID: SED-007							Lab San	nple ID: 570-6	
Date Collected: 09/09/21 11:30 Date Received: 09/13/21 13:50								Matrix	c: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.13	0.0067	mg/Kg	<u></u>	09/17/21 18:49	09/23/21 04:10	5
Acenaphthylene	ND		0.13	0.11	mg/Kg	☼	09/17/21 18:49	09/23/21 04:10	5
Anthracene	0.033	J	0.13	0.0089	mg/Kg	₩	09/17/21 18:49	09/23/21 04:10	5
1,2-Benzanthracene	0.10	J	0.13	0.015	mg/Kg	₩	09/17/21 18:49	09/23/21 04:10	5
Benzo[a]pyrene	0.13		0.13	0.018	mg/Kg	☼	09/17/21 18:49	09/23/21 04:10	5
3,4-Benzofluoranthene	0.16		0.13	0.019	mg/Kg	₩	09/17/21 18:49	09/23/21 04:10	5
Benzo[k]fluoranthene	0.12	J	0.13	0.022	mg/Kg	⊅	09/17/21 18:49	09/23/21 04:10	5
1,12-Benzoperylene	0.10	J	0.13	0.019	mg/Kg	₩	09/17/21 18:49	09/23/21 04:10	5
Chrysene	0.22		0.13	0.010	mg/Kg	☼	09/17/21 18:49	09/23/21 04:10	5
Dibenz(a,h)anthracene	ND		0.13	0.014	mg/Kg	☼	09/17/21 18:49	09/23/21 04:10	5
Fluoranthene	0.29		0.13	0.013	mg/Kg	₩	09/17/21 18:49	09/23/21 04:10	5
Fluorene	0.017	J	0.13	0.011	mg/Kg	₩	09/17/21 18:49	09/23/21 04:10	5
Indeno[1,2,3-cd]pyrene	0.068	J	0.13	0.017	mg/Kg	₩	09/17/21 18:49	09/23/21 04:10	5
1-Methylnaphthalene	ND		0.13	0.0096	mg/Kg	₩	09/17/21 18:49	09/23/21 04:10	5
2-Methylnaphthalene	0.027	J	0.13	0.0096	mg/Kg	☼	09/17/21 18:49	09/23/21 04:10	5
Naphthalene	0.037	J	0.13	0.010	mg/Kg	₩	09/17/21 18:49	09/23/21 04:10	5
Phenanthrene	0.11	J	0.13	0.011	mg/Kg	☼	09/17/21 18:49	09/23/21 04:10	5
Pyrene	0.38		0.13	0.010	mg/Kg	₩	09/17/21 18:49	09/23/21 04:10	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	71		22 - 130				09/17/21 18:49	09/23/21 04:10	5

20 - 145

33 - 147

54

103

09/17/21 18:49 09/23/21 04:10

09/17/21 18:49 09/23/21 04:10

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

Tributyltin

Surrogate

Tripentyltin

Client Sample ID: SED-003							Lab San	nple ID: 570-6	
Date Collected: 09/09/21 17:55								Matrix	c: Solid
Date Received: 09/13/21 13:50	Decult	Ouglifier	DI	MDI	l lmi4	_	Dramarad	Analysed	Dil Faa
Analyte		Qualifier	RL 8.5		Unit	— <u>D</u>	Prepared 09/17/21 12:08	Analyzed 09/24/21 22:36	Dil Fac
Tributyltin	6.4	J	6.5	4.2	ug/Kg	1 ;	09/1//21 12:06	09/24/21 22:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	80		10 - 120				09/17/21 12:08	09/24/21 22:36	1
Client Sample ID: SED-004							Lab San	nple ID: 570-6	9878-2
Date Collected: 09/09/21 13:30								•	c: Solid
Date Received: 09/13/21 13:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		5.8	2.9	ug/Kg	*	09/17/21 12:08	09/24/21 22:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	104		10 - 120				09/17/21 12:08	09/24/21 22:54	1
Client Sample ID: SED-005							l ah San	nple ID: 570-6	9878-3
Date Collected: 09/09/21 15:45							Lab Gan	•	c: Solid
Date Received: 09/13/21 13:50								Macin	Cond
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND	<u> </u>	7.0	3.5	ug/Kg	<u></u>	09/17/21 12:08	09/24/21 23:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	91	Quantier	10 - 120					09/24/21 23:11	1
Client Sample ID: SED-006							l ah Can	nple ID: 570-6	0070 4
Date Collected: 09/09/21 10:25							Lab Sali	-	c: Solid
Date Received: 09/13/21 13:50								Watiix	t. John
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	5.6		7.0		ug/Kg	— -		09/24/21 23:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	90	Qualifier	10 - 120					09/24/21 23:28	DII Fac
·	00		70 - 720				00/11/21 12:00	00/2 1/21 20:20	,
Client Sample ID: SED-007							Lab San	nple ID: 570-6	9878-5
Date Collected: 09/09/21 11:30								Matrix	c: Solid
Date Received: 09/13/21 13:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

09/17/21 12:08 09/24/21 23:46

Analyzed

Dil Fac

Prepared

7.9

Limits

10 - 120

3.9 ug/Kg

ND

%Recovery Qualifier

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

Client Sample ID: SED-003

C29-C32

C33-C36

C37-C40

C41-C44

C6-C44

n-Octacosane (Surr)

Method: 8015B - Diesel Range Organics (DRO) (GC)

190

130

50

ND

800

127

Date Collected: 09/09	/21 17:55							Matrix	c: Solid
Date Received: 09/13/	/21 13:50								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6 as C6	ND		14	11	mg/Kg	₩	09/14/21 12:44	09/16/21 08:37	1
C7 as C7	ND		14	11	mg/Kg	₩	09/14/21 12:44	09/16/21 08:37	1
C8 as C8	ND		14	11	mg/Kg	☆	09/14/21 12:44	09/16/21 08:37	1
C9-C10	12	J	14	11	mg/Kg	☆	09/14/21 12:44	09/16/21 08:37	1
C11-C12	ND		14	11	mg/Kg	☆	09/14/21 12:44	09/16/21 08:37	1
C13-C14	15		14	11	mg/Kg	☆	09/14/21 12:44	09/16/21 08:37	1
C15-C16	110		14	11	mg/Kg	☆	09/14/21 12:44	09/16/21 08:37	1
C17-C18	17		14	11	mg/Kg	☆	09/14/21 12:44	09/16/21 08:37	1
C19-C20	19		14	11	mg/Kg	≎	09/14/21 12:44	09/16/21 08:37	1
C21-C22	35		14	11	mg/Kg	☆	09/14/21 12:44	09/16/21 08:37	1
C23-C24	61		14	11	mg/Kg	₩	09/14/21 12:44	09/16/21 08:37	1
C25-C28	170		14	11	mg/Kg	☆	09/14/21 12:44	09/16/21 08:37	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	122	60 - 138	09/14/21 12:44	09/16/21 08:37	1

14

14

14

14

14

11 mg/Kg

11 mg/Kg

11 mg/Kg

11 mg/Kg

11 mg/Kg

Client Sample ID: SED-004 Lab Sample ID: 570-69878-2 Date Collected: 09/09/21 13:30 **Matrix: Solid**

Date Received: 09/1	 3/21 13:50								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6 as C6	ND		10	7.7	mg/Kg	-	09/14/21 12:44	09/16/21 08:59	1
C7 as C7	ND		10	7.7	mg/Kg	☼	09/14/21 12:44	09/16/21 08:59	1
C8 as C8	ND		10	7.7	mg/Kg	☼	09/14/21 12:44	09/16/21 08:59	1
C9-C10	ND		10	7.7	mg/Kg	₽	09/14/21 12:44	09/16/21 08:59	1
C11-C12	ND		10	7.7	mg/Kg	☼	09/14/21 12:44	09/16/21 08:59	1
C13-C14	8.7	J	10	7.7	mg/Kg	₩	09/14/21 12:44	09/16/21 08:59	1
C15-C16	22		10	7.7	mg/Kg	₽	09/14/21 12:44	09/16/21 08:59	1
C17-C18	27		10	7.7	mg/Kg	₩	09/14/21 12:44	09/16/21 08:59	1
C19-C20	120		10	7.7	mg/Kg	☼	09/14/21 12:44	09/16/21 08:59	1
C21-C22	96		10	7.7	mg/Kg	₽	09/14/21 12:44	09/16/21 08:59	1
C23-C24	100		10	7.7	mg/Kg	☼	09/14/21 12:44	09/16/21 08:59	1
C25-C28	240		10	7.7	mg/Kg	☼	09/14/21 12:44	09/16/21 08:59	1
C29-C32	250		10	7.7	mg/Kg	₽	09/14/21 12:44	09/16/21 08:59	1
C33-C36	180		10	7.7	mg/Kg	☼	09/14/21 12:44	09/16/21 08:59	1
C37-C40	59		10	7.7	mg/Kg	☼	09/14/21 12:44	09/16/21 08:59	1
C41-C44	ND		10	7.7	mg/Kg	₽	09/14/21 12:44	09/16/21 08:59	1
C6-C44	1100		10	7.7	mg/Kg	☼	09/14/21 12:44	09/16/21 08:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins Calscience LLC

Page 16 of 61

60 - 138

Lab Sample ID: 570-69878-1

© 09/14/21 12:44 09/16/21 08:37

© 09/14/21 12:44 09/16/21 08:37

© 09/14/21 12:44 09/16/21 08:37

© 09/14/21 12:44 09/16/21 08:37

© 09/14/21 12:44 09/16/21 08:37

09/14/21 12:44 09/16/21 08:59

Job ID: 570-69878-1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

Method: 8015B - Diesel Range Organics (DRO) (GC)

Client Sample ID: SED-005 Lab Sample ID: 570-69878-3 **Matrix: Solid**

Date Collected: 09/09/21 15:45 Date Received: 09/13/21 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6 as C6	ND		12	9.2	mg/Kg	<u></u>	09/14/21 12:44	09/16/21 09:21	1
C7 as C7	ND		12	9.2	mg/Kg	☆	09/14/21 12:44	09/16/21 09:21	1
C8 as C8	ND		12	9.2	mg/Kg	☆	09/14/21 12:44	09/16/21 09:21	1
C9-C10	ND		12	9.2	mg/Kg	☼	09/14/21 12:44	09/16/21 09:21	1
C11-C12	ND		12	9.2	mg/Kg	☼	09/14/21 12:44	09/16/21 09:21	1
C13-C14	ND		12	9.2	mg/Kg	₩	09/14/21 12:44	09/16/21 09:21	1
C15-C16	21		12	9.2	mg/Kg	☼	09/14/21 12:44	09/16/21 09:21	1
C17-C18	33		12	9.2	mg/Kg	☆	09/14/21 12:44	09/16/21 09:21	1
C19-C20	50		12	9.2	mg/Kg	☼	09/14/21 12:44	09/16/21 09:21	1
C21-C22	86		12	9.2	mg/Kg	₩	09/14/21 12:44	09/16/21 09:21	1
C23-C24	140		12	9.2	mg/Kg	☼	09/14/21 12:44	09/16/21 09:21	1
C25-C28	400		12	9.2	mg/Kg	☆	09/14/21 12:44	09/16/21 09:21	1
C29-C32	420		12	9.2	mg/Kg	₩	09/14/21 12:44	09/16/21 09:21	1
C33-C36	250		12	9.2	mg/Kg	☼	09/14/21 12:44	09/16/21 09:21	1
C37-C40	98		12	9.2	mg/Kg	☼	09/14/21 12:44	09/16/21 09:21	1
C41-C44	18		12	9.2	mg/Kg	₩	09/14/21 12:44	09/16/21 09:21	1
C6-C44	1500		12	9.2	mg/Kg	₽	09/14/21 12:44	09/16/21 09:21	1

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 09/14/21 12:44 09/16/21 09:21 n-Octacosane (Surr) 60 - 138 127

Client Sample ID: SED-006 Date Collected: 09/09/21 10:25

C6-C44

Date Received: 09/13/	21 13:50							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6 as C6	ND ND	12	9.1	mg/Kg	<u></u>	09/14/21 12:44	09/16/21 09:44	1
C7 as C7	ND	12	9.1	mg/Kg	☆	09/14/21 12:44	09/16/21 09:44	1
C8 as C8	ND	12	9.1	mg/Kg	₩	09/14/21 12:44	09/16/21 09:44	1
C9-C10	ND	12	9.1	mg/Kg	☆	09/14/21 12:44	09/16/21 09:44	1
C11-C12	ND	12	9.1	mg/Kg	₩	09/14/21 12:44	09/16/21 09:44	1
C13-C14	13	12	9.1	mg/Kg	☆	09/14/21 12:44	09/16/21 09:44	1
C15-C16	22	12	9.1	mg/Kg	₩	09/14/21 12:44	09/16/21 09:44	1
C17-C18	22	12	9.1	mg/Kg	☆	09/14/21 12:44	09/16/21 09:44	1
C19-C20	33	12	9.1	mg/Kg	₩	09/14/21 12:44	09/16/21 09:44	1
C21-C22	79	12	9.1	mg/Kg	₩	09/14/21 12:44	09/16/21 09:44	1
C23-C24	180	12	9.1	mg/Kg	☆	09/14/21 12:44	09/16/21 09:44	1
C25-C28	580	12	9.1	mg/Kg	₩	09/14/21 12:44	09/16/21 09:44	1
C29-C32	640	12	9.1	mg/Kg	☆	09/14/21 12:44	09/16/21 09:44	1
C33-C36	350	12	9.1	mg/Kg	☆	09/14/21 12:44	09/16/21 09:44	1
C37-C40	140	12	9.1	mg/Kg	₩	09/14/21 12:44	09/16/21 09:44	1
C41-C44	28	12	9.1	mg/Kg	₩	09/14/21 12:44	09/16/21 09:44	1

%Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate n-Octacosane (Surr) 135 60 - 138 09/14/21 12:44 09/16/21 09:44

12

9.1 mg/Kg

2000

Eurofins Calscience LLC

© 09/14/21 12:44 09/16/21 09:44

Lab Sample ID: 570-69878-4

Matrix: Solid

Client: WGR Southwest Inc Job ID: 570-69878-1
Project/Site: Tesoro LA Refinery

Method: 8015B - Diesel Range Organics (DRO) (GC)

160

59

14

940

127

%Recovery Qualifier

C33-C36

C37-C40

C41-C44

C6-C44

Surrogate

n-Octacosane (Surr)

Client Sample ID: SED-007 Date Collected: 09/09/21 11:30						Lab San	nple ID: 570-6 Matrix	9878-5 :: Solid
Date Received: 09/13/21 13:50 Analyte	Result Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
C6 as C6	ND Qualifier	14		mg/Kg	— "	09/14/21 12:44		1
C7 as C7	ND	14		mg/Kg		09/14/21 12:44		1
C8 as C8	ND	14		mg/Kg	₽	09/14/21 12:44	09/16/21 10:07	1
C9-C10	ND	14		mg/Kg	 \$	09/14/21 12:44	09/16/21 10:07	1
C11-C12	ND	14		mg/Kg	₩	09/14/21 12:44	09/16/21 10:07	1
C13-C14	ND	14	10	mg/Kg	₩	09/14/21 12:44	09/16/21 10:07	1
C15-C16	ND	14	10	mg/Kg		09/14/21 12:44	09/16/21 10:07	1
C17-C18	19	14	10	mg/Kg	₽	09/14/21 12:44	09/16/21 10:07	1
C19-C20	33	14	10	mg/Kg	≎	09/14/21 12:44	09/16/21 10:07	1
C21-C22	54	14	10	mg/Kg		09/14/21 12:44	09/16/21 10:07	1
C23-C24	92	14	10	mg/Kg	₩	09/14/21 12:44	09/16/21 10:07	1
C25-C28	260	14	10	mg/Kg	₽	09/14/21 12:44	09/16/21 10:07	1
C29-C32	270	14	10	mg/Kg	₩	09/14/21 12:44	09/16/21 10:07	1

14

14

14

14

Limits

60 - 138

10 mg/Kg

10 mg/Kg

10 mg/Kg

10 mg/Kg

© 09/14/21 12:44 09/16/21 10:07

© 09/14/21 12:44 09/16/21 10:07

© 09/14/21 12:44 09/16/21 10:07

© 09/14/21 12:44 09/16/21 10:07

09/14/21 12:44 09/16/21 10:07

Analyzed

Prepared

13

Dil Fac

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Method: 8081A - Organochlorine Pesticides (GC)

Client Sample ID: SED-003 Date Collected: 09/09/21 17: Date Received: 09/13/21 13:							Lab San	nple ID: 570-6 Matrix	9878-1 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4'-DDD	3.4	J p	5.0	0.32	ug/Kg		09/17/21 20:21	09/23/21 19:19	5
2,4'-DDE	11	p	10	0.49	ug/Kg		09/17/21 20:21	09/23/21 19:19	5
2,4'-DDT	ND		5.0	0.46	ug/Kg		09/17/21 20:21	09/23/21 19:19	5
4,4'-DDD	18	F1	5.0	2.5	ug/Kg		09/17/21 20:21	09/23/21 19:19	5
4,4'-DDE	21		5.0	0.36	ug/Kg		09/17/21 20:21	09/23/21 19:19	5
4,4'-DDT	ND	F1 F2	5.0	0.89	ug/Kg		09/17/21 20:21	09/23/21 19:19	5
Chlordane	15	J	25	1.6	ug/Kg		09/17/21 20:21	09/23/21 19:19	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	25	p	20 - 131				09/17/21 20:21	09/23/21 19:19	5
DCB Decachlorobiphenyl (Surr)	96	p	20 - 180				09/17/21 20:21	09/23/21 19:19	5

Client Sample ID: SED-004 Date Collected: 09/09/21 13:30 Date Received: 09/13/21 13:50 Lab Sample ID: 570 Material Sample ID: 570								•	-69878-2 ix: Solid	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
2,4'-DDD	2.5	J p	5.0	0.32	ug/Kg		09/17/21 20:21	09/23/21 19:34	5	
2,4'-DDE	0.63	Jp	10	0.48	ug/Kg		09/17/21 20:21	09/23/21 19:34	5	
2,4'-DDT	ND		5.0	0.46	ug/Kg		09/17/21 20:21	09/23/21 19:34	5	
4,4'-DDD	8.1	p	5.0	2.5	ug/Kg		09/17/21 20:21	09/23/21 19:34	5	
4,4'-DDE	22		5.0	0.35	ug/Kg		09/17/21 20:21	09/23/21 19:34	5	
4,4'-DDT	ND		5.0	0.88	ug/Kg		09/17/21 20:21	09/23/21 19:34	5	
Chlordane	81		25	1.6	ug/Kg		09/17/21 20:21	09/23/21 19:34	5	

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	50 p	מ	20 - 131	09/17/21 20:21	09/23/21 19:34	5
DCB Decachlorobiphenyl (Surr)	98		20 - 180	09/17/21 20:21	09/23/21 19:34	5

Client Sample ID: SED-005 Date Collected: 09/09/21 15:45 Lab Sample ID: 570-69878-3 **Matrix: Solid** Date Received: 09/13/21 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4'-DDD	1.3	J p	5.0	0.32	ug/Kg		09/17/21 20:23	09/23/21 19:48	5
2,4'-DDE	2.5	Jp	10	0.48	ug/Kg		09/17/21 20:23	09/23/21 19:48	5
2,4'-DDT	ND		5.0	0.46	ug/Kg		09/17/21 20:23	09/23/21 19:48	5
4,4'-DDD	6.7	p	5.0	2.5	ug/Kg		09/17/21 20:23	09/23/21 19:48	5
4,4'-DDE	18		5.0	0.35	ug/Kg		09/17/21 20:23	09/23/21 19:48	5
4,4'-DDT	ND		5.0	0.88	ug/Kg		09/17/21 20:23	09/23/21 19:48	5
Chlordane	8.9	J p	25	1.6	ug/Kg		09/17/21 20:23	09/23/21 19:48	5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	67 p	20 - 131	09/17/21 20:23	09/23/21 19:48	5
DCB Decachlorobiphenyl (Surr)	81 p	20 - 180	09/17/21 20:23	09/23/21 19:48	5

DCB Decachlorobiphenyl (Surr)	81 p	20 - 180	09/17/21 20:23 09/23/21 19:48 5
Client Sample ID: SED-006 Date Collected: 09/09/21 10:25			Lab Sample ID: 570-69878-4 Matrix: Solid

Date Received: 09/13/21 13:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4'-DDD	5.2	p	5.0	0.32	ug/Kg		09/17/21 20:23	09/23/21 20:02	5
2,4'-DDE	5.8	Jр	9.9	0.48	ug/Kg		09/17/21 20:23	09/23/21 20:02	5
2,4'-DDT	ND		5.0	0.46	ug/Kg		09/17/21 20:23	09/23/21 20:02	5

Page 19 of 61

Client Sample Results

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Client Sample ID: SED-006						Lab San	nple ID: 570-6	69878-4
Date Collected: 09/09/21 10:25							Matrix	x: Solid
Date Received: 09/13/21 13:50								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
23	5.0	2.5	ug/Kg		09/17/21 20:23	09/23/21 20:02	5
17	5.0	0.35	ug/Kg		09/17/21 20:23	09/23/21 20:02	5
ND	5.0	0.88	ug/Kg		09/17/21 20:23	09/23/21 20:02	5
27	25	1.6	ug/Kg		09/17/21 20:23	09/23/21 20:02	5
	23 17	23 5.0 17 5.0 ND 5.0	23 5.0 2.5 17 5.0 0.35 ND 5.0 0.88	23 5.0 2.5 ug/Kg 17 5.0 0.35 ug/Kg ND 5.0 0.88 ug/Kg	23 5.0 2.5 ug/Kg 17 5.0 0.35 ug/Kg ND 5.0 0.88 ug/Kg	23 5.0 2.5 ug/Kg 09/17/21 20:23 17 5.0 0.35 ug/Kg 09/17/21 20:23 ND 5.0 0.88 ug/Kg 09/17/21 20:23	23 5.0 2.5 ug/Kg 09/17/21 20:23 09/23/21 20:02 17 5.0 0.35 ug/Kg 09/17/21 20:23 09/23/21 20:02 ND 5.0 0.88 ug/Kg 09/17/21 20:23 09/23/21 20:02

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	45	p	20 - 131	09/17/21 20:23	09/23/21 20:02	5
DCB Decachlorobiphenyl (Surr)	137		20 - 180	09/17/21 20:23	09/23/21 20:02	5

Client Sample ID: SED-007 Lab Sample ID: 570-69878-5 Date Collected: 09/09/21 11:30 **Matrix: Solid** Date Received: 09/13/21 13:50

Date Received, 03/13/2	E 1 10.00								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4'-DDD	1.0	J p	5.0	0.32	ug/Kg		09/17/21 20:23	09/23/21 20:16	5
2,4'-DDE	1.6	Jp	9.9	0.48	ug/Kg		09/17/21 20:23	09/23/21 20:16	5
2,4'-DDT	ND		5.0	0.46	ug/Kg		09/17/21 20:23	09/23/21 20:16	5
4,4'-DDD	10	p	5.0	2.5	ug/Kg		09/17/21 20:23	09/23/21 20:16	5
4,4'-DDE	8.1	р	5.0	0.35	ug/Kg		09/17/21 20:23	09/23/21 20:16	5
4,4'-DDT	ND		5.0	0.88	ug/Kg		09/17/21 20:23	09/23/21 20:16	5
Chlordane	12	Jp	25	1.6	ug/Kg		09/17/21 20:23	09/23/21 20:16	5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	40 p	20 - 131	09/17/21 20:23	09/23/21 20:16	5
DCB Decachlorobiphenyl (Surr)	112 p	20 - 180	09/17/21 20:23	09/23/21 20:16	5

Job ID: 570-69878-1

Client: WGR Southwest Inc

Project/Site: Tesoro LA Refinery

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Client Sample ID: SED-003 Date Collected: 09/09/21 17 Date Received: 09/13/21 13							Lab San	nple ID: 570-6 Matrix	9878-1 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1016	ND	F2 F1	29	16	ug/Kg	<u></u>	09/17/21 20:21	09/23/21 18:29	1
Aroclor-1221	ND		29	16	ug/Kg	☼	09/17/21 20:21	09/23/21 18:29	1
Aroclor-1232	ND		29	16	ug/Kg	☼	09/17/21 20:21	09/23/21 18:29	1
Aroclor-1242	ND		29	16	ug/Kg	₩	09/17/21 20:21	09/23/21 18:29	1
Aroclor-1248	ND		29	16	ug/Kg	☼	09/17/21 20:21	09/23/21 18:29	1
Aroclor-1254	180		29	14	ug/Kg	₽	09/17/21 20:21	09/23/21 18:29	1
Aroclor-1260	180	F1	29	14	ug/Kg	₩	09/17/21 20:21	09/23/21 18:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	44		20 - 155				09/17/21 20:21	09/23/21 18:29	1
Tetrachloro-m-xylene (Surr)	45		25 - 126				09/17/21 20:21	09/23/21 18:29	1

Client Sample ID: SED-004 Lab Sample ID: 570-69878-2 Date Collected: 09/09/21 13:30 **Matrix: Solid** Date Received: 09/13/21 13:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1016	ND ND	20	11	ug/Kg	☆	09/17/21 20:21	09/23/21 18:47	1
Aroclor-1221	ND	20	11	ug/Kg	≎	09/17/21 20:21	09/23/21 18:47	1
Aroclor-1232	ND	20	11	ug/Kg	₩	09/17/21 20:21	09/23/21 18:47	1
Aroclor-1242	ND	20	11	ug/Kg	₽	09/17/21 20:21	09/23/21 18:47	1
Aroclor-1248	ND	20	11	ug/Kg	₽	09/17/21 20:21	09/23/21 18:47	1
Aroclor-1254	89	20	9.9	ug/Kg	₩	09/17/21 20:21	09/23/21 18:47	1
Aroclor-1260	110	20	9.9	ug/Kg	≎	09/17/21 20:21	09/23/21 18:47	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	78	20 - 155	09/17/21 20:21	09/23/21 18:47	1
Tetrachloro-m-xylene (Surr)	65	25 - 126	09/17/21 20:21	09/23/21 18:47	1

Client Sample ID: SED-005 Lab Sample ID: 570-69878-3 Date Collected: 09/09/21 15:45 **Matrix: Solid** Date Received: 09/13/21 13:50

Date Received. 00/10/2	1 10.00							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1016	ND ND	24	13	ug/Kg	— -	09/17/21 20:23	09/23/21 19:05	1
Aroclor-1221	ND	24	13	ug/Kg	₽	09/17/21 20:23	09/23/21 19:05	1
Aroclor-1232	ND	24	13	ug/Kg	₽	09/17/21 20:23	09/23/21 19:05	1
Aroclor-1242	ND	24	13	ug/Kg	₩	09/17/21 20:23	09/23/21 19:05	1
Aroclor-1248	ND	24	13	ug/Kg	₽	09/17/21 20:23	09/23/21 19:05	1
Aroclor-1254	130	24	12	ug/Kg	₩	09/17/21 20:23	09/23/21 19:05	1
Aroclor-1260	110	24	12	ug/Kg	₩	09/17/21 20:23	09/23/21 19:05	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	76	20 - 155	09/17/21 20:23	09/23/21 19:05	1
Tetrachloro-m-xylene (Surr)	64	25 - 126	09/17/21 20:23	09/23/21 19:05	1

Client Sample ID: SED-006 Lab Sample ID: 570-69878-4

Date Collected: 09/09/21 10:25 Date Received: 09/13/21 13:50

Date Neceived, 03/13/21 13.30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1016	ND		24	13	ug/Kg		09/17/21 20:23	09/23/21 19:23	1
Aroclor-1221	ND		24	13	ug/Kg	₽	09/17/21 20:23	09/23/21 19:23	1
Aroclor-1232	ND		24	13	ug/Kg	₽	09/17/21 20:23	09/23/21 19:23	1

Eurofins Calscience LLC

Page 21 of 61

Matrix: Solid

Client Sample Results

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-69878-1

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Client Sample ID: SED-006	Lab Sample ID: 570-69878-4
Date Collected: 09/09/21 10:25	Matrix: Solid
Date Received: 09/13/21 13:50	

Date Received: 09/13/21 13:	50							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1242	ND ND	24	13	ug/Kg	<u></u>	09/17/21 20:23	09/23/21 19:23	1
Aroclor-1248	ND	24	13	ug/Kg	₩	09/17/21 20:23	09/23/21 19:23	1
Aroclor-1254	100	24	12	ug/Kg	₩	09/17/21 20:23	09/23/21 19:23	1
Aroclor-1260	98	24	12	ug/Kg	ಘ	09/17/21 20:23	09/23/21 19:23	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)		20 - 155				09/17/21 20:23	09/23/21 19:23	

our oguto	fortooorory quantitor		opu. ou	7 111 all y 2 c a	2
DCB Decachlorobiphenyl (Surr)	75	20 - 155	09/17/21 20:23	09/23/21 19:23	1
Tetrachloro-m-xylene (Surr)	63	25 - 126	09/17/21 20:23	09/23/21 19:23	1

Client Sample ID: SED-007					Lab San	ոple ID: 570-	69878-5	
Date Collected: 09/09/21 11:30						Matri	x: Solid	
Date Received: 09/13/21 13:50								
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1016	ND ND		27	15	ug/Kg	<u></u>	09/17/21 20:23	09/23/21 19:41	1
Aroclor-1221	ND		27	15	ug/Kg	☼	09/17/21 20:23	09/23/21 19:41	1
Aroclor-1232	ND		27	15	ug/Kg	☼	09/17/21 20:23	09/23/21 19:41	1
Aroclor-1242	ND		27	15	ug/Kg	₩	09/17/21 20:23	09/23/21 19:41	1
Aroclor-1248	ND		27	15	ug/Kg	₩	09/17/21 20:23	09/23/21 19:41	1
Aroclor-1254	110		27	13	ug/Kg	☼	09/17/21 20:23	09/23/21 19:41	1
Aroclor-1260	190		27	13	ug/Kg	₽	09/17/21 20:23	09/23/21 19:41	1

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	71		20 - 155	09/17/21 20:23	09/23/21 19:41	1
Tetrachloro-m-xylene (Surr)	52		25 - 126	09/17/21 20:23	09/23/21 19:41	1

Client: WGR Southwest Inc Job ID: 570-69878-1
Project/Site: Tesoro LA Refinery

Method: 6020 - Metals (ICP/MS)

Zinc

Client Sample ID: SED-003 Date Collected: 09/09/21 17:55 Date Received: 09/13/21 13:50							Lab San	nple ID: 570-6 Matrix	9878-1 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		2.82	1.27	mg/Kg	— <u>~</u>	09/23/21 08:25	09/23/21 13:56	20
Chromium	54.1		5.63	0.845	mg/Kg	₩	09/23/21 08:25	09/23/21 13:56	20
Copper	134	F1	2.82	0.758	mg/Kg	₩	09/23/21 08:25	09/23/21 13:56	20
Lead	76.8	F1	2.82	0.605	mg/Kg	₩	09/23/21 08:25	09/23/21 13:56	20
Nickel	19.0		2.82	0.760	mg/Kg	☼	09/23/21 08:25	09/23/21 13:56	20

14.1

13.0 mg/Kg

565

Client Sample ID: SED-004 Lab Sample ID: 570-69878-2 Date Collected: 09/09/21 13:30 **Matrix: Solid** Date Received: 09/13/21 13:50 Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed Cadmium ND 2.00 0.900 mg/Kg © 09/23/21 08:25 09/23/21 14:18 20 4.00 20 **Chromium** 37.9 0.600 mg/Kg © 09/23/21 08:25 09/23/21 14:18 0.538 mg/Kg 2.00 © 09/23/21 08:25 09/23/21 14:18 20 Copper 93.5 20 2.00 0.430 mg/Kg Lead 57.6 © 09/23/21 08:25 09/23/21 14:18 Nickel 2.00 0.540 mg/Kg © 09/23/21 08:25 09/23/21 14:18 20 13.3 10.0 9.24 mg/Kg © 09/23/21 08:25 09/23/21 14:18 Zinc 353

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND ND	2.31	1.04	mg/Kg	— -	09/23/21 08:25	09/23/21 14:21	20
Chromium	40.3	4.63	0.694	mg/Kg	₽	09/23/21 08:25	09/23/21 14:21	20
Copper	95.9	2.31	0.623	mg/Kg	₽	09/23/21 08:25	09/23/21 14:21	20
Lead	57.8	2.31	0.498	mg/Kg	₽	09/23/21 08:25	09/23/21 14:21	20
Nickel	14.0	2.31	0.625	mg/Kg	₽	09/23/21 08:25	09/23/21 14:21	20
Zinc	386	11.6	10.7	mg/Kg	≎	09/23/21 08:25	09/23/21 14:21	20

Client Sample ID: SED-006

Date Collected: 09/09/21 10:25

Date Received: 09/13/21 13:50

Lab Sample ID: 570-69878-4

Matrix: Solid

Result Quali	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	2.37	1.07	mg/Kg	*	09/23/21 08:25	09/23/21 14:24	20
44.3	4.75	0.712	mg/Kg	₽	09/23/21 08:25	09/23/21 14:24	20
111	2.37	0.639	mg/Kg	₽	09/23/21 08:25	09/23/21 14:24	20
65.3	2.37	0.510	mg/Kg	₽	09/23/21 08:25	09/23/21 14:24	20
14.0	2.37	0.641	mg/Kg	₽	09/23/21 08:25	09/23/21 14:24	20
386	11.9	11.0	mg/Kg	☼	09/23/21 08:25	09/23/21 14:24	20
	ND 44.3 111 65.3 14.0	ND 2.37 44.3 4.75 111 2.37 65.3 2.37 14.0 2.37	ND 2.37 1.07 44.3 4.75 0.712 111 2.37 0.639 65.3 2.37 0.510 14.0 2.37 0.641	ND 2.37 1.07 mg/Kg 44.3 4.75 0.712 mg/Kg 111 2.37 0.639 mg/Kg 65.3 2.37 0.510 mg/Kg 14.0 2.37 0.641 mg/Kg	ND 2.37 1.07 mg/Kg ☆ 44.3 4.75 0.712 mg/Kg ☆ 111 2.37 0.639 mg/Kg ☆ 65.3 2.37 0.510 mg/Kg ☆ 14.0 2.37 0.641 mg/Kg ☆	ND 2.37 1.07 mg/Kg □ 09/23/21 08:25 44.3 4.75 0.712 mg/Kg □ 09/23/21 08:25 111 2.37 0.639 mg/Kg □ 09/23/21 08:25 65.3 2.37 0.510 mg/Kg □ 09/23/21 08:25 14.0 2.37 0.641 mg/Kg □ 09/23/21 08:25	ND 2.37 1.07 mg/Kg \$\infty\$ 09/23/21 08:25 09/23/21 14:24 44.3 4.75 0.712 mg/Kg \$\infty\$ 09/23/21 08:25 09/23/21 14:24 111 2.37 0.639 mg/Kg \$\infty\$ 09/23/21 08:25 09/23/21 14:24 65.3 2.37 0.510 mg/Kg \$\infty\$ 09/23/21 08:25 09/23/21 14:24 14.0 2.37 0.641 mg/Kg \$\infty\$ 09/23/21 08:25 09/23/21 14:24

Client Sample ID: SED-007

Date Collected: 09/09/21 11:30

Date Received: 09/13/21 13:50

Matrix: Solid

Date Received. 03/13/21	13.30							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND ND	2.73	1.23	mg/Kg	<u></u>	09/23/21 08:25	09/23/21 14:28	20
Chromium	42.6	5.45	0.818	mg/Kg	₩	09/23/21 08:25	09/23/21 14:28	20
Copper	92.7	2.73	0.733	mg/Kg	₩	09/23/21 08:25	09/23/21 14:28	20
Lead	55.4	2.73	0.586	mg/Kg	₽	09/23/21 08:25	09/23/21 14:28	20
Nickel	13.4	2.73	0.736	mg/Kg	₩	09/23/21 08:25	09/23/21 14:28	20
Zinc	328	13.6	12.6	mg/Kg	₩	09/23/21 08:25	09/23/21 14:28	20
_								

Eurofins Calscience LLC

Page 23 of 61 9/27/2021

A

5

7

_

09/23/21 08:25 09/23/21 13:56

10

12

4 4

15

Client Sample Results

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

motifical in the motion of the transfer	Method:	7471A -	Mercury	(CVAA)
---	----------------	---------	---------	--------

Client Sample ID: SED-003 Date Collected: 09/09/21 17:55							Lab San	nple ID: 570-6 Matrix	9878-1 :: Solid
Date Received: 09/13/21 13:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.222	J	0.234	0.0380	mg/Kg	— <u></u>	09/23/21 09:54	09/23/21 14:29	1
Client Sample ID: SED-004							Lab San	nple ID: 570-6	9878-2
Date Collected: 09/09/21 13:30								Matrix	: Solid
Date Received: 09/13/21 13:50						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Mercury	0.246		0.158	0.0256	mg/Kg	₩	09/23/21 09:54	09/23/21 14:34	1
Client Sample ID: SED-005							Lab San	nple ID: 570-6	9878-3
Date Collected: 09/09/21 15:45								•	: Solid
Date Received: 09/13/21 13:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.334		0.208	0.0337	mg/Kg	<u></u>	09/23/21 09:54	09/23/21 14:36	1
Client Sample ID: SED-006							Lab San	nple ID: 570-6	9878-4
Date Collected: 09/09/21 10:25								-	: Solid
Date Received: 09/13/21 13:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.359		0.195	0.0315	mg/Kg	₩	09/23/21 09:54	09/23/21 14:38	1
Client Sample ID: SED-007							Lab San	nple ID: 570-6	9878-5
Date Collected: 09/09/21 11:30								•	: Solid
Date Received: 09/13/21 13:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.206	J	0.224	0.0362	mg/Kg	<u></u>	09/23/21 09:54	09/23/21 14:40	1

Client Sample Results

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

General Chemistry

Client Sample ID: SED-003 Date Collected: 09/09/21 17:55							Lab Sa	mple ID: 570-6 Matrix	9878-1 :: Solid
Date Received: 09/13/21 13:50 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon, Total Organic	49900		1430		mg/Kg	— - -		09/15/21 10:51	1
Percent Moisture	65.0		0.1	0.1				09/14/21 16:15	1
Client Sample ID: SED-004 Date Collected: 09/09/21 13:30 Date Received: 09/13/21 13:50							Lab Sa	mple ID: 570-6 Matrix	9878-2 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon, Total Organic	38800		995	346	mg/Kg	<u> </u>	-	09/16/21 10:51	1
Percent Moisture	49.8		0.1	0.1	%			09/14/21 16:15	1
Client Sample ID: SED-005 Date Collected: 09/09/21 15:45 Date Received: 09/13/21 13:50							Lab Sa	mple ID: 570-6 Matrix	9878-3 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon, Total Organic	44200		1190	412	mg/Kg	— -		09/16/21 10:51	1
Percent Moisture	57.8		0.1	0.1				09/14/21 16:15	1
Client Sample ID: SED-006 Date Collected: 09/09/21 10:25 Date Received: 09/13/21 13:50							Lab Sa	mple ID: 570-6 Matrix	9878-4 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon, Total Organic	41500		1190	412	mg/Kg	-	<u> </u>	09/15/21 10:32	1
Percent Moisture	57.9		0.1	0.1				09/14/21 16:15	1
Client Sample ID: SED-007 Date Collected: 09/09/21 11:30 Date Received: 09/13/21 13:50							Lab Sa	mple ID: 570-6 Matrix	9878-5 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon, Total Organic	33700		1340	466	mg/Kg	-		09/15/21 10:32	1
	62.7		0.1	0.1				09/14/21 16:15	1

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

Method: D4464 - Particle Size Distribution of Catalytic Material (Laser light scattering)

Client Sample ID: SED-003

Lab Sample ID: 570-69878-1

Date Collected: 09/09/21 17:55

Matrix: Solid

Date Collected: 09/09/21 17:55 Date Received: 09/13/21 13:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Clay (less than 0.00391 mm)	12.49	0.01	0.01	%			09/23/21 15:57	1
Coarse Sand (0.5mm to 1mm)	ND	0.01	0.01	%			09/23/21 15:57	1
Fine Sand (0.125 to 0.25mm)	1.05	0.01	0.01	%			09/23/21 15:57	1
Gravel (greater than 2 mm)	ND	0.01	0.01	%			09/23/21 15:57	1
Medium Sand (0.25 to 0.5 mm)	ND	0.01	0.01	%			09/23/21 15:57	1
Silt (0.00391 to 0.0625mm)	69.38	0.01	0.01	%			09/23/21 15:57	1
Total Silt and Clay (0 to 0.0626mm)	81.87	0.01	0.01	%			09/23/21 15:57	1
Very Coarse Sand (1 to 2mm)	ND	0.01	0.01	%			09/23/21 15:57	1
Very Fine Sand (0.0625 to 0.125 mm)	17.08	0.01	0.01	%			09/23/21 15:57	1

Client Sample ID: SED-004

Date Collected: 09/09/21 13:30

Lab Sample ID: 570-69878-2

Matrix: Solid

Date Received: 09/13/21 13:50

Date Received: 09/13/21 13:50								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Clay (less than 0.00391 mm)	11.66	0.01	0.01	%			09/23/21 16:03	1
Coarse Sand (0.5mm to 1mm)	ND	0.01	0.01	%			09/23/21 16:03	1
Fine Sand (0.125 to 0.25mm)	0.76	0.01	0.01	%			09/23/21 16:03	1
Gravel (greater than 2 mm)	ND	0.01	0.01	%			09/23/21 16:03	1
Medium Sand (0.25 to 0.5 mm)	ND	0.01	0.01	%			09/23/21 16:03	1
Silt (0.00391 to 0.0625mm)	68.33	0.01	0.01	%			09/23/21 16:03	1
Total Silt and Clay (0 to 0.0626mm)	79.99	0.01	0.01	%			09/23/21 16:03	1
Very Coarse Sand (1 to 2mm)	ND	0.01	0.01	%			09/23/21 16:03	1
Very Fine Sand (0.0625 to 0.125	19.25	0.01	0.01	%			09/23/21 16:03	1

Client Sample ID: SED-005

Date Collected: 09/09/21 15:45

Lab Sample ID: 570-69878-3

Matrix: Solid

Date Received: 09/13/21 13:50

mm)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Clay (less than 0.00391 mm)	13.54	0.01	0.01	%			09/23/21 16:09	1
Coarse Sand (0.5mm to 1mm)	ND	0.01	0.01	%			09/23/21 16:09	1
Fine Sand (0.125 to 0.25mm)	0.71	0.01	0.01	%			09/23/21 16:09	1
Gravel (greater than 2 mm)	ND	0.01	0.01	%			09/23/21 16:09	1
Medium Sand (0.25 to 0.5 mm)	ND	0.01	0.01	%			09/23/21 16:09	1
Silt (0.00391 to 0.0625mm)	70.10	0.01	0.01	%			09/23/21 16:09	1
Total Silt and Clay (0 to 0.0626mm)	83.64	0.01	0.01	%			09/23/21 16:09	1
Very Coarse Sand (1 to 2mm)	ND	0.01	0.01	%			09/23/21 16:09	1
Very Fine Sand (0.0625 to 0.125 mm)	15.64	0.01	0.01	%			09/23/21 16:09	1

Client Sample ID: SED-006

Lab Sample ID: 570-69878-4

Date Collected: 09/09/21 10:25

Matrix: Solid

Date Received: 09/13/21 13:50

Date Received: 09/13/21 13:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Clay (less than 0.00391 mm)	7.33		0.01	0.01	%			09/23/21 16:15	1
Coarse Sand (0.5mm to 1mm)	ND		0.01	0.01	%			09/23/21 16:15	1
Fine Sand (0.125 to 0.25mm)	2.32		0.01	0.01	%			09/23/21 16:15	1
Gravel (greater than 2 mm)	ND		0.01	0.01	%			09/23/21 16:15	1
Medium Sand (0.25 to 0.5 mm)	ND		0.01	0.01	%			09/23/21 16:15	1
Silt (0.00391 to 0.0625mm)	68.44		0.01	0.01	%			09/23/21 16:15	1

Eurofins Calscience LLC

Page 26 of 61 9/27/2021

2

4

6

9

10

12

14

15

Client Sample Results

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Method: D4464 - Particle Size Distribution of Catalytic Material (Laser light scattering) (Continued)

Lab Sample ID: 570-69878-4 **Client Sample ID: SED-006** Date Collected: 09/09/21 10:25 **Matrix: Solid**

Date Received: 09/13/21 13:50									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Silt and Clay (0 to 0.0626mm)	75.76		0.01	0.01	%			09/23/21 16:15	1
Very Coarse Sand (1 to 2mm)	ND		0.01	0.01	%			09/23/21 16:15	1

21.91

mm)

mm)

Client Sample ID: SED-007 Lab Sample ID: 570-69878-5

0.01

0.01 %

Date Collected: 09/09/21 11:30 **Matrix: Solid**

Very Fine Sand (0.0625 to 0.125

Date Received: 09/13/21 13:50								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Clay (less than 0.00391 mm)	6.40	0.01	0.01	%			09/23/21 16:24	1
Coarse Sand (0.5mm to 1mm)	ND	0.01	0.01	%			09/23/21 16:24	1
Fine Sand (0.125 to 0.25mm)	3.01	0.01	0.01	%			09/23/21 16:24	1
Gravel (greater than 2 mm)	ND	0.01	0.01	%			09/23/21 16:24	1
Medium Sand (0.25 to 0.5 mm)	ND	0.01	0.01	%			09/23/21 16:24	1
Silt (0.00391 to 0.0625mm)	67.41	0.01	0.01	%			09/23/21 16:24	1
Total Silt and Clay (0 to 0.0626mm)	73.80	0.01	0.01	%			09/23/21 16:24	1
Very Coarse Sand (1 to 2mm)	ND	0.01	0.01	%			09/23/21 16:24	1
Very Fine Sand (0.0625 to 0.125	23.19	0.01	0.01	%			09/23/21 16:24	1

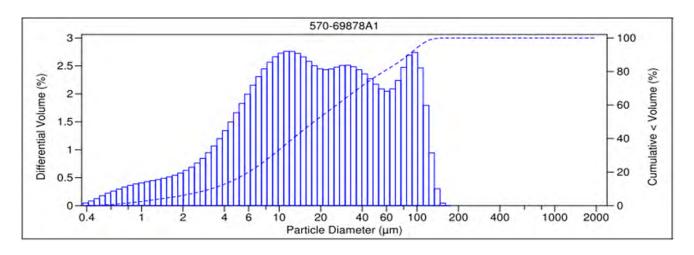
09/23/21 16:15

11

13

1

PARTICLE SIZE SUMMARY

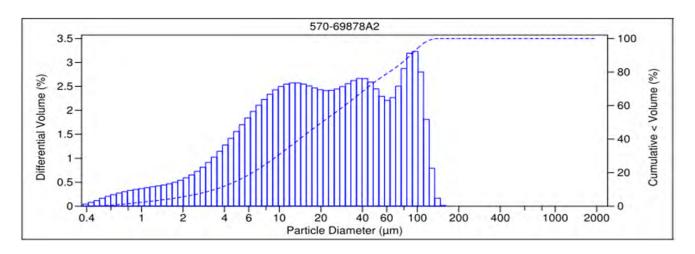

(ASTM D422 / D4464M)

Tesoro Los Angeles Refinery - Carson Operations	Date Sampled:	09/09/21
	Date Received:	09/13/21
	Work Order No:	570-69878
	Date Analyzed:	09/23/21
	Method:	ASTM D4464M

Project:

Sample ID	Depth ft	Description	Mean Grain Size mm
SED-003	_	Silt	0.032

	Particle Size Distribution, wt by percent									
	Very				Very			Total		
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &		
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay		
0.00	0.00	0.00	0.00	1.05	17.08	69.38	12.49	81.87		

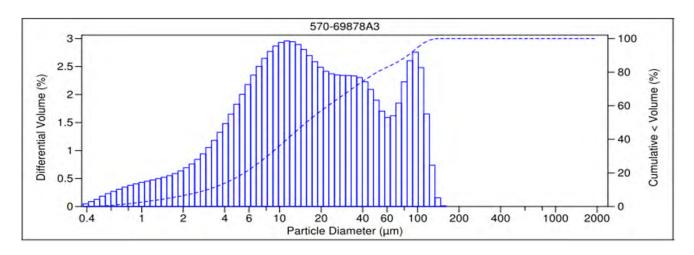

(ASTM D422 / D4464M)

Tesoro Los Angeles Refinery - Carson Operations	Date Sampled:	09/09/21
	Date Received:	09/13/21
	Work Order No:	570-69878
	Date Analyzed:	09/23/21
	Method:	ASTM D4464M

Project:

Sample ID	Depth ft	Description	Mean Grain Size mm
SED-004		Silt	0.034

	Particle Size Distribution, wt by percent									
	Very				Very			Total		
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &		
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay		
0.00	0.00	0.00	0.00	0.76	19.25	68.33	11.66	79.99		

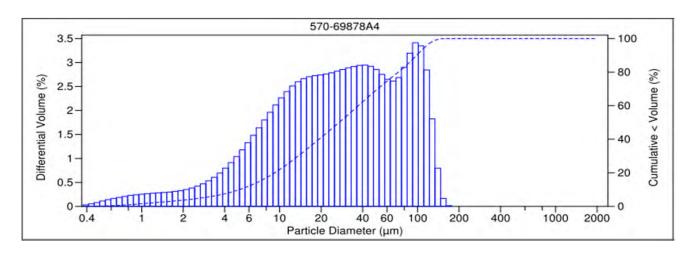

(ASTM D422 / D4464M)

Tesoro Los Angeles Refinery - Carson Operations	Date Sampled:	09/09/21
	Date Received:	09/13/21
	Work Order No:	570-69878
	Date Analyzed:	09/23/21
	Method:	ASTM D4464M

Project:

Sample ID	Depth ft	Description	Mean Grain Size mm
SED-005		Silt	0.029

		Particle	e Size Distributio	n, wt by perc	ent			
	Very				Very			Total
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay
0.00	0.00	0.00	0.00	0.71	15.64	70.10	13.54	83.64

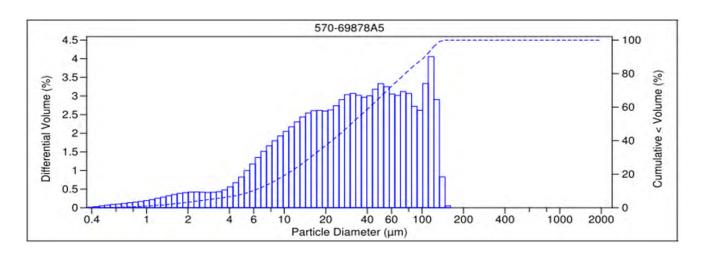

(ASTM D422 / D4464M)

Tesoro Los Angeles Refinery - Carson Operations	Date Sampled:	09/09/21
	Date Received:	09/13/21
	Work Order No:	570-69878
	Date Analyzed:	09/23/21
	Method:	ASTM D4464M

Project:

Sample ID	Depth ft	Description	Mean Grain Size mm
SED-006		Silt	0.040

		Particle	e Size Distributio	n, wt by perc	ent			
	Very				Very			Total
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay
0.00	0.00	0.00	0.00	2.32	21.91	68.44	7.33	75.76


(ASTM D422 / D4464M)

Tesoro Los Angeles Refinery - Carson Operations	Date Sampled:	09/09/21
	Date Received:	09/13/21
	Work Order No:	570-69878
	Date Analyzed:	09/23/21
	Method:	ASTM D4464M

Project:

Sample ID	Depth ft	Description	Mean Grain Size mm
 SED-007		Silt	0.043

		Particle	e Size Distributio	n, wt by perc	ent			
	Very				Very			Total
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay
0.00	0.00	0.00	0.00	3.01	23.19	67.41	6.40	73.80

Job ID: 570-69878-1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM)

Matrix: Solid Prep Type: Total/NA

			Pe	rcent Surrogat	e Recovery (Acceptance Limits)
		FBP	NBZ	TPHd14	
Lab Sample ID	Client Sample ID	(22-130)	(20-145)	(33-147)	
570-69878-1	SED-003	70	44	90	
570-69878-1 MS	SED-003	73	45	92	
570-69878-1 MSD	SED-003	73	45	90	
570-69878-2	SED-004	61	36	81	
570-69878-3	SED-005	72	45	91	
570-69878-4	SED-006	56	34	80	
570-69878-5	SED-007	71	54	103	
LCS 570-180052/2-A	Lab Control Sample	72	62	83	
LCSD 570-180052/3-A	Lab Control Sample Dup	77	60	90	
MB 570-180052/1-A	Method Blank	77	67	87	

