<table>
<thead>
<tr>
<th>DOCKETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docket Number:</td>
</tr>
<tr>
<td>Project Title:</td>
</tr>
<tr>
<td>TN #:</td>
</tr>
<tr>
<td>Document Title:</td>
</tr>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Filer:</td>
</tr>
<tr>
<td>Organization:</td>
</tr>
<tr>
<td>Submitter Role:</td>
</tr>
<tr>
<td>Submission Date:</td>
</tr>
<tr>
<td>Docketed Date:</td>
</tr>
</tbody>
</table>
eJet Aerospace The New Way To Fly

Dear Energy CA,

What I'm going to present to you is how eJet Aerospace is going to make electric aviation affordable to the masses. For over 20 years of R&D we have proven and patented SMAPADÁ® cold jet propulsion technology, internationally awarded as the best technological patent from Latino America by the World Intellectual Property Organization in Switzerland in 2013.

Our proven technology is a fluid dynamics physics masterpiece. One of its applications is aviation, using our innovative SMAPADÁ® engines, integrated with our gyroplanes GJet, our most important achievement is the KÄnâ „¢, a fully electric vertical take-off and landing (eVTOL) 4 passenger limousine aircraft that develops a range and performance never seen before using electric power from the batteries.

Featuring, increased safety, very easy to fly with a very low cost of production, operations, and maintenance, we have the opportunity to be first to market with an air transport solution that makes aviation affordable for the masses solving problems caused by inefficiencies of traditional transport solutions have.

We received 7 national awards from the Ministries of science, technology, industry, and commerce for technology, industrialization, innovation, and best transport solution. We are going to be featured in a shark tank-like tv show on Univision Channel, the biggest TV channel for Latino America.

Please find the teaser, and pitch deck attached.

We are here to change the world.

Respectfully,
Saul Tarazona
eJet Aerospace
Co-Founder & CEO
US Phone +1 702 937 1952
www.gjet.tech

Additional submitted attachment is included below.
Affordable Air Transport Services Using Cold Jet Propulsion eVTOL Aircraft

Investor’s Presentation Ver. 5.2
September 21st, 2021
Disclaimer

This data speaks only as of the date hereof, and eJet Aerospace disclaims any obligation or undertaking to provide updates or revisions to reflect any change in its expectations or returns.

The stated Internal Rate of Return (IRR) and multiples are unrealized and based solely on our own estimate of the current value of our fund investments; was not provided or verified by the companies or third party valuation; and does not represent actual return of capital or gain to eJet Aerospace members.

The actual return outcomes for investments are highly uncertain and may, in the end, be significantly lower than the stated unrealized IRR. Additionally, our past performance is not indicative of future returns, so we can’t provide assurances that comparable returns individually or in the aggregate will be achieved by any current or future eJet Aerospace fund.

Disclosure: Investing in startups carries a high degree of risk. In general, financial and operating risks confronting both early and developmental-stage companies, as well as more mature expansion-stage companies are significant. Many emerging growth companies go out of business every year. It is difficult to know how companies will grow, if at all, or what changes may occur in the market. A loss of an investor’s entire investment is possible and no profit may be realized. Investors are responsible for conducting their own due diligence.
The Opportunity

Imagine if you have had the chance to invest in the research and development of the 1st internal combustion engine; or even better, how your investment portfolio will look like if you had the opportunity to invest in the development of the 1st jet engine. What we will present to you is the pivoting point of the technological development that will mark this century.

eJet Aerospace after 20 years of constant research & development and more than 2M USD invested by the founders, we have patented and proved a very high-performance fully electric propulsion technology, we call it SMAPAD® Cold Jet Propulsion System.

The possibilities of this technology are many, we started applying this innovative technology in aviation, this is where we have a stronger impact, with a very strong potential to completely change the entire transport industry.
The Problems eJet Aerospace Solve

We in eJet Aerospace are going to be focused on aviation transport as a starting point, please have in mind this technology can be applied in other vehicles as well.

