DOCKETED	
Docket Number:	07-AFC-09C
Project Title:	Canyon Power Plant - Compliance
TN #:	241343
Document Title:	Canyon Power Plant Annual Compliance Report 2021
Description:	Compliance Annual Report
Filer:	Bertha A Hernandez
Organization:	City of Anaheim
Submitter Role:	Public Agency
Submission Date:	1/31/2022 11:34:45 AM
Docketed Date:	1/31/2022

Annual Compliance Report

City of Anaheim Canyon Power Plant

Anaheim, California

SCAQMD Facility ID: 153992

CEC Permit Number: 800-2010-001-CMF

Docket Number: 07-AFC-9C

2021

Period Range January 1, 2021 through December 31, 2021

Review and Certification

I have reviewed both technically and editorially all details, calculations, results conclusions and other appropriate written material contained herein and hereby certify that to the best of my knowledge the material presented is true, accurate and complete.

I certify that the information contained in this report is true, accurate, and complete.

Ronald Hoffard

Name

Generation Plant Manager

Title

Signature

1/31/2022

Date

Canyon Power Plant

Annual Compliance Report

Table of Contents

Acronyms and Abbreviations

Facility Description

List of Attachments

Compliance Matrix	Attachment	1
Facility Operational Status	. Attachment	2
CEC Approved Post Certification Changes	. Attachment	3
Missed Submittal Deadlines	. Attachment	4
Permit Filings and Permits Issued 2016 Year	. Attachment	5
Projected Compliance Testing in 2017 Year	. Attachment	6
Additions to On-Site Compliance File	Attachment	7
Evaluation of the "Un-Planned" Facility Closure Plan	. Attachment	8
NOV's Issued 2016 Year	. Attachment	9
Condition HAZ-1	. Attachment	10
Condition HAZ-8	Attachment	11
Soil & Water Use Report-7	Attachment	12
Soil & Water Use Report-8	Attachment	13
Surface Treatment of Project Structures & Buildings (VIS-4)	Attachment	14
Landscape Screening (VIS-5)	Attachment	15
AQ-9 NH3 Slip Testing AQ-9	Attachment	16
AQ-14 & AQ-24 RTC Inventory	Attachment	17
AQ-17 NH3 Flow Meter Accuracy Reports	Attachment	18
AQ-18 SCR Inlet Temperature Sensor Calibration Reports	Attachment	19

AQ-19 SCR Differential Pressure Sensor Calibration Report	Attachment	20
WASTE-10 Cooling Tower Sludge Testing	Attachment	21

Acronyms and Abbreviations

BHP Break horse power
Btu British thermal unit

BACT Best available control technology
CARB California Air Resources Board
CFR Code of Federal Regulations

CO Carbon Monoxide CO₂ Carbon Dioxide COA City of Anaheim

CFR Code of Federal Regulations

CPP Canyon Power Plant CT Combustion turbine

DAHS Data acquisition and handling

TDS Total dissolved solids
DPF Diesel particulate filter

EPA Environmental Protection Agency

F. Fahrenheit

ICE Internal combustion engine

lbs/hr pounds per hour lb/lb-mol pound per pound mol

MW mega watts

MMBtu million British thermal units

mmcf million cubic feet

NH₃ ammonia

NO Nitrogen OxideNO_x Oxides of NitrogenNO₂ Nitrogen Dioxide

O₂ Oxygen

ppm parts per million

ppmc parts per million corrected to 15% O₂

RATA relative accuracy test audit ROG Reactive Organic Compounds

RTU remote terminal unit

scf standard cubic feet (standard temperature = 68 degrees F)

SCR selective catalytic reactor

SCAQMD South Coast Air Quality Management District unit The term unit refers to the boiler/steam turbine

VOC Volatile Organic Compounds

1.0 Facility Description:

The City of Anaheim's (COA) Canyon Power Plant (CPP) facility is located at 3071 Miraloma Avenue in Anaheim California.

The facility consists of four natural gas fired General Electric, Model LM6000PC Sprint, simple cycle combustion turbine with water injection. The gas turbine was designed with a maximum heat input of 479 MMBtu per hour with a 46 degree Fahrenheit (F.) inlet air temperature. The units are equipped with an inlet air chiller designed to maintain the gas turbine inlet temperature at 46 degrees F. at full load.

Each unit is capable of generating 50.95 megawatts.

Carbon Monoxide (CO) emission from the gas turbine are controlled by utilizing a CO oxidation catalyst located between the gas turbine and the selective catalytic reactor (SCR). The CO oxidation catalyst controls the unit's CO and volatile organic compounds (VOC) emissions. The catalyst is guaranteed to reduce the unit's CO emission rate to a maximum of 4 ppm corrected to 15% O₂ (ppmc) and the VOC to 2 ppmc, both emission rates are based on a one (1) hour averages, dry basis at 15% O₂. The CO catalyst system was designed and supplied by Englehard/BASF.

The NO_x emissions from the gas turbine are controlled by the utilizing two (2) independent systems or techniques in series. The first system utilized on this unit is the water injection system.

Water is injected into the combustor suppressing the flame temperature and reducing the 1-hour average NO_x concentration to approximately 25 ppmc at 15% oxygen prior to entry into the SCR.

The second NO_x control system utilized by the unit is the NH₃/SCR system. After passing through the CO catalyst, the exhaust gases pass through an ammonia injection grid on its way to the SCR. The ammonia (NH₃) used at this facility is in the form a 19% by weight solution of ammonium hydroxide.

The SCR catalyst utilized by the unit for NO_x control was provided by Cormetech. The reaction between the NH_3 and the SCR catalyst reduces the existing NO_x to elemental nitrogen and water, resulting in NO_x concentrations in the exhaust gas at no greater than 2.5 ppmv at 15% O2 on a 1-hour average. The ammonia slip must be maintained below 5 ppm at 15% O2. Each SCR is vented through a dedicated stack, which is 11.8 ft. diameter and 86 ft. high.

The facility is also equipped with an 1141 BHP diesel emergency internal combustion engine (ICE) (black start engine) will be used to start up the plant in the event of a loss of grid power.

The ICE, is a Caterpillar, Model C-27, rated at 1141 BHP and fired on ultra low sulfur diesel fuel. The ICE, will serve to provide power to the plant during blackout conditions. The engine is certified by the SCAQMD as an EPA Tier 2 engine on 12/31/2010. The engine is required to be permitted, rather than registered, because CPP is a RECLAIM/Title V facility.

The black start engine will be used only in emergency situations where grid power from the COA's 69 kV system is unavailable to start the CTs. The black start engine will provide power to the turbine starter motors and various other necessary pieces of support equipment to get one of the gas turbines started. Once one of the turbines has been started and providing power to the

grid, the black start engine will be shut down.

The SCAQMD's rules limit operation of an emergency ICE to 50 hours per year.

The black start engine incorporates a diesel particulate filter (DPF), which is required by LAER. The Caterpillar DPF is designed to control the particulate emissions from diesel engines. The DPF consists of 2 filters, each 15-inches diameter by 15-inches long. The DPF system has been verified by CARB under Executive Order DE-14-006-01 to reduce emissions of diesel particulate matter consistent with a Level 3 device (greater than or equal to 85 percent reduction), when used with ultra low sulfur diesel with 15 ppm or lower sulfur content. As the DPF is CARB verified, a source test is not required. With the DPF, the particulate matter emissions from the engine is reduced from 0.15 g/bhp-hr to 0.0225 g/bhp-hr.

The DPF consists of a catalyzed cordierite ceramic honeycomb with hundreds of parallel channels, is designed to reduce emissions of particulate, carbon monoxide and hydrocarbons. The catalyst on the ceramic walls oxidizes carbon monoxide into carbon dioxide, and hydrocarbons into water and carbon dioxide. The arrangement of the channels is such that the exhaust gases carrying the carbon particles are forced through the fine pores of the walls, which filter out the particles. As the carbon particles are collected on the ceramic walls, the backpressure on the engine will increase. When the temperature of the exhaust is equal to or greater than 300 °C (572 °F) for at least 30% of the duty cycle, the catalyst interacts with the collected particulates to burn the particulates into carbon dioxide and water vapor, which will pass through the DPF.

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 1 COMPLIANCE MATRIX

CY 2021 SCAQMD COMPLIANCE

AQMD Requirement	Limit	Limit	Period	Unit 1 Done	Unit 1 Due	Unit 2 Done	Unit 2 Due	Unit 3 Done	Unit 3 Due	Unit 4 Done	Unit 4 Due	Canyon Site Done	Canyon Site Due
CEMS Calibration Stack and Turbine	each 24 hours	Daily prior to fires lit	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily		
NOx pounds			Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily		
NOx pounds monthly Electronic	4	RECLAIM RTC Holdings per AQMD records 60	15 days at the end of the month									1/3/22	2/15/22
NOx pounds quarterly Electronic		days after the end of each quarter	30 days at the end of the Quarter									1/3/22	4/30/22
QCER	4	/	30 days at the end of the first 3 calendar Quarters									1/27/22	4/30/22
NOx pounds Annual Permit Emissions Program report (APEP)			60 days after the end of the calendar year									1/27/22	2/28/23
RATA - RECLAIM/Acid Rain	4	Relative accuracy test of CEMS equipment	Every Six months or annually if incentive is met	7/12/21	9/30/22	7/13/21	9/30/22	10/13/21	6/30/22	5/18/21	6/30/22		
RATA - CO Spiking 218			Annually	7/12/21	9/30/22	7/13/21	9/30/22	10/13/21	6/30/22	5/18/21	6/30/22		
Ammonia slip		5 PPM	Every quarter 1st year then annually	7/12/21	9/30/22	7/13/21	9/30/22	10/13/21	6/30/22	5/18/21	6/30/22		
		1.67 lb/hr; 2.0 ppm; .06 lb/MMbtu per unit	Every 3 years	7/21-22/20	9/30/23	7/23-24/20	9/30/23	10/13-14/20	12/31/23	114-5/20	6/30/22		
Particulate PM (per Permit met the 3-year cycle on 2017)		1.67 lb/hr	Every 18 months in a 3 year period	2/8/16	not required	2/9/16	not required	11/4/15	not required	114-5/20	6/30/22		
Fuel Flow, Pressure, & Temperature calibration	pass or fail	2% accuracy	Annually	4/29/21	4/29/22	5/3/21	5/3/22	5/3/21	5/3/22	4/29/21	4/29/22		
SCR Inlet temperature probe calibration			Annually	1/13/21	1/13/22	1/13/21	1/13/22	1/13/21	1/13/22	1/13/21	1/13/22		
SCR differential pressure calibration	pass or fail	2% accuracy	Annually	1/12/21	1/12/22	1/12/21	1/12/22	1/12/21	1/12/22	1/12/21	1/12/22		
Ammonia flow meter	pass or fail	2% accuracy	Annually	3/25/21	3/25/22	4/1/21	4/1/22	4/12/21	4/12/22	4/6/21	4/6/22		
CEMS enclosure Temperature element calibration	pass or fail	2% accuracy	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily	Daily		
Regenerate Diesel Particulate Filter			rts or Back Pressure (Yellow light) greater then 36 INCH/H2O									2/25/20	24 starts
Diesel NOx pounds quarterly electronic		RECLAIM RTC Holdings	15 days after the end of the quarter				1			1	1	1/3/22	4/30/22
Power Washer NOx Pounds Qtrly Electronic									1/3/22	4/30/22			
Diesel tune up (Annual)	Manufactures specifications	4 degrees retarded	Annually						July 20	7/30/21			
Metal Coating Log - Rule 1107 (VOC)		Log coatings used on site	Annually						12/31/21	12/31/22			
Natural Gas Sample analysis	Manufactures specifications	0.25 grains H2S/100 scf	Monthly					12/3/21	1/15/22				
218 report (non-RECLAIM elements)		PPM & Emission Rates	Semi-annual									7/27/21	1/30/22
Title V Permit Renewal		Compliance Report	Every 5 years; Apply 180 days prior to expiration;									8/20/21	8/18/26
Title V 500 SAM Report		Compliance Report	Semi-annual									1/27/22	7/30/22
Title V 500 ACC Report		Compliance Report	Annually									1/27/22	3/1/23
Annual Emissions Report (AER)		Compliance Report	75 days at the end of calendar year									3/15/21	3/1/22
RECLAIM equipment breakdown	Upon Discovery	Upon Discovery	Verbal report to AQMD within 1 hour of discovery										
Non-RECLAIM equipment breakdown	Upon Discovery	Upon Discovery	Verbal report to AQMD within 24 hours of discovery										
Stack NOx Limit	2.5 parts per million	2.5 PPM	60 minute average										
Ammonia Slip Limit	5 parts per million	5 PPM	60 minute average										
Start-up NOx Limit	14.27 pounds	14.27 lbs per 60 min	60 minute average										
Shut-down NOx Limit	4.07 pounds	4.07 lbs per 60 min	10 minutes average			•		•	•				
**Maintenance Operations NOx Limit	44.0 pounds	44.0 lbs in any hour	60 minute average										1
CO Limit	4.0 parts per million	4 PPM	60 minute average										
Start-up CO Limit	11.6 pounds	11.6 lbs per 60 min	60 minute average										
Shut-down CO Limit	4.15 pounds	4.15 lbs per 60 min	10 minute average										
**Maintenance Operations CO Limit	19.5 pounds	19.4 lbs in any hour 2 PPM	60 minute average										1
ROG Limit Start-up ROG Limit	2.0 parts per million		60 minute average							1			
Start-up ROG Limit Shut-down ROG Limit	1.29 pounds 1.27 pounds	1.29 lbs per 60 min 1.27 lbs per 60 min	60 minute average					-					
VOC Limit	1.27 pounds 412 pounds	1.27 lbs per 60 min 412 lb/mo per unit	10 minutes average Monthly										
PM-10 Limit	540 pounds	412 lb/mo per unit 540 lb/mo per unit	Monthly										
SOX Limit	108 pounds	108 lb/mo per unit	Monthly										
VOC Limit	3608 pounds	3608 lbs/yr per unit	Annual										
PM-10 Limit	4822 pounds	4822 lbs/yer per unit	Annual										
SOX Limit	971 pounds	971 lbs/year per unit	Annual										
Start-ups Limit	240 pounds	540 starts per unit	Year										
Start aps cimit	240 pourius	540 starts per unit	i cai										

CY 2021 SCAQMD 500-N REPORTS

_													
	No	Unit	Description	AOMD Permit Limit	Actual	Duration	Date of	Reported to	500N sent to	Inspector	Notice of	Responsible	Resolution/Comments
	NO.	No.	Description	AQIND FETTILL LITTLE	Emissions	Duration	Episode	AQMD	AQMD	Site Visit	Violation	Responsible	Resolution/ comments

No 500-N Reports submitted in 2021

CY 2021 ENFORCEMENT ACTION NOTICES

*NOV	On 11/4 the PM10 source test limit exceeded the 1.67 lbs/hr and a retest occurred on	11/4/21	12/10/20	12/10/20	Hoffard/Hernandez	A retest was scheduled on 12/10 which resulted in a value 1.41 lbs/hr below the limit.
	12/10 with passing results.					

CY 2021 CEC REPORTING

CEC Requirement	Period	Last Done	Next Due	Responsibility	Comments
CEC 1304	varies one to two months after the quarter	1/19/22	4/30/22	Hoffard/Hernandez	
CEC 1304b	Semi-Annual	1/31/21	7/31/21	Stambler/Hoffard	
CEC Annual Report	30 days at end of calender year	2/10/21	1/31/22	Hoffard/Hernandez	
CEC Quarterly Operations Report	30 days at end of each quarter	1/31/22	4/30/22	Hoffard/Hernandez	
Building and structure inspection	Semi-annually	12/30/21	6/30/22	Hernandez	
Legionella/TDS - PM10 calculation	Quarterly	12/6/21	3/30/22	Hoffard/Truesdail	

CY 2021 CAISO REPORTING

CAISO Requirement	Period	Canyon Site Done	Canyon Site Due	Canyon Site Done	Canyon Site Due	Responsibility	Comments
		Spr	ing	Fa	all		
Planned Outage Schedule	Annual Spring & Fall Outages	5/2/21	5/30/23	12/1/22	12/30/23	Hoffard	
DPG recertification	Triannually	3/30/20	3/30/23		NA	Hoffard/Trimark	Changed to 3 yrs per Trimark
NERC MOD 027 / 026 / 027	5 Years			12/31/20	12/31/25	Hoffard	Replaces WECC testing

CY 2021 CAL ARP

California Accidental Release Prevention Program	Period	Last Done	Next Due	Responsibility
Hazard Review - 19% Aqua Ammonia System	Every 5 years	03/15/20	3/14/25	Hoffard/AFD
Compliance Audit	Every three years	2/19/20	2/19/23	Ralph McCaffrey
Ammonia Refresher Training (INACTIVE)	Every three years	N/A	N/A	Hoffard/McCaffrey
Ammonia Sensor Testing	Annual	7/7/21	7/6/22	Hoffard/McCaffrey
Ammonia Emergency Stop (E-Stop) Test	Annual	7/8/21	7/7/22	Hoffard/McCaffrey

CY 2021 CAL ARP

California Accidental Release Prevention Program	Period	Last Done	Next Due	Responsibility
Hazard Review - 19% Aqua Ammonia System	Every 5 years	03/15/20	3/14/25	Hoffard/AFD
Compliance Audit	Every three years	2/19/20	2/19/23	Ralph McCaffrey
Ammonia Refresher Training (INACTIVE)	Every three years	N/A	N/A	Hoffard/McCaffrey
Ammonia Sensor Testing	Annual	7/7/21	7/6/22	Hoffard/McCaffrey
Ammonia Emergency Stop (E-Stop) Test	Annual	7/8/21	7/7/22	Hoffard/McCaffrey

California Air Resources Board Stationary Equipment Refrigerant Management Program (RMP) Canyon Power Plant (CPP) Compliance Guidance

Compliance Year: 2020

Facility Size Classification: Large (at least 1 unit w/≥ 2000 lbs high GWP-refrigerant capacity)

Annual Fee: \$370.00 (Fees must be paid annually by the reporting deadline)

No. of Refrigeration Systems: 2 (CH-100, CH-200)

Location(s): Both chillers are located in the Northeast portion of facility footprint, just South of two water storage tanks.

Refrigeration System Specifications

CH-100: Centrifugal Chiller w/5200 lbs R-123 (full charge), Trane, Model No. CDHF3000, Serial No. L10B00882;

> ALDS ID: 301-IRF A: Vulcain/Honeywell, Model No. 301-EM, Concentration Monitor (Direct System), 2 Infared Sensors

Done

Last System Audit:

Next audit target: 6/30/2021

Next calibration target: 6/30/2021

CH-100: Centrifugal Chiller w/5200 lbs R-123 (full charge), Trane, Model No. CDHF3000, Serial No. L10A00350;

>ALDS ID: 301-IRF B: Vulcain/Honeywell, Model No. 301-EM, Concentration Monitor (Direct System), 2 Infared Sensors

 Last System Audit:
 Next audit target:
 6/30/2021
 8/9/21
 Deadline:
 12/31/2021

 Last Calibration:
 Next calibration target:
 6/30/2021
 8/9/21
 Deadline:
 12/31/2021

CARB Reporting (due by 3/1 each year)

Last CARB Report: 2/23/2021 for 2020 Next reporting deadline: 3/1/2022 (Fee payment due on or before this date)

Automatic Leak Detection System Requirements

- Each system must be audited and calibrated using manufacturer's recommended procedures to ensure that the system:
 - 1.) accurately detects a concentration level of 10 parts per million of vapor of the specific refrigerant used in the system; and
 - 2.) alerts the operator when a refrigerant concentration of 100 parts per million of vapor of the specific refrigerant is reached.
- •The audit and calibration must be completed on each leak detection system at least once per calendar year.
- •If an automatic leak detection system alerts plant operators, a leak inspection must be conducted within 24 hours after the system alert.
- This leak inspection must be completed using a calibrated refrigerant leak detection device or a bubble test to aonfirm a refrigerant leak and to determine the leak location(s).
- •If during a required leak inspection or at any time oil residue is observed indicating a refrigerant leak, a leak inspection must be conducted using a calibrated refrigerant leak detection device or a bubble test to confrim the leak.
- A leak inspection must be conducted using a calibrated refrigerant leak detection device, a bubble test, or observation of oil residue, each time an additional refrigerant charge equal to or greater than 5 pounds, or one percent of the refrigeration system full charge (whichever is greater), is added to the system.

Leak Repairs and Subsequent Leak Inspection Requirements

- A refrigerant leak must be repaired by an EPA-certified technician holding a current and active C38 Refrigerantion Contractor's license, or by an employee of a contractor with these qualifications.
 - > A contractor's license is not required if:
 - 1.) a City employee services or repairs the system and wages are sole compensation; or
 - 2.) the City performs the service or repair through one undertaking, or by one or more contracts, and the aggregate contract price for labor, materials, and all other items is less than \$500; or
 - 3.) the service or repair is performed pursuant to a contract entered into before 1/1/2011, by the City.
- Leaks must be repaired within 14 days of detection, unless a longer time period is allowed (*)
- *45-day allowance if ANY of the following criteria is met:
 - 1.) A certified technician is not available to complete the repair or replace the component(s). This must be documented in writing per recordkeeping requirements;
 - 2.) The parts necessary to repair a refrigerant leak are unavailable, and the operator obtains a written statement from the refrigeration system or component manufacturer or distributor stating that the parts are unavailable. This must be documented in writing per recordkeeping requirements; or
 - 3.) The re refrigerant leak repair requires an inductrial process shutdown that results in a process temporarily ceasing to manufacture the intermediate or final product that is produced when the industrial process refrigeration appliance is in operation.

- *120-day allowance if ALL of the following criteria is met:
 - 1.) The facility is an entity subject to Mandetory Greenhouse Gas Emissions Reporting requirements;
 - 2.) The refrigeration system is an inductrial process refrigeration applicance;
 - 3.) The refrigerant leak repair requires an industrial process shutdown that results in a process temporarily ceasing to manufacture the intermediate or final product that is produced when the industrial process refrigeration appliance is in operation; and
 - 4.) Written records are maintained to document that all of the conditions are met.
- An initial verification test must be performed upon completion of refrigerant leak repairs.
- A follow-up verification test must be conducted on the complete refrigeration system after the initial verification test.
 - > If the system was evacuated during the refrigerant leak repair, then this test should be conducted when the system is operating at normal operating characteristics and conditions.
 - > If the system was not evacuated during the refrigerant leak repair, then the follow-up verification test requirement is satisfied once the required changes are made to return the refrigeration system to normal operating characteristics and conditions.
- •If either the initial or follow-up verification tests indicate that a refrigerant leak is still occurring, the leak must be repaired within 14 days (unless a longer time period is allowed*).
 - > A retrofit or retirement plan may also be prepared in lieu of this repair.
- If a follow-up verification test indicates that a refrigerant leak has not been successfully repaired within the 14 days allowed, and no exemption has been received, then:
 - > successfully repair the leak within 45 days of the initial leak detection; or
 - > prepare a retrofit or retirement plan within 60 days of the initial leak detection.
- •If a follow-up verification test indicates that a refrigerant leak has not been successfully repaired within the 45 days allowed (*), and no exemption has been received, then:
 - > prepare a retrofit or retirement plan within 60 days of the initial leak detection.
- •If a follow-up verification test indicates that a refrigerant leak has not been successfully repaired within the 120 days allowed (*), and no exemption has been received, then:
 - > prepare a retrofit or retirement plan within 135 days of the initial leak detection.

Retrofit or Retirement Plan Requirements

- If required to prepare a retirement or retrofit plan, the plan must establish a schedule to retrofit or retire the leaking system no later than six months after the intial leak detection, and all work must be completed during the 6-month period.
- •The plan must be kept on-site where the leaking system is located.
- If a refrigeration system is to be retired and replaced, the plan must include information specific to the new refrigeration system to be constructed or installed. (**)
- •If a refrigeration system is to be retrofitted, the plan must include information specific to the refrigeration system after the retrofit has been completed. (**)
- ** A retrofit or retirement plan must include the following information:
 - 1.) The system identification number of the refrigeration system being retired or retrofitted;
 - 2.) equipment type:
 - 3.) equipment manufacturer;
 - 4.) equipment model or description;
 - 5.) intended physical location of the refrigeration system through schematic or floor plan with locations clearly noted;
 - 6.) temperature classification (i.e., low, medium, other);
 - 7.) full charge of refrigeration system;
 - 8.) type of refrigerant used;
 - 9.) if the refrigeration system is to be retired and replaced, a plan to dispose of the retired system;
 - 10.) a timetable which includes, at a minimum:
 - > the date installation, construction, or retrofit of the refrigeration system is expected to begin, and
 - > the expected completion date of the installation, construction, or retrofit of the refrigeration system; and
 - 11.) A signature by a representative of the facility, including the date.
- If the system is being mothballed, these requirements do not apply until the day that the refrigeration system resumes operation at a facility.
- If an exemption has been received, then the preparation and implementation of a retrofit or retirement plan is not required during the exemption time period. If an exemption request has been submitted, then the plan preparation or implementation is not required until a final exemption determination is made.

Recordkeeping Requirements

- •Maintain the following records for a minimum of 5 years:
 - 1.) All registration information required by the rule;
 - 2.) documentation of all leak detection systems, leak inspections, and automatic leak detection system annual audit and calibrations;
 - 3.) records of refrigeration system service and refrigerant leak repairs, and any documentation of conditions allowing repair to be

conducted more than 14 days after leak detection;

- 4.) retrofit or retirement plans;
- 5.) all CARB reports;
- 6.) any application for exemption, and any notification of an exemption approved, denied, revoked, or modified;
- 7.) invoices for all refrigerant purchases;
- 8.) records of all shipments of refrigerants for reclamation or destruction, to include:
 - > Name and address of the person the refrigerant was shipped to;
 - > Weight in pounds of refrigerant shipped;
 - > type of refrigerant shipped;
 - > date of shipment;
 - > purpose of shipment (i.e., reclamation, destruction, etc.);
- 9.) records of all refrigeration systems component data, measurements, calculations and assumptions used to determine the full charge.

CY 2021 CITY REPORTING

Anaheim Requirement	Period	Last Done	Next Due	Responsibility
Certified (Facility) Fire Protection Systems				
Inspection	Semi-Annual	12/8/21	12/7/22	Hoffard
Electric protection relays	5-years	11/14/18	11/13/23	Hoffard
8-Hour refresher HAZWOPER	Annual	6/17/21	6/16/22	Hoffard/Ralph McCaffrey
Oil Spill Prevention, Control and				
Countermeasure Plan	5-years	12/21/21	12/21/26	McCaffrey/Hoffard
Hazardous Materials Business Plans (CERS)	Annual	3/24/21	3/24/22	McCaffrey/Hernandez

CY 2021 EIA REPORTING

EIA Requirement	Period	Last Done	Next Due	Responsibility	Comments
EIA 860-A	Annual	3/1/21	3/1/22	Hoffard/Hernandez	
EIA-923-M	Monthly	1/5/22	2/15/22	Hoffard/Hernandez	

CY 2021 OSHA REPORTING

OSHA Requirement	Period	Unit 1 Done	Unit 1 Due	Unit 2 Done	Unit 2 Due	Unit 3 Done	Unit 3 Due	Unit 4 Done	Unit 4 Due	Canyon Site Done	Canyon Site Due	Responsible
LM6000 Overhead Crane inspection	Annually	12/9/22	12/8/23	12/9/22	12/8/23	12/11/22	12/10/23	12/11/21	12/10/22			Hoffard
Warehouse Crane inspection	Annually									12/9/21	12/8/22	Hoffard
LM6000 Overhead Crane load test	Every 4 years	12/9/20	12/9/24	12/11/20	12/11/24	5/10/21	5/9/25	12/12/21	12/12/25			Hoffard
Warehouse Crane load test	Every 4 years									12/16/20	12/16/24	Hoffard
Fuel Gas system safeties - CTG	Tri-Annual									5/27/19	5/27/22	Hoffard
Fuel Gas system safeties - Gas Yard	Tri-Annual									5/27/19	5/27/22	Hoffard
Instrument Air system safeties	Every 5 years									10/30/21	10/30/26	Hoffard
	Updated Every 4 years									6/21/21	6/20/25	Hoffard
Air Pressure tank inspection / permit												
renewal	Every 5 years									11/1/21	11/1/26	Hoffard/HSB insurance

CY 2021 EPA REPORTING

EPA Requirement	Period	Unit 1 Done	Unit 1 Due	Unit 2 Done	Unit 2 Due	Unit 3 Done	Unit 3 Due	Unit 4 Done	Unit 4 Due	Responsible
Linearity Test	anytime within the quarter	10/4/21	3/30/22	10/5/21	3/30/22	10/6/22	3/30/22	10/7/22	3/30/22	Montrose/Hoffard/Hernandez
Electronic Data Report (EDR) EPA	30 days at the end of the Quarter	1/19/22	4/30/22	1/19/22	4/30/22	1/19/22	4/30/22	1/19/22	4/30/22	B&W/Hernandez/Hoffard
Greenhouse gas monitoring report	Annually	3/22/21	3/30/22	3/22/21	3/30/22	3/22/21	3/30/22	3/22/21	3/30/22	Hernandez/Hoffard
EPA Form 500 ACC	Annually	1/27/22	3/1/23	1/27/22	3/1/23	1/27/22	3/1/23	1/27/22	3/1/23	Hernandez/Hoffard

Spill Prevention, Control and Countermeasures Plan	Period	Last Done	Next Due	Responsibility	Comments
SPCC Facility Inspection	Monthly	12/8/21	1/8/22	Hernandez	

CY 2021 FIRE CODE REPORTING

Fire Code Requirement	Period	Last Done	Next Due	Responsibility
Fire detection system certification	Annual	5/17/21	5/16/22	Hoffard/Fire Protection Systems
Fire detection system inspection	Semi-annual	12/8/21	12/7/22	Hoffard/Fire Protection Systems
CO 2 cylinder (weight)	Annual	5/17/21	5/16/22	Hoffard/Fire Protection Systems

CY 2021 OCSD REPORTING

OCSD Requirement	Period	Last Done	Next Due	Responsibility
Permit # 1-600296				
Effluent Meter reading Report	Monthly	1/3/22	2/20/22	Operator/Hoffard/Hernandez
Effluent Sample collection (BOD/TSS)	semi-annual	10/12/21	4/1/22	Sanks/Hernandez/Hoffard
Effluent Meter Certification/Cal	Annual	1/20/22	1/10/23	Sanks/Hernandez/Hoffard
Class I Permit Renewal	every 2 years	3/31/21	3/31/23	Sanks/Hernandez/Hoffard
Backflow Inspection	Annual	11/3/20	11/30/21	Hernandez/Hoffard
Reclaim Water Testing (City of Anaheim)	Every 3 years	12/16/20	12/30/23	Hoffard/Hernandez

CY 2021 WQMP REPORTING

Storm Drain Systems	Period	Last Done	Next Due	Responsibility
Catch Basins (25) inspection	Semi-Annual (in-house)	4/14/21	6/30/22	Hernandez/Hoffard
Infiltration Vault	Annual Inspection	4/14/21	6/30/22	Hernandez/Hoffard
Contech Storm Filters	Annual Inspection	4/14/21	6/30/22	Hernandez/Hoffard

ANNUAL COMPLIANCE REPORT

ATTACHMENT 2

FACILITY OPERATIONAL STATUS REPORT

Overall Project Status

Canyon Power Plant construction was completed in August 2011. Units 3 and 4 were ready for commercial operation on July 27, 2011. Units 1 and 2 were ready for commercial operation on September 15, 2011.

All four gas turbines completed commissioning and were in commercial operation for the entire compliance year 2021.

No changes to the operational status of the facility implemented or planned in 2021 year.

ANNUAL COMPLIANCE REPORT

ATTACHMENT 3

CEC APPROVED POST CERTIFICATION CHANGES

No California Energy Commission (CEC) approved post certification changes

On August 19, 2021 South Coast AQMD issued the final Title V Facility Permit Renewal and the revision included the following updates:

- Condition 14.2 removed
- Condition F67.1 added: continuous operations not required when necessary Calibration, Maintenance or repair activities are performed.
- Condition 29.2 removed: method 5.3 or EPA Method 17

ANNUAL COMPLIANCE REPORT

ATTACHMENT 4

MISSED SUBMITTAL DEADLINES

Canyon Power Plant submitted all required compliance reports on the due dates and no missed submittal deadlines for CY 2021.

ANNUAL COMPLIANCE REPORT

ATTACHMENT 5

PERMIT FILINGS AND PERMITS ISSUED

DURING THE PERIOD

Canyon Power Plant submitted a Title V Renewal application and SCAQMD issue the final Title V Facility Permit to Canyon Power Plant on August 20, 2021.

ANNUAL COMPLIANCE REPORT

ATTACHMENT 6

PROJECTED COMPLIANCE TESTING

FOR THE NEXT YEAR

Projected Environmental Compliance Testing schedule in CY 2022:

Compliance Test	Frequency	Scheduled Quarter
NH3 Slip Test	Annual	2Q; 3Q
RATA Test	Annual or Semi-Annual	2Q; 3Q
Cooling Tower TDS/PM10	Quarterly	All four Quarters
Cooling Tower Legionella	Quarterly	All four Quarters
Fuel H ₂ S Test	Monthly	January through December
Fuel Flow Accuracy	Annual	2Q
SCR Differential Pressure	Annual	2Q
SCR Inlet Temperature	Annual	2Q
NH3 Flow Meter Calibration	Annual	2Q
Linearity/CGA Test	Quarterly	All four Quarters
PM10/SO ₂ /VOC	Triennial	None
PM10	Every 18 months for 3 years	2Q

CANYON POWER PLANT VARIOUS COMPLIANCE REPORTS

ATTACHMENT 7 ADDITIONS TO ON-SITE COMPLIANCE FILE

PLANT COMPLIANCE REPORTS

California Energy Commission (CEC)

- Quarterly reports
- Quarterly 1304 Report
- Annual report
- Potable water use records
- Cooling Tower Legionella test report
- Cooling Tower TDS test reports
- Monthly Natural gas burn records
- Monthly Reclaim water use reports
- Monthly Potable water use reports

California Independent System Operator (CAISO)

• Certificate of Compliance

California Air Resource Board (CARB)

- Greenhouse gas records
- Annual refrigerant report
- Annual SF6 use report
- Refrigerant monitor calibration report

Diesel Engine

- Maintenance Reports
- Fuel purchase records
- Engine run-time records
- Hi-Back calibration report
- Engine tune up report

U.S. Energy Information Administration (EIA)

- Annual/Monthly EIA 923 report
- Annual EIA 860 report

Environmental Protection Agency (EPA)

- Part 98 Greenhouse Gas reports
- Certificate of Representation forms
- Quarterly Acid Rain report
- Quarterly Acid Rain report & feedback report
- Annual Form 500-ACC

Regional Clean Air Market (RECLAIM)

- Daily submittals
- Monthly submittals
- Quarterly submittals
- SCAQMD QCER Forms

- SCAQMD 500-N Forms
- SCAQMD 500-SAM Forms
- SCAQMD 500-ACC Form
- SCAQMD APEP Form
- SCAQMD AER Report
- SCAQMD Rule 218 Semi-annual reports
- RECLAIM RTC holdings records

South Coast Air Quality Management District (SCAQMD)

- NOV & NTCs issued by the SCAQMD
- SCAQMD responses to 500-N forms
- Monthly Natural H₂S gas test reports

Orange County Sanitation District (OCSAN)

- Monthly Effluent Water reports
- Semi-annual

Calibration Records

- Fuel flow meter calibration report
- Water flow meter calibration report
- NH3 flow meter calibration report
- SCR DP transducer calibration report
- SCR inlet temperature transducer Cal report
- SCR outlet temperature transducer Cal report

Calibration gas logs

- Linearity test reports
- Part 75 RATA test reports
- RECLAIM RATA test reports
- Rule 218 (CO) RATA test reports
- NH3 slip test reports

Triennial compliance testing

• VOC, PM10 and ROG emissions

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 8

UN-PLANNED FACILITY CLOSURE PLAN REVIEW

An "Un-Planned Facility Closure Plan" was drafted and submitted to the California Energy Commission (CEC) in the First Quarter of 2014. At this time, no revisions or changes are required.

ANNUAL COMPLIANCE REPORT

ATTACHMENT 9

Notice of Violation Notice to Comply Issued in CY 2021

One (1) Notice of Violation Issued by a Regulatory Agency in the CY 2021

No Notices to Comply Issued by a Regulatory Agency in the CY 2021

South Coast Air Quality Management District 21865 COPLEY DRIVE, DIAMOND BAR, CA 91765-4178

NOTICE OF VIOLATION

P 66140

DAT	E OF VIOL	ATION
Month:	Day OA	Year: 2020

Facility Name:	Facility ID#:		Sector:
CANYON POWER PLANT	153	3992	OE
Location Address:	City:	Zip	
3071 E MIRALOMA AVE	ANAHEIM	928	306
Mailing Address.	City:	Zíp:	1131
3071 E MIRALOMA AVE	ANAHEIM	928	306

YOU ARE HEREBY NOTIFIED THAT YOU HAVE BEEN CITED FOR ONE OR MORE VIOLATIONS OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT (SCAQMD) RULES, STATE LAW OR FEDERAL LAW. IF PROVEN, SUCH VIOLATION(S) MAY RESULT IN THE IMPOSITION OF CIVIL OR CRIMINAL PENALTIES.

	OLATION ARE I		RS MAY BE HANDL	ED AS A SEP.	ARATE OF	FENSE REGARDLESS OF WH	ETHER OR NOT ADI	DITIONAL NOTICES OF		
DI	ESCRIPTION	OF VIOLATION	ONS	1-101-						
#	Authority*	Code Section or Rule No.	SCAQMD Permit to Operate or CARB Registration No.	Condition No. (If Applicable)		Descrip	otion of Violation			
1	SCAQMD CH&SC CCR CFR	2004 (f)(1)		D29.3	COM	LUPE OF FACILITY IPLY WITH PERMIT EEDING THE PM LUG/hour IN DE	CONDITION EMISSION R	V29.3,		
2	SCAQMD CH&SC CCR CFR	3002 (c)(1)		D29.3	COM	UPE OF FACILITY MPLY WITH PERMIT EEDING THE PI 1 16/hour IN DE	CONDITION M EMISSION	729.3,		
3	☐ SCAQMD ☐ CH&SC ☐ CCR ☐ CFR		n and sell				- Eq 10 - 10 - 10			
4	SCAQMD CH&SC CCR CFR									
5	☐ SCAQMD ☐ CH&SC ☐ CCR ☐ CFR		(And the		2					
B	ERTHA H	FRNÁNDE		4.765.7	481	Served By: CHRISTER BALL		Date Notice Served: 01 27 202		
Title	IVIRONMET SPECIAL		VICES BHERNA	ANDEZ O HEIM. NE	FT	№ 909-396-3054 □ 310-233-	CBALUYO	T @ aqmd.gov		
*Ke	*Key to Authority Abbreviations: SCAQMD - South Coast Air Quality Management District CCR - California Code of Regulations CR - California Code of Regulations Method of Service: In Person Certified Mail									

SCAQMD FORM 500-N Title V – Deviations, Emergencies & Breakdowns Submitted by Canyon Power Plant

Canyon Power Plant did not experience any Deviations, Emergencies & Breakdowns in 2021

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 10

CONDITION HAZ-1

List of Hazardous Materials contained at the facility:

- Aqua Ammonia 19%
- Acetylene
- Argon
- Oxygen
- Batteries
- Bromine
- Calibration gases for the CEMS
- CO₂
- Diesel Fuel
- Fire suppression chemicals
- Florescent light bulbs
- Freon for the chiller systems R-123
- Gas Turbine oil
- Gas compressor oil
- Reagents for the water treatment system
- SF6 in switch gear
- Anti-scalent RL 9007
- ChemTreat BL124
- Microbiocide ChemTreat CL2156
- ChemTreat CL6855
- 12.5% Sodium Hypochlorite Solution
- RL 1125
- Simple Green
- ChemTreat CL41
- ChemTreat CL6855
- Powerback Concentrate with Anti-Foam Agent
- Unleaded gasoline
- Propane

	Location Information		Chemical Identification		Fire Code Hazard	Class Information			
1a*	201	205	207*	209	210a	210b	212	214*	215
CERSID	ChemicalLocation	ChemicalName	CommonName	CASNumber	PFCodeHazardClass	SFCodeHazardClass	RadioActive	PhysicalState	LargestContainer
10445230	RO WATER TREATMENT		ANTISCALENT RL 9007				N	b	350
10445230	AMMONIA STORAGE TANK		AQUA AMMONIA (19%)		5	31	N	b	10000
10445230	BENEATH BACK-UP GENERATOR		DIESEL FUEL		2		N	b	500
10445230	IN TURBINE ENGINES and DRUM STORAGE AREA		MOBIL JET OIL II		3		N	b	150
10445230	ELECTRIC GENERATORS AND DRUM STORAGE AREA		MOBIL DTE LIGHT OIL		4		N	b	500
10445230	HYDRAULIC STARTERS AND DRUM STORAGE AREA		MOBIL DTE 25 OIL		4		N	b	55
10445230	NATURAL GAS COMPRESSORS AND DRUM STORAGE AREA		MOBIL PEGASUS 805 OIL		4		N	b	55
10445230	IN TRANSFORMERS		MINERAL OIL		4		N	b	5680
10445230	NEAR COOLING TOWER AND IN DRUM STORAGE AREA		BIOCIDE (CHEMTREAT CL41)				N	b	330
10445230	NEAR COOLING TOWER AND IN DRUM STORAGE AREA		SODIUM HYPOCHLORITE SOLUTION		5	5	N	b	330
10445230	WAREHOUSE AND NEAR EXHAUST TOWERS		CALIBRATION GAS				N	С	150
10445230	DRUM STORAGE AREA	PROPANE	PROPANE	74-98-6	8	3	N	С	290
10445230	SUBSTATION BUILDING	SULFUR HEXAFLUORIDE	SF6	2551-62-4			N	С	2400
10445230	IN FIRE FIGHTING EQUIPMENT - VARIOUS AREAS	CARBON DIOXIDE	CO2	124-38-9			N	С	437
10445230	Chiller Enclosure	Freon R-123	Freon	306-83-2			N	b	920
10445230	WATER TREATMENT		MICROBIOCIDE CL206 CHEMTREAT				N	b	120
10445230	WATER TREATMENT		ChemTreat BL 124		5		N	b	320
10445230	WATER TREATMENT		ChemTreat CL 2156		5		N	b	320
10445230	WATER TREATMENT		ChemTreat CL6855		5		N	b	320
10445230	DRUM STORAGE AREA		Simple Green				N	b	55
10445230	DRUM STORAGE AREA		Formula 2530-LT (Garrat Callahan)				N	b	55
10445230	DRUM STORAGE AREA		POWERBACK CONCENTRATE WITH ANTIFOAM AGENT				N	b	55
10445230	DRUM STORAGE AREA	Oil	WASTE OIL	8012-95-1	4		N	b	55
10445230	SHOP-WAREHOUSE	Acetylene	Acetylene	74-86-2	33	8	N	С	225
10445230	SHOP-WAREHOUSE	Oxygen	Oxygen Gas	7782-44-7	18		N	С	250
10445230	STORAGE AREA	Argon	ARGON	70355-97-4			N	С	125

				Year	of Filing: 202	0			Sub	mitted	Date: 02/23	/2021	
Compa	ny Profil		*************									•••••••••••	
	any Name	***************************************	***************************************	City of Ana	helm	Federal	tax ID:	*****	970			***************************************	*********
Contac	t Person	Details		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Person	Name :	***************************************		Mr. Ronald	Hoffard (Ger	neration Manager)		***************************************					**********
Phone :	70.03			Contact: 71									
Email:				monard@a	ınaheim.net								
Malling	Address	Informa	ation		***************************************			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
				3071 East M Anahelm, 9 CA	Miraloma Ave. 2806			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Billing .	Address	Informat	tion		***************************************	***************************************			04404411111111111111111111111111111111	*******		***************************************	************
		*************		3071 East M Anaheim, 9 Anaheim	Miraloma Ave. 2806				****************		***************************************	***************************************	
Facility	Profile					***************************************	***************************************						
Facility	Name :			Canyon Po	wer Plant	Federal	tax ID :	****	970	**********			***************
Contac	t Person	Details				***************************************				4004000			
Person	Name :			Mr. Ronald	Hoffard (Gen	eration Manager)							
Phone :				Contact: 71	47654536								
Email :				rhoffard@a	naheim.net								
Mailing	Address	Informa	rtion		unuamananoeo							***************************************	
				3071 East M Anaheim, 9 CA	Airaloma Ave. 2806				***************************************			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Billing	Address	Informat	lon				***************************************						
				3071 East N Anahelm, 9 Anahelm	Miraloma Ave. 2806		***************************************		(************************************	*************************			
Refrige	ration Sy	stem Lis	sting	***************************************			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Numbe	System ID	Full Charge (lbs)	Refrigeran Type	Installation Date	Temperature Class		Manufacture	Operationa Status	Model	Model Year	Serial Number	Location	Floor Plan (Y/N
1.	CH-100	5200.00	R-123	05/12/2011	Medium	Chiller (Refrigeration/Industria Process Cooling)	Trane	Normal Operation	CDHF3000	2011	L10A00350	North side of facility, in dedicated chiller enclosure	Y
2	CH-200	5200.00	R-123	05/12/2011	Medium	Chiller (Refrigeration/Industria Process Cooling)	Trane	Normal Operation	CDHF3000	2011	1.10B00882	North side of facility	Y

		Syste	m ID	Date	ALD Type	Lim		Concent Monitor		warto	nacture	of Sensor	Type	Sens Manufac		Location of Sensors/Inle
	301-IRF A	CH-100 200	CH- 05	/12/2011	Concentratio Monitor (Direct System)	10.00	100	0.		Hone	ywell	2	Infra red	Vulcain/ho	neywell	1 foot above floor
efrigera	tion Syster	n Inspect	ion and	Servicing	*****************			(-1111-1111-1111-111-1	*********			***************************************	***************************************	***************************************		
lumber	Service Date	System ID	Leaks Detected	d7 Leak		Number of Days		of Leak	Serv Provi	ded	of Fo		dded	Technician Name	Certifi #	cate Certifica Type
	09/04/2020	CH-100	No			þ	0.00									11
	09/04/2020	CH-200	No			þ	0.00				-			Sec. 10.		
	05/08/2020	CH-100	No			p	0.00						-= 3	-		
	05/08/2020	CH-200	No			þ	0.00									
	05/06/2020	CH-100	No			D	0.00									1,01
	05/06/2020	CH-200	No			0	0.00									
	03/16/2020		No			D	0.00									- 1
-	03/16/2020		No		7	D	0.00						- 1			
	03/15/2020		No			0	0,00									
	03/15/2020		No			0	0.00									
	01/29/2020		No			0	0.00									
2	02/11/2020	CH-100	No			0	0.00									
eak Det	ection Syst	em Inspe	ction an	d Servicin	q							***********			**********	
Number	CONTRACTOR OF THE PARTY OF THE	Service				ALD ID				Sen	vice Ty	pe		Descri	otion of	Service
	09/08/2020			1	01-IRF A			Call	bration	n				rformed cali nitor. Both s		
	nt Purchas															
Туре	Total Pu	rchased	(lbs.)	Tota	I Charged (Ib	s.)	Total	Recovered	(lbs.	ľ	To	tal Store	d (lbs.)	To	tal Ship	ped (lbs.)
t-123	0.00			0.00			0.00]5	.00			0.00		
ommen				25-210-3-2010-0	ocoocaniación.	300.0000					and distance		-,,			.,

Email: rmp@arb.ca.gov

URL: www.arb.ca.gov/rmp/rmp.htm

Invoice Detail

Invoice No: 119973 Invoice For Year: 2020 ARB REFERENCE CODE: RMP Dated: 02/23/2021

Ci	ity of Anaheim			
#	Facility Name	Amount Due(\$)	Exemption	Total (\$)
1	Canyon Power Plant (CIT003-001)	370.00	0	370.00
TC	OTAL CHARGES			370.00

Please return a copy on the invoice with your payment to the address below.
"Checks should be made payable to the California Air Resources Board.
If required for your company records, the CARB Federal Tax ID is 68-0288069. A \$10 service fee may apply for returned checks."

Air Resources Board

Attn: Accounting

P.O. Box 1436

1001 | St., Floor 20

Sacramento, CA 95812-1436

Online Payment Receipt

Invoice No: 119973

Dated: 2021-02-23

Invoice For Year: 2020

Payment Amount: \$370.00

ARB Reference Code: RMP

Transaction Time: 02/23/2021 11:22:00 AM

Payment Transaction Id: 230221A43-B26B09B1-E571-4ADC-875F-2174480D90A7

Payment Result: APPROVAL

Payment Approval Code: 066496

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 11

CONDITION HAZ-8

In the annual compliance report, the project owner shall include the following statements:

"All current project employee and appropriate contractor background investigations have been performed and that updated certification statements have been appended to the operations security plan".

All current project employee and appropriate contractor background investigations have been performed and that updated certification statements have been appended to the operations security plan.

"The operations security plan includes all current hazardous materials transport vendor certifications for security plans and employee background investigations".

The operations security plan includes all current hazardous materials transport vendor certifications for security plans and employee background investigations.

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 12 SOIL & WATER USE REPORT-7

Monthly Water Reading Reports

Company: City of Anaheim/Canyon Power Plant

Plant Location: 3071 E. Miraloma Ave. City/State/Zip: Anaheim, CA 92806

Recycle Water Usage

Period Start:

Period End:

Period Start:

Period End:

1/1/2021

1/1/2021

12/31/2021

12/31/2021

Annual Total Gallons	Annual Total Acre Feet	Monthly Average Gallons	Monthly Average Acre Feet	Monthly Minimum Gallons	Monthly Minimum Acre Feet	Monthly Maximum Gallons	Monthly Maximum Acre Feet	Average Gallons Per Dav
			2 17		1 57		7.0.2.2.2	33.941
12.390.147	38.02	1.032.512	3.17	512.728	1.57	2.324.827	7.13	3

City of Anaheim/Canyon Power Plant

Plant Location: 3071 E. Miraloma Ave.

City/State/Zip: Anaheim, CA 92806

Company:

Potable Water Usage

Annual	Annual	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Average
Total	Total	Average	Average	Minimum	Minimum	Maximum	Maximum	Gallons
 Gallons	Acre Feet	Gallons	Acre Feet	Gallons	Acre Feet	Gallons	Acre Feet	Per Day
864.349	2.65	36.015	0.11	0.00	0.00	603,676	1.85	1.171

Annual Data

•	Recycle	Water	Portable	Water
	Annual	Annual	Portable Water Annual Annual Total Total Acre Feet Gallons 6.99 2,277,132 0.33 106,201 2.65 864,349	
	Total	Total	Total	Total
	Acre Feet	Gallons	Acre Feet	Gallons
2018	73.09	23,817,912	6.99	2,277,132
2019	60.04	19,563,004	0.33	106,201
2020	38.02	12,390,147	2.65	864,349
Average	57.05	18,590,354	3.32	1,082,561
Min	38.02	12,390,147	0.33	106,201
Max	73.09	23,817,912	6.99	2,277,132

Company: **City of Anaheim Period Start:** 1/1/2021 Plant Location: 3071 E. Miraloma Ave. Period End: 12/31/2021

City/State/Zip: Anaheim, CA 92806

Recycled Water Usage

	Start	End	Total	Month	Daily	Month
Date	Cubic-ft	Cubic-ft	Cubic-ft	gal	gal	Acre-ft
1/1/2021	23,142,474	23,217,100	74,626	558,239.79	18,007.74	1.71
2/1/2021	23,217,100	23,322,400	105,300	787,696.65	28,132.02	2.42
3/1/2021	23,322,400	23,426,300	103,900	777,223.95	25,071.74	2.39
4/1/2021	23,426,300	23,494,842	68,542	512,728.43	17,090.95	1.57
5/1/2021	23,494,842	23,612,700	117,858	881,636.77	28,439.90	2.71
6/1/2021	23,612,700	23,857,800	245,100	1,833,470.55	61,115.69	5.63
7/1/2021	23,857,800	24,168,585	310,785	2,324,827.19	74,994.43	7.13
8/1/2021	24,168,585	24,297,200	128,615	962,104.51	31,035.63	2.95
9/1/2021	24,297,200	24,481,300	184,100	1,377,160.05	45,905.34	4.23
10/1/2021	24,481,300	24,618,300	137,000	1,024,828.50	33,058.98	3.15
11/1/2021	24,618,300	24,727,900	109,600	819,862.80	27,328.76	2.52
12/1/2021	24,727,900	24,798,800	70,900	530,367.45	17,108.63	1.63
		Annual Total:	1,656,326.00	12,390,146.64		38.02
		Average:	138,027.17	1,032,512.22	33,940.82	3.17
	Мо	nthly Minimum:	68,542.00	512,728.43		1.57
	Mor	nthly Maximum:	310,785.00	2,324,827.19		7.13

Monthly Maximum: 310,/85.00 2,324,82/.19

Company:City of AnaheimPeriod Start:1/1/2021Plant Location:3071 E. Miraloma Ave.Period End:12/31/2021City/State/Zip:Anaheim, CA 92806

Potable Water Usage

HCF-1

		Start	End	Total	Month	Daily	Month
	Date	Cubic-ft	Cubic-ft	Cubic-ft	gal	gal	Acre-ft
_	1/1/2021	945,484	945,500	16.00	119.69	3.86	0.00
	2/1/2021	945,500	945,500	0.00	0.00	0.00	0.00
	3/1/2021	945,500	945,500	0.00	0.00	0.00	0.00
	4/1/2021	945,500	945,500	0.00	0.00	0.00	0.00
	5/1/2021	945,500	945,600	100.00	748.05	24.13	0.00
	6/1/2021	945,600	945,600	0.00	0.00	0.00	0.00
	7/1/2021	945,600	945,600	0.00	0.00	0.00	0.00
	8/1/2021	945,600	1,026,300	80,700.00	603,676.35	19,473.43	1.85
	9/1/2021	1,026,300	1,045,300	19,000.00	142,129.50	4,737.65	0.44
	10/1/2021	1,045,300	1,045,300	0.00	0.00	0.00	0.00
	11/1/2021	1,045,300	1,045,300	0.00	0.00	0.00	0.00
	12/1/2021	1,045,300	1,045,500	200.00	1,496.10	48.26	0.00
		•	Annual Total:	100,016.00	748,169.69		2.30
			Average:	8,334.67	62,347.47	2,023.94	0.19
			Monthly Minimum:	0.00	0.00		0.00
			Monthly Maximum:	80,700.00	603,676.35		1.85

HCF-2

	Start	End	Total	Month	Daily	Month
Date	Cubic-ft	Cubic-ft	Cubic-ft	gal	gal	Acre-ft
1/1/2021	247,196.00	247,532.00	336.00	2,513.45	81.08	0.01
2/1/2021	247,532.00	248,834.00	1,302.00	9,739.61	347.84	0.03
3/1/2021	248,834.00	249,533.00	699.00	5,228.87	168.67	0.02
4/1/2021	249,533.00	250,185.00	652.00	4,877.29	162.58	0.01
5/1/2021	250,185.00	251,161.00	976.00	7,300.97	235.52	0.02
6/1/2021	251,161.00	251,976.00	815.00	6,096.61	203.22	0.02
7/1/2021	251,976.00	252,830.00	854.00	6,388.35	206.08	0.02
8/1/2021	252,830.00	257,282.00	4,452.00	33,303.19	1,074.30	0.10
9/1/2021	257,282.00	259,273.00	1,991.00	14,893.68	496.46	0.05
10/1/2021	259,273.00	260,412.00	1,139.00	8,520.29	274.85	0.03
11/1/2021	260,412.00	261,729.00	1,317.00	9,851.82	328.39	0.03
12/1/2021	261,729.00	262,727.00	998.00	7,465.54	240.82	0.02
	_	Annual Total:	15,531.00	116,179.65		0.36
		Average:	1,294.25	9,681.64	318.32	0.03
		Monthly Minimum:	336.00	2,513.45		0.01
		Monthly Maximum:	4,452.00	33,303.19		0.10

Summary for both meters

Annual Total:	115,547.00	864,349.33	_	2.65
Average:	4,814.46	36,014.56	1171.13	0.11
Monthly Minimum:	0.00	0.00		0.00
Monthly Maximum:	80,700.00	603,676.35		1.85

OCWD/Anaheim Distribution & Sale of GWRS Water Supplied

Anaheim Public Utilities Dept.