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Method: Organotins SIM - Organotins (GC/MS SIM)

Matrix: Solid Prep Type: Total/NA

_			Percent Surrogate Recovery (Acceptance Limits)
		TPTT	
Lab Sample ID	Client Sample ID	(10-120)	
570-69878-1	SED-003	80	
570-69878-2	SED-004	104	
570-69878-3	SED-005	91	
570-69878-4	SED-006	90	
570-69878-5	SED-007	95	
LCS 570-179948/2-A	Lab Control Sample	105	
LCSD 570-179948/3-A	Lab Control Sample Dup	119	
MB 570-179948/1-A	Method Blank	109	
Surrogate Legend			
TPTT = Tripentyltin			

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(60-138)	
570-69878-1	SED-003	122	
570-69878-2	SED-004	127	
570-69878-3	SED-005	127	
570-69878-4	SED-006	135	
570-69878-5	SED-007	127	
LCS 570-179051/2-A	Lab Control Sample	105	
LCSD 570-179051/3-A	Lab Control Sample Dup	103	
MB 570-179051/1-A	Method Blank	115	
Surrogate Legend			

Page 33 of 61

Surrogate Summary

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Rec	overy (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(20-131)	20-180)	
570-69878-1	SED-003	25 p	96 p	
570-69878-1 MS	SED-003	72 p	138	
570-69878-1 MSD	SED-003	84 p	143 p	
570-69878-2	SED-004	50 p	98	
570-69878-3	SED-005	67 p	81 p	
570-69878-4	SED-006	45 p	137	
570-69878-5	SED-007	40 p	112 p	
LCS 570-180082/2-A	Lab Control Sample	99	122	
LCSD 570-180082/3-A	Lab Control Sample Dup	92	103	
MB 570-180082/1-A	Method Blank	87	97	

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl (Surr)

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent Sur	rogate Recovery (Acceptance Limits)
		DCB1	TCX1	
Lab Sample ID	Client Sample ID	(20-155)	(25-126)	
570-69878-1	SED-003	44	45	
570-69878-1 MS	SED-003	61	55	
570-69878-1 MSD	SED-003	80	68	
570-69878-2	SED-004	78	65	
570-69878-3	SED-005	76	64	
570-69878-4	SED-006	75	63	
570-69878-5	SED-007	71	52	
LCS 570-180082/6-A	Lab Control Sample	71	74	
LCSD 570-180082/7-A	Lab Control Sample Dup	76	82	
MB 570-180082/1-A	Method Blank	89	77	

Surrogate Legend

DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene (Surr)

Page 34 of 61

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM)

Lab Sample ID: MB 570-180052/1-A

Matrix: Solid Analysis Batch: 180477 **Client Sample ID: Method Blank** Prep Type: Total/NA

Prep Batch: 180052

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.010	0.00051	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Acenaphthylene	ND		0.010	0.0085	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Anthracene	ND		0.010	0.00067	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
1,2-Benzanthracene	ND		0.010	0.0011	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Benzo[a]pyrene	ND		0.010	0.0014	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
3,4-Benzofluoranthene	ND		0.010	0.0015	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Benzo[k]fluoranthene	ND		0.010	0.0016	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
1,12-Benzoperylene	ND		0.010	0.0015	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Chrysene	ND		0.010	0.00078	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Dibenz(a,h)anthracene	ND		0.010	0.0011	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Fluoranthene	ND		0.010	0.00097	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Fluorene	ND		0.010	0.00084	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Indeno[1,2,3-cd]pyrene	ND		0.010	0.0012	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
1-Methylnaphthalene	ND		0.010	0.00072	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
2-Methylnaphthalene	ND		0.010	0.00072	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Naphthalene	ND		0.010	0.00078	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Phenanthrene	ND		0.010	0.00084	mg/Kg		09/17/21 18:49	09/20/21 18:55	1
Pyrene	ND		0.010	0.00075	mg/Kg		09/17/21 18:49	09/20/21 18:55	1

MB MB

Surrogate	%Recovery Quali	fier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	77	22 - 130	09/17/21 18:49	09/20/21 18:55	1
Nitrobenzene-d5 (Surr)	67	20 - 145	09/17/21 18:49	09/20/21 18:55	1
p-Terphenyl-d14 (Surr)	87	33 - 147	09/17/21 18:49	09/20/21 18:55	1

Lab Sample ID: LCS 570-180052/2-A

Matrix: Solid

Analysis Batch: 180477

Client Sample	ID:	Lab	Control	Sample
---------------	-----	-----	---------	--------

Prep Type: Total/NA Prep Batch: 180052

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Acenaphthene 0.100 0.07117 mg/Kg 71 53 - 125 Acenaphthylene 0.100 0.08591 mg/Kg 86 50 - 123 mg/Kg Anthracene 0.100 0.07390 74 50 - 132 76 1,2-Benzanthracene 0.100 0.07596 mg/Kg 50 - 133 Benzo[a]pyrene 0.100 0.08633 86 50 - 134 mg/Kg 0.100 75 3,4-Benzofluoranthene 0.07453 mg/Kg 50 - 142 Benzo[k]fluoranthene 0.100 0.07610 mg/Kg 76 49 - 150 1,12-Benzoperylene 0.100 0.07944 mg/Kg 79 50 - 130 Chrysene 0.100 0.07675 mg/Kg 77 51 - 129 Dibenz(a,h)anthracene 0.100 0.07928 mg/Kg 79 50 - 133 Fluoranthene 0.100 0.07546 mg/Kg 75 55 - 127 Fluorene 0.100 0.07324 mg/Kg 73 55 - 127 79 Indeno[1,2,3-cd]pyrene 0.100 0.07856 50 - 148 mg/Kg 1-Methylnaphthalene 0.100 0.07373 mg/Kg 74 54 - 132 2-Methylnaphthalene 0.100 0.07177 72 50 - 127 mg/Kg Naphthalene 68 0.100 0.06807 mg/Kg 51 - 129 Phenanthrene 0.100 0.07125 mg/Kg 71 50 - 122 Pyrene 0.100 0.07863 mg/Kg 79 50 - 134

QC Sample Results

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM) (Continued)

Matrix: Solid

Analysis Batch: 180477

Lab Sample ID: LCS 570-180052/2-A

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 180052

LCS LCS

Surrogate	%Recovery Qualifie	r Limits
2-Fluorobiphenyl (Surr)	72	22 - 130
Nitrobenzene-d5 (Surr)	62	20 - 145
p-Terphenyl-d14 (Surr)	83	33 - 147

Lab Sample ID: LCSD 570-180052/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 180477

Prep Type: Total/NA

88

121

∜

50 - 134

mg/Kg

mg/Kg

Prep Batch: 180052

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 53 - 125 Acenaphthene 0.100 0.08008 mg/Kg 80 12 20 Acenaphthylene 0.100 0.09620 mg/Kg 96 50 - 12311 20 Anthracene 0.100 0.08318 mg/Kg 83 50 - 132 12 20 1,2-Benzanthracene 0.100 0.08467 mg/Kg 85 50 - 133 11 20 98 20 Benzo[a]pyrene 0.100 0.09753 mg/Kg 50 - 134 12 83 20 3,4-Benzofluoranthene 0.100 0.08334 mg/Kg 50 - 142 11 Benzo[k]fluoranthene 0.100 0.08595 86 49 - 150 12 20 mg/Kg 89 20 1,12-Benzoperylene 0.100 0.08878 mg/Kg 50 - 130 11 Chrysene 87 20 0.100 0.08710 51 - 12913 mg/Kg Dibenz(a,h)anthracene 0.100 0.08909 mg/Kg 89 50 - 133 12 20 Fluoranthene 0.100 0.08398 84 55 - 127 20 mg/Kg 11 Fluorene 0.100 0.08231 mg/Kg 82 55 - 127 12 20 0.100 0.08719 87 50 - 148 10 20 Indeno[1,2,3-cd]pyrene mg/Kg 1-Methylnaphthalene 0.100 0.08322 mg/Kg 83 54 - 132 12 20 2-Methylnaphthalene 0.100 0.08157 82 50 - 127 13 20 mg/Kg Naphthalene 78 20 0.100 0.07793 mg/Kg 51 - 129 13 82 Phenanthrene 0.100 0.08180 mg/Kg 50 - 122 14 20

0.100

0.08793

LCSD LCSD

0.13

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	77	22 - 130
Nitrobenzene-d5 (Surr)	60	20 - 145
p-Terphenyl-d14 (Surr)	90	33 - 147

Lab Sample ID: 570-69878-1 MS Client Sample ID: SED-003

Analysis Batch: 180477

Matrix: Solid

Dibenz(a,h)anthracene

Pyrene

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Acenaphthene 0.046 0.284 0.3516 mg/Kg ₩ 108 29 - 137 Acenaphthylene ND 0.284 0.2935 mg/Kg ₩ 104 29 - 131 Anthracene 0.10 0.284 0.4328 mg/Kg 117 26 - 134 ₩ 0.8920 F1 0.28 ₩ 214 1,2-Benzanthracene 0.284 mg/Kg 24 - 150Benzo[a]pyrene 0.45 0.284 1.150 F1 mg/Kg Ö 249 29 - 149 3,4-Benzofluoranthene 0.43 0.284 0.9273 F1 174 21 - 153 mg/Kg ₩ Benzo[k]fluoranthene 0.40 1.045 F1 ₩ 229 28 - 148 0.284 mg/Kg 1,12-Benzoperylene 0.35 0.284 0.7763 F1 mg/Kg Ö 149 20 - 148 0.55 0.284 1.368 F1 288 25 - 145 Chrysene mg/Kg ₩

Eurofins Calscience LLC

20 - 132

Page 36 of 61

0.4690

0.284

20

11

Prep Type: Total/NA

Prep Batch: 180052

QC Sample Results

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM) (Continued)

Lab Sample ID: 570-69878-1 MS

Matrix: Solid

Analysis Batch: 180477

Client Sample ID: SED-003 Prep Type: Total/NA

Prep Batch: 180052

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoranthene	0.84		0.284	2.222	F1	mg/Kg	*	487	20 - 151	
Fluorene	0.065		0.284	0.3550		mg/Kg	₩	102	36 - 132	
Indeno[1,2,3-cd]pyrene	0.21		0.284	0.5954		mg/Kg	₩	137	20 - 154	
1-Methylnaphthalene	0.014	J	0.284	0.2176		mg/Kg	☼	72	34 - 136	
2-Methylnaphthalene	0.035	J	0.284	0.2326		mg/Kg	₩	70	29 - 137	
Naphthalene	0.030	J	0.284	0.1957		mg/Kg	₽	59	20 - 150	
Phenanthrene	0.40		0.284	1.498	F1	mg/Kg	₩	387	20 - 144	
Pyrene	0.92		0.284	1.905	F1	mg/Kg	☼	348	20 - 150	

MS MS

Surrogate	%Recovery Qualifie	er Limits
2-Fluorobiphenyl (Surr)	73	22 - 130
Nitrobenzene-d5 (Surr)	45	20 - 145
p-Terphenyl-d14 (Surr)	92	33 - 147

Lab Sample ID: 570-69878-1 MSD

Matrix: Solid

Analysis Batch: 180477

Client Sample ID: SED-003 Prep Type: Total/NA Prep Batch: 180052

Analysis Batch: 180477									Prep Ba	atch: 18	80052
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	0.046	J	0.283	0.3174		mg/Kg	<u></u>	96	29 - 137	10	28
Acenaphthylene	ND		0.283	0.2985		mg/Kg	☼	105	29 - 131	2	32
Anthracene	0.10		0.283	0.3737		mg/Kg	☼	97	26 - 134	15	27
1,2-Benzanthracene	0.28		0.283	0.5984	F2	mg/Kg	☼	111	24 - 150	39	24
Benzo[a]pyrene	0.45		0.283	0.8991	F1 F2	mg/Kg	☼	160	29 - 149	25	22
3,4-Benzofluoranthene	0.43		0.283	0.5702	F2	mg/Kg	☼	48	21 - 153	48	26
Benzo[k]fluoranthene	0.40		0.283	0.8586	F1	mg/Kg	☼	163	28 - 148	20	26
1,12-Benzoperylene	0.35		0.283	0.6666		mg/Kg	₩	110	20 - 148	15	27
Chrysene	0.55		0.283	0.8392	F2	mg/Kg	☼	102	25 - 145	48	28
Dibenz(a,h)anthracene	0.13		0.283	0.3852		mg/Kg	☼	92	20 - 132	20	26
Fluoranthene	0.84		0.283	1.267	F2	mg/Kg	☼	151	20 - 151	55	26
Fluorene	0.065		0.283	0.3132		mg/Kg	☼	88	36 - 132	13	27
Indeno[1,2,3-cd]pyrene	0.21		0.283	0.5009		mg/Kg	☼	104	20 - 154	17	25
1-Methylnaphthalene	0.014	J	0.283	0.2521		mg/Kg	₩	84	34 - 136	15	29
2-Methylnaphthalene	0.035	J	0.283	0.2765		mg/Kg	₩	85	29 - 137	17	31
Naphthalene	0.030	J	0.283	0.2593		mg/Kg	☼	81	20 - 150	28	33
Phenanthrene	0.40		0.283	0.7782	F2	mg/Kg	☼	133	20 - 144	63	27
Pyrene	0.92		0.283	1.265	F2	mg/Kg	☼	123	20 - 150	40	32

כ
0

Surrogate	%Recovery Qualit	fier Limits
2-Fluorobiphenyl (Surr)	73	22 - 130
Nitrobenzene-d5 (Surr)	45	20 - 145
p-Terphenyl-d14 (Surr)	90	33 ₋ 147

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

Method: Organotins SIM - Organotins (GC/MS SIM)

Lab Sample ID: MB 570-179948/1-A

Matrix: Solid

Analysis Batch: 181787

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 179948

MB MB Result Qualifier RL **MDL** Unit Analyzed Dil Fac **Prepared** 09/17/21 12:08 09/24/21 20:50 ND 3.0 1.5 ug/Kg

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 10 - 120 09/17/21 12:08 09/24/21 20:50 Tripentyltin 109

Lab Sample ID: LCS 570-179948/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analyte

Tributyltin

Analysis Batch: 181787

Prep Type: Total/NA **Prep Batch: 179948** LCS LCS %Rec. Spike

Analyte Added Result Qualifier Unit D %Rec Limits Tetrabutyltin 100 89.50 ug/Kg 89 10 - 153 100 Tributyltin 67.87 ug/Kg 68 10 - 126

LCS LCS

Surrogate %Recovery Qualifier Limits 10 - 120 Tripentyltin 105

Lab Sample ID: LCSD 570-179948/3-A

Matrix: Solid

Analysis Batch: 181787

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 179948

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte Tetrabutyltin 100 109.9 10 - 153 30 ug/Kg 110 20 Tributyltin 100 75.63 ug/Kg 76 10 - 126 11 30

LCSD LCSD

%Recovery Qualifier Surrogate Limits Tripentyltin 10 - 120 119

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-179051/1-A

Matrix: Solid

Analysis Batch: 179416

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 179051**

MB MB

	1410	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6 as C6	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C7 as C7	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C8 as C8	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C9-C10	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C11-C12	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C13-C14	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C15-C16	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C17-C18	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C19-C20	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C21-C22	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C23-C24	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C25-C28	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C29-C32	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1
C33-C36	ND		5.0	3.8	mg/Kg		09/14/21 12:43	09/16/21 14:32	1

Eurofins Calscience LLC

Page 38 of 61

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 570-179051/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 179416**

Prep Batch: 179051 MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac C37-C40 ND 5.0 3.8 mg/Kg C41-C44 ND 5.0 3.8 mg/Kg 09/14/21 12:43 09/16/21 14:32 C6-C44 ND 5.0 09/14/21 12:43 09/16/21 14:32 3.8 mg/Kg MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac n-Octacosane (Surr) 60 - 138 09/14/21 12:43 09/16/21 14:32 115

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 570-179051/2-A **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 179136 Prep Batch: 179051** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **Diesel Range Organics** 400 451.9 mg/Kg [C10-C28] LCS LCS Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 60 - 138 105

Lab Sample ID: LCSD 570-179051/3-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 179136 Prep Batch: 179051** Spike LCSD LCSD RPD %Rec. Added Result Qualifier Unit %Rec Limits **RPD** Limit **Diesel Range Organics** 400 464.0 mg/Kg 116 80 - 130

LCSD LCSD Surrogate %Recovery Qualifier Limits 60 - 138 n-Octacosane (Surr)

[C10-C28]

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 570-180082/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 181420** Prep Batch: 180082

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4'-DDD	ND		1.0	0.064	ug/Kg		09/17/21 20:21	09/23/21 18:22	1
2,4'-DDE	ND		2.0	0.097	ug/Kg		09/17/21 20:21	09/23/21 18:22	1
2,4'-DDT	ND		1.0	0.092	ug/Kg		09/17/21 20:21	09/23/21 18:22	1
4,4'-DDD	ND		1.0	0.50	ug/Kg		09/17/21 20:21	09/23/21 18:22	1
4,4'-DDE	ND		1.0	0.071	ug/Kg		09/17/21 20:21	09/23/21 18:22	1
4,4'-DDT	ND		1.0	0.18	ug/Kg		09/17/21 20:21	09/23/21 18:22	1
Chlordane	ND		5.0	0.33	ug/Kg		09/17/21 20:21	09/23/21 18:22	1
	MD	MD							

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	87	20 - 131	09/17/21 20:21	09/23/21 18:22	1
DCB Decachlorobiphenyl (Surr)	97	20 - 180	09/17/21 20:21	09/23/21 18:22	1

Eurofins Calscience LLC

Page 39 of 61

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

100 100

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

92

103

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 180082

	Эрікі	LUS	LUS				MREC.	
Analyte	Adde	d Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	5.0	6.038		ug/Kg		121	54 - 150	
4,4'-DDE	5.0	5.737		ug/Kg		115	49 - 146	
4,4'-DDT	5.0	5.986		ug/Kg		120	52 - 147	

Snika

LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 99 20 - 131 DCB Decachlorobiphenyl (Surr) 122 20 - 180

Lab Sample ID: LCS 570-180082/2-A

Lab Sample ID: LCSD 570-180082/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 181420

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 180082

Analysis Batch: 181420 Spike LCSD LCSD %Rec. **RPD** Limits Added Result Qualifier RPD Limit Analyte Unit D %Rec 4,4'-DDD 5.00 5.165 ug/Kg 103 54 - 150 16 29 4,4'-DDE 5.00 4.953 ug/Kg 99 49 - 146 15 28 4,4'-DDT 5.00 32 5.132 ug/Kg 103 52 - 147 15

LCSD LCSD %Recovery Qualifier Surrogate Limits Tetrachloro-m-xylene 20 - 131

20 - 180

Client Sample ID: SED-003 Lab Sample ID: 570-69878-1 MS

Matrix: Solid

DCB Decachlorobiphenyl (Surr)

Analysis Batch: 181420

Prep Type: Total/NA Prep Batch: 180082

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	18	F1	5.01	29.98	F1	ug/Kg		239	17 - 180	
4,4'-DDE	21		5.01	36.19	4	ug/Kg		310	20 - 180	
4,4'-DDT	ND	F1 F2	5.01	10.17	F1 p	ug/Kg		203	10 - 180	
,					•	59				

MS MS %Recovery Qualifier Limits 72 p 20 - 131 138 20 - 180

Lab Sample ID: 570-69878-1 MSD Client Sample ID: SED-003

Matrix: Solid

Tetrachloro-m-xylene

Surrogate

Analysis Batch: 181420

DCB Decachlorobiphenyl (Surr)

Prep Type: Total/NA

Prep Batch: 180082

,												
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
4,4'-DDD	18	F1	5.01	26.62		ug/Kg		172	17 - 180	12	40	
4,4'-DDE	21		5.01	28.85	4	ug/Kg		163	20 - 180	23	40	
4,4'-DDT	ND	F1 F2	5.01	1.779	J p F2	ug/Kg		36	10 - 180	140	40	

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	84	p	20 - 131
DCB Decachlorobiphenyl (Surr)	143	p	20 - 180

Eurofins Calscience LLC

Page 40 of 61

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 570-180082/1-A

Matrix: Solid

Analysis Batch: 181261

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 180082

	INIB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1016	ND		10	5.5	ug/Kg		09/17/21 20:21	09/23/21 18:11	1
Aroclor-1221	ND		10	5.5	ug/Kg		09/17/21 20:21	09/23/21 18:11	1
Aroclor-1232	ND		10	5.5	ug/Kg		09/17/21 20:21	09/23/21 18:11	1
Aroclor-1242	ND		10	5.5	ug/Kg		09/17/21 20:21	09/23/21 18:11	1
Aroclor-1248	ND		10	5.5	ug/Kg		09/17/21 20:21	09/23/21 18:11	1
Aroclor-1254	ND		10	5.0	ug/Kg		09/17/21 20:21	09/23/21 18:11	1
Aroclor-1260	ND		10	5.0	ug/Kg		09/17/21 20:21	09/23/21 18:11	1

MB MB

MD MD

Surrogate	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	89	20 - 155	09/17/21 20:21	09/23/21 18:11	1
Tetrachloro-m-xylene (Surr)	77	25 - 126	09/17/21 20:21	09/23/21 18:11	1

Lab Sample ID: LCS 570-180082/6-A

Matrix: Solid

Analysis Batch: 181261

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 180082

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Aroclor-1016 20.0 21.89 50 - 142 ug/Kg 109 Aroclor-1260 20.0 21.28 ug/Kg 106 50 - 150

LCS LCS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	71	20 - 155
Tetrachloro-m-xylene (Surr)	74	25 - 126

Lab Sample ID: LCSD 570-180082/7-A

Matrix: Solid

Analysis Batch: 181261

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 180082

LCSD LCSD RPD %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Aroclor-1016 20.0 23.10 ug/Kg 116 50 - 142 5 30 Aroclor-1260 20.0 22.64 ug/Kg 113 50 - 150 30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	76		20 - 155
Tetrachloro-m-xvlene (Surr)	82		25 - 126

Lab Sample ID: 570-69878-1 MS

Matrix: Solid

Analysis Batch: 181261

Client Sample ID: SED-003

Prep Type: Total/NA

Prep Batch: 180082 %Rac

	Sample	Sample	Spike	IVIO	IVIO				/oixec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aroclor-1016	ND	F2 F1	57.3	246.0	F1	ug/Kg	— <u></u>	430	20 - 175
Aroclor-1260	180	F1	57.3	411.8	F1	ug/Kg	₽	409	20 - 180

MS MS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl (Surr)	61		20 - 155
Tetrachloro-m-xylene (Surr)	55		25 - 126

Eurofins Calscience LLC

Page 41 of 61

Client: WGR Southwest Inc Job ID: 570-69878-1

Project/Site: Tesoro LA Refinery Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 570-69878-1 MSD

Matrix: Solid

Analysis Batch: 181261

Client Sample ID: SED-003

Prep Type: Total/NA

Prep Batch: 180082 %Rec. **RPD**

Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit D Aroclor-1016 ND F2 F1 57.3 452.3 F1 F2 ug/Kg 789 20 - 175 59 40 Aroclor-1260 180 F1 57.3 281.7 F1 ug/Kg 181 20 - 180 38 40

MSD MSD

Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 80 20 - 155 Tetrachloro-m-xylene (Surr) 68 25 - 126

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 570-181268/1-A ^20 **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 181377

Prep Type: Total/NA

Prep Batch: 181268

MB MB **Analyte** Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 09/23/21 08:25 09/23/21 13:43 Cadmium ND 1.00 0.450 mg/Kg 20 Chromium ND 2.00 0.300 mg/Kg 09/23/21 08:25 09/23/21 13:43 20 ND 1.00 0.269 mg/Kg 09/23/21 08:25 09/23/21 13:43 20 Copper Lead ND 0.215 mg/Kg 20 1.00 09/23/21 08:25 09/23/21 13:43 Nickel ND 1.00 0.270 mg/Kg 09/23/21 08:25 09/23/21 13:43 20 Zinc ND 5.00 4.62 mg/Kg 09/23/21 08:25 09/23/21 13:43 20

Lab Sample ID: LCS 570-181268/2-A ^20

Matrix: Solid

Analysis Batch: 181377

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 181268

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	25.8	26.28		mg/Kg		102	80 - 120	
Chromium	25.8	24.41		mg/Kg		95	80 - 120	
Copper	25.8	25.44		mg/Kg		99	80 - 120	
Lead	25.8	25.08		mg/Kg		97	80 - 120	
Nickel	25.8	25.86		mg/Kg		100	80 - 120	
Zinc	25.8	27.08		mg/Kg		105	80 - 120	

Lab Sample ID: LCSD 570-181268/3-A ^20

Matrix: Solid

Analysis Batch: 181377

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 181268**

	%Rec.	RPD
nit D %Rec	Limits R	PD Limit
ng/Kg 102	80 - 120	3 20
ng/Kg 97	80 - 120	0 20
ng/Kg 99	80 - 120	2 20
ng/Kg 98	80 - 120	2 20
ng/Kg 105	80 - 120	2 20
ng/Kg 104	80 - 120	4 20
וכ וכ	g/Kg 102 g/Kg 97 g/Kg 99 g/Kg 98 g/Kg 105	hit D %Rec Limits R g/Kg 102 80 - 120 g/Kg 97 80 - 120 g/Kg 99 80 - 120 g/Kg 98 80 - 120 g/Kg 105 80 - 120

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 570-69878-1 MS

Matrix: Solid

Analysis Batch: 181377

Client Sample ID: SED-003

Prep Type: Total/NA **Prep Batch: 181268**

,	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	ND		69.0	73.75		mg/Kg	<u></u>	107	85 - 121	
Chromium	54.1		69.0	166.2		mg/Kg	☼	162	20 - 182	
Copper	134	F1	69.0	284.8	F1	mg/Kg	₩	218	25 - 157	
Lead	76.8	F1	69.0	193.0	F1	mg/Kg	₩	168	62 - 134	
Nickel	19.0		69.0	95.37		mg/Kg	₩	111	46 - 154	
Zinc	565		69.0	863.4	4	ma/Ka	÷Ċ:	432	23 - 173	

Lab Sample ID: 570-69878-1 MSD Client Sample ID: SED-003

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 1813//									Prep Ba	itcn: 18	31268
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	ND		73.7	78.86		mg/Kg	*	107	85 - 121	7	12
Chromium	54.1		73.7	176.7		mg/Kg	₩	166	20 - 182	6	15
Copper	134	F1	73.7	295.1	F1	mg/Kg	₩	218	25 - 157	4	22
Lead	76.8	F1	73.7	205.8	F1	mg/Kg	₩	175	62 - 134	6	23
Nickel	19.0		73.7	102.3		mg/Kg	₩	113	46 - 154	7	15
Zinc	565		73.7	901.7	4	mg/Kg	₩	457	23 - 173	4	18
_											

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 570-181297/1-A

Matrix: Solid

Analysis Batch: 181371

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 181297**

Prep Type: Total/NA

RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac 0.0820 09/23/21 09:54 09/23/21 14:20 Mercury ND 0.0133 mg/Kg

Lab Sample ID: LCS 570-181297/2-A Client Sample ID: Lab Control Sample **Matrix: Solid**

MB MB

Analysis Batch: 181371

Prep Type: Total/NA **Prep Batch: 181297**

Client Sample ID: Lab Control Sample Dup

%Rec.

LCS LCS Spike Added Analyte Result Qualifier Unit D %Rec Limits 0.833 Mercury 0.8145 mg/Kg 98 85 - 121

Lab Sample ID: LCSD 570-181297/3-A

Matrix: Solid

Analysis Batch: 181371

Prep Batch: 181297 Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits RPD Analyte Unit D %Rec Limit 0.847 Mercury 0.8272 mg/Kg 98 85 - 121

Lab Sample ID: 570-69878-1 MS

Matrix: Solid

Analysis Batch: 181371

Client Sample ID: SED-003 Prep Type: Total/NA **Prep Batch: 181297** %Rec.

Sample Sample Spike MS MS **Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits Mercury 0.222 J 2.38 2.235 mg/Kg 85 71 - 137

Eurofins Calscience LLC

Client: WGR Southwest Inc Job ID: 570-69878-1

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: 570-69878-1 MSD Client Sample ID: SED-003 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 181371

Prep Batch: 181297 Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Result Qualifier Added %Rec Limits RPD Limit Analyte Unit D Mercury 0.222 J 2.42 2.312 mg/Kg 86 71 - 137 3 14

Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 570-178845/64 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 178845

Project/Site: Tesoro LA Refinery

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 500 $\overline{\mathsf{ND}}$ 174 mg/Kg 09/15/21 10:32 Carbon, Total Organic

Lab Sample ID: MB 570-178845/96 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 178845

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed 500 Carbon, Total Organic ND 174 mg/Kg 09/15/21 10:32

Lab Sample ID: LCS 570-178845/65 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 178845

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Carbon, Total Organic 30000 27050 mq/Kq 90 80 - 120

Lab Sample ID: LCS 570-178845/97 **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 178845

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit Limits mg/Kg Carbon, Total Organic 29900 26620 80 - 120

Lab Sample ID: LCSD 570-178845/66 Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 178845

Spike LCSD LCSD RPD %Rec. Added Limit Analyte Result Qualifier Unit %Rec Limits **RPD** Carbon, Total Organic 30100 28950 96 80 - 120 mg/Kg

Lab Sample ID: LCSD 570-178845/98 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 178845

RPD Spike LCSD LCSD %Rec. Added Result Qualifier Unit %Rec Limits **RPD** Limit 29900 27960 Carbon, Total Organic mg/Kg 80 - 120

Eurofins Calscience LLC

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Method: Moisture - Percent Moisture

Lab Sample ID: 570-69878-2 DU Client Sample ID: SED-004 **Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 179106								•	
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Percent Moisture	49.8		 46.5		%		 	7	10

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

GC/MS Semi VOA

Cleanup Batch: 178989

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	Homogenize	
				Prep	
570-69878-2	SED-004	Total/NA	Solid	Homogenize	
				Prep	
570-69878-3	SED-005	Total/NA	Solid	Homogenize	
				Prep	
570-69878-4	SED-006	Total/NA	Solid	Homogenize	
				Prep	
570-69878-5	SED-007	Total/NA	Solid	Homogenize	
				Prep	
570-69878-1 MS	SED-003	Total/NA	Solid	Homogenize	
				Prep	
570-69878-1 MSD	SED-003	Total/NA	Solid	Homogenize	
				Prep	

Prep Batch: 179948

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	Organotin Prep	178989
570-69878-2	SED-004	Total/NA	Solid	Organotin Prep	178989
570-69878-3	SED-005	Total/NA	Solid	Organotin Prep	178989
570-69878-4	SED-006	Total/NA	Solid	Organotin Prep	178989
570-69878-5	SED-007	Total/NA	Solid	Organotin Prep	178989
MB 570-179948/1-A	Method Blank	Total/NA	Solid	Organotin Prep	
LCS 570-179948/2-A	Lab Control Sample	Total/NA	Solid	Organotin Prep	
LCSD 570-179948/3-A	Lab Control Sample Dup	Total/NA	Solid	Organotin Prep	

Prep Batch: 180052

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	3541	178989
570-69878-2	SED-004	Total/NA	Solid	3541	178989
570-69878-3	SED-005	Total/NA	Solid	3541	178989
570-69878-4	SED-006	Total/NA	Solid	3541	178989
570-69878-5	SED-007	Total/NA	Solid	3541	178989
MB 570-180052/1-A	Method Blank	Total/NA	Solid	3541	
LCS 570-180052/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCSD 570-180052/3-A	Lab Control Sample Dup	Total/NA	Solid	3541	
570-69878-1 MS	SED-003	Total/NA	Solid	3541	178989
570-69878-1 MSD	SED-003	Total/NA	Solid	3541	178989

Analysis Batch: 180477

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	8270C SIM	180052
MB 570-180052/1-A	Method Blank	Total/NA	Solid	8270C SIM	180052
LCS 570-180052/2-A	Lab Control Sample	Total/NA	Solid	8270C SIM	180052
LCSD 570-180052/3-A	Lab Control Sample Dup	Total/NA	Solid	8270C SIM	180052
570-69878-1 MS	SED-003	Total/NA	Solid	8270C SIM	180052
570-69878-1 MSD	SED-003	Total/NA	Solid	8270C SIM	180052

Analysis Batch: 181003

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-2	SED-004	Total/NA	Solid	8270C SIM	180052
570-69878-3	SED-005	Total/NA	Solid	8270C SIM	180052
570-69878-4	SED-006	Total/NA	Solid	8270C SIM	180052

Eurofins Calscience LLC

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

GC/MS Semi VOA (Continued)

Analysis Batch: 181003 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-5	SED-007	Total/NA	Solid	8270C SIM	180052

Analysis Batch: 181787

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	Organotins SIM	179948
570-69878-2	SED-004	Total/NA	Solid	Organotins SIM	179948
570-69878-3	SED-005	Total/NA	Solid	Organotins SIM	179948
570-69878-4	SED-006	Total/NA	Solid	Organotins SIM	179948
570-69878-5	SED-007	Total/NA	Solid	Organotins SIM	179948
MB 570-179948/1-A	Method Blank	Total/NA	Solid	Organotins SIM	179948
LCS 570-179948/2-A	Lab Control Sample	Total/NA	Solid	Organotins SIM	179948
LCSD 570-179948/3-A	Lab Control Sample Dup	Total/NA	Solid	Organotins SIM	179948

GC Semi VOA

Cleanup Batch: 178989

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	Homogenize	
				Prep	
570-69878-2	SED-004	Total/NA	Solid	Homogenize	
				Prep	
570-69878-3	SED-005	Total/NA	Solid	Homogenize	
				Prep	
570-69878-4	SED-006	Total/NA	Solid	Homogenize	
				Prep	
570-69878-5	SED-007	Total/NA	Solid	Homogenize	
				Prep	
570-69878-1 MS	SED-003	Total/NA	Solid	Homogenize	
				Prep	
570-69878-1 MSD	SED-003	Total/NA	Solid	Homogenize	
				Prep	

Prep Batch: 179051

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	3550C	178989
570-69878-2	SED-004	Total/NA	Solid	3550C	178989
570-69878-3	SED-005	Total/NA	Solid	3550C	178989
570-69878-4	SED-006	Total/NA	Solid	3550C	178989
570-69878-5	SED-007	Total/NA	Solid	3550C	178989
MB 570-179051/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-179051/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 570-179051/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	

Analysis Batch: 179136

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method P	rep Batch
LCS 570-179051/2-A	Lab Control Sample	Total/NA	Solid	8015B	179051
LCSD 570-179051/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B	179051

Analysis Batch: 179416

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	8015B	179051
570-69878-2	SED-004	Total/NA	Solid	8015B	179051
570-69878-3	SED-005	Total/NA	Solid	8015B	179051

Eurofins Calscience LLC

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

GC Semi VOA (Continued)

Analysis Batch: 179416 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-4	SED-006	Total/NA	Solid	8015B	179051
570-69878-5	SED-007	Total/NA	Solid	8015B	179051
MB 570-179051/1-A	Method Blank	Total/NA	Solid	8015B	179051

Prep Batch: 180082

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	3541	178989
570-69878-2	SED-004	Total/NA	Solid	3541	178989
570-69878-3	SED-005	Total/NA	Solid	3541	178989
570-69878-4	SED-006	Total/NA	Solid	3541	178989
570-69878-5	SED-007	Total/NA	Solid	3541	178989
MB 570-180082/1-A	Method Blank	Total/NA	Solid	3541	
LCS 570-180082/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCS 570-180082/6-A	Lab Control Sample	Total/NA	Solid	3541	
LCSD 570-180082/3-A	Lab Control Sample Dup	Total/NA	Solid	3541	
LCSD 570-180082/7-A	Lab Control Sample Dup	Total/NA	Solid	3541	
570-69878-1 MS	SED-003	Total/NA	Solid	3541	178989
570-69878-1 MS	SED-003	Total/NA	Solid	3541	178989
570-69878-1 MSD	SED-003	Total/NA	Solid	3541	178989
570-69878-1 MSD	SED-003	Total/NA	Solid	3541	178989

Analysis Batch: 181261

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	8082	180082
570-69878-2	SED-004	Total/NA	Solid	8082	180082
570-69878-3	SED-005	Total/NA	Solid	8082	180082
570-69878-4	SED-006	Total/NA	Solid	8082	180082
570-69878-5	SED-007	Total/NA	Solid	8082	180082
MB 570-180082/1-A	Method Blank	Total/NA	Solid	8082	180082
LCS 570-180082/6-A	Lab Control Sample	Total/NA	Solid	8082	180082
LCSD 570-180082/7-A	Lab Control Sample Dup	Total/NA	Solid	8082	180082
570-69878-1 MS	SED-003	Total/NA	Solid	8082	180082
570-69878-1 MSD	SED-003	Total/NA	Solid	8082	180082

Analysis Batch: 181420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	8081A	180082
570-69878-2	SED-004	Total/NA	Solid	8081A	180082
570-69878-3	SED-005	Total/NA	Solid	8081A	180082
570-69878-4	SED-006	Total/NA	Solid	8081A	180082
570-69878-5	SED-007	Total/NA	Solid	8081A	180082
MB 570-180082/1-A	Method Blank	Total/NA	Solid	8081A	180082
LCS 570-180082/2-A	Lab Control Sample	Total/NA	Solid	8081A	180082
LCSD 570-180082/3-A	Lab Control Sample Dup	Total/NA	Solid	8081A	180082
570-69878-1 MS	SED-003	Total/NA	Solid	8081A	180082
570-69878-1 MSD	SED-003	Total/NA	Solid	8081A	180082

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-69878-1

Metals

Cleanup Batch: 178989

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	Homogenize	
				Prep	
570-69878-2	SED-004	Total/NA	Solid	Homogenize	
				Prep	
570-69878-3	SED-005	Total/NA	Solid	Homogenize	
				Prep	
570-69878-4	SED-006	Total/NA	Solid	Homogenize	
				Prep	
570-69878-5	SED-007	Total/NA	Solid	Homogenize	
				Prep	
570-69878-1 MS	SED-003	Total/NA	Solid	Homogenize	
				Prep	
570-69878-1 MSD	SED-003	Total/NA	Solid	Homogenize	
				Prep	

Prep Batch: 181268

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	3050B	178989
570-69878-2	SED-004	Total/NA	Solid	3050B	178989
570-69878-3	SED-005	Total/NA	Solid	3050B	178989
570-69878-4	SED-006	Total/NA	Solid	3050B	178989
570-69878-5	SED-007	Total/NA	Solid	3050B	178989
MB 570-181268/1-A ^20	Method Blank	Total/NA	Solid	3050B	
LCS 570-181268/2-A ^20	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 570-181268/3-A ^20	Lab Control Sample Dup	Total/NA	Solid	3050B	
570-69878-1 MS	SED-003	Total/NA	Solid	3050B	178989
570-69878-1 MSD	SED-003	Total/NA	Solid	3050B	178989

Prep Batch: 181297

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	7471A	178989
570-69878-2	SED-004	Total/NA	Solid	7471A	178989
570-69878-3	SED-005	Total/NA	Solid	7471A	178989
570-69878-4	SED-006	Total/NA	Solid	7471A	178989
570-69878-5	SED-007	Total/NA	Solid	7471A	178989
MB 570-181297/1-A	Method Blank	Total/NA	Solid	7471A	
LCS 570-181297/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 570-181297/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	
570-69878-1 MS	SED-003	Total/NA	Solid	7471A	178989
570-69878-1 MSD	SED-003	Total/NA	Solid	7471A	178989

Analysis Batch: 181371

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	7471A	181297
570-69878-2	SED-004	Total/NA	Solid	7471A	181297
570-69878-3	SED-005	Total/NA	Solid	7471A	181297
570-69878-4	SED-006	Total/NA	Solid	7471A	181297
570-69878-5	SED-007	Total/NA	Solid	7471A	181297
MB 570-181297/1-A	Method Blank	Total/NA	Solid	7471A	181297
LCS 570-181297/2-A	Lab Control Sample	Total/NA	Solid	7471A	181297
LCSD 570-181297/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	181297
570-69878-1 MS	SED-003	Total/NA	Solid	7471A	181297
570-69878-1 MSD	SED-003	Total/NA	Solid	7471A	181297

Page 49 of 61

Eurofins Calscience LLC

9/27/2021

2

6

8

9

10

11

4.0

14

15

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Metals

Analysis Batch: 181377

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	6020	181268
570-69878-2	SED-004	Total/NA	Solid	6020	181268
570-69878-3	SED-005	Total/NA	Solid	6020	181268
570-69878-4	SED-006	Total/NA	Solid	6020	181268
570-69878-5	SED-007	Total/NA	Solid	6020	181268
MB 570-181268/1-A ^20	Method Blank	Total/NA	Solid	6020	181268
LCS 570-181268/2-A ^20	Lab Control Sample	Total/NA	Solid	6020	181268
LCSD 570-181268/3-A ^20	Lab Control Sample Dup	Total/NA	Solid	6020	181268
570-69878-1 MS	SED-003	Total/NA	Solid	6020	181268
570-69878-1 MSD	SED-003	Total/NA	Solid	6020	181268

General Chemistry

Analysis Batch: 178845

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	9060A	178989
570-69878-2	SED-004	Total/NA	Solid	9060A	178989
570-69878-3	SED-005	Total/NA	Solid	9060A	178989
570-69878-4	SED-006	Total/NA	Solid	9060A	178989
570-69878-5	SED-007	Total/NA	Solid	9060A	178989
MB 570-178845/64	Method Blank	Total/NA	Solid	9060A	
MB 570-178845/96	Method Blank	Total/NA	Solid	9060A	
LCS 570-178845/65	Lab Control Sample	Total/NA	Solid	9060A	
LCS 570-178845/97	Lab Control Sample	Total/NA	Solid	9060A	
LCSD 570-178845/66	Lab Control Sample Dup	Total/NA	Solid	9060A	
LCSD 570-178845/98	Lab Control Sample Dup	Total/NA	Solid	9060A	

Cleanup Batch: 178989

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	Homogenize	
				Prep	
570-69878-2	SED-004	Total/NA	Solid	Homogenize	
				Prep	
570-69878-3	SED-005	Total/NA	Solid	Homogenize	
				Prep	
570-69878-4	SED-006	Total/NA	Solid	Homogenize	
				Prep	
570-69878-5	SED-007	Total/NA	Solid	Homogenize	
				Prep	

Analysis Batch: 179106

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	Moisture	
570-69878-2	SED-004	Total/NA	Solid	Moisture	
570-69878-3	SED-005	Total/NA	Solid	Moisture	
570-69878-4	SED-006	Total/NA	Solid	Moisture	
570-69878-5	SED-007	Total/NA	Solid	Moisture	
570-69878-2 DU	SED-004	Total/NA	Solid	Moisture	

Page 50 of 61

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-69878-1

Geotechnical

Analysis Batch: 181620

Lab Sample	ID Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-69878-1	SED-003	Total/NA	Solid	D4464	
570-69878-2	SED-004	Total/NA	Solid	D4464	
570-69878-3	SED-005	Total/NA	Solid	D4464	
570-69878-4	SED-006	Total/NA	Solid	D4464	
570-69878-5	SED-007	Total/NA	Solid	D4464	

4

6

8

9

4 4

12

1 A

10

Job ID: 570-69878-1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

Client Sample ID: SED-003

Lab Sample ID: 570-69878-1 Date Collected: 09/09/21 17:55

Matrix: Solid

Date Received: 09/13/21 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			20.12 g	2 mL	180052	09/17/21 18:49	USUL	ECL 1
Total/NA	Analysis	8270C SIM		2			180477	09/20/21 21:52	AJ2Q	ECL 1
	Instrumer	nt ID: GCMSAAA								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	Organotin Prep			10.04 g	5 mL	179948	09/17/21 12:08	UWEZ	ECL 1
Total/NA	Analysis	Organotins SIM		1			181787	09/24/21 22:36	AJ2Q	ECL 1
	Instrumer	nt ID: GCMSY								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3550C			10.23 g	10 mL	179051	09/14/21 12:44	UYUW	ECL 1
Total/NA	Analysis	8015B		1	-		179416	09/16/21 08:37	N1A	ECL 1
	Instrumer	nt ID: GC47								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			19.99 g	2 mL	180082	09/17/21 20:21	UM1W	ECL 1
Total/NA	Analysis	8081A		5	· ·		181420	09/23/21 19:19	UHHN	ECL 1
	Instrumer	nt ID: GC44								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			19.99 g	2 mL	180082	09/17/21 20:21	UM1W	ECL 1
Total/NA	Analysis	8082		1	-		181261	09/23/21 18:29	UHHN	ECL 1
	Instrumer	nt ID: GC58								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3050B			2.03 g	100 mL	181268	09/23/21 08:25	WL8G	ECL 1
Total/NA	Analysis	6020		20			181377	09/23/21 13:56	UFLE	ECL 1
	Instrumer	nt ID: ICPMS05								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	7471A			.61 g	100 mL	181297	09/23/21 09:54	WL8G	ECL 1
Total/NA	Analysis	7471A		1	-		181371	09/23/21 14:29	VWJ7	ECL 1
	Instrumer	nt ID: HG7								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Analysis	9060A		1	209.5 mg	118.1 mg	178845	09/15/21 10:51		ECL 1
	Instrumer	nt ID: TOC9			· ·	· ·				
Total/NA	Analysis	Moisture		1			179106	09/14/21 16:15	VWM4	ECL 1
	-	nt ID: GC54		·						
Total/NA	Analysis	D4464		1			181620	09/23/21 15:57	C41 T	ECL 1
iolai/i v A	•	nt ID: NOEQUIP		ı			101020	03/23/21 13.37	O4L1	LOLI
	mandifici	RID. NOLGOII								

Client Sample ID: SED-004

Date Collected: 09/09/21 13:30 Date Received: 09/13/21 13:50

Lab Sample ID: 570-69878-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			20.14 g	2 mL	180052	09/17/21 18:49	USUL	ECL 1
Total/NA	Analysis	8270C SIM		2			181003	09/23/21 03:11	AJ2Q	ECL 1
	Instrumer	t ID: GCMSAAA								

Eurofins Calscience LLC

Page 52 of 61

Lab Chronicle

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Client Sample ID: SED-004

Lab Sample ID: 570-69878-2

Date Collected: 09/09/21 13:30 **Matrix: Solid** Date Received: 09/13/21 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Cleanup	Homogenize Prep			_		178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	Organotin Prep			10.27 g	5 mL	179948	09/17/21 12:08	UWEZ	ECL 1
Total/NA	Analysis Instrumen	Organotins SIM at ID: GCMSY		1			181787	09/24/21 22:54	AJ2Q	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3550C			9.94 g	10 mL	179051	09/14/21 12:44	UYUW	ECL 1
Total/NA	Analysis Instrumen	8015B at ID: GC47		1			179416	09/16/21 08:59	N1A	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			20.06 g	2 mL	180082	09/17/21 20:21	UM1W	ECL 1
Total/NA	Analysis Instrumen	8081A at ID: GC44		5			181420	09/23/21 19:34	UHHN	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			20.06 g	2 mL	180082	09/17/21 20:21	UM1W	ECL 1
Total/NA	Analysis Instrumen	8082 at ID: GC58		1			181261	09/23/21 18:47	UHHN	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3050B			1.99 g	100 mL	181268	09/23/21 08:25	WL8G	ECL 1
Total/NA	Analysis Instrumen	6020 at ID: ICPMS05		20			181377	09/23/21 14:18	UFLE	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	7471A			.63 g	100 mL	181297	09/23/21 09:54	WL8G	ECL 1
Total/NA	Analysis Instrumen	7471A at ID: HG7		1			181371	09/23/21 14:34	VWJ7	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Analysis Instrumen	9060A at ID: TOC9		1	202.7 mg	202.7 mg	178845	09/16/21 10:51	CY2M	ECL 1
Total/NA	Analysis Instrumen	Moisture at ID: GC54		1			179106	09/14/21 16:15	VWM4	ECL 1
Total/NA	Analysis Instrumen	D4464 at ID: NOEQUIP		1			181620	09/23/21 16:03	C4LT	ECL 1

Lab Sample ID: 570-69878-3 **Client Sample ID: SED-005** Date Collected: 09/09/21 15:45 Date Received: 09/13/21 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			20.17 g	2 mL	180052	09/17/21 18:49	USUL	ECL 1
Total/NA	Analysis	8270C SIM		2			181003	09/23/21 03:30	AJ2Q	ECL 1
	Instrumen	t ID: GCMSAAA								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	Organotin Prep			10.19 g	5 mL	179948	09/17/21 12:08	UWEZ	ECL 1
Total/NA	Analysis	Organotins SIM		1			181787	09/24/21 23:11	AJ2Q	ECL 1
	Instrumen	t ID: GCMSY								

Page 53 of 61

Matrix: Solid

Lab Chronicle

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Client Sample ID: SED-005

Lab Sample ID: 570-69878-3

Date Collected: 09/09/21 15:45 **Matrix: Solid** Date Received: 09/13/21 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3550C			9.90 g	10 mL	179051	09/14/21 12:44	UYUW	ECL 1
Total/NA	Analysis Instrumer	8015B nt ID: GC47		1			179416	09/16/21 09:21	N1A	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			20.08 g	2 mL	180082	09/17/21 20:23	UM1W	ECL 1
Total/NA	Analysis Instrumer	8081A nt ID: GC44		5			181420	09/23/21 19:48	UHHN	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			20.08 g	2 mL	180082	09/17/21 20:23	UM1W	ECL 1
Total/NA	Analysis Instrumer	8082 nt ID: GC58		1			181261	09/23/21 19:05	UHHN	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3050B			2.05 g	100 mL	181268	09/23/21 08:25	WL8G	ECL 1
Total/NA	Analysis Instrumer	6020 nt ID: ICPMS05		20			181377	09/23/21 14:21	UFLE	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	7471A			.57 g	100 mL	181297	09/23/21 09:54	WL8G	ECL 1
Total/NA	Analysis Instrumer	7471A nt ID: HG7		1			181371	09/23/21 14:36	VWJ7	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Analysis Instrumer	9060A nt ID: TOC9		1	205.5 mg	205.5 mg	178845	09/16/21 10:51	CY2M	ECL 1
Total/NA	Analysis Instrumer	Moisture nt ID: GC54		1			179106	09/14/21 16:15	VWM4	ECL 1
Total/NA	Analysis Instrumer	D4464 nt ID: NOEQUIP		1			181620	09/23/21 16:09	C4LT	ECL 1

Lab Sample ID: 570-69878-4 **Client Sample ID: SED-006** Date Collected: 09/09/21 10:25 **Matrix: Solid**

Date Received: 09/13/21 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			20.13 g	2 mL	180052	09/17/21 18:49	USUL	ECL 1
Total/NA	Analysis Instrumen	8270C SIM at ID: GCMSAAA		2			181003	09/23/21 03:50	AJ2Q	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	Organotin Prep			10.17 g	5 mL	179948	09/17/21 12:08	UWEZ	ECL 1
Total/NA	Analysis Instrumen	Organotins SIM at ID: GCMSY		1			181787	09/24/21 23:28	AJ2Q	ECL 1
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3550C			10.01 g	10 mL	179051	09/14/21 12:44	UYUW	ECL 1
Total/NA	Analysis Instrumen	8015B at ID: GC47		1			179416	09/16/21 09:44	N1A	ECL 1