Problem 1: Aviation is very expensive, and the most expensive aircraft are the helicopters

Solution: 1 flying hour will cost you on average 150 USD per plot hour and 256 USD in other expenses. For every helicopter operational hour, you need to budget for 10 hours of inspection, maintenance, and repair. In our case for every 10 Kóan™ or Æón™ operational hours, you will need to budget for only 1 hour of inspection, maintenance, and repair.

Problem 2: Water, land, and air transportation vehicles contaminates a lot

Solution: The SMAPAD is a very high-performance propulsion system and has a very low electric energy consumption

Problem 3: Water and land transportation is slow, ineffective, and inefficient

Solution: With our GJet eVTOL aircraft we have the potential to replace the other types of transportation for a very fast, reliable, safe, easy to fly, effective, and very efficient new way to transport 4 people or 500 kg of cargo nonstop for distances of 562 Kms at 250 km/h or 135 kt, making it a 135 minutes flight in a very luxurious and comfortable flying limousine.

www.gjet.tech
This is how it all started...

We patented an innovative cold jet propulsion system called SMAPAD® and integrated it with 2 autogyro aircraft, also known as gyroplane or gyrocopter. These aircraft are powered by 100% electric power from batteries. We call them GiróJet™, and in short "Get".

The "Get" models Æón™ and the Kóan™ have the SMAPAD® technology integrated with the airframe.

There was nothing like this, until now!

Inventor Raymond François Aubourg
Why Get

We are building the world’s leading electric transport of the future now

Our vision is to make aviation safe, affordable, and fast with Get aircrafts

- Safety, Get do not stall or fall in to spiral
- In case there is no power condition you have more time to glide or autorotate to a safe place to land
- Easier to fly than an airplane or helicopters
- Fully Electric, non-polluting & very silent in ground and air
- Very efficient in energy consumption
- Higher speed than a helicopter
- Very low cost to produce, operate and maintain
- This wouldn’t be possible without the SMAPAD

www.gjet.tech
Electric Cold Jet Propulsion System

Articulated Mechatronic’s Aerodynamic System for Propulsion and Aircraft Vertical Takeoff Patented as SMAPAD®

SMAPAD® PROPULSOR: FIRST PATENT OF INVENTION

SYNERGISTIC CONJUNCTION OF AERODYNAMIC EFFECTS

COLD JET PROPULSION FROM BATTERY SOURCE

ARE EQUIPPED WITH AIR-ELECTRIC SMAPAD® TURBINE
The Aviation Innovation

- The inventor self-financed the design, laboratory tests, development of the scale prototype for flight, research and development for 20 years.

- Using a combination of innovative technology featuring Cold Jet propulsion and vertical takeoff SMAPAD using battery-powered electric bi-generators.

- There is a 2-seater ultralight and a 4-seater lightweight air-conditioned, pressurized limousine that has vertical takeoff and landing capabilities.

- With additional control and communications equipment, GiróJet™ (GJet) has the potential to be an Unmanned Aerial Vehicle (UAV) or drone with Self Automated Flight Capabilities.

www.gjet.tech
Technology Readiness Level

Where We Are On The Technological Development

- **TRL1**: Basic principles observed
- **TRL2**: Concept Formulation
- **TRL3**: Concept experimental test
- **TRL4**: Development validation in the laboratory
- **TRL5**: Development validation in the relevant environment
- **TRL6**: Development Demonstration in the relevant environment
- **TRL7**: Development demonstration in the real operational environment
- **TRL8**: Development Completion & Certification
- **TRL9**: Marketing R&D Developments

development events:

- **Year 2000**: Invention
- **20 years**: 2M USD
- **Today**: 14 mth SMAPAD + 6 months Kóan™ Certification May 2022
- **Continuous Ops.**: Ph.6 to 11 30-40 M USD

Invention and Concept validation:
- **Laboratory environment**
- **Simulation Environment**
- **Real Environment**