Attn: Al Shaikh

201 S. Anaheim Blvd. Suite #601

Anaheim, CA 92805

CUSTOMER ID: 20250

RATE: \$689 / AF

ACCOUNT: 1001.41500

AGMT NO: 6075

METER ID: 21024735

UNIT: GALLONS

MULTIPLIER: X1000

FISCAL YEAR: 2020-2021

READ DATE: 6/29/2021

LOCATION:	CANYON POWER PLANT (CPP)						
MONTH:	JULY 2020	AUGUST 2020	SEPT 2020	OCT 2020	NOV 2020	DEC 2020	
(1) Beginning Read	182,495	184,549	187,998	190,542	192,539	193,254	
(2) Ending Read	184,549	187,998	190,542	192,539	193,254	194,216	
Total Units (Gallons x1000)	2,054,000	3,449,000	2,544,000	1,997,000	715,000	962,000	
Total Acre Feet	6.31	10.59	7.81	6.13	2.20	2.95	
Old Rate \$602/AF:	\$3,798.62	\$6,375.18	\$0.00				
New Rate \$689/AF:	\$4,347.59	\$7,296.51	\$5,381.09	\$4,223.57	\$1,515.80	\$2,032.55	
Difference:	\$548.97	\$921.33	\$5,381.09				

LOCATION:	CANYON POWER PLANT (CPP)						
MONTH:	JAN 2021	FEB 2021	MAR 2021	APR 2021	MAY 2021	JUNE 2021	
(1) Beginning Read	194,216	194,667	195,545	196,274	196,873	197,727	
(2) Ending Read	194,667	195,545	196,274	196,873	197,727	199,678	
Total Units (Gallons x1000)	451,000	878,000	729,000	599,000	85,400	1,951,000	
Total Acre Feet	1.38	2.70	2.24	1.84	0.26	5.99	
AMOUNT DUE:	\$950.82	\$1,860.30	\$1,543.36	\$1,267.02	\$179.14	\$4,127.11	

OCWD/Anaheim Distribution & Sale of GWRS Water Supplied

TO Anaheim Public Utilities Dept.

Attn: Al Shaikh

201 S. Anaheim Blvd. Suite #601

Anaheim, CA 92805

CUSTOMER ID: 20250

RATE: \$689 / AF

ACCOUNT: 1001.41500

AGMT NO: 6075

METER ID: 21024735

UNIT: GALLONS

MULTIPLIER: X1000

FISCAL YEAR: 2021-2022

READ DATE: 12/30/2021

LOCATION:	CANYON POWER PLANT (CPP)					
MONTH:	JULY 2021	AUGUST 2021	SEPT 2021	OCT 2021	NOV 2021	DEC 2021
(1) Beginning Read	199,678	201,912	203,150	204,597	205,525	206,527
(2) Ending Read	201,912	203,150	204,597	205,525	206,527	206,994
Total Units (Gallons x1000)	2,234,000	1,238,000	1,447,000	928,000	1,002,000	467,000
Total Acre Feet	6.86	3.80	4.44	2.85	3.08	1.43
Old Rate \$689/AF:	\$4,726.54	\$2,618.20	\$3,059.16	\$1,963.65	\$2,122.12	\$985.27
New Rate \$/AF:						
Difference:	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

LOCATION:		CA	CANYON POWER PLANT (CPP)			
MONTH:	JAN 2022	FEB 2022	MAR 2022	APR 2022	MAY 2022	JUNE 2022
(1) Beginning Read	206,994	0	0	0	0	0
(2) Ending Read						
Total Units (Gallons x1000)	-206,994,000	0	0	0	0	0
Total Acre Feet	-635.47	0.00	0.00	0.00	0.00	0.00
AMOUNT DUE:	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

Wastewater Flow Meter Calibration Report

5875 Rickenbacker Road Commerce, CA 90040 323-867-9044 fax: 323-867-9045

January 24, 2022

Mr. Kevin Nugent Source Control Program Orange County Sanitation Districts 10844 Ellis Avenue Fountain Valley, CA 92708

Subject:

Effluent Flow Meter Hydraulic Calibration Report

Facility:

City of Anaheim Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806 I.W. Permit No. 1-600296

Dear Mr. Nugent,

Enclosed is our report on the effluent flow meter hydraulic calibration completed at the subject facility on January 20, 2022. The calibration was conducted in accordance with requirements of the Orange County Sanitation District, and the meter was determined to be operating within \pm 5% accuracy limits for the entire range tested.

If you have any questions regarding this calibration report, please contact me directly, or Bertha A. Hernandez, Environmental Services Specialist.

Sincerely,

Robert MacDonald, P.E., CPP President & Principal Engineer

Enclosures

cc: Bertha A. Hernandez, Environmental Services Specialist

WASTEWATER FLOW METER HYDRAULIC CALIBRATION

PREPARED BY

FOR

City of Anaheim Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806

I.W. Permit No. 1-600296

January 20, 2022

EFFLUENT FLOW METER CALIBRATION REPORT

Company Name: City of Anaheir	m Permit No.: 1-6	500296
Discharge Address: 3071 E. M	Airaloma Ave. Anaheim, CA 92806	
Mailing Address: 201 S. Ana	aheim Blvd. Suite 1101 Anaheim, CA 92805	
Meter Location [Use]	Meter Location Form (page 3) to identify location X Other: (Attach sketch)	
Effluent Meter Description		
Open Channel		
A. Flume:	B. Weir.	C. Other
Parshall Flume	V-notch	Description:
Palmer-Bowlus Flume	Rectangular	
Trapezoidal	Trapezoidal	
Other, Specify:	Other, Specify:	
X Magnetic Propeller Ultrasonic Other, Specify:		
Effluent Meter Description		
Primary Element Size: 4"	Secondary Element Manufacturer: N/A	
Manufacturer: Badger	Recorder's 100% span = N	I/A GPM
Meter Series 200	Totalizer Units:	1 Gallons per Count
Sampling Signal Contact Closure	Frequency: 1 closure per N/A gallons disc	harged.
Current Facility Wastewate	er Discharge Rate to Sewer Determined by Calib	ration Engineer
Average 200 GPN	M	
Peak 300 GP	M	

EFFLUENT FLOW METER CALIBRATION REPORT

5. Calibration Results

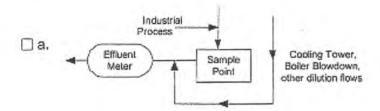
Type of Calibration: X Hydraulic Instrument

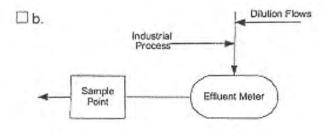
Calibratio	on System	stem Existing Meter			Error (%)		
Flow Rate GPM	Total Discharge Gallons	Primary Element's Head	Flow Ra	te, GPM Recorder	Total Discharge Gallons	Recorder	Totalizer
272	851		280	7-7	876	44	2.9%
248	769		255	-	791		2.9%
197	605	1 1 1 1 1	202	1-2	619	4	2.3%
154	470		156		477		1.5%
103	322	104	105	-	326		1.2%

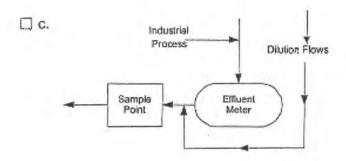
A copy of all data collected and of any calculations performed must be attached to this form.

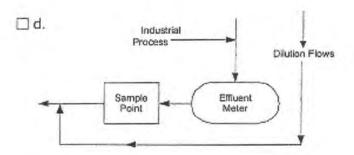
6. Method of Calibration Results (attach additional sheets if necessary)

Hydraulic: (For in line flow meters describe calibration/simulator system)

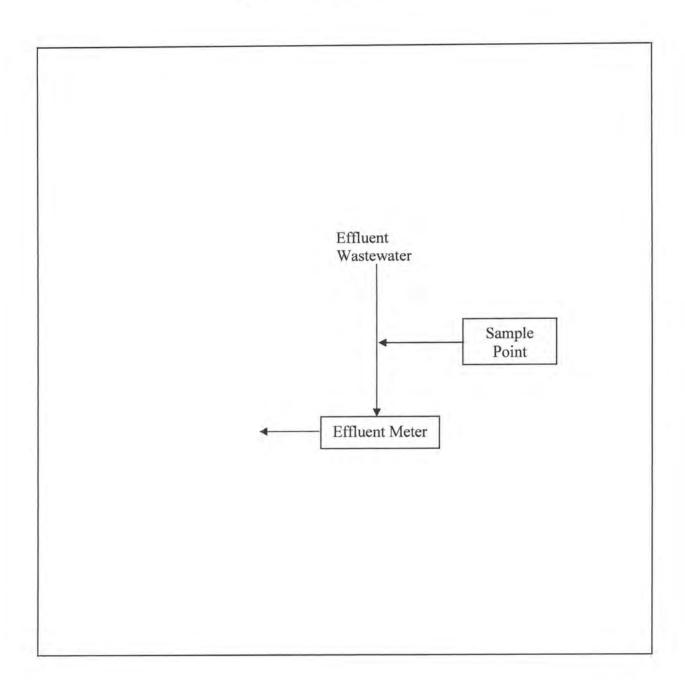

Various flow rates were achieved using 150' of 2.5" fire hose from a local hydrant to the test meter. A 2" Halliburton turbine was used to measure the water flow. At each rate tested, the meter totalizer was timed using an electronic stopwatch for a number of counts. The accumulated volume was then compared to the actual volume to determine the totalizer accuracy.


Instrument:


7. Corrective Measures (describe condition of flow meter prior to calibration and state if any adjustments were made):


No corrective measures were required.

EFFLUENT FLOW METER LOCATION FORM



Please provide a schematic of the location of the effluent flow meter

Attachment:

Effluent Flow Meter Location

EFFLUENT FLOW METER MAINTENANCE RECORDS

Company Name: City of Anaheim	Permit No.: 1-600296
Discharge Address: 3071 E. Miraloma Ave., Anaheim, CA 928	306
Mailing Address: 201 S. Anaheim Blvd., Suite 1101, Anaheim	n, CA 92805
Name of Responsible Person: Bertha A Hernandez	Telephone No. 714-765-4536
Recorder's 100% span = N/A GPM Totalizer:	1 Gallons per Count
Type of Flow Meter: 4" Badger Meter Series 2000	
Recorder Chart Change Frequency: Daily Weekly	Monthly (not applicable)

Primary Element Cleaned	Level Measuring Equipment Cleaned	Other (describe)	Date	Ву
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	02/11/15	Yip / Paz
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	02/11/16	Yip / Paz
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	02/09/17	Yip / Paz
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/10/18	Yip / Vitug
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/10/19	Paz / Gomez
N/A		Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/10/20	Yip / Gomez
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/20/21	Yip / Gomez
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/20/22	Yip / Gomez

CERTIFICATION OF CALIBRATION CHECK

(Certification of Test Results by a California Registered Professional Engineer)

I hereby certify that I am knowledgeable in the field of wastewater flow measurement and that I have supervised the calibration of the flow monitoring system as described on the previous page, and also have reviewed and approved all details of the method of calibration. I consider the calibration method and procedures used to be technically sound, and assume professional responsibility for the validity and accuracy of the results reported.

(Signature)

Robert J. MacDonald, P.E. (Full Name – Please Print or Type)

M29874 Expires 6/30/22

(California Professional Engineering Certification No.) Mechanical

(Engineering Discipline)

(Date)

CERTIFICATION OF TEST RESULTS BY
AN ADMINISTRATIVE OFFICIAL OF THE COMPANY

City of Anaheim

(Company Name)

1-600296

(Permit No.)

I hereby certify that the flow monitoring system certified as properly calibrated above is so arranged and operated, so as to accurately measure and record the industrial wastewater flow to the sewer system.

(Signature)

RONALD HOFFARD

(Full Name - Please Print or Type)

GENERATION PLANT MANAGER

(Administrative Position in Company)

1/28/2022 (Date)

Appendix:

Calculations Sheet Field Calibration Data Calibration Certificate

ISO 17025:2017 ACCREDITED LABORATOR

Cert# CL-122

CERTIFICATE OF CALIBRATION

CUSTOMER:

CONSERVTECH

COMMERCE, CA

08/20/21

VSR NUMBER:

9454

CALIBRATION DATE: CALIBRATION DUE:

CALIBRATION FLUID:

ARRIVAL CONDITIONS:

PROCEDURE:

08/20/22

INST. MANUFACTURER:

HALLIBURTON

INST. DESCRIPTION:

TURBINE METER

NAVAIR17-20MG, NIST250 H2O @ 70°F

MODEL NUMBER:

458.99101 (2")

WITHIN MFG. SPEC.

SERIAL NUMBER:

2BF3677

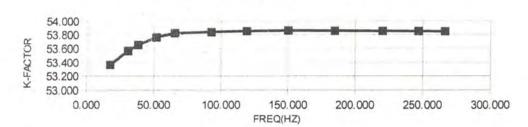
WITHIN MFG. SPEC.

RATED ACCURACY:

+/- .5% R.D.

RETURNED CONDITIONS: **AMBIENT CONDITIONS:**

759mmHGA 55%RH 72°F


TOTAL measurement uncertainty +/-.151% RD K=2 CERTIFICATE FILE #:

420148.2021

UNCERTAINTY GIVEN: NOTES:

** DECISION RULE: NO PFA % | CALIBRATED WITH DMC. MAG COIL **

TEST POINT	INDICATED	DM.STD.	ACTUAL
NUMBER	UUT	ACTUAL	K-FACTOR
	FREQ(HZ)	GPM	PUL GAL.
1	17.337	19.493	53.363
2	30.554	34.226	53.562
3	38.194	42.715	53.650
4	51.678	57.677	53.760
5	65.285	72.780	53.821
6	92.731	103.350	53.835
7	118.942	132.525	53.850
8	150.044	167.158	53.857
9	184.572	205.639	53.853
10	220.069	245.202	53.850
11	246.702	274.896	53.846
12	266.194	296.632	53.843

STANDARDS USED:

A14 (VOLUME PROVER 5-50GFM)+/- 02% BY VOLUME CMC +/151% RD FLOW TRACE# 1446135470,1453296155	DUE	11/30/21
A710 (ENDRESS+HAUSER 0-1000GPM) +/- ,022% BY VOLUME CMC +/-,15% RD FLOW TRACE# 1446135470,14248463640	DUE	06/10/22
A350 (PLATFORM SCALE & TANK: 10,000LBS/ 50-2800GPM) +/075 BY MASS TRACE# 1446135470,148647626	DUE	11/30/21

All instruments used in the performance of the shown calibration have traceability to the National Institute of Standards and Technology (NIST). The uncertainty ratio between the calibration standards (DM.STD.) and the Unit Under Test (UUT) is a minimum of 4:1, unless otherwise noted. Calibration has been performed according to the shown procedure. The use of IAS/ILAC logo indicates calibrations are in accordance to ISO/IEC 17025:2017.

> Dick Munns Company · 11133 Winners Circle, Los Alamitos, CA 90720 Phone: 714-827-1215 · www.dickmunns.com

This Calibration Certificate shall not be reproduced except, in full, without approval by Dick Munns Co	mpany. The data shown applies only to the instrument being calibrated and under the
stated conditions of calib	ration.

Issuing Date:

Approved By:

Cal. Technician:

Calibrated at: V Lab

On-Site (Customer's)

Page

ecorder:		
MAX =		GPM
AVG =	200	_
PK=	3,00	

Contact Closure = N/A gallons/pulse

Finish: 162906840

Totalizer:

Start: 102902017

Diff: 4823

MULT: 1
Total: 4823 gallons

Client: City of Anaheim - Canyon Power Plant

Date: 1/20/22 IW#: 1-600296

Element: 4" Pipe

Instrument: 4" Badger Meter M2000

Recorder: --

			Calibra	ted Flow	s and Data	э			M	eter		Recorde	er	Tota	alizer
Tur	bine		Mand	ometer - i	inches		Duration	Total	W.C.	Flow	Re	ading	Error	Total	Erro
cycles	gpm	+		Δ	W.C.	gpm	min	gal	in.	gpm	%	gpm	%	gal	%
	272						3.13	851		280				876	2.9
	248						3.10	769		255				791	2.9
	197						3.07	605		202				619	2.3
	154						3.05	470		156				477	1,5
	103						3.13	322		105				326	1.2

Calibration TypeInstrumentationX Hydraulic	Notes: (D3318876	2 4636 3845 @ 3:00
Hydraulic Meter Used: Turbine Meter, 1", Haliburton, ThreadedTurbine Meter, 1.5", XO Technologies, 150# FlangeXTurbine Meter, 2", Haliburton, flangedTurbine Meter, 4", XO Technologies, 150# FlangeTurbine Meter, 4", Haliburton, flangedOther:K: 4.86	3 5593 4974 - 3:04 619 5 6785 - 6459 1:3:08	(4) 6308 5831 477

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 13 SOIL & WATER REPORTS-8

OCSD Wastewater Quality Semi-Annual Monitoring Reports

P 1 04/30/2021 08:24 Serial No. A7PY011022705 TC: 57289

Addressee	Start Time	Time	Prints	Result	Note
OCSD	04-30 08:23	00:01:20	008/008	OK	

Note

TMR:Timer TX, POL:Polling, DRG:Original Size Setting, FME:Frame Erase TX, DPB:Page Separation TX, MIX:Mixed Original TX, CALL:Manual TX, CSRC:CSRC, PWD:Forward, PC:PC-FAX, BND:Double-Sided Binding Direction, SP:Special Original, FCODE:F-CODe, RTX:Re-TX, RLY:Relay, MBX:Confidential, BOL:Bulletin, SIP:SIP Fax, IPADR:P Address Fax, I-FAX:Interpret Fax.

Result OK: Communication OK: S-OK: Stop Communication, PW-OFF: Power Switch OFF, TEL: RX from TEL, NS: Other Error. Cont: Continue. No Ans: No Answer. Refuse: Receipt Refused. Busy: Busy, M-Full: Memory Full. LOVE: Receiving length Over POVR: Receiving page Over. Fil: File Error. DC: Decode Error. MDN: MDN Response Error. DSN: DSN Response Error. PRINT: Compulsory Memory Document Print, DEL: Compulsory Memory Document Delete. SEND: Compulsory Memory Document Send.

CITY OF ANAHEIM

PULIC UTILITIES DEPARTMENT Environmental Services Letter of Transmittal

		ty Sanitation District	Date:	04/30/2021	
Го:	10844 Ellis Av	tection Division renue ey, CA 92708-7018	Project	Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806	
			Subject:	Semi-Annual Self-Monitoring	
Ve	are sending you:				
C	opy of Original	1	Descript	ion	
	1	Completed Semi-Annua Anaheim Canyon Powe	al Form OCSD	Self-Monitoring Form for City of	
he	1 As requ	ested For	your action	For your files For your information	
/ia:	US Mai	X FAX # 8 of pgs. (714) 593-7799		Hand Delivery	

By: Bertha A Hemandez, Environmental Services Specialist

CITY OF ANAHEIM

PULIC UTILITIES DEPARTMENT

Environmental Services Letter of Transmittal

Го:		y Sanitation District	Date:	04/30/2021
	10844 Ellis Av	tection Division renue ey, CA 92708-7018	Project	Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806
			Subject:	Semi-Annual Self-Monitoring
Wea	are sending you;			
C	opy of Original		Descript	tion
	1	Completed Semi-Ar Anaheim Canyon P		Self-Monitoring Form for City of No. 1-600296).
Thes	e are transmitte	d:		
	1 As requ	uested	For your action	For your files
	For app	proval	For your review	For your information
Via:	US Mai	FAX # 8 of p (714) 593-7		Hand Delivery
Rem		contact me at (714) 7 estions regarding this		ndez@anaheim.net if you have

By: Bertha A Hernandez. Environmental Services Specialist

ORANGE COUNTY SANITATION DISTRICT SELF-MONITORING FORM

March 15, 2021

Ronald Hoffard, GENERATION PLANT MANAGER City of Anaheim, Canyon Power Plant 3071 E Miraloma Ave. Anaheim, CA 92806

Subject: REMINDER TO CONDUCT SELF-MONITORING

Permit No. 1-600296

Please be reminded that Self-Monitoring must be conducted between April 01, 2021 -- April 16, 2021 in accordance with your company's permit requirements. Self-Monitoring must be conducted during a production day in accordance with the guidelines detailed in your company's permit.

It is your responsibility to comply with the requirements set forth in your company's permit. Failure to comply with all the directives, conditions, and requirements of the permit may result in enforcement action against your company.

If your company's permit shows a self-monitoring requirement for total toxic organics (TTOs) and your company has received a waiver from this self-monitoring, you are now required to submit a signed TTOs SMR form to us to comply with the TTO waiver requirements of the U.S. Environmental Protection Agency. Please indicate in the "Sample Comments" that you have received a TTOs self-monitoring waiver from us.

For permittees that have monthly as well as quarterly and/or semi-annual self-monitoring requirements, the forms may list more than the SMR constituents required for the monthly self-monitoring. We ask that you adhere to your permit's self-monitoring requirements and sample only for the constituent(s) required on a monthly basis. except when the quarterly and semi-annual self-monitoring are also required in the same month, in which case all constituents listed on the form must be analyzed for as specified in your permit.

Finally, for those who are required to submit meter readings, a list of the meter readings submitted within the last year is attached to the SMR form for your reference and comparison to current readings.

Thank you for your patience and cooperation. If you have any questions, please contact Mila Kleinbergs at 714-593-7408.

Mila Kleinbergs Senior Engineer

ORANGE COUNTY SANITATION DISTRICT SELF-MONITORING FORM

SMR No.: S-145454

SMR Type: Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

Sample Start Date: 4/	14/2021	021	Submit By D Sample End Sample End	Date: 4/1	130/2021 5/202	1		1
	The state of the s	e located in the	ne center of the site	_				
	to flor	FARD	Contact Pho	ne: 714- nil: RHoP	765-	453 O ANI	66 AHAM	1. N
No Discharge Water Meter Readings: (If this	s is a batch discha	arge, enter vol	lume only)					
Water Meter Readings: (If this	s is a batch discha	Meter ID	Stop Reading	Start Reading	Volume	Units	Digits	Int
Water Meter Readings: (If this Location Center of site adjacent to the final	1	l many and	Stop Reading	Start Reading	Volume 12486	Units	Digits 9	Int
Water Meter Readings: (If this Location Center of site adjacent to the final clarifier/vault Composite Sample Results: (If constitue)	Meter Type Effluent Flow Meter Int is not detected	Meter ID EM-1-600296 or is less than	Stop Reading 978 Goss a detection limit, ent	97848065	12486	G		Int
Water Meter Readings: (If this Location Center of site adjacent to the final clarifier/vault Composite Sample Results: (If constitue)	Meter Type Effluent Flow Meter	Meter ID EM-1-600296 or is less than	Stop Reading 978 Goss	97848065	12486	G		Int

Please note that OCSD's fax number has changed. Please use the new fax number (714) 378-1277 effective immediately if submitting completed form by fax.

To Submit Data - Fax: (714) 378-1277 or Mail: Orange County Sanitation District, Resource Protection Division, 10844 Ellis Avenue, Fountain Valley, CA, 92708-7018

Questions: Contact Isabel Melendez at

714-593-7313

ORANGE COUNTY SANITATION DISTRICT SELF-MONITORING FORM

SMR No.: S-145454 SMR Type Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution:

Permit No 1-600295

This form must be completely filled out and Laboratory Analysis Report and Chain of Custody must be attached.

Please check if composite sample was obtained using an automatic sampling device () Yes () No

in accordance with 40 CFR 403.12, the results presented herein must be verified and signed under penalty of perjury by: (i) a responsible corporate officer, (ii) general partner or prophetor, or (iii) a representative who has responsibility for the overall operation of the permitted facility, who has been authorized by the corporate officer, general partner or proprietor to sign such reports, and such authorization has been made in writing and submitted to the District.

I cently under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of tine and imprisonment known violations.[40 C.F.R. § 403 6(a)(2)(ii) (2005)]

Signature (Ronald Hoffard

Title (GENERATION PLANT MANAGER)

Print Name

To Submit Data - Fax: (714) 378-1277 or Mail: Orange County Sanitation District, Resource Protection Division, 10844 Ellis Avenue. Fountain Valley, CA. 92708-7018

Questions: Contact Isabel Melendez at

714-593-7313

ORANGE COUNTY SANITATION DISTRICT SELF-MONITORING FORM

SMR No.: S-145454

SMR Type: Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296

Sample Location	on: Compliance						
	Equipment			Re	eading		
Meter Type	Name	Event ID	Start - End Date	End	Start	Vol	
EFFLUENT	EM-1-600296	145453	10/12/2020 - 10/13/2020	95804724 Gallon	95766786 Gallon	37938	GPD
EFFLUENT	EM-1-600296	145452	4/8/2020 - 4/9/2020	91636048 Gallon	91616086 Gallon	19962	GPD

To Submit Data - Fax: (714) 378-1277 or Mail: Orange County Sanitation District, Resource Protection Division, 10844 Ellis Avenue, Fountain Valley, CA, 92708-7018

Questions: Contact Isabel Melendez at

714-593-7313

ALS Group USA, Corp. 3337 Michelson Drive, Suite CN750 Irvine, CA 92612 I +1 714 730 6239

Work Order No.:

Printed:

21D0196

04/29/2021

Report

Client: Canyon Power Plant

3071 E Miraloma Ave

Anaheim, CA 92806

Attention: Bertha Hernandez

Project Name: Canyon Power Plant Semi-Annually Wastewater

Project Number: Canyon Power Plant

P.O. Number: MA-106-491110 (exp 8/31/18)

CASE NARRATIVE

Date & Time Installed: 04/14/2021; 11:40 AM Date & Time Removed: 04/15/2021; 11:50 AM

Flow Start Number: 97848065 GAL Flow Stop Number: 97860551 GAL

Total Flow, GPD: 12486

SAMPLE RECEIPT SUMMARY

Sample ID Laboratory ID Matrix Type Date Sampled Date Received
1-600296 Composite 21D0196-01 Wastewater Composite 04/15/2021 11:45 04/15/2021 15:46

DEFINITIONS

Symbol Definition
C GGA (BS1) recovery was below the method acceptance limit.
DF Dilution Factor
MDL Method Detection Limit
ND Not Detected
RL Reporting Limit

Respectfully yours,

Shelly Brady

Customer Service Manager

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of ALS Group, USA, Corp., and must be reproduced in its entirety.

Page 1 of 3

Client: Canyon Power Plant

Project Name:

Canyon Power Plant Semi-Annually Wastewater

Project Number:

Canyon Power Plant

Printed: 04/29/2021

1-600296 Composite 21D0196-01 (Wastewater)

Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		ALS Gro	oup USA	, Corp	i.				
Wet Chemistry									
Total Dissolved Solids	139	49.0	mg/L	- 1	2104559	04/29/2021 1	6:00 SMC	SM 2540 C	
Total Suspended Solids	ND	2.50	mg/L	1	2104560	04/23/2021 1	8:00 SMC	SM 2540 D	
General Chemistry									
Biochemical Oxygen Demand	ND	2.00	mg/L	Ţ	2104389	04/21/2021 1	4:37 SMC	SM 5210B - 5 Day	C

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of ALS Group, USA, Corp., and must be reproduced in its entirety

Page 2 of 3

CHAIN OF CUSTODY

I RUESDAIL LABORATORIES, INC.

3337 Michelson Drive, Suite CN750, Irvine, CA 92612 (714) 730-6239 - FAX (714) 730-6462

2100196

X	TURNAROUND 1	TIME Norm	nal T	AT	•
-	4/14 - 4/15/21	PAGE:	1	OF	1

						_	_	 IVI	ETHC	000	_	 		
COMPANY CONTACT PHONE ADDRESS	Victor Carnaggio/Ronald Hoffard (714) 765-4260/ 4536 FAX (714) 666-2410											NUMBER OF CONTAINERS	COMMENTS , PO# Ronald Hoffard Semi-Annually	
				TDS	TSS	BOD								
_	PLE I.D.	DATE	TIME	DESCRIPTION	_	_	$\overline{}$	-	-	-			-	7
52-2	2-758	4-15-21	11:45	COMP	X	X	X	-	_	+-		+	-	Temp - 21.4
				,				-		-				ph - 8.0
										1		\perp		M
					7									
1. 2. 3 4 5	Reli Rel	inquished Signature inquished Signature eceived Signature eceived Signature inquished Signature		Company/ Agency	Date/	Time Time Time	46	ATORY following					SAM	TOTAL NUMBER OF CONTAINERS WPLE CONDITIONS: RECEIVED Cool Warm Z-4//-5 73.6/2.5 Yes No ECIAL REQUIREMENTS:
5	R	eceived Signature		Company/ Agency	Date/	Time								D
													-	Page 3 of 3

Addressee	Start Time	Time	Prints	Result	Note	
OCSD	10-26 13:31	00:01:19	008/008	OK		

Note

TMR:Timer TX, POL:Polling, ORG:Original Size Setting, FME:Frame Erase TX, DPG:Page Separation TX, MIX:Mixed Original TX, CALL:Manual TX, CSRC:CSRC. FWD:Forward, PC:PC-FAX, BND:Double-Sided Binding Direction, SP:Special Original, FCODE:F-code, RTX:Re-TX, RLY:Relay, MBX:Confidential, BUL:Bulletin, SIP:SIP Fax,

Result DK: Communication OK: 9-OK: Stop Communication, PW-OFF: Power Switch OFF.

TEL BY from TEL NS: Other Error, Cont: Continue, No Ans: No Answer:
Refuse: Receipt Refused, Busy: Busy: M-Full: Memory Full: LOUR: Receiving length Over
POUR: Receiving page Over, Fil: File Error, DC: Decode Error, MPN: MDN Response Error,
DSN: DSN Response Error, PRINT: Compulsory Memory Document Print;
DEL: Compulsory Memory Document Delete. SEND: Compulsory Memory Document Send.

CITY OF ANAHEIM

PULIC UTILITIES DEPARTMENT

Environmental Services Letter of Transmittal

Ms. Mila Kleinbergs Orange County Sanitation District			Date:	10/26/2021	
10	Resource Protection Division 10844 Ellis Avenue Fountain Valley, CA 92708-7018		Project	Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806	
			Subject:	Semi-Annual Self-Monitoring	
are s	ending you:				
Сору	of Original		Descript	ion	
	1	Completed Semi-Annua Anaheim Canyon Powe		Self-Monitoring Form for City of No. 1-600296).	
nese an	e transmitte 1 As requ		your action	For your files	
	For app	roval For	your review	For your information	
E a: [For app			For your information	
a:	US Mail	X FAX #8 of pgs. (714) 378-1277	7481 or bherna	7	

By:

Bertha A Hernandez, Environmental Services Specialist

CITY OF ANAHEIM

PULIC UTILITIES DEPARTMENT

Environmental Services Letter of Transmittal

Го:		y Sanitation District	Date:	10/26/2021
10;	10844 Ellis Av	tection Division renue ey, CA 92708-7018	Project	Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806
			Subject:	Semi-Annual Self-Monitoring
Ne a	are sending you:			
Co	opy of Original		Descript	tion
	1	Completed Semi-Annu Anaheim Canyon Powe		Self-Monitoring Form for City of No. 1-600296).
Thes	e are transmitte	d:		
	1 As requ	rested For	your action	For your files
	For app	proval For	your review	For your information
Via:	US Mai	FAX # 8 of pgs. (714) 378-1277	_	Hand Delivery
2	arks:	contact ma at (714) 765	7481 or bhema	andez@anaheim.net if you have

By:

Bertha A Hernandez, Environmental Services Specialist

ORANGE COUNTY SANITATION DISTRICT SELF-MONITORING FORM

September 15, 2021

Ronald Hoffard, Generation Plant Manager City of Anaheim, Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806

Subject: REMINDER TO CONDUCT SELF-MONITORING Permit No. 1-600296

Please be reminded that Self-Monitoring must be conducted between October 01, 2021 - October 16, 2021 in accordance with your company's permit requirements. Self-Monitoring must be conducted during a production day in accordance with the guidelines detailed in your company's permit.

It is your responsibility to comply with the requirements set forth in your company's permit. Failure to comply with all the directives, conditions, and requirements of the permit may result in enforcement action against your company.

If your company's permit shows a self-monitoring requirement for total toxic organics (TTOs) and your company has received a waiver from this self-monitoring, you are now required to submit a signed TTOs SMR form to us to comply with the TTO waiver requirements of the U.S. Environmental Protection Agency. Please indicate in the "Sample Comments" that you have received a TTOs self-monitoring waiver from us.

For permittees that have monthly as well as quarterly and/or semi-annual self-monitoring requirements, the forms may list more than the SMR constituents required for the monthly self-monitoring. We ask that you adhere to your permit's self-monitoring requirements and sample only for the constituent(s) required on a monthly basis except when the guarterly and semi-annual self-monitoring are also required in the same month, in which case all constituents listed on the form must be analyzed for as specified in your permit.

Finally, for those who are required to submit meter readings, a list of the meter readings submitted within the last year is attached to the SMR form for your reference and comparison to current readings.

Thank you for your patience and cooperation. If you have any questions, please contact Jason Daniel at 714-593-7013.

Jason Daniel Engineering Supervisor **ORANGE COUNTY SANIT**

ORANGE COUNTY SANITATION DISTRICT SELF-MONITORING FORM

SMR No.: S-167682

SMR Type: Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296

Sampling Dates:	10/01/2021 to 10/16/2021	Submit By Date:	10/31/2021	
Sample Start Date:	10-12-2021	Sample End Date:	10-13-2021	
Sample Start Time:	11:00 AM	Sample End Time:	11:00 AM	

Sampling Point Location: Sampling Structure located in the center of the site

Contact Person: RONALD HOFFARD Contact Phone: 714 - 765 - 4536

Contact Email:

Water Meter Readings: (If this is a batch discharge, enter volume only)

Location	Meter Type	Meter ID	Stop Reading	Start Reading	Volume	Units	Digits	Int
Center of site adjacent to the final clarifier/vault	Effluent Flow Meter	EM_1_60029	101481799	101466710	15089	G	9	

Composite

No Discharge

Sample Results: (If constituent is not detected or is less than detection limit, enter as reported in the lab results.)

Constituent	Result	Units	EPA Method
BOD T	8.33	mg/L	5M 5210B
TSS	ND	mg/L	SM 2540

Please note that OC San's fax number has changed. Please use the new fax number (714) 378-1277 effective immediately if submitting completed form by fax.

To Submit Data - Fax: (714) 378-1277 or Mail: Orange County Sanitation District, Resource

Protection Division, 10844 Ellis Avenue,

Fountain Valley, CA, 92708-7018

Questions: Contact Isabel Melendez at

714-593-7313

ORANGE COUNTY SANITATION DISTRICT SELF-MONITORING FORM

SMR No.: S-167682 SMR Type: Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296

This form must be completely filled out and Laboratory Analysis Report and Chain of Custody must be attached.

Please check if composite sample was obtained using an automatic sampling device: (X) Yes () No.

In accordance with 40 CFR 403.12, the results presented herein must be verified and signed under penalty of perjury by: (i) a responsible corporate officer; (ii) general partner or proprietor; or (iii) a representative who has responsibility for the overall operation of the permitted facility, who has been authorized by the corporate officer, general partner or proprietor to sign such reports, and such authorization has been made in writing and submitted to the District.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.[40 C.F.R. § 403.6(a)(2)(ii) (2005)]

Signature (Ronald Hoffard)

Title (Generation Plant Manager)

Print Name

To Submit Data - Fax: (714) 378-1277 or

Mail: Orange County Sanitation District, Resource

Protection Division, 10844 Ellis Avenue,

Fountain Valley, CA, 92708-7018

Questions: Contact Isabel Melendez at

714-593-7313

Ronald Hoffard, please initial each page and submit all pages

IM KN

ORANGE COUNTY SANITATION DISTRICT SELF-MONITORING FORM

SMR No.: S-167682

SMR Type: Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296

Sample Locati	ion: Compliance						
	Equipment			Re	eading		
Meter Type	Name	Event ID	Start - End Date	End	Start	Vol	
EFFLUENT	EM_1_600296	145454	4/14/2021 - 4/15/2021	97860551 Gallon	97848065 Gallon	12400	GPD
EFFLUENT	EM_1_600296	145453	10/12/2020 - 10/13/2020	95804724 Gallon	95766786 Gallon	37938	GPD

To Submit Data - Fax: (714) 378-1277 or

Mail: Orange County Sanitation District, Resource

Protection Division, 10844 Ellis Avenue,

Fountain Valley, CA, 92708-7018

Questions: Contact Isabel Melendez at

714-593-7313

ALS Group USA, Corp. 3337 Michelson Drive, Suite CN750 Irvine, CA 92612 <u>I</u> +1 714 730 6239

Report

Client: Canyon Power Plant

Work Order No.:

21J0169

3071 E Miraloma Ave Anaheim, CA 92806 Printed: 10

10/22/2021

Attention: Bertha Hernandez

Project Name: Canyon Power Plant Semi-Annually Wastewater

Project Number: Canyon Power Plant

P.O. Number: MA-106-491110 (exp 8/31/18)

CASE NARRATIVE

Date & Time Sample Start: 10/12/2021; 11:00 AM Date & Time Sample Stop: 10/13/2021; 11:00 AM

Date & Time Meter Read Start: 10/12/2021; 11:00 AM Date & Time Meter Read Stop: 10/13/2021; 13:45 PM

Flow Start Number: 101466710 Flow Stop Number: 101481799 Total Flow, GPD: 15089

SAMPLE RECEIPT SUMMARY

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received
1-600296 Composite	21J0169-01	Wastewater	Composite	10/13/2021 13:45	10/13/2021 14:42

DEFINITIONS

Symbol	Definition
C	Blank unseeded and blank seeded oxygen depletions were above their respective method acceptance limits.
DF	Dilution Factor
MDL	Method Detection Limit
ND	Not Detected
RL	Reporting Limit

Respectfully yours,

Shelly Brady

Customer Service Manager

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of ALS Group, USA, Corp., and must be reproduced in its entirety.

Page 1 of 3

Project Name:

Canyon Power Plant Semi-Annually Wastewater

Project Number:

Canyon Power Plant

Printed: 10/22/2021

1-600296 Composite 21J0169-01 (Wastewater)

Analyte	Result	RL	Units	DF	Batch	Analyze	d Analyst	Method	Notes
		ALS Gr	oup USA	, Corp					
Wet Chemistry									
Total Dissolved Solids	147	49.0	mg/L	1	2110342	10/20/2021	14:00 SMC	SM 2540 C	
Total Suspended Solids	ND	2.50	mg/L	1	2110310	10/15/2021	17:48 LRR	SM 2540 D	
General Chemistry									
Biochemical Oxygen Demand	8.33	2.00	mg/L	1	2110324	10/19/2021	15:23 SMC	SM 5210B - 5 Day	C

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of ALS Group, USA, Corp., and must be reproduced in its entirety.

Page 2 of 3

CHAIN OF CUSTODY

ALS GROUP USA - IRVIN#

3337 Michelson Drive, Suite CN750, Irvine, CA 92612

ALS (714) 730-6239 - FAX (714) 730-6462

21 70169

X TURNAROUND TIME Normal TAT TOTAL TOTAL TOTAL TOTAL TOTAL TATE TO THE NORMAL TATE TO THE

	Victor Carnaggio/Ronald Hoffard (714) 765-4260/4536 FAX (714) 666-24					_			,,,	1211	IOL	,5				_		
COMPANY CONTACT PHONE ADDRESS SAMPLES (S	Victor (714) 7 3071 E Anahe Bill/Sh	Carnaggio/Ro 65-4260/ 45 Miraloma A im, CA 92806	onald Hoffa 36 FAX ve.		TDS	TSS	BOD		ą.								NUMBER OF CONTAINERS	COMMENTS PO# Ronald Hoffard Semi-Annually
					_	_	_	-	+	\vdash		-	-	+	+	-	2	-11-873
52-	2-758	10+13-21	13:45	COMP	X	X	X	-	-		-	-	-	-	-	-	3	PA-7123
									_			_		_	_		_	Tery = 23,1
									_								-	
				1														
															1			
																		-
									1					+			1	
				-					+					+	+		+	
	Ch	ain of Cu	stody S	ignature Recor	ď			LABOR (Enter f						ice):		1	3	TOTAL NUMBER OF
1	Relin	rouished Signature	ML			12 Time										S		PLE CONDITIONS: RECEIVED
3.	Re	ceived Signature	-	Company/ Agenc	ate/	Time											C	2,7 4.2
4.	Relia	nquished Signature	, , ,	Company/ Agenc	ate/	Time												-
5.	Received Signature Company/ Agenc D		ate/	Time		H									,	Yes No		
6.	Reli	nquished Signature		Company/ Agenc:	ate/	Time		H								S	SPEC	CIAL REQUIREMENTS:
	Re	ceived Signature		Company/ Agenc	ate/	Time										_		
	_				_	_	-		_	_	_	_					_	Page 3 of 3

OC Sanitation District

No Violations or Corrective Actions To report for CY 2021

CANYON POWER PLANT

ANNUAL COMPLIANCE REPORT

ATTACHMENT 14

VIS-4

SURFACE TREATMENT OF PROJECT STRUCTURES AND BUILDINGS

VIS-4: Surface Treatment of Project Structures and Buildings

Condition of Certification VIS-4 requires a status report of the surface treatment maintenance for the structures and buildings in the Annual Compliance Report. The report shall specify the following:

1. The condition of surfaces of all structures and buildings at the end of the reporting year 2021:

- a. Butler Building (Administrative and Warehouse)
- b. Main Electrical Enclosure (MEE)
- c. Balance of Plan (BOPEE)
- d. Substation Building
- e. Chiller
- f. RO Skid (open wall with roof sheet metal covering)
 - i. The exterior building material is fabricated sheet metal. The colors and finishes do not create excessive glare and consistent with local policies and ordinances. All structure and buildings visual inspection showed no trouble items and all are in good working order.
- g. Gas Turbines (4 identical units)

2. Maintenance activities that occurred in CY 2021:

- a. May Planned Outage
 - i. Semi-annual maintenance performed
- b. December Planned Outage
 - i. Semi-annual maintenance performed

3. Schedule maintenance activities for CY 2022:

- a. May 2021 Planned Outage
 - i. Semi-annual maintenance
- b. December 2021 Planned Outage
 - i. Semi-annual maintenance

Status report regarding condition of Structures and Buildings

The photographs below shows the surface treatment of project structures and buildings. All buildings comply with condition VIS-4.

Warehouse Building (12/29/21)

Administrative Building (12/29/21)

Main Electrical Enclosure Building (12/29/21)

Substation Building (12/29/21)

Chiller Building (12/29/21)

RO Skid Structure (12/29/21)

Balance of Plant Building (12/29/21)

LM 6000 Turbines (12/29/21)

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 15 LANDSCAPE SCREENING

VIS-5: Landscape Screening

Condition of Certification VIS-5 requires a status report in the Annual Compliance Report regarding landscape maintenance activities. At the Canyon Power Plant the landscape maintenance activities were performed according to the contract and consistent with policies and requirements of the City of Anaheim plan and zoning ordinance.

The contracted company performed the following landscape maintenance activities:

Contracted Landscape Services – Landscape West Mgmt. Service, Inc. (Period: Jan 1, through December 31, 2020).

Activity Type	Frequency
Weed Control	2x/wk.
Landscape areas	
Hardscape areas	
Gravel areas	1x/Mo
Fertilization	2x/year
Shrubs	
Ground cover	
Trees	
Pest Control	As needed
Rodents	
Irrigation Maintenance	As needed
Inspect all Sprinklers/Systems	
Trees	As needed
Canopy Trees	
Maintenance/Clean-Up	2x/wk.
Ground Cover and Shrubs	
Trash & Litter at Landscape area	
Trash & Litter at enclosed gravel areas	
Monthly Inspection	

The photographs below taken by staff on 12/29/2021 of the landscape maintenance demonstrating compliance pursuant VIS-5 condition:

Landscaping - Exterior Plants

Miraloma Avenue, south wall

Miraloma Avenue, south wall

Miraloma Avenue, south wall

East-wall ivy

Landscaping - Interior Plant

Administration Building Planter

Admin and Warehouse Building Planter

Warehouse Building Planter

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 16

AQ-9 NH3 SLIP TESTING

TEST REPORT FOR 3Q21 AMMONIA SLIP TEST AT CANYON POWER PLANT UNIT 1 FACILITY ID: 153992, DEVICE ID: D1

Prepared For:

Canyon Power Plant

3071 E. Mira Loma Ave. Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District

21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 282-8240

John Groenenboom

Test Date: July 12, 2021
Production Date: August 4, 2021

Report Number: W002AS-010224-RT-2666

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:		Date:	8/4/2021
/	11		
Name:	John Groenenboom	Title:	Client Project Manager
appropriate writte the presented m	en materials contained he	rein. I hereby c ate, and confori	ulations, results, conclusions, and other ertify that, to the best of my knowledge, ms to the requirements of the Montrose
Signature:	Sun	Date:	8/4/2021
Name:	Surya Adhikari	Title:	QC Reporting Manager

TABLE OF CONTENTS

SE	<u>CTION</u>	<u>PAGE</u>
1.0	INTRODUCTION AND SUMMARY	5
2.0	UNIT DESCRIPTION	6
	2.1 UNIT DESCRIPTION	6
	2.2 TEST CONDITIONS	7
	2.3 SAMPLE LOCATION	7
3.0	TEST DESCRIPTION	8
4.0	TEST RESULTS AND OVERVIEW	9
	4.1 TEST RESULTS	9
	4.2 TEST OVERVIEW	9
LIS	ST OF APPENDICES	
Α	RAW DATA	10
	A.1 Sample Data Sheets	11
	A.2 Laboratory Data	16
	A.3 QA/QC Data	23
В	FACILITY CEMS DATA	27
С	CALCULATIONS	32
	C.1 General Emissions Calculations	33
	C.2 Spreadsheet Summaries	37
D	QUALITY ASSURANCE	40
	D.1 Quality Assurance Program Summary	41
	D.2 SCAQMD and STAC Certifications	47
	D.3 Individual QI Certificate	50
	D.4 Statement of No Conflict of Interest	53
Е	APPLICABLE PERMIT SECTIONS	55
LIS	ST OF TABLES	
1-1	AMMONIA SLIP TEST RESULTS SUMMARY	5
4-1	AMMONIA SLIP TEST RESULTS	9
LIS	ST OF FIGURES	
2-1	UNIT BLOCK DIAGRAM	6
3-1	SCAOMD METHOD 207.1 SAMPLE EQUIPMENT	8

1.0 INTRODUCTION AND SUMMARY

Montrose Air Quality Services, LLC (MAQS) was contracted by the Canyon Power Plant to perform an ammonia slip test at Unit 1 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on July 12, 2021. The test was performed by John Groenenboom, Randy Monzon, and Danny Avila of MAQS. John Groenenboom was the on-site Qualified Individual for MAQS. MAQS qualifies as an independent testing laboratory under SCAQMD Rule 304 (no conflict of interest) and is certified by the SCAQMD to conduct testing for criteria pollutants according to District Methods. Bertha Hernandez coordinated the test for Canyon Power Plant.

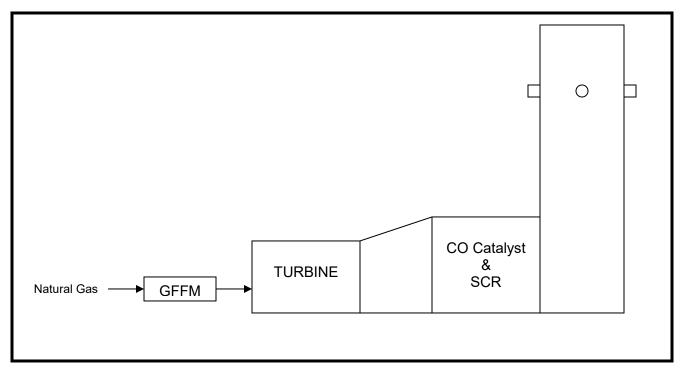
The test consisted of duplicate ammonia tests performed at 49 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to $15\% O_2$.

TABLE 1-1 AMMONIA SLIP TEST RESULTS SUMMARY CANYON POWER PLANT UNIT 1 JULY 12, 2021

Parameter/Units	Result ⁽¹⁾	Limit
NH ₃		
ppm	1.5	
ppmc	1.3	5

⁽¹⁾ Maximum of duplicate runs, as required by SCAQMD Method 207.1

Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.



2.0 UNIT DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46°F, with water injection. The units are equipped with a CO catalyst and Selective Catalytic Reduction (SCR) system for NO_x control. Figure 2-1 presents a block diagram of the unit.

FIGURE 2-1 UNIT BLOCK DIAGRAM CANYON POWER PLANT UNIT 1

Stack Inside Diameter: 11 feet, 8 inches

Distance from Upstream Disturbance: 23 feet, 4 inches (2.0 Diameters)
Distance from Stack Exit: 16 feet, 6 inches (1.4 Diameters)

2.2 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 49 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.3 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack location. Each test was performed over a 60 minute interval. The sample gas was drawn through a titanium probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by Ion Specific Electrode analysis. Figure 3-1 presents a diagram of the sampling equipment.

Stack O_2 and NO_x concentrations and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O_2 .

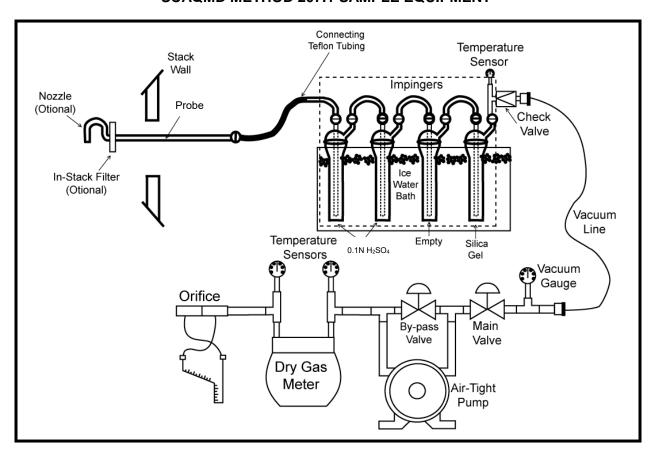


FIGURE 3-1
SCAQMD METHOD 207.1 SAMPLE EQUIPMENT

4.0 TEST RESULTS AND OVERVIEW

4.1 TEST RESULTS

The results of the test are summarized in Table 4-1. The results show that the ammonia slip was 1.3 ppm @ 15% O₂ which is less than the permitted limit of 5 ppm @ 15% O₂.

TABLE 4-1
AMMONIA SLIP TEST RESULTS
CANYON POWER PLANT
UNIT 1
JULY 12, 2021

Parameter/Units	Run 1	Run 2	Average	Maximum ⁽¹⁾	Limit
Test	1-NH ₃ -U1	2-NH ₃ -U1			
Date	7/12/2021	7/12/2021			
Time	1603/1706	1731/1834			
O₂ , %(2)	14.43	14.44	14.44		
Stack Flow, dscfm @ T _{ref} (2)	226,121	228,091	227,106		
NO _x , ppmc ⁽²⁾	2.3	2.4	2.3		2.5
NH₃ ppm ppmc lb/hr lb/MMBtu lb/MMSCF	1.5 1.3 0.9 0.002 1.9	1.5 1.3 0.9 0.002 1.9	1.5 1.3 0.9 0.002 1.9	1.5 1.3 0.9 0.002 1.9	 5

⁽¹⁾ Maximum of duplicate test runs, as required by SCAQMD Method 207.1

4.2 TEST OVERVIEW

The test program was successful in meeting the program objectives. The sample train was leak checked before and after the test and all QA/QC requirements of SCAQMD Method 207.1 were satisfied.