Page 54 of 61

Lab Chronicle

Client: WGR Southwest Inc Job ID: 570-69878-1 Project/Site: Tesoro LA Refinery

Client Sample ID: SED-006

Date Received: 09/13/21 13:50

Lab Sample ID: 570-69878-4 Date Collected: 09/09/21 10:25

Matrix: Solid

Dil Batch Batch Initial Final Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor Amount** Amount Number **Analyst** Lab Total/NA 178989 09/14/21 10:06 C4LT ECL 1 Cleanup Homogenize Prep Total/NA 180082 09/17/21 20:23 UM1W ECL 1 Prep 3541 20.12 g 2 mL Total/NA Analysis 8081A 5 181420 09/23/21 20:02 UHHN ECL₁ Instrument ID: GC44 Total/NA Cleanup Homogenize Prep 178989 09/14/21 10:06 C4LT ECL 1 Total/NA 180082 ECL 1 Prep 3541 20.12 g 2 mL 09/17/21 20:23 UM1W Total/NA 8082 181261 09/23/21 19:23 UHHN ECL 1 Analysis 1 Instrument ID: GC58 Total/NA Cleanup Homogenize Prep 178989 09/14/21 10:06 C4LT ECL 1 3050B Total/NA Prep 2.00 g 100 mL 181268 09/23/21 08:25 WL8G ECL 1 Total/NA 6020 20 09/23/21 14:24 UFLE ECL 1 Analysis 181377 Instrument ID: ICPMS05 Total/NA Cleanup Homogenize Prep 178989 09/14/21 10:06 C4LT ECL 1 Total/NA Prep 7471A .61 g 100 mL 181297 09/23/21 09:54 WL8G ECL₁ Total/NA Analysis 7471A 181371 09/23/21 14:38 VWJ7 ECL 1 1 Instrument ID: HG7 Total/NA Homogenize Prep 09/14/21 10:06 C4LT ECL 1 Cleanup 178989 Total/NA Analysis 9060A 200.0 mg 200.0 mg 178845 09/15/21 10:32 CY2M ECL 1 Instrument ID: TOC9 Total/NA Analysis 179106 ECL 1 Moisture 09/14/21 16:15 VWM4 Instrument ID: GC54 Total/NA Analysis D4464 181620 09/23/21 16:15 C4LT ECL₁ Instrument ID: NOEQUIP

Client Sample ID: SED-007 Lab Sample ID: 570-69878-5 Date Collected: 09/09/21 11:30 **Matrix: Solid**

Date Received: 09/13/21 13:50

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3541			20.11 g	2 mL	180052	09/17/21 18:49	USUL	ECL 1
Total/NA	Analysis	8270C SIM		5			181003	09/23/21 04:10	AJ2Q	ECL 1
	Instrumen	t ID: GCMSAAA								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	Organotin Prep			10.16 g	5 mL	179948	09/17/21 12:08	UWEZ	ECL 1
Total/NA	Analysis	Organotins SIM		1			181787	09/24/21 23:46	AJ2Q	ECL 1
	Instrumen	t ID: GCMSY								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3550C			9.93 g	10 mL	179051	09/14/21 12:44	UYUW	ECL 1
Total/NA	Analysis	8015B		1			179416	09/16/21 10:07	N1A	ECL 1
	Instrumen	it ID: GC47								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			20.14 g	2 mL	180082	09/17/21 20:23	UM1W	ECL 1
Total/NA	Analysis	8081A		5			181420	09/23/21 20:16	UHHN	ECL 1
	Instrumen	it ID: GC44								

Page 55 of 61

10

Lab Chronicle

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-69878-1

Client Sample ID: SED-007

Lab Sample ID: 570-69878-5

Date Collected: 09/09/21 11:30 Matrix: Solid
Date Received: 09/13/21 13:50

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3541			20.14 g	2 mL	180082	09/17/21 20:23	UM1W	ECL 1
Total/NA	Analysis	8082		1			181261	09/23/21 19:41	UHHN	ECL 1
	Instrumen	t ID: GC58								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	3050B			1.97 g	100 mL	181268	09/23/21 08:25	WL8G	ECL 1
Total/NA	Analysis	6020		20			181377	09/23/21 14:28	UFLE	ECL 1
	Instrumen	t ID: ICPMS05								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Prep	7471A			.60 g	100 mL	181297	09/23/21 09:54	WL8G	ECL 1
Total/NA	Analysis	7471A		1			181371	09/23/21 14:40	VWJ7	ECL 1
	Instrumen	it ID: HG7								
Total/NA	Cleanup	Homogenize Prep					178989	09/14/21 10:06	C4LT	ECL 1
Total/NA	Analysis	9060A		1	68.1 mg	68.1 mg	178845	09/15/21 10:32	CY2M	ECL 1
	Instrumen	it ID: TOC9								
Total/NA	Analysis	Moisture		1			179106	09/14/21 16:15	VWM4	ECL 1
	Instrumen	nt ID: GC54								
Total/NA	Analysis	D4464		1			181620	09/23/21 16:24	C4LT	ECL 1
	•	it ID: NOEQUIP								- ' -

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

2

3

5

7

9

10

12

4 /

11

Accreditation/Certification Summary

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-69878-1

Laboratory: Eurofins Calscience LLC

Oregon

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

NELAP

uthority		Program	Identification Number	Expiration Date
alifornia		State	2944	09-30-21
The following analytes the agency does not do		eport, but the laboratory is r	not certified by the governing authority.	This list may include analytes for whi
Analysis Method	Prep Method	Matrix	Analyte	
9060A		Solid	Carbon, Total Organic	
D4464		Solid	Clay (less than 0.00391 mm)	1
D4464		Solid	Coarse Sand (0.5mm to 1mn	n)
D4464		Solid	Fine Sand (0.125 to 0.25mm)
D4464		Solid	Gravel (greater than 2 mm)	
D4464		Solid	Medium Sand (0.25 to 0.5 m	m)
D4464		Solid	Silt (0.00391 to 0.0625mm)	
D4464		Solid	Total Silt and Clay (0 to 0.062	26mm)
D4464		Solid	Very Coarse Sand (1 to 2mm	1)
D4464		Solid	Very Fine Sand (0.0625 to 0.	125 mm)
Moisture		Solid	Percent Moisture	
Organotins SIM	Organotin Prep	Solid	Tributyltin	

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

CA300001

01-30-22

Analysis Method	Prep Method	Matrix	Analyte
D4464		Solid	Clay (less than 0.00391 mm)
D4464		Solid	Coarse Sand (0.5mm to 1mm)
D4464		Solid	Fine Sand (0.125 to 0.25mm)
D4464		Solid	Gravel (greater than 2 mm)
D4464		Solid	Medium Sand (0.25 to 0.5 mm)
D4464		Solid	Silt (0.00391 to 0.0625mm)
D4464		Solid	Total Silt and Clay (0 to 0.0626mm)
D4464		Solid	Very Coarse Sand (1 to 2mm)
D4464		Solid	Very Fine Sand (0.0625 to 0.125 mm)
Moisture		Solid	Percent Moisture

4

5

9

10

12

13

13

Method Summary

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

Job ID: 570-69878-1

Method	Method Description	Protocol	Laboratory
8270C SIM	PAHs (GC/MS SIM)	SW846	ECL 1
Organotins SIM	Organotins (GC/MS SIM)	Lab SOP	ECL 1
8015B	Diesel Range Organics (DRO) (GC)	SW846	ECL 1
8081A	Organochlorine Pesticides (GC)	SW846	ECL 1
8082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	ECL 1
6020	Metals (ICP/MS)	SW846	ECL 1
7471A	Mercury (CVAA)	SW846	ECL 1
9060A	Organic Carbon, Total (TOC)	SW846	ECL 1
Moisture	Percent Moisture	EPA	ECL 1
D4464	Particle Size Distribution of Catalytic Material (Laser light scattering)	ASTM	ECL 1
3050B	Preparation, Metals	SW846	ECL 1
3541	Automated Soxhlet Extraction	SW846	ECL 1
3550C	Ultrasonic Extraction	SW846	ECL 1
7471A	Preparation, Mercury	SW846	ECL 1
Homogenize Prep	Preparation, Homogenization	None	ECL 1
Organotin Prep	Extraction (Organotins)	None	ECL 1

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

Lab SOP = Laboratory Standard Operating Procedure

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

Sample Summary

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-69878-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
570-69878-1	SED-003	Solid	09/09/21 17:55	09/13/21 13:50
570-69878-2	SED-004	Solid	09/09/21 13:30	09/13/21 13:50
570-69878-3	SED-005	Solid	09/09/21 15:45	09/13/21 13:50
570-69878-4	SED-006	Solid	09/09/21 10:25	09/13/21 13:50
570-69878-5	SED-007	Solid	09/09/21 11:30	09/13/21 13:50

Facility Name LA Refinery - Carson Operations			Stat				ob id	Co	rson CA 907	40	Pro	ect	Mar	nage	r (C	onsi	ultant)	T	Pro		. (Consult					aboratory Name
Facility Contact Nate Busch			lity T	elepi	hone	No	SIVO.	, Ca	ISON CA 907	49	Chelsea Dreyer Telephone No. (Consultant) (562) 799-8510 ex 1003					+	021.APC.01 Fax No (Consultant)						rurofins Calscience 7440 Lincoln Way				
Consultant Company		-	(310	0) 04	7-39	20	Con	sulta	nt Address		(562) 799-8510 ex. 1003						_	(562) 799-8510					- G	arden Grove 92841 (714) 895-5494			
WGR Southwest, Inc.							110	21 W	inners Circle #	101 Los	s Ala	mito	s,	Calif	omi	ia 90	720									La	ab Project Manager
			L	M	atri	K	Pr	sv.			П	П		П	П		Т	Т	I		FI	ELD AN	IALYS	ES			Xuan Dang
570-69878 Chain of Custody											xt box)	11A	see text box)	B ASTM D4464		Carbon EPA 9060A		al.	see text pox)			(mg/L)	1ce (S/m)	lo	[if possible]	N	Special Detection Limit/Reporting Please report IDL and RL for all analytes
Sample I.D.	Lab Sample No.	No. of Containers	Soil	Water	Air	Other	Yes	No	Sampling Date	Sampling Time	Total Metals (see text box)	Chlordane EPA 8081A	PCBs (EPA 8082 - see	Sediment grain size ASTM D4464	DDT (see text box)	Total Organic Carb	TPH EPA 8015B	Tributyltin Krone et al.	PAHS (EPA 82/0C - see text box)	pH (SU) [6.5-8.5]	Salinity (PSU)	Dissolved Oxygen (mg/L) [mean>7; single>5]	Specific Conductance (S/m)	Turbidity (NTU) [<50]	Flow (units =	f	Duplicate amples must be analyzed at a requency of 5%
GED-001-									1 - 5									1	T							Spe	cial QA/QC
SED-0020		1										-						1	1							7	
SED-003		1	х				X	11	9/9/21	17:55	х	х	X	х	X	Х	X	X	x		1.4				V	Sub	'd COC Attch'd
SED-004		1	X				X		9/9/21	13.30	X	X	X	X	X	X	X	X.	X			1 7					
SED-005		1	X			4	X) Ü	9/9/21	15.45	x	X	X	X	X	х	X	X	X		1	1 =					
SED-006		1	X				X	Į.	9/9/21	10:25	x	X	X	X	X	х	x	X :	X			12					2
SED-007		1	Х				Х		9/9/21	11.30	X	Х	X	Х	Х	Х	X	X.	X			N. L. o	ul I			1	Som
Total Metals analyzed with EPA 6020 Cadmium; Chromium; Copper; Lead; N Total Metals analyzed with EPA 7471 Mercury PCBs Sum of Arochlor 1016, Arochlor 1221, A DDT Sum of 4,4'-DDT, 2,4'-DDT, 4,4'-DDE, PAHs Sum of acenaphthene, anthracene, 1,2	ickel, Zinc A: Arochlor 1232, Arc 2,4'-DDE, 4,4'-DD	D, and	2,4	-DDI	D									/len	e,	The same of the same of the same of										REMARK	Email Results to: nbusch@marathonpetroleum.com cdreyer@wgr-sw.com aballrot@wgr-sw.com
												, 1			_				_		ш				11	-	ii R ich(
Sample Received Intact: Yes No									Temperature r	eceive	d		Ice	i i				No i	ce								Ema obns
Relinquished by SAMPLER (Print & Sign Nar	ne			Dat		2)	Tim			eceived	by (Prin	18:	Sign	Na Na	me)		7		RAT	MI.						ш с о ю
David Mondologo & Relinquished by (Print & Sign Name)	>#W>	-11	_	Dat	13	21	Tim		350	ceived	her	AD		TO.	DV	/Del	nt D	U	_		1-				_	Lak	Work No.
interinguished by (in this or origin intaline)				Pour	~		1000	-	1110	- CIVCU	my r	-77	7.17			4		O'BII	140							Lac	Troin no.

4.3 | 3.9 506

Revised 9/23/2019

Client: WGR Southwest Inc Job Number: 570-69878-1

Login Number: 69878 List Source: Eurofins Calscience LLC

List Number: 1

Creator: Patel, Jayesh

Creator. Pater, Jayesii		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Calscience LLC

ATTACHMENT 4

SEDIMENT MONITORING AQUATIC BIOASSAY ANALYTICAL LABORATORY REPORT

November 2, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, LPA R-95 136. Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-003

DATE RECEIVED: 9/13/2021

ABC LAB. NO.: WGR0921.057

CHRONIC MYTILUS SEDIMENT WATER INTERFACE BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours yery truly,

Scott Johnson

Laboratory Director

CETIS	Summary	Report
-------	---------	--------

Report Date:

02 Nov-21 11:42 (p 1 of 1)

Test Code/ID:

WGR0921.057m / 00-2390-6977

Control of the	1371106						Test	Code/ID:	WGR09	21.057m / I	00-2390-697
Mussel Shell I	Development T	est						Aquatic	Bioassay &	Consultin	g Labs, Inc.
Batch ID:	14-2542-4023	Test	Type:	Development-S	urvival		Anal	yst: Joe	Freas		
Start Date:	15 Sep-21 14:0	00 Prot	ocol:	EPA/600/R-95/	136 (1995)		Dilu	ent: Lat	oratory Wate	er	
Ending Date:	17 Sep-21 14:0	00 Spec	ies:	Mytilus gallopro	vincialis		Brin	e:			
Test Length:	48h	Taxo	on:	Bivalvia			Soul	rce: Ca	risbad Aquaf	arms CA	Age:
Sample ID:	12-7725-2937	Code	e:	WGR0921.057	m		Proje	ect: 021	.APC.01		
Sample Date:	09 Sep-21 17:5	55 Mate	erial:	Sediment			Soul	rce: Bio	assay Repor	t	
Receipt Date:	13 Sep-21 16:0	00 CAS	(PC):				Stati	on: SE	D-003		
Sample Age:	5d 20h	Clier	nt:	WGR Southwes	st Inc.						
Single Compa	rison Summar	у									
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compari	son Result		
06-9847-2318	Combined Prop	portion Normal	Equal	Variance t Two-	Sample Test	1 1	0.9194	100% pas	ssed combin	ed proportio	n normal
Test Acceptab	oility					TAC	Limits				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision		
06-9847-2318	Combined Prop	portion Normal	PMSD		0.02569	<<	0.25	No	Passes C	riteria	
Combined Pro	portion Norma	al Summary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	0.9507	0.9359	0.9654	0.9372	0.9686	0.0053	0.0119	1.25%	0.00%
100		5	0.9659	0.9408	0.9910	0.9372	0.9865	0.0090	0.0202	2.09%	-1.60%
Combined Pro	portion Norma	al Detail					MD	5: 6ED3AF	BFEAE62C	A78BFAE	65FB34648A
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	0.9462	0.9372	0.9552	0.9686	0.9462					
100		0.9372	0.9552	0.9865	0.9821	0.9686					
Combined Pro	portion Norma	al Binomials									
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	211/223	209/22	3 213/223	216/223	211/223					

Analyst: 1 QA:

Report Date: 02 Nov-21 11:42 (p 1 of 2)
Test Code/ID: WGR0921.057m / 00-2390-6977

								Test Code	enu.	1101101	21.057m/	00-2000-00
Mussel Shell	Development '	Test						Ac	quatic E	Bioassay &	Consultir	g Labs, Inc
Analysis ID:	06-9847-2318	1	Endpoint:	Combined Prop	ortion Norma	al	10	CETIS Ve	rsion:	CETISV	1.9.7	
Analyzed:	02 Nov-21 11:	27	Analysis:	Parametric-Two			3	Status Le	vel:	1		
Edit Date:	02 Nov-21 11:	26	MD5 Hash:	6ED3AFBFEAR	E62CDA78B	FAE65FB3	4648A	Editor ID:		007-979	-628-1	
Batch ID:	14-2542-4023		Test Type:	Development-S	urvival		-	Analyst:	Joe	Freas		
Start Date:	15 Sep-21 14:		Protocol:	EPA/600/R-95/				Diluent:		ratory Wat	er	
Ending Date:			Species:	Mytilus gallopro				Brine:		alory True		
Test Length:			Taxon:	Bivalvia	TII TOIGING			Source:	Carls	sbad Aquaf	arms CA	Age:
root Longini			, and it	Birama				3.5 35.73 E		obud / iqual	arme or r	0.0000
Sample ID:	12-7725-2937		Code:	WGR0921.057	m		1	Project:	021	APC.01		
Sample Date:			Material:	Sediment				Source:		ssay Repor	t	
Receipt Date:	The second secon		CAS (PC):	70.00 - CONT.			13	Station:	SED	-003		
Sample Age:	5d 20h		Client:	WGR Southwe	st Inc.							
Data Transfor	m	Alt H	ур			Compari	son Res	ult				PMSD
Angular (Corre	cted)	C > T				100% pas	sed con	nbined pro	portion	normal end	lpoint	2.57%
Equal Variance	e t Two-Samp	le Test	7 - 7									
Control	vs Conc-	6	Test S	Stat Critical	MSD DE	P-Type	P-Val	ue De	cision(a:5%)		
Negative Contr	7.000		-1.544	1.86	0.052 8	CDF	0.919		-	icant Effect		
Test Acceptat	The Otto I W	-										
Attribute	Test St		AC Limits r Uppe	Overlap	Decision							
PMSD	0.02569	<<	0.25	No	Passes C	riteria						
			0.20		, would b		-					
ANOVA Table			W 12.00		-	2.0000	2000		5.19	1200		
Source	Sum Sq			Square	DF	F Stat	P-Val		cision(
Between	0.00473		0.004		1	2.383	0.161	2 Nor	n-Signifi	icant Effect		
Error	0.01589		0.001	9873	9	-						
Total	0.02063	49			9							
ANOVA Assur	nptions Tests											
Attribute	Test				Test Stat	Critical	P-Val	ue De	cision(c	a:1%)		
100,000,000,000	1 Cat			- V	2.303	11.26	0.167	6 Equ	ual Varia	ances		
		Equality of	Variance Te	st	2.000							
Variance	Levene I Mod Lev	ene Equal	ity of Varian		4.169	13.75	0.087		ual Varia			
	Levene I Mod Lev		ity of Varian			23.15	0.218	9 Equ	ual Varia	ances		
Variance	Levene l Mod Lev Variance Anderso	ene Equal Ratio F T n-Darling	lity of Varian est A2 Test		4.169 3.864 0.2636	23.15 3.878	0.218 0.726	9 Equ 0 Nor	ual Varia mal Dis	ances stribution		
Variance	Levene I Mod Lev Variance Anderso D'Agosti	ene Equal Ratio F T n-Darling no Skewn	lity of Varian Test A2 Test ess Test		4.169 3.864 0.2636 0.1538	23.15 3.878 2.576	0.218 0.726 0.877	9 Equ 0 Nor 7 Nor	ual Varia mal Dis mal Dis	ances stribution stribution		
Variance	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo	ene Equal Ratio F T n-Darling no Skewno rov-Smirn	ity of Variand Test A2 Test ess Test ov D Test	ce Test	4.169 3.864 0.2636 0.1538 0.155	23.15 3.878 2.576 0.3025	0.218 0.726 0.877 0.869	9 Equ 0 Nor 7 Nor 7 Nor	ual Varia mal Dis mal Dis mal Dis	ances stribution stribution stribution		
Variance	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo	ene Equal Ratio F T n-Darling no Skewno rov-Smirn	lity of Varian Test A2 Test ess Test	ce Test	4.169 3.864 0.2636 0.1538	23.15 3.878 2.576	0.218 0.726 0.877	9 Equ 0 Nor 7 Nor 7 Nor	ual Varia mal Dis mal Dis mal Dis	ances stribution stribution		
Variance Distribution	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro	ene Equal Ratio F T n-Darling no Skewnorov-Smirn Wilk W N	ity of Variand Test A2 Test ess Test ov D Test ormality Tes	ce Test	4.169 3.864 0.2636 0.1538 0.155	23.15 3.878 2.576 0.3025	0.218 0.726 0.877 0.869	9 Equ 0 Nor 7 Nor 7 Nor	ual Varia mal Dis mal Dis mal Dis	ances stribution stribution stribution		
Variance Distribution Combined Pro	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro	ene Equal Ratio F T n-Darling no Skewnorov-Smirn Wilk W N	ity of Variandest Test A2 Test ess Test ov D Test ormality Tes	ce Test	4.169 3.864 0.2636 0.1538 0.155	23.15 3.878 2.576 0.3025	0.218 0.726 0.877 0.869	9 Equ 0 Nor 7 Nor 7 Nor	ual Varia mal Dis mal Dis mal Dis mal Dis	ances stribution stribution stribution	CV%	%Effect
Variance Distribution Combined Pro	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro-	ene Equal Ratio F T n-Darling no Skewno rov-Smirn Wilk W No al Summa	ity of Variandest Test A2 Test ess Test ov D Test ormality Tes	ce Test	4.169 3.864 0.2636 0.1538 0.155 0.9634	23.15 3.878 2.576 0.3025 0.7411	0.218 0.726 0.877 0.869 0.823	9 Equ 0 Nor 7 Nor 7 Nor Ma	ual Varia mal Dis mal Dis mal Dis mal Dis	ances stribution stribution stribution stribution	CV% 1.25%	%Effect
Variance Distribution Combined Pro Conc-% 0	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- portion Norm Code	ene Equal Ratio F T n-Darling no Skewn orov-Smirn Wilk W N al Summa	ity of Variandest Pest A2 Test ess Test ov D Test ormality Tes ary t Mean	95% LCL 7 0.9359	4.169 3.864 0.2636 0.1538 0.155 0.9634	23.15 3.878 2.576 0.3025 0.7411 Median	0.218 0.726 0.877 0.869 0.823	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor Ma. 2 0.9	ual Varia mal Dis mal Dis mal Dis mal Dis	ances stribution stribution stribution stribution		
Variance Distribution Combined Pro Conc-% 0 100	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- portion Norm Code N	ene Equal Ratio F T n-Darling no Skewnorov-Smirn Wilk W N Count 5	ity of Variandest A2 Test A2 Test ess Test ov D Test ormality Tes Mean 0.950 0.965	95% LCL 7 0.9359	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462	0.218 0.726 0.877 0.869 0.823 Min 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor Ma. 2 0.9	ual Varia mal Dis mal Dis mal Dis mal Dis	ances stribution stribution stribution stribution Std Err 0.0053	1.25%	0.00%
	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- portion Norm Code N	ene Equal Ratio F T n-Darling no Skewnorov-Smirn Wilk W N Count 5	ity of Variandest A2 Test ess Test ov D Test ormality Tes ary Mean 0.950 0.965	95% LCL 7 0.9359	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462	0.218 0.726 0.877 0.869 0.823 Min 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor Ma. 2 0.9	ual Varia mal Dis mal Dis mal Dis mal Dis mal Dis x \$686	ances stribution stribution stribution stribution Std Err 0.0053	1.25%	0.00%
Variance Distribution Combined Pro Conc-% 0 100 Angular (Corr Conc-% 0	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- portion Norm Code N	ene Equal Ratio F T n-Darling no Skewnorov-Smirn Wilk W N al Summa Count 5 prrned Suc Count 5	ity of Variandest A2 Test ess Test ess Test ov D Test ormality Tes Mean 0.950 0.9656 mmary t Mean 1.3486	95% LCL 7 0.9359 9 0.9408 95% LCL 0 1.3130	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654 0.9910 95% UCL 1.3840	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462 0.9686 Median 1.3370	0.218 0.726 0.877 0.869 0.823 Min 0.937 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor 2 0.9 2 0.9 Ma. 0 1.3	ual Varia mal Dis mal Dis mal Dis mal Dis mal Dis x 886 886 x 930	std Err 0.0053 0.0090 Std Err 0.0128	1.25% 2.09% CV% 2.12%	0.00% -1.60% %Effect 0.00%
Variance Distribution Combined Pro Conc-% 0 100 Angular (Corr Conc-%	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- Poortion Norm Code N ected) Transfo	ene Equal Ratio F T n-Darling no Skewn rov-Smirn Wilk W N Count 5 5 prmed Sur	ity of Variandest A2 Test ess Test ov D Test ormality Tes Mean 0.950' 0.9659 mmary t Mean	95% LCL 7 0.9359 9 0.9408 95% LCL 0 1.3130	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654 0.9910	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462 0.9686	0.218 0.726 0.877 0.869 0.823 Min 0.937 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor 2 0.9 2 0.9 Ma. 0 1.3	ual Varia mal Dis mal Dis mal Dis mal Dis mal Dis x 886 886 x 930	stribution stribution stribution stribution stribution Std Err 0.0053 0.0090	1.25% 2.09% CV%	0.00% -1.60% %Effect
Variance Distribution Combined Pro Conc-% 0 100 Angular (Corr Conc-% 0 100	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- Poortion Norm Code N ected) Transfo Code N	ene Equal Ratio F T n-Darling no Skewn rov-Smirn Wilk W N Count 5 5 ormed Sur Count 5 5	ity of Variandest A2 Test ess Test ess Test ov D Test ormality Tes Mean 0.950 0.9656 mmary t Mean 1.3486	95% LCL 7 0.9359 9 0.9408 95% LCL 0 1.3130	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654 0.9910 95% UCL 1.3840	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462 0.9686 Median 1.3370	0.218 0.726 0.877 0.869 0.823 Min 0.937 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor 2 0.9 2 0.9 Ma. 0 1.3	ual Varia mal Dis mal Dis mal Dis mal Dis mal Dis x 886 886 x 930	std Err 0.0053 0.0090 Std Err 0.0128	1.25% 2.09% CV% 2.12%	0.00% -1.60% %Effect 0.00%
Variance Distribution Combined Pro Conc-% 0 100 Angular (Corr Conc-% 0 100 Combined Pro	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- Poortion Norm Code N ected) Transfo Code N	ene Equal Ratio F T n-Darling no Skewn rov-Smirn Wilk W N Count 5 5 ormed Sur Count 5 5	ity of Variandest A2 Test A2 Test ess Test ov D Test ormality Tes Mean 0.950 0.965: mmary Mean 1.348(1.3920	95% LCL 7 0.9359 9 0.9408 95% LCL 0 1.3130 0 1.3220	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654 0.9910 95% UCL 1.3840	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462 0.9686 Median 1.3370	0.218 0.726 0.877 0.869 0.823 Min 0.937 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor 2 0.9 2 0.9 Ma. 0 1.3	ual Varia mal Dis mal Dis mal Dis mal Dis mal Dis x 886 886 x 930	std Err 0.0053 0.0090 Std Err 0.0128	1.25% 2.09% CV% 2.12%	0.00% -1.60% %Effect 0.00%
Variance Distribution Combined Pro Conc-% 0 100 Angular (Corr Conc-% 0 100 Combined Pro Conc-%	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- Portion Norm Code N ected) Transfo Code N	ene Equal Ratio F T n-Darling no Skewnorov-Smirn Wilk W N Count 5 5 rmed Sur Count 5 5 at Detail	ity of Varianderst A2 Test A2 Test ess Test ov D Test ormality Tes Mean 0.950 0.965 mmary Mean 1.3480 1.3920 Rep 2	95% LCL 7 0.9359 9 0.9408 95% LCL 0 1.3130 0 1.3220 Rep 3	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654 0.9910 95% UCL 1.3840 1.4620	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462 0.9686 Median 1.3370 1.3930	0.218 0.726 0.877 0.869 0.823 Min 0.937 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor 2 0.9 2 0.9 Ma. 0 1.3	ual Varia mal Dis mal Dis mal Dis mal Dis mal Dis x 886 886 x 930	std Err 0.0053 0.0090 Std Err 0.0128	1.25% 2.09% CV% 2.12%	0.00% -1.60% %Effect 0.00%
Variance Distribution Combined Pro Conc-% 0 100 Angular (Corr Conc-% 0 100 Combined Pro Conc-%	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- Portion Norm Code N Code N Portion Norm Code Code N Code	ene Equal Ratio F T n-Darling no Skewnorov-Smirn Wilk W N al Summa Count 5 5 ormed Suc Count 5 5 at Detail Rep 1	ity of Varianderst A2 Test ess Test ess Test ov D Test ormality Tes Mean 0.950 0.965 mmary t Mean 1.3480 1.3920 Rep 2 0.937	95% LCL 7 0.9359 9 0.9408 95% LCL 0 1.3130 0 1.3220 Rep 3 2 0.9552	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654 0.9910 95% UCL 1.3840 1.4620 Rep 4	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462 0.9686 Median 1.3370 1.3930	0.218 0.726 0.877 0.869 0.823 Min 0.937 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor 2 0.9 2 0.9 Ma. 0 1.3	ual Varia mal Dis mal Dis mal Dis mal Dis mal Dis x 886 886 x 930	std Err 0.0053 0.0090 Std Err 0.0128	1.25% 2.09% CV% 2.12%	0.00% -1.60% %Effect 0.00%
Variance Distribution Combined Pro Conc-% 0 100 Angular (Corr Conc-% 0 100 Combined Pro Conc-% 0 100	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- Portion Norm Code N Code N Portion Norm Code N	ene Equal Ratio F T n-Darling no Skewn rov-Smirn Wilk W N Count 5 5 rmed Sur Count 5 al Detail Rep 1 0.9462 0.9372	ity of Varianderst A2 Test A2 Test ess Test ov D Test ormality Tes Mean 0.950 0.965: mmary Mean 1.3486 1.3926 Rep 2 2 0.9375 2 0.955;	95% LCL 7 0.9359 9 0.9408 95% LCL 0 1.3130 0 1.3220 Rep 3 2 0.9552	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654 0.9910 95% UCL 1.3840 1.4620 Rep 4 0.9686	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462 0.9686 Median 1.3370 1.3930 Rep 5 0.9462	0.218 0.726 0.877 0.869 0.823 Min 0.937 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor 2 0.9 2 0.9 Ma. 0 1.3	ual Varia mal Dis mal Dis mal Dis mal Dis mal Dis x 886 886 x 930	std Err 0.0053 0.0090 Std Err 0.0128	1.25% 2.09% CV% 2.12%	0.00% -1.60% %Effect 0.00%
Combined Pro Conc-% 0 100 Angular (Corr Conc-% 0 100 Combined Pro Conc-% 0 100 Angular (Corr	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- Poortion Norm Code N Poortion Norm Code N Poortion Norm Code N Poortion Norm Code N	ene Equal Ratio F T n-Darling no Skewno rov-Smirn Wilk W N al Summa Count 5 5 mmed Su Count 5 al Detail Rep 1 0.9462 0.9372	ity of Variandiest A2 Test ess Test ess Test ov D Test ormality Tes A2 Mean 0.950 0.965 mmary t Mean 1.348(1.392) Rep 2 2 0.937: 2 0.955;	95% LCL 7 0.9359 9 0.9408 95% LCL 0 1.3130 0 1.3220 Rep 3 2 0.9552 2 0.9865	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654 0.9910 95% UCL 1.3840 1.4620 Rep 4 0.9686 0.9821	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462 0.9686 Median 1.3370 1.3930 Rep 5 0.9462 0.9686	0.218 0.726 0.877 0.869 0.823 Min 0.937 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor 2 0.9 2 0.9 Ma. 0 1.3	ual Varia mal Dis mal Dis mal Dis mal Dis mal Dis x 886 886 x 930	std Err 0.0053 0.0090 Std Err 0.0128	1.25% 2.09% CV% 2.12%	0.00% -1.60% %Effect 0.00%
Variance Distribution Combined Pro Conc-% 0 100 Angular (Corr	Levene I Mod Lev Variance Anderso D'Agosti Kolmogo Shapiro- Portion Norm Code N Code N Portion Norm Code N	ene Equal Ratio F T n-Darling no Skewn rov-Smirn Wilk W N Count 5 5 rmed Sur Count 5 al Detail Rep 1 0.9462 0.9372	ity of Variani est A2 Test ess Test ov D Test ormality Tes ary t Mean 0.965 mmary t Mean 1.348 1.392 Rep 2 2 0.937 2 0.955	95% LCL 7 0.9359 9 0.9408 95% LCL 0 1.3130 0 1.3220 Rep 3 2 0.9552 2 0.9865 Rep 3	4.169 3.864 0.2636 0.1538 0.155 0.9634 95% UCL 0.9654 0.9910 95% UCL 1.3840 1.4620 Rep 4 0.9686	23.15 3.878 2.576 0.3025 0.7411 Median 0.9462 0.9686 Median 1.3370 1.3930 Rep 5 0.9462	0.218 0.726 0.877 0.869 0.823 Min 0.937 0.937	9 Equ 0 Nor 7 Nor 7 Nor 7 Nor 2 0.9 2 0.9 Ma. 0 1.3	ual Varia mal Dis mal Dis mal Dis mal Dis mal Dis x 886 886 x 930	std Err 0.0053 0.0090 Std Err 0.0128	1.25% 2.09% CV% 2.12%	0.00% -1.60% %Effect 0.00%

Report Date:

02 Nov-21 11:42 (p 2 of 2)

Test Code/ID:

WGR0921.057m / 00-2390-6977

Aquatic Bioassay & Consulting Labs, Inc.

Mussel Shell Development Test

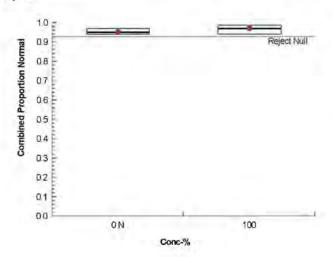
CETISv1.9.7

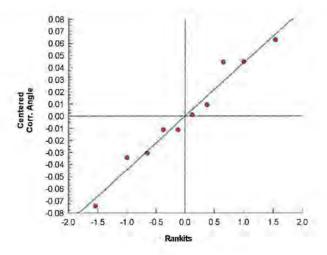
Analysis ID: Analyzed:

Edit Date:

06-9847-2318 02 Nov-21 11:27 02 Nov-21 11:26 Endpoint: Combined Proportion Normal Analysis: Parametric-Two Sample

CETIS Version: Status Level:


007-979-628-1


Combined Proportion Normal Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	211/223	209/223	213/223	216/223	211/223	
100		209/223	213/223	220/223	219/223	216/223	

MD5 Hash: 6ED3AFBFEAE62CDA78BFAE65FB34648A Editor ID:

Graphics

Report Date:

02 Nov-21 11:42 (p 1 of 1)

Age:

Test Code/ID:

WGR0921.057m / 00-2390-6977

170	Section 1			
Mussel	Chall	Davido	mmant	Tact
MINISSEI	SHEIL	DEVELO	Difficill	1621

Aquatic Bioassay & Consulting Labs, Inc.

Batch ID: 14-2542-4023 Test Type: Development-Survival Analyst: Joe Freas Diluent: Start Date: 15 Sep-21 14:00 Protocol: EPA/600/R-95/136 (1995) Laboratory Water Ending Date: 17 Sep-21 14:00 Species: Mytilus galloprovincialis Brine: Test Length: 48h Source: Carlsbad Aquafarms CA

Code: WGR0921.057m 021.APC.01 Sample ID: Project: 12-7725-2937 Sample Date: 09 Sep-21 17:55 Material: Sediment Source: Bioassay Report CAS (PC): Station: SED-003 Receipt Date: 13 Sep-21 16:00

Bivalvia

Sample Age: 5d 20h Client: WGR Southwest Inc.

Taxon:

Dissolved	Oxygen-mg/L
DIODOITECA	CVI MOTE ITIME

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	10,05	9.415	10.69	10	10.1	0.03536	0.07073	0.70%	0
100		2	10.15	9.515	10.79	10.1	10.2	0.03535	0.0707	0.70%	0
Overall		4	10.1	9.97	10.23	10	10.2	0.04082	0.08165	0.81%	0 (0%)

pH-Units

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
100		2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
Overall		4	7.9	7.9	7.9	7.9	7.9	0	0	0.00%	0 (0%)

Salinity-ppt

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	34	34	34	34	34	0	0	0.00%	0
100		2	34	34	34	34	34	0	0	0.00%	0
Overall		4	34	34	34	34	34	0	0	0.00%	0 (0%)

Temperature-°C

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.85	14.21	15.49	14.8	14.9	0.03539	0,07077	0.48%	0
100		2	14.85	14.21	15.49	14.8	14.9	0.03539	0.07077	0.48%	0
Overall		4	14.85	14.76	14.94	14.8	14.9	0.02887	0.05773	0.39%	0 (0%)

CETIS™ v1,9,7.7

November 2, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA/R-95/136. Results were as follows:

CLIENT:

WGR Southwest, Inc.

SAMPLE I.D.:

SED-004

DATE RECEIVED:

9/13/2021

ABC LAB. NO .:

WGR0921.058

CHRONIC MYTILUS SEDIMENT WATER INTERFACE BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 %

EC50 = >100.00%

Yours yery truly,

Scott Johnson

Laboratory Director

CETIS:	Summary	Report
--------	---------	--------

Report Date:

02 Nov-21 11:42 (p 1 of 1)

Test Code/ID
Test ooden

D: WGR0921.058m / 20-8116-3439

							Test	Code/ID:	WGROS	21.058m/	20-8116-3	439
Mussel Shell	Development 1	Гest						Aquatio	Bioassay &	Consultin	ig Labs, Ir	ıc.
Batch ID:	03-3679-5267	Test	Type:	Development-S	urvival		Anal	yst: Jo	e Freas			
Start Date:	15 Sep-21 14:	01 Prot	ocol:	EPA/600/R-95/	136 (1995)		Dilu	ent: La	boratory Wate	er		
Ending Date:	17 Sep-21 14:	01 Spec	cies:	Mytilus gallopro	vincialis		Brin	e:				
Test Length:	48h	Taxo	on:	Bivalvia			Soul	rce: Ca	risbad Aquaf	arms CA	Age:	
Sample ID:	13-1482-2030	Code	e:	WGR0921.058	m		Proj	ect: 02	1.APC.01			
Sample Date:	09 Sep-21 13:	30 Mate	erial:	Sediment			Soul	rce: Bio	assay Repor	t		
Receipt Date:	13 Sep-21 16:	00 CAS	(PC):				Stati	ion: SE	D-004			
Sample Age:	6d 1h	Clier	nt:	WGR Southwes	st Inc.							
Single Compa	rison Summar	у										
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compari	ison Result			S
05-7737-4847	Combined Pro	portion Normal	Equal	Variance t Two-	Sample Test		0.3542	100% pa	ssed combin	ed proportio	on normal	1
Test Acceptat	oility					TAC	Limits					
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision			
05-7737-4847	Combined Pro	portion Normal	PMSD)	0.0204	<<	0.25	No	Passes C	riteria		
Combined Pro	portion Norm	al Summary										_
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec	t
0	N	5	0.9498	0.9343	0.9652	0.9372	0.9686	0.0056	0.0124	1.31%	0.00%	
100		5	0.9453	0.9222	0.9684	0.9193	0.9686	0.0083	0.0186	1.97%	0.47%	
Combined Pro	portion Norma	al Detail	-				MD	5: 29869E	E48FA59A74	5BE0FA0E	3871224B5	5
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	0.9462	0.9552	0.9686	0.9417	0.9372						
100		0.9686	0.9462	0.9193	0.9372	0.9552						
Combined Pro	portion Norma	al Binomials										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	211/223	213/22	23 216/223	210/223	209/223						
100		216/223	211/22	23 205/223	209/223	213/223						

Analyst Q QA:

Report Date: Test Code/ID:

02 Nov-21 11:42 (p 1 of 2) WGR0921.058m / 20-8116-3439

Mussel Shell	Develop	nent Te	st									Aquatic E	Bioassay 8	Consultin	ng Labs, Ir
Analysis ID:	05-7737-	4847		Endpoint:	Combine	ed Prop	ortion Norr	mal		1	CETIS	Version:	CETISV	1.9.7	
Analyzed:	02 Nov-2	1 11:31		Analysis:			Sample				Status	Level:	1		
Edit Date:	02 Nov-2	1 11:30	to the second	MD5 Hash:	29869E	E48FA	59A745BE	OFA	0B871224	4B5 I	Editor	ID:	007-979	-628-1	
Batch ID:	03-3679-	5267		Test Type:	Develop	ment-S	urvival			-	Analy	st: Joe I	Freas		
Start Date:	15 Sep-2	1 14:01		Protocol:	EPA/600	D/R-95/	136 (1995)			1	Diluent: Laboratory Water				
Ending Date:	17 Sep-2	1 14:01		Species:	Mytilus g	allopro	vincialis			1	3rine:				
Test Length:	48h			Taxon:	Bivalvia						Sourc	e: Carls	sbad Aqua	farms CA	Age:
Sample ID:	13-1482-	2030		Code:	WGR09	21.058	m				rojec	t: 021.	APC.01		
Sample Date:				Material:	Sedimen						Sourc		ssay Repo	rt	
Receipt Date:				CAS (PC):							Statio			3	
Sample Age:				Client:	WGR S	outhwe	st Inc.								
Data Transfor	m		Alt H	VD.				- 3	Comparis	son Res	ult				PMSD
Angular (Corre			C>T			_					_	proportion	normal end	point	2.04%
Equal Variance	1 1 1	ampla										CONTRACT.		4 2	
Control		onc-%	lest	Test S	Stat Cri	tical	MSD I)E	P-Type	P-Val	110	Decision(c	E0/ \		
Negative Contr			-	0.3876		-	0.042 8	_	CDF	0.354	_	Non-Signifi		-	
			-		1.0	~	J.5-12 C	51 1		0.004		, .orr orginii	Sant Lineo		
Test Acceptat	Transfer and			C Limits	2.7	3.0									
Attribute		st Stat	Lower			erlap	Decision		office:				_	_	
PMSD	0.0	204	<<	0.25	No		Passes	Crite	eria						
ANOVA Table															
Source	Su	m Squa	res		Square		DF	- 33	F Stat	P-Vai		Decision(c	x:5%)		
Between	0.0	001956		0.000	1956		1	(0.1503	0.708	4	Non-Signifi	icant Effect		
Error		104114		0.0013	3014	_	8	_							
Total	0.0	106069					9								
ANOVA Assur	mptions T	ests													
Attribute	Te	st					Test Sta	t (Critical	P-Vali	ue	Decision(x:1%)		
Variance	Lev	ene Eq	uality of	Variance Te	st		0.3106		11.26	0.592	õ	Equal Varia	ances		
				ity of Variand	ce Test		0.5941		13.75	0,470		Equal Varia			
		riance R					1.917		23.15	0.5440		Equal Varia			
Distribution		derson-l					0.2252		3.878	0.852		Normal Dis			
				ess Test			0.3997		2.576	0.689		Normal Dis			
				ov D Test			0.1149		0.3025	1.0000		Normal Dis			
	Sh	apiro-VV	ilk W No	ormality Test			0.9692	(0.7411	0.8836	3	Normal Dis	tribution		
Combined Pro	portion N	lormal :	Summa	iry											
Conc-%	Co	de	Count			LCL	95% UCI	L	Median	Min		Max	Std Err	CV%	%Effect
0	N		5	0.9498			0.9652			0.937		0.9686	0.0056	1.31%	0.00%
100			5	0.9453	3 0,92	222	0.9684			0.9193	3	0.9686	0.0083	1.97%	0.47%
Angular (Corr	ected) Tr	ansform	ned Sur	nmary											
Conc-%	Co	de	Count	Mean	95%	LCL	95% UCL	. 1	Median	Min		Max	Std Err	CV%	%Effect
0	N		5	1,3460			1.3830			1.3180		1,3930	0.0134	2.22%	0.00%
100			5	1.3370	1.28	360	1,3890			1.2830)	1.3930	0.0185	3.09%	0.66%
Combined Pro	portion N	iormai i	Detail												
Conc-%	Co	de	Rep 1	Rep 2	Rep	3	Rep 4	-	Rep 5						
0	N		0.9462	0.9552	2 0.96	586	0.9417	(0.9372						
100			0.9686	0.9462	0.91	193	0.9372	(0.9552						
	antadi Tu	ensform	ned Det	ail											
Angular (Corr	ected) In														
			Rep 1	Rep 2	Ren	3	Rep 4	F	Rep 5						
Angular (Corr Conc-%	Co N		Rep 1				Rep 4 1,3270	_	Rep 5						

Report Date:

CETIS Version:

02 Nov-21 11:42 (p 2 of 2)

Test Code/ID:

WGR0921.058m / 20-8116-3439

Mussel Shell Development Test

Aquatic Bioassay & Consulting Labs, Inc.

Analyzed: Edit Date:

Analysis ID: 05-7737-4847 02 Nov-21 11:31

02 Nov-21 11:30

Analysis:

Endpoint: Combined Proportion Normal

Parametric-Two Sample

Status Level: MD5 Hash: 29869EE48FA59A745BE0FA0B871224B5 Editor ID:

007-979-628-1

CETISv1.9.7

Report Date:

02 Nov-21 11:42 (p 1 of 1)

Test Code/ID:

WGR0921.058m / 20-8116-3439

								Test Couch	D. WOND	11110001.126	20-0110-040
Mussel Shell	Development Te	st						Aqu	atic Bioassay &	& Consultin	ig Labs, Inc.
Batch ID:	03-3679-5267		Test Type:	Development-S	Survival			Analyst:	Joe Freas		
Start Date:	15 Sep-21 14:01		Protocol:	EPA/600/R-95	/136 (1995)			Diluent:	Laboratory Wat	er	
Ending Date:	17 Sep-21 14:01		Species:	Mytilus gallopr	ovincialis			Brine:			
Test Length:	48h		Taxon:	Bivalvia				Source:	Carlsbad Aqua	farms CA	Age:
Sample ID:	13-1482-2030		Code:	WGR0921.058	3m			Project:	021.APC.01		
Sample Date:	09 Sep-21 13:30		Material:	Sediment				Source:	Bioassay Repo	rt	
Receipt Date:	13 Sep-21 16:00)	CAS (PC):					Station:	SED-004		
Sample Age:	6d 1h		Client:	WGR Southwe	est Inc.						
Dissolved Oxy	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Coun
0	N	2	10.05	9.415	10.69	10	10.1	0.0353	36 0.07073	0.70%	0
100		2	10.15	9.515	10.79	10.1	10.2	0.0353	35 0.0707	0.70%	0
Overall		4	10.1	9.97	10.23	10	10.2	0.0408	82 0.08165	0,81%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Coun
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
100		2	7.8	6,529	9.071	7.7	7.9	0,070	71 0.1414	1 81%	0
Overall		4	7.85	7.691	8.009	7.7	7.9	0.05	0.1	1.27%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Coun
0	N	2	34	34	34	34	34	0	0	0.00%	0
100		2	34	34	34	34	34	0	0	0.00%	0
Overall		4	34	34	34	34	34	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count
0	N	2	14.85	14.21	15.49	14.8	14.9	0.0353	39 0.07077	0,48%	0
100		2	14.85	14.21	15.49	14.8	14.9	0.0353	39 0.07077	0.48%	0
				A	.7				THE THE PARTY IN	27.723.7	- 15 N S W T . T

Overall

4

14.85

14.76

14.94

14.8

14.9

0.02887

0.05773

0.39%

0 (0%)

November 2, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA/R-95/136. Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-005

DATE RECEIVED: 9/13/2021

ABC LAB. NO.: WGR0921.059

CHRONIC MYTILUS SEDIMENT WATER INTERFACE BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

02 Nov-21 11:43 (p 1 of 1)

Test Code/ID:

WGR0921.059m / 02-1589-1346

							Test	Code/ID:	WGR09	21.059m / (02-1589-134
Mussel Shell	Development T	est						Aquatic	Bioassay &	Consultin	g Labs, Inc.
Batch ID:	00-0039-7275	Test	Туре:	Development-S	urvival		Analy	/st: Joe	Freas		
Start Date:	15 Sep-21 14:0	2 Prot	ocol:	EPA/600/R-95/	136 (1995)		Dilue	nt: Lab	oratory Wate	er	
Ending Date:	17 Sep-21 14:0	2 Spec	cies:	Mytilus gallopro	vincialis		Brine	:			
Test Length:	48h	Taxo	n:	Bivalvia			Sour	ce: Car	risbad Aquafa	arms CA	Age:
Sample ID:	17-4634-0978	Code	e:	WGR0921.059	m		Proje	ct: 021	.APC.01		
Sample Date:	09 Sep-21 15:4	15 Mate	rial:	Sediment			Source	ce: Bio	assay Repor	1	
Receipt Date:	13 Sep-21 16:0	O CAS	(PC):				Statio	on: SE	D-005		
Sample Age:	5d 22h	Clier	nt:	WGR Southwes	st Inc.						
Single Compa	rison Summar	у									
Analysis ID	Endpoint		Comp	arison Method	IT CI		P-Value	Compari	son Result		
04-1613-8136	Combined Prop	portion Normal	Equal	Variance t Two-	Sample Test		0.7164	100% pas	ssed combine	ed proportio	n normal
Test Acceptab	ility					TACI	Limits				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision		
04-1613-8136	Combined Prop	oortion Normal	PMSD		0.02426	<<	0.25	No	Passes C	riteria	
Combined Pro	portion Norma	al Summary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	0.9516	0.9295	0.9736	0.9238	0.9686	0.0079	0.0178	1.87%	0.00%
100		5	0.9578	0.9357	0.9800	0.9372	0.9821	0.0080	0.0178	1.86%	-0.66%
Combined Pro	portion Norma	al Detail			172		MD5	: 2E26648	1F9703A5D	BFBE6663	0FE736E3
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	0.9462	0.9238	0,9552	0.9686	0.9641					
100		0.9552	0.9686	0.9821	0.9462	0.9372					
Combined Pro	portion Norma	l Binomials									
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
					040,000	015/000					
0	N	211/223	206/22	3 213/223	216/223	215/223					

Report Date:

02 Nov-21 11:43 (p 1 of 2)

	alytical Re						Test	Code/ID:	WGR092	21.059m /	02-1589-13
Mussel Shell	Developmen	Test						Aquatio	Bioassay &	Consultir	ng Labs, Inc
Analysis ID:	04-1613-813	6	Endpoint:	Combined Prop	oortion Norma	al	CET	IS Version	: CETISv1	9.7	
Analyzed:	02 Nov-21 1	1:34	Analysis:	Parametric-Two	Sample		Stat	us Level:	1		
Edit Date:	02 Nov-21 1	1:34	MD5 Hash:	2E266481F970	3A5DBFBE	66630FE73	6E3 Edit	or ID:	007-979-6	528-1	
Batch ID:	00-0039-727	5	Test Type:	Development-S	urvival		Anal	lyst: Joe	e Freas		
Start Date:	15 Sep-21 1	4:02	Protocol:	EPA/600/R-95/	136 (1995)		Dilu	ent: Lai	poratory Water	r	
Ending Date:	17 Sep-21 1	4:02	Species:	Mytilus gallopro	vincialis		Brin	e:			
Test Length:	48h		Taxon:	Bivalvia			Sou	rce: Ca	rlsbad Aquafa	rms CA	Age:
Sample ID:	17-4634-097	8	Code:	WGR0921.059	m		Proj	ect: 02	1.APC.01		
Sample Date:	09 Sep-21 15	5:45	Material:	Sediment			Soul	rce: Bic	assay Report		
Receipt Date:	13 Sep-21 16	6:00	CAS (PC):				Stati		D-005		
Sample Age:	5d 22h		Client:	WGR Southwe	st Inc.						
Data Transfor	m	Alt H	lyp			Compari	son Result				PMSD
Angular (Corre	cted)	C > T				100% pas	sed combine	ed proportio	n normal endp	oint	2.43%
Equal Variano	e t Two-Sam	ple Test									
Control	vs Conc	-%	Test S	Stat Critical	MSD DE	P-Type	P-Value	Decision	(a:5%)		
Negative Contr	ol 100		-0.596	8 1.86	0.052 8		0.7164		ificant Effect		
Test Acceptat	bility Criteria	T	AC Limits								
Attribute	Test S			Overlap	Decision						
PMSD	0.0242	6 <<	0.25	No	Passes Ci	riteria					
A. G. S. D. S. S.											
ANOVA Table											
		quares	Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)		
Source			Mean 0.000	Square 684	DF	F Stat 0.3561		Decision			
ANOVA Table Source Between Error	Sum S	84		684			P-Value 0.5672		i(α:5%) ificant Effect		
Source Between Error	Sum S 0.0006	84 645	0.000	684	1						
Source Between Error Total	0.0006 0.0153 0.0160	84 645 484	0.000	684	1 8						
Source Between Error Total ANOVA Assur	0.0006 0.0153 0.0160	84 645 484	0.000	684	1 8	0.3561			ificant Effect		
Source Between Error Total ANOVA Assur Attribute	Sum S 0.0006 0.0153 0.0160 mptions Test	84 645 484 s	0.0006 0.0018	684 9206	1 8 9	0.3561	0.5672	Non-Sign	ificant Effect		
Source Between Error Total ANOVA Assur Attribute	Sum S 0.0006 0.0153 0.0160 mptions Test Test Levene	84 645 484 s	0.000	684 9206 est	1 8 9 Test Stat	0.3561 Critical	0.5672 P-Value	Non-Sign Decision Equal Va	ificant Effect (α:1%) riances		
Source Between Error Total ANOVA Assur Attribute	Sum S 0.0006 0.0153 0.0160 mptions Test Test Levene Mod Le	84 645 484 s	0.000s 0.001s TVariance Te lity of Variance	684 9206 est	1 8 9 Test Stat 0.246	0.3561 Critical 11.26	0.5672 P-Value 0.6333	Non-Sign Decision	ificant Effect (a:1%) riances riances		
Source Between Error Total ANOVA Assur Attribute Variance	Sum S 0.0006 0.0153 0.0160 mptions Test Levene Mod Le Variance	84 645 484 s Equality of	0.000s 0.001s f Variance Te lity of Variand Fest	684 9206 est	1 8 9 Test Stat 0.246 0.2079	0.3561 	0.5672 P-Value 0.6333 0.6645	Decision Equal Va Equal Va Equal Va	ificant Effect (a:1%) riances riances		
Source Between Error Total ANOVA Assur Attribute Variance	Sum S 0.0006 0.0153 0.0160 mptions Test Levene Mod Le Variand Anders	84 645 484 s Equality of evene Equa ce Ratio F 1	0.0006 0.0019 If Variance Te lity of Variance Test A2 Test	684 9206 est	1 8 9 Test Stat 0.246 0.2079 1.39	0.3561 	0.5672 P-Value 0.6333 0.6645 0.7576	Decision Equal Va Equal Va Equal Va Normal D	ificant Effect (a:1%) riances riances riances		
Source Between Error Total ANOVA Assur Attribute Variance	Sum S 0.0006 0.0153 0.0160 mptions Test Levene Mod Le Variand Anders D'Agos	84 645 484 s Equality of evene Equa ce Ratio Fillion-Darling	0.0006 0.0019 f Variance Te lity of Variand Fest A2 Test less Test	684 9206 est	1 8 9 Test Stat 0.246 0.2079 1.39 0.1628	0.3561 Critical 11.26 13.75 23.15 3.878	P-Value 0.6333 0.6645 0.7576 0.9934	Decision Equal Va Equal Va Normal D Normal D	ificant Effect (α:1%) riances riances riances istribution		
Source Between Error Total ANOVA Assur Attribute Variance	Sum S 0.0006 0.0153 0.0160 mptions Test Levene Mod Le Varianc Anders D'Agos Kolmog	84 645 484 s Equality of evene Equality of exercise Ratio Fillianon-Darling string Skewn gorov-Smirr	0.0006 0.0019 f Variance Te lity of Variand Fest A2 Test less Test	684 9206 est ce Test	1 8 9 Test Stat 0.246 0.2079 1.39 0.1628 0.1152	0.3561 - Critical 11.26 13.75 23.15 3.878 2.576	P-Value 0.6333 0.6645 0.7576 0.9934 0.9083	Decision Equal Va Equal Va Rormal D Normal D	(α:1%) riances riances riances ristribution pistribution		
Source Between Error Total ANOVA Assur Attribute Variance Distribution	Sum S 0.0006 0.0153 0.0160 mptions Test Levene Mod Le Varianc Anders D'Agos Kolmog	84 645 484 s Equality of evene Equal experience Ratio Filton-Darling extino Skewn gorov-Smirro-Wilk W N	0.000s 0.001s I Variance Te lity of Variance Test A2 Test less Test lov D Test lormality Test	684 9206 est ce Test	1 8 9 Test Stat 0.246 0.2079 1.39 0.1628 0.1152 0.1236	0.3561 	P-Value 0.6333 0.6645 0.7576 0.9934 0.9083 1.0000	Decision Equal Va Equal Va Rormal D Normal D	(α:1%) riances riances riances ristribution ristribution		
Source Between	Sum S 0.0006 0.0153 0.0160 mptions Test Levene Mod Le Varianc Anders D'Agos Kolmog	84 645 484 s Equality of evene Equal experience Ratio Filton-Darling extino Skewn gorov-Smirro-Wilk W N	0.000s 0.001s f Variance Te lity of Variance Fest A2 Test less Test lov D Test formality Test	est ce Test	1 8 9 Test Stat 0.246 0.2079 1.39 0.1628 0.1152 0.1236	0.3561 	P-Value 0.6333 0.6645 0.7576 0.9934 0.9083 1.0000	Decision Equal Va Equal Va Rormal D Normal D	(α:1%) riances riances riances ristribution ristribution	CV%	%Effect
Source Between Error Total ANOVA Assur Attribute Variance Distribution	Sum S 0.0006 0.0153 0.0160 mptions Test Levene Mod Le Variand Anders D'Agos Kolmog Shapiro	84 645 484 s Equality of evene	0.000s 0.001s f Variance Te lity of Variance Fest A2 Test less Test lov D Test formality Test	9206 9206 est ce Test	1 8 9 Test Stat 0.246 0.2079 1.39 0.1628 0.1152 0.1236 0.9764	0.3561 	P-Value 0.6333 0.6645 0.7576 0.9934 0.9083 1.0000 0.9429	Decision Equal Va Equal Va Equal Va Normal D Normal D Normal D	ificant Effect (α:1%) riances riances riances istribution istribution istribution	CV% 1.87%	%Effect 0.00%

Combined	Proportion	Normal	Detail
----------	------------	--------	--------

Code

Ŋ

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	N	0.9462	0.9238	0.9552	0.9686	0.9641
100		0.9552	0.9686	0.9821	0.9462	0.9372

Mean

1.3520

1.3680

95% LCL

1.3020

1.3090

Count

5

5

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5
0	N	1.3370	1.2910	1.3570	1.3930	1.3800
100		1.3570	1.3930	1.4360	1.3370	1.3180

Analyst: 4 QA: 1

CV%

2.97%

3.45%

%Effect

0.00%

-1.22%

Std Err

0.0179

0.0211

Conc-%

0

100

95% UCL Median

1,4010

1.4270

Min

1.2910

1.3180

Max

1.3930

1.4360

Report Date: Test Code/ID: 02 Nov-21 11:43 (p 2 of 2)

Mussel Shell Development Test

WGR0921.059m / 02-1589-1346 Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 04-1613-8136

Endpoint: Combined Proportion Normal

CETIS Version: Status Level:

CETISv1.9.7

Analyzed: Edit Date:

02 Nov-21 11:34 02 Nov-21 11:34

Analysis: Parametric-Two Sample

MD5 Hash: 2E266481F9703A5DBFBE66630FE736E3 Editor ID:

007-979-628-1

9 OA Analyst:

CETIS Measurement Report

0

100

Overall

N

2

2

4

14.85

14.85

14.85

14.21

14.21

14.76

15.49

15.49

14.94

14.8

14.8

14.8

14.9

14.9

14.9

0.03539

0.03539

0.02887

0.07077

0.07077

0.05773

0.48%

0.48%

0.39%

0

0

0 (0%)

Report Date:

02 Nov-21 11:43 (p 1 of 1)

Test Code/ID: WGR09

WGR0921.059m / 02-1589-1346

								rest coden			02-1303-1340
Mussel Shell	Development T	est						Aqu	atic Bioassay 8	Consultin	ng Labs, Inc.
Batch ID:	00-0039-7275		Test Type:	Development-S	Survival			Analyst:	Joe Freas		
Start Date:	15 Sep-21 14:0	02	Protocol;	EPA/600/R-95	/136 (1995)			Diluent:	Laboratory Wat	er	
Ending Date:	17 Sep-21 14:0	02	Species:	Mytilus gallopr	ovincialis			Brine:			
Test Length:	48h		Taxon:	Bivalvia				Source:	Carlsbad Aqua	farms CA	Age:
Sample ID:	17-4634-0978		Code:	WGR0921.05	9m		-	Project:	021.APC.01		
Sample Date:	09 Sep-21 15:4	15	Material:	Sediment				Source:	Bioassay Repo	rt	
Receipt Date:	13 Sep-21 16:0	00	CAS (PC):					Station:	SED-005		
Sample Age:	5d 22h		Client:	WGR Southwe	est Inc.						
Dissolved Ox	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	10.05	9.415	10.69	10	10.1	0.0353	6 0,07073	0.70%	0
100		2	10	10	10	10	10	0	0	0.00%	0
Overall		4	10.03	9.945	10.1	10	10.1	0,025	0,05	0.50%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
100		2	7.65	7.015	8.285	7.6	7.7	0.0353	0.07071	0.92%	0
Overall		4	7.775	7.536	8.014	7.6	7.9	0.075	0.15	1.93%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	34	34	34	34	34	0	0	0.00%	0
100		2	34	34	34	34	34	0	0	0.00%	0
Overall		4	34	34	34	34	34	0	0	0.00%	0 (0%)
Temperature-	°C										

Analyst: M QA C

007-979-628-1 CETIS™ v1.9.7.7

November 2, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA/R-95/136. Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-006

DATE RECEIVED: 9/13/2021

ABC LAB. NO.: WGR0921.060

CHRONIC MYTILUS SEDIMENT WATER INTERFACE BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours very truly,

Scott Vohnson

Laboratory Director

CETIS	Summary	Report
-------	---------	--------

Report Date:

02 Nov-21 11:43 (p 1 of 1)

Test Code/ID:

WGR0921.060m / 18-0660-0583

Mussel Shell												
	Development 1	est						Aquatio	Bioassay &	Consultin	g Labs, Ir	c.
Batch ID:	06-9719-5450	Test	Type:	Development-S	urvival		Anal	yst: Jo	e Freas			
Start Date:	15 Sep-21 14:0	O3 Prot	ocol:	EPA/600/R-95/	136 (1995)		Dilue	ent: La	boratory Water	er		
Ending Date:	17 Sep-21 14:0	3 Spec	cies:	Mytilus gallopro	vincialis		Brine	e:				
Test Length:	48h	Taxo	on:	Bivalvia			Sour	ce: Ca	rlsbad Aquafa	arms CA	Age:	
Sample ID:	00-3490-9640	Cod	e:	WGR0921 060	m		Proje	ect: 02	1.APC.01			_
Sample Date:	09 Sep-21 10:2	25 Mate	erial:	Sediment			Sour	ce: Bio	assay Report	t.		
Receipt Date:	13 Sep-21 16:0	OO CAS	(PC):				Stati	on: SE	D-006			
Sample Age:	6d 4h	Clie	nt:	WGR Southwes	st Inc.							
Single Compa	arison Summar	у										
Analysis ID	Endpoint		Compa	rison Method			P-Value	Compar	ison Result			S
05-1624-1213	Combined Prop	portion Normal	Equal \	/ariance t Two-S	Sample Test		0.8963	100% pa	ssed combine	ed proportio	n normal	
Test Acceptal	bility					TAC	Limits					ī
Analysis ID	Endpoint		Attribu	ite	Test Stat	Lower	Upper	Overlap	Decision			
05-1624-1213	Combined Prop	portion Normal	PMSD		0.01979	<<	0.25	No	Passes C	riteria		
Combined Pro	oportion Norma	al Summary						-				
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec	t
0	N	5	0.9543	0.9383	0.9702	0.9372	0.9686	0.0057	0.0128	1.35%	0.00%	
100		5	0.9659	0.9472	0.9846	0.9462	0.9821	0.0067	0.0151	1.56%	-1.22%	
Combined Pro	oportion Norma	al Detail					MD	5: 4F6852	57C61FC36E	6CFF35C0	064860B5	
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	0.9462	0.9552	0.9686	0.9641	0.9372						
		0.9552	0.9686	0.9776	0.9462	0.9821						
100												_
	oportion Norma	al Binomials	7									
100 Combined Pro Conc-%	oportion Norma	al Binomials Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
Combined Pro			Rep 2	4.7.	Rep 4 215/223	Rep 5 209/223						

Report Date:

02 Nov-21 11:43 (p 1 of 2)

OL 113 Alle	alytical Rep	3011					Tes	t Code/ID:	WGROS	921.060m /	18-0660-05
Mussel Shell	Development 1	Test						Aquatic	Bioassay &	Consultin	ng Labs, Inc
Analysis ID:	05-1624-1213	E	ndpoint:	Combined Proj	portion Norm	nal	CET	IS Version:	CETISV	1.9.7	
Analyzed:	02 Nov-21 11:3	37 A	nalysis:	Parametric-Tw	o Sample		Stat	us Level:	1		
Edit Date:	02 Nov-21 11:3	37 M	D5 Hash: 4	4F685257C61	FC36E6CFF	35C006486	OB5 Edit	or ID:	007-979	-628-1	
Batch ID:	06-9719-5450	Te	est Type: I	Development-S	Survival		Ana	lyst: Joe	Freas		
Start Date:	15 Sep-21 14:0	03 Pr	rotocol: E	PA/600/R-95	/136 (1995)		Dilu	ent: Lab	oratory Wat	er	
Ending Date:	17 Sep-21 14:0	03 S ₁	pecies: 1	Mytilus gallopro	ovincialis		Brin	ie:			
Test Length:	48h	Ta	axon:	Bivalvia			Sou	rce: Carl	sbad Aqua	farms CA	Age:
Sample ID:	00-3490-9640	C	ode: \	NGR0921.060)m		Proj	ect: 021	APC.01		
Sample Date:	09 Sep-21 10:	25 M	aterial:	Sediment			Sou	rce: Bioa	ssay Repo	t	
	13 Sep-21 16:0		AS (PC):				Stat		0-006		
Sample Age:				NGR Southwe	est Inc.		-				
Data Transfor	m	Alt Hyp				Compari	son Result	1			PMSD
Angular (Corre		C>T						ed proportion	normal end	fpoint .	1.98%
	e t Two-Sampl	e Test									
Control	vs Conc-%	6	Test St	at Critical	MSD D	F P-Type	P-Value	Decision(a:5%)		
Negative Contr			-1.372	1.86	0.043 8		0.8963		ficant Effec	t	
Test Acceptat	oility Criteria	TAC	Limits								
Attribute	Test Sta		Upper	Overlap	Decision						
PMSD	0.01979		0.25	No	Passes C						
ANOVA Table											
Source	Sum Sq	uares	Mean S	quare	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.002533		0.00253		1	1.881	0.2074		ficant Effec		
Error	0.00233		0.00233		8	1.001	0.2074	Non-aigh	IICAIIL EIIEC		
Total	0.01377		0.00134	100	9	-					
ΔΝΟΥΔ Δεειίτ	nptions Tests										
Attribute	Test				Tost Stat	Critical	P-Value	Decision(a:1961		
Variance		equality of V	ariance Tec		0.7642	11.26	0.4075	Equal Vari			_
Variance		ene Equality			2.084	13.75	0.1990	Equal Vari			
		Ratio F Tes		1631	1.848	23.15	0.5666	Equal Vari			
Distribution		n-Darling A2			0.2844	3.878	0.6594	Normal Di			
nominaria											
		no Skewnes			0.2127	2,576	0.8316	Normal Dis			
		rov-Smirnov Wilk W Non			0.1499	0.3025	0.9473	Normal Dis			
Combined Per			, , , , , ,		2,0 101	SAMI	V. GEEV	Listing Di	e meanor.		
Conc.%	oportion Norma Code	Count		95% LCL	95% UCL	Median	Min	Max	Ctd Err	CV%	%Effect
Conc-%	N	5	Mean 0.9543	0.9383	0.9702	weulan	0.9372	Max 0.9686	O.0057	1.35%	0.00%
100	1.9	5	0.9659	0.9472	0.9846		0.9462	0.9821	0.0057	1.56%	-1.22%
0 1 T 1 T 1 T 1	ONDERAG	F 1875		0.3412	0,3040		0.8402	0,3021	0.0007	1,30%	-1.2470
	ected) Transfo			050 1.01	050/ 1101	14.30	NATIO	4444	044 Fa	01/0/	0/54
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0 100	N	5 5	1.3570 1.3890	1.3190 1.3370	1,3950 1,4410		1.3180 1.3370	1.3930	0.0138	2.27% 3.01%	0.00% -2.35%
* AT 155	nortion Norma		1.5050	1,5570	64410		1.5570	1,4500	0.0101	2.0170	-23270
	portion Norma		Per 2	Pan A	Don 4	Den f					
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	0.9462	0.9552	0.9686	0.9641	0.9372					
100		0.9552	0.9686	0.9776	0.9462	0.9821					
				_		_					

Analyst: M QA

Rep 2

1.3570

1.3930

Rep 3

1,3930

1.4200

Rep 4

1.3800

1.3370

Rep 5 1.3180

1.4360

Rep 1

1.3370

1.3570

Angular (Corrected) Transformed Detail

Code

Conc-%

0

100

Report Date:

02 Nov-21 11:43 (p 2 of 2)

Test Code/ID:

WGR0921.060m / 18-0660-0583

Mussel Shell Development Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 05-1624-1213 Analyzed:

Endpoint: Combined Proportion Normal

CETIS Version:

Status Level:

CETISv1.9.7

Edit Date:

02 Nov-21 11:37 02 Nov-21 11:37

MD5 Hash: 4F685257C61FC36E6CFF35C0064860B5

Analysis: Parametric-Two Sample

Editor ID:

007-979-628-1

CETIS Measurement Report

Report Date:

02 Nov-21 11:43 (p 1 of 1)

Test Code/ID: WGR0921.060m / 18-0660-0583

674 60								Test Code/ID	: WGR0:	921.060m/	18-0660-0583
Mussel Shell	Development 1	Test						Aqua	tic Bioassay &	& Consultir	ng Labs, Inc.
Batch ID:	06-9719-5450		Test Type:	Development-S	Survival			Analyst:	Joe Freas		
Start Date:	15 Sep-21 14:	03	Protocol:	EPA/600/R-95	/136 (1995)			Diluent:	Laboratory Wat	ter	
Ending Date:	17 Sep-21 14:	03	Species:	Mytilus gallopre	ovincialis			Brine:			
Test Length:	48h		Taxon:	Bivalvia				Source: (Carlsbad Aqua	farms CA	Age:
Sample ID:	00-3490-9640		Code:	WGR0921.060)m			Project: (021.APC.01		
Sample Date:	09 Sep-21 10:	25	Material:	Sediment				Source:	Bioassay Repo	rt	
Receipt Date:	13 Sep-21 16:	00	CAS (PC):					Station: 5	SED-006		
Sample Age:	6d 4h		Client:	WGR Southwe	est Inc.						
Dissolved Oxy	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	10.05	9.415	10.69	10	10.1	0.03536	0.07073	0.70%	0
100		2	10.1	8.829	11.37	10	10.2	0.07071	0.1414	1.40%	0
Overall		4	10.08	9,923	10.23	10	10.2	0.04787	0.09574	0.95%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0,00%	0
100		2	7.7	7.698	7.702	7.7	7.7	0	0	0,00%	0
Overall		4	7.8	7.616	7.984	7.7	7.9	0.05774	0.1155	1.48%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	34	34	34	34	34	0	0	0.00%	0
100		2	34	34	34	34	34	0	0	0.00%	0
Overall		4	34	34	34	34	34	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.85	14.21	15.49	14.8	14.9	0,03539	0.07077	0.48%	0
400			4 4 6 5	1.101	15 10	440	440		0.07077	0 1001	

0.48%

0.39%

0

0 (0%)

0.07077

0.05773

100

Overall

2

4

14.85

14.85

14.21

14.76

15.49

14.94

14.8

14.8

14.9

14.9

0.03539

0.02887

November 2, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA/R-95/136. Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-007
DATE RECEIVED: 9/13/2021
ABC LAB. NO.: WGR0921.061

CHRONIC MYTILUS SEDIMENT WATER INTERFACE BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours very truly,

w Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

02 Nov-21 11:43 (p 1 of 1)

Test Code/ID:

WGR0921.061m / 01-7131-8640

							lest	Code/ID:	WGR09	21.061m/	01-/131-8	64L
Mussel Shell	Development 1	Test						Aquatio	Bioassay &	Consultin	g Labs, Ir	ıc.
Batch ID:	06-2777-2564	Test	Type:	Development-S	urvival		Anal	yst: Jo	e Freas			
Start Date:	15 Sep-21 14:	04 Prot	ocol:	EPA/600/R-95/	136 (1995)		Dilu	ent: La	boratory Wate	er		
Ending Date:	17 Sep-21 14:	04 Spec	cies:	Mytilus gallopro	vincialis		Brin	e:				
Test Length:	48h	Taxo	n:	Bivalvia			Sou	rce: Ca	irlsbad Aquaf	arms CA	Age:	
Sample ID:	12-2403-5037	Code	e:	WGR0921.061	m		Proj	ect: 02	1.APC.01			
Sample Date:	09 Sep-21 11:	30 Mate	erial:	Sediment			Soul	rce: Bio	bassay Repor	t		
Receipt Date:	13 Sep-21 16:	00 CAS	(PC):				Stati	ion: SE	D-007			
Sample Age:	6d 3h	Clier	nt:	WGR Southwes	st Inc.							
Single Compa	rison Summar	У										
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compar	ison Result			s
14-9959-2355	Combined Pro	portion Normal	Equal	Variance t Two-	Sample Test		0.7629	100% pa	ssed combine	ed proportion	n normal	1
Test Acceptat	ility					TAC	Limits					
Analysis ID	Endpoint		Attribu	ute	Test Stat	Lower	Upper	Overlap	Decision			
14-9959-2355	Combined Pro	portion Normal	PMSD		0.01962	<<	0.25	No	Passes C	riteria		
Combined Pro	portion Norma	al Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe	ct
0	N	5	0.9578	0.9357	0.9800	0.9372	0.9821	0.0080	0.0178	1.86%	0.00%	5.
100		5	0.9659	0.9531	0.9787	0.9552	0.9821	0.0046	0.0103	1.07%	-0.84%	3
Combined Pro	portion Norma	al Detail					MD	5: 781F59	0B87CAED40	COA38E692	2C769AE4	D
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
D	N	0.9462	0.9686	0,9552	0.9821	0.9372						
100		0.9641	0.9686	0.9552	0.9821	0.9596						
Combined Pro	portion Norma	al Binomials				471						
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	211/223	216/22	3 213/223	219/223	209/223						
100		215/223	216/22	3 213/223	219/223	214/223						

Analyst: 4 QA: e

Report Date: Test Code/ID: 02 Nov-21 11:43 (p 1 of 2) WGR0921.061m / 01-7131-8640

Mussel Shell	Development Test			Aquatic Bioassay & Consulting Labs, Inc.
Analysis ID:	14 0050 2255	Endnoint:	Combined Branadian Normal	CETIS Versions CETISM 0.7

Analysis ID: 14-9959-2355 Endpoint: Combined Proportion Normal CETIS Version: CETISV1.9.7

 Analyzed:
 02 Nov-21 11:40
 Analysis:
 Parametric-Two Sample
 Status Level:
 1

 Edit Date:
 02 Nov-21 11:40
 MD5 Hash:
 781F590B87CAED4C0A38E692C769AE4D
 Editor ID:
 007-979-628-1

Batch ID: 06-2777-2564 Test Type: Development-Survival Analyst: Joe Freas

Start Date: 15 Sep-21 14:04 Protocol: EPA/600/R-95/136 (1995) Diluent: Laboratory Water

Ending Date: 17 Sep-21 14:04 Species: Mytilus galloprovincialis Brine:

Test Length: 48h Taxon: Bivalvia Source: Carlsbad Aquafarms CA Age:

 Sample ID:
 12-2403-5037
 Code:
 WGR0921.061m
 Project:
 021.APC.01

 Sample Date:
 09 Sep-21 11:30
 Material:
 Sediment
 Source:
 Bioassay Report

 Receipt Date:
 13 Sep-21 16:00
 CAS (PC):
 Station:
 SED-007

Sample Age: 6d 3h Client: WGR Southwest Inc.

Data Transform	Alt Hyp	Comparison Result	PMSD
Angular (Corrected)	C>T	100% passed combined proportion normal endpoint	1.96%

Equal Variance t Two-Sample Test

Control	VS	Conc-%	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(a:5%)	
Negative Contr	ol	100	-0.751	1.86	0.047	8	CDF	0.7629	Non-Significant Effect	

Test Acceptability Criteria TAC Limits

Attribute	Test Stat	Lower	Upper	Overlap	Decision	
PMSD	0.01962	<<	0.25	No	Passes Criteria	

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(α:5%)
Between	0.0008937	0.0008937	1	0.564	0.4741	Non-Significant Effect
Error	0.0126759	0.0015845	8			
Total	0.0135696		9			

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variance	Levene Equality of Variance Test	1.361	11.26	0.2769	Equal Variances
	Mod Levene Equality of Variance Test	1.215	13.75	0.3125	Equal Variances
	Variance Ratio F Test	2.388	23.15	0.4198	Equal Variances
Distribution	Anderson-Darling A2 Test	0.3202	3.878	0.5541	Normal Distribution
	D'Agostino Skewness Test	1.016	2.576	0.3098	Normal Distribution
	Kolmogorov-Smírnov D Test	0.1722	0.3025	0.6322	Normal Distribution
	Shapiro-Wilk W Normality Test	0.9471	0.7411	0.6338	Normal Distribution

Combined Proportion Normal Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	5	0.9578	0.9357	0.9800		0.9372	0.9821	0.0080	1.86%	0.00%
100		5	0.9659	0.9531	0.9787		0.9552	0.9821	0.0046	1.07%	-0.84%

Angular (Corrected) Transformed Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	5	1.3680	1.3090	1.4270		1.3180	1.4360	0.0211	3.45%	0.00%
100		5	1.3870	1.3490	1,4250		1.3570	1.4360	0.0137	2.20%	-1.38%

Combined Proportion Normal Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	0.9462	0,9686	0.9552	0.9821	0.9372	
100		0.9641	0.9686	0.9552	0.9821	0.9596	

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	1,3370	1.3930	1.3570	1.4360	1.3180	
100		1.3800	1.3930	1.3570	1.4360	1.3690	

Analyst: 7 OA: ____

Report Date:

02 Nov-21 11:43 (p 2 of 2)

Test Code/ID:

WGR0921.061m / 01-7131-8640

Mussel Shell Development Test

Aquatic Bioassay & Consulting Labs, Inc.

Analyzed:

Analysis ID: 14-9959-2355

Endpoint: Combined Proportion Normal

CETIS Version:

Status Level:

CETISV1.9.7

Edit Date:

02 Nov-21 11:40 02 Nov-21 11:40

MD5 Hash: 781F590B87CAED4C0A38E692C769AE4D

Analysis: Parametric-Two Sample

Editor ID:

007-979-628-1

CETIS Measurement Report

Report Date:

02 Nov-21 11:43 (p 1 of 1)

Test Code/ID:

WGR0921.061m / 01-7131-8640

								rest code/ii	. WGRUS	321.0011117	01-7131-0040
Mussel Shell	Development Te	st						Aqui	atic Bioassay 8	Consultin	ng Labs, Inc.
Batch ID: Start Date: Ending Date: Test Length:	06-2777-2564 15 Sep-21 14:04 17 Sep-21 14:04 48h		Test Type: Protocol: Species: Taxon:	Development-S EPA/600/R-95 Mytilus gallopr Bivalvia	/136 (1995)			Analyst: Diluent: Brine: Source:	Joe Freas Laboratory Wat Carlsbad Aqual		Age:
	12-2403-5037 09 Sep-21 11:30 13 Sep-21 16:00 6d 3h		Code: Material: CAS (PC): Client:	WGR0921.06 Sediment WGR Southwe				Project: Source; Station;	021.APC.01 Bioassay Repor SED-007	t	
Dissolved Oxy	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	10.05	9.415	10.69	10	10.1	0.0353	6 0.07073	0.70%	0
100		2	10	8.729	11.27	9.9	10.1	0.0707	2 0.1414	1.41%	0
Overall		4	10.03	9.873	10 18	9.9	10.1	0.0478	7 0.09574	0.96%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
100		2	7.75	7,115	8.385	7.7	7.8	0.0353	6 0.07072	0.91%	0
Overall		4	7.825	7.673	7.977	7.7	7.9	0.0478	7 0 09574	1.22%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	34	34	34	34	34	0	0	0.00%	0
100		2	34	34	34	34	34	0	0	0.00%	0
Overall		4	34	34	34	34	34	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	14.85	14.21	15.49	14.8	14.9	0.0353	9 0.07077	0.48%	0
100		2	14.85	14.21	15.49	14.8	14.9	0.0353	9 0.07077	0.48%	0

Analyst: M QA. Z

Overall

4

14.85

14.76

14.94

14.8

14.9

0.02887

0.05773

0.39%

0 (0%)

November 2, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT:

WGR Southwest, Inc.

SAMPLE I.D.:

SED-003

DATE RECEIVED:

9/13/2021

ABC LAB. NO .:

WGR1021.057

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00%

EC50 = >100.00 %

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Sur	nmary Report		Report Da Test Code		
Eohaustorius	10-d Survival and F	Reburial Sedime	Aq	uatic Bioassay & Consulting Labs, Inc.	
Batch ID:	08-2094-1543	Test Type:	Survival-Reburial	Analyst:	Joe Freas
Start Date:	21 Sep-21 13:00	Protocol:	EPA/600/R-94/025 (1994)	Diluent:	Laboratory Seawater
Ending Date:	01 Oct 21 13:00	Consider	Echaustorius estuarius	Prince	Not Applicable

Batch ID:	08-2094-1543	Test Type:	Survival-Reburial	Analyst:	Joe Freas
Start Date:	21 Sep-21 13:00	Protocol:	EPA/600/R-94/025 (1994)	Diluent:	Laboratory Seawater
Ending Date:	01 Oct-21 13:00	Species:	Echaustorius estuarius	Brine:	Not Applicable
Test Length:	10d 0h	Taxon:	Malacostraca	Source:	Northwestern Aquatic Scienc Age;
Sample ID:	12-5715-2191	Code:	WGR0921.057e	Project:	021.APC.01
Sample Date:	09 Sep-21 17:55	Material:	Sediment	Source:	Bioassay Report
Receipt Date:	13 Sep-21 16:00	CAS (PC):		Station:	SED-003
Sample Age:	11d 19h	Client:	WGR Southwest Inc.		

Sample Age:	11d 19h	Client:	WGR Southwest Inc.

Single Comparison Summary

Analysis ID	Endpoint		Compari	son Method			P-Value	Comparis	son Result		S			
10-8487-0012	Survival Rate		Wilcoxon	Rank Sum T	wo-Sample	Test	1.0000	100% pas	sed survival rate					
Test Acceptal	oility					TAC	Limits							
Analysis ID	Endpoint		Attribute		Test Stat	Lower	Upper	Overlap	Decision					
10-8487-0012	Survival Rate		Control Resp		1	0.9	>>	Yes	Passes Criteria					
Survival Rate	Summary													
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect			
0	N	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	-	0.00%			
100		5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	-	0.00%			

Survival Rate	Detail						MD5: 41B41182B59AAABFB2FDAA23D11B52E4
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	1.0000	1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	1.0000	1.0000	1.0000	

Overalized Date	Disconfute	1.0000	1,0000	1.0000	1,0000	1.0000	
Survival Rate	Binomiais						
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	20/20	20/20	20/20	20/20	20/20	
100		20/20	20/20	20/20	20/20	20/20	

Report Date:

02 Nov-21 11:44 (p 1 of 2) WGR0921.057e / 04-5769-0552

	Test Code/ID.	WGRUS
urial Sediment Test	Aquatic F	Singeeau &

Eohaustorius	10-d Survival and F	Reburial Sedime	ent Test	Aquatic Bioassay & Consulting Labs, Inc.			
Analysis ID:	10-8487-0012	Endpoint:	Survival Rate	CETIS Version:		CETISv1.9.7	
Analyzed:	02 Nov-21 11:10	Analysis:	Nonparametric-Two Sample	Status Leve	1:	1	
Edit Date:	02 Nov-21 11:09	MD5 Hash:	41B41182B59AAABFB2FDAA23D11B52E4	Editor ID:		007-979-628-1	
Batch ID:	08-2094-1543	Test Type:	Survival-Reburial	Analyst:	Joe F	reas	
Start Date:	21 Sep-21 13:00	Protocol:	EPA/600/R-94/025 (1994)	Diluent:	Labor	ratory Seawater	
Ending Date:	01 Oct-21 13:00	Species:	Eohaustorius estuarius	Brine:	Not A	Applicable	
Test Length:	10d 0h	Taxon:	Malacostraca	Source:	North	nwestern Aquatic Scienc Age:	
Sample ID:	12-5715-2191	Code:	WGR0921.057e	Project:	021.4	APC.01	
Sample Date:	09 Sep-21 17:55	Material:	Sediment	Source:	Bioas	ssay Report	
Receipt Date:	13 Sep-21 16:00	CAS (PC):		Station:	SED-	-003	

Sample Age: 11d 19h Client: WGR Southwest Inc.

Data Transform	Alt Hyp	Comparison Result
Angular (Corrected)	C > T	100% passed survival rate endpoint

Wilcoxon Rank Sum Two-Sample Test

Control	VS	Conc-%	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)
Negative Cor	ntrol	100	27.5	-	1	8	Exact	1.0000	Non-Significant Effect

Limits
(

Attribute	Test Stat	Lower	Upper	Overlap	Decision	
Control Resp	1	0.9	>>	Yes	Passes Criteria	

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	0	0	1			Indeterminate
Error	0	0	8			
Total	0		9			

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)	
Variance	Variance Ratio F Test				Indeterminate	
Distribution	Shapiro-Wilk W Normality Test				Indeterminate	

Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	5	1.0000	1.0000	1.0000		1.0000	1.0000	0.0000	0.00%	0.00%
100		5	1.0000	1.0000	1.0000		1.0000	1.0000	0,0000	0.00%	0.00%

Angular (Corrected) Transformed Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N.	5	1.4590	1.4580	1.4590		1.4590	1.4590	0.0000	0.00%	0.00%
100		5	1.4590	1.4580	1.4590		1.4590	1.4590	0.0000	0.00%	0.00%

Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	1.0000	1.0000	1.0000	1.0000	1,0000	
100		1.0000	1.0000	1.0000	1.0000	1 0000	

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	1.4590	1.4590	1,4590	1.4590	1.4590	
100		1.4590	1.4590	1,4590	1.4590	1.4590	

Report Date:

02 Nov-21 11:44 (p 2 of 2)

Test Code/ID:

WGR0921.057e / 04-5769-0552

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 10-8487-0012 Analyzed:

02 Nov-21 11:10

Endpoint: Survival Rate

Analysis: Nonparametric-Two Sample

CETIS Version:

Status Level:

007-979-628-1

CETISv1.9.7

Edit Date: 02 Nov-21 11:09

MD5 Hash: 41B41182B59AAABFB2FDAA23D11B52E4

Editor ID:

02 Nov-21 11:44 (p 1 of 1)

Test Code/ID:

WGR0921.057e / 04-5769-0552

Eohaustorius	10-d Survival a	and Reb	urial Sedime	ent Test			Aquatic Bioassay & Consulting Labs				
Batch ID:	08-2094-1543		Test Type:	Survival-Rebur	ial			Analyst:	Joe Freas		
Start Date:	21 Sep-21 13:0	10	Protocol:	EPA/600/R-94	/025 (1994)			Diluent:	Laboratory Sea	water	
Ending Date:	01 Oct-21 13:0	0	Species:	Echaustorius e	stuarius			Brine: Not Applicable			
Test Length:	10d 0h		Taxon:	Malacostraca				Source:	Source: Northwestern Aquatic S		
Sample ID:	12-5715-2191		Code:	WGR0921,057	7e			Project: 021.APC.01			
Sample Date:	09 Sep-21 17:5	5	Material:	Sediment				Source: Bioassay R		t	
Receipt Date:	13 Sep-21 16:0	0	CAS (PC):					Station:	SED-003		
Sample Age:	11d 19h		Client:	WGR Southwe	/GR Southwest Inc.						
Dissolved Oxy	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count
0	N.	2	10.05	9.415	10.69	10	10.1	0.035	36 0.07073	0.70%	0
100		2	10.3	7.759	12.84	10.1	10.5	0.141	4 0.2828	2.75%	0
Overall		4	10.18	9.822	10.53	10	10.5	0.110	9 0.2217	2.18%	0 (0%)
pH-Units						1,4					
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count
0	N	2	7.75	7.115	8.385	7.7	7.8	0.0353	36 0.07072	0.91%	0
100		2	7.65	7.015	8.285	7.6	7.7	0.0353	35 0.07071	0.92%	0
Overall		4	7.7	7.57	7.83	7.6	7.8	0.040	32 0.08165	1.06%	0 (0%)
Salinity-ppt					4.70						
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
100		2	20	20	20	20	20	.0	0	0.00%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)

95% LCL 95% UCL

15.49

15.49

14.94

14.21

14.21

14.76

Min

148

148

14,8

Max

14.9

14.9

14.9

Std Err

0.03539

0.03539

0.02887

CV%

0.48%

0.48%

0.39%

QA Count

0

0

0 (0%)

Std Dev

0.07077

0.07077

0.05773

Temperature-°C

Conc-%

0

100

Overall

Code

N

Count

2

2

4

Mean

14.85

14.85

14.85

November 2, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT:

WGR Southwest, Inc.

SAMPLE I.D.:

SED-004

DATE RECEIVED:

9/13/2021

ABC LAB. NO .:

WGR1021.058

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00%

EC50 = >100.00 %

Yours very truly,

a Scott Johnson

Laboratory Director

CETIS	Summary	Report
-------	---------	--------

02 Nov-21 11:44 (p 1 of 1)

Test Code/ID:

WGR0921.058e / 07-4874-5125

							Test	Code/ID:	WGROS	921.058e /	07-4874-512	
Eohaustorius	10-d Survival an	d Reburi	al Sedime	ent Test				Aquatic	Bioassay &	Consultir	ng Labs, Inc.	
Batch ID:	07-5334-1084	Ti	est Type:	Survival-Reburi	al		Anal	yst: Joe	Freas			
Start Date:	21 Sep-21 13:01	Pi	rotocol:	EPA/600/R-94/	025 (1994)		Dilue	ent: Lab	oratory Seav	vater		
Ending Date:	01 Oct-21 13:01	S	pecies:	Eohaustorius es	stuarius		Brin	e: Not	Applicable			
Test Length:	10d 0h	T	axon:	Malacostraca			Sour	ce: Nor	Northwestern Aquatic Scienc Age:			
Sample ID:	05-2535-3705	C	ode:	WGR0921.058	e		Proje	ect: 021	.APC.01			
Sample Date:	09 Sep-21 13:30	M	aterial:	Sediment			Sour	ce: Bio	assay Repor	t		
Receipt Date:	13 Sep-21 16:00	C	AS (PC):				Stati	on: SE	D-004			
Sample Age:	12d	C	lient:	WGR Southwes	st Inc.							
Single Compa	rison Summary								1. 7			
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compari	rison Result			
11-0962-2660	Survival Rate		Wilco	kon Rank Sum T	wo-Sample	Test	1.0000	100% pas	ssed survival rate			
Test Acceptability						TAC	Limits					
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision			
11-0962-2660	Survival Rate		Contro	ol Resp	1	0.9	>>	Yes	Passes Criteria			
Survival Rate	Summary											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	N	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000		0.00%	
100		5	1.0000	1.0000	1.0000	1.0000	1,0000	0.0000	0.0000	-	0.00%	
Survival Rate	Detail				7	10	MD	5: 41B4118	B2B59AAAB	B2FDAA2	3D11B52E4	
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	1.0000	1.0000	1.0000	1.0000	1.0000						
100		1.0000	1.0000	1.0000	1.0000	1.0000						
Survival Rate	Binomials					7						
		Pen 1 Pen 2 Pen 3		3								
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
Conc-%	Code N	Rep 1 20/20	Rep 2 20/20	Rep 3 20/20	Rep 4 20/20	20/20						

Report Date: Test Code/ID: 02 Nov-21 11:44 (p 1 of 2) WGR0921:058e / 07-4874-5125

Eohaustorius	10-d Survival a	nd Reburi	al Sedimen	t Test				Aquatic I	Bioassay &	Consultin	ig Labs, In		
Analysis ID:	11-0962-2660	Er	dpoint: 5	Survival Rate			CET	IS Version:	CETISv1	.9.7			
Analyzed:	02 Nov-21 11:13	Ar Ar	alysis: N	Vonparametric-	Two Sample	9	Stat	us Level:	1				
Edit Date:	02 Nov-21 11:12		and the second second	41B41182B59A			52E4 Edit	or ID:	Level: 1 ID: 007-979-628-1 It: Joe Freas I: Laboratory Seawater Not Applicable I: Northwestern Aquatic Scienc Age: I: 021,APC.01 I: Bioassay Report				
Batch ID:	07-5334-1084	Te	st Type: 5	Survival-Reburia	al		Ana	lvst: Joe	Freas				
Start Date:	21 Sep-21 13:01			EPA/600/R-94/			Dilu			vater			
	01 Oct-21 13:01			Eohaustorius es			Brin		the second of the second of	i miai			
Test Length:				Malacostraca			Sou		A CONTRACTOR CONTRACTOR	quatic Scie	no Age:		
Sample ID:	05-2535-3705	C	ode: V	NGR0921 058			Proj			, 13173381			
	09 Sep-21 13:30			Sediment	е		Sou						
	13 Sep-21 16:00		AS (PC):	seument			Stat						
Sample Age:				NGR Southwes	st Inc.		Stat	ion. SEL	7-004				
10 10 10 10		22.163.3	20.0	1011 0000111100		041.00.0	70.47.0	_					
Data Transfor		Alt Hyp					son Result	on the state of					
Angular (Corre	ctea)	C > T				100% pas	sed survival	rate endpoin	t				
Wilcoxon Ran	k Sum Two-San	nple Test											
Control	vs Conc-%		Test St	at Critical	Ties D	F P-Type	P-Value	Decision(a:5%)				
Negative Contr	ol 100		27,5	-	1 8	Exact	1.0000	Non-Signif	ficant Effect				
Test Acceptab	oility Criteria	TAC	Limits										
Attribute	Test Stat	46.77	Upper	Overlap	Decision								
Control Resp	1	0.9	>>	Yes	Passes C	riteria							
ANOVA Table					2000								
Source	Sum Squa			quare	DF	F Stat	P-Value	Decision(a:5%)				
Between	0	0		1				Indetermin	ate				
Error	0		0		8								
Total	0				9	-							
ANOVA Assur	nptions Tests												
Attribute	Test				Test Stat	Critical	P-Value	Decision(a:1%)				
Variance	Variance F	Ratio F Tes	t					Indetermin	ate				
	variance i	desired a later							nto				
Distribution			nality Test					Indetermin	ale				
	Shapiro-W		nality Test					Indetermin	ale				
Survival Rate	Shapiro-W		mality Test Mean	95% LCL	95% UCL	Median	Mín	Indetermin	Std Err	CV%	%Effect		
Survival Rate Conc-%	Shapiro-W Summary Code	/ilk W Norr	Mean	95% LCL		Median	1000	Max	Std Err				
Survival Rate Conc-%	Shapiro-W Summary	ilk W Norr		95% LCL 1.0000 1.0000	95% UCL 1.0000 1.0000	Median	Min 1.0000 1.0000		200-2	CV% 0.00% 0.00%	%Effect 0.00% 0.00%		
Survival Rate Conc-% 0 100	Shapiro-W Summary Code N	Count 5 5	Mean 1.0000 1.0000	1.0000	1.0000	Median	1.0000	Max 1.0000	Std Err 0.0000	0.00%	0.00%		
Survival Rate Conc-% 0 100 Angular (Corr	Shapiro-W Summary Code N ected) Transform	Count 5 5 med Summ	Mean 1.0000 1.0000	1.0000 1.0000	1.0000 1.0000		1.0000 1.0000	Max 1.0000 1.0000	Std Err 0.0000 0.0000	0.00%	0.00% 0.00%		
Conc-%	Shapiro-W Summary Code N ected) Transford Code	Count 5 5 med Summ	Mean 1.0000 1.0000 nary	1.0000 1.0000 95% LCL	1.0000 1.0000 95% UCL		1.0000 1.0000 Min	Max 1.0000 1.0000	Std Err 0.0000 0.0000 Std Err	0.00% 0.00%	0.00%		
Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0	Shapiro-W Summary Code N ected) Transform	Count 5 5 med Summ	Mean 1.0000 1.0000	1.0000 1.0000	1.0000 1.0000		1.0000 1.0000	Max 1.0000 1.0000	Std Err 0.0000 0.0000	0.00%	0.00% 0.00%		
Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100	Shapiro-W Summary Code N ected) Transfort Code N	Count 5 5 med Summ Count 5	Mean 1.0000 1.0000 nary Mean 1.4590	1.0000 1.0000 95% LCL 1.4580	1.0000 1.0000 95% UCL 1.4590		1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%		
Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate	Shapiro-W Summary Code N ected) Transfort Code N	Count 5 5 med Summ Count 5 5 5	Mean 1.0000 1.0000 nary Mean 1.4590 1.4590	1.0000 1.0000 95% LCL 1.4580 1.4580	1.0000 1.0000 95% UCL 1.4590 1.4590	Median	1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%		
Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-%	Shapiro-W Summary Code N ected) Transfort Code N Detail Code	Count 5 5 med Summ Count 5 6 Rep 1	Mean 1.0000 1.0000 nary Mean 1.4590 1.4590	1.0000 1.0000 95% LCL 1.4580 1.4580	1.0000 1.0000 95% UCL 1.4590 1.4590 Rep 4	Median	1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%		
Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0	Shapiro-W Summary Code N ected) Transfort Code N	Count 5 5 med Summ Count 5 6 Rep 1 1.0000	Mean 1.0000 1.0000 nary Mean 1.4590 1.4590 Rep 2 1.0000	1.0000 1.0000 95% LCL 1.4580 1.4580 Rep 3 1.0000	1.0000 1.0000 95% UCL 1.4590 1.4590 Rep 4 1,0000	Median Rep 5	1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%		
Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0	Shapiro-W Summary Code N ected) Transfort Code N Detail Code	Count 5 5 med Summ Count 5 6 Rep 1	Mean 1.0000 1.0000 nary Mean 1.4590 1.4590	1.0000 1.0000 95% LCL 1.4580 1.4580	1.0000 1.0000 95% UCL 1.4590 1.4590 Rep 4	Median	1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%		
Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100	Shapiro-W Summary Code N ected) Transfort Code N Detail Code	Count 5 5 med Summ Count 5 5 Rep 1 1.0000 1.0000	Mean 1.0000 1.0000 nary Mean 1.4590 1.4590 Rep 2 1.0000 1.0000	1.0000 1.0000 95% LCL 1.4580 1.4580 Rep 3 1.0000	1.0000 1.0000 95% UCL 1.4590 1.4590 Rep 4 1,0000	Median Rep 5	1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%		
Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100	Shapiro-W Summary Code N ected) Transfort Code N Detail Code	Count 5 5 med Summ Count 5 5 Rep 1 1.0000 1.0000	Mean 1.0000 1.0000 nary Mean 1.4590 1.4590 Rep 2 1.0000 1.0000	1.0000 1.0000 95% LCL 1.4580 1.4580 Rep 3 1.0000	1.0000 1.0000 95% UCL 1.4590 1.4590 Rep 4 1,0000	Median Rep 5	1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%		
Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100 Angular (Corre	Shapiro-W Summary Code N ected) Transfort Code N Detail Code N	Count 5 5 med Summ Count 5 5 Rep 1 1.0000 1.0000 med Detail	Mean 1.0000 1.0000 nary Mean 1.4590 1.4590 Rep 2 1.0000 1.0000	1.0000 1.0000 95% LCL 1.4580 1.4580 Rep 3 1.0000 1.0000	1.0000 1.0000 95% UCL 1.4590 1.4590 Rep 4 1.0000 1.0000	Median Rep 5 1,0000 1,0000	1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%		

Analyst: M QA 7

007-979-628-1

CETIS™ v1.9.7.7

Report Date: Test Code/ID: 02 Nov-21 11:44 (p 2 of 2) WGR0921.058e / 07-4874-5125

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 11-0962-2660 Endpoint: Survival Rate CETIS Version: CETISv1.9.7

Analyzed: 02 Nov-21 11:13 Analysis: Nonparametric-Two Sample Status Level: 1

Edit Date: 02 Nov-21 11:12 MD5 Hash: 41B41182B59AAABFB2FDAA23D11B52E4 Editor ID: 007-979-628-1

Analyst: Q QA:

007-979-628-1

CETIS™ v1.9.7.7

02 Nov-21 11:44 (p 1 of 1)

Test Code/ID: WGR0921.058e / 07-4874-5125

Echaustorius 10-d Survival and Reburial Sediment Te	st
---	----

Aquatic Bioassay & Consulting Labs, Inc.

Batch ID:	07-5334-1084	Test Type:	Survival-Reburial	Analyst:	Joe Freas
Start Date:	21 Sep-21 13:01	Protocol:	EPA/600/R-94/025 (1994)	Diluent:	Laboratory Sea

Start Date:21 Sep-21 13:01Protocol:EPA/600/R-94/025 (1994)Diluent:Laboratory SeawaterEnding Date:01 Oct-21 13:01Species:Eohaustorius estuariusBrine:Not ApplicableTest Length:10d 0hTaxon:MalacostracaSource:Northwestern Aquatic Scienc Age:

Sample Date: 09 Sep-21 13:30 Material: Sediment Source: Bioassay Report
Receipt Date: 13 Sep-21 16:00 CAS (PC): Station: SED-004

Sample Age: 12d Client: WGR Southwest Inc.