For more information visit www.gjet.tech
Technological Innovation Achievements

There Is Nothing Like This In The World Of Aviation

1. FIRST ELECTRIC ROTORCRAFT IN THE AERONAUTICAL HISTORY OF THE WORLD

2. FIRST AND ONLY PATENT FOR COLD JET PROPULTION
 - FASTER CRUISE SPEED
 - MORE FLIGHT TIME
 - MORE RANGE
 - IMPROVED AERODYNAMICS DESIGN

3. LOW PURCHASE COST
 - LOW ASSEMBLY COST
 - LOW MAINTENANCE COST
 - LOW OPERATIONAL COST
GJet Æón™
Aircraft Configuration and Performance Data

- Weight: Ultralight (500 kg)
- Rotary Wing (Rotorcraft)
- Folding blades
- Configuration: VTOL / VSL
- Bi-seats (+ Bags): 250 kg
- Aeronautical Aluminum Structure
- Thermoformed Polymer Fuselage (PPMA)
- SMAPAD Cold Jet Propulsion
- Electric Motor: 120 kW (161 hp)
- Multi-blade propeller
- Cruising speed: 100 kt (185 km/h), maximum; 150 kt (278 km/h)
- Fly time capacity: 100 min
- Range: 308 km
- Ceiling: 10,000 ft (3300 mt)
- 4 Power Packs Li. Ion batteries (externally ventilated)
- Fly By Wire (no mechanic connections in the flight controls)
- The Flight Control Tablet with the SWAP (Pilot Assistance Software) is detachable

2-Seater eVTOL / VSL Ultralight Rotorcraft

Storage capacity: 2 X 20 kg Large Luggage + Golf Bag + 2 suits hook

www.gjet.tech
Lightweight Rotorcraft (1200 kg)
Rotating wing lift (Multi-stage Rotorcraft)
Configuration: VTOL (fixed point)
Cold Jet propulsion and vertical takeoff SMAPAD
Four-seater (+ Bags): 500 kg
Pressurized and heated cabin
Aeronautical aluminum structure
Thermoformed Polymer Fuselage (PPMA)
400kW electric Motors (2 x 268 cv. hp)
Bi-propellers variable pitch (Push-Pull),
Cruising speed: 154 mph (250 km/h), maximum: 233 mph (375 km/h)
Fly time capacity: 135 min
Range: 349 miles (562 km)
Ceiling: 23,000 ft, 7000 mts
4 Power packs Li. Ion batteries (externally ventilated)
Fly By Wire (no mechanic connections in the flight controls)
The Flight Control Tablet with SWAP (Pilot Assistance Software) is fixed

Storage capacity: 4 X 20 kg Large Luggage + 2 Golf Bag + 4 suits

www.gjet.tech
GJet Kóan™ as a US Transport Solution 100% Electric

Nonstop 562 Kms Range

1 stop 1124 Kms Range

Above and Beyond Urban Air Mobility
This is a remote control model where we tested the Æón™ flight capabilities and performance with better than expected results.
Other Aircraft Applications

SMAPAD® as a driver of change in the manned and unmanned aircraft

The Electric Propulsion System SMAPAD® can be installed (retrofit) on every aircraft in the world, regardless if it is big, small, manned or unmanned.

SMAPAD® completely outperforms any UAV or eVTOL and cost a fraction to produce and operate.

Many multi rotor design requires a pivoting to provide forward speed, this mechanism is heavy and waste valuable energy that can be used for longer flights.