⁽²⁾ From facility CEMS

APPENDIX A RAW DATA

Appendix A.1 Sample Data Sheets

		AND WORKSHEET

CLIENT: SCPFA LOCATION: Canyon!	AMBIENT TEMPERATURE: 80° BAROMETRIC PRESSURE: 35-65	Imp. # Contents Post-Test - Pre-Test = Difference
DATE: 7/2/2/	ASSUMED MOISTURE: 1/65	1 Od A say 8029 7640 688.
PRUN NO: OPERATOR: Programmer Sources METER BOX NO: 17 Wes	PITOT TUBE COEFF, Cp: Writer PROBE ID NO/MATERIAL: STITICAL PROBE LENGTH: ST	2 0.1 H, SU 6788 677.8
METER AH@: 1-68	NOZZLE ID NO/ MATERIAL:	3 MT 622.6 620.6
METER Yd: 5.72 3- STACK AREA, FT2: 166 CO	NOZZLE DIAMETER: FILTER NO/TYPE:	4 56 933.7 9249
TRAVERSE POINTS, MIN/POINT:	PRE-TEST LEAK RATE: CFM@ in. Hg.	LR 00 100
Probe Condition, pre/post test: 400/900/	PITOT LEAK CHECK - PRE: NWA POST: NA	
Silica Gel Expended, Y/N:	CHAIN OF CUSTODY: SAMPLE CUSTODIAN TO	Total:
Filter Condition after Test: A/A Check Weight: SCC. 0/500-C	SAMPLE CUSTODIAN J	
Meter AP	AH Stack Probe Filter Imp. Out	Meter Temp. °F Vacuum O2 Pstatic

Point	Time	Meter Volume, ft ³	ΔP in. H ₂ O	ΔH in. H ₂ O	Stack Temp, °F	Probe Temp, °F	Filter Temp, °F	Imp. Out Temp, °F	Meter 1	Cemp, °F	Vacuum in. Hg.	O ₂ %	Pstatic in. H ₂ O
- 3		387.1951	NIN	100	NIT	MILLE	, my	52	79	77	3		LUIA
J	1608	46-5-1				1	1			167			1
	1615			-									1
E	16,3			11 1 1 1 1									
3.	1619	391170		1.0				56	54	8	3		
メ	150111		_	1									
1	1629												
E	1624								100				
3	1635	403.465		1.0				54	37	33	3		
1	1640	fresharther wer franklicher		-								- Amprime 1	1
1	1645												
-	1650						1 1 1	1					
3	1651	100.535		1.0				54	89	85	3		1
A	1656								-				
1	00					- In the second							
E	706	418.595											
				1									The state of
			1.	1		1	1						1
			,										
Average:									1				

Comments:

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

OPERAT METER I METER I METER I STACK A TRAVER AH= Probe Co Silica Ge	ON: OR: BOX NO: AH@: Yd: X AP: Ondition, pri I Expende	23 WC 23 WC 3 992 3 992 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5/12 N/god	BAROMI ASSUME PITOT T PROBE PROBE NOZZLE NOZZLE FILTER PRE-TE: POST-TI	T TEMPERATU ETRIC PRESSU ED MOISTURE: UBE COEFF, C ID NO/MATERI/ LENGTH: 8 ' ID NO/ MATERI DIAMETER: NO/TYPE: ST LEAK RATE EST LEAK RATE EAK CHECK - P OF CUSTODY:	PE COOCEPTE SAMPLE CU	POST:_	12/2/4/4	0.1 H	So 645 - 576 936	7575.6 6 644. 8 576.	6	
Point	Time	Meter Volume, ft ³	ΔP in. H ₂ O	ΔH in. H ₂ O	Stack Temp, °F	Probe Temp, °F	Filter Temp, °F	Imp. Out	Meter T	emp, °F	Vacuum in. Hg.	O ₂	Pstatic in. H ₂ O
3	1731	419.480	20112	1-5	~ W2	MA	, MA	59	84	81	3	70	AUGA.
1	736				D.								1
1	1741						1	0					
E	1746			. 37				-	63.2	-	-		
4		478.370		1.0				57	* k	87	3		-
1	1767							-	-	-			+ +
1	667		_										
73	1803	437.605		10				54	84	80	3		
d	1808												
	1813						12 12 14 15						
	1018	446.505						-		-	_		
3	1019	HH6,505		1.0	-			56	81	80	3		
+	1819								-	-			-
1	107	455,635						1		1		-	
-	10/1	2000		0									
		-		-	-			-	-	-			+

Comments:

Average:

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

METER METER STACK / TRAVER ΔH= Probe Co Silica Ge	ON:	TS, MIN/POINT re/post test:	21 N47 WCS	BAROMI ASSUMI PITOT T PROBE PROBE NOZZLE NOZZLE FILTER PRE-TE: POST-TI	T TEMPERATU ETRIC PRESSL ED MOISTURE: UBE COEFF, C ID NO/MATERI LENGTH: ID NO/ MATER DIAMETER: NO/TYPE: ST LEAK RATE EST LEAK RATE EAK CHECK - F OF CUSTODY:	PRE:	M@ /4" M@ POST: JSTODIAN	in. Hg. in. Hg.	7 4	0.1 H	Post-Test - 685 SOU 677 620 933	.0 685 .9 677 .6 620 .7 933	2 ;9 ,25 ,37
		Meter	ΔΡ	ΔН	Stack	Probe	Filter	Imp. Out	Meter T	emp, °F	Vacuum	O ₂	Pstatic
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	In	Out	in. Hg.	%	in. H ₂ O
Average:													
Comme													

1-NH3-U1

Point	Meter Volume	Delta H	Tm In	Tm Out
6	382.245	1.0	79	77
5			84	81
4			87	83
3			89	85
2				
1				
Stop				
6 5 4				
4				
3				
2				
1				
Stop	418.595			
Result	36.350	1.0	8	3.1

2-NH3-U1

Point	Meter Volume	Delta H	Tm In	Tm Out
6	419.480	1.0	84	81
5			86	84
4			84	80
3			82	80
2				
1				
Stop				
6				
5				
4				
3				
2				
1				
Stop	455.625			

impinger	mpinger vveignts			
ost-Test	Pre-Test	Diffe		
070.0	200.0	40		

#	Post-Test	Pre-Test	Difference
1	872.9	688.8	184.1
2	678.8	677.8	1.0
3	622.6	620.6	2.0
4	933.7	924.9	8.8
Line Rinse	0.0	100.0	-100.0
			95.9

12			
im	pinger	Main	hte
1111	וספוווע	AACIG	1110

#	Post-Test	Pre-Test	Difference
1	760.7	575.5	185.2
2	645.6	644.6	1.0
3	576.8	576.7	0.1
4	931.2	922.6	8.6
Line Rinse	0.0	100.0	-100.0
			94.9

Appendix A.2 Laboratory Data

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS

Project #: PRO) - 1022:4	District Method: SCAQMD 207.	1 Sample Date: \lullabar
Client/Location: 5199A	Calibration Date: 7 M/21	Analysis Date: 114 121
Sample Location: 10 n:11	Calibration Curve: y=-59.1114	X+95 BIN Analyst's Initials: Um
Test#s: 1-2-1043-01	R2: 6.999 p.	Room Temperature (°C): 20

Sample	Total Vol. (mL)	Electrode Potential (mV)	Conc. µg NH3 - N/ml	Cavg (µg NHs - N / ml)	μg NH ₃ / sample	T (°C)	Blue after + ISA (Y/N)	рН	% R
Standard Check: 28 µg NH₃/ml	_	9,9	28.404	- 240		20.0	γ		
20 pg 141 31111		15.1	28.184	18, 294		20.0	Y	-	1.050
1-NHs	536.3	83.7	1.603	1.597		20.0	Y	15	
1 14 13		83.9	1.580	1,541	1029203	200	Y	45	
2-NH ₃	5347	84.6	1.548	1.557	1011.806	200	Y	42	
210713	357.7.6	84.3	ا. څاله اه	1.22	(0.000	0.05	Y		
Spike: 1-10/12+2ml 1000ppm NHs		16.4	22.051	21.838		20.0	γ	-	105.41
тооорригина	-	16.9	21.625	2 0-0	-	20.0	γ	-	
Standard Check: 28 µg NH3/ml	-	9.9	28.404	28 460	المنت	20.0	γ		1.641
20 pg ra torrit		9.8	28517			20.0	Y	-	
Reagent Blank 0.1N H ₂ SO ₄		197.5	0.014	P10.0		20.0	γ	J	
0.114 1 12004	-	197.7	0.019	0.07,		20.0	у		-
DI H ₂ O Blank		201.0	0.017	0.017		20.0	γ		1
		200.9	0.017	0,00		20.0	Y	-	~
Field Blank	277.0	197.7	0.019			20.0	٧	22	_
	373.8	197.3	0.019	0.019	8.653	20.0	У	22	7
Standard Check:		q.s	28.850			20.0	Y	_	la take
28 µg NH3/ml		9.0	28.738	7.8.794	-	20.0	y	_	2.856

Notes:

Total volume of samples and standards used: 100 ~ 1

* LITTIEN

Volume of pH adjusting ISA used in ml: 2 - 1

Calculations:

Absorbing solution: 6.1(ω V_1 so C Conc. (μ g NH₃ – N / mI) = 10 ($^{(P-B)M}$; (P = electrode potential, B = y-intercept and M = slope)

Cavg = average result of duplicate analyses (µg NH₃ - N / ml) = (C1+C2)/2

μg NH₃ / sample = Cavg* 17.03/ 14.01 * TV

mg / sample = µg /sample ÷ 1000

ppm NH₃ = mg NH₃/sample x 1/Vmstd x 1/454000 x SV/17 x 10⁶

WN MONTROSE

DS834059

Master Document Storage\Forms\Datasheets\Lab Forms

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION

Project Number:

PROJ-10224

Client/ Location:

SCPPA

Sample Location:

Stack

District Method:

SCAQMD 207.1

Sample Date:

7/12/2021

Analysis Date:

7/14/2021

Analyst's Initials:

LM

Calibration Curve Slope

-59.1114

Y-intercept

95.8114

R²

0.9998

Sample	P mV	Conc. µg NH ₃ /ml as N	C avg as N	TV (ml)	C avg as NH ₃	μg NH₃/ sample
28 ug NH ₃ / ml as N	9.9	28.404				
Repeat 28ug NH ₃ /ml as N	10.1	28.184	28.294	NA	34.393	NA
1-NH ₃	83.7	1.603	7			
Repeat 1- NH ₃	83.9	1.590	1.597	530.3	1.941	1029.203
2-NH3 Repeat 2- NH3	84.3 84.6	1.566 1.548	1.557	534.7	1.892	1011.806
spike 1-NH ₃	16.4	22.051		- 40		
Repeat 1-NH3 spike	16.9	21.625	21.838	NA	26.545	NA
28 NH ₃ /ml as N	9.9	28,404			1	
Repeat 28 ug NH ₃ /ml as N	9.8	28.515	28.460	NA	34.594	NA
Reagent Blank Repeat Reagent Blank	197.5 197.7	0.019 0.019	0.019	NA	0.023	NA.
Field Blank Repeat Field Blank	197.7 197.3	0.019 0.019	0.019	373.8	0.023	8.653
DI H2O Blank Repeat DI H2O Blank	201.0 200.9	0.017 0.017	0.017	NA	0.020	NA
28 NH ₃ /ml as N	9.5	28.850				
Repeat 28 ug NH ₃ /ml as N	9.6	28.738	28.794	NA	35.001	NA

Notes:

Measured Concentration of Ammonia (C) in μg NH₃ / ml as N C=10^{(P-B)MM}

P = electrode potential (mV), M=slope and B=intercept

Average Measured Ammonia Concentration (Cavg) = (C1 + C2)/2

where C1, C2 results from duplicate analyses (μg NH₃/ml as N)

Cavg (µg NH₃/ml as NH₃) = Cavg (µg NH₃/ ml as N) * 17.03/ 14.01

μg NH₃ / sample = Cavg (μg NH₃/ml as NH₃) * TV

Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate.

All solutions turned blue and remained blue with ISA unless otherwise indicated.

Sample PH and Temperatures can be found on the laboratory datasheet.

Maximum samples (including blanks) between 28 ug/ml check standard is 5 samples

analyzed in duplicate.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL

Project Number:

PROJ-10224

Client/ Location:

SCPPA

Sample Location:

Stack **SCAQMD 207.1**

District Method:

7/12/2021

Sample Date:

Analysis Date:

7/14/2021

Analyst's Initials:

LM

Sample	% recovery	RPD %	RPA %
28 ug NH3 / ml as N epeat 28ug NH3/ml as	NA	0.78	1.050
1-NH3 Repeat 1- NH3	NA	0.78	NA
2-NH3 Repeat 2- NH3	NA	1.17	NA
spike 1-NH3 Repeat 1-NH3 spike	105.41	1.95	NA
28 NH3/ml as N epeat 28 ug NH3/ml as	NA	-0.39	1.641
Reagent Blank Repeat Reagent Blank	NA	0.78	NA
Field Blank Repeat Field Blank	NA	-1.56	NA
DI H2O Blank Repeat DI H2O Blank	NA	-0.39	NA
28 NH3/ml as N peat 28 ug NH3/ml as	NA	0.39	2.836

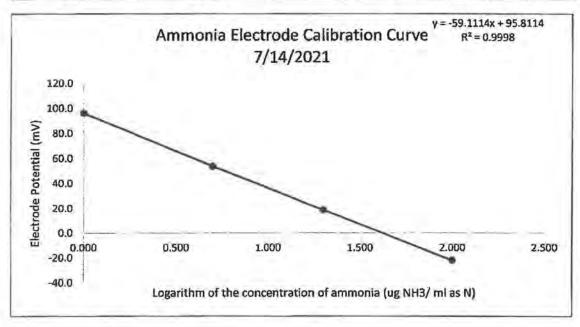
spike: 100 ml sample + 2 ml (1000 µg NH₃ / ml as N)

Matrix Spike Percent Recovery (%R)

%R = (C spike*0.104 - Csample*0.102)/2 *100

Cspike = average result of matrix spike (µg NH₃/ ml as N)

Relative Percent Difference (RPD) = (C1-C2)/ Cavg *100 (must be 5% or less)


Relative Percent Accuracy (RPA)

(must be 10% or less)

RPA = (Cavg-theoretical value of standard)/ theoretical value of standard * 100

AMMONIA ELECTRODE CALIBRATION CURVE

NH ₃ concentration (μg NH ₃ / ml as N)	log NH ₃ concentration	Electrode potential (mV)	Sample Temperature (C)	Room Temperature (C)
1	0.000	96.4	20	20
5	0.699	53.7	20	20
20	1.301	18.7	20	20
100	2.000	-22.0	20	20

slope -59.1114 y-intercept 95.8114

Concentration (μg NH ₃ / ml as N)	Value LR line	Difference	% Difference
1	0.9773	-0.0227	-2.2667
5	5.1571	0.1571	3.1424
20	20.1609	0.1609	0.8045
100	98.4102	-1.5898	-1.5898

Calculation:

Regression Line: P=M*log(µg of NH3/ ml as N)+B

Measured Concentration of Ammonia (C) in μg / ml NH₃ as N: C=10^{(P-B)/M}

where P = electrode potential, M= slope (must be -57±3) and B= intercept

All standards were prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALIBRATION DATA

District Method: SCAQMD 207.1

Calibration Date:	7/14/2021
Calibration Curve	Y 59. 1119x +95.8114
R2 6.9998	
Analyst's Initials:	2.17
Thermometer #:_	NA
ISE Electrode #.	16

Calibration Standard (μg NH ₃ / ml·as N)	Electrode Potential (mV)	Solution Temperature (°C)	Room Temperature (°C)		
1	96,4	20.0	2.0.0		
5	53.7	20.0	20.0		
20	18.7	0.05	20.0		
100	-22.0	20.0	20.0		

Notes:

Total volume of samples and standards used: 100 ~ 1

Volume of pH adjusting ISA used in ml: 2 - 1

Absorbing solution: 6.04 to 14,504
Slope of the calibration curve shall be between -54 to -60

R2 must be 0.9997 or greater

Calibration solutions, sample solutions and Calibration Verification standard temperature within

± 2°C

Date of last revision 4/24/2019

DS1939150 Santa Ana\Forms\Lab Datasheets

CHAIN OF CUSTODY

SCPPA		PROJECT NUMBER: PROJ-	TEST DATE(S): 7/12 and 7/13					
Canyon 1	and 2		SAMPLER(S):	RMO				
ATION:	Stack		PROJECT MAN	AGER:	JG			
D(S):	SCAQMD 207.1		DATE DUE:		Normal			
REQUIRED	?:NO		COMPLIANCE	TEST?	Yes			
TIME	TEST#	SAMPLE DESCRIPTION	CONTAINERS	SAMPLER	COMMENTS			
	1-NH3-3 1/	Probe, Line, Impingers	1	RMO				
	2-NH3-12J	Probe, Line, Impingers	1	RMO				
	FB-NH3-14	Probe, Line, Impingers	1	RMO				
	1-NH3-2	Probe, Line, Impingers	1	RMO				
	2-NH3-2	Probe, Line, Impingers	1 1	RMO RMO JG				
	FB-NH3-2	Probe, Line, Impingers						
	RB-NH3	DI H2O	1					
	RB-NH3 0.1 N H2SO4		1	JG				
DELEASE	D.PV	DATE/FIME	DECEN/E	D DV	DATE/TIME			
KANDY Monron		7/14/21 820 Au		Co-co-co-co-co-co-co-co-co-co-co-co-co-co	7/14/21 820 am			
QUIRED:								
	Canyon 1 ATION: D(S): REQUIRED TIME RELEASE	Canyon 1 and 2 ATION: Stack D(S): SCAQMD 207.1 REQUIRED? NO TIME TEST # 1-NH3-3 1 2-NH3-2 FB-NH3-2 2-NH3-2 FB-NH3-2 RB-NH3 RB-NH3 RB-NH3 RB-NH3	Canyon 1 and 2 ATION: Stack D(S): SCAQMD 207.1 REQUIRED? NO TIME TEST# SAMPLE DESCRIPTION 1-NH3-1 Probe, Line, Impingers 2-NH3-2 Probe, Line, Impingers 1-NH3-2 Probe, Line, Impingers 1-NH3-2 Probe, Line, Impingers 2-NH3-2 Probe, Line, Impingers FB-NH3-2 Probe, Line, Impingers FB-NH3-2 Probe, Line, Impingers RB-NH3 DI H2O RB-NH3 0.1 N H2SO4 RELEASED BY DATE/TIME M. Market	Canyon 1 and 2 SAMPLER(S): ATION: Stack PROJECT MAN D(S): SCAQMD 207.1 DATE DUE; REQUIRED? NO COMPLIANCE TIME TEST # SAMPLE DESCRIPTION CONTAINERS 1-NH3-3 1/2 Probe, Line, Impingers 1 2-NH3-1/2 Probe, Line, Impingers 1 FB-NH3-2 Probe, Line, Impingers 1 1-NH3-2 Probe, Line, Impingers 1 1-RB-NH3-2 Probe, Line, Impingers 1 1-RB-NH3 DI H2O 1 1-RB-NH3 0.1 N H2SO4 1 1-RB-NH3 0.1 N H2SO4 1 1-RB-NH3 0.1 N H2SO4 1	Canyon 1 and 2 SAMPLER(S): RMO ATION: Stack PROJECT MANAGER: D(S): SCAQMD 207.1 DATE DUE: REQUIRED? NO COMPLIANCE TEST? COMPLIANCE TEST?			

Appendix A.3 QA/QC Data

SEMI-ANNUAL DRY GAS METER/ORIFICE CALIBRATION

Orifice Method - Triplicate Runs/Four Calibration Points

C-5000 23-WCS

English Meter Box Units, English K* Factor

ID #:
Filenams: M:Santa Ana\Equipment\Test Equipment\Calibrations\Dry Gas Meters\23-WCS\2021\(23-WCS\) Semi Annual Cal 7-8-2021 xl Date:
File Modified From: APEX 522 Series Meter box Calibration

Bar. P

7/8/2021

(in. Hg)

Bar. Pressure: 29,84
Performed By: L.Olivares
Meter Senal #:

Revised: 4/8/2005

				DRY GAS METER READINGS					CRITIC	CRITICAL ORIFICE READINGS				
		Volume	Volume	Volume	Initial	Temps.	Final	Temps.	Onfice	K' Orifice	Actual	A	mbient Temper	ature
dH (In H2O)	Time (min)	(cu ft)	Final (cu ft)	(cu ft)	(deg F)	Outlet (deg F)	(deg F)	(deg F)	Serial# (number)	(see above)	Vacuum (in Hg)	Initial (deg F)	(deg F)	Average (ded F
0.13	26.00	304,600	310,120	5.520	89.0	86.0	89.0	87.0	33	0,1552	16.0	79.0	79.0	79.0
0.13	26.00	310,120	315.645	5,525	89.0	87.0	89.0	87.0	33	0.1552	16.0	79.0	79.0	79.0
0,13	26.00	315,645	321.225	5,580	89.0	87.0	89,0	88,0	33	0,1552	16.0	79.0	79.0	79.0
0.58	12.00	288,000	293,375	5.375	89.0	85.0	89.0	85.0	48	0,3346	18.0	79.0	79.0	79.0
0.58	12.00	293,375	298.745	5.370	89.0	85.0	89.0	86.0	48	0.3346	18.0	79.0	79.0	79.0
0.58	12.00	298,745	304.120	5.375	89.0	86.0	89,0	86.0	48	0,3346	18.0	79,0	79.0	79.0
1.70	7.00	270.600	276.070	5,470	92.0	82.0	92.0	83.0	63	0.5918	17.0	79.0	79.0	79.0
1.70	7.00	276.070	281.540	5.470	92.0	83.0	92.0	84.0	63	0.5918	17.0	79.0	79.0	79.0
1.70	7.00	281,540	287,030	5,490	92.0	84.0	92.0	84.0	63	0,5918	17,0	79.0	79.0	79.0
3.00	5,00	254,000	259,150	5.150	0.88	80.0	91.0	81.0	73	0,7681	12,5	78,0	78,0	78,0
3,00	5.00	259,150	264.270	5.120	91.0	81.0	93.0	81.0	73	0.7681	12.5	78.0	78.0	78.0
3.00	5.00	264.270	269,405	5.135	93.0	81.0	93.0	83,0	73	0,7681	12.5	78,0	78.0	78.0

RY GAS METER	7	ORIFICE				Y GAS METER RATION FACTOR	ORIFICE CALIBRATION FACTOR	Individual	Individual	Orifice	Orifice
VOLUME	VOLUME	VOLUME	VOLUME	VOLUME	Car Italia	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CALIGOTION) NOTON	Run	Orifice	Average	Average
CORRECTED	CORRECTED	CORRECTED	CORRECTED	NOMINAL		Y	dH@	1,5-0,1	3,103	7 Trainge	Manage
Vm(std)	Vm(std)	Vcr(std)	Vcr(std)	Vor		Value	Value	0.95 < Y	Ymax - Ymin	0.98 < Y/Yd	ана - ана
(cu ft)	(liters)	(cuft)	(liters)	(cu ft)		(number)	(in H2O)	< 1.057	< 0.010?	< 1.02?	< 0.1557
5.306	150.3	5.185	146.8	5,309		0.977	1.772	Pass			
5.309	150.3	5.185	146.8	5,309		0,977	1.770	Pass			
5.359	151.8	5.185	146.8	5,309		0.968	1.768	Pass			
					Average	0.974	1,770	26.0	Pass	Pass	Pass
5.180	146.7	5.161	146.1	5.284		0,996	1.704	Pass			
5.173	146.5	5.161	146.1	5.284		0.998	1.703	Pass			
5.175	146.6	5.161	146.1	5,284		0,997	1.701	Pass			
					Average	0.997	1.703		Pass	Pass	Pass
5.283	149.6	5.324	150.8	5.452		1.008	1.605	Pass			
5.279	149.5	5.324	150.8	5.452		1.009	1.602	Pass			
5.295	150.0	5.324	150.8	5.452		1.005	1.600	Pass			
					Average	1.007	1.602		Pass	Pass	Pass
5.011	141.9	4.941	139.9	5.050	_	0.986	1.684	Pass			
4.968	140.7	4.941	139.9	5.050		0.995	1.682	Pass			
4,973	140.8	4.941	139.9	5,050		0.993	1.679	Pass			
					Average	0.991	1,682		Pass	Pass	Pass

Average Yd:	0.992	dH@:	1,689			
		Q @ dH = 1:	0.677)	
				Dinte	7/0/0004	

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 23 WCS

Readout Description: Control Box

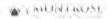
Date: 7/6/2021

Performed By: RD/DA/RM

Calibrated Thermocouple ID: TC-CAL T1 Reference Thermometer ID: 313010 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 242167

T/C I.D. Readout			T/C - F	Readout F			Reference T	Diffe				
TC-CAL	1,D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	-
T3 (OIL)	23 WCS	357	357	357	357	358	358	358	358	1.0	0.1%	Pas
T2 (Boiling H ₂ O)	23 WCS	214	214	214	214	212	212	212	212	2.0	0.3%	Pass
T1 (lce/Water)	23 WCS	33	33	33	33	32	32	32	32	1.0	0.2%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)


Thermocouple Source Readings

	T/C Source		T/C - F	Readout F				ource F		Diffe	erence	
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	129103	650	650	650	650	650	650	650	650	0.0	0.0%	Pas
T3 (~370 F)	129103	370	370	370	370	370	370	370	370	0.0	0.0%	Pass
T2 (~212 F)	129103	213	213	213	213	212	212	212	212	1.0	0.1%	Pass
T1 (~32 F)	129103	32	32	32	32	32	32	32	32	0.0	0.0%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

Bai	rometric Pressure D	Petermination
Date:	07/12/21	4
Data By:	JG	
Reference: http	os://forecast.weather	gov/MapClick.php?lat=33.8329&lon=-117.9152
Reference Barometer ID		FW0063 Fullerton CSU (F0063)
Reference Barometer Location		Lat: 33.8805°NLon: 117.88417°WElev: 247ft
Reference Barometer Other Info.		
Reference Barometer Indication, corrected to sea	a level	29.95
Reference Barometer Reference Elevation		247
Reference Barometer Actual Pressure		29.70
Test Barometer Location/Site		Canyon Power Plant
Location/Site Elevation		212
Location/Site Barometric Pressure		29.74
Sampling Location Height (above/below site elev	ation)	60
Sampling Location Barometric Pressure		29.68

APPENDIX B FACILITY CEMS DATA

Average Values Report Generated: 7/12/2021 19:41

Company: City Of Anaheim Plant: 3071 Miraloma Ave., City/St: Anaheim, CA, 92806 Source: 1 Period Start: 7/12/2021 16:03 Period End: 7/12/2021 17:05 Validation Type: 1/1 min Averaging Period: 1 min Type: Block Avg

	Average 1_02	Average 1_NOXPPM	Average 1_NOX_CORR	Average 1_NOX_LBHR	Average 1_NOX_LBMM	Average 1_GasFlow	Average 1_LOAD	Average 1_STACKFLW	Average 1_COPPM	Average 1_CO_CORR	Average 1_CO_LBHR
Period Start:	%	ppm	ppm	#/hr	#/MBTU	kscfh	MM	kscfm	ppm	ppm	#/hr
07/12/2021 16:03	14.43	2.54	2.32	4.42	0.009	467.5	49.01	230.2	3.55	3.24	3.58
07/12/2021 16:04	14.43	2.54	2.32	4.41	0.009	467.1	49.03	230.0	3.57	3.26	3.58
07/12/2021 16:05	14.43	2.54	2.32	4.41	0.009	466.9	49.03	229.9	3.60	3.28	3.63
07/12/2021 16:06	14.43	2.54	2.32	4.40	0.009	465.5	48.84	229.2	3.59	3.27	3.57
07/12/2021 16:07	14.44	2.55	2.33	4.38	0.009	463.9	48.77	228.8	3.54	3.23	3.56
07/12/2021 16:08	14.45	2.58	2.36	4.40	0.009	465.1	48.74	229.7	3.48	3.18	3.47
07/12/2021 16:09	14.44	2.58	2.36	4.32	0.009	457.6	48.00	225.7	3.47	3,17	3.41
07/12/2021 16:10	14.47	2.54	2.33	4.33	0.009	458.2	48.24	227.0	3.38	3.10	3.37
07/12/2021 16:11	14.46	2.62	2.40	4.34	0.009	459.6	48.32	227.4	3.21	2.94	3.19
07/12/2021 16:12	14.45	2.74	2.51	4.35	0.009	460.3	48.35	227.3	3.02	2.76	3.00
07/12/2021 16:13	14.44	2.69	2.46	4.36	0.009	461.2	48.34	227.5	3.07	2.80	3.05
07/12/2021 16:14	14.43	2.53	2.31	4.39	0.009	464.3	48.44	228.6	3.19	2.91	3.17
07/12/2021 16:15	14.44	2.30	2.10	3.90	0.008	464.7	48.61	229.1	3.37	3.08	3.37
07/12/2021 16:16	14.43	2.19	2.00	3.43	0.007	466.3	48.73	229.6	3.52	3.21	3.53
07/12/2021 16:17	14.43	2.31	2.11	3.91	0.008	465.9	48.75	229.4	3.57	3.26	3.57
07/12/2021 16:18	14.43	2.44	2.23	3.92	0.008	466.2	48.78	229.5	3.51	3.20	3.52
07/12/2021 16:19	14.43	2.53	2.31	4.41	0.009	467.1	48.83	230.0	3.51	3.20	3.53
07/12/2021 16:20	14.42	2.54	2.31	4.41	0.009	467.1	48.82	229.7	3.52	3.20	3.53
07/12/2021 16:21	14.43	2.52	2.30	3.92	0.008	467.2	48.84	230.1	3.56	3.25	3.58
07/12/2021 16:22	14.42	2.51	2.29	3,93	0.008	467.8	48.84	230.0	3.57	3.25	3.59
07/12/2021 16:23	14.42	2.51	2.29	3.93	0.008	467.7	48.86	229.9	3.58	3.26	3.59
07/12/2021 16:24	14.42	2.50	2.28	3.93	0.008	467.5	48.85	229.8	3.57	3.25	3.58
07/12/2021 16:25	14.42	2.50	2.28	3.93	0.008	467.8	48.88	230.0	3.56	3.24	3.59
07/12/2021 16:26	14.42	2.52	2.29	3.93	0.008	467.6	48.89	229.9	3.55	3.23	3.58
07/12/2021 16:27	14.42	2.53	2.30	3.93	0.008	467.4	48.89	229.8	3.55	3.23	3.58
07/12/2021 16:28	14.42	2.53	2.30	3.93	0.008	467.8	48.88	230.0	3.55	3.23	3.59
07/12/2021 16:29	14.42	2.53	2,30	3,93	0.008	467.6	48.87	229.9	3.55	3.23	3.58
07/12/2021 16:30	14.42	2.53	2.30	3,93	0.008	467.9	48.89	230.0	3,58	3.26	3.59
07/12/2021 16:31	14.42	2,53	2.30	3.93	0.008	468.0	48.88	230.1	3.60	3.28	3.64
07/12/2021 16:32	14.42	2.51	2.29	3,93	0.008	467.9	48.90	230.0	3.60	3.28	3.64
07/12/2021 16:33	14.42	2.50		3.93	0.008	468.3	48.95	230.2	3.61	3.29	3.64
07/12/2021 16:34	14.42	2.51	2.29	3.93	0.008	468.3	48.95	230.2	3.60	3.28	3.64
07/12/2021 16:35	14.42	2.51	2.29	3.93	0.008	468.3	48.95	230.2	3.60	3.28	3.64
07/12/2021 16:36	14.42	2.51	2.29	3.93	0.008	468.0	48.91	230.1	3.60	3.28	3.64
07/12/2021 16:37	14.42	2.52	2.29	3.93	0.008	467.8	48.89	230.0	3.61	3.29	3.63
07/12/2021 16:38	14.42	2.51	2.29	3.93	0.008	468.2	48.96	230.2	3.61	3.29	3.64
07/12/2021 16:39	14.42	2.50	2.28	3.93	0.008	468.2	48.92	230.2	3.62	3.30	3.64
07/12/2021 16:40	14.41	2.49	2.26	3.93	0.008	468.2	48.97	229.8	3.64	3.31	3.64
07/12/2021 16:41	14.40	2.46	2.23	3.93	0.008	467.9	48.93	229.3	3.68	3.34	3.68
07/12/2021 16:42	14.42	2,42	2.20	3.91	0.008	465.8	48.70	229.0	3.75	3.41	3.77
07/12/2021 15:42	14.45	2.33	2.13	3.92	0.008	467.0	48.76	230.7	3.90	3.57	3.92
	14.41	2.19	1.99	3,43	0.007	467.0	48.85	229.3	4,05	3.68	4.07
07/12/2021 16:44	14.42	2.19	2.29	3,92	0.007	466.9	48.88	229.5	3,91	3.56	3.92
07/12/2021 16:45	14.42	2.52	2.65	4,90	0.010	465.8	48.89	229.5	3,58	3.26	3.58
07/12/2021 16:46		2.89						229.5			
07/12/2021 16:47	14.42		2.63	4.90	0.010	467.0	48.92		3.38	3.08	3.38
07/12/2021 16:48	14.42	2.82	2.57	4.41	0.009	466.9	48.88	229.5	3.36	3.06	3.38
07/12/2021 16:49	14.42	2.77	2.52	4.42	0.009	467.3	48.88	229.7	3.36	3.06	3.39

	Period Start:	Average 1_02 %	Average 1_NOXPPM ppm	Average 1_NOX_CORR ppm	Average 1_NOX_LBHR #/hr	Average 1_NOX_LBMM #/MBTU	Average 1_GasFlow kecfh	Average 1_LOAD MW	Average 1_STACKFLW kscfm	Average 1_COPPM ppm	Average 1_CO_CORR ppm	Average 1_CO_LBHR #/hr
	07/12/2021 16:50	14.42	2.72	2.48	4.42	0.009	467.6	48.90	229.9	3.38	3.08	3.39
<	07/12/2021 16:51	14.42	2.67	2.43	4.41	0.009	467.0	48.88	229.6	3.39	3.09	3.38
W002,	07/12/2021 16:52	14.42	2.65	2.41	4.41	0.009	466.9	48.89	229.5	3.37	3.07	3.38
8	07/12/2021 16:53	14.42	2.67	2.43	4.41	0.009	466.9	48.89	229.5	3.36	3.06	3.38
2	07/12/2021 16:54	14.42	2.67	2.43	4.42	0.009	467.8	48.89	230.0	3.35	3.05	3.34
AS	07/12/2021 16:55	14.42	2.63	2.39	4.42	0.009	467.8	48.93	230.0	3.37	3.07	3.39
	07/12/2021 16:56	14.42	2.58	2.35	4.42	0.009	467.5	48.91	229.8	3.39	3.09	3.39
-01	07/12/2021 16:57	14.42	2.57	2.34	4.42	0.009	467.7	48.92	229.9	3.42	3.11	3.44
02	07/12/2021 16:58	14.42	2.57	2.34	4.42	0.009	467.8	48.93	230.0	3.44	3.13	3.44
22	07/12/2021 16:59	14.42	2.58	2.35	4.42	0.009	467.7	48.91	229.9	3.42	3.11	3.44
42	07/12/2021 17:00	14.42	2.58	2.35	4.42	0.009	467.9	48.91	230.0	3.42	3.11	3.44
'n	07/12/2021 17:01	14.42	2.57	2.34	4.42	0.009	467.6	48.91	229.9	3.42	3.11	3.44
$\widetilde{\neg}$	07/12/2021 17:02	14.42	2.58	2.35	4.42	0.009	467.7	48.92	229.9	3.42	3.11	3.44
2	07/12/2021 17:03	14.42	2.57	2.34	4.42	0.009	467.6	48.92	229.9	3.43	3,12	3.44
6	07/12/2021 17:04	14.42	2.57	2.34	4.42	0.009	467.6	48.89	229.9	3.43	3.12	3.44
66 –	07/12/2021 17:05	14.42	2.57	2.34	4.42	0.009	457.7	48.92	229.9	3.42	3.11	3.44
0, _	Daily Average*	14.43	2.55	2.32	4.18	0.009	466.6	48.82	229.6	3.50	3.19	3.52
	Maximum*	14.47	2.91	2.65	4.90	0.010	468.3	49.03	230.7	4.05	3.68	4.07
		07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021
		16:10	16:46	16:46	16:47	16:47	16:35	16:05	16:43	16:44	16:44	16:44
	Minimum*	14.40	2.19	1.99	3.43	0.007	457.6	48.00	225.7	3.02	2.76	3.00
		07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021
		16:41	16:44	16:44	16:44	16:44	16:09	16:09	16:09	16:12	16:12	16:12

^{*} Does not include Invalid Averaging Periods ("N/A")

Average Values Report Generated: 7/12/2021 20:35

Company: City Of Anaheim Plant: 3071 Miraloma Ave., City/St: Anaheim, CA, 92806 Source: 1

W002AS-010224-RT-2666

30 of 60

Period Start: 7/12/2021 19:31
Period End: 7/12/2021 20:33
Validation Type: 1/1 min
Averaging Period: 1 min
Type: Block Avg

	Average 1_02	Average 1_NOXPPM	Average 1_NOX_CORR	Average 1_NOX_LBHR	Average 1_NOX_LEMM	Average 1_GasFlow	Average 1_LOAD	Average 1_STACKFLW	Average 1_COPPM	Average 1_CO_CORR	Average 1_CO_LBHR
Period Start:	%	ppm	ppm	#/hr	#/MBTU	kscfh	MM	kscfm	ppm	ppm	#/hr
07/12/2021 19:31	14.43	2.56	2.33	4.44	0.009	470.2	49.02	231.5	3.61	3,29	3.65
07/12/2021 19:32	14.43	2.56	2.33	4.44	0.009	470.0	49.06	231.4	3.61	3.29	3.65
07/12/2021 19:33	14.43	2.56	2.33	4.44	0.009	469.9	49.01	231.4	3.62	3,30	3.65
07/12/2021 19:34	14.43	2.57	2.34	4.44	0.009	470.1	49.02	231.5	3.61	3.29	3.65
07/12/2021 19:35	14.43	2.59	2.36	4.44	0.009	470.0	49.04	231,4	3.61	3.29	3.65
07/12/2021 19:36	14.43	2.58	2.35	4.44	0.009	470.0	49.05	231.4	3.62	3.30	3.65
07/12/2021 19:37	14.43	2.56	2.33	4.44	0.009	470.1	49.05	231.5	3.60	3.28	3.65
07/12/2021 19:38	14.43	2.56	2.33	4.44	0.009	470.0	49.03	231.4	3.59	3.27	3.60
07/12/2021 19:39	14.42	2.57	2.34	4.44	0.009	470.1	49.04	231.1	3.59	3.27	3,60
07/12/2021 19:40	14.42	2.57	2.34	4.44	0.009	470.3	49.05	231.2	3.60	3.28	3.65
07/12/2021 19:41	14.43	2.58	2.35	4.44	0.009	469.8	49.01	231.3	3.60	3.28	3.65
07/12/2021 19:42	14.44	2.62	2.39	4.44	0.009	469.8	49.04	231,7	3.57	3.26	3.60
07/12/2021 19:43	14.43	2.62	2.39	4.44	0.009	470.2	49.04	231.5	3.57	3.26	3.60
07/12/2021 19:44	14.43	2.57	2.34	4.44	0.009	469.9	49.01	231.4	3.60	3.28	3.65
07/12/2021 19:45	14.44	2.55	2.33	4.44	0.009	469.8	49.04	231.7	3.64	3.32	3.70
07/12/2021 19:46	14.44	2.55	2.33	4.44	0.009	470.0	49.03	231.8	3.65	3.33	3.70
07/12/2021 19:47	14.43	2.55	2.33	4.44	0.009	470.0	49.06	231.4	3.65	3.33	3.70
07/12/2021 19:48	14.44	2.56	2.34	4.44	0.009	469.9	49.04	231.7	3.64	3,32	3.70
07/12/2021 19:49	14.44	2.56	2.34	4.44	0.009	470.1	49.03	231.8	3.65	3.33	3.70
07/12/2021 19:50	14.44	2.57	2.35	4.44	0.009	470.0	49.04	231.8	3.64	3.32	3.70
07/12/2021 19:51	14.43	2.57	2.34	4.44	0.009	470.1	49.03	231.5	3.64	3.32	3.65
07/12/2021 19:52	14.43	2.58	2.35	4.44	0.009	470.2	49.04	231.5	3.64	3,32	3,65
07/12/2021 19:53	14.43	2.58	2.35	4.44	0.009	470.1	49.08	231.5	3.63	3.31	3.65
07/12/2021 19:54	14.43	2.57	2.34	4.45	0.009	470.4	49.04	231.6	3.63	3.31	3.65
07/12/2021 19:55	14.43	2.57	2.34	4.45	0.009	470.4	49.05	231.6	3.62	3.30	3.65
07/12/2021 19:56	14.43	2.58	2.35	4.44	0.009	470.2	49.02	231.5	3.63	3.31	3.65
07/12/2021 19:57	14.43	2.59	2.36	4.44	0.009	470.0	49.04	231.4	3.63	3.31	3.65
07/12/2021 19:58	14.43	2.58	2.35	4.44	0.009	469.9	49.03	231.4	3.62	3.30	3.65
07/12/2021 19:59	14.43	2.58	2.35	4.44	0.009	470.0	49.02	231.4	3.61	3.29	3.65
07/12/2021 20:00	14.43	2.57	2.34	4.44	0.009	470.0	49.03	231.4	3.60	3.28	3.65
07/12/2021 20:01	14.43	2.58	2.35	4.44	0.009	470.0	49.03	231.4	3.60	3.28	3.65
07/12/2021 20:02	14.43	2.57	2.34	4.44	0.009	469.8	49.02	231.3	3.61	3.29	3.65
07/12/2021 20:03	14.44	2.57	2.35	4.44	0.009	469.9	49.02	231.7	3.62	3.31	3.65
07/12/2021 20:04	14.44	2.59	2.37	4.44	0.009	469.9	49.04	231.7	3.62	3.31	3.65
07/12/2021 20:05	14.44	2.58	2.36	4.44	0.009	469.9	49.04	231.7	3.62	3.31	3.65
07/12/2021 20:06	14.43	2.57	2.34	4.44	0.009	470.0	49.02	231.4	3.65	3.33	3.70
07/12/2021 20:07	14.43	2.56	2.33	4.44	0.009	470.1	49.04	231.5	3.68	3.36	3.70
07/12/2021 20:08	14.43	2.55	2.33	4.44	0.009	470.1	49.04	231.5	3.67	3.35	3.70
07/12/2021 20:09	14.43	2.55	2.33	4.44	0.009	470.0	49.04	231.4	3.66	3.34	3,70
07/12/2021 20:10	14.43	2.56	2.33	4.44	0.009	470.1	49.05	231.5	3.65	3.33	3.70
07/12/2021 20:11	14.43	2.62	2.39	4.44	0.009	470.0	49.03	231.4	3.65	3,33	3.70
07/12/2021 20:12	14.43	2.63	2.40	4.44	0.009	469.8	49.02	231.3	3.65	3.33	3.70
07/12/2021 20:13	14.43	2.59	2.36	4.44	0.009	470.1	49.01	231.5	3.65	3.33	3.70
07/12/2021 20:13	14.44	2.59	2.37	4.44	0.009	469.9	49.02	231.7	3.66	3.34	3.70
07/12/2021 20:15	14.44	2.59	2.37	4.44	0.009	469.8	49.02	231.7	3.67	3.35	3.70
07/12/2021 20:15	14.44	2.59	2.37	4.44	0.009	470.0	49.04	231.8	3.67	3.35	3.70
07/12/2021 20:17	14.45	2.59	2.37	4.44	0.009	469.9	49.02	232,1	3.65	3.34	3.70
C./IE/EVET EV.II	74147	0.73	4.3/	4.44	0.003	402.2	45.00	232,1	3.03	3.34	3.70

	Period Start:	Average 1_02 %	Average 1_NOXPPM ppm	Average 1_NOX_CORR ppm	Average 1_NOX_LBHR #/hr	Average 1_NOX_LBMM #/MBTU	Average 1_GasFlow kscfh	Average 1_LOAD MW	Average 1_STACKFLW kscfm	Average 1_COPPM ppm	Average 1_CO_CORR ppm	Average 1_CO_LBHR #/hr
- 1	07/12/2021 20:18	14.45	2.58	2.36	4.44	0.009	470.0	49.05	232.1	3.65	3.34	3.70
<	07/12/2021 20:19	14.45	2.57	2.35	4.44	0.009	469.9	49.03	232.1	3.66	3.35	3.70
\leq	07/12/2021 20:20	14.45	2.57	2.35	4.44	0.009	469.9	49.03	232.1	3.66	3.35	3.70
W002	07/12/2021 20:21	14.45	2.58	2.36	4.44	0.009	470.1	49.05	232.2	3.66	3.35	3.70
2	07/12/2021 20:22	14.44	2.58	2.36	4.44	0.009	470.1	49.03	231.8	3,67	3.35	3.70
AS	07/12/2021 20:23	14.44	2.59	2.37	4.44	0.009	469.8	49.04	231.7	3.67	3.35	3.70
1	07/12/2021 20:24	14.44	2.58	2.36	4.44	0.009	469.6	49.00	231.6	3,66	3.34	3.70
2	07/12/2021 20:25	14.44	2.58	2.36	4.44	0.009	469.9	49.04	231.7	3.66	3.34	3.70
02	07/12/2021 20:26	14.43	2.57	2.34	4.44	0.009	469.9	49.02	231.4	3.66	3.34	3.70
22	07/12/2021 20:27	14.44	2.56	2.34	4.44	0.009	469.8	49.05	231.7	3.67	3.35	3.70
4	07/12/2021 20:28	14.44	2.56	2.34	4.44	0.009	470.1	49.03	231.8	3.68	3.36	3.70
ż	07/12/2021 20:29	14.44	2.57	2.35	4.44	0.009	469.9	49.06	231.7	3.69	3.37	3.75
Ã	07/12/2021 20:30	14.45	2.56	2.34	4.44	0.009	469.8	49.04	232.0	3.69	3.38	3.75
2	07/12/2021 20:31	14.44	2.56	2.34	4.44	0.009	469.8	49.05	231.7	3.70	3.38	3.75
တ	07/12/2021 20:32	14.44	2.58	2.36	4.44	0.009	470.0	49.02	231.8	3.68	3.36	3.70
66 -	07/12/2021 20:33	14.44	2.58	2.36	4.44	0.009	469.9	49.04	231.7	3.67	3.35	3.70
0, -	Daily Average*	14.44	2.58	2.35	4.44	0.009	470.0	49.03	231.6	3.64	3.32	3.68
	Maximum*	14.45	2.63	2,40	4.45	0.009	470.4	49.08	232.2	3.70	3.38	3.75
		07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021	07/12/2021
		20:30	20:12	20:12	19:55	20:33	19:55	19:53	20:21	20:31	20:31	20:31
	Minimum*	14.42	2.55	2.33	4.44	0.009	469.6	49.00	231.1	3.57	3.26	3.60
		07/12/2021	07/12/2021 20:09	07/12/2021 20:10	07/12/2021 20:33	07/12/2021 20:33	07/12/2021 20:24	07/12/2021 20:24	07/12/2021 19:39	07/12/2021 19:43	07/12/2021 19:43	07/12/2021 19:43
		-21.40	50105	00,120	50155	00,00	90.22	89185	20,000	22,00	25.150	

^{*} Does not include Invalid Averaging Periods ("N/A")

APPENDIX C CALCULATIONS

Appendix C.1 General Emissions Calculations

GENERAL EMISSIONS CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \% CO_2 + 0.32 * \% O_2 + 0.28 * \% N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$P_{s} = P_{bar} + \frac{P_{sg}}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_m * \left(P_{bar} + \frac{\Delta H}{13.6}\right) * \frac{T_{ref}}{T_m} * Y_d$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{ic} * \frac{T_{ref}}{528 ° R}$$

C. Moisture content, dimensionless

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

III. Stack Gas Volumetric Flow Rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Southern California Public Power Authority - Canyon 3Q21 Unit 1 NH_3

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, lb/MMBtu

$$\frac{\text{lb}}{\text{MMBtu}} = \frac{\text{ppm * MW}_{i} * F}{\text{SV * } 10^{6}} * \frac{20.9}{20.9 - \% O_{2}}$$

VI. Percent Isokinetic

$$I = \frac{17.32 * T_s (V_{mstd})}{(1 - B_{wo}) 0 * V_s * P_s * Dn^2} * \frac{520 °R}{T_{ref}}$$

- VII. Particulate Emissions
 - (a) Grain loading, gr/dscf $C = 0.01543 (M_n/V_{m std})$
 - (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
 - (c) Mass emissions, lb/hr $M = C * Q_{sd} * (60 min/hr) / (7000 gr/lb)$
 - (d) Particulate emission factor

Ib/10⁶ Btu = Cx
$$\frac{1 \text{ lb}}{7000 \text{ gr}}$$
 * F * $\frac{20.9}{20.9 - \% O_2}$

stack area, ft2

Nomenclature:

 A_s

flue gas moisture content, dimensionless B_{wo} $C_{12\%CO2}$ particulate grain loading, gr/dscf corrected to 12% CO₂ particulate grain loading, gr/dscf С pitot calibration factor, dimensionless C_p = = nozzle diameter, inches Dn fuel F-Factor, dscf/MMBtu @ 0% O2 F = orifice differential pressure, iwg Н = = % isokinetics 1 = mass of collected particulate, mg M_n = mass emission rate of specie i, lb/hr Mi molecular weight of flue gas, lb/lb-mole MW molecular weight of specie i: M_{wi} SO₂: 64 46 NO_x : CO: 28 HC: 16 0 sample time, minutes average velocity head, iwg = $(\sqrt{\Delta P})^2$ ΔΡ = barometric pressure, inches Hg P_{bar} = stack absolute pressure, inches Hg P_s = P_{sg} = stack static pressure, iwb wet stack flow rate at actual conditions, wacfm = Q = dry standard stack flow rate, dscfm Q_{sd}

SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole T_m = meter temperature. °R

 T_m = meter temperature, °R T_{ref} = reference temperature, °R T_s = stack temperature, °R V_s = stack gas velocity, ft/sec

 V_{lc} = volume of liquid collected in impingers, ml

V_m = uncorrected dry meter volume, dcf

V_{mstd} = dry meter volume at standard conditions, dscf V_{wstd} = volume of water vapor at standard conditions, scf

Y_d = meter calibration coefficient

Appendix C.2 Spreadsheet Summaries

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U1

Identifier	Description	Units	Equation	Value
Α	Reference Temperature	6		60
В	Reference Temperature	R	A + 460	520
C	Meter Calibration Factor (Yd)	1 1		0.992
D	Barometric Pressure	" Hg		29.68
E	Meter Volume	acf	-	36.350
F	Meter Temperature	E		83.1
G	Meter Temperature	R	F + 460	543.1
H	Delta H	" H ₂ O	-	1.0
1.	Meter Volume (standard)	dscf	0.03342 * E * (D + H/13.6) * B/G * C	34.331
J	Liquid Collected	grams		95.9
K	Water vapor volume	scf	0.0472 * J * B/528	4.458
L	Moisture Content		K/(K + I)	0.115
M	Gas Constant	ft-lbf/lb-mole-R		1545.33
N	Specific Molar Volume	SCF/lb-mole	385.3 * B / 528	379.5
0	F-Factor	dscf/MMBtu	-	8,710
P	HHV	Btu/SCF		1,050
Q	Mass Conversion Factor	lb/ug	C.E.	2.2046E-09
R	O ₂ Correction Factor	-	14	15
S	Stack Flow Rate @ 68 F	dscfm	10 At 100	229,600
T	Stack Flow Rate @ Tref	dscfm	S * B/528	226,121
U	Mass NH ₃	ug	in the	1,029
V	Mass NH ₃	lb	U*Q	2.27E-06
W	MW of NH ₃	lb/lb-mole	÷	17.03
X	NH ₃	ppm	(V * N *10°)/(I * W)	1.5
Y	Flue Gas O ₂	%		14.43
Z	NH ₃	ppmc	X * (20.9 - R)/(20.9 - Y)	1.3
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10°)	0.9
AB	NH ₃	lb/MMBtu	(X * W * O)/(385.3 * 10°) * 20.9/(20.9 - Y)	0.002
AC	NH ₃	Ib/MMSCF	AB + P	1.9

Note:

⁽¹⁾ Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility Unit Sample Location	Canyon U1 Stack		Fuel		NH ₃ Natural gas
Test Number	1-NH3-U1	2-NH3-U1	Average	Maximum	JG Limit
Reference Temperature (°F)	60 7/12/2021 SCAQMD 207 1 23-WCS 0.992 106.90 60	60 7/12/2021 SCAQMD 207 1 23-WCS 0.992 106.90 60	Average	Waximum	Limit
Barometric Pressure ("Hg)	29.68	29.68		-	
Start/Stop Time Meter Volume (acf)	1603/1706 36.350	1731/1834 36.145			
Meter Temperature (°F)	83.1 1.0 95.9	82.6 1.0 94.9 14.44 49	14.44 48.9	(from facility CEN	MS)
Standard Sample Volume (SCF)	34.331	34.169	75.6		
Moisture Fraction	0.115	0.114			
Stack Flow Rate (dscfm, 68 °F) Stack Flow Rate (@ Tref)	229,600 226,121	231,600 228,091	230,600 227,106	(from facility CEN	MS)
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH ₃ (lb/lb-mole)	17.03	17.03	R		
Specific Molar Volume (ft ³ /lb-mole) F-Factor (dscf/MMBtu) HHV(Btu/SCF) Mass Conversion (lb/ug) O ₂ Correction Factor (%)	379.5 8,710 1,050 2.2046E-09	379.5 8,710 1,050 2.2046E-09			
Mass NH ₃ (ug)	1,029	1,012			
Mass NH ₃ (lb)	2.27E-06	2.23E-06			
NH ₃ (ppmv, flue gas)	1.47	1.45	1.46	1.47	
NH ₃ (ppmv @ O ₂ Correction Factor)	1.34	1.33	1.34	1.34	5
NH ₃ (lb/hr)	0.90	0.89	0.89	0.90	
NH ₃ (lb/MMBtu) NH ₃ (lb/MMSCF)	0.002 1.92	0.002 1.90	0.002 1.91	0.002 1.92	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (Montrose) ASTM D7036-04 certification, Montrose is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. Montrose quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

<u>Assignment of an Internal QA Officer</u>: Montrose has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: Montrose has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of Montrose's QA efforts. The manual is revised upon periodic review and as Montrose adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. Montrose training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the Montrose QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of Montrose's emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: Montrose maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: Montrose maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to Montrose source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to Montrose office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, will be present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)

The following safety measures will be followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	1. Steam clean 2. Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling lines	1. Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	+/- 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	+/- 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	+/- 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	+/- 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	+/- 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	+/- 1.5%

Note: Calibration requirements that meet applicable regulatory agency requirements will be used.