Dissolved	Oxygen-mg/L
-----------	-------------

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	10.05	9.415	10.69	10	10.1	0.03536	0.07073	0.70%	0
100		2	10.05	8.144	11.96	9.9	10.2	0.1061	0.2121	2.11%	0
Overall		4	10.05	9.845	10.26	9.9	10.2	0.06455	0.1291	1.29%	0 (0%)

pH-Units

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7,884	7.916	7.9	7.9	0	0	0.00%	0
100		2	7.65	7.015	8,285	7.6	7.7	0.03535	0.07071	0.92%	0
Overall		4	7.775	7.536	8 014	7.6	7.9	0.075	0.15	1.93%	0.(0%)

Salinity-ppt

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
100		2	20	20	20	20	20	0	0	0.00%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)

Temperature-°C

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.85	14.21	15.49	14.8	14.9	0.03539	0.07077	0.48%	0
100		2	14.85	14.21	15.49	14.8	14.9	0.03539	0.07077	0.48%	0
Overall		4	14.85	14.76	14.94	14.8	14.9	0.02887	0.05773	0.39%	0 (0%)

Analyst: 2 QA

November 2, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-005
DATE RECEIVED: 9/13/2021
ABC LAB. NO.: WGR1021.059

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours Jery truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

02 Nov-21 11:44 (p 1 of 1)

Test Code/ID:

WGR0921.059e / 16-3717-3859

							rest	Codenb.	WGRU	921.059e /	10-2111-2028	
Eohaustorius				Aquatio	: Bioassay &	Consultin	ng Labs, Inc.					
Batch ID:	02-7155-0715	Te	est Type:	Survival-Reburi	al		Anal	yst: Jo	e Freas			
Start Date:	21 Sep-21 13;02	Pr	otocol:	EPA/600/R-94/	025 (1994)		Dilue	ent: La	boratory Seav	vater		
Ending Date:	01 Oct-21 13:02	S	oecies:	Echaustorius es	stuarius		Brine	e: No	Not Applicable			
Test Length:	10d 0h	Ta	xon:	Malacostraca			Sour	rce: No	Northwestern Aquatic Scienc Age:			
Sample ID:	17-6438-0700	C	ode:	WGR0921.059	e		Proje	ect: 02	1.APC.01			
Sample Date:	09 Sep-21 15:45	M	aterial:	Sediment			Sour	ce: Bid	assay Repor	t		
Receipt Date:	13 Sep-21 16:00	C	AS (PC):				Stati	on: SE	D-005			
Sample Age:	11d 21h	CI	ient:	WGR Southwe	st Inc.							
Single Compa	arison Summary											
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compar	ison Result		S	
19-1073-9707	Survival Rate	Wilcoxon Rank Sui			wo-Sample	Test	1.0000	100% pa	assed survival rate			
Test Acceptability						TAC	Limits					
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision			
19-1073-9707	Survival Rate		Contro	ol Resp	1	0.9	>>	Yes	Passes Criteria			
Survival Rate	Summary											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	N	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	-	0.00%	
100		5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	-	0.00%	
Survival Rate	Detail						MDS	5: 41B411	82B59AAABF	B2FDAA2	3D11B52E4	
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	1.0000	1.0000	1.0000	1.0000	1.0000						
7		100000000000000000000000000000000000000										
100		1.0000	1.0000		1.0000	1.0000						
*****			1,000		1.0000	1.0000						
Survival Rate			1,0000 Rep 2	1.0000	1.0000 Rep 4	1.0000 Rep 5						
100 Survival Rate Conc-%	Binomials	1.0000		1.0000		Uni 3						

Report Date:

02 Nov-21 11:44 (p 1 of 2)

Test Code/ID: WGR0921.059e / 16-3717-3859

	10-d Survival a	nd Reburia	al Sedimen			Aquat	ic Bioassay &	& Consultin	g Labs, Inc			
Analysis ID: Analyzed: Edit Date:	19-1073-9707 02 Nov-21 11:16 02 Nov-21 11:16	S An	alysis:	Survival Rate Nonparametric- 41B41182B59A			A23D11B5	St	TIS Versio atus Level: litor ID:			
Batch ID:	02-7155-0715	Те	st Type:	Survival-Reburi	al			Ar	alyst: J	oe Freas		
Start Date:	21 Sep-21 13:02	Pr	otocol: E	EPA/600/R-94/	025 (1994)		Di	uent: L	aboratory Sea	water	
Ending Date:	01 Oct-21 13:02	Sp	ecies:	Eohaustorius es	stuarius			Br	ine: N	lot Applicable		
Test Length:	10d 0h	Ta	xon: N	Valacostraca				So	urce: N	orthwestern A	quatic Scie	nc Age:
Sample ID:	17-6438-0700	Co	de: \	NGR0921 059	e			Pr	oject: 0	21.APC.01		
Sample Date:	09 Sep-21 15:45	5 Ma	aterial: 3	Sediment				So	urce: B	ioassay Repo	rt	
Receipt Date:	13 Sep-21 16:00	CA	AS (PC):					St	ation: S	ED-005		
Sample Age:	11d 21h	Cli	ient: \	WGR Southwes	st Inc.							
Data Transfor	m	Alt Hyp					Comparis	on Resul	t			
Angular (Correc	cted)	C>T				= 1	100% pas	sed surviv	al rate endp	oint		
Wilcoxon Ran	k Sum Two-San	nple Test										
Control	vs Conc-%		Test St	at Critical	Ties	DF	P-Type	P-Value	Decisio	n(a:5%)		
Negative Contro	ol 100		27.5	(***)	1	В	Exact	1.0000	Non-Sig	nificant Effec	t	
Test Acceptab	oility Criteria	TAC	Limits									
Attribute	Test Stat		Upper	Overlap	Decisio	n						
Control Resp	1	0.9	>>	Yes	Passes	Crite	eria					
ANOVA Table												
Source	Sum Squ	ares	Mean S	quare	DF		F Stat	P-Value	Decisio	n(α:5%)		
Between	0		0		1				Indeterr	ninate		
Error	0		0		8							
and the second												
Total	0				9							
ANOVA Assun					9							
					9 Test Sta	at (Critical	P-Value	Decisio	οπ(α:1%)		
ANOVA Assun Attribute	nptions Tests Test	Ratio F Tes	t			at (Critical	P-Value	Decision Indeterm			
ANOVA Assun Attribute	nptions Tests Test Variance F	Ratio F Tes /ilk W Norm				at (Critical	P-Value		ninate		
ANOVA Assum Attribute Variance Distribution	nptions Tests Test Variance F Shapiro-W					at (Critical	P-Value	Indeterr	ninate		
ANOVA Assun Attribute Variance	nptions Tests Test Variance F Shapiro-W			95% LCL			Critical Median	P-Value Min	Indeterr	ninate	CV%	%Effect
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-%	nptions Tests Test Variance F Shapiro-W Summary	/ilk W Norn	nality Test	95% LCL 1.0000	Test Sta				Indeterr Indeterr	ninate ninate	CV%	%Effect 0.00%
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-%	Test Variance F Shapiro-W Summary Code	/ilk W Norm	nality Test Mean	20000	Test St			Min	Indeterr Indeterr Max	minate minate Std Err	0.0.0	(050077
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0	Test Variance F Shapiro-W Summary Code	Count 5 5	Mean 1,0000 1,0000	1.0000	95% UC			Min 1.0000	Indeterr Indeterr Max 1.0000	ninate ninate Std Err 0.0000	0.00%	0.00%
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0	rest Test Variance F Shapiro-W Summary Code N	Count 5 5	Mean 1,0000 1,0000	1.0000	95% UC	L		Min 1.0000	Indeterr Indeterr Max 1.0000	ninate ninate Std Err 0.0000	0.00%	0.00%
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre	Test Variance F Shapiro-W Summary Code N ected) Transfore	Count 5 5 med Sumn	Mean 1,0000 1,0000 nary	1.0000	95% UC 1.0000 1.0000	L	Median	Min 1.0000 1.0000	Max 1.0000 1.0000	Std Err 0.0000 0.0000	0.00%	0.00%
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre	Test Variance F Shapiro-W Summary Code N ected) Transfore	Count 5 5 med Sumn Count	Mean 1,0000 1,0000 nary Mean	1,0000 1,0000 95% LCL	95% UC	L	Median	Min 1.0000 1.0000 Min	Max 1.0000 1.0000 Max	Std Err 0.0000 0.0000 Std Err	0.00% 0.00%	0.00% 0.00% %Effect
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0	Test Variance F Shapiro-W Summary Code N ected) Transfore Code N	Count 5 5 med Summ Count 5	Mean 1,0000 1,0000 mary Mean 1,4590	1.0000 1.0000 95% LCL 1.4580	95% UC 1.0000 1.0000 95% UC	L	Median	Min 1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate	Test Variance F Shapiro-W Summary Code N ected) Transfore Code N	Count 5 5 med Summ Count 5	Mean 1,0000 1,0000 mary Mean 1,4590	1.0000 1.0000 95% LCL 1.4580	95% UC 1.0000 1.0000 95% UC	L	Median	Min 1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate	Test Variance F Shapiro-W Summary Code N ected) Transford Code N	Count 5 5 med Summ Count 5 5 5	Mean 1,0000 1,0000 mary Mean 1,4590 1,4590	1.0000 1.0000 95% LCL 1.4580 1.4580	95% UC 1.0000 1.0000 95% UC 1.4590 1.4590	L	Median Median	Min 1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-%	rest Test Variance F Shapiro-W Summary Code N ected) Transford Code N Detail Code	Count 5 5 med Summ Count 5 5 Rep 1	Mean 1,0000 1,0000 mary Mean 1,4590 1,4590 Rep 2	1.0000 1.0000 95% LCL 1.4580 1.4580	95% UC 1.0000 1.0000 95% UC 1.4590 1.4590 Rep 4	L	Median Median Rep 5	Min 1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100 Survival Rate	rest Test Variance F Shapiro-W Summary Code N ected) Transford Code N Detail Code	Count 5 5 7 7 7 7 7 8 7 7 8 7 8 7 8 7 7 8 7 7 8 7	Mean 1,0000 1,0000 mary Mean 1,4590 1,4590 Rep 2 1,0000 1,0000	1.0000 1.0000 95% LCL 1.4580 1.4580 Rep 3 1.0000	95% UC 1.0000 1.0000 95% UC 1.4590 1.4590 Rep 4	L	Median Median Rep 5	Min 1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100 Survival Rate	rests Test Variance F Shapiro-W Summary Code N ected) Transford Code N Detail Code	Count 5 5 7 7 7 7 7 8 7 7 8 7 8 7 8 7 7 8 7 7 8 7	Mean 1,0000 1,0000 mary Mean 1,4590 1,4590 Rep 2 1,0000 1,0000	1.0000 1.0000 95% LCL 1.4580 1.4580 Rep 3 1.0000	95% UC 1.0000 1.0000 95% UC 1.4590 1.4590 Rep 4	L	Median Median Rep 5	Min 1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100 Angular (Corre	Test Variance F Shapiro-W Summary Code N ected) Transford Code N Detail Code N	Count 5 5 med Summ Count 5 5 Rep 1 1.0000 1.0000 med Detail	Mean 1,0000 1,0000 nary Mean 1,4590 1,4590 Rep 2 1,0000 1,0000	1.0000 1.0000 95% LCL 1.4580 1.4580 Rep 3 1.0000 1.0000	95% UC 1.0000 1.0000 95% UC 1.4590 1.4590 Rep 4 1.0000 1.0000	L 1	Median Median Rep 5 1,0000 1,0000	Min 1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%

Analyzed:

Edit Date:

Report Date: Test Code/ID:

02 Nov-21 11:44 (p 2 of 2) WGR0921.059e / 16-3717-3859

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

CETISV1.9.7

Analysis ID: 19-1073-9707 02 Nov-21 11:16 02 Nov-21 11:16

Endpoint: Survival Rate

Analysis: Nonparametric-Two Sample

CETIS Version:

MD5 Hash: 41B41182B59AAABFB2FDAA23D11B52E4

Status Level:

Editor ID: 007-979-628-1

Q QA: Z

007-979-628-1 CETIS™ v1.9.7.7

02 Nov-21 11:44 (p 1 of 1)

Test Code/ID:

WGR0921.059e / 16-3717-3859

								- a v c.d. iz. d. iz. d.			4	
Eohaustorius	10-d Survival ar	nd Reb	urial Sedim	ent Test				Aqu	atic Bioassay 8	Consulti	ng Labs, Inc.	
Batch ID:	02-7155-0715		Test Type:	Survival-Rebui	rial			Analyst:	Joe Freas			
Start Date:	21 Sep-21 13:02	2	Protocol:	EPA/600/R-94	/025 (1994)			Diluent: Laboratory Seawater				
Ending Date:	01 Oct-21 13:02		Species:	Echaustorius e	estuarius			Brine: Not Applicable				
Test Length:	10d 0h		Taxon:	Malacostraca	Malacostraca			Source:	Northwestern A	quatic Scie	enc Age:	
Sample ID:	17-6438-0700		Code:	WGR0921.059	Эе			Project:	021.APC.01			
Sample Date:	09 Sep-21 15:45	j	Material:	Sediment				Source:	Bioassay Repo	rt		
Receipt Date:	13 Sep-21 16:00)	CAS (PC):					Station:	SED-005			
Sample Age:	11d 21h		Client:	WGR Southwe	est Inc.							
Dissolved Oxy	ygen-mg/L								70		7.00	
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count	
0	N	2	10.05	9,415	10.69	10	10.1	0.035	36 0.07073	0.70%	0	
100		2	10,15	9,515	10.79	10.1	10.2	0.035	35 0.0707	0.70%	0	
Overall		4	10.1	9.97	10.23	10	10,2	0.040	82 0.08165	0.81%	0 (0%)	
pH-Units												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count	
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0	
100		2	7.75	7,115	8.385	7.7	7.8	0.035	36 0.07072	0.91%	0	
Overall		4	7.825	7.673	7.977	7.7	7.9	0.047	87 0.09574	1.22%	0 (0%)	
Salinity-ppt												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count	
0	N	2	20	20	20	20	20	0	0	0.00%	0	
100		2	20	20	20	20	20	0	0	0.00%	0	
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)	
Temperature-	°C											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count	
0	N	2	14.85	14.21	15.49	14.8	14.9	0,035	39 0.07077	0.48%	0	
LOS .				10 C E/4	102 301	100	10 (2)(2)	15.655	cal who was the	- 051		

Analyst_ A QA_T

007-979-628-1

100

Overall

2

4

14.85

14.85

14.21

14.76

15.49

14.94

14.8

14.8

14.9

14.9

0.03539

0.02887

0.07077

0.05773

0.48%

0.39%

0

0 (0%)

CETIS™ v1.9.7.7

November 2, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT:

WGR Southwest, Inc.

SAMPLE I.D.:

SED-006

DATE RECEIVED:

9/13/2021

ABC LAB. NO .:

WGR1021.060

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 %

EC50 = >100.00%

Yours very truly,

M Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

02 Nov-21 11:44 (p 1 of 1)

Test Code/ID: WGR0921.060e / 01-4298-0789

							rest	Code/ID:	WGRUS	1/ 9000.126	J1-4290-U/05
Eohaustorius	10-d Survival an	d Rebur	ial Sedime	ent Test				Aquatio	Bioassay &	Consultin	g Labs, Inc.
Batch ID:	07-8930-3274	T	est Type:	Survival-Reburi	al		Anal	yst: Jo	e Freas		
Start Date:	21 Sep-21 13:03	P	rotocol:	EPA/600/R-94/	025 (1994)		Dilue	ent: La	poratory Seav	vater	
Ending Date:	01 Oct-21 13:03	S	pecies:	Eohaustorius es	stuarius		Brine:		Not Applicable		
Test Length:	10d 0h	T	axon:	Malacostraca			Sour	rce: No	Northwestern Aquatic Scienc Age		
Sample ID:	09-5071-1228	С	ode:	WGR0921.060	e		Project: 021.APC.01				
Sample Date:	09 Sep-21 10:25	M	laterial:	Sediment			Sour	rce: Bio	assay Repor		
Receipt Date:	13 Sep-21 16:00	C	AS (PC):				Stati	on: SE	D-006		
Sample Age:	12d 3h	C	lient:	WGR Southwes							
Single Compa	rison Summary										
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compari	son Result		S
19-6872-9929	Survival Rate		Wilcoxon Rank Sum Two-Sample Test 0.5000 100% passed survival rate						rate		
Test Acceptat	oility					TAC	Limits				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision		
19-6872-9929	Survival Rate		Contro	ol Resp	1	0.9	>>	Yes	Passes C	riteria	
Survival Rate	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	1.0000	1,0000	1.0000	1.0000	1.0000	0.0000	0.0000	· ·	0.00%
100		5	0.990	0.9622	1.0180	0.9500	1.0000	0.0100	0.0224	2.26%	1.00%
Survival Rate	Detail					4.7	MD	5: 15A6E9	300CFE050D	39B6D7C5	6B2CBB62
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	1.0000	1.0000	1,0000	1.0000	1.0000					
100		0.9500	1.0000	1,0000	1.0000	1,0000					
	Binomials										
Survival Rate											
	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
Survival Rate Conc-%	Code N	Rep 1 20/20	Rep 2 20/20	Rep 3 20/20	Rep 4 20/20	Rep 5 20/20					

007-979-628-1 CETIS™ v1.9.7.7

02 Nov-21 11:44 (p 1 of 2)

W. 7		
Test	Code/ID:	

	The Part of Section 10 to 10 t	
WGR0921	.060e / 01-4298-07	189

Collanstolins	10-d	Survival an	d Rebui	rial Sedime	ent Test				Aqu	atic B	lioassay 8	Consultin	ng Labs, Ind
Analysis ID: Analyzed: Edit Date:	02 N	372-9929 ov-21 11:19 ov-21 11:19		indpoint: inalysis: MD5 Hash:	Survival Rate Nonparametr 15A6E93000	ic-Two Sampl		s	ETIS Vers tatus Leve ditor ID:		CETISy 1 007-979		
Batch ID: Start Date: Ending Date:	07-89 21 Se	930-3274 ep-21 13:03	7 P		Survival-Rebi EPA/600/R-9 Eohaustorius	urial 4/025 (1994)	2,00002	A	nalyst: iluent: rine:				
Test Length:				axon:	Malacostraca				ource:		A Committee of	quatic Scie	nc Age:
Sample ID:		071-1228		ode:	WGR0921.0	50e		P	roject:				
Sample Date: Receipt Date: Sample Age:	13 \$6	ep-21 16:00	C	Material: CAS (PC): Client:	Sediment WGR Southv	vest Inc.			ource: tation:	Bioas SED	ssay Repor -006	t	
Data Transfor	m		Alt Hy	n			Compari	son Resi	ılt		-		PMSD
Angular (Corre			C>T	-					val rate end	dpoint			2.36%
Wilcoxon Ran	k Sun	n Two-Sam	ple Test										
Control	VS	Conc-%		Test S	tat Critical	Ties D	F P-Type	P-Valu	e Decis	sion(o	(:5%)		
Negative Contr	ol	100		25	-	1 8	Exact	0,5000		_	cant Effect		
Test Acceptat	oility (Criteria	TA	C Limits									
Attribute	•	Test Stat	Lower	Upper	Overlag	Decision							
Control Resp		1	0.9	>>	Yes	Passes C				_			
ANOVA Table		-								_			
Source		Sum Squa	res	Mean	Square	DF	F Stat	P-Valu	e Decis	sion(a	(:5%)		
Between		0.0012877		0.0012		1	1	0,3466		-	cant Effect	-	-
Error		0.0102014		0.0012	877	8							
		0.0103014		0.00	.011	4 14 44 44							
	= 1	0.0103014		3.50 (1	.5.(1)	9	_						
Total	nptior	0.0115891											_
Total ANOVA Assun	nption	0.0115891				9	Critical	P-Valu	e Decis	sion(a	::1%)		
Total ANOVA Assun Attribute	nption	0.0115891 ns Tests Test					Critical	P-Valu 0.0285		sion(d			
Total ANOVA Assun Attribute	nptior	0.0115891 ns Tests	uality of \	/ariance Te y of Varianc	st	9 Test Stat	- F-27.7.2.2.X		Equa Equa		nces		
Total ANOVA Assun Attribute Variance	nption	0.0115891 ns Tests Test Levene Equ Mod Leven	uality of \ e Equalit atio F Te	/ariance Te y of Variand	st	9 Test Stat 7.111	11.26	0.0285	Equa Equa Indete	l Varia I Varia ermina	nces	on	
Total ANOVA Assur Attribute Variance	nptior	0.0115891 ns Tests Test Levene Equation Mod Levene Roman Variance R	uality of \ e Equalit atio F Te Darling A	/ariance Te y of Variance st 2 Test	st	9 Test Stat 7.111	11.26 13.75	0.0285 0.3559	Equa Equa Indete 05 Non-I	l Varia I Varia ermina Norma	inces inces ate		
Total ANOVA Assur Attribute Variance	nption	0.0115891 ns Tests Test Levene Equ Mod Leven Variance R Anderson-I D'Agostino Kolmogoro	uality of \ e Equalit atio F Te Darling A Skewner v-Smirno	/ariance Te y of Variand st 2 Test ss Test y D Test	st ce Test	9. Test Stat 7.111 1 1.796 3.335 0.4	11.26 13.75 3.878 2.576 0.3025	0.0285 0.3559 <1.0E- 0.0009 6.1E-0	Equa Equa Indete 05 Non-I Non-I 5 Non-I	I Varia I Varia ermina Norma Norma Norma	inces inces ite il Distributi il Distributi il Distributi	on on	
Total ANOVA Assur Attribute Variance	nption	0.0115891 ns Tests Test Levene Equ Mod Leven Variance R Anderson-I D'Agostino	uality of \ e Equalit atio F Te Darling A Skewner v-Smirno	/ariance Te y of Variand st 2 Test ss Test y D Test	st ce Test	9. Test Stat 7.111 1.796 3.335	11.26 13.75 3.878 2.576	0.0285 0.3559 <1.0E- 0.0009	Equa Equa Indete 05 Non-I Non-I 5 Non-I	I Varia I Varia ermina Norma Norma Norma	inces inces ate il Distributi il Distributi	on on	
Total ANOVA Assur Attribute Variance Distribution		0.0115891 ns Tests Test Levene Eqi Mod Leven Variance R Anderson-I D'Agostino Kolmogoro Shapiro-W	uality of \ e Equalit atio F Te Darling A Skewner v-Smirno	/ariance Te y of Variand st 2 Test ss Test y D Test	st ce Test	9. Test Stat 7.111 1 1.796 3.335 0.4	11.26 13.75 3.878 2.576 0.3025	0.0285 0.3559 <1.0E- 0.0009 6.1E-0	Equa Equa Indete 05 Non-I Non-I 5 Non-I	I Varia I Varia ermina Norma Norma Norma	inces inces ite il Distributi il Distributi il Distributi	on on	
Total ANOVA Assur Attribute Variance Distribution Survival Rate		0.0115891 ns Tests Test Levene Eqi Mod Leven Variance R Anderson-I D'Agostino Kolmogoro Shapiro-W	uality of \ e Equalit atio F Te Darling A Skewner v-Smirno	/ariance Te y of Variand st 2 Test ss Test y D Test	st ce Test	9. Test Stat 7.111 1.796 3.335 0.4 0.6247	11.26 13.75 3.878 2.576 0.3025	0.0285 0.3559 <1.0E- 0.0009 6.1E-0	Equa Equa Indete 05 Non-I Non-I 5 Non-I	I Varia I Varia ermina Norma Norma Norma	inces inces ite il Distributi il Distributi il Distributi	on on	%Effect
Total ANOVA Assur Attribute Variance Distribution Survival Rate Conc-% 0		0.0115891 ns Tests Test Levene Equation Mod Levene Variance R Anderson-I-D'Agostino Kolmogorov Shapiro-Wi	uality of \ e Equality atio F Te Darling A Skewne: v-Smirno ilk W Nor	/ariance Te y of Variance st 2 Test ss Test y D Test rmality Test Mean 1.0000	95% LC	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000	11.26 13.75 3.878 2.576 0.3025 0.7411	0.0285 0.3559 <1.0E- 0.0009 6.1E-0 0.0001 Min 1.0000	Equa Equa Indete 05 Non-I Non-I Max 1.000	I Varia I Varia I Varia Norma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Distributi Std Err 0.0000	cv%	0.00%
Total ANOVA Assur Attribute Variance Distribution Survival Rate Conc-% 0 100	Sumn	0.0115891 ns Tests Test Levene Equation Mod Levene Variance R Anderson-i D'Agostino Kolmogoror Shapiro-Winary Code N	uality of \ e Equalit atio F Te Darling A Skewner v-Smirno ilk W Nor Count 5	/ariance Te y of Variance st 2 Test ss Test y D Test rmality Test Mean 1.0000 0.9900	95% LC	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247	11.26 13.75 3.878 2.576 0.3025 0.7411	0.0285 0.3559 <1.0E- 0.0009 6.1E-0 0.0001 Min	Equa Equa Indete 05 Non-I Non-I Max 1.000	I Varia I Varia I Varia Norma Norma Norma	inces inces ate il Distributi il Distributi il Distributi il Distributi	on on on CV%	
Total ANOVA Assurd Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre	Sumn	0.0115891 ns Tests Test Levene Eqi Mod Leven Variance R Anderson-I D'Agostino Kolmogoro Shapiro-W nary Code N	uality of \ e Equalit atio F Te Darling A Skewnee v-Smirno lik W Noi Count 5 5	/ariance Te y of Variance st 2 Test ss Test y D Test rmality Test Mean 1.0000 0.9900	95% LC 0 1.0000 0 0.9622	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000 1.0000	11.26 13.75 3.878 2.576 0.3025 0.7411 Median	0.0285 0.3559 <1.0E- 0.0009 6.1E-0 0.0001 Min 1.0000 0.9500	Equa Equa Indete 05 Non-I Non-I Max 1.000 1.000	I Varia I Varia I Varia Norma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Std Err 0.0000 0.0100	CV% 0.00% 2.26%	0.00% 1.00%
Total ANOVA Assurd Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Correct Conc-%	Sumn	0.0115891 ns Tests Test Levene Equal Mod Leven Variance R Anderson-I D'Agostino Kolmogoro Shapiro-W nary Code N Transform Code	uality of \ e Equalit atio F Te Darling A Skewner v-Smirno filk W Nor Count 5 5 med Sum Count	/ariance Te y of Variance st 2 Test ss Test v D Test rmality Test Mean 1.0000 0.9900 mary Mean	95% LC 95% LC 95% LC	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000 1.0000	11.26 13.75 3.878 2.576 0.3025 0.7411 Median	0.0285 0.3559 <1.0E-0.0009 6.1E-0.0001 Min 1.0000 0.9500	Equa Equa Indete 05 Non-I Non-I Max 1.000 1.000	I Varia I Varia I Varia Porma Norma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Distributi Std Err 0.0000 0.0100	CV% 0.00% 2.26%	0.00% 1.00% %Effect
Total ANOVA Assum Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-%	Sumn	0.0115891 ns Tests Test Levene Eqi Mod Leven Variance R Anderson-I D'Agostino Kolmogoro Shapiro-W nary Code N	uality of \ e Equalit atio F Te Darling A Skewnee v-Smirno lik W Noi Count 5 5	/ariance Te y of Variance st 2 Test ss Test y D Test rmality Test Mean 1.0000 0.9900	95% LC 0 1.0000 0 0.9622 95% LC 0 1.4580	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000 1.0000	11.26 13.75 3.878 2.576 0.3025 0.7411 Median	0.0285 0.3559 <1.0E- 0.0009 6.1E-0 0.0001 Min 1.0000 0.9500	Equa Equa Indete 05 Non-I Non-I Max 1.000 Max 1.459	I Varia I Varia I Varia I Varia I Varia I Varia I Vorma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Std Err 0.0000 0.0100	CV% 0.00% 2.26%	0.00% 1.00%
Total ANOVA Assurd Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100	Summ	0.0115891 ns Tests Test Levene Eqi Mod Leven Variance R Anderson-I D'Agostino Kolmogoro Shapiro-W nary Code N Transforn Code N	uality of \ e Equalit atio F Te Darling A Skewner v-Smirno filk W Nor Count 5 5 ned Sum Count 5	/ariance Te y of Variance st 2 Test ss Test v D Test rmality Test Mean 1.0000 0.9900 mary Mean 1.4590	95% LC 0 1.0000 0 0.9622 95% LC 0 1.4580	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000 1.0000	11.26 13.75 3.878 2.576 0.3025 0.7411 Median	0.0285 0.3559 <1.0E-0.0009 6.1E-0.0001 Min 1.0000 0.9500 Min 1.4590	Equa Equa Indete 05 Non-I Non-I Max 1.000 Max 1.459	I Varia I Varia I Varia I Varia I Varia I Varia I Vorma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Distributi il Distributi Std Err 0.0000 0.0100 Std Err 0.0000	CV% 0.00% 2.26%	0.00% 1.00% %Effect 0.00%
Total ANOVA Assurd Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate	Summ	0.0115891 ns Tests Test Levene Eqi Mod Leven Variance R Anderson-I D'Agostino Kolmogoro Shapiro-W nary Code N Transforn Code N	uality of \ e Equalit atio F Te Darling A Skewner v-Smirno filk W Nor Count 5 5 ned Sum Count 5	/ariance Te y of Variance st 2 Test ss Test v D Test rmality Test Mean 1.0000 0.9900 mary Mean 1.4590	95% LC 0 1.0000 0 0.9622 95% LC 0 1.4580	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000 1.0000	11.26 13.75 3.878 2.576 0.3025 0.7411 Median	0.0285 0.3559 <1.0E-0.0009 6.1E-0.0001 Min 1.0000 0.9500 Min 1.4590	Equa Equa Indete 05 Non-I Non-I Max 1.000 Max 1.459	I Varia I Varia I Varia I Varia I Varia I Varia I Vorma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Distributi il Distributi Std Err 0.0000 0.0100 Std Err 0.0000	CV% 0.00% 2.26%	0.00% 1.00% %Effect 0.00%
Total ANOVA Assurd Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-%	Summ	0.0115891 ns Tests Test Levene Equation Mod Leven Variance R Anderson-I D'Agostino Kolmogoror Shapiro-Wi nary Code N Transform Code N	Lality of \ e Equalit atio F Te Darling A Skewner v-Smirno filk W Nor Count 5 5 med Sum Count 5 5	/ariance Te y of Variance st 2 Test ss Test v D Test rmality Test Mean 1.0000 0.9900 mary Mean 1.4590 1.4360	95% LC 0 1.0000 0 0.9622 95% LC 0 1.4580 1 3730	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000 1.0000 L 95% UCL 1.4590 1.4990	11.26 13.75 3.878 2.576 0.3025 0.7411 Median	0.0285 0.3559 <1.0E-0.0009 6.1E-0.0001 Min 1.0000 0.9500 Min 1.4590	Equa Equa Indete 05 Non-I Non-I Max 1.000 Max 1.459	I Varia I Varia I Varia I Varia I Varia I Varia I Vorma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Distributi il Distributi Std Err 0.0000 0.0100 Std Err 0.0000	CV% 0.00% 2.26%	0.00% 1.00% %Effect 0.00%
Total ANOVA Assurd Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100 Survival Rate Conc-%	Summ	0.0115891 ns Tests Test Levene Equation Mod Levene Variance R Anderson-I D'Agostino Kolmogoror Shapiro-Winary Code N Transform Code N	Lality of \ e Equalit atio F Te Darling A Skewner v-Smirno lik W Noo Count 5 5 ned Sum Count 5 5 Rep 1	/ariance Te y of Variance st 2 Test ss Test v D Test rmality Test Mean 1.0000 0.9900 mary Mean 1.4590 1.4360 Rep 2	95% LC 0 1.0000 0 0.9622 95% LC 0 1.4580 1 1.3730 Rep 3	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000 1.0000 L 95% UCL 1.4590 1.4990 Rep 4	11.26 13.75 3.878 2.576 0.3025 0.7411 Median	0.0285 0.3559 <1.0E-0.0009 6.1E-0.0001 Min 1.0000 0.9500 Min 1.4590	Equa Equa Indete 05 Non-I Non-I Max 1.000 Max 1.459	I Varia I Varia I Varia I Varia I Varia I Varia I Vorma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Distributi il Distributi Std Err 0.0000 0.0100 Std Err 0.0000	CV% 0.00% 2.26%	0.00% 1.00% %Effect 0.00%
Total ANOVA Assurd Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100 Survival Rate Conc-% 0 100	Summer state of the state of th	0.0115891 ns Tests Test Levene Eqi Mod Leven Variance R Anderson-I D'Agostino Kolmogoror Shapiro-Wi nary Code N Transform Code N	Lality of Ne Equality atio F Te Darling A Skewner V-Smirno Ilk W Nor 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	/ariance Te y of Variance st 2 Test ss Test v D Test rmality Test Mean 1.0000 0.9900 mary Mean 1.4590 1.4360 Rep 2 1.0000 1.0000	95% LC 0 1.0000 0 0.9622 95% LC 0 1.4580 1 1.3730 Rep 3	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000 1.0000 L 95% UCL 1.4590 1.4990 Rep 4 1.0000	11.26 13.75 3.878 2.576 0.3025 0.7411 Median Median	0.0285 0.3559 <1.0E-0.0009 6.1E-0.0001 Min 1.0000 0.9500 Min 1.4590	Equa Equa Indete 05 Non-I Non-I Max 1.000 Max 1.459	I Varia I Varia I Varia I Varia I Varia I Varia I Vorma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Distributi il Distributi Std Err 0.0000 0.0100 Std Err 0.0000	CV% 0.00% 2.26%	0.00% 1.00% %Effect 0.00%
Total ANOVA Assurd Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre	Summer state of the state of th	0.0115891 ns Tests Test Levene Eqi Mod Leven Variance R Anderson-I D'Agostino Kolmogoror Shapiro-Wi nary Code N Transform Code N	Lality of Ne Equality atio F Te Darling A Skewner V-Smirno Ilk W Nor 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	/ariance Te y of Variance st 2 Test ss Test v D Test rmality Test Mean 1.0000 0.9900 mary Mean 1.4590 1.4360 Rep 2 1.0000 1.0000	95% LC 0 1.0000 0 0.9622 95% LC 0 1.4580 1.3730 Rep 3 1.0000 1.0000	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000 1.0000 Rep 4 1.0000 1.0000	11.26 13.75 3.878 2.576 0.3025 0.7411 Median Median	0.0285 0.3559 <1.0E-0.0009 6.1E-0.0001 Min 1.0000 0.9500 Min 1.4590	Equa Equa Indete 05 Non-I Non-I Max 1.000 Max 1.459	I Varia I Varia I Varia I Varia I Varia I Varia I Vorma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Distributi il Distributi Std Err 0.0000 0.0100 Std Err 0.0000	CV% 0.00% 2.26%	0.00% 1.00% %Effect 0.00%
Total ANOVA Assurd Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Angular (Corre	Summer state of the state of th	O.0115891 Ins Tests Test Levene Eqi Mod Leven Variance R Anderson-I D'Agostino Kolmogoro Shapiro-W Inary Code N Code N Code N Transform Code N	count 5 Count 5 Rep 1 1.0000 0.9500	/ariance Te y of Variance st 2 Test ss Test v D Test rmality Test Mean 1.0000 0.9900 mary Mean 1.4590 1.4360 Rep 2 1.0000 1.0000	95% LC 1.0000 0.9622 95% LC 1.4580 1.3730 Rep 3 1.0000 1.0000	9 Test Stat 7.111 1 1.796 3.335 0.4 0.6247 L 95% UCL 1.0000 1.0000 L 95% UCL 1.4590 1.4990 Rep 4 1.0000	11.26 13.75 3.878 2.576 0.3025 0.7411 Median Median Rep 5 1.0000 1.0000	0.0285 0.3559 <1.0E-0.0009 6.1E-0.0001 Min 1.0000 0.9500 Min 1.4590	Equa Equa Indete 05 Non-I Non-I Max 1.000 Max 1.459	I Varia I Varia I Varia I Varia I Varia I Varia I Vorma Norma Norma	inces inces ite il Distributi il Distributi il Distributi il Distributi il Distributi Std Err 0.0000 0.0100 Std Err 0.0000	CV% 0.00% 2.26%	0.00% 1.00% %Effect 0.00%

Report Date:

02 Nov-21 11:44 (p 2 of 2)

Test Code/ID:

WGR0921.060e / 01-4298-0789

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 19-6872-9929 Analyzed: 02 Nov-21 11:1

Edit Date:

02 Nov-21 11:19 02 Nov-21 11:19 Endpoint: Survival Rate

Analysis: Nonparametric-Two Sample

MD5 Hash: 15A6E9300CFE050D39B6D7C56B2CBB62

CETIS Version: Status Level:

Editor ID:

007-979-628-1

CETISv1.9.7

02 Nov-21 11:44 (p 1 of 1)

Test Code/ID:

WGR0921.060e / 01-4298-0789

Editidatorias 10 a cartiful dia Repartal ocument 163t	Eohaustorius	10-d Survival an	nd Reburial Sediment	Test
---	--------------	------------------	----------------------	------

Aquatic Bioassay & Consulting Labs, Inc.

Batch ID:	07-8930-3274	Test Type:	Survival-Reburial	Analyst:	Joe Freas
Start Date:	21 Sep-21 13:03	Protocol:	EPA/600/R-94/025 (1994)	Diluent:	Laboratory Seawater
Ending Date:	01 Oct-21 13:03	Species:	Eohaustorius estuarius	Brine:	Not Applicable
Test Length:	10d 0h	Taxon:	Malacostraca	Source:	Northwestern Aquatic Scienc Age:

 Sample ID:
 09-5071-1228
 Code:
 WGR0921.060e
 Project:
 021.APC.01

 Sample Date:
 09 Sep-21 10:25
 Material:
 Sediment
 Source:
 Bioassay Report

 Receipt Date:
 13 Sep-21 16:00
 CAS (PC):
 Station:
 SED-006

Sample Age: 12d 3h Client: WGR Southwest Inc.

Dissolved	Oxygen-mg/L
DISSUIVEG	CAYGOTTINGE

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	10.05	9.415	10.69	10	10.1	0.03536	0.07073	0.70%	0
100		2	10.15	9.515	10.79	10.1	10.2	0,03535	0.0707	0.70%	0
Overall		4	10.1	9.97	10.23	10	10.2	0.04082	0.08165	0.81%	0 (0%)

pH-Units

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0,00%	0
100		2	7.8	6.529	9.071	7.7	7.9	0.07071	0.1414	1.81%	0
Overall		4	7.85	7.691	8.009	7.7	7.9	0.05	0.1	1.27%	0 (0%)

Salinity-ppt

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
100		2	20	20	20	20	20	0	0	0.00%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)

Temperature-°C

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.85	14.21	15.49	14.8	14.9	0.03539	0.07077	0.48%	0
100		2	14.85	14.21	15.49	14.8	14.9	0.03539	0.07077	0.48%	0
Overall		4	14.85	14.76	14.94	14.8	14.9	0.02887	0.05773	0.39%	0 (0%)

Analyst, A QA Z

007-979-628-1 CETIS™ v1.9.7.7

November 2, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-007
DATE RECEIVED: 9/13/2021
ABC LAB. NO.: WGR1021.061

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours very truly,

Scott Johnson

Laboratory Director

02 Nov-21 11:45 (p 1 of 1)

Test Code/ID: WGR0921.061e / 18-3199-4422

							rest	Code/ID:	WGRUS	321.061e7	18-3199-442
Eohaustorius	10-d Survival an	d Reburia	al Sedime	ent Test				Aquatic	Bioassay &	Consultir	ng Labs, Inc.
Batch ID:	09-6416-4429	Te	st Type:	Survival-Reburi	al		Anal	lyst: Joe	Freas		
Start Date:	21 Sep-21 13:04	Pr	otocol:	EPA/600/R-94/	025 (1994)		Dilu	ent: Lab	oratory Seav	vater .	
Ending Date:	01 Oct-21 13:04	Sp	ecies:	Eohaustorius es	stuarius		Brin	e; Not	Applicable		
Test Length:	10d 0h	Ta	xon:	Malacostraca			Sou	rce: Nor	thwestern Ad	quatic Scie	nc Age:
Sample ID:	01-7535-3971	Co	de:	WGR0921.061	e		Proj	ect: 021	.APC,01		
Sample Date:	09 Sep-21 11:30	Ma	iterial:	Sediment			Sou	rce: Bio	assay Report	t	
Receipt Date:	13 Sep-21 16:00	CA	S (PC):				Stati	ion: SE	D-007		
Sample Age:	12d 2h	Cli	ent:	WGR Southwes	st Inc.						
Single Compa	rison Summary										
Analysis ID	Endpoint		Comp	arison Method			P-Value	Comparis	son Result		- 13
03-2868-0927	Survival Rate		Wilco	kon Rank Sum T	wo-Sample	Γest	1.0000	100% pas	sed survival	rate	
Test Acceptat	oility					TAC	Limits				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision		
03-2868-0927	Survival Rate		Contro	ol Resp	1	0.9	>>	Yes	Passes C	riteria	
Survival Rate	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	***	0.00%
100		5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000		0.00%
Survival Rate	Detail					20.0	MD	5: 41B4118	2B59AAABF	B2FDAA2	3D11B52E4
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	1.0000	1.0000	1.0000	1.0000	1.0000					
100		1.0000	1.0000	1.0000	1.0000	1.0000					
Survival Rate	Binomials										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	20/20	20/20	20/20	20/20	20/20					
100		20/20	20/20	20/20	20/20	20/20					

Report Date:

02 Nov-21 11:45 (p 1 of 2)

Test Code/ID: WGR0921.061e / 18-3199-4422

	10-d	Survival ar	nd Reburia	I Sedime	nt Test				Aquatio	c Bioassay &	Consultin	g Labs, Inc
Analysis ID: Analyzed: Edit Date:	02 N	868-0927 lov-21 11:23 lov-21 11:23	An	dpoint: alysis: 5 Hash:	Survival Rate Nonparametric- 41B41182B59A			Stat	'IS Versior us Level: or ID;	1 CETISv1 1 007-979		
Batch ID:	09-6	416-4429	Tes	st Type:	Survival-Reburi	al		Ana	lyst: Jo	e Freas		
Start Date:	21 S	ep-21 13:04	Pro	tocol:	EPA/600/R-94/	025 (1994)		Dilu	ent: La	boratory Seav	vater	
Ending Date:	01 0	ct-21 13:04	Sp	ecies:	Eohaustorius e	stuarius		Brin	e: No	ot Applicable		
Test Length:	10d	Oh	Tax	con:	Malacostraca			Sou	rce: No	orthwestern A	quatic Scien	nc Age:
Sample ID:	01-7	535-3971	Co	de:	WGR0921.061	e		Proj	ect: 02	21.APC.01		
Sample Date:	09 S	ep-21 11:30	Ma	terial:	Sediment			Sou	rce: Bi	oassay Repor	t	
Receipt Date:	13 S	ep-21 16:00	CA	S (PC):				Stat	ion: SE	ED-007		
Sample Age:	12d	2h	Cli	ent:	WGR Southwe	st Inc.						
Data Transfor	m		Alt Hyp				Compariso	n Result				
Angular (Corre	cted)		C > T				100% passe	ed survival	rate endpo	int		
Wilcoxon Ran	k Su	m Two-Sam	ple Test									
Control	vs	Conc-%		Test S	tat Critical	Ties Di	P-Type	P-Value	Decision	n(a:5%)		
Negative Contro	ol	100		27.5		1 8	Exact	1.0000	Non-Sign	nificant Effect		
Test Acceptab	oility	Criteria	TAC	Limits					1272			
Attribute		Test Stat		Upper	Overlap	Decision						
Control Resp		1	0.9	>>	Yes	Passes C	riteria					
ANOVA Table												
Source		Sum Squa	ires	Mean	Square	DF	F Stat	P-Value	Decision	n(a:5%)		
Between		0		0		1			Indeterm	inate		
Error		0		0		8						
Total		0				9	_					
		O.				3						
ANOVA Assun	nptio	2		-		3						
	nptio	2				Test Stat	Critical	P-Value	Decision	n(a:1%)		
Attribute	nptio	ns Tests Test	atio F Test			Control S	Critical	P-Value	Decision			
Attribute Variance	nptio	ns Tests Test Variance R	atio F Test			Control S	Critical	P-Value		inate		
Attribute Variance Distribution		ns Tests Test Variance R Shapiro-W			1	Control S	Critical	P-Value	Indeterm	inate		
Attribute Variance Distribution Survival Rate		ns Tests Test Variance R Shapiro-W			95% LCL	Control S		P-Value Min	Indeterm	inate	CV%	%Effect
Attribute Variance Distribution Survival Rate Conc-%		ns Tests Test Variance R Shapiro-W	ilk W Norm	ality Test	95% LCL	Test Stat			Indeterm Indeterm	ninate ninate	CV%	%Effect 0.00%
Attribute Variance Distribution Survival Rate Conc-%		ns Tests Test Variance R Shapiro-W mary Code	ilk W Norm	ality Test Mean	95% LCL	Test Stat		Min	Indeterm Indeterm Max	ninate ninate Std Err		A.C
Attribute Variance Distribution Survival Rate Conc-%	Sumi	ns Tests Test Variance R Shapiro-W mary Code N	Count 5 5	Mean 1.0000	95% LCL	95% UCL		Min 1.0000	Indeterm Indeterm Max 1,0000	sinate sinate Std Err 0.0000	0.00%	0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre	Sumi	ns Tests Test Variance R Shapiro-W mary Code N	Count 5 5	Mean 1.0000	95% LCL	95% UCL	Median	Min 1.0000	Indeterm Indeterm Max 1,0000	sinate sinate Std Err 0.0000	0.00%	0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre	Sumi	ns Tests Test Variance R Shapiro-W mary Code N Transform	Count 5 5 ned Summ	Mean 1.0000 1.0000	95% LCL 95% LCL	95% UCL 1,0000 1,0000	Median	Min 1.0000 1.0000	Max 1,0000 1,0000	Std Err 0,0000 0.0000	0.00%	0.00% 0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre	Sumi	ns Tests Test Variance R Shapiro-W mary Code N Transform Code	Count 5 5 ned Summ	Mean 1.0000 1.0000 ary Mean	95% LCL 1.0000 1.0000 95% LCL 1.4580	95% UCL 1.0000 1.0000	Median	Min 1.0000 1.0000	Max 1,0000 1,0000 Max	Std Err 0,0000 0.0000 Std Err	0.00% 0.00%	0.00% 0.00% %Effect
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100	Sumi	ns Tests Test Variance R Shapiro-W mary Code N Transform Code N	Count 5 5 need Summ Count 5	Mean 1.0000 1.0000 ary Mean 1.4590	95% LCL 1.0000 1.0000 95% LCL 1.4580	95% UCL 1.0000 1.0000 95% UCL 1.4590	Median	Min 1.0000 1.0000 Min 1.4590	Max 1,0000 1,0000 Max 1,4590	Std Err 0,0000 0,0000 Std Err 0,0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
Attribute Variance Distribution Survival Rate Conc-% 100 Angular (Corre Conc-%) 100 Survival Rate	Sumi	ns Tests Test Variance R Shapiro-W mary Code N Transform Code N	Count 5 5 need Summ Count 5	Mean 1.0000 1.0000 ary Mean 1.4590	95% LCL 1.0000 1.0000 95% LCL 1.4580 1.4580	95% UCL 1.0000 1.0000 95% UCL 1.4590	Median	Min 1.0000 1.0000 Min 1.4590	Max 1,0000 1,0000 Max 1,4590	Std Err 0,0000 0,0000 Std Err 0,0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
Attribute Variance Distribution Survival Rate Conc-% 100 Angular (Corre Conc-% 1100 Survival Rate Conc-% Conc-% Conc-% Conc-% Conc-% Conc-% Conc-% Conc-% Conc-%	Sumi	ns Tests Test Variance R Shapiro-W mary Code N Transform Code N	Count 5 5 ned Summ Count 5 5 5	Mean 1.0000 1.0000 ary Mean 1.4590	95% LCL 1.0000 1.0000 95% LCL 1.4580 1.4580 Rep 3	95% UCL 1.0000 1.0000 95% UCL 1.4590 1.4590	Median Median	Min 1.0000 1.0000 Min 1.4590	Max 1,0000 1,0000 Max 1,4590	Std Err 0,0000 0,0000 Std Err 0,0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate	Sumi	ns Tests Test Variance R Shapiro-W mary Code N Transform Code N	Count 5 5 ned Summ Count 5 5 Rep 1	Mean 1,0000 1,0000 ary Mean 1,4590 1,4590 Rep 2	95% LCL 1.0000 1.0000 95% LCL 1.4580 1.4580 Rep 3	95% UCL 1,0000 1,0000 95% UCL 1,4590 1,4590 Rep 4	Median Median Rep 5	Min 1.0000 1.0000 Min 1.4590	Max 1,0000 1,0000 Max 1,4590	Std Err 0,0000 0,0000 Std Err 0,0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100	Sumi	ns Tests Test Variance R Shapiro-W mary Code N Transform Code N Code N	Count 5 5 5 med Summ 5 5 5 Fep 1 1.0000 1.0000	Mean 1.0000 1.0000 ary Mean 1.4590 1.4590 Rep 2	95% LCL 1.0000 1.0000 95% LCL 1.4580 1.4580 Rep 3	95% UCL 1.0000 1.0000 95% UCL 1.4590 1.4590 Rep 4	Median Median Rep 5 1.0000	Min 1.0000 1.0000 Min 1.4590	Max 1,0000 1,0000 Max 1,4590	Std Err 0,0000 0,0000 Std Err 0,0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100 Angular (Corre	Sumi	ns Tests Test Variance R Shapiro-W mary Code N Transform Code N Code N	Count 5 5 ned Summ Count 5 5 Rep 1 1.0000 1.0000 ned Detail	Mean 1,0000 1,0000 ary Mean 1,4590 1,4590 Rep 2 1,0000 1,0000	95% LCL 1.0000 95% LCL 1.4580 1.4580 Rep 3 1.0000	95% UCL 1.0000 1.0000 95% UCL 1.4590 1.4590 Rep 4	Median Rep 5 1.0000 1.0000	Min 1.0000 1.0000 Min 1.4590	Max 1,0000 1,0000 Max 1,4590	Std Err 0,0000 0,0000 Std Err 0,0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
ANOVA Assurd Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Angular (Corre	Sumi	ns Tests Test Variance R Shapiro-W mary Code N Transform Code N Code N	Count 5 5 5 med Summ 5 5 5 Fep 1 1.0000 1.0000	Mean 1.0000 1.0000 ary Mean 1.4590 1.4590 Rep 2	95% LCL 1.0000 95% LCL 1.4580 1.4580 Rep 3 1.0000 Rep 3	95% UCL 1.0000 1.0000 95% UCL 1.4590 1.4590 Rep 4 1.0000 1.0000	Median Median Rep 5 1.0000	Min 1.0000 1.0000 Min 1.4590	Max 1,0000 1,0000 Max 1,4590	Std Err 0,0000 0,0000 Std Err 0,0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%

Analyst 0 OA

007-979-628-1

CETIS™ v1.9.7.7

Report Date:

02 Nov-21 11:45 (p 2 of 2)

Test Code/ID:

WGR0921.061e / 18-3199-4422

Eohaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 03-2868-0927 Analyzed:

02 Nov-21 11:23

Endpoint: Survival Rate

CETIS Version:

Status Level:

CETISv1.9.7

Edit Date:

02 Nov-21 11:23

Analysis: Nonparametric-Two Sample

MD5 Hash: 41B41182B59AAABFB2FDAA23D11B52E4 Editor ID:

007-979-628-1

02 Nov-21 11:45 (p 1 of 1)

Test Code/ID:

WGR0921 061e / 18-3199-4422

								LOSE GOGE		3321 00167	10-0100-4122
Eohaustorius	10-d Survival a	and Reb	urial Sedime	ent Test				Aqu	atic Bioassay	& Consulti	ng Labs, Inc.
Batch ID:	09-6416-4429		Test Type:	Survival-Rebu	rial			Analyst:	Joe Freas		
Start Date:	21 Sep-21 13:0)4	Protocol:	EPA/600/R-94	/025 (1994)			Diluent:	Laboratory Sea	water	
Ending Date:	01 Oct-21 13:0	4	Species:	Eohaustorius e	estuarius			Brine:	Not Applicable		
Test Length:	10d 0h		Taxon:	Malacostraca				Source:	Northwestern A	Aquatic Scie	enc Age:
Sample ID:	01-7535-3971		Code:	WGR0921.06	1e			Project:	021.APC.01		
Sample Date:	09 Sep-21 11:3	0	Material:	Sediment				Source:	Bioassay Repo	ort	
Receipt Date:	13 Sep-21 16:0	00	CAS (PC):					Station:	SED-007		
Sample Age:	12d 2h		Client:	WGR Southwe	est Inc.						
Dissolved Ox	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count
0	N	2	10.05	9,415	10,69	10	10.1	0.035	36 0.07073	0.70%	0
100		2	10.1	8.829	11.37	10	10.2	0.070	71 0,1414	1.40%	0
Overall		4	10.08	9.923	10.23	10	10.2	0.047	87 0.09574	0.95%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
100		2	7.65	7.015	8.285	7.6	7.7	0.035	35 0.07071	0.92%	0
Overall		4	7.775	7.536	8.014	7,6	7.9	0.075	0,15	1.93%	0 (0%)
Salinity-ppt											
Сопс-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
100		2	20	20	20	20	20	0	0	0.00%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Mìn	Max	Std E	rr Std Dev	CV%	QA Count
_						4.4				- Aug. (100 mg/s)	

0

100

Overall

N

2

2

14.85

14.85

14.85

14.21

14.21

14.76

15.49

15.49

14.94

14.8

14.8

14.8

14.9

14.9

14.9

0.03539

0.03539

0.02887

0.07077

0.07077

0.05773

0.48%

0.48%

0.39%

0

0

0 (0%)

Tesoro Los Angeles Refinery - Carson C	perations																									Page 1 of 1
Facility Name LA Refinery - Carson Operations		180		Sep	ulve	da E	Blvd.	, Ca	rson CA 9	90749	CI	t Manag nelsea [reye						021.	(Consu	.01					Laboratory Name Aquatic Bioassay
Facility Contact Nate Busch		Faci	lity T	eleph 0) 84								one No. 32) 799-8					F			sultan) 799-						29 N Olive Street Ventura 93001
Consultant Company			10.1	.,			Con	sulta	nt Address		1 (0.	-,	2,00			_			1002	,,,,,					1	(805) 643-5621
WGR Southwest, Inc.			_	- 8.0	-4-1			_	inners Circ	le #101 Lo	s Alamit	os, Cali	fomia	9072	20		_		_	_				_	4	
				M	atri	Ì	Pr	sv.								×		T	1							Special Detection Limit/Reporting
											tuarius 25)	vincialis 36)													N	Please report MDL and RL for all analytes
Sample I.D.	Lab Sample No.	No. of Containers	Soil	Water	Air	Other	Yes	No	Sampling Date	Sampling Time	Eohaustorius estuarius (EPA 600/R-94/025)	Mytilus galloprovincialis (EPA 600/R-95/136)														Duplicate amples must be analyzed at a requency of 5%
											12.07							1						_	Spe	cial QA/QC
920·002		10		1			-1										-	17		-1			= 1			
SED-003		1	х				х		9/9/21	17:55	х	х	1		F	5									Sub	'd COC Attch'd:
SED-004		1	X				X		9/9/21	13:30	X	х	10	7	1			1								
SED-005		1	x		Ta		x	Ü	9/9/21	15:45	X	X	6	E	9											
SED-006		1	x				x		9/9/21	10:25	х	х		16	0										1	
SED-007		1	X			4	X		9/9/21	11:30	X	Х	(5)	6	T		1								1	E O
													T					1							1	E.O.
Sample bottles required for (2) x 1-gallon plastic bag	each sample po	oint:	1									F 19		-						1				1	R X	Email Results to: nbusch@marathonpetroleum.com cdreyer@wgr-sw.com aballrot@wgr-sw.com
(2) X 1 gallott plastic bag		_												+					\perp	1	\vdash		1		M	g 50 50
						-		-			-	Н	H	+	⊢	Н		+	Н	+	H	+	+		- w	athe.
				-		-		-		-	H	\vdash	H	+	+	Н	+	+	+	+	H	+	+	-	~	ults nar ngr
						-					++	+	+	+		Н		+	1	+	Н	+		+	1	\$ @@@
Sample Received Intact: Yes No			_		_	_			Temperatu	re receive	d:	Ice		_	No	ice								_	1	Email Results to: nbusch@marathc cdreyer@wgr-sw aballrot@wgr-sw.
Relinquished by SAMPLER (Print & Sign Name)/		-	Date	e	-	Tim	e		Received	by (Pri	nt & Siar	Nam	e)	-		_	_	_		_		-	_	-	판도요용
David Monklongo D	5	-			13	12			600	1	01	1	v												1	
Relinquished by (Print & Sign Name)				Date	е		Tim			Received	by LAE	BORATO	RY (F	rint 8	& Siç	gn Na	ame)								Lab	Work No.