Ref. https://blog.lilium.com/what-it-takes-to-design-an-aircraft-from-scratch-ef02082a9899
VTOLs Performance Comparison

GJet Model Aircrafts outperforms other aircrafts thanks to SMAPAD®

<table>
<thead>
<tr>
<th>Aircraft Model</th>
<th>Æon™ (2 Passenger)</th>
<th>Kóan™ (4 Passenger)</th>
<th>Robinson R44 Raven II</th>
<th>EHang 216 (2 passenger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>TBD</td>
<td>TBD</td>
<td>US</td>
<td>China</td>
</tr>
<tr>
<td>Aircraft Type</td>
<td>eVTOL</td>
<td>eVTOL</td>
<td>Rotary Wing</td>
<td>Wingless eVTOL</td>
</tr>
<tr>
<td>Max Gross Weight</td>
<td>500 Kg</td>
<td>1200 Kg</td>
<td>1134 Kg / 2500 lb</td>
<td>599 Kg</td>
</tr>
<tr>
<td>Cargo Capacity</td>
<td>250 Kg</td>
<td>500 Kg</td>
<td>371 Kg / 818 lbs</td>
<td>2 Adults or 219 kg = 485 lbs</td>
</tr>
<tr>
<td>HP</td>
<td>120kW (161 hp)</td>
<td>400kW, 2 x 268cv.hp</td>
<td>205 hp</td>
<td>?</td>
</tr>
<tr>
<td>Max Speed</td>
<td>278 km/h, 150 Kt</td>
<td>375 km/h, 250 kt</td>
<td>202 km/h</td>
<td>128 km/h = 80mi/h</td>
</tr>
<tr>
<td>Cruising Speed</td>
<td>185 km/h, 100 Kt</td>
<td>250 km/h, 135 kt</td>
<td>178 Km/h</td>
<td>< than Max Speed in 30% apr.</td>
</tr>
<tr>
<td>Fly Time Capacity</td>
<td>100 min</td>
<td>Range and Fly Time Capacity increase in 125% if equipped with the UAV and extended Battery modifications</td>
<td>135 min</td>
<td>25 min (est)</td>
</tr>
<tr>
<td>Range</td>
<td>308 km</td>
<td>562 km</td>
<td>550 Km</td>
<td>35.4 km = 22 mi</td>
</tr>
<tr>
<td>Ceiling</td>
<td>10,000 ft, 3300 mts</td>
<td>16,400 ft, 5000 mts (limited by Reg.)</td>
<td>14000 ft</td>
<td>Cruising alt.: 1600 ft (AGL)</td>
</tr>
<tr>
<td>Subsidaries Sales Price</td>
<td>Cost of Production 75,000 USD X 4</td>
<td>Cost of Production 100,000 USD X 2.5</td>
<td>412,000 USD</td>
<td></td>
</tr>
<tr>
<td>Approx. Energy Cost per flying hour</td>
<td>7 USD</td>
<td>14 USD</td>
<td>15 gal / Hour Fuel Cost/Hour 17.10 USD</td>
<td>16 lift/thrust rotors (8 dual rotors) = A lot</td>
</tr>
<tr>
<td>State of Development</td>
<td>Ready to build the 1st full size for the certification process</td>
<td>Research 100% Dev. 80% (7,000 Eng. Hours required)</td>
<td>Certified</td>
<td>Flying Model</td>
</tr>
<tr>
<td>Autonomy Level</td>
<td>Piloted & Autonomous UAV modification available</td>
<td>Piloted & Autonomous UAV modification available</td>
<td>Piloted</td>
<td>Autonomous</td>
</tr>
<tr>
<td>Dimensions</td>
<td>6, 1.8 ,3</td>
<td>2 blades 9m</td>
<td>7.5 ,2.3 ,3.3 (length width height mt)</td>
<td>3 blades 10m</td>
</tr>
<tr>
<td>Charging Time</td>
<td>Depending of the Battery</td>
<td>Depending of the Battery</td>
<td>N/A</td>
<td>1 h</td>
</tr>
<tr>
<td>Storage capacity:</td>
<td>2 large Luggage 20kg + Golf Bag + 2 suits hook</td>
<td>4 large Luggage 20kg each + 2 Golf Bag + 4 suits hook + small refrigerator</td>
<td>140 Kg</td>
<td>18-inch backpack</td>
</tr>
</tbody>
</table>