Appendix D.2 SCAQMD and STAC Certifications

21865 Copley Drive, Diamond Bar, CA 91765-4178 (909) 396-2000 • www.aqmd.gov

September 9, 2020

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice

Reference # 96LA1220

Dear Mr. Peterson:

We have reviewed your renewal letter under the South Coast Air Quality Management District's Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2020, and ending September 30, 2021 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

Methods 1-4 Methods 5.1, 5.2, 5.3, 6.1

Methods 10.1 and 100.1 Methods 25.1 and 25.3 (Sampling)
USEPA CTM-030 and ASTM D6522-00 Rule 1121/1146.2 Protocol

Rule 1420/1420.1/1420.2 - (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna BoilerNoritz America Corp.Ajax Boiler, Inc.1510 North Spring Street11160 Grace Avenue2701 S. Harbor Blvd.Los Angeles, CA 90012Fountain Valley, CA 92708Santa Ana, CA 92704

Laundry Building of VA Greater Los Angeles Healthcare System 508 Constitution Avenue Los Angeles, CA 90049

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov.

Sincerely,

Dipankar Sarkar

Program Supervisor
Source Test Engineering

DS:GK/gk Attachment

200909 LapRenewalRev.doc

Chaning the ab that we have the

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3925.01 Valid to February 28, 2022

Presented this 11th day of February 2020

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

Appendix D.3 Individual QI Certificate

CERTIFICATE OF COMPLETION

John Groenenboom

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Methods 1.1 – 4.1

Certificate Number: 002-2017-58

Ite Stall

DATE OF ISSUE:

1/18/17

Tate Strickler, Accreditation Director

DATE OF

EXPIRATION:

1/18/22

CERTIFICATE OF COMPLETION

John Groenenboom

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Method 207.1

Certificate Number: 002-2017-51

Ite Stall

DATE OF ISSUE:

1/17/17

Tate Strickler, Accreditation Director

DATE OF EXPIRATION:

1/17/22

Appendix D.4 Statement of No Conflict of Interest

STATEMENT OF NO CONFLICT OF INTEREST AS AN INDEPENDENT TESTING LABORATORY

(To be completed by authorized source testing firm representative and included in source test report)

The following facility and equipment were tested by my source testing firm and are the subjects of this statement:

Facility ID:	153992
Date(s) Tested:	July 12, 2021
Facility Name:	Canyon Power
Equipment Address:	3071 E. Mira Loma Ave.
	Anaheim, California 92806
Equipment Tested:	Unit 1
Device ID, A/N, P/N:	D1

I state, as its legally authorized representative, that the source testing firm of:

Source Test Firm: Montrose Air Quality Services, LLC

Business Address: 1631 E. St. Andrew Pl.

Santa Ana, California 92705

is an "Independent Testing Laboratory" as defined in *District Rule 304(k):*

For the purposes of this Rule, when an independent testing laboratory is used for the purposes of establishing compliance with District rules or to obtain a District permit to operate, it must meet all of the following criteria:

- (1) The testing laboratory shall have no financial interest in the company or facility being tested, or in the parent company, or any subsidiary thereof -
- (2) The company or facility being tested, or parent company or any subsidiary thereof, shall have no financial interest in the testing laboratory:
- (3) Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere, or parent company or any subsidiary thereof shall have no financial interest in the testing laboratory; and
- (4) The testing laboratory shall not be in partnership with, own or be owned by, in part or in full, the contractor who has provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems, for the company being tested.

Furthermore, I state that any contracts or agreements entered into by my source testing firm and the facility referenced above, or its designated contractor(s), either verbal or written, are not contingent upon the outcome of the source testing or the source testing information provided to the SCAQMD.

Signature:	2/	Date: 8/4/2	2021
John Groenenboom	Client Project Manager	(714) 279-6777	8/4/2021
(Name)	(Title)	(Phone)	(Date)

FORM ST-110 :stevforl.doc (Revised 11/18/98

APPENDIX E APPLICABLE PERMIT SECTIONS

Section D
Facility ID:
Revision #:

153992

Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
RVACION				
Di	C	NOX; MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 6-3-2011]; NOX: 2.5 PPMV NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RÜLE 475, 10-8-1976; RULE 473, 8-7-1978]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5) [RÜLE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5C) [RÜLE 1303(b)(2)-Offset, 5-10-1996; RÜLE 1303(b)(2) -Offset, 12-6-2002]; PM10: 11 LBS/HR NATURAL GAS (5B) [RÜLE 475, 8-7-1978]; SOZ: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SOX: 0.06 LBS/MMBTÜ NATÜRAL GAS (8) [40CFR 60 Subpart KKKN, 7-6-2006]; VOC: 2 PPMV NATÜRAL GAS (4) [RÜLE 1303(a)(1)-BACT, 12-6-2002]	A63.1, A99.1, A99.2, A99.3, A195.1, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1
	gay you	No. To	No. To Source Type/ Monitoring Unit D1 C3 NOX; MAJOR	No. To Source Type/ Monitoring Unit CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2001; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 6-3-2011]; NOX: 25 PPMV NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; PM10: 11 GRAINS/SCF NATURAL GAS (5C) [RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2) -Offset, 12-6-2002]; PM10: 11 LBS/HR NATURAL GAS (5C) [RULE 455, 10-8-1976; RULE 475, 8-7-1978]; SO2: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SOX: 0.06 LBS/MBTU NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1)-BACT, 5-10-1996;

*	/IN/IAY/IRY	Denotes RECT	AIM emission factor
	(17(11)(11))	Denotes recu	WITH CHIPSHOT BEIN

(3) Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

(7) Denotes NSR applicability limit

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(9) See App B for Emission Limits (10) See section J for NESHAP/MACT requirements
 ** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

Facility ID: Revision#: November 06, 2015 Date:

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Gluse Charles Manager		能量影響			
CO OXIDATION CATALYST, NO. 1, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476654	C3	DI C4			
SELECTIVE CATALYTIC REDUCTION, NO. 1, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH: 18 FT WITH A/N: 476654 AMMONIA INJECTION	64	C3 86		NH3: 5 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]	A195.4, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 1, HEIGHT: 86 FT; DIAMETER: 11 FT 8 IN A/N: 555828	S6	C4			

Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

(7) See App B for Emission Limits

Denotes NSR applicability limit

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

See section J for NESHAP/MACT requirements (10)

^{(1) (1}A) (1B) Denotes RECLAIM emission factor

Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

Section D Page: 29 Facility ID: 153992 Revision#: 3

Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition: C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 9-7-2012; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-10-2010; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart HII, 1-30-2013]

[Devices subject to this condition: D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location
NH3 emissions	District method 207.1	1 hour	Outlet of the SCR
	and 5.3 or EPA method	1	serving this equipment

| Section D | Page: 30 | Facility ID: 153992 | Revision #: 3 | Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

The test(s) shall be conducted at least quarterly during the first twelve months of operation and at least annually thereafter. The AQMD shall be notified of the date and time of the test at least 10 days prior to the test.

If the turbine is not in operation during one calendar year, then no testing is required during that calendar year.

The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using District Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted and the results submitted to the District within 60 days after the test date.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

[RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1)-BACT, 12-6-2002]

[Devices subject to this condition: D1, D7, D13, D19]

D29.3 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Sampling Time	Test Location
SOX emissions	AQMD Laboratory Method 307-91	Not Applicable	Fuel sample
VOC emissions	District Method 25.3	1 hour	Outlet of the SCR serving this equipment
PM emissions	District method 5.1	4 hours	Outlet of the SCR serving this equipment

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. John Groenenboom Title: Client Project Manager

Region: West

Email: <u>JGroenenboom@montrose-env.com</u>

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

Email: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

TEST REPORT FOR 3Q21 AMMONIA SLIP TEST AT CANYON POWER PLANT UNIT 2 FACILITY ID: 153992, DEVICE ID: D7

Prepared For:

Canyon Power Plant

3071 E. Mira Loma Ave. Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District

21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 282-8240

John Groenenboom

Test Date: July 13, 2021
Production Date: August 4, 2021

Report Number: W002AS-010224-RT-2668

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:		Date:	8/4/2021
Name:	John Groenenboom	Title:	Client Project Manager
appropriate writte the presented m	en materials contained her	ein. I hereby cote, and conforr	llations, results, conclusions, and other ertify that, to the best of my knowledge, ms to the requirements of the Montrose
Signature:	Sun	Date:	8/4/2021
Name:	Surya Adhikari	Title:	QC Reporting Manager

TABLE OF CONTENTS

SEC	CTION	<u>N</u>	<u>PAGE</u>
1.0	INTF	RODUCTION AND SUMMARY	5
2.0	UNI	T DESCRIPTION	6
	2.1	UNIT DESCRIPTION	6
	2.2	TEST CONDITIONS	7
	2.3	SAMPLE LOCATION	7
3.0	TES	T DESCRIPTION	8
4.0	TES	T RESULTS AND OVERVIEW	9
	4.1	TEST RESULTS	9
	4.2	TEST OVERVIEW	9
LIS	T OF	APPENDICES	
Α	RAW	V DATA	10
	A.1	Sample Data Sheets	11
	A.2	Laboratory Data	16
	A.3	QA/QC Data	23
В	FAC	ILITY CEMS DATA	27
С	CAL	CULATIONS	32
	C.1	General Emissions Calculations	33
	C.2	Spreadsheet Summaries	37
D	QUA	ALITY ASSURANCE	40
	D.1	Quality Assurance Program Summary	41
	D.2	SCAQMD and STAC Certifications	47
	D.3	Individual Qi Certificate	50
	D.4	Statement of No Conflict of Interest	53
Е	APP	LICABLE PERMIT SECTIONS	55
LIS	T OF	TABLES	
1-1	AM	MONIA SLIP TEST RESULTS SUMMARY	5
4-1	AM	MONIA SLIP TEST RESULTS	9
LIS	T OF	FIGURES	
2-1	UNI	IT BLOCK DIAGRAM	6
3-1	SC/	AQMD METHOD 207.1 SAMPLE EQUIPMENT	8

1.0 INTRODUCTION AND SUMMARY

Montrose Air Quality Services, LLC (MAQS), was contracted by the Canyon Power Plant to perform an ammonia slip test at Unit 2 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on July 13, 2021. The tests were performed by John Groenenboom, Danny Avila, and Randy Monzon. John Groenenboom was the on-site Qualified Individual for MAQS. MAQS qualifies as an independent testing laboratory under SCAQMD Rule 304 (no conflict of interest) and is certified by the SCAQMD to conduct testing for criteria pollutants according to District Methods. Bertha Hernandez coordinated the test for Canyon Power Plant.

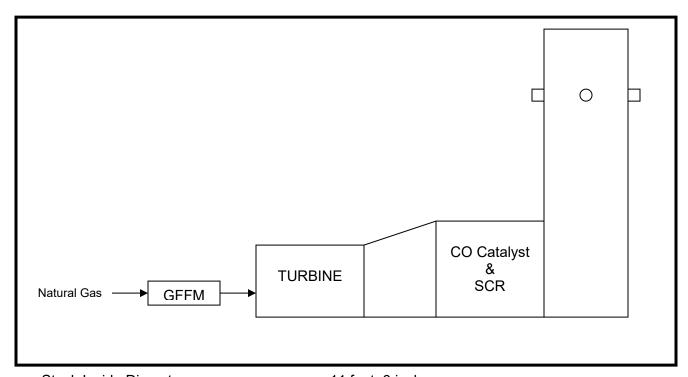
The test consisted of duplicate ammonia tests performed at 49 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to $15\% O_2$.

TABLE 1-1 AMMONIA SLIP TEST RESULTS SUMMARY CANYON POWER PLANT UNIT 2 JULY 13, 2021

Parameter	Result ⁽¹⁾	Limit	
NH₃			
ppm	1.8		
ppmc	1.7	5	

⁽¹⁾ Maximum of duplicate runs, as required by SCAQMD Method 207.1

Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.



2.0 UNIT DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46°F, with water injection. The units are equipped with a CO catalyst and Selective Catalytic Reduction (SCR) system for NO_x control. Figure 2-1 presents a block diagram of the unit.

FIGURE 2-1
UNIT BLOCK DIAGRAM
CANYON POWER PLANT

Stack Inside Diameter:

11 feet, 8 inches

Distance from Upstream Disturbance:

23 feet, 4 inches (2.0 Diameters)

Distance from Stack Exit:

16 feet, 6 inches (1.4 Diameters)

2.2 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 49 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.3 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack location. Each test was performed over a 60 minute interval. The sample gas was drawn through a titanium probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by Ion Specific Electrode analysis. Figure 3-1 presents a diagram of the sampling equipment.

Stack O_2 and NO_x concentrations and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O_2 .

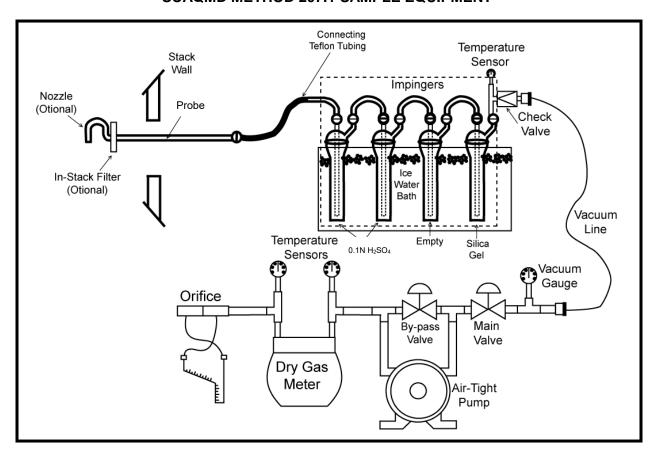


FIGURE 3-1
SCAQMD METHOD 207.1 SAMPLE EQUIPMENT

4.0 TEST RESULTS AND OVERVIEW

4.1 TEST RESULTS

The results of the test are summarized in Table 4-1. The results show that the ammonia slip was 1.7 ppm @ 15% O₂ which is less than the permitted limit of 5 ppm @ 15% O₂.

TABLE 4-1
AMMONIA SLIP TEST RESULTS
CANYON POWER PLANT
UNIT 2
JULY 13, 2021

Parameter/Units	Run 1	Run 2	Average	Maximum ⁽¹⁾	Limit
Test	1-NH ₃ -U2	2-NH ₃ -U2			
Date	7/13/2021	7/13/2021			
Time	1553/1656	1735/1838			
O ₂ , % ⁽²⁾	14.62	14.61	14.62		
Stack Flow, dscfm @ T _{ref} (2)	232,129	233,212	232,670		
NO _x , ppmc ⁽²⁾	2.3	2.3	2.3		2.5
NH ₃ ppm ppmc lb/hr lb/MMBtu lb/MMSCF	1.8 1.7 1.1 0.002 2.4	1.8 1.7 1.1 0.002 2.4	1.8 1.7 1.1 0.002 2.4	1.8 1.7 1.1 0.002 2.4	5

⁽¹⁾ Maximum of duplicate test runs, as required by SCAQMD Method 207.1

4.2 TEST OVERVIEW

The test program was successful in meeting the program objectives. The sample train was leak checked before and after the test and all QA/QC requirements of SCAQMD Method 207.1 were satisfied.

⁽²⁾ From facility CEMS

APPENDIX A RAW DATA

Appendix A.1 Sample Data Sheets

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

LOCATION DATE: RUN NO OPERATION METER METER METER STACK A TRAVER AH= Probe Co	EDOR: COR: COR: COR: COR: COR: COR: COR: C	Canyon 7/13/24 1-N4 1-N4 1-N4 1-N4 1-N4 1-N4 1-N4 1-N	2 5/12 outlined	BAROMI ASSUME PITOT T PROBE PROBE NOZZLE NOZZLE FILTER I PRE-TES POST-TI	T TEMPERATU ETRIC PRESSL ED MOISTURE: UBE COEFF, C ID NO/MATERI LENGTH: 8 / ID NO/ MATER DIAMETER: NO/TYPE: ST LEAK RATE EST LEAK RATE EAK CHECK - F OF CUSTODY:	P: AL: RIAL: CO COT CFI ELO COCC	M@ 104 POST: I	in. Hg. in. Hg.	1	0,1 H		28648	8 50 56 56
Doint	Time	Meter	ΔP in. H₂O	ΔH in. H ₂ O	Stack Tomp °F	Probe Temp, °F	Filter	Imp. Out Temp, °F	Meter 7	Temp, °F	Vacuum	O ₂	Pstatic
Point	/553	Volume, ft ³	N. H2U	/. O	Temp, °F	P(P)	Temp, °F	remp, r	28	85	in, Hg.	%	in. H ₂ O
3	155 8	5/5/505	PUV	1.0	10104	7.1.	Novi	2/	000	83	2		MA
4	1603												1
E	1608		- 11	11 - 1 - 1			7						
3	1609	582.760		1.0				56	91	88	3		
1	1614			V				7.	1-4-				1
- 1	1619												
E	1624	591.535		-	- 1								
3		591.535		1.0				54	92	88	3		1 2
d	1630		1						-	-			1
-	1635		_			-		-	-	-	-		1
E	1640	600.270		1.0				-	93	89	3		1-1-
1	1646	000.00		1.0				33	7.)	01	/		1
0	1651												
6		1009.735				1	7 2 1						
	1423-	100		1									
						PASS							
											i i		
			J										1 7 1
										-			
A													-

Date of last revision 2/14/2017

Comments:

DS834048
Master Document Storage\Forms\Datasheets\Field Datasheets

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

METER A METER A STACK A TRAVER ΔH= Probe Co Silica Ge	ON: OR: BOX NO: AH@: Yd: X AP: Dondition, p I Expende	re/post test:	\$/1> \$/1>	BAROMI ASSUME PITOT T PROBE I PROBE I NOZZLE NOZZLE FILTER I PRE-TES POST-TI PITOT LI	T TEMPERATU ETRIC PRESSU ED MOISTURE: UBE COEFF, C ID NO/MATER! LENGTH: ID NO/ MATER DIAMETER: NO/TYPE: EST LEAK RATE: EAK CHECK - F OF CUSTODY:	PIAL:	POST:	n. Hg. n. Hg.	1	0.1 NH 0.1 H SC	Soy 867. Soy 683. Soy 683. 346. 622.s 901.3	6 690. 0 682.	6 0 1,9 3,5
5.14	T	Meter	ΔΡ	ΔΗ	Stack	Probe	Filter	Imp. Out		emp, °F	Vacuum	O ₂	Pstatic
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	90	Out 8 7	in. Hg.	%	in. H ₂ O
- 5	17:40	611,910	MUA	1.0	nut	MA	mo	51	90	10/	>		and .
-	1745		(1						
E	1750									1970			
3	1751	620,895		1.0			1 = 1 : 11 = -	56	92	89	3		
d	1756											1	
	1001												
0	180b						1			-			1
3		630.000		1-0				54	91	87	3		
1	1012									-			
	1817	-			-				-	-			1
- 8	1822	638.905		1-0				54	39	36	7		1
1	1816	630,703		100				2 (- (200			
1	1820			1			7 1						
E	1938	648,110					9 - 1						
												1	1
							y .		-	-			
-			1						-				
			_										
Average:													

Comments: _

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

Check Weight: SOCIAL SOCI	1 5 4 4
Point Time Volume, ft3 in. H ₂ O in. H ₂ O Temp, °F Temp, °F Temp, °F Temp, °F In Out in. Hg.	D ₂ Pstatic
	% in. H ₂ O
	-

Comments:

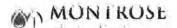
Average:

1-NH3-U2

Point	Meter Volume	Delta H	Tm In	Tm Out
6	573.565	1.0	88	85
5			91	88
4			92	88
3			93	89
2				
1				
Stop				
6				
5				
4				
3				
2				
1				
Stop	609.735			
Result	36.170	1.0	8	9.3

Impinger Weights

#	Post-Test	Pre-Test	Difference
1	754.9	578.8	176.1
2	650.8	648.0	2.8
3	578.0	576.8	1.2
4	992.4	982.6	9.8
Line Rinse	0.0	100.0	-100.0
			89.9


2-NH3-U2

Point	Meter Volume	Delta H	Tm In	Tm Out
6	611.910	1.0	90	87
5			92	89
4			91	87
3			89	86
2				
1				
Stop				
6				
5				
4				
3				
2				
1				
Stop	648.110			
Result	36.200	1.0	81	3.9

#	Post-Test	Pre-Test	Difference
1	867.6	690.6	177.0
2	683.0	682.0	1.0
3	622.5	621.9	0.6
4	901.3	893.9	7.4
Line Rinse	0.0	100.0	-100.0
			86.0

Appendix A.2 Laboratory Data

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS

Project #: PRO) -0 10224	District Method: S	CAQMD 207.1	Sample Date:	7/13/2021
Client/Location: SCRRA	Calibration Date:_	rostrite	Analysis Date:	4114/2021
Sample Location: Unil2	Calibration Curve:	V= -54.1114x1 45.8	Analyst's	Initials: Li
Test#s: 1-2- WW - UZ	R2: 0.9998	Room	n Temperature (%	C): 20.0

Sample	Total Vol. (mL)	Electrode Potential (mV)	Conc. µg NHs – N/ml	Cavg (µg NH ₃ – N/ml)	μg NH₃ / sample	T (°C)	Blue after + ISA (Y/N)	рН	% R
Standard Check: 28 µg NH ₃ /ml		9.5	28: 850	18,794		20.0 Y	Υ		
20 μg NH3/III	-	9.6	28.738			20.0	γ	-	2.83 6
1-NH ₃		77.8	2.017		1252,594	20.0	Y	77	
1-14113	569.9	77.7	2.025	2.021	1252,574	20:0	У		
2-NH3	lanar Fe	80.3	1.830	1,819	1002	20.05	γ	22	-
	1551 G	80.6	1.869		1219.777	20.0	γ		
Spike: 1-MD +2ml 1000ppm NH3		اله.١	22.310	22. 137		20.6	Y	-	104.81
тооорригича	-	16.5	21.965			20.0	Ÿ		
Standard Check:		9.5	28.850	28 794		20.0	¥		2.53
28 μg NH3/ml	_	CI. Ve	28.738		-	20.0	Y		2.836
Reagent Blank 0.1N H ₂ SO ₄		197.5	0.019	0.019	-	20.0	Y	-	-
U. 114 712004	-	197.77	0.019			20.0	γ		
DI H ₂ O Blank	-	178	0.017	0.00		20.0	γ		
		200.9	0.017	0.017		20.0	γ	-	-
Field Blank	10. 4	195.5	0.021	1002	2.5	20.0	У	42	
	396.3	195.5	0.021	0.021	9.916	6.05	Υ		-
Standard Check:		cı. 4	28.963	Jan. F	1	20.0	Y		
28 μg NH3/ml	-	9.4	28,963	28.963		20.0	γ	-	3.438

Notes:

Total volume of samples and standards used: 100 - 1

LNA 1305/11/1

Volume of pH adjusting ISA used in ml:

Calculations:

Absorbing solution: $O \cdot I \times V_0 \cdot V_0 \cdot$

Cavg = average result of duplicate analyses (µg NH₃ - N / ml) = (C1+C2)/2

μg NH₃ / sample = Cavg* 17.03/ 14.01 * TV

mg / sample = µg /sample + 1000

ppm NH₃ = mg NH₃/sample x 1/Vmstd x 1/454000 x SV/17 x 10⁶

MONTROSE

DS834059

Master Document Storage\Forms\Datasheets\Lab Forms

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION

Project Number:

PROJ-10224

Client/ Location:

SCPPA

Sample Location:

Stack

District Method:

SCAQMD 207.1

Sample Date:

7/13/2021

Analysis Date:

7/14/2021

Analyst's Initials:

LM

Calibration Curve Slope

-59.1114 95.8114

Y-intercept R²

0.9998

Sample	P mV	Conc. μg NH ₃ /ml as N	C avg as N	TV (ml)	C avg as NH ₃	μg NH ₃ / sample
28 ug NH ₃ / ml as N	9.5	28.850				
Repeat 28ug NH ₃ /ml as N	9.6	28.738	28.794	NA	35.001	NA
1-NH ₃	77.8	2.017				
Repeat 1- NH ₃	77.7	2.025	2.021	509.9	2.457	1252.596
2-NH3 Repeat 2- NH3	80.3 80.6	1.830 1.809	1.819	551.6	2.211	1219,777
spike 1-NH ₃ Repeat 1-NH3 spike	16.1 16.5	22.310 21.965	22.137	NA	26,909	NA
28 NH ₂ /ml as N	9.5	28.850				
Repeat 28 ug NH ₃ /ml as N	9.6	28.738	28.794	NA	35.001	NA
Resgent Blank Repeat Reagent Blank	197.5 197.7	0.019 0.019	0.019	NA	0.023	NA
Field Blank Repeat Field Blank	195.5 195.5	0.021 0.021	0.021	396.3	0.025	9.916
DI H2O Blank Repeat DI H2O Blank	201.0 200.9	0.017 0.017	0.017	NA	0.020	NA.
28 NH ₃ /ml as N	9.4	28.963	11 7 72 2 2 17			
Repeat 28 ug NH ₃ /ml as N	9.4	28.963	28.963	NA	35.206	NA

Notes:

Measured Concentration of Ammonia (C) in μg NH₃ / ml as N C=10^{(P-B)/M}

P = electrode potential (mV), M=slope and B=intercept

Average Measured Ammonia Concentration (Cavg) = (C1 + C2)/2

where C1, C2 results from duplicate analyses (µg NH3/ml as N)

Cavg (µg NH₃/ml as NH₃) = Cavg (µg NH₃/ ml as N) * 17.03/ 14.01

μg NH₃ / sample = Cavg (μg NH₃/ml as NH₃) * TV

Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate.

All solutions turned blue and remained blue with ISA unless otherwise indicated.

Sample PH and Temperatures can be found on the laboratory datasheet.

Maximum samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL

Project Number:

PROJ-10224

Client/ Location:

SCPPA

Sample Location:

Stack

District Method:

SCAQMD 207.1

Sample Date:

7/13/2021

Analysis Date:

7/14/2021

Analyst's Initials:

LM

Sample	% recovery	RPD %	RPA %
28 ug NH3 / ml as N epeat 28ug NH3/ml as	NA	0.39	2.836
1-NH3 Repeat 1- NH3	NA	-0.39	NA
2-NH3 Repeat 2- NH3	NA	1.17	NA
spike 1-NH3 Repeat 1-NH3 spike	104.81	1.56	NA
28 NH3/ml as N epeat 28 ug NH3/ml as	NA	0.39	2.836
Reagent Blank Repeat Reagent Blank	NA	0.78	NA
Field Biank Repeat Field Blank	NA	0.00	NA
DI H2O Blank Repeat DI H2O Blank	NA	-0.39	NA
28 NH3/ml as N epeat 28 ug NH3/ml as	NA	0.00	3.438

Notes:

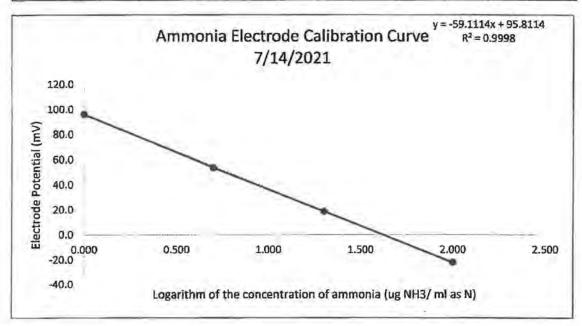
spike: 100 ml sample + 2 ml (1000 µg NH₃ / ml as N)

Matrix Spike Percent Recovery (%R)

%R = (C spike*0.104 - Csample*0.102)/2 *100

Cspike = average result of matrix spike (µg NH₃/ ml as N)

Relative Percent Difference (RPD) = (C1-C2)/ Cavg *100 (must be 5% or less)


Relative Percent Accuracy (RPA)

(must be 10% or less)

RPA = (Cavg-theoretical value of standard)/ theoretical value of standard * 100

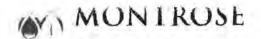
AMMONIA ELECTRODE CALIBRATION CURVE

NH ₃ concentration (μg NH ₃ / ml as N)	log NH ₃ concentration	Electrode potential (mV)	Sample Temperature (C)	Room Temperature (C)
1	0.000	96.4	20	20
5	0.699	53.7	20	20
20	1.301	18.7	20	20
100	2.000	-22.0	20	20

slope y-intercept

-59.1114 95.8114

Concentration (μg NH ₃ / ml as N)	Value LR line	Difference	% Difference
1	0.9773	-0.0227	-2.2667
5	5.1571	0.1571	3.1424
20	20.1609	0.1609	0.8045
100	98.4102	-1.5898	-1.5898


Calculation:

Regression Line: P=M*log(µg of NH₃/ ml as N)+B

Measured Concentration of Ammonia (C) in μg / ml NH₃ as N: C=10^{(P-B)/M}

where P = electrode potential, M= slope (must be -57±3) and B= intercept

All standards were prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALIBRATION DATA

District Method: SCAQMD 207.1

Calibration Date: _	7/14/2021
Calibration Curve:	V= -59.1114x +95.8114
R2 6.999 8	A
Analyst's Initials:	LM
Thermometer #: _	AU
ISE Electrode #: _	16

Calibration Standard (μg NH ₃ / ml as N)	Electrode Potential (mV)	Solution Temperature (°C)	Room Temperature (°C)
1	५७. ५	20.0	20.0
5	53.7	20.0	20.0
20	18.7	20.5	20.0
100	- 22.0	20.0	20.0

Notes:

Total volume of samples and standards used: 100 ~ 1

Volume of pH adjusting ISA used in ml: Z ... \

Absorbing solution: 6.04 to 14504
Slope of the calibration curve shall be between -54 to -60

R2 must be 0.9997 or greater

Calibration solutions, sample solutions and Calibration Verification standard temperature within

± 2°C

Date of last revision 4/24/2019

DS1939150 Santa Ana\Forms\Lab Datasheets

CHAIN OF CUSTODY

CLIENT:	SCPPA		PROJECT NUMBER: PROJ-	TEST DATE(S):	7/12 and 7/	13	
LOCATION:	Canyon 1	and 2		SAMPLER(S):	RMO		
SAMPLE LOCA	ATION:	Stack		PROJECT MAN	JG		
TEST METHO	D(S):	SCAQMD 207.1		DATE DUE:		Normal	
OUTSIDE LAB	REQUIRED	?: <u>NO</u>		COMPLIANCE	TEST?	Yes	
DATE	TIME	TEST#	SAMPLE DESCRIPTION	CONTAINERS	SAMPLER	COMMENTS	
7/12/2021		1-NH3-3 1	Probe, Line, Impingers		RMO		
7/12/2021		2-NH3-13-1	Probe, Line, Impingers	1	RMO		
7/12/2021		FB-NH3-41	Probe, Line, Impingers	1	RMO		
7/13/2021		1-NH3-2	Probe, Line, Impingers	1	RMO		
7/13/2021		2-NH3-2	Probe, Line, Impingers	1	RMO		
7/13/2021		FB-NH3-2	Probe, Line, Impingers	1	RMO		
7/12/2021		RB-NH3	DI H2O	1	JG		
7/12/2021		RB-NH3	0.1 N H2SO4	1	JG		
	RELEASE	D BY	DATE/TIME	, RECEIVE	D BY	DATE/TIME	
KARLY	Mi our		7/14/21 820 Au	Minhlo: 0		7/14/21 820 am	
ANALYSIS REC	QUIRED:						
MON AN QUALITY	TROSE	Date of Last Revision	n 9/1/2017			tody - DS834001 - Ex	

Appendix A.3 QA/QC Data

SEMI-ANNUAL DRY GAS METER/ORIFICE CALIBRATION

Orifice Method - Triplicate Runs/Four Calibration Points English Meter Box Units, English K' Factor

ID#:

Filenams: M:Santa Anal-Equipment/Test Equipment/Calibrations/Dry Gas Meters/23-WCS/2021/(23-WCS Semi Annual Cal 7-8-2021.xl Date: File Modified From: APEX 522 Series Meter box Calibration Bar. F

C-5000 23-WCS

7/8/2021 Bar. Pressure: 29.84 (in. Hg)

4/8/2005 Revised:

Performed By: L.Olivares

Meter Serial #

	DRY GAS METER READINGS								CRITIC	AL ORIFICE RE	ADINGS			
		Volume	Volume	Volume	Initial	Temps.	Final	Temps,	Onfice	K' Orifice	Actual	A	mbient Temper	ature
dH in H2O)	(min)	(cu ft)	(cu ft)	(cu ft)	Inlet (deg F)	Outlet (deg F)	(deg F)	Outlet (deg F)	Serial# (number)	Coefficient see above	Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)
0.13	26.00	304.600	310 120	5.520	89.0	86.0	89.0	87.0	33	0.1552	16.0	79.0	79.0	79.0
0.13	26.00	310.120	315.845	5.525	89.0	87.0	89.0	87.0	33	0.1552	16,0	79.0	79.0	79.0
0.13	26.00	315,645	321.225	5.580	89.0	87.0	89.0	88.0	33	0,1552	16.0	79,0	79.0	79.0
0.58	12.00	288.000	293,375	5,375	89,0	85.0	89.0	85.0	48	0.3346	18.0	79.0	79.0	79.0
0.58	12.00	293.375	298.745	5.370	89.0	85.0	89.0	86.0	48	0.3346	18.0	79.0	79.0	79.0
0.58	12.00	298.745	304.120	5.375	89.0	86.0	89.0	86.0	48	0.3346	18.0	79.0	79.0	79,0
1.70	7.00	270,600	276,070	5.470	92,0	82,0	92.0	83.0	63	0.5918	17.0	79,0	79.0	79,0
1.70	7.00	276.070	281.540	5.470	92.0	83.0	92.0	84.0	63	0.5918	17.0	79.0	79.0	79.0
1,70	7.00	281,540	287.030	5,490	92.0	84.0	92.0	84.0	63	0.5918	17.0	79.0	79.0	79.0
3.00	5.00	254.000	259.150	5,150	0,88	80.0	91.0	81.0	73	0.7681	12.5	78.0	78.0	78.0
3.00	5.00	259.150	264.270	5.120	91.0	81.0	93.0	81.0	73	0.7681	12.5	78.0	78.0	78.0
3.00	5,00	264,270	269,405	5.135	93.0	81.0	93.0	83.0	73	0.7681	12.5	78.0	78.0	78.0

RY GAS METE	R	ORIFICE				Y GAS METER RATION FACTOR	ORIFICE CAUBRATION FACTOR	Individual	Individual	Orifice	Orifice
VOLUME	VOLUME	VOLUME	VOLUME	VOLUME	CALIB	10.104-04-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		Run	Onfice	Average	Average
CORRECTED	CORRECTED	CORRECTED	CORRECTED	NOMINAL		Y	dH@				
Vm(std)	Vm(std)	Vcr(std)	Vcr(std)	Vcr		Value	Value	0.95 < Y	Ymax - Ymin	0.98 < Y/Yd	dH@ - dH@ a
(cu ft)	(liters)	(cu ft)	(liters)	(cu ft)		(number)	(in H2O)	< 1.05?	< 0.0107	< 1.02?	< 0.155?
5.306	150.3	5.185	146.8	5,309		0.977	1.772	Pass			
5,309	150.3	5.185	146.8	5.309		0.977	1,770	Pass			
5,359	151.8	5.185	146.8	5,309		0.968	1.768	Pass			
	100				Average	0.974	1,770		Pass	Pass	Pass
5,160	146,7	5.161	146,1	5.284		0.996	1,704	Pass			
5.173	146,5	5,161	146.1	5.284		0.998	1.703	Pass			
5.175	146.6	5.161	146.1	5.284		0.997	1.701	Pass			
					Average	0.997	1.703		Pass	Pass	Pass
5,283	149.6	5.324	150.8	5.452		1.008	1.605	Pass			
5,279	149.5	5,324	150.8	5,452		1,009	1.602	Pass			
5.295	150.0	5.324	150.8	5,452		1.005	1.600	Pass			
					Average	1.007	1.602		Pass	Pass	Pass
5.011	141.9	4.941	139.9	5.050		0.986	1.684	Pass			
4,968	140.7	4.941	139,9	5,050		0.995	1.682	Pass			
4.973	140.8	4.941	139.9	5.050		0.993	1.679	Pass			
					Average	0.991	1.682		Pass	Pass	Pass

Average Yd:	0,992	dH@:	1.689	
		Q@dH=1:	0.577	

SIGNED:

Signature on File

Date

7/8/2021

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 23 WCS

Readout Description: Control Box

Date: 7/6/2021

Performed By: RD/DA/RM

Calibrated Thermocouple ID: TC-CAL

T1 Reference Thermometer ID: 313010

T2 Reference Thermometer ID: 242196

T3 Reference Thermometer ID: 242167

T/C	Jan 1. 72		T/C -	Readout		13	Reference	Thermometer		Diffe	erence	1
TC-CAL	Readout I.D.	Reading 1	Reading 2	F Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, ("R)	
T3 (OIL)	23 WCS	357	357	357	357	358	358	358	358	1.0	0.1%	Pass
T2 (Boiling H ₂ O)	23 WCS	214	214	214	214	212	212	212	212	2.0	0.3%	Pas
T1 (Ice/Water)	23 WCS	33	33	33	33	32	32	32	32	1.0	0.2%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

	T/C Source	T/C - Readout °F				T/C Source °F				Difference		
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	129103	650	650	650	650	650	650	650	650	0.0	0.0%	Pas
T3 (~370 F)	129103	370	370	370	370	370	370	370	370	0.0	0.0%	Pas
T2 (~212 F)	129103	213	213	213	213	212	212	212	212	1,0	0.1%	Pas
T1 (~32 F)	129103	32	32	32	32	32	32	32	32	0.0	0.0%	Pas

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

7/29/2021

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

Bar	rometric Pressure D	Determination
Date:	07/13/21	
Data By:	JG	
Reference: http:	os://forecast.weather	gov/MapClick.php?lat=33.8329&lon=-117.9152
Reference Barometer ID		FW0063 Fullerton CSU (F0063)
Reference Barometer Location		Lat: 33.8805°NLon: 117.88417°WElev: 247ft.
Reference Barometer Other Info.		
Reference Barometer Indication, corrected to sea	level	29.96
Reference Barometer Reference Elevation		247
Reference Barometer Actual Pressure		29.71
Test Barometer Location/Site		Canyon Power Plant
Location/Site Elevation		212
Location/Site Barometric Pressure		29.75
Sampling Location Height (above/below site eleva	ation)	60
Sampling Location Barometric Pressure		29.69

APPENDIX B FACILITY CEMS DATA

Average Values Report Generated: 7/13/2021 18:22

-	÷	-3	1	Ģ	·	٠	- ^
S	a	ur	c	e			2

pany: City Of nt: 3071 Mira y/St: Anaheim urce: 2	loma Ave.,									Period Start: 7/13/2021 15:53 Period End: 7/13/2021 16:55 Validation Type: 1/1 min Averaging Period: 1 min Type: Block Avg			
Period Start	Avera 2_0		Average 2_NOXPPM pgm	Average 2_NOX_CORR ppm	Average 2_NOX_LBHR #/hr	Average 2_NOX_LBMM #/MBTU	Average 2_GasFlow kscfh	Average 2_LOAD MW	Average 2_STACKFLW kscfm	Average 2_COPPM ppm	Average 2_CO_CORR ppm	Average 2_CO_LBHR #/hr	
07/13/2021 15	:53	14.62	2.49	2.34	4.38	0.009	463.9	48.80	235.3	3.06	2.87	3.1	
07/13/2021 15	:54	14.62	2.49	2.34	4.38	0.009	463.9	48.80	235.3	3.05	2.87	3.3	
07/13/2021 15	:55	14.63	2.50	2.35	4.38	0.009	463.6	48.77	235.6	3.05	2.87	3.	
07/13/2021 15	:56	14.63	2.49	2.34	4.38	0.009	463.7	48.81	235.6	3.07	2.89	3.	
07/13/2021 15	:57	14.63	2.48	2.33	4.38	0.009	464-0	48.83	235.8	3.09	2.91	3.	
07/13/2021 15	:58	14.63	2.48	2.33	4.38	0.009	464.0	48.80	235.8	3.10	2.92	3.	
07/13/2021 15		14.63	2.47	2.32	4.38	0.009	463.6	48.78	235.6	3.11	2.93	3.	
07/13/2021 16		14.63	2.47	2.32	4.38	0.009	463.5	48.70	235.5	3.10	2.92	3.	
07/13/2021 16		14.64	2.45	2.31	4.37	0.009	462.9	48.69	235.5	3.11	2.93	3.3	
07/13/2021 16	V. 5.07	14.64	2.44	2.30	3.88	0.008	462.1	48.62	235.2	3.13	2.95	3.3	
07/13/2021 16		14.65	2.42	2.28	3.88	0.008	462.3	48.56	235.6	3.14	2.96	3.3	
07/13/2021 16		14.64	2.39	2.25	3.89	0.008	463.3	48.75	235.8	3.15	2.97	3.	
07/13/2021 16		14.63	2.39	2.25	3.90	0.008	464.0	48.82	235.8	3,16	2.97	3.	
07/13/2021 16		14.63	2.42	2.28	3.90	0.008	463.9	48.82	235.7	3.14	2.95	3.	
07/13/2021 16		14.53	2.45	2.31	3.90	0.008	463.9	48.82	235.7	3.13	2.95	3.	
07/13/2021 16		14.63	2.46	2.31	4.39	0.009	464.1	48.81	235.8	3.11	2.93	3.	
07/13/2021 16	2.74.5	14.63	2.47	2.32	4.38	0.009	463.9	48.77	235.7	3.10	2.92	3.	
		14.63	2.48	2.33	4.38	0.009	463.9	48.78	235.7	3.11	2.93	3.	
07/13/2021 16		14.63	2.48	2.33	4.38	0.009	464.0	48.78	235.8	3.11	2.93	3.	
07/13/2021 16			2.49	2.34	4.39	0.009	464.2	48.77	235.5	3.10	2.91	3.	
07/13/2021 16		14.62			4.39	0.009	464.1	48.78	235.8	3.09	2.91	3.	
07/13/2021 16		14.63	2.49	2.34					235.8	3.10	2.92		
07/13/2021 16		14.63	2.48	2.33	4.38	0.009	464.0	48.79	235.4	3.10	2.90	3.	
07/13/2021 16		14.62	2.47	2.32	4.39	0.009	464.1	48.80	235.4	3.09		3.	
07/13/2021 16		14.62	2.47	2.32	4.38	0.009	464.0	48.79	100,000,000	500 (0.000)	2.90	3.	
07/13/2021 16		14.63	2.47	2.32	4.39	0.009	464.1	48.79	235.8	3.07	2.89	3.	
07/13/2021 16		14.63	2.47	2.32	4.38	0.009	464.0	48.79	235.8	3.08	2.90	3.	
07/13/2021 16		14.63	2.46	2.31	4.38	0.009	463.8	48.79	235.7	3.11	2.93	3.	
07/13/2021 16		14.63	2.47	2.32	4.39	0.009	464.3	48.79	235.9	3.13	2.95	3.	
07/13/2021 16		14.62	2.47	2,32	4.39	0.009	464.3	48.80	235.5	3.13	2.94	3.	
07/13/2021 16		14.62	2.46	2.31	4.39	0.009	464.3	48.83	235.5	3.14	2.95	3.	
07/13/2021 16		14.61	2-46	2.31	4.39	0.009	464.4	48.80	235.2	3.13	2.94	3.	
07/13/2021 16		14.61	2.46	2.31	4.39	0.009	464.4	48.80	235.2	3.12	2.93	3.	
07/13/2021 16		14.62	2.46	2.31	4.38	0.009	464.0	48.80	235.4	3.11	2.92	3.	
07/13/2021 16		14.62	2.46	2.31	4.39	0.009	464.5	48.79	235.6	3.10	2.91	3.	
07/13/2021 16	4,11,00	14.62	2.46	2.31	4.39	0.009	464.5	48.79	235.6	3.10	2.91	3.	
07/13/2021 16	:28	14.53	2.46	2.31	4.39	0.009	464.4	48.82	235.9	3.10	2.92	3.	
07/13/2021 16	:29	14.63	2,45	2.31	3.90	0.008	464.5	48.81	236.0	3.10	2.92	3.	
07/13/2021 16	:30	14.63	2.44	2.30	3.90	0.008	464.0	48.79	235.8	3.10	2.92	3.	
07/13/2021 16	:31	14.62	2,44	2.29	3.90	0.008	464.8	48.81	235.8	3.12	2.93	3.	
07/13/2021 16	:32	14.62	2.46	2.31	4.39	0.009	464.6	48.82	235.7	3.13	2.94	3.	
07/13/2021 16		14.62	2.47	2.32	4.39	0.009	464.2	48.81	235.5	3.13	2.94	3.	
07/13/2021 16		14.62	2.46	2.31	4.39	0.009	464.6	48.80	235.7	3.13	2.94	3.	
07/13/2021 16		14.63	2.44	2.30	3.90	0.008	464.5	48.81	236.0	3,14	2.95	3.	
07/13/2021 16		14.63	2.45	2.31	3.90	0.008	464.8	48.83	236.1	3.13	2.95	3.	
07/13/2021 16		14.62	2.45	2.30	3.90	0.008	464.7	48.84	235.7	3.13	2.94	3.	
07/13/2021 16		14.61	2.46	2.31	4.39	0.009	464.9	48.83	235.4	3.12	2.93	3.3	
07/13/2021 16		14.62	2.46	2.31	4.39	0.009	464.7	48.81	235.7	3,11	2.92		

	Period Start:	Average 2_02 %	Average 2_NOXPPM ppm	Average 2_NOX_CORR ppm	Average 2_NOX_LBHR #/br	Average 2_NOX_LBMM #/MBTU	Average 2_GasFlow kscfh	Average 2_LOAD	Average 2_STACKFLW kscfm	Average 2_COPPM ppm	Average 2_CO_CORR ppm	Average 2_CO_LBHR #/br
	07/13/2021 16:40	14.62	2.45	2.30	3.90	0.008	464.6	48.83	235.7	3.12	2.93	3,22
≶	07/13/2021 16:41	14.62	2.45	2.30	3.90	0.008	464.6	48.82	235.7	3.13	2.94	3.22
0	07/13/2021 16:42	14.52	2.46	2.31	4.39	0.009	465.0	48.81	235.9	3.13	2.94	3.22
002	07/13/2021 16:43	14.62	2.46	2.31	4.39	0.009	464.4	48.82	235.6	3.13	2.94	3.22
×	07/13/2021 16:44	14.61	2.46	2.31	4.39	0.009	464.6	48.80	235.3	3.14	2.95	3.22
Ś	07/13/2021 16:45	14.61	2.46	2.31	4.39	0.009	464.6	48.81	235.3	3.13	2.94	3.22
6	07/13/2021 16:46	14.62	2.45	2.30	3.90	0.008	464.9	48.82	235.8	3.13	2.94	3.22
_	07/13/2021 16:47	14.62	2.44	2.29	3.90	0.008	464.8	48.82	235.8	3.12	2.93	3.22
02	07/13/2021 16:48	14.61	2.44	2.29	3.91	0.008	465.1	48.84	235.6	3.12	2.93	3.22
N	07/13/2021 16:49	14.63	2.45	2.31	3.91	0.008	465.0	48.85	236.3	3.11	2.93	3.22
4	07/13/2021 16:50	14.61	2.44	2.29	3.91	0.008	465.2	48.88	235.6	3.13	2.94	3.22
Ż	07/13/2021 16:51	14.62	2.45	2.30	3.91	0.008	465.0	48.86	235.9	3.14	2.95	3.22
ᅻ	07/13/2021 16:52	14.63	2.45	2.31	3.90	0.008	464.9	48.83	236.2	3.15	2.96	3.22
ġ	07/13/2021 16:53	14.61	2.44	2.29	3.91	0.008	465.1	48.85	235.6	3.17	2.97	3,27
66	07/13/2021 16:54	14.61	2.43	2.28	3.91	0.008	465.1	48.86	235.6	3.17	2.97	3.27
8	07/13/2021 16:55	14.62	2.44	2.29	3.91	0.008	465.2	48.85	236.0	3.14	2.95	3.22
_	Daily Average*	14.62	2.46	2.31	4.20	0.009	464.3	48.80	235.7	3.12	2.93	3.20
	Maximum*	14.65	2.50	2.35	4.39	0.009	465.2	48.88	236.3	3.17	2.97	3.27
		07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021
		16:03	15:55	15:55	16:45	16:45	16:55	16:50	16:49	16:54	16:54	16:54
	Minimum*	14.61	2.39	2.25	3.88	0.008	462.1	48.62	235.2	3.05	2.87	3.12
		07/13/2021 16:54	07/13/2021 16:05	07/13/2021 16:05	07/13/2021 16:03	07/13/2021 16:55	07/13/2021 16:02	07/13/2021 16:02	07/13/2021 16:24	07/13/2021 15:55	07/13/2021 15:55	07/13/2021 15:55

^{*} Does not include Invalid Averaging Periods ("N/A")

Average Values Report Generated: 7/13/2021 19:39 Version 47.0 2 WHz

Company: City Of Anaheim Plant: 3071 Miraloma Ave., City/St: Anaheim, CA, 92806 Source: 2

W002AS-010224-RT-2668

30 of 60

Period Start: 7/13/2021 17:35
Period End: 7/13/2021 18:37
Validation Type: 1/1 min
Averaging Period: 1 min
Type: Block Avg

,		Average 2_02	Average 2_NOXPPM	Average 2_NOX_CORR	Average 2_NOX_LBHR	Average 2_NOX_LBMM	Average 2_GasFlow	Average 2_LOAD	Average 2_STACKFLW	Average 2_COPPM	Average 2_CO_CORR	Average 2_CO_LBHR
	Period Start:	%	ppm	ppm	#/hr	#/MBTU	kscfh	WW	kscfm	ppm	ppm	#/hr
-	07/13/2021 17:35	14.61	2.63	2.47	4.39	0.009	464.9	48.63	235.4	2.99	2.80	3.08
	07/13/2021 17:36	14.61	2,62	2.46	4.40	0.009	465.1	48.67	235.6	2.99	2.80	3.08
	07/13/2021 17:37	14.62	2.53	2.47	4.40	0.009	465.2	48.66	236.0	2.99	2.81	3.08
	07/13/2021 17:38	14.62	2.63	2.47	4.39	0.009	464.9	48.65	235.8	2.99	2.81	3.08
	07/13/2021 17:39	14.52	2.53	2.47	4.40	0.009	465.5	48.69	236.1	3.00	2.82	3.08
	07/13/2021 17:40	14.62	2.62	2.46	4.41	0.009	466.4	48.74	236.6	3.02	2.84	3.13
	07/13/2021 17:41	14.61	2.56	2.40	4.41	0.009	466.2	48.73	236.1	3.08	2.89	3,18
	07/13/2021 17:42	14.61	2.50	2.34	4.40	0.009	466.0	48.72	236.0	3.13	2.94	3,23
	07/13/2021 17:43	14.61	2.50	2.34	4.41	0.009	466.6	48.73	236.3	3.14	2.95	3.23
	07/13/2021 17:44	14.61	2.50	2.34	4.41	0.009	466.7	48.77	236.4	3.13	2.94	3.23
	07/13/2021 17:45	14.61	2.49	2.34	4.41	0.009	466.7	48.79	236.4	3.12	2.93	3.23
	07/13/2021 17:46	14.60	2.50	2.34	4.41	0.009	466.4	48.77	235.8	3.12	2.92	3.23
	07/13/2021 17:47	14.60	2.50	2.34	4.42	0.009	467.4	48.84	236.4	3.12	2.92	3.24
	07/13/2021 17:48	14,60	2.46	2.30	3.93	0,008	467.5	48.84	236.4	3.17	2.97	3.29
	07/13/2021 17:49	14,60	2,42	2.27	3.93	0.008	467.8	48.85	236.6	3.24	3.03	3.34
	07/13/2021 17:50	14.60	2.40	2.25	3.93	0.008	467.7	48.86	236.5	3.29	3.08	3.39
	07/13/2021 17:51	14.50	2.38	2.23	3.93	0.008	468.1	48.86	236.7	3.31	3.10	3.44
	07/13/2021 17:52	14.50	2.37	2.22	3.93	0.008	468.1	48.86	236.7	3.31	3.10	3.44
		14.60	2.36	2.21	3.93	0.008	468.2	48.87	236.7	3.32	3.11	3.44
	07/13/2021 17:53		2.37	2.22	3.93	0.008	468.3	48.88	236.8	3.33	The state of the s	40.5
	07/13/2021 17:54	14.60				0.008					3.12	3.44
	07/13/2021 17:55	14.60	2.36	2.21	3.93		468.1	48.86	236.7	3.33	3.12	3.44
	07/13/2021 17:56	14.60	2.36	2.21	3.93	0.008	468.2	48.91	236.7	3.32	3.11	3.44
	07/13/2021 17:57	14,60	2.37	2.22	3.94	0.008	468.5	48.90	236.9	3.32	3.11	3.44
	07/13/2021 17:58	14,60	2.37	2.22	3.93	0.008	468.1	48.89	236.7	3.34	3.13	3.44
	07/13/2021 17:59	14.60	2.37	2.22	3.94	0.008	468.7	48.94	237.0	3,35	3.14	3.44
	07/13/2021 18:00	14.59	2.34	2.19	3.94	0.008	468.7	48.89	236.6	3.40	3.18	3.49
	07/13/2021 18:01	14.62	2.25	2.11	3.92	0.008	466.1	48.79	236.4	3.51	3.30	3.62
	07/13/2021 18:02	14.60	2.30	2.15	3.92	0.008	467.1	48.85	236.2	3.44	3.22	3.53
	07/13/2021 18:03	14.60	2.47	2.31	4.42	0.009	467.3	48.84	236.3	3.27	3.06	3,39
	07/13/2021 18:04	14.60	2.51	2.35	4.42	0.009	467.2	48.83	236.3	3.18	2.98	3.29
	07/13/2021 18:05	14.60	2.50	2.34	4.42	0.009	467.7	48.87	236.5	3.20	3.00	3.29
	07/13/2021 18:06	14.60	2.47	2.31	4.43	0.009	468.3	48.89	236.8	3.25	3.04	3.34
	07/13/2021 18:07	14.60	2.42	2.27	3.94	0.008	468.6	48.89	236.9	3.33	3.12	3.44
	07/13/2021 18:08	14.60	2.35	2.20	3.94	0.008	468.8	48.89	237.0	3,42	3.20	3.54
	07/13/2021 18:09	14.60	2.31	2.16	3.94	0.008	469,0	48.86	237.2	3.49	3.27	3,60
	07/13/2021 18:10	14.60	2.33	2.18	3.94	0.008	468,9	48.87	237.1	3.47	3.25	3.59
	07/13/2021 18:11	14.60	2.35	2.20	3.94	0.008	468.7	48.85	237.0	3.42	3.20	3.54
	07/13/2021 18:12	14.60	2.35	2.20	3.94	0.008	468.5	48.85	236.9	3.40	3.18	3.49
	07/13/2021 18:13	14.60	2.37	2.22	3.94	0.008	468.8	48.85	237.0	3.41	3.19	3.54
	07/13/2021 18:14	14.60	2.39	2.24	3.93	0.008	468.2	48.85	236.7	3.43	3.21	3.54
	07/13/2021 18:15	14.60	2.41	2.26	3.93	0.008	468.4	48.86	236.8	3.40	3.18	3.49
	07/13/2021 18:16	14.60	2.46	2.30	3.93	0.008	468.1	48.84	236.7	3.34	3.13	3.44
	07/13/2021 18:17	14.60	2.49	2.33	4.43	0.009	468.3	48.87	236.8	3.31	3.10	3.44
	07/13/2021 18:18	14.60	2.45	2.29	3.93	0.008	468.4	48.86	236.8	3.34	3.13	3.44
	07/13/2021 18:19	14.60	2.42	2.27	3.93	0.008	468.3	48.86	236.8	3.37	3.16	3.49
	07/13/2021 18:20	14.60	2.44	2.29	3.93	0.008	468.4	48.87	236.8	3.36	3.15	3.49
	07/13/2021 18:21	14.60	2.45	2.29	3.94	0.008	468.5	48.87	236.9	3.35	3.14	3.44