96 Hour Eohaustorius estuarius Survival Bioassay - Standard Toxicant

DATE: 9/21/2021

STANDARD TOXICANT: Ammonium Chloride

ENDPOINT: SURVIVAL

UNIONIZED AMMONIA

NOEC = 0.4520 mg/L

EC25 = 0.8060 mg/LEC50 = 1.4720 mg/L

Yours very truly,

Scott Johnson
Laboratory Director

Report Date: Test Code/ID: 01 Dec-21 14:44 (p 1 of 1) EOH092121 / 00-8890-2246

Reference To	xicant 96-h Acute	Survival Tes	t						Aqu	atic	Bioassay &	Consulting	Labs, Inc.
Batch ID: Start Date: Ending Date: Test Length:	10-6174-3219 21 Sep-21 15:50 25 Sep-21 16:00 4d 0h	Test Ty Protoco Species Taxon:	ol: s:	Survival EPA/600/R-94/ Eohaustorius e Malacostraca				E	Analyst: Diluent: Brine: Gource:	Lab	Freas poratory Seaw Applicable thwestern Aq		: Age:
Sample ID: Sample Date:	03-7921-4314 21 Sep-21	Code: Materia		EOH092121 Ammonia (Unio	nized)				Project: Source:		F TOX ference Toxica	ant	
Receipt Date: Sample Age:	16h	CAS (P Client:	C):	Internal Lab				S	station:	RE	FTOX		
	parison Summar	2.000	-	Injuria Luc								-	_
Analysis ID	Endpoint	7°	omp	arison Method			1	NOEL	LOE		TOEL	PMSD	s
09-8125-8804		S	teel N	Many-One Rank	Sum Test			0.452	0.806		0.6036	9.58%	1
Point Estimate	Summary												
Analysis ID	Endpoint	P	oint l	Estimate Metho	od		1	Level	mg/L		95% LCL	95% UCL	s
17-7232-1622	Survival Rate	Li	inear	Interpolation (IC	PIN)			EC10	0.57		0.4621	0.6644	1
								EC15	0.648	37	0.5767	0.7588	
								EC20	0,727	73	0.6472	0.8532	
								EC25	0.806	3	0.703	0.9907	
								EC40	1.206		0.9511	1.574	
								EC50	1.472	2	1.099	2.061	
Survival Rate	Summary												
Conc-mg/L	Code	2-2-14	ean	95% LCL	95% UCL	Min		Max	Std E	_	Std Dev	CV%	%Effect
0	N		0000		1.0000	1.0000		1.0000			0.0000	***	0.00%
0.227			0000		1.0000	1.0000		1.0000			0.0000		0.00%
0.452			9750		1.0550	0.9000		1.0000			0.0500	5.13%	2,50%
0.806			7500		0.8419	0.7000		0.8000			0.0577	7.70%	25.00%
1.672 3.524			4250 0000	10 MO 10 M	0.6968	0.2000		0.6000			0.1708	40.18%	57.50%
271 Y 2	27570	4 0.	0000	0.0000	0.0000	0,0000	_	0.0000			0.0000	271222	100.00%
Survival Rate		40.00			0.70			1	MD5: 6D7	7440	2167F10E79	961AD38410	CCD9839
Conc-mg/L	Code		ep 2	Rep 3	Rep 4								
0	N.		0000		1.0000								
0.227			0000		1.0000								
0.452			9000		1.0000								
0.806			8000		0.7000								
1.672			5000		0.4000								
3.524		0.0000 0.	0000	0.0000	0.0000								
Survival Rate	Binomials												
Conc-mg/L	Code		ep 2	Rep 3	Rep 4								
0	N		0/10	10/10	10/10								
0.227			0/10	10/10	10/10								
0.452			10	10/10	10/10								
0.806			10	7/10	7/10								
1.672		6/10 5/	10	2/10	4/10								

Analyst: QA: L

3.524

0/10

0/10

0/10

0/10

Report Date: Test Code/ID:

Source:

01 Dec-21 14:44 (p 1 of 2) EOH092121 / 00-8890-2246

Northwestern Aquatic Scienc Age:

Reference Toxicant 96-h Acute Survival Test Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID:	09-8125-8804	Endpoint:	Survival Rate	CETIS Version:	CETISv1.9.7
Analyzodi	01 Dog 31 14:43	Analysis	Noncematria Control va Trantmonto	Ctatue I avale	4

MD5 Hash: 6D7744C2167F10E7961AD3841CCD9839 **Edit Date:** 01 Dec-21 14:40 Editor ID: 007-979-628-1

Batch ID: 10-6174-3219 Test Type: Survival Analyst: Joe Freas

Start Date: 21 Sep-21 15:50 Protocol: EPA/600/R-94/025 (1994) Diluent: Laboratory Seawater Ending Date: 25 Sep-21 16:00 Brine: Species: Eohaustorius estuarius Not Applicable

Malacostraca Code: Sample ID: 03-7921-4314 EOH092121 REF TOX Project:

Sample Date: 21 Sep-21 Material: Ammonia (Unionized) Source: Reference Toxicant

Receipt Date: CAS (PC): Station: REF TOX

Sample Age: 16h Client: Internal Lab

Taxon:

Data Transform	Alt Hyp	NOEL	LOEL	TOEL	TU	MSDu	PMSD	
Angular (Corrected)	C > T	0.452	0.806	0.6036	***	0.09578	9.58%	

Steel Many-One Rank Sum Test

Test Length: 4d 0h

Control	VS	Conc-mg/L	Test Stat	Critical	Ties	DF	P-Type	P-Value	Decision(a:5%)
Negative Contro	ol	0.227	18	10	1	6	CDF	0.8000	Non-Significant Effect
		0.452	16	10	1	6	CDF	0.5661	Non-Significant Effect
		0.806*	10	10	0	6	CDF	0.0350	Significant Effect
		1.672*	10	10	0	6	CDF	0.0350	Significant Effect

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	1.54617	0.386544	4	44.16	<1.0E-05	Significant Effect
Error	0.131289	0.0087526	15			
Total	1.67746		19			

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variance	Bartlett Equality of Variance Test				Indeterminate
	Levene Equality of Variance Test	5.095	4.893	0.0085	Unequal Variances
	Mod Levene Equality of Variance Test	3.277	4.893	0.0405	Equal Variances
Distribution	Anderson-Darling A2 Test	1.291	3.878	0.0020	Non-Normal Distribution
	D'Agostino Kurtosis Test	2.439	2.576	0.0147	Normal Distribution
	D'Agostino Skewness Test	1.825	2.576	0.0680	Normal Distribution
	D'Agostino-Pearson K2 Omnibus Test	9.278	9.21	0.0097	Non-Normal Distribution
	Kolmogorov-Smirnov D Test	0.25	0.2235	0.0020	Non-Normal Distribution
	Shapiro-Wilk W Normality Test	0.8745	0,866	0.0141	Normal Distribution

Survival Rate Summary

Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0,0000	0.00%	0.00%
0.227		4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%
0.452		4	0.9750	0.8954	1.0000	1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
0.806		4	0.7500	0.6581	0.8419	0.7500	0.7000	0.8000	0.0289	7.70%	25.00%
1.672		4	0.4250	0.1532	0.6968	0.4500	0.2000	0.6000	0.0854	40.18%	57.50%
3,524		4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-	100.00%

Angular (Corrected) Transformed Summary

Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
N	4	1.4120	1.4120	1.4120	1.4120	1.4120	1.4120	0.0000	0.00%	0.00%
	4	1.4120	1.4120	1.4120	1.4120	1.4120	1.4120	0.0000	0.00%	0.00%
	4	1.3710	1.2420	1.5010	1.4120	1.2490	1,4120	0.0407	5.94%	2.89%
	4	1.0490	0.9426	1.1560	1.0490	0.9912	1.1070	0.0335	6.38%	25.70%
	4	0,7050	0.4175	0.9924	0.7351	0.4636	0.8861	0.0903	25.63%	50.07%
	4	0.1588	0.1588	0.1588	0.1588	0.1588	0.1588	0.0000	0.00%	88.76%
	N N	N 4 4 4 4 4 4	N 4 1.4120 4 1.4120 4 1.3710 4 1.0490 4 0.7050	N 4 1.4120 1.4120 4 1.4120 1.4120 4 1.3710 1.2420 4 1.0490 0.9426 4 0.7050 0.4175	N 4 1.4120 1.4120 1.4120 4 1.4120 1.4120 1.4120 4 1.3710 1.2420 1.5010 4 1.0490 0.9426 1.1560 4 0.7050 0.4175 0.9924	N 4 1.4120 1.4120 1.4120 1.4120 4 1.4120 1.4120 1.4120 1.4120 4 1.3710 1.2420 1.5010 1.4120 4 1.0490 0.9426 1.1560 1.0490 4 0.7050 0.4175 0.9924 0.7351	N 4 1.4120 1.4120 1.4120 1.4120 1.4120 4 1.4120 1.4120 1.4120 1.4120 1.4120 4 1.3710 1.2420 1.5010 1.4120 1.2490 4 1.0490 0.9426 1.1560 1.0490 0.9912 4 0.7050 0.4175 0.9924 0.7351 0.4636	N 4 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 4 1.4120 1.4120 1.4120 1.4120 1.4120 4 1.3710 1.2420 1.5010 1.4120 1.2490 1.4120 4 1.0490 0.9426 1.1560 1.0490 0.9912 1.1070 4 0.7050 0.4175 0.9924 0.7351 0.4636 0.8861	N 4 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 0.0000 4 1.4120 1.4120 1.4120 1.4120 1.4120 0.0000 4 1.3710 1.2420 1.5010 1.4120 1.2490 1.4120 0.0407 4 1.0490 0.9426 1.1560 1.0490 0.9912 1.1070 0.0335 4 0.7050 0.4175 0.9924 0.7351 0.4636 0.8861 0.0903	N 4 1.4120 1.4120 1.4120 1.4120 1.4120 1.4120 0.0000 0.00% 4 1.4120 1.4120 1.4120 1.4120 1.4120 0.0000 0.00% 4 1.3710 1.2420 1.5010 1.4120 1.2490 1.4120 0.0407 5.94% 4 1.0490 0.9426 1.1560 1.0490 0.9912 1.1070 0.0335 6.38% 4 0.7050 0.4175 0.9924 0.7351 0.4636 0.8861 0.0903 25.63%

Report Date: Test Code/ID:

01 Dec-21 14:44 (p 2 of 2) EOH092121 / 00-8890-2246

Aquatic Bioassay & Consulting Labs, Inc.

09-8125-8804 Analysis ID: Analyzed:

01 Dec-21 14:43 01 Dec-21 14:40

Reference Toxicant 96-h Acute Survival Test

Endpoint: Survival Rate Analysis:

Nonparametric-Control vs Treatments MD5 Hash: 6D7744C2167F10E7961AD3841CCD9839

CETIS Version: Status Level:

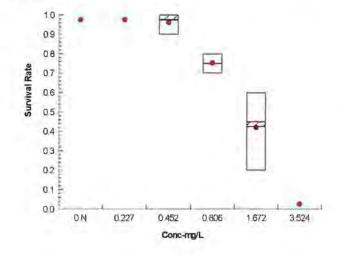
Editor ID:

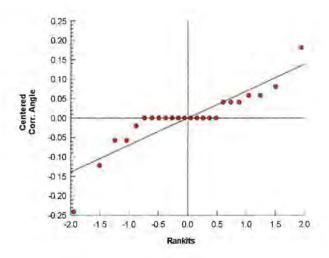
CETISV1,9.7 007-979-628-1

Survival Rate Detail

Edit Date:

Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	N	1.0000	1.0000	1.0000	1.0000	
0.227		1.0000	1,0000	1.0000	1.0000	
0.452		1.0000	0.9000	1.0000	1.0000	
0.806		0.8000	0.8000	0.7000	0.7000	
1.672		0.6000	0.5000	0.2000	0.4000	
3.524		0.0000	0.0000	0.0000	0.0000	


Angular (Corrected) Transformed Detail


Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	N	1.4120	1.4120	1.4120	1.4120
0.227		1.4120	1.4120	1.4120	1.4120
0.452		1.4120	1.2490	1 4120	1.4120
0.806		1.1070	1.1070	0.9912	0.9912
1,672		0.8861	0.7854	0.4636	0.6847
3,524		0.1588	0.1588	0.1588	0.1588

Survival Rate Binomials

Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	N	10/10	10/10	10/10	10/10	
0,227		10/10	10/10	10/10	10/10	
0.452		10/10	9/10	10/10	10/10	
0.806		8/10	8/10	7/10	7/10	
1.672		6/10	5/10	2/10	4/10	
3.524		0/10	0/10	0/10	0/10	

Graphics

007-979-628-1 CETIS™ v1.9.7.7

Reference Toxicant 96-h Acute Survival Test

Report Date:

01 Dec-21 14:44 (p 1 of 2)

Test Code/ID: EOH092121 / 00-8890-2246 Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID:	17-7232-1622	Endpoint:	Survival Rate	CETIS Version:	CETISv1.9.7
-2-14-13	ALC ACCOUNT TO LESS			La contra de la contra del la contra	3.

Analyzed: 01 Dec-21 14:43 Analysis: Linear Interpolation (ICPIN) Status Level: 1

Edit Date: 01 Dec-21 14:40 MD5 Hash: 6D7744C2167F10E7961AD3841CCD9839 Editor ID: 007-979-628-1

Batch ID: 10-6174-3219 Test Type: Survival Analyst: Joe Freas

Start Date: 21 Sep-21 15:50 Protocol: EPA/600/R-94/025 (1994) Diluent: Laboratory Seawater
Ending Date: 25 Sep-21 16:00 Species: Eohaustorius estuarius Brine: Not Applicable

Test Length: 4d 0h Taxon: Malacostraca Source: Northwestern Aquatic Scienc Age:

 Sample ID:
 03-7921-4314
 Code:
 EOH092121
 Project:
 REF TOX

Sample Date: 21 Sep-21 Material: Ammonia (Unionized) Source: Reference Toxicant

Receipt Date: CAS (PC): Station: REF TOX
Sample Age: 16h Client: Internal Lab

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Linear	Linear	0	280	Yes	Two-Point Interpolation	

Point Estimates

Level	mg/L	95% LCL	95% UCL	
EC10	0.57	0.4621	0.6644	
EC15	0.6487	0.5767	0.7588	
EC20	0.7273	0.6472	0.8532	
EC25	0.806	0.703	0.9907	
EC40	1.206	0.9511	1.574	
EC50	1.472	1.099	2.061	

Survival Rate Summary		Calculated Variate(A/B)								Isotonic Variate	
Conc-mg/L	Code	Count	Mean	Median	Min	Max	CV%	%Effect	A/B	Mean	%Effect
0	N	4	1.0000	1.0000	1.0000	1.0000	0.00%	0.00%	40/40	1.0000	0.00%
0.227		4	1,0000	1.0000	1.0000	1.0000	0.00%	0.00%	40/40	1.0000	0.00%
0.452		4	0,9750	1.0000	0.9000	1.0000	5.13%	2,50%	39/40	0.9750	2.50%
0.806		4	0.7500	0,7500	0.7000	0 8000	7.70%	25.00%	30/40	0.7500	25.00%
1,672		4	0.4250	0.4500	0.2000	0.6000	40.18%	57.50%	17/40	0.4250	57.50%
3.524		4	0.0000	0.0000	0.0000	0.0000		100.00%	0/40	0.0000	100.00%

Survival Rate Detail

Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	N	1.0000	1.0000	1.0000	1.0000	
0.227		1.0000	1.0000	1.0000	1.0000	
0.452		1,0000	0.9000	1.0000	1.0000	
0.806		0.8000	0.8000	0.7000	0.7000	
1,672		0.6000	0,5000	0.2000	0.4000	
3,524		0,0000	0.0000	0.0000	0.0000	

Survival Rate Binomials

Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	N	10/10	10/10	10/10	10/10	
0.227		10/10	10/10	10/10	10/10	
0.452		10/10	9/10	10/10	10/10	
0.806		8/10	8/10	7/10	7/10	
1.672		6/10	5/10	2/10	4/10	
3.524		0/10	0/10	0/10	0/10	

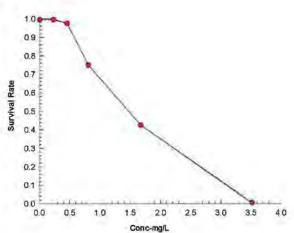
01 Dec-21 14:40

Report Date: Test Code/ID: 01 Dec-21 14:44 (p 2 of 2) EOH092121 / 00-8890-2246

Reference Toxicant 96-h Acute Survival Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 17-7232-1622 Analyzed: 01 Dec-21 14:43 Endpoint: Survival Rate Analysis: Linear Interpo


Analysis: Linear Interpolation (ICPIN)
MD5 Hash: 6D7744C2167F10E7961AD3841CCD9839

CETIS Version: Status Level:

Editor ID:

CETISv1.9.7 1 007-979-628-1

Edit Date: Graphics

CETIS Measurement Report

Reference Toxicant 96-h Acute Survival Test

Report Date: Test Code/ID:

01 Dec-21 14:44 (p 1 of 1) EOH092121 / 00-8890-2246

Aquatic Bioassay & Consulting Labs, Inc.

_					
	10-6174-3219	Test Type:	Survival	Analyst.	Ine Frees

Batch ID: Start Date: EPA/600/R-94/025 (1994) 21 Sep-21 15:50 Diluent: Laboratory Seawater Protocol: Ending Date: 25 Sep-21 16:00 Species: Echaustorius estuarius Brine: Not Applicable

Test Length: 4d 0h Taxon: Malacostraca Source: Northwestern Aquatic Scienc Age:

Sample ID: 03-7921-4314 Code: EOH092121 Project: REF TOX

Sample Date: 21 Sep-21 Material: Ammonia (Unionized) Source: Reference Toxicant

Receipt Date: CAS (PC): Station: REF TOX Client: Sample Age: 16h Internal Lab

Dissolved Oxygen-mg/L

Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	6.55	5.915	7.185	6.5	6.6	0.03535	0.0707	1.08%	0
0.227		2	6.7	5.429	7.971	6.6	6.8	0.07071	0.1414	2.11%	0
0.452		2	6.7	4.159	9.241	6.5	6.9	0.1414	0.2828	4.22%	0
0.806		2	6.5	5.229	7.771	6.4	6.6	0.07071	0.1414	2,18%	0
1.672		2	6.5	6.5	6.5	6.5	6.5	0	0	0.00%	0
3,524		2	6.55	5.915	7.185	6.5	6.6	0.03535	0.0707	1.08%	0
Overall		12	6.583	6.494	6.673	6.4	6.9	0.04051	0.1403	2.13%	0 (0%)

pH-Units

Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
0.227		2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
0.452		2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
0.806		2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
1.672		2	7.8	7,787	7.813	7.8	7.8	0	0	0.00%	0
3.524		2	7.8	7.787	7.813	7.8	7.8	0	0	0.00%	0
Overall		12	7.867	7.835	7.898	7.8	7.9	0.01421	0.04924	0.63%	0 (0%)

Salinity-ppt

Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
0.227		2	20	20	20	20	20	0	0	0.00%	0
0.452		2	20	20	20	20	20	0	0	0.00%	0
0.806		2	20	20	20	20	20	0	0	0.00%	0
1.672		2	20	20	20	20	20	0	0	0.00%	0
3.524		2	20	20	20	20	20	0	0	0.00%	0
Overall		12	20	20	20	20	20	0	0	0.00%	0 (0%)

Temperature-°C

Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.95	14.31	15.59	14.9	15	0.03538	0.07075	0.47%	0
0.227		2	15	15	15	15	15	0	0	0.00%	0
0.452		2	14.85	14.21	15.49	14.8	14.9	0.03539	0.07077	0.48%	0
0.806		2	14.9	14.87	14.93	14.9	149	0	0	0.00%	0
1.672		2	14.9	14.87	14.93	14.9	14.9	0	0	0.00%	0
3.524		2	14.9	14.87	14.93	14.9	14.9	0	0	0.00%	0
Overall		12	14.92	14.88	14.95	14.8	15	0.01667	0.05774	0.39%	0 (0%)

007-979-628-1 CETIS™ v1.9.7.7

ATTACHMENT 5

ORGANIC/INORGANIC ANALYTICAL VALIDATION REPORT

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Organic/Inorganic Analytical Validation Report

Table of Contents

1.0	Overview	1
1.1	Data Assessment	2
	Overall Data Review Narrative	

Attachments:

Attachment I - Dominguez Channel Estuary Sediment Monitoring Inorganic/Organic Analytical Validation Form

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations September 2021 Organic/Inorganic Analytical Validation Report Page 1 of 3

1.0 Overview

On behalf of Tesoro Refining & Marketing Company LLC, Los Angeles Refinery – Carson Operations (herein facility), WGR Southwest, Inc. (WGR) collected sediment samples at monitoring locations SED-003, SED-004, SED-005, SED-006, and SED-007 on September 9, 2021. Collected samples were submitted to the laboratory on September 13, 2021 for analysis as required in NPDES Permit No. CA0000680 Attachment E, Table E-7.

Sediment monitoring analysis was performed by laboratories certified under the Environmental Laboratory Accreditation Program (ELAP). Sediment chemistry samples were analyzed by Eurofins Calscience, Inc. in Garden Grove California with ELAP accreditation number 2944 and chronic toxicity samples were submitted to Aquatic Bioassay and Consulting Laboratories, Inc. in Ventura, California with ELAP accreditation number 1907. This document presents the analytical validation criteria used to determine the usability of data gathered as result of the sediment monitoring conducted. Analytical data was evaluated based on the validation criteria set forth in the *National Functional Guidelines for Organic Superfund Methods Data Review*, document number USEPA-540-R-2017-002, January 2017, and the *USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review*, document number USEPA 540-R-2017-001, January 2017, as applied to the reported methodology. Sediment monitoring parameters, including the sample type and corresponding analytical method, are listed in Table 1.0 below.

Table 1.0 - Sediment Monitoring Parameters							
Parameters	Sample Type	Analytical Method					
Cadmium, Total Recoverable	Surface Grab	EPA 6020B					
Chlordane	Surface Grab	EPA 8081A					
Chromium, Total	Surface Grab	EPA 6020B					
Copper, Total Recoverable	Surface Grab	EPA 6020B					
Lead, Total Recoverable	Surface Grab	EPA 6020B					
Mercury, Total Recoverable	Surface Grab	EPA 7471A					
Nickel, Total Recoverable	Surface Grab	EPA 6020B					
Zinc, Total Recoverable	Surface Grab	EPA 6020B					
PCBs ¹	Surface Grab	EPA 8082A					
Sediment Grain Size	Surface Grab	ASTM D4464					
Chronic Toxicity	Surface Grab	-					
Pesticides	Surface Grab	EPA 8081A					
Total Organic Carbon	Surface Grab	EPA 9060A					

Table 1.0 - Sediment Monitoring Parameters							
Total Petroleum Hydrocarbons ²	EPA 8015B						
Tributyltin	Surface Grab	Krone et. Al.					
Polynuclear Aromatic Hydrocarbons ³	Surface Grab	EPA 8270C					

Footnotes:

Analytical laboratory reports are included in Attachment 3 and Attachment 4 of the Dominguez Channel Estuary September 2021 Sediment Monitoring Report. All of the sediment monitoring parameters listed in Table 1.0 were analytically validated except for Sediment Grain Size and Chronic Toxicity. Data from these analyses do not qualify for environmental data validation guidance procedures. As a result, sediment grain size and chronic toxicity data was assessed for completion using Chain of Custody records and field sample preservation guidelines. Detailed analytical validation for chronic toxicity is provided in the Sediment Bioassay Data Validation Report in Attachment 6 of the Dominguez Channel Estuary September 2021 Sediment Monitoring Report.

Analytical data validation for organic/inorganic parameters determinations are included in the *Dominguez Channel Estuary Sediment Monitoring Organic/Inorganic Analytical Data Validation Form* in Attachment I included in this report.

1.1 Data Assessment

Analytical data validation consisted of evaluating laboratory precision, laboratory accuracy, method compliance, and overall completeness of laboratory data provided. Based on this assessment, it was determined that data obtained for the September 9, 2021 sediment samples at SED-003, SED-004, SED-005, SED-006, and SED-007 is acceptable. Data components reviewed during the data review process included:

- Chain of Custody records and holding times
- Sample integrity/case narratives
- Sample results, reporting limits, dilution factors
- Laboratory QA/QC data

A summary of the sediment samples collected are provided in Table 2.0 below:

^{1 –} PCBs is the sum of Arochlor-1016, Arochlor-1221, Arochlor-1232, Arochlor-1242, Arochlor-1248, Arochlor-1254, and Arochlor-1260.

^{2 –} DDT is the sum of 4,4' DDT, 2,4' DDT, 4,4'DDE, 2,4' DDE, 4,4' DDD, and 2,4' DDD

^{3 –} PAHs is the sum of acenaphthene, anthracene, 1,2-benzanthracene, 3,4-benzofluoranthene, benzo(k)fluoranthene, 1,12-benzoperylene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, and pyrene.

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations September 2021 Organic/Inorganic Analytical Validation Report Page 3 of 3

Table 2.0 – Dominguez Channel Sediment Samples							
Sample ID	Sample Date	Sample Date Sample Time					
SED-003	September 9, 2021	17:55	570-69878-1				
SED-004	September 9, 2021	13:30	570-69878-2				
SED-005	September 9, 2021	15:45	570-69878-3				
SED-006	September 9, 2021	10:25	570-69878-4				
SED-007	September 9, 2021	11:30	570-69878-5				

1.2 Overall Data Review Narrative

Analytical data was assessed for precision, accuracy, method compliance and overall completeness. Data review determined these components to be acceptable. However, as noted in the attached data validation form, the Matrix Spike (MS)/Matrix Spike Duplicate (MSD) recoveries in QA/QC samples for PAHs, organotins, and metals were outside the control limits. Since associated Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicates (LCSD) recoveries were within acceptance limits, the data was qualified and deemed acceptable.

[Remainder of page intentionally left blank]

Attachment I

Dominguez Channel Estuary Sediment Monitoring Inorganic/Organic Analytical Validation Form

Tesoro Refining & Marketing LLC

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Sediment Monitoring Organic/Inorganic Analytical Data Validation Form

PROJECT INFORMATION

Project Name: Dominguez Channel Sediment Sampling

Analytical Laboratories: Eurofins Calscience, Inc.

Aquatic Bioassays & Consulting Laboratories Inc.

Sample Collection Date: September 9, 2021

Sample Collection Locations: SED-003, SED-004, SED-005, SED-006, SED-007

Signature:	Olmlu	Bellist
J.B.: a ta. c.		

Data Validator: Amber Ballrot

Validation Date: January 6, 2022

SEDIMENT MONITORING PARAMETERS								
Parameters	Sample 1	уре	Analytica	al Method	Holding Times	Parameter Validation Comments:		
Cadmium, Total Recoverable	Surface (Grab	EPA (5020B	180 days			
Chlordane	Surface (Grab EPA		3081A	14 days			
Chromium, Total	Surface (Grab	EPA (5020B	180 days			
Copper, Total Recoverable	Surface (Grab	EPA (5020B	180 days	All sediment monitoring parameters were		
Lead, Total Recoverable	Surface (Grab	EPA (5020B	180 days	analytically validated except for Sediment Grain		
Mercury, Total Recoverable	Surface (Grab	EPA 7	7471A	180 days	·		
Nickel, Total Recoverable	Surface (Grab	EPA (5020B	180 days	Size and Chronic Toxicity. Data from these		
Zinc, Total Recoverable	Surface (Grab	EPA 6	5020B	180 days	analyses do not qualify for environmental data		
PCBs	Surface (Grab	EPA 8	3082A	14 days	validation guidance procedures. Grain size and		
Sediment Grain Size	Surface (Grab	ASTM	D4464	-	chronic toxicity data was assessed for		
Chronic Toxicity	Surface (rface Grab		-	-	·		
Pesticides	Surface (EPA 8	3081A	14 days	completion based on Chain of Custody records		
Total Organic Carbon	Surface (Grab EPA		9060A	28 days	and field sample preservation procedures.		
Total Petroleum Hydrocarbons	Surface (Grab EPA		3015B	14 days			
Tributyltin	Surface (Grab	Krone	et. Al.	14 days			
Polynuclear Aromatic Hydrocarbons	Surface (Grab	EPA 8	3270C	14 days			
			VALIDATIC	N CRITERIA				
1. Was the Chain of Custody (COC) form complete for all samples submitted?			□ NO□ N/A	complete. The and laborator	e COC includes samp y personnel signatur	(COC) form submitted to the laboratory is le location information, field parameter results, res denoting the date and time the samples were eceived by the laboratory.		
2. Were ALL of the requested analyses specified in the COC completed by the laboratory?			□ NO□ N/A	Comments: Laboratory analysis was performed in accordance with the methods requested in the COC.				

Tesoro Refining & Marketing LLC Los Angeles Refinery - Carson Operations Dominguez Channel Estuary Sediment Monitoring Organic/Inorganic Analytical Data Validation Form Comments: The samples were received by the laboratory on September 13, 2021. 3. Were samples received in good condition and ∇ YES NO N/A The samples arrived in good condition and were properly preserved. No sample appropriately preserved as required by each analysis? receipt deficiencies were noted in the laboratory report Sample Job Narrative. 4. Were the reported analytical methods in compliance with Comments: All analytical methods were completed as requested in the COC and are ¬ YES □ NO□ N/A the facility's NPDES permit and/or COC requests? in compliance with the facility's NPDES permit. Comments: The method detection limits and reporting limits were reported for each analytical method. Sediment results were primarily reported on a dry weight 5. Were detection limits in accordance with the facility's ☑ YES ☐ NO☐ N/A basis except for DDT analyzed by method 8081A and sediment particle size NPDES permit or analytical method? analyzed by method D4464. DDT and sediment particle size was reported on a wet weight basis. Comments: The Job Narrative included on page 4 of the laboratory report did not 6. Did the laboratory identify any deficiencies/non-YES NO N/A identify any deficiencies/non-conformances related to the analytical results; conformances related to the analytical results? however, qualifiers for quality control samples are included. Comments: Sample holding times were met for all analytical methods. The ☑ YES ☐ NO☐ N/A analytical methods and the corresponding holding time is provided in the Sediment 7. Were sample holding times met? Monitoring Parameter Table above.

Tesoro Refining & Marketing LLC Los Angeles Refinery - Carson Operations Dominguez Channel Estuary Sediment Monitoring Organic/Inorganic Analytical Data Validation Form Comments: Analytical results are reported in the correct concentration units required for sediment sample matrices. Results are reported in varying units as follows: dry weight results reported in mg/kg include PAHs analyzed by method EPA 8270C, TPH analyzed by method 8015B, total metals analyzed by method 6020, 8. Were correct concentration units reported? ✓YES ☐ NO☐ N/A mercury analyzed by method 7471A and total organic carbon analyzed by method 9060A. Results reported in dry weight as ug/kg included PCBs analyzed by method 8082 and organotins. Results reported in wet weight as ug/kg included DDT analyzed by 8081A. This unit trend is consistent at all four sampling stations. Comments: Reporting requirements for flagged data were met. Qualifiers included: J - result is less than RL but greater than or equal to MDL and the result is approximate value p - The %RPD between the primary and confirmation column/detector is >40%. The 🗇 YES 🗀 NO 🗆 N/A 9. Were the reporting requirements for flagged data met? lower value was reported F1 - MS and/or MSD recovery is outside acceptance limits F2 - MS/MSD RPD exceeds control limits X - Surrogate recoveries exceed control limits Comments: The laboratory report includes results for the required parameters as included in Table E-7 of the NPDES Permit; however, the laboratory report includes 10. Does the laboratory report include results for only those 5 additional PAH results not requested in the COC at all four sampling stations. YES ☑ NO ☐ N/A These additional PAHs include Acenaphthylene, 1-Methylnaphthalene, 2constituents requested in the COC? Methylnaphthalene, Naphthalene, and Phenanthrene. Data for these parameters are not required and are therefore not accounted for in this data validation.

Tesoro Refining & Marketing LLC Los Angeles Refinery - Carson Operations Dominguez Channel Estuary Sediment Monitoring Organic/Inorganic Analytical Data Validation Form 11. Were laboratory method blank samples free of target Comments: Laboratory method blanks were free of target analyte for all ✓ YES □ NO□ N/A parameters at all sampled stations. analyte contamination? 12. Were instrument calibrations within method or data Comments: Instrument calibration data was not supplied in the analytical report YES NOV N/A and, therefore, not included in this analytical data validation analysis. validation control limits? 13. Were trip blank, field blank, and/or equipment rinse Comments: Not applicable. Trip blanks, field blanks and/or equipment rinse blank YES NOV N/A blank samples free of target analyte contamination? samples were not collected for this project. Comments: Surrogate recoveries are within control limits at all sampling stations including surrogates used for PAHs (method 8279C), tributyltin (Krone et al), TPH (method 8015B), PCBs (method 8082), metals (method 6020) and total organic carbon (9060A). 14. Were surrogate recoveries within control limits? ✓ YES ☐ NO☐ N/A 15. Were laboratory control sample recoveries within Comments: Laboratory control sample recoveries were within acceptable control √ YES □ NO□ N/A limits for all parameters. control limits?

Tesoro Refining & Marketing LLC Los Angeles Refinery - Carson Operations Dominguez Channel Estuary Sediment Monitoring Organic/Inorganic Analytical Data Validation Form Comments: The Matrix Spike (MS)/Matrix Spike Duplicate (MSD) recoveries were outside control limits for PAH, organotins, metals; however, as explained in the Job 16. Were Matrix Spike (MS) / Matrix Spike Duplicate (MSD) YES NO Narrative for laboratory report 570-69878-1, sample matrix interference and/or recoveries within control limits? nonhomogeneity is suspected. $\sqrt{}$ Comments: Does not apply to this level of data validation. In addition, GC/MS 17. Were internal standards within method criteria for YES NO N/A internal standard data was not supplied in the analytical reports and was therefore GC/MS sample analysis? not included in this data review. 18. Were 100% of the Electronic Data Deliverable (EDD) concentrations and reporting limits compared to the] YES ☐ NO☑ N/A Comments: No EDD was used for this project. hardcopy data reports?

Los Angeles Refinery - Carson Operations

	LOS Aligeres inc	childry - Carson Operations
Dominguez (Channel Estuary Sediment Monif	toring Organic/Inorganic Analytical Data Validation Form
PRE	CISION, ACCURACY, METHOD C	OMPLIANCE AND COMPLETENESS ASSESSMENT
Precision Determination:	Acceptable	☐ Not Acceptable
Comments: Precision is the measure of variab	ility of individual sample measur	rements. Laboratory precision was determined by examination of laboratory duplicate
results. To evaluate laboratory duplicates for	precision the Relative Percent dif	fference (RPD) was used. RPD is defined as the difference between two duplicate samples
divided by the mean and expressed as a perce	nt. RPD precision measurement	s were compared to laboratory QC limits and it was determined that RPDs were within the
RPD limits, except for PAHs, organotins, and n	neals. The associated laboratory	control sample / laboratory sample duplicate for this parameter, however, was within
acceptance limits. Therefore, data precision o	btained for all analyzed paramet	ers was determined to be acceptable.
Accuracy Determination:	✓ Acceptable	☐ Not Acceptable
Comments: Accuracy is the closeness of a mea	asured result to an accepted refe	erence value usually measured as percent recoveries. Laboratory accuracy is a measure of
system bias measured by evaluating Lab Cont	rol Samples (LCS), Lab Control Sa	imple Duplicate (LCSD), matrix spikes (MS) and/or matrix spike duplicates (MSD), and
organic system monitoring compound surroga	ite percent recoveries (%Rs). Dat	ta validation assessments revealed all LCS/LCSD were within acceptable criteria. MS and
MSD recoveries outside the acceptable range	are reported in the Job Narrative	e of the laboratory report. Due to the LCS/LCSD meeting applicable criteria, data accuracy
for analyzed parameters was determined to b	e acceptable.	
Method Compliance Determination:	✓ Acceptable	☐ Not Acceptable
Comments: Method compliance was determine	ned by evaluating sample integrif	ty, holding time, reporting limits and laboratory blanks per method specific requirements.
Assessment of these factors is presented above	ve in questions 1, 2, 3 and 4. Data	a validation determined method compliance to be acceptable.
Completeness Determination:	✓ Acceptable	☐ Not Acceptable
Comments: Completeness is the overall ratio	of the number of samples planne	ed versus the number of samples with valid analyses. Project completeness was performed
by evaluating COC records, laboratory analytic	cal methods, and detection limits	s as well as sample data results and QC summary reports. Data assessment for the
collected samples determined the overall data	a completeness to be acceptable	

ATTACHMENT 6

SEDIMENT BIOASSAY DATA VALIDATION REPORT

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report

Table of Contents

1.0	Chronic Toxicity Test Overview	l
1.0		1
2.0	Data Review	1
		1
3.0	Eohaustorius estuarius Chronic Toxicity Test	2
3.1	Sample Collection, Sample Preservation, Chain of Custody	
3.2		
	Test Setup	∠
3.3	Test Implementation	
3	.3.1 Test Acceptability Criteria	
3.4	Reporting	
3.5	Overall Data Usability	3
4.0	Mytilus galloprovincialis Chronic Toxicity Test	3
4.1	Sample Collection, Sample Preservation, Chain of Custody	3
4.2	Test Setup	4
4.3	Test Implementation	
4	.3.1 Test Acceptability Criteria	
4.4	Reporting	
4.5	Overall Data Usability	
	5 - 51 min 5 min 5 m 5 m 5 m 5 m 5 m 5 m 5 m 5 m 5 m 5	••••

Attachment:

Attachment I – Dominguez Channel Estuary Sediment Bioassay Data Validation Form

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 1 of 4

1.0 Chronic Toxicity Test Overview

On behalf of Tesoro Refining & Marketing Company LLC, Los Angeles Refinery – Carson Operations (herein facility), WGR Southwest, Inc. (WGR) collected sediment samples at monitoring locations SED-003, SED-004, SED-005, SED-006, and SED-007 as required in National Pollutant Discharge Elimination System (NPDES) No. CA0000680. Sediment samples for chronic toxicity testing were collected on September 8, 2021 and submitted to Aquatic Bioassay & Consulting Laboratories Inc. on September 13, 2020 for analysis. Aquatic Bioassay & Consulting Laboratories has Environmental Laboratory Accreditation Program (ELAP) Certification number 1907.

In accordance with NPDES No. CA0000680 Attachment E, Section V.A.4, chronic toxicity samples are required to undergo a species sensitivity screening by concurrently conducting three toxicity tests using the fish, invertebrate and alga species listed in the permit order. Based on the results of the species sensitivity screening, the single species exhibiting the highest percent effect is required to be used for routine monitoring during the permit cycle. The species listed in the permit order, however, are more commonly used to evaluate effluent chronic toxicity rather than sediment toxicity. Therefore, with laboratory staff and Regional Water Quality Control Board guidance, a species sensitivity screening was conducted for chronic toxicity samples from September 9, 2021 using *Eohaustorius estuarius* sediment species and *Mytilus galloprovincialis* sediment species. Sediment chronic toxicity samples were tested in accordance with the guidelines prescribed in Methods for Assessing the Toxicity of Sediment Associated Contaminants with Estuarine and Marine Amphipods, Methods EPA/600/R-94/025 and EPA R-95/136.

2.0 Data Review

A level 2 data verification protocol was used for bioassay validation. The level 2 data review compares bioassay testing holding conditions, test setup, test implementation, and test termination in accordance with bioassay protocols. As part of the level 2 data verification protocol the laboratory was expected to follow all internal quality control procedures as directed in the applicable analytical method. Outcome of the data review for each of the chronic toxicity tests performed is documented in the *Chronic Toxicity QA/QC Bioassay Data Validation Form* included in Attachment I of this report.

Sediment samples at Stations SED-003, SED-004, SED-005, SED-006, and SED-007 were collected on September 9, 2021 by WGR Southwest Inc. All collected samples were preserved as required and submitted to Aquatic Bioassay and Consulting Laboratories Inc. on September 13, 2021. Chronic toxicity tests for all five stations began on September 21, 2021 and concluded on October 1, 2021. A summary of data usability determinations for the chronic toxicity test performed are described in the following section.

3.0 Eohaustorius estuarius Chronic Toxicity Test

3.1 Sample Collection, Sample Preservation, Chain of Custody

Sediment samples for *E. estuarius* chronic toxicity testing were collected from Stations SED-003, SED-004, SED-005, SED-006, and SED-007 using an Eckman dredge sampler. Sampling equipment was decontaminated prior to use at each station to prevent cross contamination. Field samples were handled with care to minimize sediment disturbance and prevent the loss of sample integrity, chemical speciation and chemical equilibrium. Collected samples were maintained at 4°C and a Chain of Custody documenting the collected samples was completed and submitted to Aquatic Bioassay & Consulting Laboratories Inc. Chronic toxicity testing was initiated for all samples within the required 14-day holding time for sample collection and analysis. Document review of sample collection, sample preservation and Chain of Custody procedures was deemed acceptable and in compliance with the facility's Waste Discharge Requirements (WDRs).

3.2 Test Setup

Chronic toxicity testing with *E. estuarius* was completed in accordance with EPA method 600/R-94-025. Organisms used for testing were field collected and supplied by Northwestern Amphipod in Oregon. Amphipods ranging in 3-5 mm in size were used, with at least twenty organisms per replicate. Test setup review is provided in the bioassay data validation form attached to this document. Based on a review of laboratory test setup procedures, test set up procedure were deemed acceptable and in compliance with EPA method requirements.

3.3 Test Implementation

Test implementation for chronic toxicity testing with *E. estuarius* was completed in accordance with EPA method 600/R-94/025. Water quality measurements were recorded during the duration of the test and were found to be in the acceptable range as specified in the test protocol. Ranges for the water quality measurements are provided in the QA/QC Checklist of Attachment I. No abnormal conditions were observed throughout the duration of the test. Thus, the test implementation was determined to be acceptable and in compliance with EPA method requirements.

3.3.1 Test Acceptability Criteria

3.3.1.1 Reference Toxicant

The reference toxicant used during *E. estuarius* chronic toxicity testing was unionized ammonia. The length of the reference toxicant test was 96 hours. All reference toxicant testing was within the two standard deviation quality control limit meeting the

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 3 of 3

test acceptability criteria in compliance with EPA method requirements.

3.3.1.2 Negative Control Samples

Negative control samples demonstrated a 99% survival at all sample stations, which is above the 90% mean acceptability survival criteria. As a result, the negative control sample results are considered acceptable at all sampled stations and in compliance with EPA method requirements.

3.4 Reporting

Bioassay results were delivered in an acceptable laboratory report documenting a summary of water quality results, reference toxicity results, test results, statistical calculations and percent mortality. Additional information regarding test setup/test implementation procedures was provided by the laboratory to complete the QA/QC bioassay data validation form. Overall, the reporting component presenting chronic toxicity test results for *E. estuarius* was deemed acceptable.

3.5 Overall Data Usability

Review of laboratory data indicated chronic toxicity testing was performed in accordance with EPA method 600/R-94/025 as documented in Attachment I. Through the bioassay laboratory report and additional clarification from the laboratory, the bioassay test results at all sample stations was deemed acceptable and in compliance with EPA method requirements.

4.0 Mytilus galloprovincialis Chronic Toxicity Test

4.1 Sample Collection, Sample Preservation, Chain of Custody

Sediment samples for *M. galloprovincialis* chronic toxicity testing were collected from Stations SED-003, SED-004, SED-005, SED-006, and SED-007 using an Eckman dredge sampler. Sampling equipment was decontaminated prior to use at each station to prevent cross contamination. Field samples were handled with care to minimize sediment disturbance and prevent the loss of sample integrity, chemical speciation and chemical equilibrium. Collected samples were maintained at 4°C and a Chain of Custody documenting the collected samples was completed and submitted to Aquatic Bioassay & Consulting Laboratories Inc. Chronic toxicity testing was initiated for all samples within the required 14-day holding time for sample collection and analysis. Document review of sample collection, sample preservation and Chain of Custody procedures was deemed acceptable and in compliance with the facility's Waste Discharge Requirements (WDRs).

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 4 of 3

4.2 Test Setup

Chronic toxicity testing with *M. galloprovincialis* was completed in accordance with EPA method R-95/136. Organisms used for testing were cultured and supplied by Carlsbad Aquafarms. There was an even sex ratio of brood stock and at least twelve organisms per test. Test setup review is provided in the bioassay data validation form attached to this document. Based on a review of laboratory test setup procedures, test set up procedure were deemed acceptable and in compliance with EPA method requirements.

4.3 Test Implementation

Test implementation for chronic toxicity testing with *M. galloprovincialis* was completed in accordance with EPA method R-95/136. Water quality measurements were recorded during the duration of the test and were found to be in the acceptable range as specified in the test protocol. Ranges for the water quality measurements are provided in the QA/QC Checklist of Attachment I. No abnormal conditions were observed throughout the duration of the test. Thus, the test implementation was determined to be acceptable and in compliance with EPA method requirements.

4.3.1 Test Acceptability Criteria

4.3.1.1 Reference Toxicant

The reference toxicant used during *M. galloprovincialis* chronic toxicity testing was unionized ammonia. The length of the reference toxicant test was 48 hours. All reference toxicant testing was within the two standard deviation quality control limit meeting the test acceptability criteria in compliance with EPA method requirements.

4.3.1.2 Negative Control Samples

Negative control samples demonstrated a 99% survival at all sample stations, which is above the 90% mean acceptability survival criteria. As a result, the negative control sample results are considered acceptable at all sampled stations and in compliance with EPA method requirements.

4.4 Reporting

Bioassay results were delivered in an acceptable laboratory report documenting a summary of water quality results, reference toxicity results, test results, statistical calculations and percent mortality. Additional information regarding test setup/test implementation procedures was provided by the laboratory to complete the QA/QC bioassay data validation form. Overall, the reporting component

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 5 of 3

presenting chronic toxicity test results for *M. galloprovincialis* was deemed acceptable.

4.5 Overall Data Usability

Review of laboratory data indicated chronic toxicity testing was performed in accordance with EPA method R-95/136 as documented in Attachment I. Through the bioassay laboratory report and additional clarification from the laboratory, the bioassay test results at all sample stations was deemed acceptable and in compliance with EPA method requirements.

Attachment I Dominguez Channel Estuary Sediment Bioassay Data Validation Form

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

		PROJECT IN	IFORMATION					
Project Name:	Dominguez Channel Sedimer	nt Sampling						
Analytical Laboratory:	Aquatic Bioassays & Consulti	atic Bioassays & Consulting Laboratories Inc.						
Laboratory Technician:	Joe Freas							
Sample Collection Date:	September 9, 2021							
Sample Locations/Lab Number:	Eohaustorius estuarius	SED-003 / W	VGR1021.057					
		SED-004 / WGR1021.058						
		SED-005 / WGR1021.059						
		SED-006 / WGR1021.060						
	NA. wiles and a constitution	SED-007 / WGR1021.061						
	Mytilus galloprovincialis	alis SED-003 / WGR0921.057 SED-004 / WGR0921.058						
		SED-004 / WGR0921.058 SED-005 / WGR0921.059						
		SED-006 / WGR0921.060						
		SED-007 / WGR0921.061						
Species/Test Method Referenced:	Eohaustorius estuarius	Test	SED-003: September 21, 2021 @ 13: 00 - October 1, 2021 @13:00 (10 day)					
	EPA/600/R-94-025	Duration:	SED-004: September 21, 2021 @ 13: 01 - October 1, 2021 @13:01 (10 day)					
		SED-005: September 21, 2021 @ 13: 02 - October 1, 2021 @13:02 (10 day)						
		SED-006: September 21, 2021 @ 13: 03 - October 1, 2021 @13:03 (10 day)						
	A A A I II A A A I I		SED-007: September 21, 2021 @ 13: 04 - October 1, 2021 @ 13:04 (10 day)					
	Mytilus galloprovincialis EPA/600/R-95-136	Test Duration:	SED-003: September 15, 2021 @ 14: 00 - September 17, 2021 @14:00 (48 hours) SED-004: September 15, 2021 @ 14: 01 - September 17, 2021 @14:01 (48 hours)					
	EPA/600/R-95-136	Duration:	SED-004: September 15, 2021 @ 14: 01 - September 17, 2021 @ 14:01 (48 hours) SED-005: September 15, 2021 @ 14: 02 - September 17, 2021 @ 14:02 (48 hours)					
			SED-005: September 15, 2021 @ 14: 02 - September 17, 2021 @ 14:03 (48 hours)					
			SED-007: September 15, 2021 @ 14: 04 - September 17, 2021 @14:04 (48 hours)					
Sample Matrix:	Sediment	<u> </u>						
Type of Species:	Estuarine							
Data Validator:	Amber Ballrot							
Validation Date:	January 6, 2021							
Signature:	Amlu Bellest							
Problems Noted:	No problems or deficiencies	identified. Ch	ronic toxicity testing was performed in accordance with EPA method guidelines.					

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

EOHAUSTORIUS ESTUARIUS

Type of Samples Collected: Grab Sediment Samples

Number of Samples Analyzed: 5

Were samples maintained at 4°C and in the dark after collection? Yes

Did chronic toxicity testing begin within 14 days of sample collection? Yes

Holding conditions acceptable? Yes

If holding conditions were not acceptable, explain: N/A

Quality of Test Organism, Collection and Acclimation:

Who is the supplier of the test organisms? | Northwestern Amphipod in Newport, Oregon

Are organisms field collected or cultured?

Field Collected

If field collected:

Where was the collection location? Newport, Oregon

What was the organism collection date? Organism collection date was on 9/13/2021. Organisms were received by the laboratory on 9/15/2021.

What was the water salinity and temperature at the time of collection? Water salinity at time of collection was 28 ppt and temperature was 14.2 °C. Organisms were acclimated at 26 ppt after collection and later, 24ppt and -2 ppt/day until reaching 20ppt.

Was site sediment collected for holding an acclimation purposes? Yes, 2L of site sediment was collected and supplied to Aquatic Bioassay for negative control.

Additional Comments: Quality of test organisms and acclimation is deemed acceptable.

Field Collection Sorting Methods

Were healthy amphipods placed into 10 cm diameter finger bowls with 2 cm sieved site sediment and seawater of appropriate salinity? Yes, only healthy amphipods were used in testing. All sediment was sieved through stainless 2mm sieve. Overlying water of 20ppt was used for testing.

Were organisms held for 2-10 days? Yes, organisms were held for 6 days prior to testing.

Was test sediment sieved through 2 mm sieve or forceps for predator removal? Yes, sediment was sieved using a 2mm stainless sieve.