Range and Fly Time Capacity increase in 125% if equipped with the UAV and extended Battery modifications.
Comparison Between Fuel Powered Helicopter R44 vs GJet Kóan with SMAPAD® Electric Propulsion System

<table>
<thead>
<tr>
<th>Component</th>
<th>Combustion Model</th>
<th>Value / Hour</th>
<th>%</th>
<th>GJet Kóan with SMAPAD® Electric Aircraft Model</th>
<th>Value / Hour</th>
<th>%</th>
<th>Savings per Hour</th>
<th>Difference in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel per Hour</td>
<td>15 gal / Hour</td>
<td>USD 17.10</td>
<td>4%</td>
<td>2 Kw/ Hour</td>
<td>USD 14.00</td>
<td>12%</td>
<td>USD 3.10</td>
<td>18%</td>
</tr>
<tr>
<td>Pilot Cost per Hour</td>
<td>USD 150.00</td>
<td>37%</td>
<td></td>
<td>Cost per Hour</td>
<td>USD 40.00</td>
<td>35%</td>
<td>USD 110.00</td>
<td>73%</td>
</tr>
<tr>
<td>Aircraft Amortization</td>
<td>10 years x 8 h/day x 25 days x 12 months x Aircraft Cost</td>
<td>USD 0.00</td>
<td>0%</td>
<td>10 years x 8 h/day x 25 days x 12 months x Aircraft Cost</td>
<td>USD 0.00</td>
<td>0%</td>
<td>USD 0.00</td>
<td>0%</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Cost per Hour</td>
<td>USD 200.00</td>
<td>49%</td>
<td>Cost per Hour</td>
<td>USD 20.00</td>
<td>18%</td>
<td>USD 180.00</td>
<td>90%</td>
</tr>
<tr>
<td>Discharge Cost per Hour</td>
<td>USD 0.01</td>
<td>0%</td>
<td></td>
<td>Cost per Hour</td>
<td>USD 0.01</td>
<td>0%</td>
<td>USD 0.00</td>
<td>0%</td>
</tr>
<tr>
<td>Other Indirect Costs</td>
<td>Estimated 15%</td>
<td>USD 13.77</td>
<td>3%</td>
<td>Estimated 15%</td>
<td>USD 13.77</td>
<td>10%</td>
<td>USD 0.00</td>
<td>0%</td>
</tr>
<tr>
<td>Insurance</td>
<td>10 years x 8 h/day x 25 days x 12 months x Aircraft Insurance Cost</td>
<td>USD 0.00</td>
<td>0%</td>
<td>10 years x 8 h/day x 25 days x 12 months x Aircraft Insurance Cost</td>
<td>USD 0.00</td>
<td>0%</td>
<td>USD 0.00</td>
<td>0%</td>
</tr>
<tr>
<td>Subtotal Costs</td>
<td>USD 380.88</td>
<td>94%</td>
<td></td>
<td>USD 87.78</td>
<td>77%</td>
<td></td>
<td>USD 293.10</td>
<td>72%</td>
</tr>
<tr>
<td>Management</td>
<td>USD 15.79</td>
<td>4%</td>
<td></td>
<td>USD 15.79</td>
<td>14%</td>
<td></td>
<td>USD 0.00</td>
<td>0%</td>
</tr>
<tr>
<td>Advertising</td>
<td>USD 10.00</td>
<td>2%</td>
<td></td>
<td>USD 10.00</td>
<td>9%</td>
<td></td>
<td>USD 0.00</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>USD 406.67</td>
<td>100%</td>
<td></td>
<td>Total USD 113.57</td>
<td>100%</td>
<td></td>
<td>USD 293.10</td>
<td>72%</td>
</tr>
</tbody>
</table>

Sale Price per Hour
- R44 Helicopter USD 560
- Kóan USD 448

Margin in USD
- R44 Helicopter USD 153
- Kóan USD 334

Operating Margin %
- R44 Helicopter 27.40%
- Kóan 74.60%
Lines of Business

Our business is not to sell aircraft, instead, we are looking to provide air transport services, considering the revenue streams of the following lines of business:

1. Taking the non-electric VTOL market (helicopters) using the regular heliports available
2. Provide air transport services at -20% of the regular price regardless if it is a rotary-wing or fixed-wing, using the eJet Aero Mobile Application, the eJet App will connect users, Pilots, and services
3. Big data monetization strategies
4. Electric gyrocopter sport pilot certification and commercial certification
5. Sport aviation aircraft leasing
6. Conversion of traditional power propulsion systems that used fossil fuels in to SMAPAD® electric cold jet propulsion system
7. Replace the ground and sea transportation services for air transport services using eJet
8. Replace the current eVTOL propulsion systems for SMAPAD®
9. Vertiports development & construction

Industries we are going to Impact

• The whole aviation Industry
 • Propulsion Systems
 • Aircraft Manufacturing
 • Aviation Training
 • Aviation Services
 • Aviation parts
• The whole transport Industry
 • Urban and peri-urban air mobility
 • Regional
 • International
 • Across continents
• The Defense Industry
 • Surveillance
 • Transport (cargo and personnel)
• The energy industry
• The Technology Industry
1. The Assembly Line we will only be able to sell aircraft to our own subsidiary companies, we will sell the aircraft of the estimated cost to produce them (250,000 USD per Kóan).

2. The eJet App services charges will start with -20% of VTOL/helicopters air transport services estimated at 560 USD per hour. eJet App sale price per hour 448 USD.

 eJet App operational margin is 73.4% vs 19.6% Helicopters

 eJet App net profit before taxes = 334 USD per hour

 Kóan™ costs per hour = 114 USD vs Helicopter costs per hour = 450 USD

3. Defense contracts will be suited for additional Centers of Operations and higher charges 40M USD, expected 1 per year

4. Aircraft modifications 10M USD Net profit Estimated in 2 per year

5. Aviation propulsion system conversion contracts 20M USD Net profit 1 per year

6. *Country Center of Operations 30M to 40M USD investment will generate:

 Year 1: 16M Net profit; Year 2: 64M Net profit

* All calculations are estimations and are subject to change
Recognitions & Awards

SMAPAD and GJet

<table>
<thead>
<tr>
<th>Recognition</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Project selection of the program 2008</td>
<td></td>
</tr>
<tr>
<td>Technological Prize Finalist</td>
<td>INTEL, Desafío por América 2010</td>
</tr>
<tr>
<td>1st Industrial National Award</td>
<td>National Award 2013</td>
</tr>
<tr>
<td>No. 1 Finance Magazine in Colombia</td>
<td></td>
</tr>
<tr>
<td>Money Magazine The 101 Business Geniuses of 2013</td>
<td></td>
</tr>
<tr>
<td>1st Industrial National Award</td>
<td></td>
</tr>
<tr>
<td>International Award as Best American Innovative Company</td>
<td></td>
</tr>
</tbody>
</table>

Dinero
Colombian Ministry of Science & Technology together with and the Ministry of Industry & Commerce awarded Gjet eVTOL aircraft as the best transport innovation.
Raymond François Aubourg

➢ Engineer graduated with a Master in Physics, Doctorate in fluid dynamics, Specialised in mechatronics engineering, Business Management, and Project Management

➢ Founder and Manager of the French company awarded with 5 national awards (1984-1990), ranked as one of the 150 best businessmen of small and medium companies of the year 1990

➢ Expert in cooperation programs of the European Union and consultant of Colombian institutions with extensive experience on transfer, adaptation of technologies and industrial training for the development of Colombia

➢ A University professor in research methodology for technological entrepreneurship, creativity and innovations and new businesses in the international industrial environment

➢ Expert of cooperation programs of the European Union and Unesco

➢ Lecturer specialized in research methodology and its applications for Latin American industrial development, entrepreneurship based on competence and competitiveness for the creation of technology-based and innovative companies

➢ Researcher in science and technological entrepreneurship; Creator and director of research institutes honoured with 4 high honorific Colombian and international awards