	Period Start:	Average 2_02 %	Average 2_NOXPPM ppm	Average 2_NOX_CORR ppm	Average 2_NOX_LBHR #/hr	Average 2_NOX_LBMM #/MBTU	Average 2_GasFlow kscfh	Average 2_LOAD MW	Average 2_STACRFLW kscfm	Average 2_COPPM ppm	Average 2_CO_CORR ppm	Average 2_CO_LBHR #/hr
	07/13/2021 18:22	14.60	2.42	2.27	3.94	0.008	468.8	48.90	237.0	3.36	3,15	3.49
<	07/13/2021 18:23	14.60	2.39	2.24	3.94	0.008	468.7	48.89	237.0	3.40	3.18	3.49
W002	07/13/2021 18:24	14.60	2.38	2.23	3.93	0.008	468.3	48.88	236.8	3.45	3.23	3.54
Õ	07/13/2021 18:25	14.60	2.39	2.24	3.94	0.008	468.7	48.90	237.0	3.47	3.25	3.59
2A	07/13/2021 18:26	14.60	2.38	2.23	3.94	0.008	468.7	48.90	237.0	3.47	3,25	3.59
Ś	07/13/2021 18:27	14.60	2.37	2.22	3.94	0.008	468.7	48.89	237.0	3.47	3,25	3.59
6	07/13/2021 18:28	14.60	2.35	2.20	3.94	0.008	468.5	48.82	236.9	3.48	3.26	3.59
_	07/13/2021 18:29	14.61	2.33	2.19	3.94	0.008	468.5	48.81	237.3	3.48	3.26	3.59
02	07/13/2021 18:30	14.51	2.31	2.17	3.93	0.008	468.2	48.79	237.1	3.51	3,29	3.64
22	07/13/2021 18:31	14.51	2.28	2.14	3.93	0.008	468.4	48.80	237.2	3.55	3.33	3.69
4	07/13/2021 18:32	14.62	2.26	2.12	3.93	0.008	467.9	48.71	237.4	3.58	3,36	3.68
ᇴ	07/13/2021 18:33	14.63	2.25	2.12	3.93	0.008	467.9	48.69	237.7	3.59	3,38	3.73
Ã	07/13/2021 18:34	14.63	2.24	2.11	3.94	0.008	468.8	48.69	238.2	3.63	3.42	3.79
' 2	07/13/2021 18:35	14.63	2.19	2.06	3.94	0.008	469.4	48.74	238.5	3.72	3.50	3.89
66	07/13/2021 18:36	14.63	2.10	1.98	3.45	0.007	469.1	48.71	238.4	3.83	3.60	3.99
8	07/13/2021 18:37	14.63	2.06	1.94	3.44	0.007	468.7	48.64	238.1	3.89	3.66	4.04
-	Daily Average*	14.61	2.40	2.25	4.05	0.008	467.8	48.82	236.8	3.34	3,13	3.45
	Maximum*	14.63	2.63	2.47	4.43	0.009	469.4	48.94	238.5	3.89	3.66	4.04
		07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021
		18:37	17:39	17:39	18:17	18:17	18:35	17:59	18:35	18:37	18:37	18:37
	Minimum*	14.59	2.06	1.94	3.44	0.007	464.9	48.63	235.4	2.99	2.80	3.08
		07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021	07/13/2021
		18:00	18:37	18:37	18:37	18:37	17:38	17:35	17:35	17:38	17:36	17:39

^{*} Does not include Invalid Averaging Periods (*N/A")

APPENDIX C CALCULATIONS

Appendix C.1 General Emissions Calculations

GENERAL EMISSIONS CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \% CO_2 + 0.32 * \% O_2 + 0.28 * \% N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$P_{s} = P_{bar} + \frac{P_{sg}}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_m * \left(P_{bar} + \frac{\Delta H}{13.6}\right) * \frac{T_{ref}}{T_m} * Y_d$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{ic} * \frac{T_{ref}}{528 ° R}$$

C. Moisture content, dimensionless

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

III. Stack Gas Volumetric Flow Rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Southern California Public Power Authority - Canyon 3Q21 Unit 2 NH_3

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, lb/MMBtu

$$\frac{\text{lb}}{\text{MMBtu}} = \frac{\text{ppm * MW}_{i} * F}{\text{SV * } 10^{6}} * \frac{20.9}{20.9 - \% O_{2}}$$

VI. Percent Isokinetic

$$I = \frac{17.32 * T_s (V_{mstd})}{(1 - B_{wo}) 0 * V_s * P_s * Dn^2} * \frac{520 °R}{T_{ref}}$$

- VII. Particulate Emissions
 - (a) Grain loading, gr/dscf $C = 0.01543 (M_n/V_{m std})$
 - (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
 - (c) Mass emissions, lb/hr $M = C * Q_{sd} * (60 min/hr) / (7000 gr/lb)$
 - (d) Particulate emission factor

Ib/10⁶ Btu = Cx
$$\frac{1 \text{ lb}}{7000 \text{ gr}}$$
 * F * $\frac{20.9}{20.9 - \% O_2}$

Nomenclature:

stack area, ft2 A_s flue gas moisture content, dimensionless B_{wo} $C_{12\%CO2}$ particulate grain loading, gr/dscf corrected to 12% CO₂ particulate grain loading, gr/dscf С pitot calibration factor, dimensionless C_p = = nozzle diameter, inches Dn fuel F-Factor, dscf/MMBtu @ 0% O2 F = orifice differential pressure, iwg Н = = % isokinetics 1 = mass of collected particulate, mg M_n = mass emission rate of specie i, lb/hr Mi molecular weight of flue gas, lb/lb-mole MW molecular weight of specie i: M_{wi} SO₂: 64 46 NO_x : CO: 28 HC: 16 0 sample time, minutes average velocity head, iwg = $(\sqrt{\Delta P})^2$ ΔΡ = barometric pressure, inches Hg P_{bar} stack absolute pressure, inches Hg P_s = P_{sg} = stack static pressure, iwb wet stack flow rate at actual conditions, wacfm = Q = dry standard stack flow rate, dscfm Q_{sd} SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole meter temperature, °R T_{m} = reference temperature, °R $\mathsf{T}_{\mathsf{ref}}$ = stack temperature, °R = T_s = stack gas velocity, ft/sec V_s volume of liquid collected in impingers, ml V_{lc} = uncorrected dry meter volume, dcf = $V_{\rm m}$ V_{mstd} = dry meter volume at standard conditions, dscf = volume of water vapor at standard conditions, scf V_{wstd}

meter calibration coefficient

 Y_d

Appendix C.2 Spreadsheet Summaries

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U2

Identifier	Description	Units	Equation	Value
Α	Reference Temperature	F	-	60
В	Reference Temperature	R	A + 460	520
C	Meter Calibration Factor (Yd)	2	1. 2.7	0.992
D	Barometric Pressure	" Hg	H	29.69
E	Meter Volume	acf	÷	36.170
F	Meter Temperature	F	-	89.3
G	Meter Temperature	R	F + 460	549.3
Н	Delta H	" H ₂ O		1.0
1	Meter Volume (standard)	dscf	0.03342 * E * (D + H/13.6) * B/G * C	33.787
J	Liquid Collected	grams	-	89,9
K	Water vapor volume	scf	0.0472 * J * B/528	4.179
L	Moisture Content	100	K/(K + I)	0.110
M	Gas Constant	ft-lbf/lb-mole-R		1545.33
N	Specific Molar Volume	SCF/lb-mole	385.3 * B / 528	379.5
0	F-Factor	dscf/MMBtu		8,710
P	HHV	Btu/SCF	-	1,050
Q	Mass Conversion Factor	lb/ug	5	2.2046E-0
R	O ₂ Correction Factor	-		15
S	Stack Flow Rate @ 68 F	dscfm	₩.	235,700
T	Stack Flow Rate @ Tref	dscfm	S * B/528	232,129
U	Mass NH ₃	ug	-	1,253
V	Mass NH ₃	lb	U*Q	2.76E-06
W	MW of NH ₃	lb/lb-mole	4	17.03
X	NH ₃	ppm	(V * N *10°)/(I * W)	1.8
Y	Flue Gas O ₂	%	-	14.62
Z	NH ₃	ppmc	X * (20.9 - R)/(20.9 - Y)	1.7
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10°)	1.1
AB	NH ₃	lb/MMBtu	(X * W * O)/(385.3 * 10°) * 20.9/(20.9 - Y)	0.002
AC	NH ₃	lb/MMSCF	AB*P	2.4

Note:

⁽¹⁾ Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

Was Andreway

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility Unit Sample Location	U2		Fuel		NH ₃ Natural gas JG
Test Number	1-NH3-U2	2-NH3-U2	Average	Maximum	Limit
Reference Temperature (°F) Test Date Test Method	60 7/13/2021 SCAQMD 207.1	60 7/13/2021 SCAQMD 207.1			
Sample Train Meter Calibration Factor	23-WCS	23-WCS 0.992			
Stack Area (ft²) Sample Time (Minutes)	106.90	106.90 60			
Barometric Pressure ("Hg)	29.69	29.69			
Start/Stop Time	1553/1656	1735/1838			
Meter Volume (acf)	36.170	36.200			
Meter Temperature (°F) Meter Pressure (iwg)		88,9 1.0			
		86.0			
Liquid Volume (ml)		2.712	14.62	Man or famility CEA	ACV
Stack O ₂ (%) Unit Load (MW)		14.61 49	48.8	(from facility CEN	(15)
Standard Sample Volume (SCF)		33.839	10.0		
Moisture Fraction	0.110	0.106			
Stack Flow Rate (dscfm, 68 °F)	235,700	236,800	236,250	(from facility CEN	MS)
Stack Flow Rate (@ Tref)	232,129	233,212	232,670		
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH ₃ (lb/lb-mole)	17.03	17.03			
Specific Molar Volume (ft3/lb-mole)	379.5	379.5		1 1	
F-Factor (dscf/MMBtu)	and the second s	8,710			
HHV(Btu/SCF)	1,050	1,050			
Mass Conversion (lb/ug)	2.2046E-09	2.2046E-09			
O ₂ Correction Factor (%)	15	15		1 1	
Mass NH ₃ (ug)	1,253	1,220			
Mass NH ₃ (lb)	2.76E-06	2.69E-06			
NH ₃ (ppmv, flue gas)	1.82	1.77	1.80	1.82	
NH ₃ (ppmv @ O ₂ Correction Factor)	1.71	1.66	1.69	1.71	5
NH ₃ (lb/hr)	1.14	1.11	1.12	1.14	
NH ₃ (lb/MMBtu)	0.002	0.002	0.002	0.002	
NH ₃ (lb/MMSCF)	2.45	2.37	2.41	2.45	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (Montrose) ASTM D7036-04 certification, Montrose is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. Montrose quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

<u>Assignment of an Internal QA Officer</u>: Montrose has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: Montrose has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of Montrose's QA efforts. The manual is revised upon periodic review and as Montrose adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. Montrose training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the Montrose QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of Montrose's emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: Montrose maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: Montrose maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to Montrose source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to Montrose office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, will be present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)

The following safety measures will be followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	1. Steam clean 2. Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	+/- 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	+/- 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	+/- 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	+/- 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	+/- 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	+/- 1.5%

Note: Calibration requirements that meet applicable regulatory agency requirements will be used.

Appendix D.2 SCAQMD and STAC Certifications

21865 Copley Drive, Diamond Bar, CA 91765-4178 (909) 396-2000 · www.aqmd.gov

September 9, 2020

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice

Reference # 96LA1220

Dear Mr. Peterson:

We have reviewed your renewal letter under the South Coast Air Quality Management District's Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2020, and ending September 30, 2021 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

Methods 1-4 Methods 5.1, 5.2, 5.3, 6.1

Methods 10.1 and 100.1 Methods 25.1 and 25.3 (Sampling)

USEPA CTM-030 and ASTM D6522-00 Rule 1121/1146.2 Protocol

Rule 1420/1420,1/1420.2 – (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna BoilerNoritz America Corp.Ajax Boiler, Inc.1510 North Spring Street11160 Grace Avenue2701 S. Harbor Blvd.Los Angeles, CA 90012Fountain Valley, CA 92708Santa Ana, CA 92704

Laundry Building of VA Greater Los Angeles Healthcare System 508 Constitution Avenue Los Angeles, CA 90049

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov.

Sincerely,

Dipankar Sarkar

Program Supervisor Source Test Engineering

DS:GK/gk Attachment

200909 LapRenewalRev.doc

Channing the ab three westmattee.

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3925.01 Valid to February 28, 2022

Presented this 11th day of February 2020

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

Appendix D.3 Individual Qi Certificate

CERTIFICATE OF COMPLETION

John Groenenboom

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Methods 1.1 - 4.1

Certificate Number: 002-2017-58

Ite Stall

DATE OF ISSUE:

1/18/17

Tate Strickler, Accreditation Director

DATE OF EXPIRATION:

1/18/22

CERTIFICATE OF COMPLETION

John Groenenboom

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Method 207.1

Certificate Number: 002-2017-51

Late Should

DATE OF ISSUE:

1/17/17

Tate Strickler, Accreditation Director

DATE OF EXPIRATION:

1/17/22

Appendix D.4 Statement of No Conflict of Interest

STATEMENT OF NO CONFLICT OF INTEREST AS AN INDEPENDENT TESTING LABORATORY

(To be completed by authorized source testing firm representative and included in source test report)

The following facility and equipment were tested by my source testing firm and are the subjects of this statement:

Facility ID:	153992
Date(s) Tested:	July 13, 2021
Facility Name:	Canyon Power
Equipment Address:	3071 E. Mira Loma Ave.
	Anaheim, California 92806
Equipment Tested:	Unit 2
Device ID, A/N, P/N:	D7

I state, as its legally authorized representative, that the source testing firm of:

Source Test Firm: Montrose Air Quality Services, LLC

Business Address: 1631 E. St. Andrew Pl.

Santa Ana, California 92705

is an "Independent Testing Laboratory" as defined in *District Rule 304(k):*

For the purposes of this Rule, when an independent testing laboratory is used for the purposes of establishing compliance with District rules or to obtain a District permit to operate, it must meet all of the following criteria:

- (1) The testing laboratory shall have no financial interest in the company or facility being tested, or in the parent company, or any subsidiary thereof -
- (2) The company or facility being tested, or parent company or any subsidiary thereof, shall have no financial interest in the testing laboratory;
- (3) Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere, or parent company or any subsidiary thereof shall have no financial interest in the testing laboratory; and
- (4) The testing laboratory shall not be in partnership with, own or be owned by, in part or in full, the contractor who has provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems, for the company being tested.

Furthermore, I state that any contracts or agreements entered into by my source testing firm and the facility referenced above, or its designated contractor(s), either verbal or written, are not contingent upon the outcome of the source testing, or the source testing information provided to the SCAQMD.

Signature:	./	Date:8/	4/2021
John Groenenboom	Client Project Manager	(714) 279-6777	8/4/2021
(Name)	(Title)	(Phone)	(Date)

FORM ST-110 :stevforl.doc (Revised 11/18/98

APPENDIX E APPLICABLE PERMIT SECTIONS

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

| Section D | Page: 4 | Facility ID: 153992 | Revision #: 3 | Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Condition
PODES IN POWER CENT	RATION		14.1 在是上语		
AS TURBINE, NO. 2, NATURAL AS, GENERAL ELECTRIC, MODEL M6000PC SPRINT, SIMPLE CYCLE, 9 MMBTU/HR AT 46 DEG F, WITH LET CHILLING, WITH WATER JECTION WITH N: 555829	D7	СЭ	NOX: MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 6-3-2011]; NOX: 25 PPMV NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5) [RULE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5C) [RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2) -Offset, 12-6-2002]; PM10: 11 LBS/HR NATURAL GAS (5B) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; SOZ: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SOX: 0.06 LBS/MMBTU NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 12-6-2002]	A63.1, A99.1, A99.2, A99.3, A195.1, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1 1298.2, K40.1

*	(I) (IA) (IB)	Denotes RECLAIM	emission factor
---	---------------	-----------------	-----------------

⁽³⁾ Denotes RECLAIM concentration limit

^{(5) (5}A) (5B) Denotes command and control emission limit

⁽⁷⁾ Denotes NSR applicability limit

⁽⁹⁾ See App B for Emission Limits

^{(2) (2}A) (2B) Denotes RECLAIM emission rate

⁽⁴⁾ Denotes BACT emission limit

Delicies DAC1 emission min

⁽⁶⁾ Denotes air toxic control rule limit

^{(8) (8}A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

⁽¹⁰⁾ See section J for NESHAP/MACT requirements

^{**} Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Facility ID: 153992
Revision #: 3
Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	计图制	基础	计划 加速制度	经合为的 特里斯斯	
CO OXIDATION CATALYST, NO. 2, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476657	C9	D7 C10			
SELECTIVE CATALYTIC REDUCTION, NO. 2, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH; 18 FT WITH A/N: 476657 AMMONIA INJECTION	Cto	C9 \$12		NH3: 5 PPMV NATURAL GAS. (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]	A195.5, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 2, HEIGHT: 86 FT; DIAMETER: 11 FT 8 IN A/N: 555829	St2	C10			

3) Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

(7) Denotes NSR applicability limit

Denotes NSR amplicability limit

(9) See App B for Emission Limits

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(10) See section J for NESHAP/MACT requirements

** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

^{(1) (1}A) (1B) Denotes RECLAIM emission factor

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

| Section D | Page: 29 | Facility ID: 153992 | Revision #: 3 | Date: November 06, 2015 |

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition: C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 9-7-2012; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-10-2010; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart HII, 1-30-2013]

[Devices subject to this condition: D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location
NH3 emissions	District method 207.1	1 hour	Outlet of the SCR
	and 5.3 or EPA method		serving this equipment

South Coast Air Quality Management District 21865 Copley Drive, Dlamond Bar, CA 91765-4178

Section D Page: 30 153992 Facility ID: Revision #:

November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

The test(s) shall be conducted at least quarterly during the first twelve months of operation and at least annually thereafter. The AQMD shall be notified of the date and time of the test at least 10 days prior to the test.

If the turbine is not in operation during one calendar year, then no testing is required during that calendar year.

The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using District Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted and the results submitted to the District within 60 days after the test date.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

[RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1)-BACT, 12-6-2002]

[Devices subject to this condition: D1, D7, D13, D19]

D29.3 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Sampling Time	Test Location
SOX emissions	AQMD Laboratory Method 307-91	Not Applicable	Fuel sample
VOC emissions	District Method 25.3	1 hour	Outlet of the SCR serving this equipment
PM emissions	District method 5.1	4 hours	Outlet of the SCR serving this equipment

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. John Groenenboom Title: Client Project Manager

Region: West

Email: <u>JGroenenboom@montrose-env.com</u>

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

Email: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

TEST REPORT FOR 4Q21 AMMONIA SLIP TEST AT CANYON POWER PLANT UNIT 3 FACILITY ID: 153992, DEVICE ID: D13

Prepared For:

Canyon Power Plant 3071 E. Mira Loma Avenue Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC 1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 282-8240

John Groenenboom

Test Date: October 13, 2021
Production Date: October 21, 2021

Report Number: W002AS-011390-RT-2923

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:		Date:	10/21/2021
	4		
Name:	John Groenenboom	Title:	Client Project Manager
appropriate writt the presented m	en materials contained her	ein. I hereby o te, and confor	ulations, results, conclusions, and other certify that, to the best of my knowledge, ms to the requirements of the Montrose
Signature:	Sun	Date:	10/21/2021
Name:	Surya Adhikari	Title:	Reporting QC Manager

TABLE OF CONTENTS

SEC	CTIO	<u>N</u>	<u>PAGE</u>
1.0	INT	FRODUCTION AND SUMMARY	5
2.0	UN	IT AND CEMS DESCRIPTION	6
	2.1	UNIT DESCRIPTION	6
	2.2	CEMS DESCRIPTION	7
	2.3	TEST CONDITIONS	7
	2.4	SAMPLE LOCATION	7
3.0	TES	ST DESCRIPTION	8
4.0	TES	ST RESULTS	9
LIS	T OF	APPENDICES	
Α	RA'	W DATA	10
	A.1	Sample Data Sheets	11
	A.2	Laboratory Data	16
	A.3	QA/QC Data	22
В	FA	CILITY CEMS DATA	27
С	CA	LCULATIONS	32
	C.1	General Emissions Calculations	33
	C.2	Spreadsheet Summaries	37
D	QU	ALITY ASSURANCE	40
	D.1	Quality Assurance Program Summary	41
	D.2	SCAQMD and STAC Certifications	
	D.3	Individual QI Certificate	
	D.4	Statement of No Conflict of Interest	53
Е	API	PLICABLE PERMIT SECTIONS	55
LIS	T OF	TABLES	
1-1	AM	IMONIA SLIP TEST RESULTS SUMMARY	5
4-1	AM	IMONIA SLIP TEST RESULTS	9
LIS'	T OF	FIGURES	
2-1	UN	IT BLOCK DIAGRAM	6
3-1	SC	AQMD METHOD 207.1 SAMPLE TRAIN	8

1.0 INTRODUCTION AND SUMMARY

Montrose Air Quality Services, LLC (MAQS) was contracted by the Canyon Power Plant to perform an ammonia slip test at Unit 3 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on October 13, 2021. The test was performed by John Groenenboom, Michael Chowsanitphon, Randy Monzon, Nestor Gonzalez, and Alfred Stewart. John Groenenboom was the on-site Qualified Individual for MAQS. Ms. Bertha Hernandez coordinated the test for Canyon Power Plant.

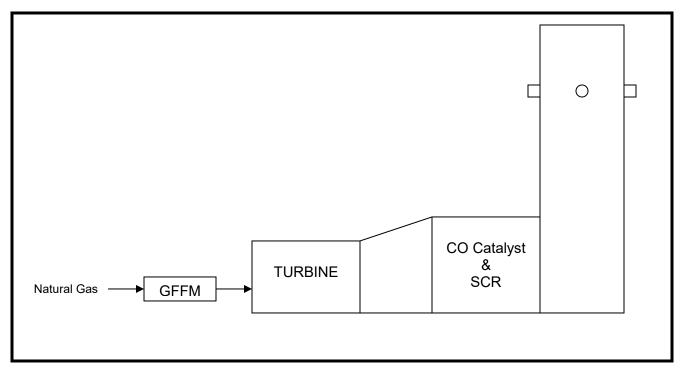
The test consisted of duplicate ammonia tests performed at 50 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to $15\% O_2$.

TABLE 1-1 AMMONIA SLIP TEST RESULTS SUMMARY CANYON POWER PLANT UNIT 3 OCTOBER 13, 2021

Parameter/Units	Result ⁽¹⁾	Limit
NH ₃		
ppm	1.7	
ppm ppm @ 15% O ₂	1.5	5

⁽¹⁾ Maximum of duplicate runs, as required by SCAQMD Method 207.1.

Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.



2.0 UNIT AND CEMS DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46°F, with water injection. The units are equipped with a CO oxidation catalyst and Selective Catalytic Reduction (SCR) system for emissions controls. Figure 2-1 presents a block diagram of the unit.

FIGURE 2-1 UNIT BLOCK DIAGRAM CANYON POWER PLANT UNIT 3

Stack Inside Diameter: 11 feet, 8 inches

Distance from Upstream Disturbance: 23 feet, 4 inches (2.0 Diameters)
Distance from Stack Exit: 16 feet, 6 inches (1.4 Diameters)

Southern California Public Power Authority - Canyon 4Q21 Unit 3 NH₃

2.2 CEMS DESCRIPTION

NO_x emissions from the unit is monitored by a dry, extractive Continuous Emission Monitoring System (CEMS). Stack flow rate is determined from fuel flow rate, O₂ concentration, standard F-Factor, and fuel higher heating value using EPA Method 19.

2.3 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 50 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.4 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack location. Each test was performed over a 60 minute interval. The sample gas was drawn through a titanium probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by Ion Specific Electrode analysis. Figure 3-1 presents a diagram of the sample train.

Stack NO_x and O_2 concentrations and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O_2 .

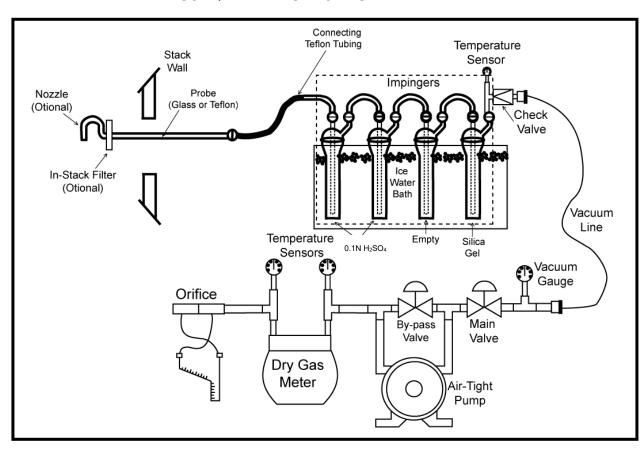


FIGURE 3-1 SCAQMD METHOD 207.1 SAMPLE TRAIN

4.0 TEST RESULTS

The results of the test are summarized in Table 4-1. The results show that the maximum ammonia slip was 1.5 ppm @ 15% O₂ which is less than the permitted limit of 5 ppm @ 15% O₂.

TABLE 4-1
AMMONIA SLIP TEST RESULTS
CANYON POWER PLANT
UNIT 3
OCTOBER 13, 2021

Parameter/Units	Run 1	Run 2	Average	Maximum ⁽¹⁾	Limit
Test	1-NH ₃ -U3	2-NH ₃ -U3			
Date	10/13/2021	10/13/2021			
Time	1735/1838	1911/2014			
O₂ , % ⁽²⁾	14.38	14.37	14.38		
Stack Flow, dscfm @ Tref ⁽²⁾	227,303	226,811	227,057		
NO _x , ppmc ⁽²⁾	2.1	2.2	2.1		2.5
NH ₃ ppm ppm @ 15% O ₂ lb/hr lb/MMBtu lb/MMSCF	1.7 1.5 1 0.002 2.1	1.5 1.4 0.9 0.002 2	1.6 1.4 1.0 0.002 2.1	1.7 1.5 1.0 0.002 2.1	5

⁽¹⁾ Maximum of duplicate test runs, as required by SCAQMD Method 207.1

⁽²⁾ From facility CEMS

APPENDIX A RAW DATA

Appendix A.1 Sample Data Sheets

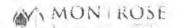
WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

METER METER METER STACK TRAVER ΔH= _A Probe C Silica Ge	D: TOR: BOX NO: AH@: Yd: AREA, FT RSE POIN A X AP: ondition, pel Expende	2: 106-9 TS, MIN/POINT: pre/post test: 9-00 ed, Y/N: Ner Test: Aq 449-4/56	5/12 d (gu)	ASSUME PITOT TI PROBE I PROBE I NOZZLE NOZZLE FILTER I PRE-TES POST-TE	ST LEAK RAT	RIAL: SELECTION OF THE CONTROL OF T	M@ /2" M@ /0" M@ /0" JETODIAN 3	in. Hg. in. Hg.	1 2 3 4 Ut	0.1 H25 MT 5 C	958.		3 .2 .8
Deint	T:	Meter 43	ΔP	ΔH	Stack	Probe	Filter	Imp. Out		Temp, °F	Vacuum	O ₂	Pstatic
Point 3	Time	Volume, ft ³	in. H ₂ O	in. H₂O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	72	Out 69	in. Hg.	%	in. H ₂ O
W 3	1740	833.930	1	10	7 007	1	7000	56	12	69	4		ma
1	1745	376-875		1.0				56	73	600	4		
3	1750							8.			,		
N 3	1751	839,700		1.0				56	71	68	4		
1	1756	842.220		1.0				55	71	68	U		
1	1801	344.960	- 1	1.0				55	70	67	4		
3	1806	10.00			1-11					100	-		
€ 3	1807	847.745		1.0				54	70	67	4		1
1	1812	853,190		10					69	67	4		
	1017	653, 190		1.0			-	55	66	46	4		
6	1022	255	_						1.0	12.00	-		++
5 3	1003	855,940		1.0				55	69	do	4		+ +
1	10 20	058,900		1.0				56	68	66	u		1
1		361,395	-	1.0				20	60	66	9		+++
	1838	864.165	1	-			1		-	-		-	+
	-		-						1	1		-	+ +
-			-			1 1			1	1			
		F			-	1		-					
		-								-			
Average				1									

Date of last revision 2/14/2017

Comments:

DS834048
Master Document Storage\Forms\Datasheets\Field Datasheets



WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

TO THE OWNER	-						- 6						
CLIENT:		nyon	_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TTEMPERATU		10		Imp. #	Contents	Post-Test -	Pre-Test =	Differenc
LOCATIO	ON:	unit s			ETRIC PRESSU	RE:	29,20			A	-0 0101		
DATE:_		10/13/21		ASSUME	ED MOISTURE:		1170		1	OLI NH-	50y 869,4	690.7	
RUN NO	:	2-N	43	PITOTT	UBE COEFF, C	p:	NA		-				,
OPERAT	OR:	pred, 1	16-	PROBE	ID NO/MATERIA	AL: NA	/T	,	2	0.1 ax	say 718,5	717.8	
METER	BOX NO:	13 PH	~	PROBE	LENGTH:	71			-	0		0.00	
METER		1927		NOZZLE	ID NO/ MATER	IAL:	1 1 1		5	nit	- 597,2	597.0	
METER '	Yd:	0.990		NOZZLE	DIAMETER:		1/1		1.0	01	923.8	0.00	
STACK A	AREA, FT	2: 106.9			NO/TYPE:		10/4	200	4	50	107.8	915.5)
TRAVER	SE POIN	TS, MIN/POINT:	5/12	PRE-TES	ST LEAK RATE:	60 00 OFF	10/24i	n. Hg.					
AH= N	A XAP			POST-TI	EST LEAK RATE	E: CO-60) CFI	10 /04 i	n. Hg.	S	DI Ho	0 0	W	
Probe Co	ondition, p	re/post test: 500	disad		EAK CHECK - P	RE:	POST:	wis				-	
		ed, Y/N: N	7	CHAIN C	F CUSTODY:	SAMPLE CU			Total:				
		er Test: NA	y			SAMPLER	Rno						
Check W		499.9	5000				STODIAN M	(
		Meter	ΔΡ	ΔН	Stack	Probe	Filter	Imp. Out	Meter T	emp, °F	Vacuum	O ₂	Pstatic
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	In	Out	in. Hg.	%	in. H ₂ O
-3	1911	1865,500	111	1.0	NIA	in	ms	58	70	69	U		ws

Point	Time	Meter Volume, ft ³	ΔP in. H ₂ O	ΔH in. H ₂ O	Stack Temp, °F	Probe Temp, °F	Filter Temp, °F	Imp. Out Temp, °F	Meter T	emp, °F	Vacuum in. Hg.	O ₂	Pstatic in. H ₂ O
7	1911	865.500	ww	1.0	NVA	jus	m		70		ч	75	ws
2	1916	368 370	1	7.0	1	7	,,,,	26	10	68	4		1
1	1916	368-170		1.0			1	58	69	68	4		
F	1926			-				-			, ,		
3	1927	873.500 876.110 878.780	- 1	1.0				59	69	69	4		
入	1932	876.110		1.0	1			66	65	27	Y		
1	1937	878.780		1.0				54	62	67	4		
E	1947												
3	1943	38-1,210		1.0	7-7			56	60	66	4		
1	1948	884,210	1 10 10 10 10 10	1.0				55	68	00	ч		
1	1953	1896,900		1.0				55	69	67	4		
=	1958												
3	1959	889,650		1.0		1 p == ==	1	57	69	67	4		1 1
2	2004	895.150		1.0				55	67	66			
-	2009	895.150		1.0				55	67	600	4		-
E	2014	817.705					4	1 3 10 2 2					
				-		1		-					1
_										115			
					\-\								1
Average:													1

Comments:

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

METER A METER A STACK A TRAVER ΔH=	DN: OR: BOX NO: AH@: Yd: SE POINT X AP: Dondition, p	Unit 3 10/13/21 B W FM 10 F D 1.9 Z 0.990 1: 106.9 TS, MIN/POINT re/post test: d, Y/N: er Test: A	O/NO TO	BAROMI ASSUME PITOT T PROBE PROBE NOZZLE NOZZLE FILTER I PRE-TES POST-TE	T TEMPERATU ETRIC PRESSU ED MOISTURE: UBE COEFF, C ID NO/MATERI/ LENGTH: ID NO/ MATER DIAMETER: NO/TYPE: EST LEAK RATE EAK CHECK - F OF CUSTODY:	P:	M@i M@i POST:i JSTODIAN	in. Hg. in. Hg.	1	0.1 452 0.1 NH M	Post-Test Ou 791.7 584715.6 597. 915.7	- 691.) 9 715,8	
Point	Time	Meter Volume, ft ³	ΔP in. H₂O	ΔH in. H ₂ O	Stack Temp, °F	Probe Temp, °F	Filter Temp, °F	Imp. Out Temp, °F	Meter 1	Temp, °F	Vacuum in, Hg.	O ₂ %	P. static in. H ₂ O
Average:			1										

1-NH3-U3

Point	Meter Volume	Delta H	Tm In	Tm Out
6	830.955	1.0	72	69
5			72	69
4			73	68
3			71	68
2			71	68
1			70	67
Stop			70	67
6			69	67
5			69	66
4			69	66
3			68	66
2			68	66
1				
Stop	864.165			
Result	33.210	1.0	6	8.7

Impinger Weights Post-Test Pre-Test Difference

888.8 704.0 664.2 713.4 703.3 175.4 0.7 1.0 1 2 3 4 663.2 958.3 946.8 11.5 Line Rinse 0.0 100.0 -100.0 88.6

2-NH3-U3

Point	Meter Volume	Delta H	Tm In	Tm Out
6	865.500	1.0	70	69
5			70	68
4			69	68
3			69	69
2			68	67
1			68	67
Stop			68	66
6			68	66
5			69	67
4			68	67
3			67	66
2			67	66
1				
Stop	897.705			

#	Post-Test	Pre-Test	Difference
1	869.4	690.7	178.7
2	718.5	717.8	0.7
3	597.2	597.0	0.2
4	923.8	915.5	8.3
Line Rinse	0.0	100.0	-100.0
			87.9

Appendix A.2 Laboratory Data

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION

Project Number: PROJ-011390
Client/ Location: SCPPA CANYON

Sample Location: Unit 3

District Method: SCAQMD 207.1
Sample Date: 10/13/2021
Analysis Date: 10/19/2021
Analyst's Initials: KC

Calibration Curve Slope -57.8598
Y-intercept 87.6098
R² 1.0000

Sample	p mV	Conc. μg NH ₃ /ml as N	C avg as N	TV (ml)	C avg as NH ₃	μg NH ₃ / sample
28 ug NH ₃ / ml as N	3.0	28.995		(,,,,)		Surripic
Repeat 28 ug NH ₃ /ml as N	3.1	28.880	28.938	NA	35,175	NA
1-NH3	74.7 75.2	1.672 1.639	1.655	540.4	2.012	1087.212
2-NH3	75.3 75.8	1.632 1.600	1.616	491.5	1.964	965.501
spike 2-NH ₃	10.9 10.5	21.173 21.513	21.343	NA	25.944	NA
28 NH ₃ /ml as N	3.0	28.995		4-7-9		370
Repeat 28 ug NH ₃ /ml as N	3.2	28.765	28.880	NA	35.106	NA
Reagent Blank Repeat Reagent Blank	188.2 187.9	0.018 0.018	0.018	NA	0.022	NA
Field Blank Repeat Field Blank	186.1 185.2	0.020 0.021	0.020	428.3	0.025	10.523
DI H2O Blank Repeat DI H2O Blank	186.9 187.2	0.019 0.019	0.019	NA	0.023	NA
28 NH ₃ /ml as N	3.1	28.880				
Repeat 28 ug NH₃/ml as N	3.1	28.880	28.880	NA	35.105	NA

Notes:

Measured Concentration of Ammonia (C) in μg NH $_3$ / ml as N C=10 $^{(P\cdot B)/M}$

P = electrode potential (mV), M=slope and B=intercept Average Measured Ammonia Concentration (Cavg) = (C1 + C2)/2

where C1, C2 results from duplicate analyses (µg NH₃/ml as N)

Cavg (µg NH₃/ml as NH₃) = Cavg (µg NH₃/ ml as N) * 17.03/ 14.01

μg NH₃ / sample = Cavg (μg NH₃/ml as NH₃) * TV

Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate,

All solutions turned blue and remained blue with ISA unless otherwise indicated.

Sample PH and Temperatures can be found on the laboratory datasheet.

Maximum samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL

Project Number:

PROJ-011390

Client/ Location:

SCPPA CANYON

Sample Location:

Unit 3

District Method: Sample Date: SCAQMD 207.1 10/13/2021 10/19/2021

Analysis Date: Analyst's Initials:

KC

Sample	% recovery	RPD %	RPA %
28 ug NH3 / ml as N Repeat 28 ug NH3/ml as N	NA	0.40	3.348
1-NH3	NA	1.99	NA
2-NH3	NA	1.99	NA
spike 2-NH3	102.74	-1.59	NA
28 NH3/ml as N Repeat 28 ug NH3/ml as N	NA	0.80	3.143
Reagent Blank Repeat Reagent Blank	NA	-1.19	NA
Field Blank Repeat Field Blank	NA	-3.58	NA
DI H2O Blank Repeat DI H2O Blank	NA	1.19	NA
28 NH3/ml as N Repeat 28 ug NH3/ml as N	NA	0.00	3.143

Notes:

spike: 100 ml sample + 2 ml (1000 µg NH₃ / ml as N)

Matrix Spike Percent Recovery (%R)

%R = (C spike*0.104 - Csample*0.102)/2 *100

Cspike = average result of matrix spike (µg NH₃/ ml as N)

Relative Percent Difference (RPD) = (C1-C2)/ Cavg *100

(must be 5% or less)

Relative Percent Accuracy (RPA)

(must be 10% or less)

RPA = (Cavg-theoretical value of standard)/ theoretical value of standard * 100

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS

Project #: PROJ-O11391 District Method: SCAQMD 207.1 Sample Date: IO/13/21 Client/Location: SCPPA/Canyon Calibration Date: IO/19/21 Analysis Date: IO/19/21 Sample Location: U3 Stack Calibration Curve: $V=-57.8598 \times +87.6098$ Analyst's Initials: V=-10000 Room Temperature (°C): V=-10000

Sample	Total Vol. (mL)	Electrode Potential (mV)	Conc. µg NH ₃ – N / ml	Cavg (μg NH ₃ – N/ml)	μg NH ₃ / sample	T (°C)	Blue after + ISA (Y/N)	pН	% R
Standard Check: 28 µg NH₃/ml		3.0	28.995	28.938		21.6	Y		103
75	_	3.1	28.880	28.730		21.6	Y	1	103
1-NH ₃	rue II	74.7	1.672	100	1087.212	21.7	4	17	=1
	540.4	75.2	1.639	1, 655	1001.212	21.7	Y	42	
2-NH₃	MAIE	75.3	1.632		965.50	21,4	Y	1500	
2-14/15	491.5	75.8	1,600	1.616	765.30	21.4	Y	12	-
Spike: <u>간 - 씨러3</u> +2ml 1000ppm NH ₃	-37	10.9	21.173	1 71 7		21.5	Y		
		10.5	21.513	21.343	-	21.5	Y		103
Standard Check: 28 µg NH3/ml		3.0	18.995			21.7	Y		103
20 pg Milo/iii	-	3.2	28.765	28.880		21.7	Y	-	
Reagent Blank 0.1N H ₂ SO ₄		188.2	0.018			21,3	Y		
0.114112004	_	187.9	0.018	0.018	_	21,3	Y	-	-
DI H₂O Blank		186.9	0.019	0		21.4	Y		
	-	187.2	0.019	0.019	_	21.4	Y		-
Field Blank	1140.0	186.1	0.020	and the second	10.512	21.4	Y	7.2	
	428.3	185.2	0.021	0.020	10.523	21.4	4	42	-
Standard Check: 28 µg NH3/ml		3.1	28.880	-0.00-		21.7	Y		103
20 pg 141 10/1111		3.1	28.880	28.880	_	21.7	Y		

Notes:

Total volume of samples and standards used:

100 mL

Volume of pH adjusting ISA used in ml:

Calculations:

Absorbing solution: 0.1 N HSO4

Conc. (μ g NH₃ – N / ml) = 10 (P-B)M; (P = electrode potential, B = y-intercept and M = slope)

Cavg = average result of duplicate analyses (µg NH₃ - N / ml) = (C1+C2)/2

μg NH₃ / sample = Cavg* 17.03/ 14.01 * TV

mg / sample = μg /sample ÷ 1000

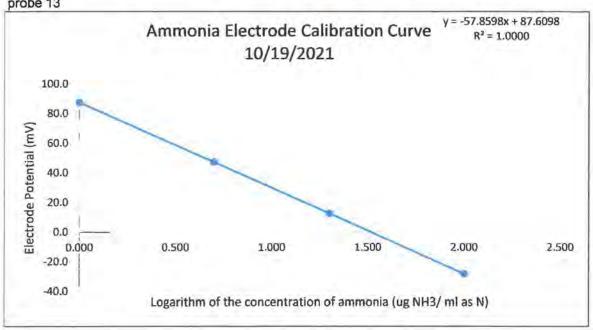
ppm NH₃ = mg NH₃/sample x 1/Vmstd x 1/454000 x SV/17 x 10⁶

MONTROSE

DS834059

Date of last revision 6/10/2020

Master Document Storage\Forms\Datasheets\Lab Forms


W002AS-011390-RT-2923

19 of 60

AMMONIA ELECTRODE CALIBRATION CURVE

NH ₃ concentration (μg NH ₃ / ml as N)	log NH ₃ concentration	Electrode potential (mV)	Sample Temperature (C)	Room Temperature (C)
1	0.000	87.5	21.2	20.9
5	0.699	47,3	21.1	20.9
20	1.301	12.4	21.1	20.9
100	2.000	-28.2	21.1	20.9

probe 13

slope	-57.8598
y-intercept	87.6098

Concentration (μg NH ₃ / ml as N)	Value LR line	Difference	% Difference
1	1.0044	0.0044	0.4378
5	4.9737	-0.0263	-0.5258
20	19.9463	-0.0537	-0.2684
100	100.3597	0.3597	0.3597

Calculation:

Regression Line: P=M*log(µg of NH₃/ ml as N)+B

Measured Concentration of Ammonia (C) in μg / ml NH₃ as N: C=10^{(P-B)/M}

where P = electrode potential, M= slope (must be -57±3) and B= intercept

All standards were prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALIBRATION DATA

District Method: SCAQMD 207.1

Calibration Date:	10/19/21
Calibration Curve:	y=-57.8598x+87.6098
R2 1.0000	
Analyst's Initials:	KC
Thermometer #:	(41-11920
ISE Electrode #:	13

Calibration Standard (µg NH ₃ / ml as N)	Electrode Potential (mV)	Solution Temperature (°C)	Room Temperature (°C)
11011	87.5	21:2	20.9
5	41.3	21.1	20.9
20	12.4	21.1	20.9
100	-28.2	21.1	20.9

Total volume of samples and standards used: 100m Volume of pH adjusting ISA used in ml: 2mL Absorbing solution: 0.04N H2S04 Slope of the calibration curve shall be between -54 to -60 Notes:

R² must be 0.9997 or greater

Calibration solutions, sample solutions and Calibration Verification standard temperature within

± 2°C

Date of last revision 4/24/2019

DS1939150 Santa Ana\Forms\Lab Datasheets

Appendix A.3 QA/QC Data

	Barometric Pressu	re Determination
Date:	10/13/21	
Data By:	JG	
Reference: http	s://forecast.weather	.gov/MapClick.php?lat=33.8329&lon=-117.9152
Reference Barometer ID		FW0063 Fullerton CSU (F0063)
Reference Barometer Location		Lat: 33.8805°NLon: 117.88417°WElev: 247ft
Reference Barometer Other Info.		15 Oct 10:53 am PDT
Reference Barometer Indication, corrected	to sea level	29.97
Reference Barometer Reference Elevation		247
Reference Barometer Actual Pressure		29.72
Test Barometer Location/Site		Canyon Power Plant
Location/Site Elevation		212
Location/Site Barometric Pressure		29.76
Sampling Location Height (above/below sit	te elevation)	60
Sampling Location Barometric Pressure		29.70

Orifice Method - Triplicate Runs/Four Calibration Points

Model #:

SN. 9873854

English Meter Box Units, English K' Factor

ID# 10 P&M

Filename: M:\Santa Ane\Equipment\Test Equipment\Calibrations\Dry Gas Meters\10-P&M\2021\(\)10P&M Semi Annual Cal 8-25-2021.xis Date.
File Modified From: APEX 522 Series Meter box Calibration

Bar. F

8/26/2021 Bar. Pressure: 29.78

Revised 4/8/2005

Performed By: L.Olivares

				DRY GAS METER READINGS					CRITICAL ORIFICE READINGS					
		Volume	Volume	Volume	Initial	Temps:	Final	Temps.	Orifica	K' Orifice	Actual	Ambient Temperature		
dH in H2O)	Time (min)	Initial (cu ft)	Final (cu ft)	Total (cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Serial# (number)	Coefficient (see above)	Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)
0.14	26.00	232.700	238.195	5.495	81.0	81.0	84.0	83.0	AA-33	0.1574	18.0	78.0	77.0	7.7.5
0.14	26.00	238,195	243,690	5.495	84.0	83.0	86.0	85.0	AA-33	0.1574	18.0	77.0	78.0	77.5
0.14	26.00	243,690	249,245	6,555	86,0	85.0	87.0	86.0	EE-AA	0.1574	18.0	78.0	80.0	79.0
0.72	12.00	252,200	257.775	5.575	88.0	87.0	89.0 T	87.0	Q1-48	0.3434	18.0	79.0	77.0	78.0
0.72	12.00	257,775	263.370	5.595	89.0	87.0	89.0	87.0	Q1-48	0.3434	18.0	77.0	78.0	77.5
0.72	12.00	263,370	268,960	5.590	89.0	87.0	90.0	87.0	QI-48	0.3434	18.0	78.0	80.0	79.0
2.10	7.00	272,800	278.455	5.655	92.0	88.0	93.0	88.0	Q1-63	0.5994	16.0	77.0	78.0	77.5
2.10	7.00	278.455	284_125	5.670	93.0	0.88	95.0	88.0	Q1-63	0.5994	16.0	78.0	78.0	78.0
210	7,00	284,125	289,805	5,680	95,0	98.0	95.0	0.88	Q1-63	0.5994	16.0	78.0	78.0	78.0
3.90	5.00	291.600	297.075	5.475	96.0	88,0	97.0	89.0	AA-73	0.8121	16.0	77.0	77.0	77.0
3.90	5.00	297.075	302.540	5.465	97.0	89.0	98.0	89.0	AA-73	0.8121	16.0	77.0	77.0	77.0
3.90	5.00	302.540	308.030	5.490	98.0	89.0	99.0	89.0	AA-73	0.8121	16.0	77.0	77.0	77.0

DRY GA	SMETER		ORIFICE			GAS METER	ORIFICE	Ta all of decay	Lead Color Co.	n.ir.	nite.
VOLUME	VOLUME	VOLUME	VOLUME	VOLUME	CALIBI	RATION FACTOR	CALIBRATION FACTOR	Individual Run	Individual Orifice	Orifice Average	Orifice Average
CORRECTED	CORRECTED	CORRECTED	CORRECTED	NOMINAL		A.	dH@				
Vm(std)	Vm(std)	Vcr(std)	Vcr(std)	Ver		Value	Value	0.95 < Y	Ymax - Ymin	0.98 < Y/Yd	dH@ - dH@ at
(cuft)	(fiters)	(cu ft)	(liters)	(cu ft)		(number)	(in H2O)	< 1.05?	< 0.010?	< 1.027	< 0.155?
5.325	150.8	5.257	148.9	5.379		0.987	1.868	Pass			
5,303	150.2	5.257	148.9	5.379		0,991	1.861	Pass			
5,346	151.4	5.249	148.7	5,386		0.982	1.861	Pass			
					Average	0.987	1.863		Pass	Pass	Pass
5.356	151.7	5.291	149.8	5.418		0.988	2.002	Pass	_		
5.373	152.2	5,293	149.9	5.416		0.985	2.000	Pass			
5,366	152.0	5.286	149.7	5.423		0.985	2.005	Pass		7.3	
					Average	0.986	2.002		Pass	Pass	Pass
5.427	153.7	5.390	152.6	5.514		0,993	1.911	Pass			
5.434	153.9	5.387	152.6	5.517		0.391	1.913	Pass			
5.438	154.0	5.387	152.6	5.517		0.991	1.913	Pass			
					Average	0.992	1,912		Pass	Pass	Pass
5,256	148.8	5.218	147.8	5.334		0.993	1,930	Pass			
5,239	148,4	5.218	147.8	5.334		0,996	1.928	Pass			
5,258	148.9	5.218	147.8	5.334		0.992	1,928	Pass			
					Average	0.994	1.929		Pass	Pass	Pass

Average Yd:	0.990	dH@:	1.927	
		Q@dH=1:	0.540	

SIGNED

Signature on file

Date:

8/26/2021

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: PTC-72

Readout Description: Handheld

Date: 7/6/2021

Performed By: RD/DA/RM

Calibrated Thermocouple ID: TC-CAL T1 Reference Thermometer ID: 313010 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 242167

T/C I.D.	T/C - Readout Readout °F						Reference T	Diffe				
TC-CAL	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (OIL)	PTC-72	357	357	357	357	358	358	358	358	1.0	0.1%	Pas
T2 (Boiling H ₂ O)	PTC-72	213	213	213	213	212	212	212	212	1.0	0.1%	Pas
T1 (Ice/Water)	PTC-72	32	32	32	32	32	32	32	32	0.0	0.0%	Pas

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocoupie Source Readings

	T/C - Readout T/C Source F				T/C S	Diffe						
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	129103	650	650	650	650	650	650	650	650	0.0	0.0%	Pas
T3 (~370 F)	129103	371	371	371	371	370	370	370	370	1.0	0.1%	Pas
T2 (~212 F)	129103	210	210	210	210	212	212	212	212	2.0	0.3%	Pas
T1 (~32 F)	129103	33	33	33	33	32	32	32	32	1.0	0.2%	Pas