Was control sediment sieved twice through 0.5 mm? Yes

Did control sediment have a 4-hour settling period after each sieving? Yes, control has a >4 hour settling period after each sieving.

Test Initiation

Was salinity adjusted in all testing chambers? Yes

Was overlying ammonia detected? No ammonia was detected on overlying water. MDL 0.1mg/L.

Were there at least 5 replicates per sample? Yes

Was there at least 20 animals per replicate? Yes

Were 1 liter glass containers with 10 cm diameters used for each test chamber? Yes, 1L wide mouth glass containers (10 cm dia.) were used in testing.

Was water in each test chamber aerated overnight before start and throughout the test? Aeration occurred at 1bbl/second throughout testing.

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

Was the organism length between 3-5 mm during test initiation? Yes, organism length was checked using dial calipers and confirmed within 3-5mm at test initiation.

Was the overlying water volume 800 mL? Yes

Were there any water quality adjustments? Yes, water quality measurements were collected during the duration of the test and are provided in the corresponding laboratory report.

Test Implementation

Photoperiod for 24 hours? Continuous light was provided.

Was daily water quality monitoring conducted? Yes

What was the overlying daily temperature range (15°C)? The overlying daily temperature was maintained at 15°C.

Was the daily salinity range 20+/-1 ppt? Yes, salinity range 20ppt.

Was water renewal conducted? No, water remained static and was not renewed over the 10-day exposure period as required in the EPA method.

Was the overlying daily pH between 7 – 8 standard units? Yes

What was the overlying ammonia detection (ND)? All overlying water was screened for ammonia and results were ND <0.1 mg/L.

Were appropriate test changes used (1-liter glass containers with 10 cm diameter)? Yes, 1L wide mouth glass containers (10 cm dia.) were used in testing.

Was water in each test chamber aerated overnight before start and throughout the test? Yes, aeration occurred at 1bbl/ second throughout testing.

Did the water maintain at least more than 90% saturation of dissolved oxygen concentration? Yes

Test Results and Analysis

Were the number of amphipods reported for each replicate? Yes

Was the percent mortality reported for each replicate? Yes

Was the sample mean for survival reported? Yes, the mean control survival was 100%

QA/QC Samples

a, y ac sumples	,
Positive Control	Negative Control
Length of reference toxicity test? 96 hours	Negative control response above 90% acceptability criteria? Yes
What reference toxicant was used? Unionized Ammonia	Mean control survival? 100%
Exposure concentrations? Exposure ammonia concentrations were 0, 15.6, 32.2, 62.5, 125.0, 250 mg/L	Did EC 50 fall within lab standards? Yes
Did EC 50 fall within lab standards? Yes	

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

MYTILUS GALLOPROVINCIALIS

Completeness and Holding Conditions:

Type of Samples Collected? Grab Sediment Samples

Number of Samples Analyzed: 5

Were samples maintained at 4°C and < 2 weeks in darkness? Yes

Did chronic toxicity testing begin within 14 days of sample collection? Yes

Holding conditions acceptable? Yes

If holding conditions were not acceptable, explain: N/A

Organism Collection and Acclimation:

Who is the supplier of the test organisms? Carlsbad Aquafarms

Are organisms field collected or cultured? Cultured

Was there an even sex ratio of brood stock? Yes

Were organisms maintained at 15°C? Yes

Were organisms brushed to remove encrusting organisms? Yes, organisms were brushed upon arrival.

Test Initiation

Were at least 12 test organisms used per test? Yes, a batch of 40-60 were spawned.

Was spawning successful within the first 30 minutes of beginning spawning process? Yes, spawning was immediate.

If spawning was unsuccessful, were any stimulants (i.e.- algae) used to promote spawning?

Was temperature maintained at 20°C during spawning? Yes, spawning induction was 20 °C. Post spawning organisms are move back to a fresh dish at 15 °C.

Test Implementation

Was the photoperiod 16 hr. light/8 hr. darkness? Yes

Were appropriate 30 mL chamber used? Yes

Was initial water quality monitoring conducted? Yes

Did light intensity remain at ambient laboratory conditions? Yes

What was the temperature range of the water? Temperature remained 15±1 °C.

Did dissolved oxygen concentrations remain above 4 mg/l? Yes

Did salinity range 30 +/- 2 ppt? Salinity remained within 30±2ppt.

What reference toxicant was used? Unionized ammonia was used as the reference toxicant.

What were the concentrations used for the reference toxicant? Concentrations included 0.0, 2.0, 4.0, 6.0, 8.0 and 10.0 mg/L

Test Results and Analysis

Did mussel embryos show 50% survival in control vials? Yes

Did mussels show 90% normal shell development in surviving controls? Yes

QA/QC Samples

Was a percent MSD of <25% demonstrated? Yes

Dominguez Channel Estuary November 2021 Sediment Monitoring Report

Prepared for:

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations 1801 East Sepulveda Boulevard Carson, CA 90745

Prepared by:

WGR Southwest, Inc. 11021 Winners Circle, Suite 101 Los Alamitos, CA 90720

Date:

January 21, 2022

TESORO REFINING & MARKETING COMPANY LLC LOS ANGELES REFINERY – CARSON OPERATIONS DOMINGUEZ CHANNEL ESTUARY SEDIMENT MONITORING REPORT 2021

TABLE OF CONTENTS

1.0	Introduction	on
2.0	Sediment	Monitoring
3.0	Laboratory	y Results
4.0	Executive	Summary
		TABLES
Table 2	2.0.	Sediment Monitoring Field Observation and Analyses
1 aute 2	2.0.	Sediffent Monitoring Field Observation and Analyses
		<u>FIGURES</u>
Figure	1:	Dominguez Channel Estuary Sediment Monitoring Locations
		<u>ATTACHMENTS</u>
Attach	ment 1:	Sediment Monitoring Field Logs
Attach	ment 2:	Sediment Monitoring Laboratory Result Summary Table
Attach	ment 3:	Sediment Monitoring Aquatic Bioassay Analytical Laboratory Report
Attach	ment 4:	Sediment Bioassay Data Validation Report

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations Dominguez Channel Estuary November 2021 Sediment Monitoring Report Page 1 of 3

1.0 Introduction

On behalf of Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations (Tesoro LAR Carson), WGR Southwest, Inc. (WGR) conducted sediment monitoring of the Dominguez Channel Estuary in accordance with National Pollutant Discharge Elimination System Waste Discharge Requirements Permit Number CA0000680 Order Number R4-2015-0259 (WDR Permit). As required in Table E-7 of WDR Permit Attachment E, Monitoring and Reporting Program Number 5424 (MRP No. 5424), sediment monitoring is required at least once a year for all parameters and at least twice a year for Chronic Toxicity regardless of Tesoro LAR Carson discharge associated with the WDR Permit¹. Therefore, this report constitutes sediment monitoring for the second event of 2021, where the sediment samples collected were analyzed for Chronic Toxicity and required monitoring (i.e. field observations and field analyses) was completed.

2.0 Sediment Monitoring

As shown in Figure 1, the WDR Permit designates seven sediment monitoring locations: SED-001, SED-002, SED-003, SED-004, SED-005, SED-006, and SED-007. WGR field personnel utilized an Ekman dredge and a Horiba U-50 Series Multi-Parameter Meter. According to historic Tesoro LAR Carson Sediment Monitoring Reports, samplers have been unable to collect sediment samples from SED-001 since 2003 and SED-002 since 2003.

Sediment monitoring was attempted at all designated sediment monitoring locations on November 3, 2021. As detailed in the field logs (see Attachment 1), sediment samples and associated monitoring could only be feasibly completed at five of the seven sediment monitoring locations. Table 2.0 provides a summary of the field observations and analyses.

	Table 2.0: See	diment Monitoring Fig	eld Observation and A	nalyse	S				
		Field Observations			Fi	eld A	nalys	ses	
Sample ID	Sediment Description	Biological Matter	Pollutants	pH (SU)	Salinity (PPT)	DO (mg/L)	SC (mS/Cm)	Turbidity (NTU)	Flow
SED-001	Not Sampled	Not Sampled	Not Sampled		1	I	ŀ	I	1
SED-002	Not Sampled	Not Sampled	Not Sampled						

_

¹ Tesoro LAR Carson did not discharge under the WDR Permit during the 2021 calendar year.

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations Dominguez Channel Estuary November 2021 Sediment Monitoring Report Page 2 of 3

	Table 2.0: See	diment Monitoring Fig	eld Observation and An	alyse	S				
		Field Observations			Fi	eld A	nalys	ses	
Sample ID	Sediment Description	Biological Matter	Pollutants	pH (SU)	Salinity (PPT)	DO (mg/L)	SC (mS/Cm)	Turbidity (NTU)	Flow
SED-003	Dark in color with shell, vegetation and debris, biological odor	Vegetation present	Trash present	7.70	17.8	1.61	28.3	37.5	1
SED-004	Dark in color with shells, vegetation and debris, biological odor	Vegetation present	Trash present	7.37	10.9	12.59	18.2	42.4	-
SED-005	Dark in color with vegetation/debris and trash, biological odor	Vegetation present	Trash present	77.7	18.4	10.49	29.2	25.3	ł
SED-006	Dark in color with vegetation/debris and trash, biological odor	Vegetation present	Trash present	8.09	22.8	12.21	35.3	17.0	ł
SED-007	Dark in color with vegetation/debris and trash, biological odor	Vegetation present	Trash present	8.09	22.4	8.63	35.7	19.1	1
SED-004 SED-005	Dark in color with shells, vegetation and debris, biological odor Dark in color with vegetation/debris and trash, biological odor Dark in color with vegetation/debris and trash, biological odor Dark in color with vegetation/debris and trash, biological odor	Vegetation present Vegetation present Vegetation present	Trash present Trash present Trash present	8.09 7.77 7.37	22.8 18.4 10.9	12.21 10.49 12.59	5.7 35.3 29.2 18.2	17.0 25.3 42.4	

DO: Dissolved Oxygen SC: Specific Conductance

3.0 Laboratory Results

Table 2.0 summarizes the field observations and analyses for the November 2021 sediment monitoring event. Laboratory results are summarized in Attachment 2. The Aquatic Bioassay laboratory report is in Attachment 3. A data validation report for this laboratory analytical report is in Attachment 4.

4.0 Executive Summary

Receiving water sediment monitoring and analysis was conducted independent of any discharge from Tesoro LAR Carson. Pollutant concentrations demonstrated in this report are not associated with any contribution from Tesoro LAR Carson to the receiving water. There are

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations Dominguez Channel Estuary November 2021 Sediment Monitoring Report Page 3 of 3

no pollutant concentration limits associated with this type of sampling as prescribed by the WDR Permit. Receiving water sediment monitoring and analysis was completed in compliance with the WDR Permit Attachment E, MRP No. 5424. As noted in the Sediment Bioassay Data Validation Report included in Attachment 4, analytical data obtained for this sampling event was deemed acceptable. No instances of non-compliance were identified.

FIGURE 1

DOMINGUEZ CHANNEL ESTUARY SEDIMENT MONITORING LOCATIONS

Figure 1: Dominguez Channel Estuary Sediment Monitoring Locations

ATTACHMENT 1

SEDIMENT MONITORING FIELD LOGS

	WGR Southwest, In	ic.	Page 1 of 2					
	Field Log		Date: 11/3/2021					
Project Na	me: LARC Sediment 2021	Field Personnel:	David Montelongo					
Project Nu	mber: 021.APC.01	Field Personnel:	Karina Vega					
Tempera Weather:	litions/Project Discrepancies: ture: 55°F - 73°F Overcast - Partial Cloud Coverage, Sm _t ht Breeze	nog						
Time		Field Notes						
9:00	Loaded Truck w/ Equipment, Safety	ed Truck w/ Equipment, Safety Meeting & Job Overview at Office						
9:30	Bridge to Center: 102'. Measured distance, White Film observed on Warmurky, unable to see bottom of Channard trash/debris. Sediment smells of the second sec	pment for Sampling, Measured Distance from SE Corner of stance from Bridge Railing to Water Surface: 23'. Water in /ater Surface, Vegetation & Trash Along Embankment. Water innel. Sediment was dark in color w/ some vegetation, seashed bio-decomposition. bH, -191 ORPmV, 35.7 mS/cm, 19.1 NTU, 8.63 mg/L DO,						
10:50	Left SED-007 for SED-006							
11:00	Arrived @ SED-006, Measured Distant distance from Bridge Railing to Water Water Surface, Vegetation & Trash Ale Channel. Sediment was dark in color vesmells of bio-decomposition. Horiba Meter Readings: 69.6°F, 8.09p-21.4 g/L TDS, 22.8 ppt.	Surface: 24'. Water in C ong Embankment. Wate w/ some vegetation, sea	hannel, White Film observed on r is murky, unable to see bottom of shells, and trash/debris. Sediment					
11:35	Left SED-006 for SED-005							
11:50	Arrived @ SED-005, Measured Distandistance from Bridge Railing to Water Water Surface, Vegetation & Trash Ald Channel. Sediment was dark in color was mells of bio-decomposition. Horiba Meter Readings: 70.2°F, 7.77pl	Surface: 23'. Water in Cl ong Embankment. Water v/ some vegetation, seas	nannel, White Film observed on is murky, unable to see bottom of shells, and trash/debris. Sediment					
	16.8 g/L TDS, 18.4 ppt.	11, 00 O.M. MAY 20,2 MG	, goig of forte ingre see					

Last Revised 9/5/2019 P:\WGR\Forms

Page 2 of 2 WGR Southwest, Inc. Field Log Date: 11/3/2021 Project Name: LARC Sediment 2021 Field Personnel: David Montelongo Project Number: 021.APC.01 Field Personnel: Karina Vega Field Conditions/Project Discrepancies: Temperature: 55°F - 73°F Weather: Overcast - Partial Cloud Coverage, Smog Wind: Light Breeze Field Notes Time Arrived @ SED-004, Measured Distance from SE Corner of Bridge to Center: 89'. Measured 14:00 distance from Bridge Railing to Water Surface: 23'. Water in Channel, White Film observed on Water Surface, Vegetation & Trash Along Embankment. Water is murky, unable to see bottom of Channel. Sediment was dark in color w/ some vegetation, seashells, and trash/debris. Sediment smells of bio-decomposition. Horiba Meter Readings: 75.6°F, 7.37pH, 33 ORPmV, 18.2 mS/cm, 42.4 NTU, 12.59 mg/L DO, 10.1 g/L TDS, 10.9 ppt. Left SED-004 15:15 Arrived @ SED-003, Measured Distance from NE Corner of Bridge to Center: 119'. Measured 15:20 distance from Bridge Railing to Water Surface: 24'. Water in Channel, White Film observed on Water Surface, Vegetation & Trash Along Embankment. Water is murky, unable to see bottom of Channel. Sediment was dark in color w/ some vegetation, seashells, and trash/debris. Sediment smells of bio-decomposition. Horiba Meter Readings: 72.3°F, 7.70pH, 24 ORPmV, 28.3 mS/cm, 37.5 NTU, 1.61 mg/L DO, 16.2 g/L TDS, 17.8 ppt. Left SED-003 for SED-002 16:10 Drove past SED-002; Sample Point Inaccessible. Continued to SED-001 16:15 16:25 Arrived at SED-001, Measured Distance from NE Corner of Bridge to Center: 920'. Measured Distance from Bridge Railing to Water Surface: 56'. Attempted Sediment Retrieval numerous times without success. Determined unable to sample SED-001. Returned to truck. 17:00 Left SED-001. End of Day

Last Revised 9/5/2019 P:\WGR\Forms

ATTACHMENT 2

SEDIMENT MONITORING LABORATORY RESULT SUMMARY TABLE

Sample ID	SED-001	SED-002	SED-003	SED-004	SED-005	SED-006	SED-007
Date Sampled	NS	NS	11/3/2021	11/3/2021	11/3/2021	11/3/2021	11/3/2021
Time Sampled	NS	NS	15:20	14:00	11:50	11:00	9:30
Total Metals							
Cadmium (EPA 6020) (mg/Kg)	NS	NS	NR	NR	NR	NR	NR
Chromium (EPA 6020) (mg/Kg)	NS	NS	NR	NR	NR	NR	NR
Copper (EPA 6020) (mg/Kg)	NS	NS	NR	NR	NR	NR	NR
Lead (EPA 6020) (mg/Kg)	NS	NS	NR	NR	NR	NR	NR
Nickel (EPA 6020) (mg/Kg)	NS	NS	NR	NR	NR	NR	NR
Zinc (EPA 6020) (mg/Kg)	NS	NS	NR	NR	NR	NR	NR
Mercury (EPA 7471A) (mg/Kg)	NS	NS	NR	NR	NR	NR	NR
Volatile/Semi-Volatile Organic Compounds							
Chlordane (EPA 8081A) (ug/Kg)	NS	NS	NR	NR	NR	NR	NR
DDT (EPA 8081A) (ug/Kg, sum of 4,4'-DDT, 2,4'-DDT, 4,4'-DDE, 2,4'-	NS	NS	NR	NR	NR	NR	NR
DDE, 4,4'-DDD, and 2,4'-DDD)	INS	INS	INIT	INK	INK	INK	INK
PCBs (EPA 8082) (ug/Kg, sum of Arochlor 1016, Arochlor 1221,							
Arochlor 1232, Arochlor 1242, Arochlor 1248, Arochlor 1254, and	NS	NS	NR	NR	NR	NR	NR
Arochlor 1260)							
PAHs (EPA 8270C) (mg/Kg, sum of acenaphthene, anthracene, 1,2-benzanthracene, 3,4-benzofluoranthene, benzo(k)fluoranthene, 1,12-benzoperylene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, and pyrene)	NS	NS	NR	NR	NR	NR	NR
Total Petroleum Hydrocarbons (EPA 8015B) (mg/Kg)	NS	NS	NR	NR	NR	NR	NR
Sediment Grain Size (ASTM D4464)				NR			
Total Organic Carbon (EPA 9060A) (mg/Kg)	NS	NS	NR	NR	NR	NR	NR
Tributyltin (Krone et al.) (ug/Kg)	NS	NS	NR	NR	NR	NR	NR
Chronic Toxicity							_
Eohaustorius estuarius (NOEC in %)	NS	NS	100%	100%	100%	100%	100%

NS = Not Sampled

NR = Not Required

ND = Non-Detect

NOEC = No Observed Effect Concentration

ATTACHMENT 3

SEDIMENT MONITORING AQUATIC BIOASSAY ANALYTICAL LABORATORY REPORT

December 3, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-003

DATE RECEIVED: 11/4/2021

ABC LAB. NO.: WGR1121.046

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Your very truly,

w Scott Johnson

Laboratory Director

CETIS Summary Report

03 Dec-21 15:44 (p 1 of 1) 12-3586

choir pare.	05 Dec-21 15.44 (p
est Code/ID:	WGR1121.046 / 08-99

							Test	Code/ID:	WGR	121.0467	08-9912-3586	
Eohaustorius	10-d Survival an	d Rebur	ial Sedime	ent Test				Aquatic	Bioassay &	Consultir	ıg Labs, Inc.	
Batch ID:	07-6098-5068	T	est Type:	Survival-Reburi	ai		Anal	yst: Joe	Freas			
Start Date:	09 Nov-21 13:00	P	rotocol:	EPA/600/R-94/	025 (1994)		Dilu	ent: Lal	oratory Seav	vater		
Ending Date:	19 Nov-21 13:00	S	pecies:	Echaustorius es	stuarius		Brin	e: No	Applicable			
Test Length:	10d 0h	T	axon:	Malacostraca			Sou	rce: No	orthwestern Aquatic Scienc Age:			
Sample ID:	12-6755-9635	С	ode:	WGR1120.046	gir II		Proj	ect: 02	021.APC.01			
Sample Date:	03 Nov-21 15:20	N	laterial:	Sediment			Sou	rce: Bio	assay Report			
Receipt Date:	04 Nov-21 16:00	C	AS (PC):				Stati	on: SE	D-003			
Sample Age:	5d 22h	C	lient:	WGR Southwes	st Inc.							
Single Compa	arison Summary											
Analysis ID	Endpoint		Comp	arison Method			P-Value Comparison Result				S	
02-8811-6571	Survival Rate		Wilco	kon Rank Sum T	wo-Sample	Test	1.0000	100% pa	00% passed survival rate			
Test Acceptat	oility					TAC	Limits	711				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision			
02-8811-6571	Survival Rate		Contro	ol Resp	1	0.9	>>	Yes	Passes Criteria			
Survival Rate	Summary											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
0	N	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0,0000	222	0.00%	
100		5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	-	0.00%	
Survival Rate	Detail						MD	5: 41B4118	32B59AAABF	B2FDAA2	3D11B52E4	
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	1.0000	1.0000	1.0000	1.0000	1.0000						
100		1.0000	1.0000	1.0000	1.0000	1.0000						
	Binomials											
Survivai Rate	Dillominais											
Survival Rate Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
	20.05.00.20	Rep 1 20/20	Rep 2	Rep 3 20/20	Rep 4 20/20	Rep 5 20/20		_				

Report Date: Test Code/ID:

03 Dec-21 15:44 (p 1 of 2) WGR1121.046 / 08-9912-3586

Eohaustorius	ohaustorius 10-d Survival and Reburial Sediment Test nalysis ID: 02-8811-6571 Endpoint: Survival Rate											Aquatic Bioassay & Consulting Labs, Inc.					
Analysis ID: Analyzed: Edit Date:	02-8811-6571 03 Dec-21 15:06 03 Dec-21 15:05		3 Dec-21 15:06		Survival Rate Nonparametric-Two Sample 41B41182B59AAABFB2FDAA23D11B52E4					Stat	CETIS Version: CETISv1.9.7 Status Level: 1 Editor ID: 007-979-628-1						
			Protocol: Species:		Survival-Reburial EPA/600/R-94/025 (1994) Eohaustorius estuarius Malacostraca			Dilu Brin	Analyst: Joe Freas Diluent: Laboratory Seawater Brine: Not Applicable Source: Northwestern Aquatic Scienc Age			nc Age:					
Sample ID: Sample Date: Receipt Date:	12-6755-9635 : 03 Nov-21 15:20 : 04 Nov-21 16:00 5d 22h		35. Code 5:20 Mate 6:00 CAS		WGR1120_04				Ī	Project: 021.AF		.APC.01 assay Repor	APC.01 ssay Report				
Data Transfor		2211	-	Client:	WGR Soul	nwest ii	iiC.	Compa	rison R	oculf							
Data Transform Alt Hyp Angular (Corrected) C > T				/P					_		rate endpoin	it					
Wilcoxon Ran	ık Su	m Two-Sam	ple Tes	t													
Control	vs	Conc-%		Test S 27.5		al T		F P-Type Exact		alue	Decision((α:5%) ficant Effect					
Negative Contr Test Acceptal Attribute	-	Criteria Test Stat	Lower	C Limits Upper		ар С	Decision	(1.0	000	Non-Signi	ilcant Effec					
Control Resp		1	0.9	>>	Yes	F	Passes C	riteria									
ANOVA Table		C C		******				F Ptat	n v	aleea	Davistan	E0/ \					
Source Between	Sum Square		o Wear		Square		F	F Stat	P-V	alue	ndeterminate						
Error Total		0		0				-			110000						
ANOVA Assur	mptio	ns Tests						7									
Attribute Variance				Test			est Stat	Critical	P-V	alue	Decision(α:1%) Indeterminate						
Distribution		Shapiro-W	ilk W No	V Normality Test							Indetermir	nate					
Survival Rate	Sum	mary															
Conc-%		Code N	Count 5	1.0000) 1	5% UCL	Median	1.0	000	Max 1.0000	Std Err 0.0000	CV% 0.00%	%Effect 0.00%			
100		5 A A . W	5	1.0000	1,0000) 1	.0000		1.0	000	1.0000	0.0000	0.00%	0.00%			
Angular (Corr	ected				050/1						200	044 5	01/0/	NEG			
Conc-%	_	Code N	Count 5	Mean 1,4590	95% L	_	5% UCL .4590	Median	Mir 1.4	_	Max 1.4590	0.0000	CV% 0.00%	%Effect 0.00%			
100		N	5	1.4590			4590			590	1.4590	0.0000	0.00%	0.00%			
Survival Rate	Deta	il															
Conc-%		Code	Rep 1	Rep 2	Rep 3	R	Rep 4	Rep 5									
0 100		N	1.0000				.0000	1.0000									
Angular (Corr	ected) Transform	ned Det	ail													
Conc-%		Code	Rep 1	Rep 2	Rep 3	R	lep 4	Rep 5									
0		N	1.4590				.4590	1.4590									
100			1.4590	1.4590	1.4590	1	4590	1,4590									

CETIS Analytical Report

Report Date: Test Code/ID:

03 Dec-21 15:44 (p 2 of 2) WGR1121.046 / 08-9912-3586

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 02-8811-6571 Analyzed:

03 Dec-21 15:06

Endpoint: Survival Rate

Analysis: Nonparametric-Two Sample

CETIS Version:

Status Level:

1

Edit Date:

03 Dec-21 15:05

MD5 Hash: 41B41182B59AAABFB2FDAA23D11B52E4

Editor ID:

007-979-628-1

CETISv1.9.7

CETIS Measurement Report

pH-Units

Report Date:

03 Dec-21 15:44 (p 1 of 1)

Test Code/ID: WGR1121.046 / 08-9912-3586

Eohaustorius 10-d Survival and Reburial Sediment Test Aquatic Bioassay & Consulting Labs, Inc.

Batch ID: 07-6098-5068 Test Type: Survival-Reburial Analyst: Joe Freas

Start Date: Protocol: EPA/600/R-94/025 (1994) Diluent: 09 Nov-21 13:00 Laboratory Seawater Ending Date: 19 Nov-21 13:00 Species: Eohaustorius estuarius Brine: Not Applicable Test Length: 10d 0h Taxon: Malacostraca Source: Northwestern Aquatic Scienc Age:

 Sample ID:
 12-6755-9635
 Code:
 WGR1120.046
 Project:
 021 APC.01

 Sample Date:
 03 Nov-21 15:20
 Material:
 Sediment
 Source:
 Bioassay Report

Receipt Date: 04 Nov-21 16:00 CAS (PC): Station: SED-003

Sample Age: 5d 22h Client: WGR Southwest Inc.

Dissolved Oxygen-mg/L													
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	N	2	10.05	9.415	10.69	10	10.1	0.03536	0.07073	0.70%	0		
100		2	10.15	9.515	10.79	10.1	10.2	0.03535	0.0707	0.70%	0		
Overall		4	10.1	9.97	10.23	10	10.2	0.04082	0.08165	0.81%	0 (0%)		

F1.1.2.1.1.0											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
100		2	7.7	7.698	7.702	7.7	7.7	0	0	0.00%	0
Overall		4	7.8	7.616	7.984	7.7	7.9	0.05774	0.1155	1.48%	0 (0%)

Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
100		2	20	20	20	20	20	0	0	0.00%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)

Temperature-°C											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.75	14.11	15,39	14.7	14.8	0.03537	0.07075	0.48%	0
100		2	14.75	14.11	15.39	14.7	14.8	0.03537	0.07075	0.48%	0
Overall		4	14.75	14,66	14.84	14.7	14.8	0.02887	0.05774	0.39%	0 (0%)

Analyst: A QA:Z

007-979-628-1 CETIS™ v1.9.7.7

December 3, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025*, Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-004

DATE RECEIVED: 11/4/2021

ABC LAB. NO.: WGR1121.047

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours yery truly,

Scott Johnson

Laboratory Director

CETIS S	ummary	Report
----------------	--------	--------

Report Date: Test Code/ID: 03 Dec-21 15:44 (p 1 of 1) WGR1121.047 / 13-8882-2314

							Test	Code/ID:	WGR	1121.047 /	13-8882-2314
Eohaustorius	10-d Survival an	d Reburi	al Sedime	ent Test				Aquatio	Bioassay &	Consultin	ng Labs, Inc.
Batch ID:	19-2970-8862	Te	st Type:	Survival-Reburi	al		Anal	lyst: Jo	e Freas		
Start Date:	09 Nov-21 13:01	Pr	otocol:	EPA/600/R-94/	025 (1994)		Diluent: La		boratory Seav	vater	
Ending Date:	19 Nov-21 13:01	Sp	ecies:	Eohaustorius estuarius			Brin	e: No	t Applicable		
Test Length:	10d Oh	Ta	xon:	Malacostraca			Sou	rce: No	rthwestern A	quatic Scie	nc Age:
Sample ID:	18-3474-6730	Co	ode:	WGR1121.047			Proj	ect: 02	1.APC.01		
Sample Date:	03 Nov-21 14:00	Ma	aterial:	Sediment			Sou	rce: Bio	assay Repor	t	
Receipt Date:	04 Nov-21 16:00	C	AS (PC):				Stati	ion: SE	D-004		
Sample Age:	5d 23h	CI	ient:	WGR Southwe	st Inc.						
Single Compa	rison Summary										
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compar	son Result		S
00-4150-1788	Survival Rate		Wilco	xon Rank Sum T	wo-Sample	Test	1.0000	100% pa	ssed survival	rate	- 1
Test Acceptat	oility					TAC	Limits				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision		
00-4150-1788	Survival Rate		Contro	ol Resp	1	0.9	>>	Yes	Passes C	riteria	
Survival Rate	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	-	0.00%
100		5	1.0000	0 1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	-	0.00%
Survival Rate	Detail						MD	5: 41B411	B2B59AAABI	B2FDAA2	3D11B52E4
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					1.0
0	N	1.0000	1.0000	1.0000	1.0000	1.0000					
100		1.0000	1.0000	1.0000	1.0000	1.0000					
Survival Rate	Binomials										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	20/20	20/20	20/20	20/20	20/20					

100

20/20

20/20

20/20

20/20

20/20

Report Date: Test Code/ID: 03 Dec-21 15:44 (p 1 of 2) WGR1121 047 / 13-8882-2314

Eohaustorius	10-d	Survival an	nd Rebu	ırial Sedime	ent Test				Aquatio	: Bioassay 8	Consultin	ng Labs, Inc
Analysis ID: Analyzed: Edit Date:	03 D	150-1788 lec-21 15:13 lec-21 15:12	3 ,70 (2)	Endpoint: Analysis: MD5 Hash:	Survival Rate Nonparametric 41B41182B59			S	ETIS Version tatus Level: ditor ID:	: CETISv ⁴ 1 007-979		
Batch ID:	19-2	970-8862		Test Type:	Survival-Rebur	ial		А	nalyst: Jo	e Freas		
Start Date:	09 N	lov-21 13:01		Protocol:	EPA/600/R-94		4			boratory Sea	water	
Ending Date:	19 N	lov-21 13:01		Species:	Echaustorius e	4			Brine: Not Applicable			
Test Length:	10d	Oh		Taxon:	Malacostraca			S		rthwestern A	quatic Scie	nc Age:
Sample ID:	18-3	474-6730	11	Code:	WGR1121.047	7		P	roject: 02	1.APC.01		
Sample Date:	03 N	ov-21 14:00		Material:	Sediment			S	ource: Bio	assay Repor	t	
Receipt Date:	04 N	ov-21 16:00		CAS (PC):				S	tation: SE	D-004		
Sample Age:	5d 2	23h		Client:	WGR Southwe	est Inc.						
Data Transfor	m		Alt H	ур			Compari	ison Resu	lt			
Angular (Corre	cted)		C>T				100% pa	ssed survi	val rate endpoi	int		
Wilcoxon Ran	k Sur	n Two-Sam	ple Tes	it								
Control	vs	Conc-%	, CA . C. C.	Test S	Stat Critical	Ties I	F P-Type	P-Valu	e Decision	n(a:5%)		
Negative Contr	ol	100		27.5		1 8		1.0000		ificant Effect		
Test Acceptat	oility	Criteria	~	C Limits								
Attribute		Test Stat		the marriage after	Overlap	Decision	6					
Control Resp		1	0.9	>>	Yes	Passes						
ANOVA Table					118	1(0710)		_			-	
Source		Sum Squa	ires	Mean	Square	DF	F Stat	P-Valu	e Decision	(a:5%)		
Between	_	0	1.60/	0		1	1.440	3.3.	Indetermi			
Error		0		0		8						
Total		0				9						
ANOVA Assur	nptio	ns Tests				100	7.75					
Attribute		Test				Test Sta	t Critical	P-Valu	e Decision	(a:1%)		
Variance		Variance R	atio F T	est					Indetermi	inate		
Distribution		Shapiro-W	ilk W No	ormality Test					Indetermi	inate		
Survival Rate	Sumi	mary										
Conc-%		Code	Count	Mean	95% LCL	95% UCI	Median	Min	Max	Std Err	CV%	%Effect
0	-	N	5	1.0000	1.0000	1.0000		1.0000	1.0000	0.0000	0.00%	0.00%
100			5	1.0000	1.0000	1.0000		1.0000	1.0000	0.0000	0.00%	0.00%
Angular (Corre	ected) Transform	ned Sur	nmary								
Conc-%		Code	Count	Mean	95% LCL	95% UCI	Median	Min	Max	Std Err	CV%	%Effect
0		N	5	1.4590	1.4580	1.4590		1.4590	1.4590	0.0000	0.00%	0.00%
100		<u> </u>	5	1.4590	1.4580	1.4590	-1	1.4590	1.4590	0 0000	0.00%	0.00%
Survival Rate	Detai	ı										
Conc-%		Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
)	-	N	1.0000			1.0000	1.0000					
100			1.0000			1.0000	1.0000					
Angular (Corre	ected) Transform	ned Det	ail								
	ected) Transform Code	ned Det Rep 1	ail Rep 2	Rep 3	Rep 4	Rep 5					
Angular (Corre	ected			Rep 2		Rep 4 1.4590	Rep 5					

Analyst: A QAI

007-979-628-1

CETIS™ v1.9.7.7

Report Date: Test Code/ID:

03 Dec-21 15:44 (p 2 of 2) WGR1121.047 / 13-8882-2314

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 00-4150-1788

03 Dec-21 15:13

Endpoint: Survival Rate

CETIS Version:

Status Level:

CETISv1.9.7

Analyzed: Edit Date:

03 Dec-21 15:12

Analysis: Nonparametric-Two Sample

MD5 Hash: 41B41182B59AAABFB2FDAA23D11B52E4 Editor ID:

007-979-628-1

CETIS Measurement Report

Report Date:

03 Dec-21 15:44 (p 1 of 1)

	TO SUNTENE WAY A SHEET
Test Code/ID:	WGR1121.047 / 13-8882-2

								lest code/it	, vvoi	1121.047	13-0002-2314
Eohaustorius	10-d Survival a	nd Reb	urial Sedime	ent Test				Aqua	tic Bioassay 8	& Consulti	ng Labs, Inc.
Batch ID:	19-2970-8862		Test Type:	Survival-Rebui	rial			Analyst:	Joe Freas		
Start Date:	09 Nov-21 13:01		Protocol:	EPA/600/R-94	/025 (1994)			Diluent:	Diluent: Laboratory Seawater		
Ending Date:	19 Nov-21 13:01		Species:	Echaustorius e	estuarius			Brine:	Not Applicable		
Test Length:	10d 0h		Taxon:	Malacostraca				Source:	Northwestern A	quatic Scie	enc Age:
Sample ID:	18-3474-6730		Code:	WGR1121,047				Project:	021.APC.01		
Sample Date:	03 Nov-21 14:00).	Material:	Sediment				Source:	Bioassay Repo	rt	
Receipt Date:	04 Nov-21 16:00)	CAS (PC):					Station:	SED-004		
Sample Age:	5d 23h		Client:	WGR Southwe	est Inc.						
Dissolved Oxy	/gen-mg/L										- A
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	10.05	9.415	10.69	10	10.1	0.03536	0.07073	0.70%	0
100		2	10.15	9.515	10.79	10.1	10.2	0.03535	0.0707	0.70%	0
Overall		4	10.1	9.97	10.23	10	10.2	0.04082	0.08165	0.81%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7,9	0	0	0.00%	0
100		2	7.65	7.015	8.285	7.6	7.7	0,03535	0.07071	0.92%	0
Overall		4	7.775	7.536	8.014	7.6	7.9	0.075	0.15	1.93%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
100		2	20	20	20	20	20	0	0	0.00%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)
Temperature-	c										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.8	13.53	16.07	14.7	14.9	0.07072	0.1414	0.96%	0
100		2	14.75	14.11	15.39	14.7	14.8	0.03537	0.07075	0.48%	0
Overall		4	14.77	14.62	14.93	147	14.9	0.04787	0.09574	0.65%	0 (0%)

December 3, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-005 DATE RECEIVED: 11/4/2021

ABC LAB. NO.: WGR1121.048

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours Hery truly,

Scott Johnson

Laboratory Director

CETIS	Summary	Report
-------	---------	--------

Report Date:

03 Dec-21 15:44 (p 1 of 1) WGR1121.048 / 19-4607-4273

Test Code/ID: WGR1121.048 / 19-460

							1620	Code/ID:	WGK	1121.0407	19-4007-427
Eohaustorius	10-d Survival an	d Reburi	al Sedime	ent Test				Aquatic	Bioassay &	Consultin	ng Labs, Inc.
Batch ID:	18-0330-0744	Te	st Type:	Survival-Reburi	al		Anal	lyst: Joe	Freas		
Start Date:	09 Nov-21 13:02	Pr	otocol:	EPA/600/R-94/	025 (1994)		Dilu	ent: Lat	oratory Seav	vater	
Ending Date:	19 Nov-21 13:02	Sp	ecies:	Eohaustorius estuarius			Brin	e: No	Applicable		
Test Length:	10d 0h	Ta	ixon:	Malacostraca			Sou	rce: No	rthwestern Ad	quatic Scie	nc Age:
Sample ID:	07-2778-1040	Co	ode:	WGR1121.048		Project: 0			.APC.01		
Sample Date:	03 Nov-21 11:50	M	aterial:	Sediment			Sou	rce: Bio	assay Repor	t	
Receipt Date:	04 Nov-21 16:00	C	AS (PC):				Stati	ion: SE	D-005		
Sample Age:	6d 1h	CI	ient:	WGR Southwes							
Single Compa	rison Summary										
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compari	son Result		
02-8745-8391	Survival Rate		Wilco	on Rank Sum T	wo-Sample	Test	1.0000	100% pas	ssed survival	rate	
Test Acceptat	oility					TAC	Limits				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision		
02-8745-8391	Survival Rate		Contro	ol Resp	1	0.9	>>	Yes	Passes C	riteria	
Survival Rate	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000		0.00%
100		5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000		0.00%
Survival Rate	Detail		-				MD	5: 41B4118	32B59AAABF	B2FDAA2	3D11B52E4
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	1.0000	1.0000	1.0000	1.0000	1.0000					
100		1.0000	1.0000	1.0000	1.0000	1.0000					
Survival Rate	Binomials										
A Table & A series											
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
Carrey Long v Mario	Code N	Rep 1 20/20	Rep 2 20/20	Rep 3 20/20	Rep 4 20/20	Rep 5 20/20					

Analyst: Analyst: QA:

Conc-%

007-979-628-1

0

100

Code

N

Rep 1

1.4590

1.4590

Rep 2

1.4590

1.4590

Report Date: Test Code/ID: 03 Dec-21 15:44 (p 1 of 2) WGR1121.048 / 19-4607-4273

							Tes	st Code/ID:	WGR	1121.048 /	19-4607-42
Eohaustorius	10-d Survival a	ınd Reburia	l Sedimen	it Test				Aquatic	Bioassay &	& Consultir	g Labs, Inc
Analysis ID:	02-8745-8391	En	dpoint:	Survival Rate			CE	TIS Version	CETISV	1.9.7	
Analyzed:	03 Dec-21 15:3	5 An	alysis:	Nonparametric-	Two Sam	ole	Sta	tus Level:	1		
Edit Date:	03 Dec-21 15:3	4 ME	5 Hash: 4	41B41182B59A	AABFB2F	DAA23D11E	352E4 Edi	itor ID:	007-979	-628-1	
Batch ID:	18-0330-0744	Te	st Type: \$	Survival-Reburial				alyst: Joe	e Freas		
Start Date:	09 Nov-21 13:0	2 Pro	tocol:	EPA/600/R-94/	025 (1994)	Dil	uent: Lai	poratory Sea	water	
Ending Date:	19 Nov-21 13:0	2 Sp	ecies: E	Eohaustorius es	stuarius		Bri	ne: No	t Applicable		
Test Length:	10d 0h	Ta	con: N	Malacostraca	Malacostraca			urce: No	rthwestern A	quatic Scie	nc Age:
Sample ID:	07-2778-1040	Co	de: \	WGR1121.048			Pro	ject: 02	1.APC.01		
Sample Date:	03 Nov-21 11:5			Sediment			So	urce: Bio	assay Repor	rt	
Receipt Date:	04 Nov-21 16:0	O CA	S (PC):				Sta	tion: SE	D-005		
Sample Age:	6d 1h	Cli	ent: \	WGR Southwes	st Inc.						
Data Transfor	m	Alt Hyp				Compari	ison Result				
Angular (Corre	cted)	C > T				100% pa	ssed surviva	al rate endpoi	nt		
Wilcoxon Ran	k Sum Two-Sai	nple Test	7								
Control	vs Conc-%		Test St	at Critical	Ties	DF P-Type	P-Value	Decision	(a:5%)		
Negative Contro	ol 100		27.5		1 3	B Exact	1.0000	Non-Sign	ificant Effec	t	
Test Acceptab	ility Criteria	TAC	Limits								
Attribute	Test Stat		Upper	Overlap	Decisio	n					
Control Resp	1	0.9	>>	Yes	Passes	Criteria					
ANOVA Table											
Source	Sum Squ	ares	Mean S	ouare	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0	100	0	40.00	1	1 1001	101000	Indetermi			
Error	0		0		8						
Total	0		_		9						
ANOVA Assun	ontione Teete										
MINO AN MOORI	iptions rests										
Attribute	Test				Test Sta	t Critical	P-Value	Decision	(a:1%)		
	Test	Ratio F Test			Test Sta	t Critical	P-Value	Decision			
Attribute	Test Variance	Ratio F Test Vilk W Norm			Test Sta	t Critical	P-Value		nate		
Attribute Variance Distribution	Test Variance Shapiro-V				Test Sta	t Critical	P-Value	Indetermi	nate		
Attribute Variance	Test Variance Shapiro-V			95% LCL			P-Value Min	Indetermi	nate	CV%	%Effect
Attribute Variance Distribution Survival Rate Conc-%	Test Variance Shapiro-V Summary Code	Vilk W Norm	Mean		95% UC		Min	Indetermi Indetermi Max	nate nate Std Err		3494.97.77
Attribute Variance Distribution Survival Rate	Test Variance Shapiro-V Summary	Vilk W Norm	ality Test	95% LCL 1.0000 1.0000				Indetermi	nate nate	CV% 0.00% 0.00%	%Effect 0.00% 0.00%
Attribute Variance Distribution Survival Rate Conc-%	Test Variance Shapiro-V Summary Code	Count 5	Mean 1.0000 1.0000	1.0000	95% UC 1.0000		Min 1.0000	Indetermi Indetermi Max 1.0000	Std Err	0.00%	0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre	Test Variance Shapiro-V Summary Code N	Count 5	Mean 1.0000 1.0000	1.0000	95% UC 1.0000	L Median	Min 1.0000	Indetermi Indetermi Max 1.0000	Std Err	0.00%	0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre	Test Variance Shapiro-V Summary Code N ected) Transfor	Count 5 5 med Summ	Mean 1.0000 1.0000	1.0000 1.0000	95% UC 1.0000 1.0000	L Median	Min 1.0000 1.0000	Max 1.0000 1.0000	Std Err 0.0000 0.0000	0.00% 0.00%	0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre	Test Variance Shapiro-V Summary Code N ected) Transfor	Count 5 5 med Summ	Mean 1.0000 1.0000 ary Mean	1.0000 1.0000 95% LCL	95% UC 1.0000 1.0000	L Median	Min 1.0000 1.0000 Min	Max 1.0000 1.0000	Std Err 0.0000 0.0000 Std Err	0.00% 0.00%	0.00% 0.00% %Effect
Attribute Variance Distribution Survival Rate Conc-% 0 1000 Angular (Corre	Test Variance Shapiro-V Summary Code N ected) Transfor Code N	Count 5 5 med Summ Count 5	Mean 1.0000 1.0000 ary Mean 1.4590	1.0000 1.0000 95% LCL 1_4580	95% UC 1.0000 1.0000 95% UC 1.4590	L Median	Min 1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV%	0.00% 0.00% %Effect 0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100	Test Variance Shapiro-V Summary Code N ected) Transfor Code N	Count 5 5 med Summ Count 5	Mean 1.0000 1.0000 ary Mean 1.4590	1.0000 1.0000 95% LCL 1_4580	95% UC 1.0000 1.0000 95% UC 1.4590	L Median	Min 1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%
Attribute Variance Distribution Survival Rate Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate	Test Variance Shapiro-V Summary Code N ected) Transfor Code N	Count 5 5 med Summ Count 5 5	Mean 1.0000 1.0000 ary Mean 1.4590 1.4590	1.0000 1.0000 95% LCL 1.4580 1.4580	95% UC 1.0000 1.0000 95% UC 1.4590 1.4590	L Median	Min 1.0000 1.0000 Min 1.4590	Max 1.0000 1.0000 Max 1.4590	Std Err 0.0000 0.0000 Std Err 0.0000	0.00% 0.00% CV% 0.00%	0.00% 0.00% %Effect 0.00%

Analyst: A QA:

CETIS™ v1,9,7.7

Rep 3

1.4590

1.4590

Rep 4

1.4590

1.4590

Rep 5

1.4590

1.4590

Report Date:

03 Dec-21 15:44 (p 2 of 2)

Test Code/ID:

WGR1121.048 / 19-4607-4273

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 02-8745-8391

Endpoint: Survival Rate

CETIS Version: Status Level:

CETISV1.9.7

007-979-628-1

Analyzed: **Edit Date:**

03 Dec-21 15:35 03 Dec-21 15:34

Analysis: Nonparametric-Two Sample

MD5 Hash: 41B41182B59AAABFB2FDAA23D11B52E4 Editor ID:

CETIS Measurement Report

Report Date:

03 Dec-21 15:44 (p 1 of 1) 4607-4273

est Code/ID:	WGR1121.048 / 19-4

								lest Code/ii	U: VVGR	1121.048	19-460/-42/3
Eohaustorius	10-d Survival	and Reb	urial Sedime	ent Test				Aqua	atic Bioassay 8	Consulti	ng Labs, Inc.
Batch ID:	18-0330-0744		Test Type:	Survival-Rebui	rial			Analyst:	Joe Freas		
Start Date:	09 Nov-21 13:0)2	Protocol:	EPA/600/R-94	/025 (1994)			Diluent:	Laboratory Sea	water	
Ending Date:	19 Nov-21 13:0)2	Species:	Echaustorius e	estuarius			Brine:	Not Applicable		
Test Length:	10d Oh		Taxon:	Malacostraca				Source:	Northwestern A	quatic Scie	enc Age:
Sample ID:	07-2778-1040		Code:	WGR1121.04	8			Project:	021.APC.01	-	
Sample Date:	03 Nov-21 11:5	50	Material:	Sediment				Source:	Bioassay Repo	t	
Receipt Date:	04 Nov-21 16:0	00	CAS (PC):					Station:	SED-005		
Sample Age:	6d 1h		Client:	WGR Southwe	est Inc.						
Dissolved Ox	ygen-mg/L										
Сопс-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	10,05	9,415	10.69	10	10.1	0.0353	6 0.07073	0.70%	0
100		2	10.15	9.515	10.79	10.1	10.2	0.0353	5 0.0707	0.70%	0
Overall		4	10.1	9.97	10.23	10	10.2	0.0408	2 0.08165	0.81%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
100		2	7.75	7.115	8.385	7.7	7.8	0.0353	6 0.07072	0.91%	0
Overall		4	7,825	7.673	7.977	7,7	7.9	0.0478	7 0.09574	1.22%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
100		2	20	20	20	20	20	0	0	0.00%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Count
0	N	2	14.8	14.78	14.82	14.8	14.8	0	0	0.00%	0
100		2	14.75	14.11	15.39	14.7	14.8	0.0353	7 0.07075	0.48%	0
Overall		4	14.78	14.7	14.85	14.7	14.8	0.025	0.05	0.34%	0 (0%)

Analyst: 1 QA:

CETIS™ v1.9.7.7

December 3, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025. Results were as follows:

CLIENT: WGR Southwest, Inc.