➢ Writer, with numerous national and international publications on science, technology and society, sustainable development and competitiveness, including the methodology for creating innovative products (blue ocean strategy) with a technological base

➢ Academic Peer Evaluator for the National Accreditation Council (CNA) in High-Quality educational institution, and Academic Peer Evaluator for the National Intersectoral Commission in Quality Assurance for Higher Education (CONACES)

https://www.linkedin.com/in/aubourg/

www.gjet.tech
Our Team

Saul Tarazona

➢ 15 years of experience in the defense aviation programs with various governments (US, Colombia, United Arab Emirates)

➢ Multiple positions as Project Manager, Contracts, Capability Development, Quality Management, Quality Assurance, Quality Control, Training Management, Standardization, Safety and Evaluation

➢ Very strong Project Management experience

➢ 9 years of experience in emergent technologies investments

➢ Senior Advisor for Family Offices and investment funds worldwide

➢ Advisor and Consultant for Startups and large organizations in subjects related to strategy, technology innovation, fundraising, go to market

➢ Recognized as an international leader in the Blockchain industry as an Advisor specialized in using Blockchain technology as a fundraising mechanism

https://www.linkedin.com/in/blockchainadvisor/

Co-Founder & CEO
MBA, Aeronautical Engineer

www.gjet.tech
Business Plan

Problems we solve

1. **Aviation is very expensive, and the most expensive aircraft are the helicopters**
2. **Water, land, and air transportation vehicles contaminate a lot**
3. **Water and land transportation is slow, ineffective, and inefficient**

Solution

- SMAPAD® high performance electric propulsion system
- GJet eVTOL Models

Unique Value Proposition

- **Very low cost of aircraft production and operational costs translate in very high profits**
- **Very low cost to train a Pilot, translates in very low cost of operations**
- **Our services are cheaper, faster, accessible and use green energies**
- **Accessibility, convenience and usability**
- **SMAPAD® will be the propulsion system of choice for any type of vehicle for land, sea and air**
- **GJet aircraft models do not compete in the aviation market, they take the aviation market**

Unfair Advantage

- **We have the patents**
- **We have the technology**
- **No other aircraft nor propulsion system gets close to compete with us**

Cost Structure

Fixed Cost: Hangar, Utilities, Salaries, Assembly Line Amortization, Depreciation, Insurance
Variable Cost: Taxes, Sales, Marketing, R&D, Materials, Transport, Travel, BD, Commissions

Customer Segments

- General aviation
- Air transport
- Personal transportation
- Public transportation
- Cargo transport
- Defense

Key Activities

- Certify SMAPAD®
- Certify the aircrafts with the FAA Civil Aviation Authority
- Build assembly line
- Build training center

Revenue Streams

1. Provide air transport services at -20% of the regular price using the eJet Aero Mobile Application, the App will connect Users, Pilots and services
2. Big data monetization strategies
3. Electric gyrocopter sport pilot certification
4. Sport aviation aircraft leasing
5. Conversion of traditional power propulsion systems that used fossil fuels in to SMAPAD® electric cold jet propulsion system
6. Taking the non-electric VTOL market (helicopters)
7. Replace the ground and sea transportation services for air transport services using
8. Replace the current eVTOL propulsion systems for SMAPAD®
Global Aircraft Market Forecast

Electric Vertical Takeoff and Landing (eVTOL)

- China is expected to acquire the largest market share, and Singapore is expected to witness the highest growth rate in this region during the period 2025-2035. Similarly, the European market is also likely to witness numerous growth opportunities during the forecast period.

- The Global eVTOL Aircraft Industry Analysis projects the market to grow at a significant Compound Annual Growth Rate (CAGR) of 13.75% during the forecast period from 2025 to 2035.