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

CHAIN OF CUSTODY

CLIENT:	SCPPA		PROJECT NUMBER: PROJ-011391	_ TEST DATE(S)		
LOCATION:	Canyon			SAMPLER(S):	RMO/NG	
SAMPLE LOCATION: Unit 3		Unit 3		_ PROJECT MAN	IAGER:	JG
TEST METHOD	D(S):	SCAQMD 207.1		_ DATE DUE:		Normal
OUTSIDE LAB	REQUIRED	? <u>NO</u>		COMPLIANCE	TEST?	Yes
DATE	TIME	TEST#	SAMPLE DESCRIPTION	CONTAINERS	SAMPLER	COMMENTS
10/13/2021		1-NH3	Probe, Line, Impingers	1 -1 -	RMO/NG	
10/13/2021		2-NH3	Probe, Line, Impingers	1	RMO/NG	
10/13/2021		FB-NH3	Probe, Line, Impingers	11	RMO/NG	
10/13/2021	1	RB-NH3	DIH2O	1	JG	
10/13/2021		RB-NH3	0.1 N H2SO4	1	JG	
	1					
	DELEAGE	D DV	DATECTIME	DECENTED IN	D DV	DATECTIME
-//	RELEASE	DBY	DATE/TIME	RECEIVE		DATE/TIME 10/19/2 9:00am
11			to las	9111111	(017)	15111121 1:00001
ANALYSIS REC	QUIRED:		Samples stored at	42.5 °F		
MON	I KOSI	Date of Last Revisio	n 9/1/2017			ody - DS834001 - Excel

APPENDIX B FACILITY CEMS DATA

Average Values Report Generated: 10/13/2021 23:39

Company: City Of Anaheim Plant: 3071 Miraloma Ave., City/St: Anaheim, CA, 92806

Source: 3

Period Start: 10/13/2021 17:35 Period End: 10/13/2021 18:37 Validation Type: 1/1 min Averaging Period: 1 min Type: Block Avg

	Average 3_02	Average 3_NOXPPM	Average 3_NOX_CORR	Average 3_NOX_LBHR	Average 3_NOX_LBMM	Average 3_NH3_Flow	Average 3_Nh3slpuC	Average 3_Nh3_Conc	Average 3_Nh3_CF	Average 3_GasFlow	Average 3_LOAD	Average 3_STACKFLW
Period Start:	%	ppm	ppm	#/hr	#/MBTU	#/hr	ppmC	Multi	Multi	kscfh	MW	kacfm
10/13/2021 17:35	14.40	2.74	2.49	4.45	0.009	74.37	3.83	0.191	0.370	471.3	49.85	231,0
10/13/2021 17:36	14.38	2.67	2.42	4.46	0.009	74.36	3.93	0.191	0.370	472.3	49.76	230.8
10/13/2021 17:37	14.38	2.54	2.30	3,97	0.008	74.30	3.97	0.191	0.370	472.2	50.02	230.7
10/13/2021 17:38	14.38	2.45	2.22	3.97	0.008	74.34	3.97	0.191	0.370	472.1	49.94	230.7
10/13/2021 17:39	14.39	2.42	2.19	3,96	0.008	74.54	3.99	0.191	0.370	471.7	50.01	230.8
10/13/2021 17:40	14.38	2.42	2.19	3.96	0.008	74.37	3.99	0.191	0.370	471.7	50.13	230.5
10/13/2021 17:41	14.38	2.44	2.21	3.96	0.008	74.40	4.02	0.191	0.370	471.1	50.00	230.2
10/13/2021 17:42	14.38	2,39	2.16	3.96	0.008	74.39	4.01	0.191	0.370	471.4	49.80	230.3
10/13/2021 17:43	14.39	2.37	2.15	3.96	0.008	74.42	3.98	0.191	0.370	471.0	49.85	230.5
10/13/2021 17:44	14.39	2.38	2.16	3.96	0.008	74.45	3.96	0.191	0.370	471.7	49.87	230.8
10/13/2021 17:45	14.38	2.38	2.15	3.97	0.008	74.39	4.01	0.191	0.370	472.1	49.88	230.7
10/13/2021 17:45	14.39	2.40	2.18	3.96	0.008	74.40	4.01	0.191	0.370	471.8	49.94	230.9
10/13/2021 17:47	14.39	2.42	2.19	3.97	0.008	74,39	3.98	0.191	0.370	472.1	50.11	231.0
10/13/2021 17:48	14.38	2.41	2.18	3,96	0.008	74.46	4.03	0.191	0.370	471.6	49.97	230.4
10/13/2021 17:49	14.39	2.41	2.18	3.96	0.008	74.39	3.99	0.191	0.370	471.1	49.94	230.6
10/13/2021 17:50	14.39	2.43	2.20	3.96	0.008	74.24	3.98	0.191	0.370	471.8	49.99	230,9
10/13/2021 17:51	14.40	2.42	2.20	3.96	0.008	74.41	3.97	0.191	0.370	471.9	49.79	231.3
10/13/2021 17:52	14.39	2,38	2.16	3.96	0.008	74.35	3.98	0.191	0.370	471.8	49.77	230.9
10/13/2021 17:53	14.39	2.37	2.15	3.96	0.008	74.41	3.97	0.191	0.370	471.8	50.02	230.9
10/13/2021 17:54	14.39	2.42	2.19	3.96	0.008	74.49	4.02	0.191	0.370	471.9	49.85	230.9
10/13/2021 17:55	14.39	2.42	2.19	3.96	0.008	74.40	4.01	0.191	0.370	471.5	50.09	230.7
10/13/2021 17:56	14.39	2.39	2.17	3.96	0.008	74.38	4.02	0.191	0.370	471.4	49.83	230.7
10/13/2021 17:57	14.39	2.38	2.16	3.97	0.008	74.36	4.01	0.191	0.370	472.6	49.87	231.3
10/13/2021 17:58	14.39	2.38	2.16	3.97	0.008	74.58	4.00	0.191	0.370	472.7	50.03	231.3
10/13/2021 17:59	14.39	2.38	2.16	3.96	0.008	74.54	4.04	0.191	0.370	471.8	49.97	230.9
10/13/2021 18:00	14.39	2.35	2.13	3.97	0.008	74.57	4.02	0.191	0.370	472.3	49.88	231.1
10/13/2021 18:01	14.40	2.31	2.10	3.97	0.008	74.32	3.94	0.191	0.370	472.3	50.06	231.5
10/13/2021 18:02	14.39	2.30	2.08	3,97	0.008	74.40	3.98	0.191	0.370	472.1	49.74	231.0
10/13/2021 18:03	14.39	2.33	2.11	3.97	0.008	74.51	4.00	0.191	0.370	472.3	49.79	231.1
10/13/2021 18:04	14.39	2.35	2.13	3.97	0.008	74.45	4.03	0.191	0.370	472.1	50.01	231.0
10/13/2021 18:05	14.38	2,35	2.13	3.97	0.008	74.37	4.01	0.191	0.370	472.5	50.00	230.9
10/13/2021 18:06	14.39	2.36	2.14	3.97	0.008	74.39	3.98	0.191	0.370	472.7	49.95	231.3
10/13/2021 18:07	14.39	2,38	2.16	3.97	0.008	74.51	4.03	0.191	0.370	472.3	49.81	231.1
10/13/2021 18:08	14.38	2.39	2.16	3.97	0.008	74.37	4.01	0.191	0.370	472.7	49.86	230.9
10/13/2021 18:09	14.38	2.35	2.13	3.97	0.008	74.43	4.04	0.191	0.370	472.3	49.77	230.8
10/13/2021 18:10	14.39	2.31	2.09	3.97	0.008	74.57	4.00	0.191	0.370	472.9	50.00	231.4
10/13/2021 18:11	14.39	2,32	2.10	3.98	0.008	74.40	3.94	0.191	0.370	473.8	50.02	231.9
10/13/2021 18:12	14.39	2.32	2.10	3.96	0.008	74.43	4.01	0.191	0.370	472.0	49.86	231.0
10/13/2021 18:13	14.38	2.34	2.12	3.97	0.008	74.45	4.06	0.191	0.370	473.0	50.01	231.1
10/13/2021 18:14	14.38	2.35	2.13	3.97	0.008	74.50	4.06	0.191	0.370	473.0	49.92	231.1
10/13/2021 18:15	14.37	2,34	2.11	3.97	0.008	74.49	4.09	0.191	0.370	472.3	50.19	230.4
10/13/2021 18:16	14.37	2.34	2.11	3.97	0.008	74.48	4.07	0.191	0.370	472.4	49.97	230.5
10/13/2021 18:17	14.36	2.33	2.10	3.97	0.008	74.31	4.09	0.191	0.370	472.4	49.86	230.1
10/13/2021 18:18	14.36	2.31	2.08	3.97	0.008	74.59	4.11	0.191	0.370	473.1	49.87	230.5
10/13/2021 18:19	14.36	2.29	2.07	3.97	0.008	74.59	4.12	0.191	0.370	472.7	49.81	230.2
10/13/2021 18:20	14.37	2.25	2.03	3.47	0.007	74.38	4.04	0.191	0.370	472.7	50.09	230.6
10/13/2021 18:21	14.37	2.25	2.03	3.48	0.007	74.30	4.03	0.191	0.370	472.9	49.90	230.7
10/13/2021 18:22	14.38	2.26	2.05	3.97	0.008	74.48	4.00	0.191	0.370	473.1	49.87	231.2
10/13/2021 18:23	14.37	2,24	2.02	3.48	0.007	74.61	4.05	0.191	0.370	473.2	50.07	230.9
10/13/2021 18:24	14.37	2.23	2.01	3.48	0.007	74.40	4.03	0.191	0.370	473.2	50.02	230.9
10/13/2021 18:25	14.35	2.23	2.01	3.48	0.007	74.45	4.14	0.191	0.370	472.9	49.96	230.9
10/13/2021 18:26	14.35	2.24	2.02	3.48	0.007	74.38	4.11	0.191	0.370	473.3	50.06	230.2

CEMTER KVB-Enertec NetDAHS®

1	NAS	
- 1	Version	47 (

Period Start:		Average 3_02	Average 3_NOXPPM	Average 3_NOX_CORR ppm	Average 3_NOX_LBHR #/hr	Average 3_NOX_LEMM #/METU	Average 3_NH3_Flow #/hr	Average 3_Wh3SlpuC ppmC	Average 3_Nh3_Conc Multi	Average 3_Wh3_CF Multi	Average 3_GasFlow kscfh	Average 3_LOAD MW	Average 3_STACKFLW kscfm
10/13/2021 18:	27	14.36	2.24	2.02	3.47	0.007	74.46	4.12	0.191	0.370	472.7	49.89	230.2
10/13/2021 18:	28	14.36	2.23	2.01	3.48	0.007	74.46	4.14	0.191	0.370	473.4	49.88	230.6
10/13/2021 18:	29	14,36	2.22	2.00	3.48	0.007	74.67	4.17	0.191	0.370	472.9	49.91	230.3
10/13/2021 18:	30	14.36	2.22	2.00	3.47	0.007	74.57	4.17	0.191	0.370	472.6	49.84	230.2
10/13/2021 18:	31	14.37	2.21	2.00	3.47	0.007	74.55	4.13	0.191	0.370	472.2	50.00	230.4
10/13/2021 18:	32	14.37	2.22	2.01	3.47	0.007	74.54	4.10	0.191	0.370	472.4	49.83	230.5
10/13/2021 18:	33	14.37	2.25	2.03	3.47	0.007	74.51	4.11	0.191	0.370	472.6	49.89	230.5
10/13/2021 18:	34	14.37	2.26	2.04	3.97	0.008	74.57	4.11	0.191	0.370	472.4	49.93	230.5
10/13/2021 18:	35	14.37	2.24	2.02	3.47	0.007	74.59	4.15	0.191	0.370	472.4	49.94	230.5
10/13/2021 18:	36	14,37	2.24	2,02	3.48	0.007	74.53	4.13	0.191	0.370	473.3	49.89	230.9
10/13/2021 18:	37	14.36	2.23	2.01	3.47	0.007	74.59	4.18	0.191	0.370	472.4	49.97	230.1
Daily Ave	rage*	14.38	2.35	2.12	3.86	0.008	74.45	4.03	0.191	0.370	472.3	49.93	230.8
Max	*mum*	14.40	2.74	2.49	4.45	0.009	74.67	4.18	0.191	0.370	473.8	50.19	231.9
		10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021
		18:01	17:35	17:35	17:36	17:36	18:29	18:37	18:37	18:37	18:11	18:15	18:11
Min	*mum*	14.35	2.21	2.00	3.47	0.007	74.24	3.83	0.191	0.370	471.0	49.74	230.D
		10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021
		18:26	18:31	18:31	18:37	18:37	17:50	17:35	18:37	18:37	17:43	18:02	18:25

^{*} Does not include Invalid Averaging Periods ("N/A")

Average Values Report Generated: 10/13/2021 23:40

> Period Start: 10/13/2021 19:11 Period End: 10/13/2021 20:13 Validation Type: 1/1 min Averaging Period: 1 min Type: Block Avg

Company: City Of Anaheim Plant: 3071 Miraloma Ave., City/St: Anaheim, CA, 92806 Source: 3

Period Start: 10/13/2021 19:11 10/13/2021 19:12 10/13/2021 19:13 10/13/2021 19:14 10/13/2021 19:15 10/13/2021 19:17 10/13/2021 19:17 10/13/2021 19:18 10/13/2021 19:19 10/13/2021 19:20 10/13/2021 19:22 10/13/2021 19:22	14.37 14.37 14.36 14.37 14.35 14.36 14.36 14.38 14.38	2.40 2.43 2.44 2.44 2.44 2.42 2.41 2.38 2.40 2.40	2.17 2.20 2.20 2.20 2.20 2.20 2.18 2.17 2.15	#/hr 3.97 3.96 3.97 3.97 3.97 3.96	0.008 0.008 0.008 0.008 0.008	#/hx 74.73 74.56 74.52 74.61	4.08 4.08 4.09	Multi 0.191 0.191	Multi 0.370 0.370	472.4 471.7	MW 49.99	kscfm 230.5
10/13/2021 19:12 10/13/2021 19:13 10/13/2021 19:14 10/13/2021 19:15 10/13/2021 19:16 10/13/2021 19:17 10/13/2021 19:18 10/13/2021 19:19 10/13/2021 19:20 10/13/2021 19:21 10/13/2021 19:21 10/13/2021 19:22	14.37 14.36 14.37 14.35 14.36 14.38 14.38 14.38	2.43 2.44 2.44 2.44 2.42 2.41 2.38 2.40	2.20 2.20 2.20 2.20 2.18 2.17	3.96 3.97 3.97 3.97 3.96	0.008 0.008 0.008	74.56 74.52	4.08	0.191				
10/13/2021 19:13 10/13/2021 19:14 10/13/2021 19:15 10/13/2021 19:16 10/13/2021 19:17 10/13/2021 19:18 10/13/2021 19:18 10/13/2021 19:20 10/13/2021 19:20 10/13/2021 19:21 10/13/2021 19:22	14.36 14.37 14.35 14.36 14.38 14.38 14.38	2.44 2.44 2.42 2.41 2.38 2.40	2.20 2.20 2.20 2.18 2.17	3.97 3.97 3.97 3.96	0.008 0.008 0.008	74.52			0.370	171 7		
10/13/2021 19:14 10/13/2021 19:15 10/13/2021 19:16 10/13/2021 19:17 10/13/2021 19:18 10/13/2021 19:19 10/13/2021 19:20 10/13/2021 19:21 10/13/2021 19:22	14.37 14.35 14.36 14.36 14.38 14.38	2.44 2.42 2.41 2.38 2.40	2.20 2.20 2.18 2.17	3.97 3.97 3.96	0.008		4.09				49.90	230.1
10/13/2021 19:15 10/13/2021 19:16 10/13/2021 19:17 10/13/2021 19:18 10/13/2021 19:19 10/13/2021 19:20 10/13/2021 19:21 10/13/2021 19:22	14,35 14,36 14,36 14,38 14,38 14,37	2.44 2.42 2.41 2.38 2.40	2.20 2.18 2.17	3.97	0.008	74.61		0.191	0.370	472.5	49,90	230.1
10/13/2021 19:16 10/13/2021 19:17 10/13/2021 19:18 10/13/2021 19:19 10/13/2021 19:20 10/13/2021 19:21 10/13/2021 19:22	14.36 14.36 14.38 14.38 14.37	2,42 2,41 2,38 2,40	2.18 2.17	3.96			4.08	0.191	0.370	472.1	49.86	230.3
10/13/2021 19:17 10/13/2021 19:18 10/13/2021 19:19 10/13/2021 19:20 10/13/2021 19:21 10/13/2021 19:22	14.36 14.38 14.38 14.37	2.41 2.38 2.40	2.17	0.000		74.61	4.12	0.191	0.370	472.4	50.01	229.
10/13/2021 19:18 10/13/2021 19:19 10/13/2021 19:20 10/13/2021 19:21 10/13/2021 19:22	14.38 14.38 14.37 14.37	2.38		2 02	0.008	74.58	4.08	0.191	0.370	472.0	49.90	229.9
10/13/2021 19:19 10/13/2021 19:20 10/13/2021 19:21 10/13/2021 19:22	14.38 14.37 14.37	2.40	2.15	5.91	0.008	74.57	4.06	0.191	0.370	472.7	49.93	230.2
10/13/2021 19:20 10/13/2021 19:21 10/13/2021 19:22	14.37 14.37			3.97	0.008	74.55	3.98	0.191	0.370	472.3	49.85	230.
10/13/2021 19:21 10/13/2021 19:22	14.37	7 40	2.17	3.96	0.008	74.56	4.02	0.191	0.370	471.4	49.92	230.3
10/13/2021 19:22			2.17	3,96	0.008	74.64	4.06	0.191	0.370	472.0	50.08	230.
	24 22	2.38	2,15	3.97	0.008	74.65	4.06	0.191	0.370	472.1	49.92	230.
10/13/2021 19:23	14.37	2.38	2.15	3.96	0.008	74.60	4.08	0.191	0.370	471.8	49.85	230.
	14.37	2.36	2.13	3.97	0.008	74.79	4.10	0.191	0.370	472.2	49.97	230.
10/13/2021 19:24	14.37	2.36	2.13	3.97	0.008	74.70	4.08	0.191	0.370	472.1	49.81	230.
10/13/2021 19:25	14.37	2.38	2.15	3.96	0.008	74.57	4.07	0.191	0.370	471.8	49.88	230.
10/13/2021 19:26	14.37	2.40	2.17	3.97	0.008	74.51	4.06	0.191	0.370	472.6	49.90	230.
10/13/2021 19:27	14.37	2,41	2.18	3.97	0.008	74.57	4.05	0.191	0.370	472.5	50.04	230.
10/13/2021 19:28	14.38	2,40	2.17	3.97	0.008	74.64	4.04	0.191	0.370	472.4	50.02	230.
10/13/2021 19:29	14.38	2,38	2.15	3.97	0.008	74.57	4.01	0.191	0.370	472.4	49.93	230.
10/13/2021 19:30	14.37	2,36	2.13	3.97	0.008	74.68	4.05	0,191	0.370	472.6	49.87	230.
10/13/2021 19:31	14.37	2,38	2.15	3.96	0.008	74.74	4.10	0.191	0.370	471.8	49.91	230.
10/13/2021 19:32	14.37	2.39	2.16	3.97	0.008	74.66	4.05	0.191	0.370	472.5	50.02	230.
10/13/2021 19:33	14.36	2.36	2,13	3.97	0.008	74.63	4.08	0.191	0.370	472.1	50.04	230.
10/13/2021 19:34	14.36	2,37	2.14	3.97	0.008	74.67	4.09	0.191	0.370	472.3	49.87	230.
10/13/2021 19:35	14.36	2.37	2.14	3.97	0.008	74.58	4.11	0.191	0.370	472.5	50.34	230.
10/13/2021 19:36	14.37	2.35	2.12	3.96	0.008	74.81	4.10	0.191		471.9		
10/13/2021 19:37	14.37	2.32	2.10	3.97					0.370		49.92	230.
10/13/2021 19:38	14.37				0.008	74.66	4.06	0.191	0.370	472.5	49.93	230.
10/13/2021 19:39		2.30	2.08	3.97	0.008	74.58	4.05	0.191	0.370	473.0	49.87	230.
	14.37	2,31	2.09	3.97	0.008	74.67	4.08	0.191	0.370	472.5	49.88	230.
10/13/2021 19:40	14.36	2.30	2.07	3.97	0.008	74.75	4.13	0.191	0.370	472.1	50.06	230.
10/13/2021 19:41	14.36	2.30	2.07	3.97	0.008	74.59	4.09	0.191	0.370	472.6	49.91	230.
10/13/2021 19:42	14.36	2.29	2.07	3.97	0.008	74.72	4.10	0.191	0.370	472.5	49.82	230.
10/13/2021 19:43	14.36	2.28	2.06	3.97	0.008	74.70	4.11	0.191	0.370	472.5	49.84	230.
10/13/2021 19:44	14.36	2.28	2.06	3,97	0,008	74.78	4.13	0.191	0.370	472.7	49.90	230.
10/13/2021 19:45	14.37	2.31	2.09	3.97	0.008	74.58	4.08	0.191	0.370	472.8	49.99	230.
10/13/2021 19:46	14.36	2.33	2.10	3.97	0.008	74.63	4.15	0.191	0.370	472.4	49.90	230.
10/13/2021 19:47	14.37	2.31	2.09	3.97	0.008	74.63	4.08	0.191	0.370	472.3	49.85	230.
10/13/2021 19:48	14.38	2.37	2.14	3.97	0.008	74.84	4.02	0.191	0.370	472.5	49.89	230.
10/13/2021 19:49	14.38	2.44	2.21	3.97	0.008	74.79	4.00	0.191	0.370	472.1	50.04	230,
10/13/2021 19:50	14.37	2.44	2.20	3.96	0.008	74.68	4.07	0.191	0.370	471.3	49.89	229.
10/13/2021 19:51	14.36	2.46	2.22	3.97	0.008	74.72	4.10	0.191	0.370	472.7	49.95	230.
10/13/2021 19:52	14.35	2.49	2.24	3.97	0.008	74.49	4.07	0.191	0.370	472.3	49.90	229.
10/13/2021 19:53	14.35	2.52	2.27	3.97	0.008	74.62	4.07	0.191	0.370	473.0	50.01	230.
10/13/2021 19:54	14.35	2.50	2.25	3.97	0.008	74.71	4.08	0.191	0.370	472.8	49.92	229.
10/13/2021 19:55	14.36	2.49	2.25	3.97	0.008	74.62	4.07	0,191	0.370	472.3	49.86	230.
10/13/2021 19:56	14.37	2.49	2.25	3.97	0.008	74.74	4.04	0.191	0.370	472.5	50.12	230.
10/13/2021 19:57	14.37	2.49	2.25	3.97	0.008	74.56	4.00	0.191	0.370	472.2	50.11	230.
10/13/2021 19:58	14.37	2.48	2.24	3.97	0.008	74.71	4.02	0.191	0.370	472.8	49.93	230.
10/13/2021 19:59	14.36	2.47	2.23	3.97	0.008	74.64	4.06	0.191	0.370	472.8	50.02	230.
10/13/2021 20:00	14.36	2.48	2.24	3.97	0.008	74.70	4.04	0.191	0.370	472.7	49.95	230.
10/13/2021 20:01	14.36	2.46	2.22	3.96	0.008	74.63	4.04	0.191	0.370	471.8	49.91	229.
10/13/2021 20:02	14.36	2,46		3.97	0.008	74.77	4.09	0.191	0.370	472.1	50.09	230.

Period Start:	Average 3_02	Average 3_NOXPPM ppm	Average 3_NOX_CORR ppm	Average 3_ROX_LBHR #/hr	Average 3_NOX_LBMM #/MBTU	Average 3_NH3_Flow #/hr	Average 3_Wh381puC ppmC	Average 3_Nh3_Conc Multi	Average 3_Nh3_CF Multi	Average 3_GasFlow kscfh	Average 3_LOAD MW	Average 3_STACKFLW kscfm
10/13/2021 20:03	14.36	2,47	2.23	3.97	0.008	74.70	4.08	0.191	0.370	472.4	49.89	230.1
10/13/2021 20:04	14.36	2.46	2.22	3.97	0.008	74.71	4.08	0.191	0.370	472.3	49.87	230.1
10/13/2021 20:05	14.37	2.47	2.23	3.97	0.008	74.74	4.03	0.191	0.370	472.5	49.93	230.5
10/13/2021 20:06	14.37	2.47	2.23	3.97	0.008	74.72	4.03	0.191	0.370	472.8	50.03	230.6
10/13/2021 20:07	14.36	2.45	2.21	3.97	0.008	74.69	4.06	0.191	0.370	472.6	49.75	230.2
10/13/2021 20:08	14.36	2.45	2.21	3.97	0.008	74.61	3.99	0.191	0.370	473.1	50.01	230.5
10/13/2021 20:09	14.36	2.47	2.23	3,97	0.008	74.66	4.04	0.191	0.370	472.6	49.84	230.2
10/13/2021 20:10	14.36	2.46	2.22	3.97	0.008	74.59	4.04	0.191	0.370	472.2	49.88	230.0
10/13/2021 20:11	14.37	2,47	2.23	3.97	0.008	74.75	4.05	0.191	0.370	472.7	49.84	230.6
10/13/2021 20:12	14.37	2.46	2.22	3.97	0.008	74.74	4.03	0.191	0.370	472.9	50.05	230.7
10/13/2021 20:13	14.36	2.42	2.18	3.97	0.008	74.54	4.05	0.191	0.370	472.2	49.78	230.0
Daily Average*	14.37	2.41	2.17	3.97	0.008	74.66	4.06	0.191	0.370	472.4	49.94	230.3
Maximum*	14.38	2,52	2.27	3.97	0.008	74.84	4.15	0.191	0.370	473.1	50.34	230.9
	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021
	19:49	19:53	19:53	20:13	20:13	19:48	19:46	20:13	20:13	20:08	19:35	19:48
Minimum*	14.35	2.28	2.06	3.96	0.008	74.49	3.98	0.191	0.370	471.3	49.75	229.7
	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021	10/13/2021
	19:54	19:44	19:44	20:01	20:13	19:52	19:18	20:13	20:13	19:50	20:07	19:52

^{*} Does not include Invalid Averaging Periods ("N/A")

APPENDIX C CALCULATIONS

Appendix C.1 General Emissions Calculations

GENERAL EMISSIONS CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \% CO_2 + 0.32 * \% O_2 + 0.28 * \% N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$P_{s} = P_{bar} + \frac{P_{sg}}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_m * \left(P_{bar} + \frac{\Delta H}{13.6}\right) * \frac{T_{ref}}{T_m} * Y_d$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{ic} * \frac{T_{ref}}{528 ° R}$$

C. Moisture content, dimensionless

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

III. Stack Gas Volumetric Flow Rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Southern California Public Power Authority - Canyon 4Q21 Unit $3\ NH_3$

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, lb/MMBtu

$$\frac{\text{lb}}{\text{MMBtu}} = \frac{\text{ppm * MW}_{i} * F}{\text{SV * } 10^{6}} * \frac{20.9}{20.9 - \% O_{2}}$$

VI. Percent Isokinetic

$$I = \frac{17.32 * T_s (V_{mstd})}{(1 - B_{wo}) 0 * V_s * P_s * Dn^2} * \frac{520 °R}{T_{ref}}$$

- VII. Particulate Emissions
 - (a) Grain loading, gr/dscf $C = 0.01543 (M_n/V_{m std})$
 - (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
 - (c) Mass emissions, lb/hr $M = C * Q_{sd} * (60 min/hr) / (7000 gr/lb)$
 - (d) Particulate emission factor

Ib/10⁶ Btu = Cx
$$\frac{1 \text{ lb}}{7000 \text{ gr}}$$
 * F * $\frac{20.9}{20.9 - \% O_2}$

Nomenclature:

 A_s

 T_{m}

 $\mathsf{T}_{\mathsf{ref}}$

 T_s

stack area, ft2 flue gas moisture content, dimensionless B_{wo} $C_{12\%CO2}$ particulate grain loading, gr/dscf corrected to 12% CO₂ particulate grain loading, gr/dscf С pitot calibration factor, dimensionless C_p = = nozzle diameter, inches Dn fuel F-Factor, dscf/MMBtu @ 0% O2 F = orifice differential pressure, iwg Н = = % isokinetics 1 = mass of collected particulate, mg M_n = mass emission rate of specie i, lb/hr Mi molecular weight of flue gas, lb/lb-mole MW molecular weight of specie i: M_{wi} SO₂: 64 46 NO_x : CO: 28 HC: 16 0 sample time, minutes average velocity head, iwg = $(\sqrt{\Delta P})^2$ ΔΡ = barometric pressure, inches Hg P_{bar} stack absolute pressure, inches Hg P_s = P_{sg} = stack static pressure, iwb wet stack flow rate at actual conditions, wacfm = Q = dry standard stack flow rate, dscfm Q_{sd} SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole meter temperature, °R

= stack gas velocity, ft/sec V_s volume of liquid collected in impingers, ml V_{lc} =

stack temperature, °R

reference temperature, °R

uncorrected dry meter volume, dcf = $V_{\rm m}$

 V_{mstd} = dry meter volume at standard conditions, dscf = volume of water vapor at standard conditions, scf V_{wstd}

meter calibration coefficient Y_d

=

=

=

Appendix C.2 Spreadsheet Summaries

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U3

ldentifier	Description	Units	Equation	Value
A	Reference Temperature	F	-	60
В	Reference Temperature	R	A + 460	520
C	Meter Calibration Factor (Yd)	2-		0.990
D	Barometric Pressure	"Hg	-	29.70
E	Meter Volume	acf	_	33.210
F	Meter Temperature	F	0.450	68.7
G	Meter Temperature	R	F + 460	528.7
H	Delta H	"H ₂ O	-	1.0
T	Meter Volume (standard)	dscf	0.03342 * E * (D + H/13.6) * B/G * C	32.176
J	Liquid Collected	grams		88.6
K	Water vapor volume	scf	0.0472 * J * B/528	4.119
L	Moisture Content	-	K/(K + I)	0.113
M	Gas Constant	ft-lbf/lb-mole-R		1545.33
N	Specific Molar Volume	SCF/lb-mole	385.3 * B / 528	379.5
0	F-Factor	dscf/MMBtu		8,710
P	HHV	Btu/SCF	2	1,050
Q	Mass Conversion Factor	lb/ug	-	2.2046E-0
R	O ₂ Correction Factor	***	100	15
S	Stack Flow Rate @ 68 F	dscfm	⊕	230,800
T	Stack Flow Rate @ Tref	dscfm	S * B/528	227,303
U	Mass NH ₃	ug	-	1,087
V	Mass NH ₃	lb	U•Q	2.40E-06
W	MW of NH ₃	lb/lb-mole		17.03
×	NH ₃	ppm	(V * N *10°)/(I * W)	1.7
Y	Flue Gas O ₂	%	2	14.38
Z	NH ₃	ppmc	X * (20.9 - R)/(20.9 - Y)	1,5
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10°)	1.0
AB	NH ₃	lb/MMBtu	(X * W * O)/(385.3 * 10 ⁶) * 20.9/(20.9 - Y)	0.002
AC	NH ₃	Ib/MMSCF	AB*P	2.2

Note:

⁽¹⁾ Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility Unit Sample Location			Fuel		NH ₃ Natural gas JG
Test Number	1-NH3-U3	2-NH3-U3	Average	Maximum	Limit
Reference Temperature (°F)	60	60	Avelage	Widalifidiff	Linux
Test Date	10/13/2021	10/13/2021			
Test Method	SCAQMD 207.1	SCAQMD 207.1			
Sample Train	10-P&M	10-P&M			
Meter Calibration Factor	0.990	0.990	1	1	
Stack Area (ft²)	106.90	106.90			
Sample Time (Minutes)	60	60			
Barometric Pressure ("Hg)	29.70	29.70			
Start/Stop Time	1735/1838	1911/2014			
Meter Volume (acf)	33.210	32.205	10 0 01		
Meter Temperature (°F)	68.7	67.8			
Meter Pressure (iwg)	1.0	1.0			
Liquid Volume (ml)		87.9	1000	1 - 1 - 1	2.0
Stack O ₂ (%)		14.37	14.38	(from facility CEN	AS)
Unit Load (MW)	50	50	49.9		
Standard Sample Volume (SCF),	32.176	31.256			
Moisture Fraction	0.113	0.116	2000		
Stack Flow Rate (dscfm, 68 °F)	230,800	230,300	230,550	(from facility CEN	MS)
Stack Flow Rate (@ Tref)	227,303	226,811	227,057		
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH ₃ (lb/lb-mole)	17.03	17.03			
Specific Molar Volume (ft3/lb-mole)	379.5	379.5			
F-Factor (dscf/MMBtu)		8,710	1		
HHV(Btu/SCF)	1,050	1,050			
Mass Conversion (lb/ug)		2.2046E-09			
O ₂ Correction Factor (%)	15	15		1 1	
Mass NH ₃ (ug)	1,087	966			
Mass NH ₃ (lb)	2.40E-06	2.13E-06			
NH ₃ (ppmv, flue gas)	1.7	1.5	1.6	1.7	
NH ₃ (ppmv @ O ₂ Correction Factor)	1.5	1.4	1.4	1.5	5
NH ₃ (lb/hr)	1.0	0.9	1.0	1.0	
NH ₃ (lb/MMBtu)		0.002	0.002	0.002	
NH ₃ (lb/MMSCF)		2.0	2.1	2.1	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

Assignment of an Internal QA Officer: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

Knowledge of Current Test Methods: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, is present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)

The following safety measures will be followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	Steam clean Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	+/- 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	+/- 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	+/- 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	+/- 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	+/- 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	+/- 1.5%

Note: Calibration requirements will be used that meet applicable regulatory agency requirements.

Appendix D.2 SCAQMD and STAC Certifications

September 1, 2021

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

LAP Approval Notice Subject:

Reference # 96LA 1220

Dear Mr. Peterson:

We have reviewed your renewal letter under the South Coast Air Quality Management District's Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2021, and ending September 30, 2022 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

South Coast AQMD Methods 1-4 South Coast AQMD Methods 5.1, 5.2, 5.3, 6.1 South Coast AQMD Methods 10.1 and 100.1 South Coast AQMD Methods 25.1 and 25.3 (Sampling)

USEPA CTM-030 and ASTM D6522-00 Rule 1121/1146.2 Protocol Rule 1420/1420.1/1420.2 – (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna Boiler Noritz America Corp. Ajax Boiler, Inc. 1510 North Spring Street 11160 Grace Avenue 2701 S. Harbor Blvd. Los Angeles, CA 90012 Fountain Valley, CA 92708 Santa Ana, CA 92704

VA Laundry Bldg., Greater LA Healthcare Sys. So Cal Gas - Engr Analysis Ctr, Bldg H 508 Constitution Avenue

8101 Rosemead Blvd Los Angeles, CA 90049 Pico Rivera, CA 90660

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Colin Eckerle. He may be reached by telephone at (909) 396-2476, or via e-mail at ceckerle@agmd.gov.

Sincerely,

D. Sarkar

Dipankar Sarkar Program Supervisor Source Test Engineering

DS:CE Attachment

210901 LapRenewal.doc

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Presented this 11th day of February 2020 Vice President, Accreditation Services For the Accreditation Council

Certificate Number 3925.01 Valid to February 28, 2022 This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

Appendix D.3 Individual QI Certificate

CERTIFICATE OF COMPLETION

John Groenenboom

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Methods 1.1 - 4.1

Certificate Number: 002-2017-58

Ite Stall

DATE OF ISSUE:

1/18/17

Tate Strickler, Accreditation Director

DATE OF EXPIRATION:

1/18/22

W002AS-011390-RT-2923

CERTIFICATE OF COMPLETION

John Groenenboom

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Method 207.1

Certificate Number: 002-2017-51

Late Shall

DATE OF ISSUE:

1/17/17

Tate Strickler, Accreditation Director

DATE OF EXPIRATION:

1/17/22

Appendix D.4 Statement of No Conflict of Interest

STATEMENT OF NO CONFLICT OF INTEREST AS AN INDEPENDENT TESTING LABORATORY

(To be completed by authorized source testing firm representative and included in source test report)

The following facility and equipment were tested by my source testing firm and are the subjects of this statement:

Facility ID:	153992	
Date(s) Tested:	October 13, 2021	
Facility Name:	Canyon Power Plant	
Equipment Address:	3071 E. Mira Loma Ave.	
	Anaheim, California 92806	
Equipment Tested:	Unit 3	
Device ID, A/N, P/N:	D13	

I state, as its legally authorized representative, that the source testing firm of:

Source Test Firm: Montrose Air Quality Services, LLC

Business Address: 1631 E. St. Andrew Pl.

Santa Ana, California 92705

is an "Independent Testing Laboratory" as defined in *District Rule 304(k):*

For the purposes of this Rule, when an independent testing laboratory is used for the purposes of establishing compliance with District rules or to obtain a District permit to operate, it must meet all of the following criteria:

- (1) The testing laboratory shall have no financial interest in the company or facility being tested, or in the parent company, or any subsidiary thereof -
- (2) The company or facility being tested, or parent company or any subsidiary thereof, shall have no financial interest in the testing laboratory:
- (3) Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere, or parent company or any subsidiary thereof shall have no financial interest in the testing laboratory; and
- (4) The testing laboratory shall not be in partnership with, own or be owned by, in part or in full, the contractor who has provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems, for the company being tested.

Furthermore, I state that any contracts or agreements entered into by my source testing firm and the facility referenced above, or its designated contractor(s), either verbal or written, are not contingent upon the outcome of the source testing or the source testing information provided to the SCAQMD.

Signature:		Date:	10/21	/2021
John Groenenboom	Client Project Manager	(714) 279	9-6777	10/21/23021
(Name)	(Title)	(Pho	one)	(Date)

FORM ST-110 :stevforl.doc (Revised 11/18/98

APPENDIX E APPLICABLE PERMIT SECTIONS

Section D Page: Facility ID: 1 Revision #:

Date: November 06, 2015

153992

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1. Prower can e	RATHON				
GAS TURBINE, NO. 3, NATURAL GAS, GENERAL ELECTRIC, MODEL LM6000PC SPRINT, SIMPLE CYCLE, 179 MMBTU/HR AT 46 DEG F, WITH NLET CHILLING, WITH WATER NJECTION WITH A/N: 555830	D13	C15	NOX: MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 6-3-2011]; NOX: 25 PPMV NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5) [RULE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5C) [RULE 1303(b)(2) -Offsel, 12-6-2002]; PM10: 11 LBS/HR NATURAL GAS (5B) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; SO2: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SOX: 0.06 LBS/MMBTU NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 12-6-2002]	A63.1, A99.1, A99.2, A99.3, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1 1298.3, K40.1
GENERATOR, 50.95 MW					

Ac.	(1) (1 A) (1D) Dannia	s RECLAIM emission factor
190	COMPANION DEGOTE	S RELLATIVI EIIIISSIIIII RECHII

(3) Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

See App B for Emission Limits

(7) Denotes NSR applicability limit

(9)

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(10) See section J for NESHAP/MACT requirements

Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.
 W002AS-011390-RT-2923
 56 of 60

Facility ID: Revision #:

153992 Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
THE STATE OF THE S			国上国家民 權		
CO OXIDATION CATALYST, NO. 3, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476660	C15	D13 C16			
SELECTIVE CATALYTIC REDUCTION, NO. 3, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH: 18 FT WITH A/N: 476660 AMMONIA INJECTION	C16	C15 S18		NH3: 5 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]	A195.6, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 3, HEIGHT: 86 FT; DIAMETER: 11 FT 8 IN A/N: 555830	S18	C16			

(1) (1A) (1B) Denotes RECLAIM emission factor

Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

(7) Denotes NSR applicability limit See App B for Emission Limits

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

See section J for NESHAP/MACT requirements

Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. W002AS-011390-RT-2923 57 of 60

(10)

Section D Page: 29.
Facility ID: 153992
Revision #: 3
Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition: C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 9-7-2012; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-10-2010; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart IIII, 1-30-2013]

[Devices subject to this condition: D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location
NH3 emissions	District method 207.1	1 hour	Outlet of the SCR
	and 5.3 or EPA method		serving this equipment

| Section D | Page | 30 | Facility ID: 153992 | Revision # | 3 | Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

The test(s) shall be conducted at least quarterly during the first twelve months of operation and at least annually thereafter. The AQMD shall be notified of the date and time of the test at least 10 days prior to the test.

If the turbine is not in operation during one calendar year, then no testing is required during that calendar year.

The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using District Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted and the results submitted to the District within 60 days after the test date.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

[RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1)-BACT, 12-6-2002]

[Devices subject to this condition: D1, D7, D13, D19]

D29.3 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Sampling Time	Test Location
SOX emissions	AQMD Laboratory Method 307-91	Not Applicable	Fuel sample
VOC emissions	District Method 25.3	1 hour	Outlet of the SCR serving this equipment
PM emissions	District method 5.1	4 hours	Outlet of the SCR serving this equipment

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. John Groenenboom Title: Client Project Manager

Region: West

Email: <u>JGroenenboom@montrose-env.com</u>

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

Email: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

TEST REPORT FOR 2Q21 AMMONIA SLIP TEST AT CANYON POWER PLANT UNIT 4 FACILITY ID 153992, DEVICE ID D19

Prepared For:

Canyon Power Plant

3071 E. Mira Loma Avenue. Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District

21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

John Groenenboom

Test Date: May 18, 2021
Production Date: June 28, 2021

Report Number: W002AS-009222-RT-2486

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:		_ Date:	6/28/2021
Name:	John Groenenboom	_ Title: _	Client Project Manager
appropriate wr the presented	ritten materials contained herei	in. I herel e, and cor	alculations, results, conclusions, and othe by certify that, to the best of my knowledge nforms to the requirements of the Montrose
Signature:	Michael Chanthe	_ Date:	6/28/2021
Name:	Michael Chowsanitphon	Title:	Reporting Manager

TABLE OF CONTENTS

<u>SEC</u>	CTION	<u>N</u>	<u>PAGE</u>
1.0	INT	RODUCTION AND SUMMARY	5
2.0	UNI	IT AND CEMS DESCRIPTION	6
	2.1	UNIT DESCRIPTION	6
	2.2	TEST CONDITIONS	7
	2.3	SAMPLE LOCATION	7
3.0	TES	ST DESCRIPTION	8
4.0	RES	SULTS AND OVERVIEW	9
	4.1	TEST RESULTS	9
	4.2	TEST OVERVIEW	9
LIS	T OF	APPENDICES	
Α	RAV	W DATA	10
	A.1	Sample Data Sheets	11
	A.2	Laboratory Data	16
	A.3	QA/QC Data	23
В	FAC	CILITY CEMS DATA	27
С	CAL	LCULATIONS	32
	C.1	General Emissions Calculations	33
	C.2	Spreadsheet Summaries	37
D	QU	ALITY ASSURANCE	40
	D.1	Quality Assurance Program Summary	41
	D.2	SCAQMD and STAC Certifications	47
	D.3	Individual QI Certificate	50
Е	APF	PLICABLE PERMIT SECTIONS	53
LIS	TOF	TABLES	
1-1	AMI	MONIA SLIP TEST RESULTS	5
4-1	AMI	MONIA SLIP TEST RESULTS	9
LIS	T OF	FIGURES	
2-1	UNI	IT BLOCK DIAGRAM	6
3-1	SC/	AOMD METHOD 207 1 SAMPLING FOLIPMENT	8

1.0 INTRODUCTION AND SUMMARY

Montrose Air Quality Services, LLC (MAQS) was contracted by the Canyon Power Plant to perform an ammonia slip test at Unit 4 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on May 18, 2021. The test was performed by John Groenenboom, Takuma Terakado, Daniel Avila, and Kevin Vo. John Groenenboom was the on-site Qualified Individual for MAQS. Ms. Bertha Hernandez coordinated the test for Canyon Power Plant.

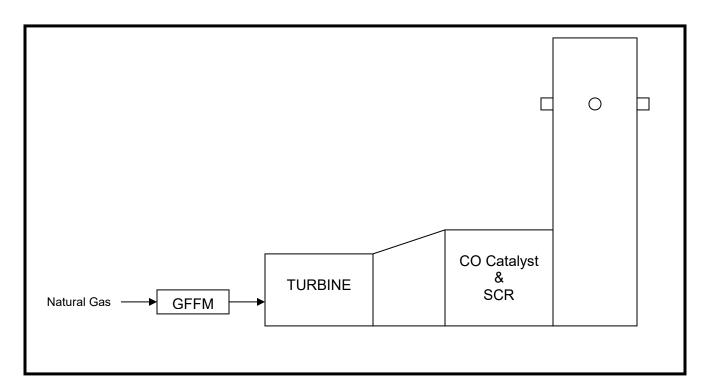
The test consisted of duplicate ammonia tests performed at 50.2 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to $15\% \text{ O}_2$.

TABLE 1-1 AMMONIA SLIP TEST RESULTS CANYON POWER PLANT UNIT 4 MAY 18, 2021

Parameter/Units	Result ⁽¹⁾	Limit
NH ₃		
ppm	1.6	
ppmc	1.4	5

⁽¹⁾ Maximum of duplicate runs, as required by SCAQMD Method 207.1

Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.



2.0 UNIT AND CEMS DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46°F, with water injection. The units are equipped with a CO catalyst and Selective Catalytic Reduction (SCR) system for NO_x control. Figure 2-1 presents a block diagram of the unit.

FIGURE 2-1 UNIT BLOCK DIAGRAM CANYON POWER PLANT UNIT 4

Stack Inside Diameter: 11 feet, 8 inches

Distance from Upstream Disturbance: 23 feet, 4 inches (2.0 Diameters)
Distance from Stack Exit: 16 feet, 6 inches (1.4 Diameters)

2.2 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 50.2 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.3 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack location. Each test was performed over a 60 minute interval. The sample gas was drawn through a Titanium probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by Ion Specific Electrode analysis. Figure 3-1 presents a diagram of the sampling equipment.

Stack O_2 and NO_x concentrations and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O_2 .

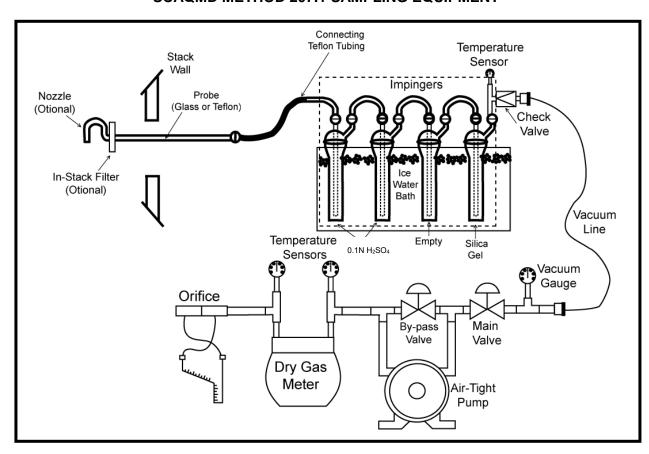


FIGURE 3-1
SCAQMD METHOD 207.1 SAMPLING EQUIPMENT

4.0 RESULTS AND OVERVIEW

4.1 TEST RESULTS

The results of the test are summarized in Table 4-1. The results show that the maximum ammonia slip was 1.4 ppm @ 15% O₂ which is less than the permitted limit of 5 ppm @ 15% O₂.

TABLE 4-1
AMMONIA SLIP TEST RESULTS
CANYON POWER PLANT
UNIT 4
MAY 18, 2021

Parameter/Units	Run 1	Run 2	Average	Maximum ⁽¹⁾	Limit
Test	1-NH ₃ -U4	2-NH ₃ -U4			
Date	5/18/2021	5/18/2021			
Time	1457/1603	1635/1741			
O₂ , %(2)	14.32	14.32	14.32		
Stack Flow, dscfm @ T _{ref} (2)	228,091	227,795	227,943		
NO _x , ppmc ⁽²⁾	2.3	2.3	2.3		2.5
NH ₃ ppm ppmc lb/hr lb/MMBtu lb/MMSCF	1.6 1.4 1.0 0.002 2.1	1.3 1.1 0.8 0.002 1.6	1.4 1.3 0.9 0.002 1.8	1.6 1.4 1.0 0.002 2.1	5

⁽¹⁾ Maximum of duplicate test runs, as required by SCAQMD Method 207.1

4.2 TEST OVERVIEW

The test program was successful in meeting the program objectives. The QA/QC requirements of SCAQMD Method 207.1 were met. The results are considered representative of the source at the time of the tests.

⁽²⁾ From facility CEMS

APPENDIX A RAW DATA

Appendix A.1 Sample Data Sheets

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

CLIENT: SCAPA LOCATION: CANDY 4 DATE: 5/18/21 RUN NO: 1-NH2-4 OPERATOR: 1-NH2-4 METER BOX NO: 31-WCS METER 4H@: 0.993 STACK AREA, FT ² : 106.9 TRAVERSE POINTS, MIN/POINT: S/17 AH= NA X AP: Probe Condition, pre/post test: 12 Silica Gel Expended, Y/N: 13 Silica Gel Expended, Y/N: 15 Silica Gel Expended, Y/N: 15 Check Weight: 500.0			BAROME ASSUME PITOT TI PROBE I PROBE I NOZZLE FILTER I PRE-TES POST-TE	ED MOISTURE UBE COEFF, (D NO/MATER LENGTH: \ 0 ' ID NO/ MATE DIAMETER: \ NO/TYPE: \ \ N/ ST LEAK RATE	URE: 29.7 : 11% CP: N/A AL: N/A N/A N/A A E:: 0.005 CF TE:: 0.002 CF PRE: 1002 CF	M@ 11" M@ 13" Str POST: JSTODIAN	in. Hg.	Imp. 1 2 3 4 Total	H=500 MU _S6	6160	1701	7 4 6 7	
		Meter	ΔΡ	ΔΗ	Stack	Probe	Filter	Imp. Out		emp, °F	Vacuum	O ₂	Pstatic
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	In	Out	in. Hg.	%	in. H ₂ O
5 3	1454	304.909	NIA	1.5	N/A	N/A	NA	55	77	75	6"	NA	-1.1
L	1502		-1	1.5		-			7.		1 41		
	1507			1.2				55	76	75	6 4		
		314.932		1.5				55	74	72	1 4	_	-
5	1519	317-9.54		1-2		1 1		55	11	10	6		-
- 4	1524		-	1.5				55	73	71	6"		-
6	1579	324.817		, ,			1	22	12		6		1
N 3	1531	324.817		1.5				57	75	73	6"		
	1536	2-101					/4						
1	1541			1.5				57	74	73	6"		
E	1546	334-816		1 1 2 2 1 1									
		334.816	- 11	1.5				58	76	74	6		
2	1553					1					1 11		
	1558	2/1/710		1.5		1 1		58	77	73	6"		
6	1603	344.719	1										
			_			1	1		-			-	
1													
		to five and											
									h				

Comments:

Average:

Date of last revision 2/14/2017

DS834048

Master Document Storage\Forms\Datasheets\Field Datasheets

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

CLIENT: Canyon LOCATION: Lent 4 DATE: 5/18/21 RUN NO: 2 7/43 OPERATOR: P.A. 10 METER BOX NO: 31-WCS METER AH@: 0-550 METER Yd: 0-943 STACK AREA, FT2: 10.9 TRAVERSE POINTS, MIN/POINT: \$\frac{17}{2}\$ TRAVERSE POINTS, MIN/POINT: \$\frac{17}{2}\$ Probe Condition, pre/post test: 400 Silica Gel Expended, Y/N: N Filter Condition after Test: N1 Check Weight: \$\frac{1}{2}\$			BAROME ASSUME PITOT T PROBE PROBE NOZZLE NOZZLE FILTER I PRE-TES POST-TE	T TEMPERATU ETRIC PRESSL ED MOISTURE: UBE COEFF, C ID NO/MATERI LENGTH: O ' ID NO/ MATERI DIAMETER: NO/TYPE: ST LEAK RATE EST LEAK RATE EAK CHECK - F OF CUSTODY:	P: N/A AL: N/A RIAL: :: 0.007 CFI E:: 0.005 CFI	M@ 12" M@ 14" POST: -	in. Hg. in. Hg.	Imp. :	H 56	908 04 694. 649.	- Pre-Test (4 713.: S 63.2 O 648. 2881.2 LOO	8 :0	
D 1.4	Trees	Meter	ΔP	ΔН	Stack	Probe	Filter	Imp. Out		emp, °F	Vacuum	O ₂	Pstatic
Point 3	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	76	Out	in. Hg.	%	in. H ₂ O
2	1633	376.177	NIA	1.3	NIA	NIA	NIA	5 9	16	15	5	MA	-1.1
1	1645			1.5				54	75	73	5 11		
E		356.762			1				-	- 17			
6 3	1657	356.762		1.5				55	76	74	511		
2	1657			1.5				55	77	7.5	5 11		_
-	1707	366.805		1.5				0.0	1	10	3		
N3	1709	366-805		1-5	- 1:			55	76	75	511		
2	1714							-	-				
	1719	376.691		1-5				22	76	73	511		
W 3	1776	376-691	-	1.5				56	77	74	511		
2	1731	316 311							1	1			
1	1736	200		1.5				58	76	73	5"		
E	1-141	386-606						-					
	-			1									
		_											
Average:													

Comments:

1-NH3-U4

Point	Meter Volume	Delta H	Tm In	Tm Out
6	304.909	1.5	77	75
5			76	75
4			74	72
4			73	71
2			75	73
1			74	73
Stop			76	74
6			77	73
5				
4				
3				
2				
1				
Stop	344.719			
Result	39.810	1.5	7	4.3

#	Post-Test	Pre-Test	Difference
1	902.1	701.7	200.4
2	688.9	688.4	0.5
3	616.8	615.6	1.2
4	986.2	972.7	13.5
Line Rinse	0.0	100.0	-100.0
			115.6

2-NH3-U4

Point	Meter Volume	Delta H	Tm in	Tm Out
6	346,744	1.5	76	75
5			75	73
4			76	74
3			77	75
2			76	75
1			76	73
Stop			77	74
6			76	73
5				
4				
3				
2				
1				
Stop	386,606			
Result	39.862	1.5	7.	5.1

Impinger Weights									
#	Post-Test	Pre-Test	Difference						
1	908.4	713.2	195.2						
2	694.5	693.8	0.7						
3	649.0	648.0	1.0						
4	895.2	881.0	14.2						
Line Rinse	0.0	100.0	-100.0						
			111.1						

2Q21 Canyon 4 NH3 6/9/2021 1:40 PM

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

CLIENT: SCPIA LOCATION: CANDON MEDIAN STACK AREA, FT2: 106.7 TRAVERSE POINTS, MIN/POINT: 6/12 AH= X AP: Probe Condition, pre/post test: GOED Silica Gel Expended, Y/N: Filter Condition after Test: NA Check Weight: 500.0 / 500.0			BAROME ASSUME PITOT TI PROBE I PROBE I NOZZLE NOZZLE FILTER I PRE-TES POST-TE	T TEMPERATU ETRIC PRESSLED MOISTURE: UBE COEFF, C D NO/MATERI LENGTH: ID NO/ MATERI DIAMETER: NO/TYPE: ST LEAK RATE EST LEAK RATE EAK CHECK - F OF CUSTODY:	p:	M@POST: JSTODIAN	in. Hg. in. Hg.	Imp.:	H_500 H_500 no SC	- 709, CSO, L	0718. 1709. 1650	3333333	
		Meter	ΔP	ΔΗ	Stack	Probe	Filter	Imp. Out		Temp, °F	Vacuum	O ₂	Pstatic
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	ln	Out	in. Hg.	%	in. H ₂ O
									1				
					_								
								_	1				
									+				
						11							
						111							
						11							
									-				
									-	-			
									-				
						(A)							
						1			-				
				1									A
Average:								-					

Date of last revision 2/14/2017

Comments:

DS834048
Master Document Storage\Forms\Datasheets\Field Datasheets

Appendix A.2 Laboratory Data

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS

Project #: PROJ-009222	District Method: SCAQMD 207.1	Sample Date: <u>05 18 20</u> 2
Client/Location: SCPPA	Calibration Date: 05 19 2021	Analysis Date: 05 19 2021
Sample Location: VNIT4	Calibration Curve: 1-57.9420Xt	88.8420Analyst's Initials: HS
Test #'s: NH3	R2: 1.0000 Ro	om Temperature (°C): 2\

Sample	Total Vol. (mL)	Electrode Potential (mV)	Conc. µg NH ₃ – N/ml	Cavg (µg NH ₃ – N/ml)	μg NH ₃ / sample	T (°C)	Blue after + ISA (Y/N)	рН	% R
Standard Check: 28 µg NH₃/ml		4.9	28.101	20 011		22.0	Y		100
20 µg 141 131111	-	5.0	27.989	28.045		22.0	1		100
1-NH ₃	CELO	73.0	1.877	1011	MELL DIS	21.9	4	,1	
17415	551.9	73.0	1855	1.866	1251.620	21.9	Y	42	
2-NH₃		77.9	1545		000000	22.0	Y	12	
2-(4) (5	529.0	18.1	1.532	1539	ddC i1dd	21.9	Y	12	
Spike: 2-NH3+2ml 1000ppm NH3		13.0	20.367	0-0-7		22.0	1		00.
тооорригиз		13.0	20.367	20 367		22.0	Y		981
Standard Check: 28 µg NH3/ml		4.9	28.101	10 4 0		21.3	4		101
zo µg (vi to/illi		4.0	28.428	28.269		21.7	V		101
Reagent Blank 0.1N H ₂ SO ₄		8.PT	0.027	0007		21.9	Y		
0.114 112004		0.081	0.027	0027		219	Y		
DI H₂O Blank		200.0	0.012	0010		22.0	V		
		200.7	0.012	0.012		22.5	1		
Field Blank		180.9	0.020	0 0010		21.4	Y		
		181.0	0.029	0.020		21.7	V		
Standard Check: 28 µg NH3/ml		5.0	27.989	00 005		21.0	V		
20 μg Nino/III		49	28.101	28.045		21.0	V		100.