SED-006 SAMPLE I.D.: DATE RECEIVED: 11/4/2021

ABC LAB. NO.: WGR1121.049

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00% TUc = 1.00

EC25 =>100.00 % EC50 =>100.00 %

Yours very truly,

Scott Johnson

Report Date:

03 Dec-21 15:45 (p 1 of 1) /GR1121.049 / 13-7975-4628

Test Code/ID:	WGR1121.049 / 1

							Test	Code/ID:	WGR	1121.0497	3-79/5-4628
Eohaustorius	10-d Survival an	d Reburia	al Sedime	ent Test				Aquatic	Bioassay &	Consultin	g Labs, Inc.
Batch ID:	08-2960-3990	Te	st Type:	Survival-Reburi	al		Anal	yst: Joe	Freas		
Start Date:	09 Nov-21 13:03	Pr	otocol:	EPA/600/R-94/	025 (1994)		Dilue	ent: Lat	oratory Seav	vater	
Ending Date:	19 Nov-21 13:03	Sp	ecies:	Eohaustorius estuarius			Brin	e: No	Applicable		
Test Length:	10d 0h	Ta	xon:	Malacostraca			Soul	rce: No	rthwestern A	quatic Scien	nc Age:
Sample ID:	15-2924-7125	Co	de:	WGR1121.049			Project: 021.APC.01				
Sample Date:	03 Nov-21 11:00	Ma	aterial:	Sediment			Sour	rce: Bio	assay Repor	t	
Receipt Date:	04 Nov-21 16:00	CA	S (PC):				Stati	on: SE	D-006		
Sample Age:	6d 2h	Cli	ient:	WGR Southwes	st Inc.						
Single Compa	arison Summary								222		
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compari	son Result		
00-3242-7330	Survival Rate		Wilcox	on Rank Sum T	wo-Sample	Гest	0.5000	100% pa:	ssed survival	rate	
Test Acceptal	oility					TAC	Limits				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision		
00-3242-7330	Survival Rate		Contro	ol Resp	1	0.9	>>	Yes	Passes C	riteria	
Survival Rate	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000		0.00%
100		5	0.9900	0.9622	1.0180	0.9500	1.0000	0.0100	0.0224	2.26%	1.00%
Survival Rate	Detail						MD	5: 15A6E9	300CFE050E	39B6D7C5	6B2CBB62
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	1,0000	1.0000	1.0000	1.0000	1.0000					
100		0,9500	1.0000	1,0000	1.0000	1.0000					
Survival Rate	Binomials										
and the arctime	Binomials Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
Survival Rate Conc-%	Children Co.	Rep 1	Rep 2 20/20	Rep 3 20/20	Rep 4 20/20	Rep 5 20/20					

Report Date: Test Code/ID: 03 Dec-21 15:45 (p 1 of 2) WGR1121.049 / 13-7975-4628

		77.2							т	est Cod	e/ID:	WGR	1121.049 /	13-7975-46
Eohaustorius	10-d St	ırvival ar	nd Reb	urial Sedime	ent Test					A	quatic I	Bioassay &	k Consultir	ig Labs, Inc
Analysis ID:	00-324	2-7330		Endpoint:	Survival Rate				С	ETIS Ve	rsion:	CETISV	1.9.7	
Analyzed:	03 Dec	-21 15:40)	Analysis:	Nonparametric	-Two San	nple		S	tatus Le	vel:	1		
Edit Date:	03 Dec	-21 15:39)	MD5 Hash:	15A6E9300CF	E050D39	B61	D7C56B2C	BB62 E	ditor ID		007-979	-628-1	
Batch ID:	08-296	0-3990		Test Type:	Survival-Rebu	rial			Δ	nalyst:	Joe	Freas		
Start Date:		-21 13:03	Y	Protocol:	EPA/600/R-94		4)			iluent:		oratory Sea	water	
Ending Date:		The Street		Species:	Echaustorius e		-1/			rine:		Applicable	Mater	
Test Length:				Taxon:	Malacostraca	satudilua				ource:			quatic Scie	oc Ana:
rest Length,	TOG DI			Taxon	Ivialacostraca		_			ource.	IVOIT	ilwestern A	quanc Scie	no Age.
Sample ID:	15-292	4-7125		Code:	WGR1121.04	9			P	roject:	021.	APC.01		
Sample Date:		200 500000		Material:	Sediment				S	ource:	Bioa	ssay Repor	t	
Receipt Date:	04 Nov	-21 16:00		CAS (PC):					S	tation:	SED)-006		
Sample Age:	6d 2h			Client:	WGR Southwe	est Inc.								
Data Transform	m		Alt H	lyp				Compari	son Resu	ilt				PMSD
Angular (Correc	cted)		C > T					100% pas	sed survi	val rate e	endpoin	t		2.36%
Wilcoxon Ran	k Sum	Two-Sam	ple Te	st										
Control	vs	Conc-%		Test S	Stat Critical	Ties	DF	P-Type	P-Valu	e De	cision(a:5%)		
Negative Contro	ol	100		25		1	8	Exact	0.5000	No	n-Signif	icant Effec		
Test Acceptab	ility Cr	teria	T	AC Limits										
Attribute	T	est Stat	Lowe	er Upper		Decisi	on	P						
Control Resp	1		0,9	>>	Yes	Passe	s Cr	riteria						
ANOVA Table														
		um Squa	rac	Moon	Square	DF		F Stat	P-Valu	o Do	oloion/	m: 60/ \		
Source		.0012877	_				-	r Stat			cision(
Between	10	.0103014		0.0012		1		-1	0.3466	INO	n-Signif	icant Effect		
Error Total		.0103014		0.0012	2011	9	_	-						
NO. S. O. T. C.	- 1	221012001	_			5	_			_	-			
ANOVA Assum	7. 19													
Attribute	_	est				Test S	tat	Critical	P-Valu		cision(a:1%)		
Variance		and the second second		f Variance Te		7.111		11.26	0.0285	-	ual Varia			
			6.76	lity of Variand	e Test	1		13.75	0.3559		ual Varia			
A.Z.A		ariance R									etermin			
Distribution		nderson-l				1.796		3.878	<1.0E-			al Distributi		
		'Agostino				3.335		2.576	0.0009			al Distributi		
				nov D Test		0.4		0.3025	6.1E-0			al Distributi		
	S	hapiro-W	ilk W N	lormality Test		0.6247	7	0.7411	0.0001	No	n-Norm	al Distributi	on	
Survival Rate	Summa	гу												
Conc-%	C	ode	Coun	t Mean	95% LCL	95% U	CL	Median	Min	Ma	X	Std Err	CV%	%Effect
D	N		5	1.0000		1.0000			1.0000		000	0.0000	0.00%	0.00%
100			5	0.9900	0.9622	1.0000			0.9500	1.0	000	0.0100	2.26%	1.00%
Angular (Corre	ected) T	ransform	ned Su	ımmary										
Conc-%	C	ode	Coun	t Mean	95% LCL	95% U	CL	Median	Min	Ma	x	Std Err	CV%	%Effect
0	Ņ	1	5	1.4590	1.4580	1.4590	4		1.4590	1.4	590	0.0000	0.00%	0.00%
100			5	1.4360	1.3730	1.4990	0		1.3450	1.4	590	0.0227	3.53%	1.56%
Survíval Rate I	Detail													
Conc-%	C	ode	Rep 1	Rep 2	Rep 3	Rep 4		Rep 5						
0	N		1.000			1.0000		1.0000						
100			0.950			1,0000		1.0000						
Angular (Corre	ected) T	ransform	ned De	tail										
	_	ode	Rep 1	Rep 2	Rep 3	Rep 4		Rep 5						
Conc-%	G	uue	LACID I	11602										
Conc-%	N		1.459			1.4590		1.4590						

Analyst: A QA:

Report Date: Test Code/ID:

03 Dec-21 15:45 (p 2 of 2) WGR1121.049 / 13-7975-4628

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 00-3242-7330 Analyzed:

Endpoint: Survival Rate

Analysis: Nonparametric-Two Sample

CETIS Version: Status Level:

Edit Date:

03 Dec-21 15:40 03 Dec-21 15:39

MD5 Hash: 15A6E9300CFE050D39B6D7C56B2CBB62 Editor ID:

007-979-628-1

CETISv1.9.7

N

2

2

4

7.9

7.9

7.9

Report Date:

03 Dec-21 15:45 (p 1 of 1)

Test Code/ID:

WGR1121.049 / 13-7975-4628

0.00%

0.00%

0.00%

0

0

0 (0%)

Eohaustorius	10-d Survival a	nd Reb	urial Sedime	ent Test				Aqı	uatic Bioassay &	& Consulti	ng Labs, Inc.
Batch ID:	08-2960-3990		Test Type:	Survival-Rebur	rial			Analyst:	Joe Freas		
Start Date:	09 Nov-21 13:0	3	Protocol:	EPA/600/R-94	/025 (1994)			Diluent:	Laboratory Sea	water	
Ending Date:	19 Nov-21 13:0	3	Species:	Eohaustorius e	stuarius			Brine:	Not Applicable		
Test Length:	10d 0h		Taxon:	Malacostraca				Source:	Northwestern A	quatic Scie	enc Age:
Sample ID:	15-2924-7125		Code:	WGR1121.049	9			Project:	021.APC.01		
Sample Date:	03 Nov-21 11:0	0	Material:	Sediment				Source:	Bioassay Repo	rt	
Receipt Date:	04 Nov-21 16:0	0	CAS (PC):					Station:	SED-006		
Sample Age:	6d 2h		Client:	WGR Southwe	est Inc.						
Dissolved Oxy	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count
0	N	2	10.05	9,415	10.69	10	10.1	0.035	36 0,07073	0.70%	0
100		2	9.95	9.315	10.59	9.9	10	0.035	36 0.07073	0.71%	0
Overall		4	10	9.87	10.13	9.9	10.1	0.040	82 0.08165	0.82%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	rr Std Dev	CV%	QA Count

Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
100		2	20	20	20	20	20	0	0	0.00%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)

7.916

7.916

7.9

7.9

7.9

7.9

7.9

7.9

7.9

0

0

0

0

0

0

7.884

7.884

7.9

remperature-	C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.75	14.11	15.39	14.7	14.8	0.03537	0.07075	0.48%	0
100		2	14.75	14.11	15.39	14.7	14.8	0.03537	0.07075	0.48%	0
Overall		4	14.75	14.66	14.84	14.7	14.8	0.02887	0.05774	0.39%	0 (0%)

Analyst ____ QATC___

007-979-628-1

0

100

Overall

CETIS™ v1.9.7.7

December 3, 2021

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-007

DATE RECEIVED: 11/4/2021

ABC LAB. NO.: WGR1121.050

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

03 Dec-21 15:45 (p 1 of 1)

Test Code/ID:

WGR1121.050 / 19-2953-9426

							rest	Code/ID:	WGK	1121.050 /	19-2953-9426
Eohaustorius	10-d Survival an	d Reburi	al Sedime	ent Test				Aquati	c Bioassay &	Consultin	ng Labs, Inc.
Batch ID:	11-9884-2703	Te	st Type:	Survival-Reburi	al		Anal	yst: Jo	e Freas		
Start Date:	09 Nov-21 13:04	Pr	otocol:	EPA/600/R-94/	025 (1994)		Dilue	ent: La	boratory Seav	vater	
Ending Date:	19 Nov-21 13:04	S	ecies:	Eohaustorius es	stuarius		Brin	e: No	ot Applicable		
Test Length:	10d 0h	Ta	xon:	Malacostraca			Sour	rce: No	orthwestern A	quatic Scie	nc Age:
Sample ID:	03-8581-9407	Co	ode:	WGR1121.050			Proje	ect: 02	1.APC.01		
Sample Date:	03 Nov-21 09:30	M	aterial:	Sediment			Sour	rce: Bi	oassay Repor	ř.	
Receipt Date:	04 Nov-21 16:00	C	AS (PC):				Stati	on: SE	ED-007		
Sample Age:	6d 4h	CI	ient:	WGR Southwes	st Inc.						
Single Compa	arison Summary										
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compar	ison Result		s
19-9744-5931	Survival Rate		Wilco	on Rank Sum T	wo-Sample	Test	1,0000	100% pa	ssed survival	rate	1
Test Acceptat	bility					TAC	Limits				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision		
19-9744-5931	Survival Rate		Contro	ol Resp	1	0.9	>>	Yes	Passes C	riteria	
Survival Rate	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	1.0000	1,0000	1.0000	1.0000	1.0000	0.0000	0.0000	-	0.00%
100		5	1.0000	1,0000	1,0000	1.0000	1.0000	0.0000	0.0000	-	0.00%
Survival Rate	Detail						MD	5: 41B411	82B59AAABF	B2FDAA2	3D11B52E4
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
			4 0000	1 0000	1.0000	1.0000					
0	N	1.0000	1.0000	1.0000	1.0000	1.0000					
7.5	N	1.0000	1.0000		1.0000	1.0000					
100		M 15 12 7									
100 Survival Rate		M 15 12 7		1.0000							
0 100 Survival Rate Conc-% 0	Binomials	1,0000	1.0000	1.0000	1.0000	1,0000					

Analyst: A QA

007-979-628-1 CETIS™ v1.9.7.7

Report Date: Test Code/ID: 03 Dec-21 15:45 (p 1 of 2) WGR1121.050 / 19-2953-9426

Eohaustorius 10-d Survival and Reburial Sediment Test Analysis ID: 19-9744-5931 Endpoint: Survival Rate Analyzed: 03 Dec-21 15:43 Analysis: Nonparametric-Two Sample Edit Date: 03 Dec-21 15:42 MD5 Hash: 41B41182B59AAABFB2FDAA23D11B52E4 Batch ID: 11-9884-2703 Test Type: Survival-Reburial Start Date: 09 Nov-21 13:04 Protocol: EPA/600/R-94/025 (1994) Ending Date: 19 Nov-21 13:04 Species: Eohaustorius estuarius Test Length: 10d 0h Taxon: Malacostraca Sample ID: 03-8581-9407 Code: WGR1121.050 Sample Date: 04 Nov-21 09:30 Material: Sediment Receipt Date: 04 Nov-21 16:00 CAS (PC);	Statu 4 Edito Anal Dilue Brine Sour Proje Sour Stati	IS Version: us Level: or ID: yst: Joe ent: Lat e: Not ce: No ect: 021	7	1.9.7 -628-1 water quatic Scie	ng Labs, Ind
Analyzed: 03 Dec-21 15:43 Analysis: Nonparametric-Two Sample Edit Date: 03 Dec-21 15:42 MD5 Hash: 41B41182B59AAABFB2FDAA23D11B52E4 Batch ID: 11-9884-2703 Test Type: Survival-Reburial Start Date: 09 Nov-21 13:04 Protocol: EPA/600/R-94/025 (1994) Ending Date: 19 Nov-21 13:04 Species: Eohaustorius estuarius Test Length: 10d 0h Taxon: Malacostraca Sample ID: 03-8581-9407 Code: WGR1121.050 Sample Date: 03 Nov-21 09:30 Material: Sediment	Statu 4 Edito Anal Dilue Brine Sour Proje Sour Stati	us Level: or ID: yst: Joe ent: Lat e: Not rce: Nor ect: 021	1 007-979 Freas poratory Sea t Applicable rthwestern A 1.APC 01 assay Repo	-628-1 water quatic Scie	nc Age:
Start Date: 09 Nov-21 13:04 Protocol: EPA/600/R-94/025 (1994) Ending Date: 19 Nov-21 13:04 Species: Eohaustorius estuarius Test Length: 10d 0h Taxon: Malacostraca Sample ID: 03-8581-9407 Code: WGR1121.050 Sample Date: 03 Nov-21 09:30 Material: Sediment	Dilue Brine Sour Proje Sour Stati	ent: Lab e: Not ce: Nor ect: 021 ce: Bio	ooratory Sea t Applicable rthwestern A I.APC 01 assay Repo	quatic Scie	nc Age:
Sample Date: 03 Nov-21 09:30 Material: Sediment	Sour	ce: Bio	assay Repo		
Sample Age: 6d 4h Client: WGR Southwest Inc.	Danult			rt	
Data Transform Alt Hyp Comparison	Result				
Angular (Corrected) C > T 100% passed		rate endpoir	nt		
	-Value	Decision			
Negative Control 100 27.5 1 8 Exact 1.	0000	Non-Sign	ificant Effec	t	
Test Acceptability Criteria TAC Limits Attribute Test Stat Lower Upper Overlap Decision					
Control Resp 1 0.9 >> Yes Passes Criteria					
ANOVA Table					
Source Sum Squares Mean Square DF F Stat P-	Value	Decision	(a:5%)		
Between 0 0 1		Indetermi	1		
Error 0 0 8					
Total 0 9					
ANOVA Assumptions Tests					
Attribute Test Test Stat Critical P-	Value	Decision	(a:1%)		
Variance Variance Ratio F Test Distribution Shapiro-Wilk W Normality Test		Indetermin			
Survival Rate Summary					
Conc-% Code Count Mean 95% LCL 95% UCL Median M	in	Max	Std Err	CV%	%Effect
	0000	1.0000	0.0000	0.00%	0.00%
	0000	1.0000	0.0000	0.00%	0.00%
Angular (Corrected) Transformed Summary					
Conc-% Code Count Mean 95% LCL 95% UCL Median M	in	Max	Std Err	CV%	%Effect
	4590	1.4590	0.0000	0.00%	0.00%
100 5 1.4590 1.4580 1.4590 1.	4590	1.4590	0.0000	0.00%	0.00%
Survival Rate Detail					
Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5					
N 1.0000 1.0000 1.0000 1.0000 1.0000					
100 1,0000 1,0000 1,0000 1,0000 1,0000					
Angular (Corrected) Transformed Detail					
Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5					
0 N 1,4590 1.4590 1.4590 1.4590 1.4590					
100 1.4590 1.4590 1.4590 1.4590 1.4590					

Analyst: A QA:

007-979-628-1

CETIS™ v1.9.7.7

Report Date: Test Code/ID:

03 Dec-21 15:45 (p 2 of 2) WGR1121.050 / 19-2953-9426

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 19-9744-5931 Endpoint: Survival Rate **CETIS Version:** CETISV1.9.7

Analyzed: 03 Dec-21 15:43 Analysis: Nonparametric-Two Sample Status Level:

MD5 Hash: 41B41182B59AAABFB2FDAA23D11B52E4 Editor ID: Edit Date: 03 Dec-21 15:42 007-979-628-1

Analyst QA:

Te

3-9426

eport Date:	03 Dec-21 15:45 (p 1
est Code/ID:	WGR1121.050 / 19-2953

								rest Code/	D. WGR	1121.0307	13-2933-9420
Eohaustorius	10-d Survival at	nd Reb	urial Sedime	ent Test				Aqu	atic Bioassay &	Consulti	ng Labs, Inc.
Batch ID:	11-9884-2703		Test Type:	Survival-Rebur	rial			Analyst:	Joe Freas		
Start Date:	09 Nov-21 13:04	k.	Protocol:	EPA/600/R-94	/025 (1994)			Diluent:	Laboratory Sea	water	
Ending Date:	19 Nov-21 13:04		Species:	Eohaustorius e	estuarius			Brine:	Not Applicable		
Test Length:	10d 0h		Taxon:	Malacostraca				Source:	Northwestern A	quatic Scie	enc Age:
Sample ID:	03-8581-9407		Code:	WGR1121.05	0			Project:	021.APC.01		
Sample Date:	03 Nov-21 09:30	h.	Material:	Sediment				Source:	Bioassay Repo	rt	
Receipt Date:	04 Nov-21 16:00	P	CAS (PC):					Station:	SED-007		
Sample Age:	6d 4h		Client:	WGR Southwe	est Inc.						
Dissolved Oxy	ygen-mg/L			104.5					77.		
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	r Std Dev	CV%	QA Count
0	N	2	10.05	9 415	10.69	10	10.1	0.0353	36 0.07073	0.70%	0
100		2	10.15	9.515	10.79	10.1	10.2	0.0353	35 0.0707	0.70%	0
Overall		4	10.1	9.97	10.23	10	10.2	0.0408	32 0.08165	0.81%	0 (0%)
pH-Units					7 . 10.						
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	r Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7,9	0	0	0.00%	0
100		2	7.65	7.015	8,285	7.6	7.7	0.0353	0.07071	0.92%	0
Overall		4	7.775	7,536	8,014	7.6	7.9	0.075	0.15	1.93%	0 (0%)
Salinity-ppt					-						
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	r Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
100		2	20	20	20	20	20	0	0	0.00%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std E	r Std Dev	CV%	QA Count
0	N	2	14.75	14,11	15.39	14.7	14.8	0,0353	0,07075	0.48%	0
100		2	14.75	14.11	15.39	14.7	14.8	0.0353	0.07075	0.48%	0
Overall		4	14.75	14.66	14.84	14.7	14.8	0.0288	37 0.05774	0.39%	0 (0%)

Facility Name LA Refinery - Carson Operations		180	1 E.		oulve	eda I	Blvd.	, Ca	rson CA 90	749		elsea	Drey	yer		1 160	02	. (Consu	.01			Laboratory Name Aquatic Bioassay
Facility Contact		Fac		elep										onsultan		Fa		consultan				29 N Olive Street Ventura 93001
Nate Busch Consultant Company		-	(31	0) 84	1-38	20	Con	sulta	nt Address		(50	2) 19	9-8511	0 ex. 1	003		(50	32) 799-	0010			(805) 643-5621
WGR Southwest, Inc.							110	21 W	inners Circle	#101 Los	Alamitos	, Cal	ifornia	90720)							10212 1020
			┕	M	atri	X	Pr	sv.									FIE	LD A	VALY	SES		Constal Detection
											arius)							ng/L)	(m/S) ec			Special Detection Limit/Reporting Please report MDL and RL for all analytes
Sample I.D.	Lab Sample No.	No. of Containers	Soil	Water	Air	Other	Yes	No	Sampling Date	Sampling Time	Eohaustorius estuarius (EPA 600/R-94/025)					pH (SU) [6.5-8.5]	Salinity (PSU)	Dissolved Oxygen (mg/L) [mean>7; single>5]	Specific Conductance (S/m)	Turbidity (NTU) [<50]	Temperature (Deg. F)	Duplicate samples must be analyzed at a frequency of 5%
SED-001												1										Special QA/QC
SED-002																						
SED-003		1	X				Х		11/3/2021	15:20	Х					7.7	17.8	1.61	2.83	37.5	72.3	Sub'd COC Attch'd:
SED-004		1	X			0	X	ΙŪ	11/3/2021	14:00	X					7.37	10.9	12.59	1.82	42.4	75.6	
SED-005		1	x				x		11/3/2021	11:50	X				1	7.77	18.4	10.49	2.92	25.3	70.2	
SED-006		1	x				х		11/3/2021	11:00	х					8.09	22.8	12.21	3.53	17	69.6	
SED-007		1	x				х	7	11/3/2021	9:30	X	-				8.09	22.4	8.63	3.57	19.1	67	1 8
								T					1									9.5
Sample bottles required for e	ach sample poi	nt:														u ja ji je					1000	× ne
(1) x 1-gallon plastic bag												1		1	\vdash							A R
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-	-				-				Н	+	Н	+		++	++-	\vdash	+	+	M Son
		+	-	-	-			-			+	Н	+	H	+	++	++	\vdash	+	\vdash	++	ath:
		-	-									Н	+	H	+		++	+	H	+	+	wgr vgr
		+	-	+			-				H	Н	+	H	++	++	H	+	+	+	+	\$ 9 9 9
Sample Received Intact: Yes No			+	_	_	_	_		Temperature	received:		lce	_	Н-	No id						1	ail F
Relinquished by SAMPLER (Print & Sign Nam David Montclerago				Dat	1	21	Tim	е	And Street, St	Received		t & S	= 1	-		11/4	121	16	00			R E M A R K Email Results to: nbusch@marathonpetroleum.com cdreyer@wgr-sw.com aballrot@wgr-sw.com
Relinquished by (Print & Sign Name)	New York	_	_	Dat		1-1	Tim	A		Received	by LAF	ORA	TORY	Print	& Sign	Name)	_	_		_		Lab Work No.

96 Hour Eohaustorius estuarius Survival Bioassay - Standard Toxicant

DATE: 11/11/2021

STANDARD TOXICANT: Ammonium Chloride

ENDPOINT: SURVIVAL

UNIONIZED AMMONIA

NOEC = 0.4520 mg/L

EC25 = 0.7175 mg/LEC50 = 1.4800 mg/L

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

03 Dec-21 15:43 (p 1 of 1)

Test Code/ID:	EOH111121 / 12-0123-27
ricport butter	00 Dec-21 10.40 (p 1 b)

Reference To	xicant 96-h Acut	e Survival Test						Aqu	atic	Bioassay &	Consulting	Labs, Inc.
Batch ID: Start Date: Ending Date: Test Length:	07-4821-6659 11 Nov-21 12:00 15 Nov-21 12:00 96h		EPA/600/R-94 Ephaustorius e Malacostraca				Dilu Brir	lyst: ent: ne: erce:	Lab Not	Freas oratory Seaw Applicable thwestern Ac		: Age:
and the second of the second o	13-9303-1400 11 Nov-21 12:00 11 Nov-21 12:00		EOH111121 Ammonia (Unio	onized)			Sou	ect: rce: ion:	Ref	F TOX erence Toxic F TOX	ant	
Multiple Comp	parison Summar	у										
Analysis ID	Endpoint	Com	parison Method	1		1	NOEL	LOE	L	TOEL	PMSD	S
01-7753-4190	Survival Rate	Stee	Many-One Rank	Sum Test			0.452	0.806	5	0.6036	7.82%	
Point Estimate	Summary											
Analysis ID	Endpoint	Poin	t Estimate Meth	od		1	Level	mg/L		95% LCL	95% UCL	
16-4974-2450	Survival Rate	Line	ar Interpolation (IC	CPIN)			EC10 EC15 EC20 EC25 EC40 EC50	0.540 0.599 0.658 0.717 1.095 1.48)5 95 85 75	0.4504 0.5051 0.5613 0.5926 0.5699 1.194	0.6255 0.7175 0.8237 0.9657 1.403 1.787	
and the second	200						1.000	1.40	-	1.104	COR	
Survival Rate	A	all										
Conc-mg/L	Code	Count Mea	2 8 22 22 2		Min	_	Max	Std E		Std Dev	CV%	%Effect
0.227	N	4 1.00		1.0000	1,0000		1.0000	0.000		0.0000	****	0.00%
0.452		4 0.97		1.0550	0.9000		1.0000	0.000		0.0500	5.13%	2.50%
0.806		4 0.67		0.8752	0.5000		0.8000	0.062		0.1258	18.64%	32.50%
1.672		4 0.45		0.5419	0.4000		0.5000	0.028		0.0577	12.83%	55.00%
3.524		4 0.000	0.0000	0.0000	0.0000		0.0000	0.000	00	0.0000	_	100.00%
Survival Rate	Detail						MD	5: 7798	3244	16C478260E	D4B668521	7B985C
Conc-mg/L	Code	Rep 1 Rep	2 Rep 3	Rep 4								
0	N	1.0000 1.000		1.0000								
0.227		1,0000 1.000		1.0000								
0.452		1 0000 0.900		1.0000								
0.806		0.8000 0.700	0.7000	0.5000								
1.672		0.5000 0.500	0.4000	0.4000								
3.524		0.0000 0.000	0.0000	0.0000								
Survival Rate	Binomials											
Conc-mg/L	Code	Rep 1 Rep	2 Rep 3	Rep 4								
0	N	10/10 10/10		10/10								
0.227		10/10 10/10	10/10	10/10								
0.452		10/10 9/10	10/10	10/10								
0.806		8/10 7/10	7/10	5/10								
1.672		5/10 5/10	4/10	4/10								
3.524		0/10 0/10	0/10	0/10								

007-979-628-1

CETIS™ v1.9.7.7

Report Date:

03 Dec-21 15:43 (p 1 of 2)

	nytical rep							Test	Code/ID:	EC	H111121/1	2-0123-278
Reference To	xicant 96-h Acu	te Surviva	al Test						Aquatic	Bioassay &	& Consulting	g Labs, Inc.
Analysis ID:	01-7753-4190	E	ndpoint:	Survival Rate	1.			CET	IS Version:	CETISV	1.9.7	
Analyzed:	03 Dec-21 14:5		nalysis:	Nonparametric					us Level:	1		
Edit Date:	03 Dec-21 14:5	1 N	ID5 Hash:	779B24416C4	78260DI	D4B6	685217B98	35C Edit	or ID:	007-979	-628-1	
Batch ID:	07-4821-6659	T	est Type:	Survival				Ana	lyst: Joe	Freas		
Start Date:	11 Nov-21 12:00	0 P	rotocol:	EPA/600/R-94	1/025 (19	94)		Dilu	ent: Lab	oratory Sea	water	
Ending Date:	15 Nov-21 12:00	0 S	pecies:	Echaustorius	estuarius			Brin	e: Not	Applicable		
Test Length:	96h	Ţ	axon:	Malacostraca				Sou	rce: Nor	thwestern A	quatic Scien	c Age:
Sample ID:	13-9303-1400	C	ode:	EOH111121				Proj	ect: REF	TOX		
Sample Date:	11 Nov-21 12:00	0 M	laterial:	Ammonia (Uni	onized)			Sou	rce: Ref	erence Toxi	cant	
Receipt Date:	11 Nov-21 12:00	o c	AS (PC):					Stat	ion: REF	TOX		
Sample Age:		C	lient:	Internal Lab								
Data Transfor	m	Alt Hyp	0				NOEL	LOEL	TOEL	TU	MSDu	PMSD
Angular (Corre	cted)	C > T					0.452	0.806	0.6036		0.07815	7.82%
Steel Many-O	ne Rank Sum To	est										
Control	vs Conc-m	g/L	Test S	Stat Critical	Ties	DF	P-Type	P-Value	Decision((a:5%)		
Negative Contro	ol 0.227		18	10	1	6	CDF	0.8000	Non-Signi	ficant Effec	t	
	0.452		16	10	1	6	CDF	0.5661	Non-Signi	ficant Effect	t	
	0.806*		10	10	0	6	CDF	0.0350	Significant	Effect		
	1.672*		10	10	0	6	CDF	0.0350	Significant	t Effect		
ANOVA Table												
Source	Sum Squ	ares	Mean	Square	DF		F Stat	P-Value	Decision(a:5%)		
Between	1.54745		0,3868	362	4		69.22	<1.0E-05	Significant	Effect		
Error	0.083832		0.0058	5888	15							
Total	1.63128				19		-7					
ANOVA Assur	nptions Tests											
Attribute	Test				Test S	Stat	Critical	P-Value	Decision(a:1%)		
Variance	Bartlett Ed	quality of V	ariance Te	st					Indetermin	nate		
	Levene Ed	quality of V	ariance Te	st	3.828		4.893	0.0245	Equal Vari	iances		
	Mod Leve	ne Equality	of Variand	ce Test	1.439		4.893	0.2695	Equal Vari	iances		
Distribution	Anderson	-Darling A	2 Test		1.472		3.878	0 0003	Non-Norm	al Distributi	on	
	D'Agostin	o Kurtosis	Test		2,167		2.576	0.0302	Normal Di	stribution		
		o Skewnes		S. A. A.	1.961		2.576	0.0498	Normal Di			
			K2 Omnib	us Test	8,544		9.21	0.0140	Normal Di			
	L'.A. 33	ov-Smirno	D Test mality Test		0.3	4	0.2235	5.0E-05 0.0083		ial Distributi ial Distributi		
an an an and		VIIK VV IVOI	mailty resi		0.001	4	0.000	0.0063	Non-Non	al Distributi	on	
Survival Rate	and the		- 44-15							4,044		New .
Conc-mg/L	Code N	Count 4	1.0000		95% L	_	Median 1.0000	Min 1,0000	Max 1.0000	0.0000	CV% 0.00%	%Effect 0.00%
	14	4			1,000		1.0000	1,0000	1.0000	0.0000	0.00%	0.00%
0.227 0.452		4	0.9750		1.000		1.0000	0.9000	1.0000	0.0250	5.13%	2.50%
0,806		4	0.6750		0.875		0.7000	0.5000	0.8000	0.0230	18.64%	32.50%
1.672		4	0.4500	1,450,4,30,4	0.541		0.4500	0.4000	0.5000	0.0029	12.83%	55.00%
3.524		4	0.0000		0.000		0.0000	0.0000	0.0000	0.0000		100.00%
	ected) Transfor			ANGEORGE.	567-3		3453397	JA: (3E)	0.000	201-07.300		100000000000000000000000000000000000000
Conc-mg/L	Code	Count	Mean	95% LCL	95% L	ICI	Median	Min	Max	Std Err	CV%	%Effect
Concarig/L	Code	Count	Weall	33% LCL	. 35% L		Median	TALLET	WAX	JIU EII	C V /0	/OLITECT

Analyst: QA.

0.00%

0.00%

5.94%

13.82%

7.91%

0.00%

0.00%

0.00%

2.89%

31.39%

47.94%

88.76%

0.0000

0.0000

0.0407

0.0669

0.0291

0.0000

007-979-628-1 CETIS™ v1.9.7.7

1.4120

1.4120

1.3710

0.9687

0.7351

0.1588

1.4120

1,4120

1.2420

0.7557

0.6426

0.1588

1.4120

1.4120

1.5010

1.1820

0.8276

0.1588

1.4120

1.4120

1.4120

0.9912

0.7351

0.1588

1,4120

1.4120

1,2490

0.7854

0.6847

0.1588

1.4120

1.4120

1.4120

1.1070

0.7854

0.1588

4

4

4

4

4

4

0

0,227

0.452

0.806

1.672

3.524

N

Report Date: Test Code/ID: 03 Dec-21 15:43 (p 2 of 2) EOH111121 / 12-0123-2783

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 01-7753-4190

03 Dec-21 14:53 03 Dec-21 14:51

Reference Toxicant 96-h Acute Survival Test

Endpoint: Survival Rate

Analysis: Nonparametric-Control vs Treatments
MD5 Hash: 779B24416C478260DD4B6685217B985C

CETIS Version: Status Level:

Status Level: Editor ID:

007-979-628-1

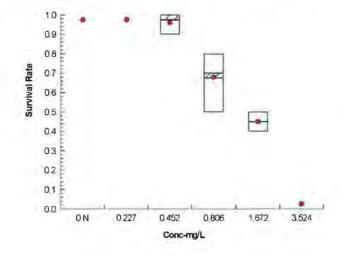
CETISV1.9.7

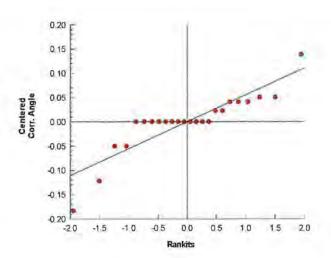
Survival Rate Detail

Analyzed:

Edit Date:

Code	Rep 1	Rep 2	Rep 3	Rep 4		
N	1.0000	1.0000	1,0000	1,0000		
	1.0000	1.0000	1.0000	1.0000		
	1.0000	0.9000	1.0000	1.0000		
	0.8000	0.7000	0.7000	0.5000		
	0.5000	0.5000	0.4000	0.4000		
	0.0000	0.0000	0.0000	0.0000		
		N 1.0000 1.0000 1.0000 0.8000 0.5000	N 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000 0.8000 0.7000 0.5000 0.5000	N 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000 1.0000 0.8000 0.7000 0.7000 0.5000 0.5000 0.4000	N 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000 1.0000 1.0000 0.8000 0.7000 0.7000 0.5000 0.5000 0.5000 0.4000 0.4000	N 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000 1.0000 1.0000 0.8000 0.7000 0.7000 0.5000 0.5000 0.5000 0.4000 0.4000


Angular (Corrected) Transformed Detail


Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	N	1.4120	1.4120	1.4120	1.4120	
0.227		1.4120	1.4120	1.4120	1.4120	
0.452		1.4120	1.2490	1.4120	1.4120	
0.806		1.1070	0.9912	0.9912	0.7854	
1.672		0.7854	0.7854	0.6847	0.6847	
3.524		0.1588	0.1588	0.1588	0.1588	

Survival Rate Binomials

Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	N	10/10	10/10	10/10	10/10	_
0.227		10/10	10/10	10/10	10/10	
0.452		10/10	9/10	10/10	10/10	
0.806		8/10	7/10	7/10	5/10	
1.672		5/10	5/10	4/10	4/10	
3.524		0/10	0/10	0/10	0/10	

Graphics

Analyst: A QA:

CETIS™ v1.9.7.7

Report Date: Test Code/ID: 03 Dec-21 15:43 (p 1 of 2) EOH111121 / 12-0123-2783

Reference Toxicant 96-h Acute Survival Test	Aquatic Bioassay & Consulting Labs, In-

Analysis ID: 16-4974-2450 Endpoint: Survival Rate CETIS Version: CETIS V1.9.7

Analyzed: 03 Dec-21 14:53 Analysis: Linear Interpolation (ICPIN) Status Level: 1

Edit Date: 03 Dec-21 14:51 MD5 Hash: 779B24416C478260DD4B6685217B985C Editor ID: 007-979-628-1

Batch ID: 07-4821-6659 Test Type: Survival Analyst: Joe Freas

Start Date: 11 Nov-21 12:00 Protocol: EPA/600/R-94/025 (1994) Diluent: Laboratory Seawater

Ending Date: 15 Nov 21 12:00 Species: Endaugterius estudius

Ending Date: 15 Nov-21 12:00 Species: Eohaustorius estuarius Brine: Not Applicable

Test Length: 96h Taxon: Malacostraca Source: Northwestern Aquatic Scienc Age:

Sample ID: 13-9303-1400 Code: EOH111121 Project: REF TOX

Sample Date: 11 Nov-21 12:00 Material: Ammonia (Unionized) Source: Reference Toxicant

Receipt Date: 11 Nov-21 12:00 CAS (PC): Station: REF TOX

Sample Age: --- Client: Internal Lab

Linear Interpolation Options

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method	
Linear	Linear	0	280	Yes	Two-Point Interpolation	

Point Estimates

of the references	E 541 (16.2 - 5.2)			
Level	mg/L	95% LCL	95% UCL	
EC10	0.5405	0.4504	0.6255	
EC15	0.5995	0.5051	0.7175	
EC20	0.6585	0.5613	0.8237	
EC25	0.7175	0.5926	0.9657	
EC40	1.095	0.5699	1.403	
EC50	1.48	1.194	1.787	
LOGO	1.40	1.154	1.707	

Survival Rate Summary			Calculated Variate(A/B)								Isotonic Variate	
Conc-mg/L	Code	Count	Mean	Median	Min	Max	CV%	%Effect	A/B	Mean	%Effect	
0	N	4	1.0000	1.0000	1.0000	1,0000	0.00%	0.00%	40/40	1,0000	0.00%	
0.227		4	1.0000	1.0000	1.0000	1.0000	0.00%	0.00%	40/40	1.0000	0.00%	
0.452		4	0.9750	1.0000	0.9000	1.0000	5.13%	2.50%	39/40	0.9750	2.50%	
0.806		4	0.6750	0.7000	0.5000	0.8000	18.64%	32.50%	27/40	0.6750	32.50%	
1.672		4	0.4500	0.4500	0.4000	0.5000	12.83%	55.00%	18/40	0.4500	55.00%	
3.524		4	0.0000	0.0000	0.0000	0.0000		100.00%	0/40	0.0000	100.00%	

Survival Rate Detail

Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	N	1.0000	1.0000	1.0000	1.0000
0.227		1.0000	1.0000	1.0000	1.0000
0.452		1.0000	0.9000	1.0000	1.0000
0.806		0.8000	0.7000	0.7000	0.5000
1.672		0.5000	0.5000	0.4000	0.4000
3.524		0.0000	0.0000	0.0000	0,0000

Survival Rate Binomials

Conc-mg/L	Code	Rep 1	Rep 2	Rep 3	Rep 4	
0	N	10/10	10/10	10/10	10/10	
0.227		10/10	10/10	10/10	10/10	
0.452		10/10	9/10	10/10	10/10	
0.806		8/10	7/10	7/10	5/10	
1.672		5/10	5/10	4/10	4/10	
3.524		0/10	0/10	0/10	0/10	

Analyst: A QA: Z

007-979-628-1 CETIS™ v1.9.7.7

Report Date:

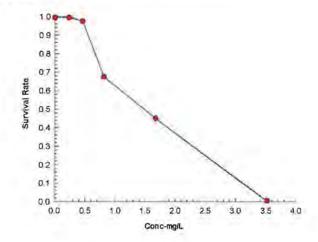
03 Dec-21 15:43 (p 2 of 2)

Test Code/ID:

EOH111121 / 12-0123-2783

Aquatic Bioassay & Consulting Labs, Inc.

Reference	loxicant	96-n Acute	Survival	lest


Analysis ID: 16-4974-2450 Endpoint: Survival Rate CETIS Version: CETISv1.9.7

Analyzed: 03 Dec-21 14:53 Analysis: Linear Interpolation (ICPIN)

Edit Date: 03 Dec-21 14:51 MD5 Hash: 779B24416C478260DD4B6685217B985C

Status Level: 1 Editor ID: 007-979-628-1

Graphics

CETIS Measurement Report

Reference Toxicant 96-h Acute Survival Test

Report Date: Test Code/ID:

03 Dec-21 15:43 (p 1 of 1) EOH111121 / 12-0123-2783

FQ	THE PROPERTY.	-	2000	0	1-
Aquatic	Bioassay	&	Consulting	Labs,	Inc

Batch ID:	07-4821-6659	Test Type:	Survival	Analyst:	Joe Freas
Start Date:	11 Nov-21 12:00	Protocol:	EPA/600/R-94/025 (1994)	Diluent:	Laboratory Seawater
Ending Date:	15 Nov-21 12:00	Species:	Eohaustorius estuarius	Brine:	Not Applicable
Test Length:	96h	Taxon:	Malacostraca	Source:	Northwestern Aquatic Scienc Age:
Sample ID:	13-9303-1400	Code:	EOH111121	Project:	REFTOX

Sample Date: 11 Nov-21 12:00 Material: Ammonia (Unionized) Source: Reference Toxicant

Receipt Date: 11 Nov-21 12:00 CAS (PC): Station: **REF TOX**

Sample Age: -Client: Internal Lab

Dissolved Oxygen-mg/L

Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	6.55	5.915	7.185	6.5	6.6	0.03535	0.0707	1.08%	0
0.227		2	6.7	4.159	9.241	6.5	6.9	0.1414	0.2828	4.22%	0
0.452		2	7	7	7	7	7	0	0	0.00%	0
0.806		2	6.55	5.915	7.185	6.5	6.6	0.03535	0.0707	1.08%	0
1.672		2	6.5	2.688	10.31	6.2	6.8	0.2121	0.4243	6,53%	0
3.524		2	6.35	4.444	8.256	6.2	6.5	0.1061	0.2121	3.34%	0
Overall		12	6.608	6,436	6.781	6.2	7	0.07829	0.2712	4.10%	0 (0%)

pH-Units

Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
0.227		2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
0.452		2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
0.806		2	7.9	7.884	7.916	7,9	7.9	0	0	0.00%	0
1.672		2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
3.524		2	7.9	7.884	7.916	7.9	7.9	0	0	0.00%	0
Overall		12	7.9	7.9	7.9	7.9	7.9	0	0	0.00%	0 (0%)

Salinity-ppt

Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.00%	0
0.227		2	20	20	20	20	20	0	0	0.00%	0
0.452		2	20	20	20	20	20	0	0	0.00%	0
0.806		2	20	20	20	20	20	0	0	0.00%	0
1.672		2	20	20	20	20	20	0	0	0.00%	0
3.524		2	20	20	20	20	20	0	0	0.00%	0
Overall		12	20	20	20	20	20	0	0	0.00%	0 (0%)

Temperature-°C

Conc-mg/L	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	15	15	15	15	15	0	0	0.00%	0
0.227		2	14.95	14.31	15,59	14.9	15	0.03538	0.07075	0.47%	0
0.452		2	14.9	14.87	14.93	14.9	14.9	0	0	0.00%	0
0.806		2	14.9	14.87	14.93	14.9	14.9	0	0	0.00%	0
1.672		2	14.9	14.87	14.93	14.9	14.9	0	0	0.00%	0
3.524		2	14.9	14.87	14.93	14.9	14.9	0	0	0.00%	0
Overall		12	14.92	14.9	14.95	14.9	15	0.01306	0.04523	0.30%	0 (0%)

CETIS™ v1.9.7.7 007-979-628-1

ATTACHMENT 4

SEDIMENT BIOASSAY DATA VALIDATION REPORT

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report

Table of Contents

1.0	Chronic Toxicity Test Overview	1
2.0	Data Review	1
3.0	Eohaustorius estuarius Chronic Toxicity Test	2
3.1	Sample Collection, Sample Preservation, Chain of Custody	2
3.2	Test Setup.	
3.3	Test Implementation	2
3	3.3.1 Test Acceptability Criteria	3
3.4	Reporting	3
	Overall Data Usability	

Attachment:

Attachment I – Dominguez Channel Estuary Sediment Bioassay Data Validation Form

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 1 of 4

1.0 Chronic Toxicity Test Overview

On behalf of Tesoro Refining & Marketing Company LLC, Los Angeles Refinery – Carson Operations (herein facility), WGR Southwest, Inc. (WGR) collected sediment samples at monitoring locations SED-003, SED-004, SED-005, SED-006, and SED-007 as required in National Pollutant Discharge Elimination System (NPDES) No. CA0000680. Sediment samples for chronic toxicity testing were collected on November 3, 2021 and submitted to Aquatic Bioassay & Consulting Laboratories Inc. on November 4, 2021 for analysis. Aquatic Bioassay & Consulting Laboratories has Environmental Laboratory Accreditation Program (ELAP) Certification number 1907.

In accordance with NPDES No. CA0000680 Attachment E, Section V.A.4, chronic toxicity samples are required to undergo a species sensitivity screening by concurrently conducting three toxicity tests using the fish, invertebrate and alga species listed in the permit order. Based on the results of the species sensitivity screening, the single species exhibiting the highest percent effect is required to be used for routine monitoring during the permit cycle. The species listed in the permit order, however, are more commonly used to evaluate effluent chronic toxicity rather than sediment toxicity. Therefore, with laboratory staff and Regional Water Quality Control Board guidance, a species sensitivity screening was conducted for chronic toxicity samples on September 25, 2019 using two different sediment species: Eohaustorius estuarius and Mytilus galloprovincialis. As explained in the September 25th sediment report, both sediment species exhibited no observed effect concentration to the sediment samples collected from Stations SED-005, SED-006 and SED-007. Given that both species exhibited no toxicity effect, the facility opted to utilize Eohaustorius estuarius in this chronic toxicity testing. Therefore, sediment chronic toxicity samples collected on November 3, 2021 were tested using Echaustorius estuarius in accordance with the guidelines prescribed in Methods for Assessing the Toxicity of Sediment Associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.

2.0 Data Review

A level 2 data verification protocol was used for bioassay validation. The level 2 data review compares bioassay testing holding conditions, test setup, test implementation, and test termination in accordance with bioassay protocols. As part of the level 2 data verification protocol the laboratory was expected to follow all internal quality control procedures as directed in the applicable analytical method. Outcome of the data review for each of the chronic toxicity tests performed is documented in the *Chronic Toxicity QA/QC Bioassay Data Validation Form* included in Attachment I of this report.

Sediment samples at Stations SED-003, SED-004, SED-005, SED-006, and SED-007 were collected on November 3, 2021 by WGR Southwest Inc. All collected samples were preserved as required and submitted to Aquatic Bioassay and Consulting Laboratories Inc. on November 4, 2021. Chronic toxicity tests for all five stations began on November

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 2 of 3

9, 2021 and concluded on November 19, 2021. A summary of data usability determinations for the chronic toxicity test performed are described in the following section.

3.0 Eohaustorius estuarius Chronic Toxicity Test

3.1 Sample Collection, Sample Preservation, Chain of Custody

Sediment samples for *E. estuarius* chronic toxicity testing were collected from Stations SED-003, SED-004, SED-005, SED-006, and SED-007 using an Eckman dredge sampler. Sampling equipment was decontaminated prior to use at each station to prevent cross contamination. Field samples were handled with care to minimize sediment disturbance and prevent the loss of sample integrity, chemical speciation and chemical equilibrium. Collected samples were maintained at 4°C and a Chain of Custody documenting the collected samples was completed and submitted to Aquatic Bioassay & Consulting Laboratories Inc. Chronic toxicity testing was initiated for all samples within the required 14-day holding time for sample collection and analysis. Document review of sample collection, sample preservation and Chain of Custody procedures was deemed acceptable and in compliance with the facility's Waste Discharge Requirements (WDRs).

3.2 Test Setup

Chronic toxicity testing with *E. estuarius* was completed in accordance with EPA method 600/R-94-025. Organisms used for testing were field collected and supplied by Northwestern Amphipod in Oregon. Amphipods ranging in 3-5 mm in size were used, with at least twenty organisms per replicate. Test setup review is provided in the bioassay data validation form attached to this document. Based on a review of laboratory test setup procedures, test set up procedure were deemed acceptable and in compliance with EPA method requirements.

3.3 Test Implementation

Test implementation for chronic toxicity testing with *E. estuarius* was completed in accordance with EPA method 600/R-94/025. Water quality measurements were recorded during the duration of the test and were found to be in the acceptable range as specified in the test protocol. Ranges for the water quality measurements are provided in the QA/QC Checklist of Attachment I. No abnormal conditions were observed throughout the duration of the test. Thus, the test implementation was determined to be acceptable and in compliance with EPA method requirements.

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 3 of 3

3.3.1 Test Acceptability Criteria

3.3.1.1 Reference Toxicant

The reference toxicant used during *E. estuarius* chronic toxicity testing was unionized ammonia. The length of the reference toxicant test was 96 hours. All reference toxicant testing was within the two standard deviation quality control limit meeting the test acceptability criteria in compliance with EPA method requirements.

3.3.1.2 Negative Control Samples

Negative control samples demonstrated a 99% survival at all sample stations, which is above the 90% mean acceptability survival criteria. As a result, the negative control sample results are considered acceptable at all sampled stations and in compliance with EPA method requirements.

3.4 Reporting

Bioassay results were delivered in an acceptable laboratory report documenting a summary of water quality results, reference toxicity results, test results, statistical calculations and percent mortality. Additional information regarding test setup/test implementation procedures was provided by the laboratory to complete the QA/QC bioassay data validation form. Overall, the reporting component presenting chronic toxicity test results for *E. estuarius* was deemed acceptable.

3.5 Overall Data Usability

Review of laboratory data indicated chronic toxicity testing was performed in accordance with EPA method 600/R-94/025 as documented in Attachment I. Through the bioassay laboratory report and additional clarification from the laboratory, the bioassay test results at all sample stations was deemed acceptable and in compliance with EPA method requirements.

Attachment I Dominguez Channel Estuary Sediment Bioassay Data Validation Form

Tesoro Refining & Marketing LLC

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

PROJECT INFORMATION								
Project Name:	Dominguez Channel Sediment Sampling							
Analytical Laboratory:	Aquatic Bioassays & Consulting Laboratories Inc.							
Laboratory Technician:	Joe Freas							
Sample Collection Date:	November 3, 2021							
Sample Locations/Lab Number:	SED-003 / WGR1121.046	SED-003 / WGR1121.046						
	SED-004 / WGR1121.047							
	SED-005 / WGR1121.048							
	SED-006 / WGR1121.049							
	SED-007 / WGR1121.050							
Species/Test Method Referenced:	Eohaustorius estuarius	Test	SED-003: November 9, 2021 @ 13: 00 - November 19, 2021 @13:00 (10 day)					
	EPA/600/R-94-025 Duration: SED-004: November 9, 2021 @ 13: 01 - November 19, 2021 @13:01							
			SED-005: November 9, 2021 @ 13: 02 - November 19, 2021 @13:02 (10 day)					
			SED-006: November 9, 2021 @ 13: 03 - November 19, 2021 @13:03 (10 day)					
			SED-007: November 9, 2021 @ 13: 04 - November 19, 2021 @13:04 (10 day)					
Sample Matrix:	Sediment							
Type of Species:	Estuarine							
Data Validator:	Amber Ballrot							
Validation Date:	December 9, 2021							
Signature:	Amlu Bellist							
Problems Noted:	No problems or deficiencies	identified. Chr	onic toxicity testing was performed in accordance with EPA method guidelines.					

EOHAUSTORIUS ESTUARIUS

Completeness and Holding Conditions:						
Type of Samples Collected: Grab Sediment Samples	Number of Samples Analyzed: 5					
Were samples maintained at 4°C and in the dark after collection? Yes						
Did chronic toxicity testing begin within 14 days of sample collection? Yes						
Holding conditions acceptable? Yes						
If holding conditions were not acceptable, explain: N/A						

Tesoro Refining & Marketing LLC

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

Quality of Test Organism, Collection and Acclimation:

Who is the supplier of the test organisms? Northwestern Amphipod in Oregon

Are organisms field collected or cultured? | Field Collected

If field collected:

Where was the collection location? Oregon

What was the organism collection date? Organism were collected on November 1, 2021 and received by the laboratory on November 3, 2021.

What was the water salinity and temperature at the time of collection? Water salinity at the time of collection was 27 ppt. Temperature at the time of collection was 17.5 Degrees Celsius. Acclimation after collection began at 25 ppt. Final acclimation in laboratory was from 23 ppt to 20 ppt at -1 ppt/day.

Was site sediment collected for holding and acclimation purposes? Yes, 2L of site sediment was collected and used for acclimation.

Additional Comments: Quality of test organisms, collection, and acclimation is deemed acceptable.

Field Collection Sorting Methods

Were healthy amphipods placed into 10 cm diameter finger bowls with 2 cm sieved site sediment and seawater of appropriate salinity? Yes, only healthy organisms were used for bioassay testing. All sediment was sieved through stainless 2mm sieve. Overlying water of 20ppt was used for testing.

Were organisms held for 2-10 days? Yes, organisms were held for 6 days prior to testing.

Was test sediment sieved through 2 mm sieve or forceps for predator removal? Yes, all sediment was sieved using a stainless steel 2mm sieve.

Was control sediment sieved twice through 0.5 mm? Yes, control sediment was sieved using a 0.5mm stainless sieve two times.

Did control sediment have a 4-hour settling period after each sieving? Yes, control has a >4 hour settling period after each sieving.

Test Initiation

Was salinity adjusted in all testing chambers? Yes

Was overlying ammonia detected? No ammonia was detected on overlying water. MDL 0.1mg/L.

Were there at least 5 replicates per sample? Yes

Was there at least 20 animals per replicate? Yes

Was the organism length between 3-5 mm during test initiation? Yes, organism length was checked using dial calipers and confirmed within 3-5mm at test initiation.

Was the overlying water volume 800 mL? Yes

Were there any water quality adjustments? Yes, water quality measurements were collected during the duration of the test and are provided in the corresponding laboratory report.

Test Implementation

Photoperiod for 24 hours? Yes, 24 hour light cycle was employed for testing.

Was daily water quality monitoring conducted? Yes

What was the overlying daily temperature range (15°C)? The overlying daily temperature was maintained at 15°C.

Tesoro Refining & Marketing LLC

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

Was the daily salinity range 20+/-1 ppt? Yes, salinity range was 20ppt.

Was water renewal conducted? No, water remained static and was not renewed over the 10-day exposure period as required in the EPA method.

Was the overlying daily pH between 7 – 8 standard units? Yes

What was the overlying ammonia detection (ND)? No ammonia was detected during testing.

Were appropriate test chambers used (1-liter glass containers with 10 cm diameter)? Yes

Was water in each test chamber aerated overnight before start and throughout the test? Yes, aeration occurred at 1 bbl/second throughout testing.

Did the water maintain at least more than 90% saturation of dissolved oxygen concentration? Yes

Test Results and Analysis

Were the number of amphipods reported for each replicate? Yes

Was the percent mortality reported for each replicate? Yes

Was the sample mean for survival reported? Yes, the mean control survival was 99-100%

QA/QC Samples

	QA/QC Samples	
	Positive Control	Negative Control
	Length of reference toxicity test? 96 hours	Negative control response above 90% acceptability criteria? Yes
	What reference toxicant was used? Unionized Ammonia	Mean control survival? 99%
Exposure concentrations? Exposure ammonia concentrations were 0, 15.6,		Did EC 50 fall within lab standards? Yes
	32.2, 62.5, 125.0, 250 mg/L	Did EC 30 fall Within lab Standards: 165
	Did EC 50 fall within lab standards? Yes	