 But... SMAPAD® can be integrated with traditional aircraft as well, So the market is Bigger than eVTOL alone!

https://www.marketresearchfuture.com/reports/evtol-aircraft-market-7952

www.gjet.tech
Market Challenges

Urban Air Mobility Market (UAM)

- The Urban Air Mobility Market (UAM) market has the potential to grow to more than $1 billion by 2030, for applications such as air taxis, personal air vehicles, cargo air vehicles, and air ambulances, among others.
- Companies such as Uber (US) have collaborated with various OEMs, such as Bell (US), Karem Aircraft (US), and Boeing (US), among others, to commercialize the mobility concept urban air service by 2023. When commercialized, this concept is expected to allow passengers to share e-VTOL air services between cities and suburbs, and eventually within cities.

Helicopters (VTOL) aircraft

- "The size of the global helicopter market is projected to grow from USD 21.3 billion in 2020 to USD 36.9 billion by 2025, at a CAGR of 11.7% from 2020 to 2025. Increasing demand for light helicopters and emergency medical services (EMS) are other market drivers".
- "Technological advancements in the aerospace industry and the demand for better helicopter power performance are driving the need to upgrade both military and commercial helicopters. Manufacturers have made efforts to reduce the overall weight of helicopter engines to help reduce fuel consumption and improve profitability. Increased efforts by helicopter manufacturers to reduce the size and weight of helicopters have resulted in technological advancements. On average, a helicopter engine weighs approximately 10-15% of the total operating weight, depending on the type of helicopter and the application. Additionally, fuel is one of the biggest costs for helicopter operators.

eJet Market to take is both and more, our performance allow to move people and cargo in ranges of 550 kms, way mode than UAM, this is inter city mobility.

OUR MARKET POTENTIAL IS HUGE!
Funding Rounds Details

<table>
<thead>
<tr>
<th>Round</th>
<th>Amount in USD</th>
<th>Objective</th>
<th>Project Phase</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-seed</td>
<td>2,000,000</td>
<td>R&D, patents (X2) and MVP (Minimum Viable Product) financing. This is the Aeon scale model 1 to 9</td>
<td>TRL 1 to TRL 6</td>
<td>Closed - Self financed by the Founders</td>
</tr>
<tr>
<td>Seed 1</td>
<td>5,000,000</td>
<td>Build a full size SMAPAD, scientifically measurements by a top aerospace university and SMAPAD certification with the civil aviation authority</td>
<td>TRL 7 to TRL 9</td>
<td>Currently Open To be finished ASAP</td>
</tr>
<tr>
<td>Seed 2</td>
<td>2,000,000</td>
<td>Build a full size Kóan, scientifically measurements by a top aerospace university and Kóan certification with the civil aviation authority</td>
<td>TRL 7 to TRL 9</td>
<td>To be closed Oct 2022</td>
</tr>
<tr>
<td>Series A</td>
<td>30 to 40M</td>
<td>Scale the company building the 1st center of operations (Aircraft factory, training center, MRO), sales, marketing, team, parts and systems to build 50 a/c per year as a minimum</td>
<td>Phase 8 to 11</td>
<td>To be closed by Jan 2023</td>
</tr>
<tr>
<td>Series B</td>
<td>60M to 80M</td>
<td>Budget required to build 2 centers of operations more as a minimum</td>
<td>Phase 12 to 13</td>
<td>To be closed by Feb 2023</td>
</tr>
<tr>
<td>Series C</td>
<td>120 to 160M</td>
<td>Budget required to build 4 centers of operations more as a minimum</td>
<td>Phase 14 to 18</td>
<td>To be closed by May 2023</td>
</tr>
<tr>
<td>Series D</td>
<td>240 to 320M</td>
<td>Budget required to build 8 centers of operations more as a minimum</td>
<td>Phase 19 to 27</td>
<td>To be closed by Nov 2023</td>
</tr>
</tbody>
</table>
“The 21st century will be for aviation like the 20th century was for the automotive”

Raymond François Aubourg

Contact Us

www.gjet.tech
info@stringgroup.net
+1 702 937 1952
https://www.linkedin.com/company/ejetaerospace