Notes:

Total volume of samples and standards used:_

2 ml

Volume of pH adjusting ISA used in ml:_ Absorbing solution: O. IN H2SO4

Calculations:

Conc. (µg NH₃ - N / ml) = 10 (P-B)M; (P = electrode potential, B = y-intercept and M = slope)

Cavg = average result of duplicate analyses (µg NH₃ - N / ml) = (C1+C2)/2

μg NH₃ / sample = Cavg* 17.03/ 14.01 * TV

mg / sample = µg /sample ÷ 1000

ppm NH₃ = mg NH₃/sample x 1/Vmstd x 1/454000 x SV/17 x 10⁶

DS834059

Date of last revision 6/10/2020 Master Document Storage\Forms\Datasheets\Lab Forms

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION

Client/ Location:

SCPPA- Canyon

Sample Location:

Unit 4

District Method:

SCAQMD 207.1

Sample Date: Analysis Date: * 5/19/2021 5/18/21

Analyst's Initials:

* 5/19/2021 577 HS

Calibration Curve Slope

-57.9426

Y-intercept

88.8426

R2

Sample	P mV	Conc. μg NH ₃ /ml as N	C avg as N	TV (ml)	C avg as NH ₃	μg NH₃/ sample
28 ug NH ₃ / ml as N	4.9	28.101				
repeat 28 ug NH ₃ /ml as N	5.0	27.989	28.045	NA	34.091	NA
1-NH3	73.0	1.877				
repeat 1- NH ₃	73.3	1.855	1.866	551.9	2.268	1251.626
2-NH ₃	77.9	1.545				
repeat 2- NH ₃	78.1	1.532	1.539	529.8	1.870	990.499
spike 2-NH ₃	13.0	20.367			1	
repeat spike	13.0	20.367	20.367	NA	24.757	NA
28 NH ₃ /ml as N	4.9	28.101				
repeat 28 ug NH ₃ /ml as N	4.6	28.438	28.269	NA	34.363	NA
Field Blank repeat Field Blank	180.9 181.0	0.026 0.026	0.026	501.7	0.031	NA
Reagent Blank repeat Reagent Blank	179.8 180.0	0.027 0.027	0.027	NA	0.033	NA
DI H2O Blank Repeat DI H2O Blank	200.6 200.7	0.012 0.012	0.012	NA	0.014	NA
28 NH ₃ /ml as N	5.0	27.989				
repeat 28 ug NH ₃ /ml as N	4.9	28.101	28.045	NA	34.091	NA

KC 6/28/21

Notes:

Measured Concentration of Ammonia (C) in µg NH3 / ml as N C=10(P-B)/M

P = electrode potential (mV), M=slope and B=intercept

Average Measured Ammonia Concentration (Cavg) = (C1 + C2)/2

where C1, C2 results from duplicate analyses (µg NH3/ml as N)

Cavg (µg NH₃/ml as NH₃) = Cavg (µg NH₃/ ml as N) * 17.03/ 14.01

μg NH₃ / sample = Cavg (μg NH₃/ml as NH₃) * TV

Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate. All solutions turned blue and remained blue with ISA unless otherwise indicated.

Sample PH and Temperatures can be found on the laboratory datasheet.

Maximum samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL

Client/ Location:

SCPPA- Canyon

Sample Location:

Unit 4

District Method:

SCAQMD 207.1

Sample Date:

*5/19/2021 5/18/21

KC 612812

Analysis Date:

5/19/2021

Analyst's Initials:

HS

Sample	% recovery	RPD %	RPA %
28 ug NH ₃ / ml as N repeat 28 ug NH ₃ /ml as N	NA	0.40	0.161
1-NH3 repeat 1- NH3	NA	1.19	NA.
2-NH3 repeat 2- NH3	NA	0.79	NA
spike 2-NH3 repeat spike	98.06	0.00	NA
28 NH ₃ /ml as N repeat 28 ug NH ₃ /ml as N	NA	-1.19	0.962
Field Blank repeat Field Blank	NA	0.40	NA
Reagent Blank repeat Reagent Blank	NA	0.79	NA
DI H2O Blank Repeat DI H2O Blank	NA	0.40	NA
28 NH ₃ /ml as N repeat 28 ug NH ₃ /ml as N	NA	-0.40	0.161

Notes:

spike: 100 ml sample + 2 ml (1000 μg NH₃ / ml as N)

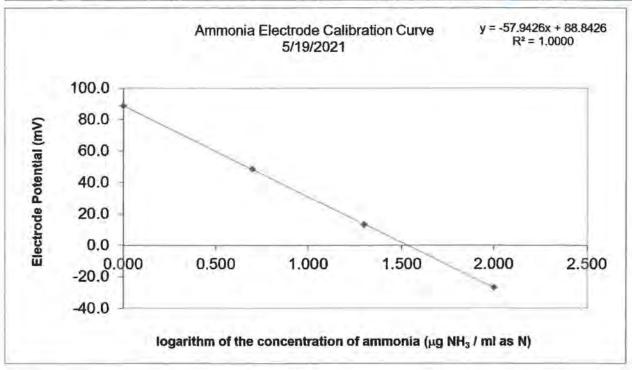
Matrix Spike Percent Recovery (%R)

%R = (C spike*0.104 - Csample*0.102)/2 *100

Cspike = average result of matrix spike (µg NH₃/ ml as N)

Relative Percent Difference (RPD) = (C1-C2)/ Cavg *100

(must be 5% or less)


Relative Percent Accuracy (RPA)

(must be 10% or less)

RPA = (Cavg-theoretical value of standard)/ theoretical value of standard * 100

AMMONIA ELECTRODE CALIBRATION CURVE

NH ₃ concentration (μg NH ₃ / ml as N)	log NH ₃ concentration	Electrode potential (mV)	Sample Temperature (C)	Room Temperature (C)
1	0.000	88.8	22	21
5	0.699	48.6	22	21
20	1.301	13.1	22	21
100	2.000	-26.9	22	21

slope y-intercept

-57.9426 88.8426

Concentration (μg NH ₃ / ml as N)	Value LR line	Difference	% Difference
1	1.0017	0.0017	0.1694
5	4.9491	-0.0509	-1.0182
20	20.2862	0.2862	1.4310
100	99.4350	-0.5650	-0.5650

Calculation:

Regression Line: P=M*log(μg of NH₃/ ml as N)+B

Measured Concentration of Ammonia (C) in μg / ml NH₃ as N: C=10^{(P-B)/M}

where P = electrode potential, M= slope (must be -57±3) and B= intercept

All standards were prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALIBRATION DATA

District Method: SCAQMD 207.1

Calibration Date:	5/19/2021
Calibration Curve: 1	-57.94210X+88.84219
R2 1.0000	_
Analyst's Initials:	HS
Thermometer #:	1
ISE Electrode #:	17

Calibration Standard (µg NHs / ml as N)	Electrode Potential (mV)	Solution Temperature (°C)	Room Temperature (°C)
	8.88	22	21
5	0.84	22	21
20	13.1	22	21
100	-210.9	72	21

		-	
10.0	~~	~	

Total volume of samples and standards used: (COM)
Volume of pH adjusting ISA used in ml:
Absorbing solution: OOHN H2SOH
Slope of the calibration curve shall be between -54 to -60

R2 must be 0.9997 or greater

Catibration solutions, sample solutions and Calibration Verification standard temperature within

± 2°C

CHAIN OF CUSTODY

CLIENT:	SCPPA	PROJECT #: PROJ_009222	TEST DATE(S):	5/18/2021	
LOCATION:	U4		SAMPLER(S):	DA, KV,ROM	
SAMPLE LOCATION:	Stack		PROJECT MANAGER:	JG	
TEST METHOD(S):	SCAQMD 207.1		DATE DUE:	5/25/2021	
OUTSIDE LAB REQUIRED?:	No		COMPLIANCE TEST?:	Yes	

DATE	TIME	TEST#	SAMPLE DESCRIPTION	CONTAINERS	SAMPLER	COMMENTS
5/18/2021	1457/1603	1-NH3-U4	Probe, Line, Impingers	1.1	DA, KV,ROM	
5/18/2021	1635/1741	2-NH3-U4	Probe, Line, Impingers	1	DA, KV,ROM	
5/18/2021		Reagent Blank	0.1 N H ₂ SO ₄	1	JG	
5/18/2021		Reagent Blank	DI H2O	1	JG	
5/18/2021		Field Blank	Probe, Line, Impingers	1	DA, KV,ROM	
	-					
			L			

RELEASED BY	DATE/TIME	RECEIVED BY	DATE/TIME
Louisle	5-18-21 7200	Man //	5/19/2021
			(0) 080
		0	

ANALYSIS REQUIRED:

NH₃ by SCAQMD 207.1 (ISE)

Date of Last Revision 9/1/2017

Chain of Custody - DS834001 - Excel Master Document Storage\Forms\Datasheets\Lab Forms

Appendix A.3 QA/QC Data

SEMI-ANNUAL DRY GAS METER/ORIFICE CALIBRATION

Orifice Method - Triplicate Runs/Four Calibration Points English Meter Box Units, English K' Factor

C-5000 31-WCS ID#

1/15/2021

Filename: M:\Santa Ana\Equipment\Test Equipment\Calibrations\Dry Gas Meters\31-WCS\2021\[31WCS Semi Annual Cal 1-15-2021.x Date: File Modified From: APEX 522 Series Meter box Calibration

Bar. P

Revised: 4/8/2005

Perfor

Bar. Pressure: 30.17 (In. Hg)

Performed By:	L.Olivares
Meter Serial #:	

				DRY GAS M	ETER READ	INGS			CRITIC	AL ORIFICE RE	ADINGS				
		Volume	Volume	Volume	Initial	Temps.	Final	Temps.	Orifica	K' Orifice	Actual	A	mblent Temper	rature	
dH (In H2O)	Time (min)	Initial (cu ft)	Final (cu ft)	(cu ft)	Inlet (deg F)	Outlet (deg F)	Inlet (deg F)	Outlet (deg F)	Serial# (number)	Coefficient (see above)	Vacuum (in Hg)	Initial (deg F)	Final (deg F)	Average (deg F)	
0.13	26.00	256.600	262.003	5,403	80,0	79.0	80.0	79,0	33	0.1552	19.0	66.0	66.0	66.0	
0.13	26.00	262.003	267.400	5.397	80.0	79.0	82.0	81.0	33	0.1552	19.0	66.0	66.0	66.0	
0,13	26.00	267,400	272.801	5.401	82,0	81,0	84.0	83,0	33	0.1552	19.0	66.0	66.0	66.0	
0.62	12.00	239.500	244.938	5.438	83.0	77.0	81,0	78.0	48	0,3346	17,0	67.0	67.0	67.0	
0.62	12.00	244.938	250.328	5.390	81.0	78.0	82.0	78.0	48	0.3346	17.0	67.0	67.0	67.0	
0.62	12,00	250,328	255.728	5.400	82.0	78.0	81.0	78.0	48	0.3346	17.0	67.0	67.0	67,0	
2.10	7.00	221.100	226,580	5.480	79.0	73.0	82.0	74.0	63	0,5918	14.0	66.0	66.0	66.0	
2.10	7.00	226.580	232.072	5.492	82.0	74.0	84.0	75.0	63	0.5918	14.0	66.0	66.0	66.0	
2,10	7,00	232.072	237,556	5.484	84.0	84,0	85.0	76.0	63	0,5918	14,0	66.0	66,0	66,0	
3,60	5,00	204.100	209.208	5.108	73.0	68.0	78.0	69.0	73	0.7681	13.0	66.0	66.0	66.0	
3.60	5.00	209.208	214.309	5.101	78.0	69.0	82.0	70.0	73	0.7681	13.0	65.0	66.0	66.0	
3.60	5.00	214.309	219,419	5.110	82.0	70.0	84.0	72.0	73	0,7681	13.0	65.0	66.0	66.0	

RY GAS METER	R	ORIFICE			DF	Y GAS METER	ORIFICE	7.77			- 7.7 -
			San Charles			RATION FACTOR	CALIBRATION FACTOR	Individual	Individual	Orifice	Orifice
VOLUME	VOLUME	VOLUME	VOLUME	VOLUME				Run	Orifice	Average	Average
CORRECTED	CORRECTED	CORRECTED	CORRECTED	NOMINAL		Y	dH@				
Vm(std)	Vm(std)	Vcr(std)	Vcr(std)	Vor		Value	Value	0.95 < Y	Ymax - Ymin	0.98 < Y/Yd	dH@ - dH@ 8
(cu ft)	(liters)	(cu ft)	(liters)	(cu ft)		number	(in H2O)	< 1.057	< 0.010?	< 1.02?	< 0.155?
5.332	151.0	5.307	150.3	5.245		0.995	1.734	Pass			
5.316	150,5	5.307	150,3	5.245		0.998	1,731	Pass			
5.300	150,1	5.307	150.3	5,245		1.001	1.724	Pass			
				State Co.	Average	0.998	1.730		Pass	Pass	Pass
5.370	152,1	5.277	149,4	5.225		0.983	1.787	Pass			
5.323	150.7	5.277	149.4	5,225		0.991	1.785	Pass			
5.332	151.0	5.277	149.4	5.225		0.990	1.785	Pass			
					Average	0.988	1.785		Pass	Pass	Pass
5.459	154.6	5.449	154.3	5,386		0.998	1.945	Pass			
5.453	154.4	5.449	154.3	5,386		0.999	1.942	Pass			
5,410	153.2	5,449	154.3	5.386		1.007	1.922	Pass			
					Average	1.002	1.936	0,22.56	Pass	Pass	Pass
5.155	146.0	5.052	143.1	4.993		0,980	1.998	Pass			
5.121	145.0	5.052	143.1	4.993		0.987	1,994	Pass			
5.109	144.7	5.052	143.1	4.993		0.989	1,989	Pass			
					Average	0.985	1,994		Pass	Pass	Pass

Average Yd:	0.993	日日间:	1,861
		Q @ dH = 1:	0,650

SIGNED:

Signature on File

Date:

1/15/2021

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 31-WCS

Readout Description: Control Box

Date: 1/4/2021

Performed By: RD/DA/RM/DH

Calibrated Thermocouple ID: TC-CAL T1 Reference Thermometer ID: 313010 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 242167

T/C I.D.	Readout		T/C - F	Readout F			Reference 1		Diffe			
TC-CAL	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (OIL)	31-WCS	352	352	352	352	352	352	352	352	0.0	0.0%	Pas
T2 (Boiling H ₂ O)	31-WCS	214	214	214	214	212	212	212	212	2.0	0.3%	Pas
T1 (Ice/Water)	31-WCS	33	33	33	33	32	32	32	32	1.0	0.2%	Pas

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

	T/C Source		T/C - F	Readout			20.70	ource F		Diffe	erence	
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	129103	653	653	653	653	650	650	650	650	3.0	0.3%	Pass
T3 (~370 F)	129103	371	371	371	371	370	370	370	370	1.0	0.1%	Pass
T2 (~212 F)	129103	213	213	213	213	212	212	212	212	1.0	0.1%	Pass
T1 (-32 F)	129103	34	34	34	34	32	32	32	32	2.0	0.4%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

Barometric Pressure Determination

Date: 05/18/21	- 1
Data By: TT	<u> -</u>
Reference:	https://forecast.weather.gov/MapClick.php?lat=33.8329& lon=-117.9152#.X9DIHNhKiUk
Reference Barometer ID	FW0063 Fullerton CSU (F0063)
Reference Barometer Location	Lat: 33.8805°NLon: 117.88417°WElev: 247ft.
Reference Barometer Other Info.	18 May 12:54 PM PDT
Reference Barometer Indication, corrected to sea level	29.99
Reference Barometer Reference Elevation	247
Reference Barometer Actual Pressure	29.74
Test Barometer Location/Site	Canyon Power Plant
Location/Site Elevation	212
Location/Site Barometric Pressure	29.78
Sampling Location Height (above/below site elevation)	60
Sampling Location Barometric Pressure	29.72

APPENDIX B FACILITY CEMS DATA

APPENDIX C CALCULATIONS

CEMTER RVB-Enertec NetDAHSC

Version 47.0

Average Values Report Generated: 5/18/2021 17:32

Company: City Of Anaheim Plant: 3071 Miraloma Ave., City/St: Anaheim, CA, 92806 Source: 4

Period Start: 5/18/2021 14:57 Period End: 5/18/2021 16:02 Validation Type: 1/1 min Averaging Period: 1 min Type: Block Avg

	Average 4_02	Average 4_NOXPPM	Average 4_NOX_CORR	Average 4_NOX_LBMM	Average 4_NOX_LEHR	Average 4_COPPM	Average 4_CO_CORR	Average 4_CO_LBHR	Average 4_CO_LBMM	Average 4_GasFlow	Average 4_LOAD	Average 4_STACKFLW
Period Start:	%	מענע	ppm	#/MBTU	#/hr	ppm	ppm	#/hr	#/MBTU	kscfh	MW	kscfm
05/18/2021 14:57	14.32	2.41	2.16	0.008	4.02	3.58	3.21	3.62	0.0072	478.3	50.06	231.6
05/18/2021 14:58	14.32	2.39	2.14	0.008	4.02	3.58	3.21	3.62	0.0072	478.7	50.18	231.7
05/18/2021 14:59	14.32	2.38	2.13	0.008	4.02	3.58	3.21	3.62	0.0072	479.0	50.18	231.9
05/18/2021 15:00	14.32	2.37	2.13	0.008	4.02	3.59	3.22	3.62	0.0072	478.4	50.12	231.6
05/18/2021 15:01	14.33	2.36	2.12	0.008	4.02	3.62	3.25	3.67	0.0073	478.2	50.08	231.9
05/18/2021 15:02	14.33	2.36	2.12	0.008	4.02	3.64	3,27	3.67	0.0073	478,7	50.25	232.1
05/18/2021 15:03	14.32	2.35	2.11	0.008	4.02	3.65	3.27	3.66	0.0073	478.1	50.10	231.5
05/18/2021 15:04	14.33	2.36	2.12	0.008	4.02	3.65	3.28	3.72	0.0074	478.2	50.27	231.9
05/18/2021 15:05	14.32	2.38	2.13	0.008	4.02	3.66	3.28	3.72	0.0074	478.6	50.23	231.7
05/18/2021 15:06	14.32	2.42	2.17	0.008	4.02	3.67	3.29	3.72	0.0074	478.9	50.17	231.8
05/18/2021 15:07	14.32	2.47	2.21	0.008	4.02	3.64	3.26	3.67	0.0073	478.3	50.18	231,6
05/18/2021 15:08	14.32	2.51	2.25	0.008	4.02	3.59	3.22	3.62	0.0072	478.2	50.24	231.5
05/18/2021 15:09	14.33	2,53	2.27	0.008	4.02	3.55	3.19	3.62	0.0072	478.4	50.29	232.0
05/18/2021 15:10	14.32	2.50	2.24	0.008	4.02	3.56	3.19	3.62	0.0072	478.4	50.08	231.6
05/18/2021 15:11	14.32	2.50	2.24	0.008	4.02	3.59	3.22	3.62	0.0072	478.3	50.10	231.6
05/18/2021 15:12	14.32	2.51	2.25	0.008	4.02	3.60	3.23	3.62	0.0072	478.4	50.16	231.6
05/18/2021 15:13	14.32	2.51	2.25	0.008	4.02	3.59	3.22	3.61	0.0072	478.1	50.36	231.5
05/18/2021 15:14	14.32	2.53	2.27	0.008	4.02	3.59	3.22	3.62	0.0072	478.6	50.26	231.7
05/18/2021 15:15	14.32	2.52	2.26	0.008	4.02	3.60	3.23	3.62	0.0072	478.2	50.14	231.5
05/18/2021 15:16	14.32	2.51	2.25	0.008	4.01	3.61	3.24	3.66	0.0073	477.9	50.13	231.4
05/18/2021 15:17	14.33	2.52	2.26	0.008	4.02	3.59	3,22	3.62	0.0072	478.6	50.26	232.1
05/18/2021 15:18	14.32	2.52	2.26	0.008	4.02	3.59	3.22	3.61	0.0072	478.0	50.09	231.4
05/18/2021 15:19	14.33	2.51	2.25	0.008	4.02	3.60	3.23	3.66	0.0073	478.0	50.13	231.8
05/18/2021 15:20	14.32	2.53	2.27	0.008	4.01	3.60	3.23	3.61	0.0072	477.7	50.31	231.3
05/18/2021 15:21	14.32	2.54	2.28	0.008	4.02	3.60	3.23	3.62	0.0072	478.6	50.22	231.7
05/18/2021 15:22	14.32	2.54	2.28	0.008	4.02	3.60	3,23	3.61	0.0072	478.1	50.11	231.5
05/18/2021 15:23	14.32	2.56	2.30	0.008	4.01	3.60	3.23	3.61	0.0072	477.7	50.08	231.3
05/18/2021 15:24	14.32	2.56	2.30	0.008	4.02	3.60	3.23	3.61				
05/18/2021 15:24	14.33	2.54	2.28	0.008	4.02	3.61	3.24	3.66	0.0072	478.1	50.17	231.5
05/18/2021 15:26	14.32	2,52	2.26	0.008	4.02	3.62	3.25	3.67	0.0073	478.1 478.7	50.07	231.8
	14.32	2.51	2.25		4.02						50.18	231.7
05/18/2021 15:27				0.008		3.60	3.23	3.62	0.0072	478.4	50.36	231.6
05/18/2021 15:28	14.32	2.51	2.25	0.008	4.02	3.58	3.21	3.62	0.0072	478.5	50.20	231.7
05/18/2021 15:29	14.32	2.52	2.26	0.008	4.02	3.57	3.20	3.62	0.0072	478.4	50.25	231.6
05/18/2021 15:30	14,32	2.54	2.28	0.008	4.01	3.58	3.21	3.61	0.0072	477.9	50.20	231,4
05/18/2021 15:31	14.32	2.54	2.28	0.008	4.01	3.60	3.23	3.61	0.0072	477.9	50.16	231.4
05/18/2021 15:32	14.32	2.54	2.28	0.008	4.01	3.61	3.24	3.66	0.0073	477.8	50.25	231.3
05/18/2021 15:33	14.32	2.54	2.28	0.008	4.02	3.60	3,23	3.61	0.0072	478.1	50.31	231.5
05/18/2021 15:34	14.32	2.53	2.27	0.008	4.02	3.60	3.23	3.62	0.0072	478.3	50.21	231.6
05/18/2021 15:35	14.32	2.54	2.28	0.008	4.02	3.61	3.24	3.67	0.0073	478.2	50.10	231.5
05/18/2021 15:36	14.32	2.54	2.28	0.008	4.02	3.60	3.23	3.62	0.0072	478.3	50.15	231.6
05/18/2021 15:37	14.32	2.54	2.28	0.008	4.02	3.58	3.21	3.61	0.0072	478.1	50.18	231.5
05/18/2021 15:38	14.32	2.53	2.27	0.008	4.02	3.58	3.21	3.62	0.0072	478.7	50.14	231.7
05/18/2021 15:39	14.31	2.54	2.27	0.008	4.02	3.57	3.20	3.62	0.0072	478.2	50.10	231.2
05/18/2021 15:40	14.31	2.56	2.29	0.008	4.02	3.58	3.21	3.61	0.0072	478.0	50.15	231.1
05/18/2021 15:41	14.32	2.56	2.30	0.008	4.02	3.58	3.21	3.62	0.0072	478.2	50.11	231,5
05/18/2021 15:42	14.32	2.55	2.29	0.008	4.01	3.60	3.23	3.61	0.0072	477.8	50.23	231.3
05/18/2021 15:43	14.32	2.55	2.29	0.008	4.02	3.60	3.23	3.62	0.0072	478.6	50.22	231.7
05/18/2021 15:44	14.32	2.55	2.29	0.008	4.02	3.60	3.23	3.62	0.0072	478.2	50.16	231.5
05/18/2021 15:45	14.32	2.55	2.29	0.008	4.02	3.58	3.21	3.61	0.0072	478.1	50.22	231.5
05/18/2021 15:46	14.32	2.55	2.29	0.008	4.02	3.57	3.20	3.62	0.0072	478.2	50.18	231.5
05/18/2021 15:47	14.32	2.55	2.29	0.008	4.02	3.56	3,19	3.62	0.0072	478.4	50.10	231.6
05/18/2021 15:48	14.32	2.54	2,28	0.008	4.02	3.56	3.19	3.62	0.0072	478.8	50.22	231.8

CEMTER KVB-Enertec NetDAHSO

1-1	14_
Version	47.05

Period Start:	Average 4_02 %	Average 4_NOXPPM ppm	Average 4_NOX_CORR ppm	Average 4_NOX_LBMM #/MBTU	Average 4_NOX_LBER #/hr	Average 4_COPPM ppm	Average 4_CO_CORR ppm	Average 4_CO_LBHR #/hr	Average 4_CO_LBMM #/MBTU	Average 4_GasFlow kscfh	Average 4_LOAD MW	Average 4_STACKFLW kscfm
05/18/2021 15:49	14.31	2.54	2.27	0.008	4.02	3.58	3.21	3.62	0.0072	478.4	50.23	231.3
05/18/2021 15:50	14.32	2.55	2.29	0.008	4.02	3.57	3.20	3.62	0.0072	478.2	50.26	231.5
05/18/2021 15:51	14.31	2.56	2.29	0.008	4.02	3.56	3.19	3.62	0.0072	478.5	50.35	231.3
05/18/2021 15:52	14.32	2.55	2,29	0.008	4.02	3.56	3.19	3.61	0.0072	478.0	50,16	231.4
05/18/2021 15:53	14.32	2.55	2.29	0.008	4.02	3.58	3.21	3.62	0.0072	478.3	50.23	231.6
05/18/2021 15:54	14.31	2.55	2.28	0.008	4.02	3.58	3.21	3.61	0.0072	478.0	50.24	231.1
05/18/2021 15:55	14.32	2.55	2.29	0.008	4,02	3.56	3,19	3.62	0.0072	478.7	50.31	231.7
05/18/2021 15:56	14.32	2.56	2.30	0.008	4.02	3.55	3.18	3.57	0.0071	478.4	50.19	231.6
05/18/2021 15:57	14.31	2.55	2.28	0.008	4.02	3.55	3.18	3.56	0.0071	478.2	50.19	231,2
05/18/2021 15:58	14.31	2.55	2,28	0,008	4.02	3.55	3,18	3.56	0.0071	478.2	49.99	231,2
05/18/2021 15:59	14.32	2.56	2.30	0.008	4.02	3.55	3.18	3.57	0.0071	478.3	50.26	231.6
05/18/2021 16:00	14.32	2.55	2.29	0.008	4.02	3.57	3.20	3.61	0.0072	478.1	50.24	231.5
05/18/2021 16:01	14.31	2.55	2.28	0.008	4.01	3.58	3.21	3.61	0.0072	477.9	50.09	231.0
05/18/2021 16:02	14.32	2.56	2.30	0.008	4.02	3.58	3.21	3.61	0.0072	478.1	50.30	231.5
Daily Average*	14.32	2.51	2.25	0.008	4.02	3.59	3.22	3.63	0.0072	478.3	50.19	231.6
Maximum*	14.33	2.56	2.30	0.008	4.02	3.67	3,29	3.72	0.0074	479.0	50.36	232.1
	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021
	15:25	16:02	16:02	16:02	16:02	15:06	15:06	15:06	15:06	14:59	15:27	15:17
Minimum*	14.31	2.35	2.11	0.008	4.01	3.55	3.18	3.56	0.0071	477.7	49.99	231.0
	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021
	16:01	15:03	15:03	16:02	16:01	15:59	15:59	15:58	15:59	15:23	15:58	16:01

^{*} Does not include Invalid Averaging Periods ("N/A")

Generated: 5/18/2021 19:17

W002AS-009222-RT-2486

31 of 57

Period Start: 5/18/2021 16:35
Period End: 5/18/2021 17:40
Validation Type: 1/1 min
Averaging Period: 1 min
Type: Block Avg

	Average 4_02	Average 4_NOXPPM	Average 4_NOX_CORR	Average 4_NOX_LBMM	Average 4_NOX_LBHR	Average 4_COPPM	Average 4_CO_CORR	Average 4_CO_LBHR	Average 4_CO_LBMM	Average 4_GasFlow	Average 4_LOAD	Average 4_STACRFLW
Period Start:	%	ppm	ppm	#/MBTU	#/hr	ppm	ppm	#/hr	#/MBTU	kscfh	MW	kscfm
05/18/2021 16:35	14.32	2.50	2.24	0.008	4.02	3.58	3.21	3.62	0.0072	478,3	50.31	231.6
05/18/2021 16:36	14.31	2.51	2.25	0.008	4.02	3.58	3.21	3.61	0.0072	478.0	50.14	231.1
05/18/2021 16:37	14.32	2.54	2.28	0.008	4.01	3.56	3.19	3.61	0.0072	477.2	50.30	231.1
05/18/2021 16:38	14.32	2.55	2.29	0.008	4.02	3.56	3.19	3.61	0.0072	478.1	50.11	231.5
05/18/2021 16:39	14.31	2.54	2.27	0.008	4.02	3.56	3.19	3.61	0.0072	478.1	50.15	231.1
05/18/2021 16:40	14.32	2.54	2.28	0.008	4.01	3.55	3.18	3.56	0.0071	477.9	50.32	231,4
05/18/2021 16:41	14.32	2.55	2.29	0.008	4.01	3.54	3.17	3.56	0.0071	477.6	50.10	231.2
05/18/2021 16:42	14.32	2.54	2.28	0.008	4.02	3.53	3.17	3.56	0.0071	478.2	50.10	231.5
05/18/2021 16:43	14.32	2.53	2.27	0.008	4.01	3.53	3.17	3.56	0.0071	477.9	50.29	231.4
05/18/2021 16:44	14.31	2.54	2.27	0.008	4.01	3.52	3.15	3.56	0.0071	477.4	50.04	230.8
05/18/2021 16:45	14.32	2.55	2.29	0.008	4.01	3.53	3.17	3.56	0.0071	477.8	50,22	231.3
05/18/2021 16:46	14.32	2.55	2.29	0.008	4.01	3.55	3.18	3.56	0.0071	477.9	50.08	231.4
05/18/2021 16:47	14.32	2.54	2.28	0.008	4.02	3.57	3.20	3.61	0.0072	478.0	50.09	231.4
05/18/2021 16:48	14.32	2.53	2.27	0.008	4.01	3.56	3.19	3.61	0.0072	477.4	50.19	231.1
05/18/2021 16:49	14.32	2.55	2.29	0.008	4.02	3.56	3.19	3.62	0.0072	478.4	50.14	231.6
05/18/2021 16:50	14.32	2.55	2.29	0.008	4.01	3.57	3.20	3.61	0.0072	477.6	50.24	231.2
05/18/2021 16:51	14.32	2.55	2.29	0.008	4.01	3.57	3.20	3.61	0.0072	477.4	50,22	231.1
05/18/2021 16:52	14.32	2.55	2.29	0.008	4.01	3.56	3,19	3.61	0.0072	477.9	50.17	231.4
05/18/2021 16:53	14.32	2.54	2.28	0.008	4.01	3.55	3.18	3.56	0.0071	477.7	50.08	231.3
05/18/2021 16:54	14.32	2.54	2.28	0.008	4.01	3.56	3.19	3.61	0.0072	477.5	50.22	231.2
05/18/2021 16:55	14.32	2.56	2.30	0.008	4.01	3.57	3.20	3.61	0.0072	477.8	50.18	231.3
05/18/2021 16:56	14.32	2.57	2.30	0.008	4.01	3.55	3.18	3.56	0.0071	477.4	50.03	231.1
05/18/2021 16:57	14.31	2.58	2.31	0.009	4.51	3.54	3.17	3.56	0.0071	477.0	50.24	230.6
05/18/2021 16:58	14.32	2.59	2.32	0.009	4.52	3.53	3,17	3.56	0.0071	477.8	50.29	231.3
05/18/2021 16:59	14.32	2.60	2.33	0.009	4,51	3.52	3.16	3.56	0.0071	477.7	50.23	231.3
05/18/2021 17:00	14.32	2.60	2.33	0.009	4,52	3.50	3.14	3.51	0.0070	478.0	50.30	231.4
05/18/2021 17:01	14.31	2.60	2.33	0.009	4.51	3.50	3.13	3.51	0.0070	477.5	50.24	230.8
05/18/2021 17:02	14.31	2.58	2.31	0.009	4.52	3.51	3.14	3.52	0.0070	478.4	50.21	231.3
05/18/2021 17:03	14.32	2.57	2.30	0.008	4.02	3.54	3.17	3.57	0.0071	478.7	50.22	231.7
05/18/2021 17:04	14.32	2.56	2.30	0.008	4.02	3.58	3,21	3.62	0.0072	478.4	50.39	231.6
05/18/2021 17:05	14.32	2,55	2,29	0.008	4.02	3.60	3.23	3.62	0.0072	478.4	50.13	231.6
05/18/2021 17:06	14.32	2.55	2.29	0.008	4.01	3.61	3.24	3.66	0.0073	477.9	50.21	231.4
05/18/2021 17:07	14.32	2.55	2,29	0.008	4.01	3.61	3.24	3.56	0.0073	476.9	50.22	230.9
05/18/2021 17:08	14.31	2.57	2.30	0.008	4.00	3.56	3.19	3.60	0.0072	476.5	50.16	230.3
05/18/2021 17:09	14.32	2.64	2.37	0.009	4.50	3.46	3,10	3.50	0.0070	476.1	50.26	230.5
05/18/2021 17:10	14.31	2.71	2.43	0.009	4.50	3.38	3.03	3.40	0.0068	476.1	50.21	230.1
05/18/2021 17:11	14.32	2.72	2,44	0.009	4.50	3.36	3.01	3.40	0.0068	475.9	50.37	230.4
05/18/2021 17:12	14.32	2.64	2.37	0.009	4.49	3.40	3.05	3.40	0.0068	475.6	50.07	230.3
05/18/2021 17:13	14.32	2.52	2.26	0.008	4.00	3.42	3.07	3.45	0.0069	476.1	50.31	230.5
05/18/2021 17:14	14.32	2.49	2.23	0.008	4.00	3.42	3.07	3.45	0.0069	475.6	50.25	230.3
05/18/2021 17:15	14.32	2.49	2.23	0.008	4.00	3.41	3.06	3.45	0.0069	476.5	50.32	230.7
05/18/2021 17:16	14.32	2.47	2.21	0.008	4.00	3.45	3.09	3.45	0.0069	476.6	50.09	230.7
05/18/2021 17:17	14.32	2.42	2.17	0.008	4.01	3.50	3.14	3.51	0.0070	477.8	50.10	231.3
05/18/2021 17:18	14.32	2.38	2.13	0.008	4.02	3.56	3.19	3.52	0.0072	478.3	50.18	231.6
05/18/2021 17:19	14.32	2.35	2.11	0.008	4.02	3.62	3.25	3.67	0.0073	478.5	50.37	231.7
05/18/2021 17:20	14.32	2.35	2.11	0.008	4.02	3.67	3.29	3.72	0.0074	478.7	50.19	231.7
05/18/2021 17:21	14.31	2.32	2.08	0.008	4.03	3.72	3,33	3.78	0.0075	479.7	50.30	231.9
05/18/2021 17:22	14.32	2.34	2,10	0.008	4.03	3.75	3.36	3.77	0.0075	479.2	50.13	232.0
05/18/2021 17:23	14.32	2.41	2.16	0.008	4.02	3.74	3,35	3.77	0.0075	478.8	50.27	231.8
05/18/2021 17:24	14.32	2.47	2.21	0.008	4.02	3.70	3.32	3.72	0.0074	479.0	50.24	231.9
05/18/2021 17:25	14.32	2.49	2,23	0.008	4.02	3.67	3.29	3.72	0.0074	478.7	50.17	231.7
05/18/2021 17:26	14.32	2.48	2.22	0.008	4.02	3.65	3.27	3.67	0.0073	478.8	50.21	231.8

Period Start:	Average 4_02 %	Average 4_NOXPPM ppm	Average 4_NOX_CORR ppm	Average 4_NOX_LBMM #/MBTU	Average 4_NOX_LBHR #/hr	Average 4_COPPM ppm	Average 4_CO_CORR ppm	Average 4_CO_LBHR #/hr	Average 4_CO_LBMM #/MBTU	Average 4_GasFlow kscfh	Average 4_LOAD MW	Average 4_STACKFLW kscfm
05/18/2021 17:27	14.31	2.48	2.22	0.008	4.03	3,64	3.26	3,57	0,0073	479.4	50,38	231.8
05/18/2021 17:28	14.32	2.49	2,23	0.008	4.02	3.64	3.26	3.67	0.0073	478.6	50.18	231.7
05/18/2021 17:29	14.32	2.50	2.24	0.008	4.02	3.64	3.26	3.67	0.0073	478.9	50.19	231.8
05/18/2021 17:30	14.32	2.49	2.23	0.008	4.02	3.64	3.26	3.67	0.0073	478.9	50.42	231.8
05/18/2021 17:31	14.32	2.49	2.23	0.008	4.02	3.65	3.27	3.56	0.0073	478.0	50.48	231.4
05/18/2021 17:32	14,34	2.49	2.24	0.008	4.02	3.64	3.27	3.67	0.0073	478.4	50.11	232.3
05/18/2021 17:33	14.32	2.47	2.21	0.008	4.02	3.65	3.27	3.67	0.0073	478.3	50.35	231.6
05/18/2021 17:34	14.32	2.47	2.21	0.008	4.01	3.64	3.26	3.66	0.0073	477.8	50.18	231.3
05/18/2021 17:35	14.32	2.50	2.24	0.008	4.01	3.60	3.23	3.61	0.0072	477.9	50.26	231.4
05/18/2021 17:36	14.33	2.52	2.26	0.008	4.01	3.57	3.21	3.61	0.0072	477.5	50.23	231.5
05/18/2021 17:37	14.32	2.52	2.26	0.008	4.01	3.56	3.19	3.61	0.0072	477.8	50.10	231.3
05/18/2021 17:38	14.32	3.54	2.28	0.008	4.01	3.56	3.19	3.61	0.0073	477.6	50,17	231.2
05/18/2021 17:39	14.33	2.56	2,30	0.008	4.00	3.55	3.19	3,60	0.0072	476.8	50.27	231.2
05/18/2021 17:40	14.32	2.58	2.31	0.009	4.51	3.54	3.17	3.56	0.0071	477.4	50.09	231.1
Daily Averag	e* 14.32	2.52	2.26	0.008	4.10	3.56	3.19	3.60	0.0072	477.8	50.21	231.3
Maximu	m* 14.34	2.72	2,44	0.009	4.52	3.75	3.36	3.78	0.0075	479.7	50.48	232.3
	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021
	17:32	17:11	17:11	17:40	17:02	17:22	17:22	17:21	17:23	17:21	17:31	17:32
Minim		2.32	2.08	0.008	4.00	3.36	3.01	3.40	0.0068	475.6	50.03	230.1
	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021	05/18/2021
	17:27	17:21	17:21	17:39	17:39	17:11	17:11	17:12	17:12	17:14	16:56	17:10

^{*} Does not include Invalid Averaging Periods (*N/A*)

Appendix C.1 General Emissions Calculations

GENERAL EMISSIONS CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \% CO_2 + 0.32 * \% O_2 + 0.28 * \% N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$P_s = P_{bar} + \frac{P_{sg}}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 - 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_m * \left(P_{bar} + \frac{\Delta H}{13.6} \right) * \frac{T_{ref}}{T_m} * Y_d$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{ic} * \frac{T_{ref}}{528 ° R}$$

C. Moisture content, dimensionless

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

III. Stack Gas Volumetric Flow Rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Southern California Public Power Authority - Canyon 2Q21 Unit 4 NH₃

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, lb/MMBtu

$$\frac{\text{lb}}{\text{MMBtu}} = \frac{\text{ppm * MW}_{i} * F}{\text{SV * } 10^{6}} * \frac{20.9}{20.9 - \% O_{2}}$$

VI. Percent Isokinetic

$$I = \frac{17.32 * T_s (V_{mstd})}{(1 - B_{wo}) 0 * V_s * P_s * Dn^2} * \frac{520 °R}{T_{ref}}$$

- VII. Particulate Emissions
 - (a) Grain loading, gr/dscf $C = 0.01543 (M_n/V_{m std})$
 - (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
 - (c) Mass emissions, lb/hr $M = C * Q_{sd} * (60 min/hr) / (7000 gr/lb)$
 - (d) Particulate emission factor

Ib/10⁶ Btu = Cx
$$\frac{1 \text{ lb}}{7000 \text{ gr}}$$
 * F * $\frac{20.9}{20.9 - \% O_2}$

Nomenclature:

 V_{lc}

 V_{m} V_{mstd}

 V_{wstd} Y_{d}

stack area, ft2 A_s flue gas moisture content, dimensionless B_{wo} $C_{12\%CO2}$ particulate grain loading, gr/dscf corrected to 12% CO₂ particulate grain loading, gr/dscf С pitot calibration factor, dimensionless C_p = = nozzle diameter, inches Dn fuel F-Factor, dscf/MMBtu @ 0% O2 F = orifice differential pressure, iwg Н = = % isokinetics 1 = mass of collected particulate, mg M_n = mass emission rate of specie i, lb/hr Mi molecular weight of flue gas, lb/lb-mole MW molecular weight of specie i: M_{wi} SO₂: 64 46 NO_x : CO: 28 HC: 16 0 sample time, minutes average velocity head, iwg = $(\sqrt{\Delta P})^2$ ΔΡ = barometric pressure, inches Hg P_{bar} stack absolute pressure, inches Hg P_s = P_{sg} = stack static pressure, iwb wet stack flow rate at actual conditions, wacfm = Q = dry standard stack flow rate, dscfm Q_{sd} SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole meter temperature, °R T_{m} = reference temperature, °R $\mathsf{T}_{\mathsf{ref}}$ = stack temperature, °R = T_s = stack gas velocity, ft/sec V_s

volume of liquid collected in impingers, ml

dry meter volume at standard conditions, dscf

volume of water vapor at standard conditions, scf

uncorrected dry meter volume, dcf

meter calibration coefficient

=

=

=

=

Appendix C.2 Spreadsheet Summaries

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U4

dentifier	Description	Units	Equation	Value
A	Reference Temperature	F	*	60
В	Reference Temperature	R	A + 460	520
C	Meter Calibration Factor (Yd)		2 (2)	0.993
D	Barometric Pressure	"Hg	-	29.72
E	Meter Volume	acf	-	39.810
F	Meter Temperature	F	The state of the s	74.3
G	Meter Temperature	R	F + 460	534.3
н	Delta H	"H ₂ O	-	1.5
1	Meter Volume (standard)	dscf	0.03342 * E * (D + H/13.6) * B/G * C	38.355
J	Liquid Collected	grams		115.6
K	Water vapor volume	scf	0.0472 * J * B/528	5.374
L	Moisture Content		K/(K + I)	0.123
M	Gas Constant	ft-lbf/lb-mole-R	205 0 4 0 1 500	1545.3
N	Specific Molar Volume	SCF/lb-mole	385.3 * B / 528	379.5
O P	F-Factor HHV	dscf/MMBtu Btu/SCF		8,710
Q	Mass Conversion Factor	lb/ug	Ē.	1,050 2,2046E-
R	O ₂ Correction Factor	ib/ug	-	15
12,5		400	-	
S	Stack Flow Rate @ 68 F	dscfm	S * B/528	231,600
	Stack Flow Rate @ Tref		3 B/326	228,09
U	Mass NH ₃	ug		1,252
V	Mass NH ₃	lb	U+Q	2.76E-0
W	MW of NH ₃	lb/lb-mole		17.03
X	NH ₃	ppm	(V * N *10°)/(I * W)	1.6
Y	Flue Gas O ₂	%	-	14.32
Z	NH ₃	ppmc	X * (20.9 - R)/(20.9 - Y)	1,4
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10°)	1.0
AB	NH ₃	lb/MMBtu	(X * W * O)/(385.3 * 10°) * 20.9/(20.9 - Y)	0.002
AC	NH ₃	Ib/MMSCF	AB*P	2.1

Note:

⁽¹⁾ Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility Unit Sample Location			Fuel		NH ₃ Natural gas TT
Test Number	1-NH3-U4	2-NH3-U4	Average	Maximum	Limit
Reference Temperature (°F)	60	60		1 3 - 1 1	
Test Date	5/18/2021	5/18/2021			
Test Method	SCAQMD 207.1	SCAQMD 207.1		1	
Sample Train	31-WCS	31-WCS		1 1	
Meter Calibration Factor	0.993	0.993		1 1	
Stack Area (ft²)	106.90	106.90		1 1	
Sample Time (Minutes)	60	60		1	
Barometric Pressure ("Hg)	29.72	29.72			
Start/Stop Time	1457/1603	1635/1741			
Meter Volume (acf)	39.810	39.862			
Meter Temperature (°F)	74.3	75.1		1 1	
Meter Pressure (iwg)	1.5	1.5		1	
Liquid Volume (ml)	115.6	111.1		1 - 3 - 3	
Stack O ₂ (%)	14.32	14.32	14.32	(from facility CEMS)	
Unit Load (MW)	50.2	50.2	50.2		
Standard Sample Volume (SCF)	38.355	38.348			
Moisture Fraction	0.123	0.119			
Stack Flow Rate (dscfm, 68 °F)	231,600	231,300	231,450	(from facility CEMS)	
Stack Flow Rate (@ Tref)	228,091	227,795	227,943		- X
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH ₃ (lb/lb-mole)	17.03	17.03			
Specific Molar Volume (ft3/lb-mole)	379.5	379.5			
F-Factor (dscf/MMBtu)		8,710		1 1	
HHV(Btu/SCF)	1,050	1,050		0 01	
Mass Conversion (lb/ug)	2.2046E-09	2.2046E-09		1 1	
O ₂ Correction Factor (%)	15	15		1 1	
Mass NH ₃ (ug)	1,252	990			
Mass NH ₃ (lb)	2.76E-06	2.18E-06			
NH ₃ (ppmv, flue gas)	1.6	1.3	1.4	1.6	
NH ₃ (ppmv @ O ₂ Correction Factor)	1.4	1.1	1.3	1.4	5
NH ₃ (lb/hr)		0.8	0.9	1.0	
NH ₃ (lb/MMBtu)		0.002	0.002	0.002	
NH ₃ (lb/MMSCF)	2.1	1.6	1.8	2.1	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

Assignment of an Internal QA Officer: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, will be present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)

The following safety measures will be followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	1. Steam clean 2. Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	+/- 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	+/- 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	+/- 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	+/- 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	+/- 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for ΔH @	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	+/- 1.5%

Note: Calibration requirements will be used that meet applicable regulatory agency requirements.

Appendix D.2 SCAQMD and STAC Certifications

21865 Copley Drive, Diamond Bar, CA 91765-4178 (909) 396-2000 · www.aqmd.gov

September 9, 2020

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice

Reference # 96LA1220

Dear Mr. Peterson:

We have reviewed your renewal letter under the South Coast Air Quality Management District's Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2020, and ending September 30, 2021 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

Methods 1-4 Methods 5.1, 5.2, 5.3, 6.1

Methods 10.1 and 100.1 Methods 25.1 and 25.3 (Sampling)

USEPA CTM-030 and ASTM D6522-00 Rule 1121/1146.2 Protocol

Rule 1420/1420,1/1420.2 – (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna Boiler Noritz America Corp.
1510 North Spring Street 11160 Grace Avenue
Los Angeles, CA 90012 Fountain Valley, CA 92708

Ajax Boiler, Inc. 2701 S. Harbor Blvd. Santa Ana, CA 92704

Laundry Building of VA Greater Los Angeles Healthcare System 508 Constitution Avenue Los Angeles, CA 90049

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov.

Sincerely,

D. Sarkar

Dipankar Sarkar Program Supervisor Source Test Engineering

DS:GK/gk Attachment

200909 LapRenewalRev.doc

Channing the ab three westmattee.

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036;2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Presented this 11th day of February 2020

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3925.01 Valid to February 28, 2022 This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

Appendix D.3 Individual QI Certificate

CERTIFICATE OF COMPLETION

John Groenenboom

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Methods 1.1 - 4.1

Certificate Number: 002-2017-58

Ite Stall

DATE OF ISSUE:

1/18/17

Tate Strickler, Accreditation Director

DATE OF EXPIRATION:

1/18/22

CERTIFICATE OF COMPLETION

John Groenenboom

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Method 207.1

Certificate Number: 002-2017-51

Late Shall

DATE OF ISSUE:

1/17/17

Tate Strickler, Accreditation Director

DATE OF EXPIRATION:

1/17/22

APPENDIX E APPLICABLE PERMIT SECTIONS

Section D P
Facility ID:
Revision #:

Date: November 06, 2015

153992

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1. POWER GENE	RATIO			· 通信 () 在 / 基 / 1	
GAS TURBINE, NO. 4, NATURAL GAS, GENERAL ELECTRIC, MODEL LM6000PC SPRINT, SIMPLE CYCLE, 479 MMBTU/HR AT 46 DEG F, WITH INLET CHILLING, WITH WATER INJECTION WITH A/N: 555831	D19	C21	NOX: MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 6-3-2011]; NOX: 25 PPMV NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5) [RULE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5C) [RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2) -Offset, 12-6-2002]; PM10: 11 LBS/HR NATURAL GAS (5B) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; SO2: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SOX: 0.06 LBS/MMBTU NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 12-6-2002]	A63.1, A99.1, A99.2, A99.3, A195.1, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1 1298.4, K40.1
GENERATOR, 50.95 MW					

*	711 /1 A \ /1701	Denotes RECLAIM emission factor
365	THEFT	LISTORES KELLATIVE STRISSION ISCIDE

(3) Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

(7) Denotes NSR applicability limit

See App B for Emission Limits

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(10) See section J for NESHAP/MACT requirements

** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

Facility ID: 153992
Revision #: 3
Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	Mo,	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process I: POWER GENE	RATION				
CO OXIDATION CATALYST, NO. 4, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476663	C21	D19 C22			
SELECTIVE CATALYTIC REDUCTION, NO. 4, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH: 18 FT WITH A/N: 476663 AMMONIA INJECTION	C22	C21 S24		NH3: 5 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]	A195.7, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 4, HEIGHT: 86 FT; DIAMETER: 11 FT 8 IN A/N: 555831	S24	C22			

Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

(7) Denotes NSR applicability limit

(9) See App B for Emission Limits

(4) Denotes BACT emission limit

1) Denotes BAC1 emission fum

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)
(10) See section J for NESHAP/MACT requirements

** Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device.

^{(1) (1}A) (1B) Denotes RECLAIM emission factor

^{(2) (2}A) (2B) Denotes RECLAIM emission rate

| Section D | Page: 29 | Facility ID: 153992 | Revision #: 3 | Date: | November 06, 2015 |

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition: C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 9-7-2012; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-10-2010; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart IIII, 1-30-2013]

[Devices subject to this condition: D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location
NH3 emissions	District method 207.1 and 5.3 or EPA method	1 hour	Outlet of the SCR serving this equipment
	17		serving ans equipment

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. John Groenenboom Title: Client Project Manager

Region: West

Email: <u>JGroenenboom@montrose-env.com</u>

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

Email: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 17

AQ-14 & AQ-24 RTC INVENTORY

December 30, 2020

Ronald Hoffard Generation Plant Manager Canyon Power Plant (ID: 153992) 3071 E Miraloma Ave Anaheim, CA 92806

Dear Mr. Hoffard:

Enclosed is your re-issued Facility Permit for Compliance Year 2021 (January 1, 2021 – December 31, 2021). This reissuance is an Administrative Permit Revision to your RECLAIM/Title V Facility Permit and includes the Title Page, Table of Contents, and Section B (RECLAIM Annual Emission Allocations) in accordance with Rule 2002(b)(4).

Please review the enclosed Section B carefully, as it will be part of your official Facility Permit. The changes are stated below. Please note that the South Coast Air Quality Management District (South Coast AQMD) rules allow you to appeal the terms and conditions of any sections of the enclosed Facility Permit by petitioning the Hearing Board within thirty days of receipt of the permit.

We recently sent you an invoice for the annual operating renewal fee for your facility permit. This must be paid on or before the due date indicated on the invoice or your facility permit will expire due to non-payment of fees.

A. Facility Permit

The enclosed Facility Permit contains changes described as follows:

1. The revision numbers and dates of the Title Page and the Table of Contents have been updated to reflect the reissuance of the relevant permit sections.

2. Section B - RECLAIM Annual Emission Allocation

Section B has been updated to reflect all approved RECLAIM Trading Credit (RTC) transactions approved as of December 18, 2020. Therefore, if you have submitted any RTC transactions in December, please review your records carefully to ensure that you take into account any RTC transactions that have not been approved as of that date and make necessary changes to your facility's RTC balances when reconciling your facility's emissions.

In addition, the South Coast AQMD has updated Section B of the Facility Permit to list your facility's allocation balances for the next fifteen years pursuant to Rule 2002(b)(4). Also, your facility's Starting Allocation and Non-Tradable RTCs in Compliance Year 1994 are listed within this section. This establishes the level used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) — Trading Zone Restrictions.

B. Appeals

As previously mentioned, if you determine that certain changes or clarifications need to be made to the enclosed permit, you may appeal the terms and conditions by petitioning the Hearing Board within thirty days of receipt. If you determine there are <u>administrative errors</u> in these permit sections, please notify South Coast AQMD staff within thirty days of receipt of your permit sections. Your facility is still bound by the requirements of your entire Facility Permit while your appeal is under consideration by South Coast AQMD staff and/or Hearing Board.

Any comments or questions regarding your RECLAIM Facility Permit may be directed to Rizaldy Calungcagin, Senior Air Quality Engineer at (909) 396-2315 or contact realungcagin@aqmd.gov.

Sincerely,

Thomas G. Liebel Senior Engineering Manager Energy/Public Services/Waste

Management/Terminals

Enclosure

cc: Sheila Tsai, U.S. EPA (via cdx.epa.gov)

Rafael Reynosa, Sr. Enforcement Manager - Compliance

Title Page Facility ID:

153992

Revision #: 16 Date: January 01, 2021

FACILITY PERMIT TO OPERATE

CANYON POWER PLANT 3071 E MIRALOMA AVE ANAHEIM, CA 92806

NOTICE

IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR A COPY THEREOF MUST BE KEPT AT THE LOCATION FOR WHICH IT IS ISSUED.

THIS PERMIT DOES NOT AUTHORIZE THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT SHALL NOT BE CONSTRUED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUTES OF ANY OTHER FEDERAL, STATE OR LOCAL GOVERNMENTAL AGENCIES.

Wayne Nastri Executive Officer

Amir Dejbakhsh

Deputy Executive Officer Engineering and Permitting

Table of Content

Facility ID: 153992 Revision #: 16

Date. January 01, 2021

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

TABLE OF CONTENTS

Section	Description	Revision #	Date Issued
Α	Facility Information	2	11/06/2015
В	RECLAIM Annual Emission Allocation	13	01/01/2021
C	Facility Plot Plan	TO BE DEV	ELOPED
D	Facility Description and Equipment Specific Conditions	3	11/06/2015
E	Administrative Conditions	1	11/06/2015
F	RECLAIM Monitoring and Source Testir Requirements	ng 1	11/06/2015
G	Recordkeeping and Reporting Requirements for RECLAIM Sources	1	11/06/2015
Н	Permit To Construct and Temporary Permit to Operate	3	11/06/2015
I	Compliance Plans & Schedules	1	11/06/2015
J	Air Toxics	1	11/06/2015
K	Title V Administration	1	11/06/2015
Appendix			
Α	NOx and SOx Emitting Equipment Exem From Written Permit Pursuant to Rule 219	pt 1	11/06/2015
В	Rule Emission Limits	1	11/06/2015

| Section B | Page: 1 | Facility ID: 153992 | Revision #: 13 | Date: January 01, 2021 |

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of NOx RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. Total NOx emission shall not exceed such annual allocations unless the operator obtains RTCs corresponding to the facility's increased emissions in compliance with Rules 2005 and 2007.

The level of Starting Allocation plus Non-Tradable Credits used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) - Trading Zone Restrictions is listed on the last page of this Section.

The following table lists the annual allocations that were issued to this facility and the amounts of RTCs held by this facility on the day of printing this Section.

RECLAIM POLLUTANT ANNUAL ALLOCATION (POUNDS)

Ye Begin (month/	End	Zone	NOx RTC Initially Allocated	NOx RTC ¹ Holding as of 01/01/2021 (pounds)	Non-Tradable Non-Usable RTCs (pounds)
7/2018	6/2019	Coastal	0	17217	1292
1/2019	12/2019	Coastal	0	5516	1648
7/2019	6/2020	Coastal	0	11792	1292
1/2020	12/2020	Coastal	0	37283	3248
7/2020	6/2021	Coastal	0	29245	2548
1/2021	12/2021	Coastal	0	33988	3295
7/2021	6/2022	Coastal	0	26660	2585
1/2022	12/2022	Coastal	0	27445	6543
7/2022	6/2023	Coastal	0	21527	5133
1/2023	12/2023	Coastal	0	27445	0
7/2023	6/2024	Coastal	0	21527	0
1/2024	12/2024	Coastal	0	27445	0
7/2024	6/2025	Coastal	0	21527	0
1/2025	12/2025	Coastal	0	27445	0
7/2025	6/2026	Coastal	0	21527	0
1/2026	12/2026	Coastal	0	27445	0
7/2026	6/2027	Coastal	0	21527	0

Footnotes:

- This number may change due to pending trades, emissions reported under Quarterly Certification
 of Emissions Report (QCER) and Annual Permit Emission Program (APEP) Report required
 pursuant to Rule 2004, or deductions made pursuant to Rule 2010(b). The most recent total RTC
 information can be obtained from the District's RTC Listing.
- 2. The use of such credits is subject to restrictions set forth in paragraph (f)(1) of Rule 2002.

Section B Facility ID: Revision #:

Page: 2 153992 13

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of NOx RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. Total NOx emission shall not exceed such annual allocations unless the operator obtains RTCs corresponding to the facility's increased emissions in compliance with Rules 2005 and 2007.

The level of Starting Allocation plus Non-Tradable Credits used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) - Trading Zone Restrictions is listed on the last page of this Section.

The following table lists the annual allocations that were issued to this facility and the amounts of RTCs held by this facility on the day of printing this Section.

RECLAIM POLLUTANT ANNUAL ALLOCATION (POUNDS)

Ye Begin (month/	End	Zone	NOx RTC Initially Allocated	NOx RTC ¹ Holding as of 01/01/2021 (pounds)	Non-Tradable Non-Usable RTCs (pounds)
1/2027	12/2027	Coastal	0	27445	0
7/2027	6/2028	Coastal	0	21527	0
1/2028	12/2028	Coastal	0	27445	0
7/2028	6/2029	Coastal	0	21527	0
1/2029	12/2029	Coastal	0	27445	0
7/2029	6/2030	Coastal	0	21527	0
1/2030	12/2030	Coastal	0	27445	0
7/2030	6/2031	Coastal	0	21527	0
1/2031	12/2031	Coastal	0	27445	0
7/2031	6/2032	Coastal	0	21527	0
1/2032	12/2032	Coastal	0	27445	0
7/2032	6/2033	Coastal	0	21527	0
1/2033	12/2033	Coastal	0	27445	0
7/2033	6/2034	Coastal	0	21527	0
1/2034	12/2034	Coastal	0	27445	0
7/2034	6/2035	Coastal	0	21527	0
1/2035	12/2035	Coastal	0	27445	0

Footnotes:

- This number may change due to pending trades, emissions reported under Quarterly Certification
 of Emissions Report (QCER) and Annual Permit Emission Program (APEP) Report required
 pursuant to Rule 2004, or deductions made pursuant to Rule 2010(b). The most recent total RTC
 information can be obtained from the District's RTC Listing.
- 2. The use of such credits is subject to restrictions set forth in paragraph (f)(1) of Rule 2002.

Section B Page: 3 Facility ID: 153992 Revision #: 13 Date: January 01, 2021

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of NOx RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. Total NOx emission shall not exceed such annual allocations unless the operator obtains RTCs corresponding to the facility's increased emissions in compliance with Rules 2005 and 2007.

The level of Starting Allocation plus Non-Tradable Credits used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) - Trading Zone Restrictions is listed on the last page of this Section.

The following table lists the annual allocations that were issued to this facility and the amounts of RTCs held by this facility on the day of printing this Section.

RECLAIM POLLUTANT ANNUAL ALLOCATION (POUNDS)

Ye Begin (month)		Zone	NOx RTC Initially Allocated	NOx RTC ¹ Holding as of 01/01/2021 (pounds)	Non-Tradable Non-Usable RTCs (pounds)
7/2035	6/2036	Coastal	0	21527	0
1/2036	12/2036	Coastal	0	27445	0

Footnotes:

- This number may change due to pending trades, emissions reported under Quarterly Certification
 of Emissions Report (QCER) and Annual Permit Emission Program (APEP) Report required
 pursuant to Rule 2004, or deductions made pursuant to Rule 2010(b). The most recent total RTC
 information can be obtained from the District's RTC Listing.
- 2. The use of such credits is subject to restrictions set forth in paragraph (f)(1) of Rule 2002.

Section B Pag Facility ID: Revision #

Date January 01, 2021

13

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. If the facility submits a permit application to increase in an annual allocation to a level greater than the facility's starting Allocation plus Non-Tradable credits as listed below, the application will be evaluated for compliance with Rule 2005 (c)(4). Rule 2005 (e) - Trading Zone Restrictions applies if an annual allocation is increased to a level greater than the facility's Starting Allocation plus Non-Tradable Credits:

Year Begin End (month/year)

Zone

RTC Starting Allocation (pounds)

Non-Tradable Credits(NTC) (pounds)

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 18

AQ-17 NH3 FLOW METER ACCURACY REPORTS

729 EAST WILLOW STREET

SIGNAL HILL, CALIFORNIA 90755

(562) 424-8533 FAX (562) 426-7707

CERT. NO. 3-351-21

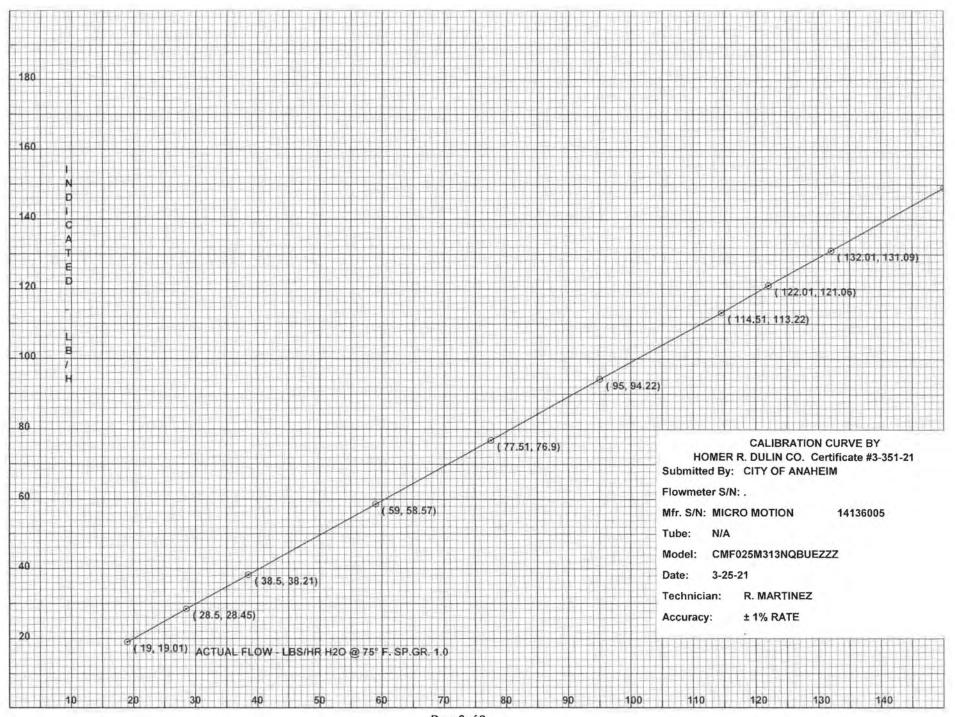
CALIBRATION CERTIFICATION

SUBMITTED BY: CITY OF ANAHEIM	
FLOWMETER SERIAL NO:	MFG. SERIAL NO: 14136005
MANUFACTURER: MICRO MOTION	MODEL: CMF025M313NQBUEZZZ
TUBE NO: N/A	FLOAT NO: N/A
DATA IS: As Found/As Left ; In Tolerance	See Remarks Calibrated @ customer's facility
REMARKS: DIRECT READING ELECTRONIC INDICA	TOR TRANSMITTER S/N: 14136005,
CALIBRATED IN LBS/HR H2O @ 75°F. SP.GR. 1.0 ME METER VERY UNSTABLE.	TER READING'S ARE AVERAGED READING'S.
ACCUPACY + 1% PATE	

INDICATED	ACTUAL	
LB/H	LBS/HR	
149.06	150.01	
131.09	132.01	
121.06	122.01	
113.22	114.51	
94.22	95.00	
76.90	77.51	
58.57	59.00	
38.21	38.50	
28.45	28.50	
19.01	19.00	

Flowmeter Certified with HOMER R. DULIN CO.

Equip. No. 116	05 Accuracy	0.005%	Equip. Cal. Date: 8/29/18	Cal. Due:	8/29/21
NIST Cert. No.	TEST# MS 15560		Procedure No:	ISA:RP 16.6	
The second section of		CARL CARLO BANKS		Sec	and built desire


Our standards are certified by or are traceable to the National Institute of Standards and Technology and systems comply with MIL-STD 45662A, ANSI/NCSL Z540.3, ISO/IEC 17025, and ISO 10012. The collective uncertainty of the standards used in this calibration does not exceed 25% of the certified accuracy of the instrument under test. This document may not be reproduced, except in full, without prior written approval of the Ho

3-25-21		3-25-22		R. MARTINEZ	1.10000
P.O. No	SCPPA-2100041		Shipper No	R. MARTINEZ Rogelio	motions
omer R. Dulin Co. Re	v.1 Dated 8/19/14				

CALIBRATION DATE RECALIBRATION DUE CALIBRATION TECHNICIAN

Page 1 of 2

Page 2 of 2

729 EAST WILLOW STREET SIGNAL HILL, CALIFORNIA 90755

(562) 424-8533

SUBMITTED BY: CITY OF ANAHEIM

4-1-21

CALIBRATION DATE

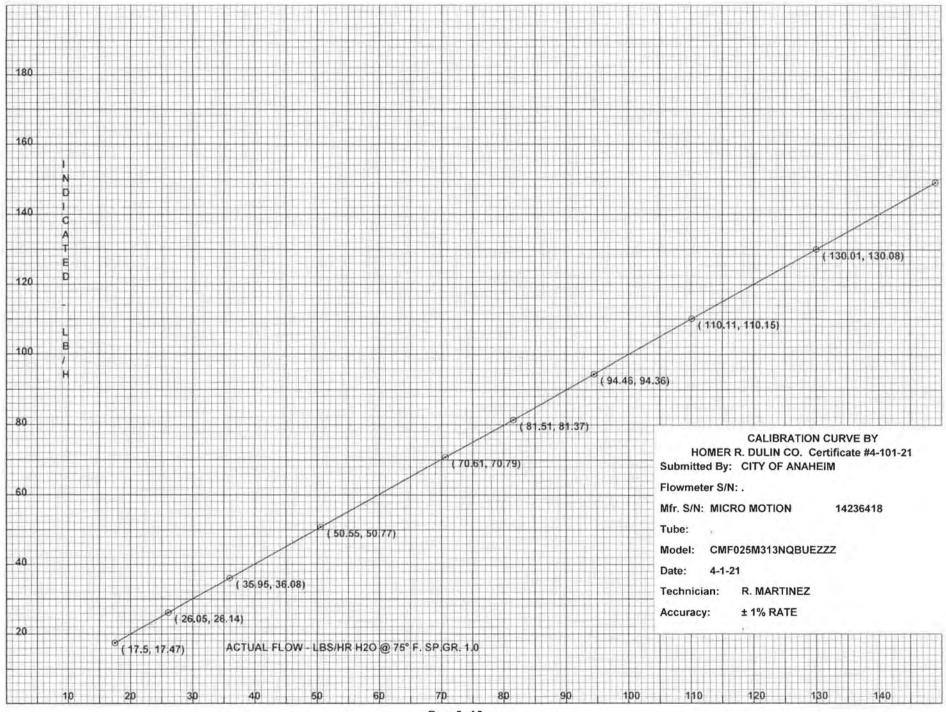
FAX (562) 426-7707

CERT. NO. 4-101-21

CALIBRATION CERTIFICATION

LOWMETER SERIAL NO:	MFG. SERIAL NO: 14236418
MANUFACTURER: MICRO MOTION	MODEL: CMF025M313NQBUEZZZ
UBE NO: .	FLOAT NO:
REMARKS: DIRECT READING ELECTRON 75° F. SP.GR. 1.0 - METER IS UNSTABL	Calibrated @ customer's facility IC INDICATOR TRANSMITTER S/N: 14138117, CALIBRATED IN LBS/HR H2O
CCURACY ± 1% RATE	
INDICATED	ACTUAL
LB/H	LBS/HR
149.08	149.06
130.08	130.01
110.15	110.11
94.36	94.46
81.37	81.51
70.79	70.61
50.77	50.55
36.08	35.95
26.14	26.05
17.47	17.50
Flowme	er Certified with HOMER R. DULIN CO.
quip. No. 11605 Accuracy 0.005	% Equip. Cal. Date: 8/29/18 Cal. Due: 8/29/21
IST Cert. No. TEST# MS 15560	Procedure No: ISA:RP 16.6
NSI/NCSL Z540.3, ISO/IEC 17025, and ISO 10012.	ational Institute of Standards and Technology and systems comply with MIL-STD 45662A, The collective uncertainty of the standards used in this calibration does not exceed 25% of adocument may not be reproduced, except in full, without prior written approval of the Shipper No.

R. MARTINEZ


CALIBRATION TECHNICIAN

4-1-22

RECALIBRATION DUE

Page 1 of 2

Page 2 of 2

729 EAST WILLOW STREET SIGNAL HILL, CALIFORNIA 90755

(562) 424-8533

FAX (562) 426-7707

CERT. NO. 4-131-21

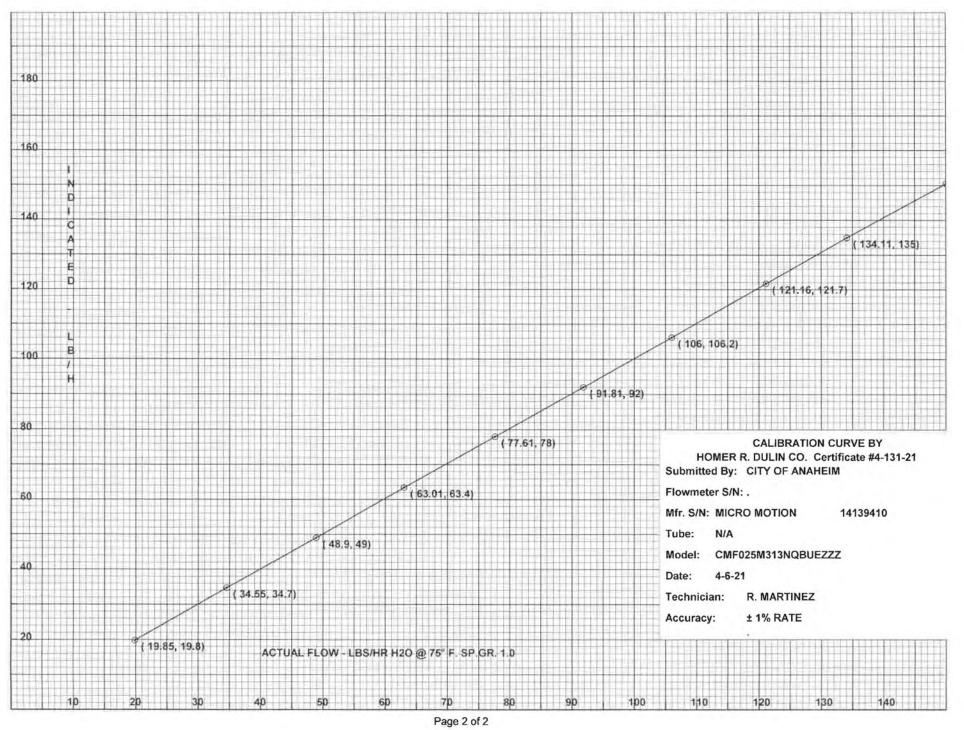
CALIBRATION CERTIFICATION

SUBMITTED BY: CITY OF ANAHEIM	
FLOWMETER SERIAL NO:	MFG. SERIAL NO: 14139410
MANUFACTURER: MICRO MOTION	MODEL: CMF025M313NQBUEZZZ
TUBE NO: N/A	FLOAT NO: N/A
DATA IS: As Found/As Left ; In Tolerance	See Remarks Calibrated @ customer's facility
REMARKS: DIRECT READING ELECTRONIC INDICATOR 275° F. SP.GR. 1.0 METER IS UNSTABLE	R TRANSMITTER S/N: 14139410, CALIBRATED IN LBS/HR H2O
100UDABY : 400 DATE	

ACCURACY ± 1% RATE

INDICATED	ACTUAL	ACTUAL	
LB/HR	LBS/HR		
150.50	150.01		
135.00	134.11		
121.70	121.16		
106.20	106.00		
92.00	91.81		
78.00	77.61		
63.40	63.01		
49.00	48.90		
34.70	34.55		
19.80	19.85		

			F	lowmeter Cer	rtified with HOMER F	R. DULIN C	co.	
Equip. No.	1160	5	Accuracy	0.005%	Equip, Cal. Date:	8/29/18	Cal, Due:	8/29/21
NIST Cert.	No.	TEST# N	IS 15560		Proc	edure No:	ISA:RP 16.6	
					nstitute of Standards and Te ective uncertainty of the sta		the first and the second of th	
the certified	accurac	y of the instru	ument under	test. This docume	ent may not be reproduced,	except in ful	I, without prior written	approval of the
Homer R. D.	ılin Co.	Rev.1 Dated	8/19/14					
	P.O. N	lo SCPP	A-210004	1	Shipper No			


CALIBRATION DATE

4-6-21

4-6-22

RECALIBRATION DUE Page 1 of 2 R. MARTINE Rogelio Martinez

729 EAST WILLOW STREET SIGNAL HILL, CALIFORNIA 90755

(562) 424-8533

FAX (562) 426-7707

CERT. NO. 4-198-21

CALIBRATION CERTIFICATION

SUBMITTED BY: CITY OF ANAHEI		_
FLOWMETER SERIAL NO:	MFG. SERIAL NO: 14832375	
MANUFACTURER: MICRO MOTION	MODEL: CMF025M313N2BAEZZZ	
TUBE NO: N/A	FLOAT NO: N/A	
DATA IS: As Found/As Left ; In Toler	Calibrated @ customer's facility	=
REMARKS: DIRECT READING ELECT CALIBRATED IN LBS/HR H2O @ 75° F.	DNIC INDICATOR TRANSMITTER S/N: 14832375, P.GR. 1.0	
ACCURACY ± 1% RATE		
INDICATED	ACTUAL	
LB/HR	LBS/HR	
150.0	150.24	
134.2	134.75	
121.6	122.03	
109.4	109.89	
91.7	92.07	
77.0	77.28	

Flowmeter Certified with HOMER R. DULIN CO.

62.43

50.16

36.96

19.80

		tominotor co	timod with FromErt It. Bollit		
Equip. No. 11605	Accuracy	0.005%	Equip. Cal. Date: 8/29/18	Cal. Due:	8/29/21
NIST Cert. No. TEST	# MS 15560		Procedure No:	ISA:RP 16.6	
ANSI/NCSL Z540.3, ISO/IE	C 17025, and ISC instrument under	0 10012. The coll	nstitute of Standards and Technology an ective uncertainty of the standards used ent may not be reproduced, except in fu	in this calibration does	not exceed 25% of
	CPPA-210004	11	Shipper No.	0	elio Mati

CALIBRATION DATE

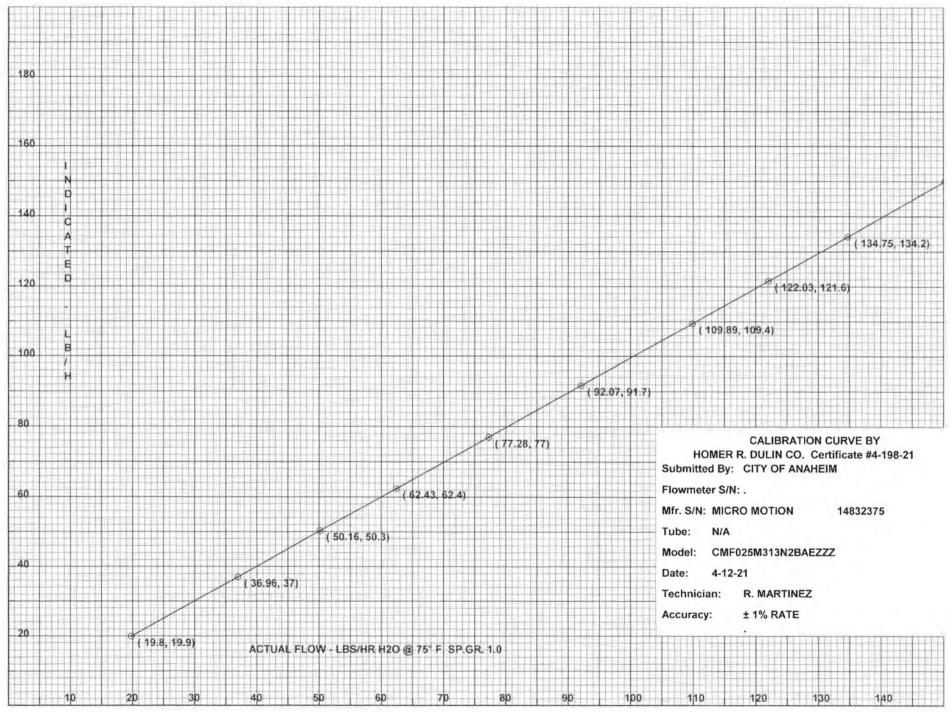
4-12-21

62.4

50.3

37.0

19.9


4-12-22

R. MARTINEZ / CALIBRATION TECHNICIAN

Page 1 of 2

RECALIBRATION DUE

Page 2 of 2

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 19

AQ-18 SCR INLET TEMPERATURE SENSOR CALIBRATION REPORTS

Calibration: SCR Inlet Temperature Unit 1 TE-403A-403D

Certificate Number: Position ID: 1-TE-403A

Printed: 1/14/2021 7:06:59 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U1/

Function U1 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date 1/13/2022 Interval 1 years

2 % of span 40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Reject If Error >

Device

1-TE-403A Device ID

Serial Number Manufacturer

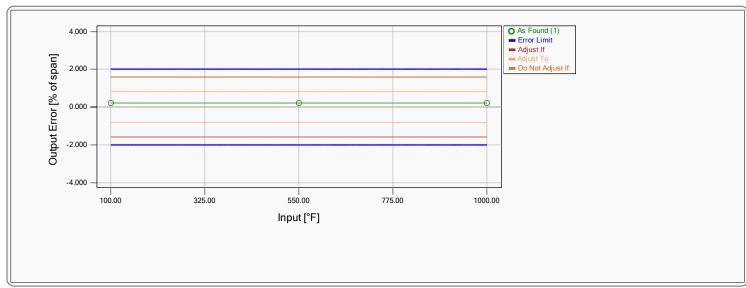
Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/13/2021 10:36:18 AM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

Mominal

PASSED, DO NOT ADJUST

Actual

Maximum Error: 0.222 % of span

Input [°F]	Actual Input [°F]	Output [°F]	Output [°F]	Found Error [% of span]
100.0	100.00	100.0	102.000	0.222
550.0	550.00	550.0	552.000	0.222
1000.0	1000.00	1000.0	1002.000	0.222
	[°F] 100.0 550.0	Input [°F] 100.0 100.00 550.0 550.00	Input	Input Coutput Coutpu

Nominal

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 10:36:18 AM

Certificate Number: Position ID: 1-TE-403B

Printed: 1/14/2021 7:06:59 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U1/

Function U1 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date 1/13/2022 Interval Reject If Error >

2 % of span

40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Device

1-TE-403B Device ID

Serial Number

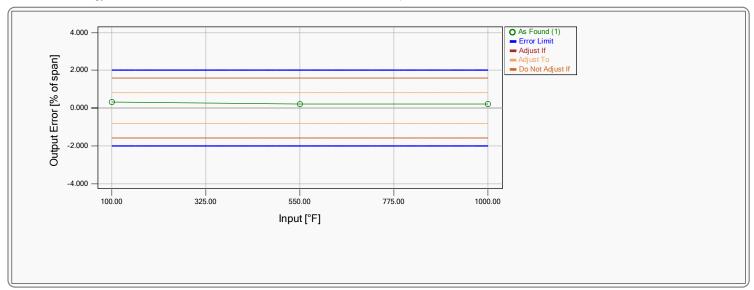
Manufacturer Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/13/2021 10:34:32 AM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Actual

1 years

Maximum Error: 0.332 % of span Mominal Mominal

Input [°F]	Actual Input [°F]	Output [°F]	Output [°F]	Found Error [% of span]
100.0	100.01	100.0	103.000	0.332
550.0	550.01	550.0	552.000	0.221
1000.0	1000.00	1000.0	1002.000	0.222

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 10:34:32 AM

Page: 1/1

Certificate Number: Position ID: 1-TE-403C

Printed: 1/14/2021 7:06:59 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Operating Humidity

Position

Function

Range

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID Plant

CANYON/ERU/U1/

Calibration Event

U1 SCR INLET TEMP (ud) Calibration time 1/13/2021 10:47:52 AM Name **Transfer Function** Linear

100 ... 1000 °F

Next Calibration

Device

Device ID

Serial Number

Manufacturer

Rangeability Operating

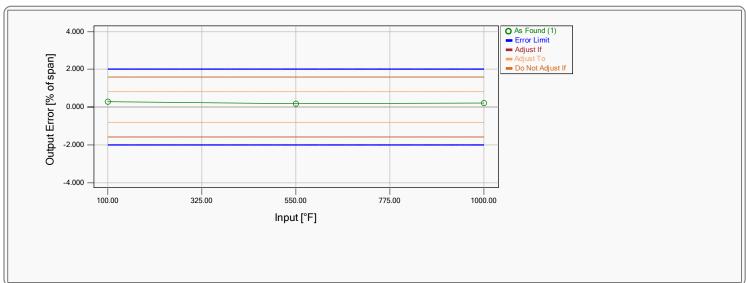
Environment Environment

1-TE-403C

Calibration Procedure

Due Date 1/13/2022 Interval 1 years Reject If Error > 2 % of span

40 % of Reject If Error Classification Adjust To Error <


100 ... 1000 °F

Calibration Strategy

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date: **Output Module** Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.278 % of span

Input [°F]	Actual Input [°F]	Output [°F]	Output [°F]	Found Error [% of span]
100.0	100.00	100.0	102.500	0.278
550.0	550.00	550.0	551.500	0.167
1000.0	1000.00	1000.0	1002.000	0.222

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 10:47:52 AM

Certificate Number: Position ID: 1-TE-403D

Device

Device ID

Serial Number

Printed: 1/14/2021 7:06:59 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID
Plant CANYON/ERU/U

NH3 INJ SKID Manufacturer CANYON/ERU/U1/ Rangeability

Operating Operating Humidity

1-TE-403D

Function

Name U1 SCR INLET TEMP (ud)

Transfer Function Linear

Range 100 ... 1000 °F 100 ... 1000 °F

Calibration Event
Calibration time 1

Calibration time 1/13/2021 10:43:47 AM

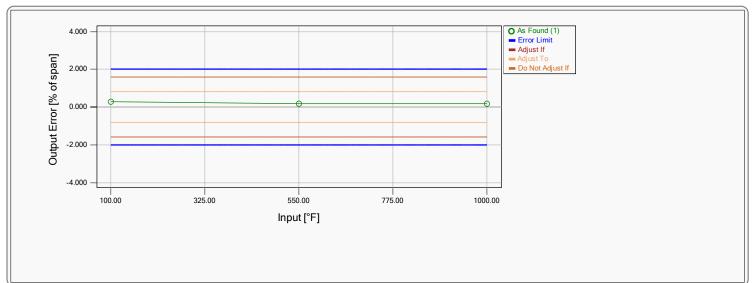
Next Calibration

Environment Environment

Calibration Procedure

Due Date 1/13/2022 Interval 1 years
Reject If Error > 2 % of span

Adjust To Error < 40 % of Reject If Error Classification


Calibration Strategy

Calibrators

 Input Calibrator
 MC6 : 605835
 Due Date: 4/21/2021

 Input Module
 TC-R-OUT/ TC1 : 65279
 Due Date: 4/22/2021

Output Calibrator Due Date:
Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.278 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.00	100.0	102.500	0.278
550.0	550.00	550.0	551.500	0.167
1000.0	1000.00	1000.0	1001.500	0.167

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 10:43:47 AM

Calibration: SCR Inlet Temperature Unit 2 TE-403A-403D

Certificate Number: Position ID: 2-TE-403A

Device

Device ID

Serial Number

Manufacturer

Rangeability Operating

Printed: 1/14/2021 7:11:03 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Operating Humidity

Position

Function

Transfer Function

Name

Range

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U2/

Calibration Event

Calibration time 1/13/2021 11:54:57 AM

Next Calibration

Environment Environment

2-TE-403A

Calibration Procedure

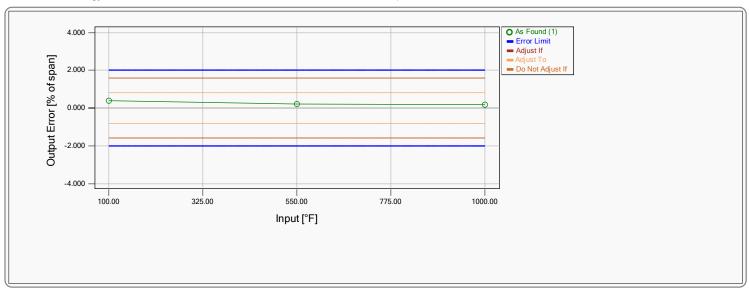
Due Date 1/13/2022 Reject If Error >

2 % of span

Linear 100 ... 1000 °F

40 % of Reject If Error Classification Adjust To Error <

U2 SCR INLET TEMP (ud)


Interval

Calibration Strategy

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date: **Output Module** Due Date:

1. As Found

PASSED, DO NOT ADJUST

100 ... 1000 °F

1 years

Maximum Error: 0.387 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.02	100.0	103.500	0.387
550.0	550.01	550.0	552.000	0.221
1000.0	1000.02	1000.0	1001.500	0.164

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 11:54:57 AM

Page: 1/1

Certificate Number: Position ID: 2-TE-403B

Printed: 1/14/2021 7:11:03 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U2/

Function

U2 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Interval

1 years

Calibration Procedure

Due Date 1/13/2022

Reject If Error > 2 % of span

40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Device

2-TE-403B Device ID

Serial Number

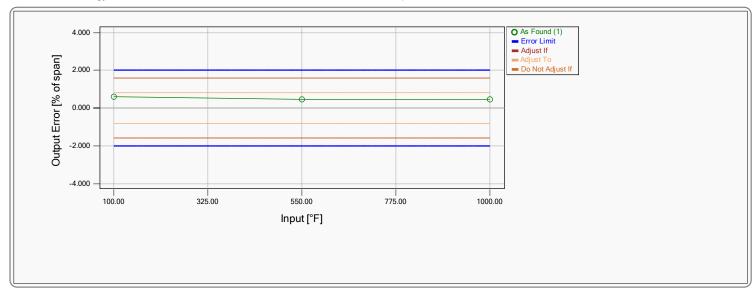
Manufacturer Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/13/2021 11:59:30 AM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.608 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.03	100.0	105.500	0.608
550.0	550.03	550.0	554.000	0.441
1000.0	1000.03	1000.0	1004.000	0.441

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 11:59:30 AM

Certificate Number: Position ID: 2-TE-403C

Printed: 1/14/2021 7:11:03 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U2/

Function U2 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Interval

1 years

Calibration Procedure

Due Date 1/13/2022

Reject If Error > 2 % of span

40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Device

2-TE-403C Device ID

Serial Number

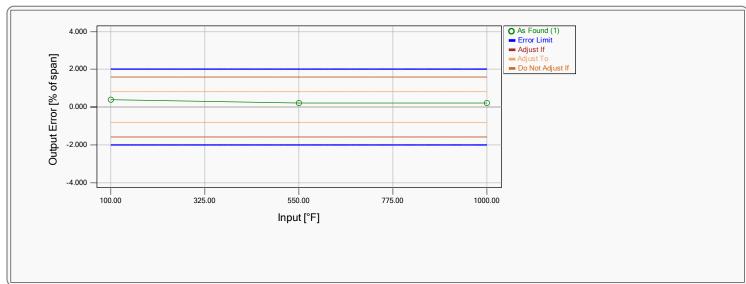
Manufacturer Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/13/2021 12:03:41 PM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

Mominal

PASSED, DO NOT ADJUST

Actual

Maximum Error: 0.387 % of span

	Input [°F]	Actual Input [°F]	Output [°F]	Output [°F]	Found Error [% of span]
I	100.0	100.02	100.0	103.500	0.387
l	550.0	550.02	550.0	552.000	0.220
	1000.0	1000.01	1000.0	1002.000	0.221
I					
١					

Nominal

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 12:03:41 PM

Certificate Number: Position ID: 2-TE-403D

Printed: 1/14/2021 7:11:03 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U2/

Function

U2 SCR INLET TEMP (ud) Name **Transfer Function** Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date 1/13/2022 Interval 1 years Reject If Error > 2 % of span

40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Device

2-TE-403D Device ID

Serial Number Manufacturer

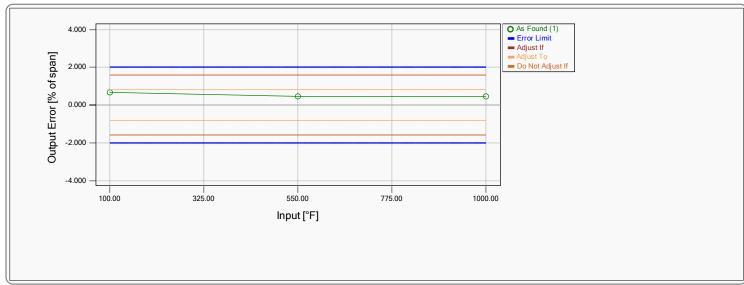
Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/13/2021 12:08:14 PM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.664 % of span Nominal

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.02	100.0	106.000	0.664
550.0	550.02	550.0	554.000	0.442
1000.0	1000.02	1000.0	1004.000	0.442

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 12:08:14 PM

Calibration: SCR Inlet Temperature Unit 3 TE-403A-403D

Certificate Number: Position ID: 3-TE-403A

Printed: 1/14/2021 7:12:05 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID
Plant CANYON/ERU/U3/

Device ID 3-TE-403A Serial Number

Manufacturer Rangeability

Device

Operating Operating Humidity

Function

Name U3 SCR INLET TEMP (ud)

Transfer Function Linear

Range 100 ... 1000 °F 100 ... 1000 °F

Calibration Event

Calibration time 1/13/2021 12:42:46 PM

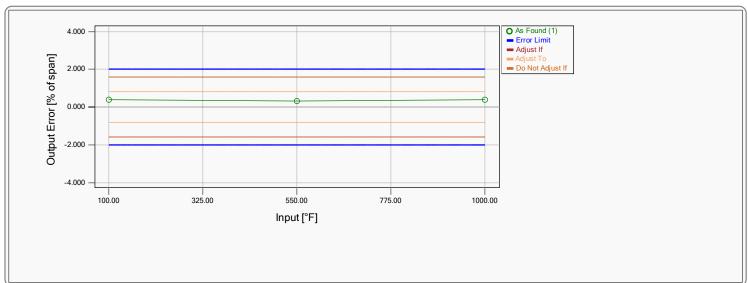
Next Calibration

Environment Environment

Calibration Procedure

Due Date 1/13/2022 Interval 1 years
Reject If Error > 2 % of span

Adjust To Error < 40 % of Reject If Error Classification


Calibration Strategy

Calibrators

 Input Calibrator
 MC6 : 605835
 Due Date: 4/21/2021

 Input Module
 TC-R-OUT/ TC1 : 65279
 Due Date: 4/22/2021

Output Calibrator Due Date:
Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.388 % of span

	Input [°F]	Actual Input [°F]	Output [°F]	Output [°F]	Found Error [% of span]
l	100.0	100.01	100.0	103.500	0.388
l	550.0	550.01	550.0	553.000	0.332
l	1000.0	1000.01	1000.0	1003.500	0.388
١					
١					

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 12:42:46 PM

Certificate Number: Position ID: 3-TE-403B

Device

Device ID

Serial Number

Manufacturer

Rangeability Operating Printed: 1/14/2021 7:12:05 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Operating Humidity

Position

Function

Transfer Function

Name

Name SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U3/

Calibration Event

Calibration time 1/13/2021 12:47:03 PM

Next Calibration

Environment Environment

3-TE-403B

Range 100 ... 1000 °F

 Calibration Procedure

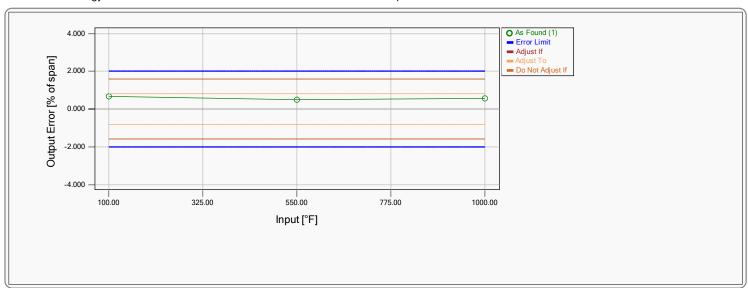
 Due Date
 1/13/2022
 Interval
 1 years

U3 SCR INLET TEMP (ud)

Reject If Error > 2 % of span

Adjust To Error < 40 % of Reject If Error Classification

Linear


Calibration Strategy

Calibrators

 Input Calibrator
 MC6 : 605835
 Due Date: 4/21/2021

 Input Module
 TC-R-OUT/ TC1 : 65279
 Due Date: 4/22/2021

Output Calibrator Due Date:
Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

100 ... 1000 °F

Maximum Error: 0.666 % of span

	Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
	100.0	100.01	100.0	106.000	0.666
	550.0	550.01	550.0	554.500	0.499
	1000.0	1000.01	1000.0	1005.000	0.554
1					

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 12:47:03 PM

Certificate Number: Position ID: 3-TE-403C

Device

Device ID

Printed: 1/14/2021 7:12:05 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID
Plant CANYON/ERU/U3/

Serial Number Manufacturer Rangeability

Operating Operating Humidity

3-TE-403C

Function

Name U3 SCR INLET TEMP (ud)

Transfer Function Linear

Range 100 ... 1000 °F 100 ... 1000 °F

Calibration Event

Calibration time 1/13/2021 12:51:02 PM

Next Calibration

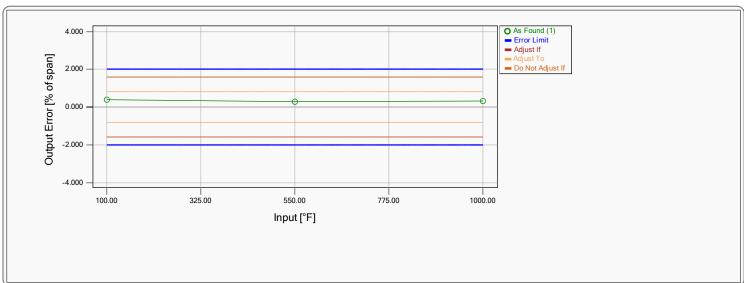
Environment Environment

Calibration Procedure

 Due Date
 1/13/2022
 Interval
 1 years

 Reject If Error >
 2 % of span

Adjust To Error < 40 % of Reject If Error Classification


Calibration Strategy

Calibrators

 Input Calibrator
 MC6 : 605835
 Due Date: 4/21/2021

 Input Module
 TC-R-OUT/ TC1 : 65279
 Due Date: 4/22/2021

Output Calibrator Due Date:
Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.388 % of span

	Input [°F]	Actual Input [°F]	Output [°F]	Output [°F]	Found Error [% of span]
	100.0	100.01	100.0	103.500	0.388
l	550.0	550.01	550.0	552.500	0.277
l	1000.0	1000.01	1000.0	1003.000	0.332

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 12:51:02 PM

Certificate Number: Position ID: 3-TE-403D

Device

Device ID

Serial Number

Manufacturer

Rangeability Operating

Printed: 1/14/2021 7:12:05 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Operating Humidity

Position

Function

Transfer Function

Name

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U3/

Calibration Event

Calibration time 1/13/2021 12:56:43 PM

Next Calibration

Environment Environment

3-TE-403D

Range

100 ... 1000 °F 100 ... 1000 °F

U3 SCR INLET TEMP (ud)

Interval

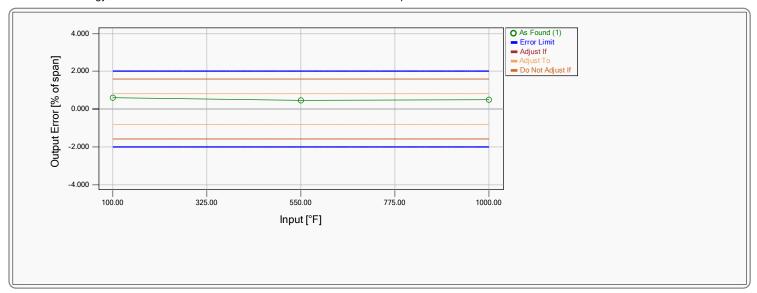
1 years

Calibration Procedure

Due Date 1/13/2022

Reject If Error > 2 % of span

40 % of Reject If Error Classification Adjust To Error <


Linear

Calibration Strategy

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date: **Output Module** Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.609 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.02	100.0	105.500	0.609
550.0	550.01	550.0	554.000	0.443
1000.0	1000.01	1000.0	1004.500	0.499

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 12:56:43 PM

Calibration: SCR Inlet Temperature Unit 4 TE-403A-403D

Certificate Number: Position ID: 4-TE-403A

Device

Device ID

Serial Number

Manufacturer

Rangeability Operating

Printed: 1/14/2021 7:13:06 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Operating Humidity

Position

Function

Transfer Function

Name

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U4/

Calibration Event

Calibration time 1/13/2021 1:25:48 PM

Next Calibration

Environment Environment

4-TE-403A

Range

100 ... 1000 °F 100 ... 1000 °F

U4 SCR INLET TEMP (ud)

Interval

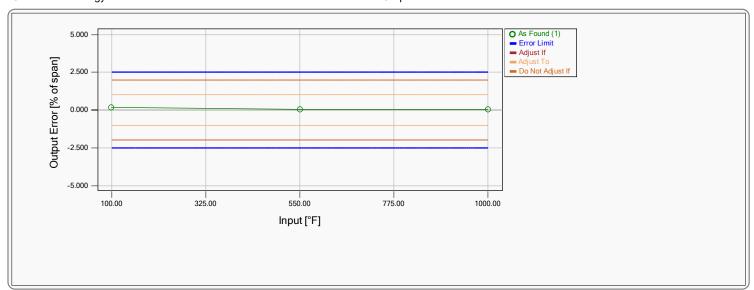
1 years

Calibration Procedure

Due Date 1/13/2022 Reject If Error >

 $2.5\ \%$ of span

Linear


40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date: **Output Module** Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.168 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	99.99	100.0	101.500	0.168
550.0	550.00	550.0	550.500	0.056
1000.0	1000.00	1000.0	1000.500	0.056

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 1:25:48 PM

Certificate Number: Position ID: 4-TE-403B

Printed: 1/14/2021 7:13:06 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U4/

Calibration Event Function

U4 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date 1/13/2022 Reject If Error > 2 % of span

Adjust To Error <

Calibration Strategy

40 % of Reject If Error Classification

1 years

Interval

Device

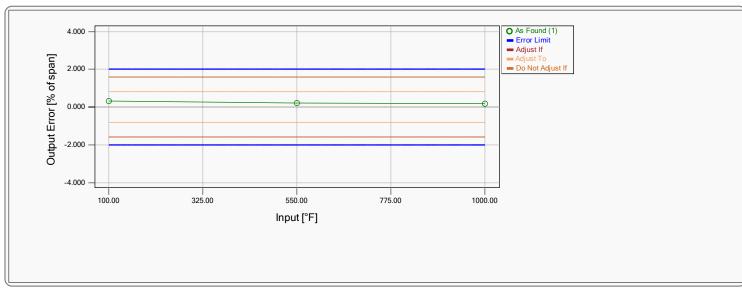
4-TE-403B Device ID

Serial Number

Manufacturer Rangeability

Operating Operating Humidity

Calibration time 1/13/2021 1:30:43 PM


Next Calibration

Environment Environment

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date: **Output Module** Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.332 % of span

	Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
	100.0	100.01	100.0	103.000	0.332
	550.0	550.00	550.0	552.000	0.222
	1000.0	1000.00	1000.0	1001.500	0.167
l					

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 1:30:43 PM

Certificate Number: Position ID: 4-TE-403C

Printed: 1/14/2021 7:13:06 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U4/

Function U4 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date 1/13/2022 Interval 1 years 2.5 % of span

40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Reject If Error >

Device

4-TE-403C Device ID

Serial Number Manufacturer

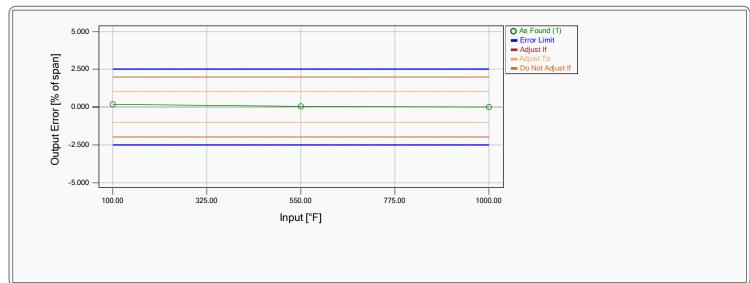
Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/13/2021 1:34:33 PM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.166 % of span

100.01	100.0	101.500	0.400
		101.500	0.166
550.01	550.0	550.500	0.054
1000.00	1000.0	1000.000	0.000

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 1:34:33 PM

Certificate Number: Position ID: 4-TE-403D

Printed: 1/14/2021 7:13:06 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U4/

Function

U4 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Interval

1 years

Calibration Procedure

Due Date 1/13/2022

Reject If Error > 2.5 % of span 40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Device

4-TE-403D Device ID

Serial Number

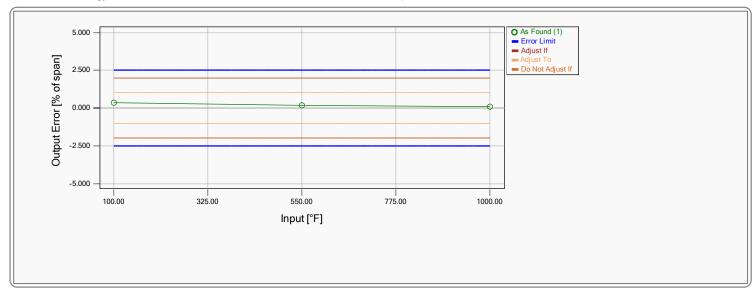
Manufacturer Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/13/2021 1:38:10 PM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** TC-R-OUT/ TC1: 65279 Input Module Due Date: 4/22/2021

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.333 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.00	100.0	103.000	0.333
550.0	550.00	550.0	551.500	0.167
1000.0	1000.01	1000.0	1001.000	0.110

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/13/2021 1:38:10 PM

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 20

AQ-19 SCR DIFFERENTIAL PRESSURE SENSOR CALIBRATION REPORTS

Certificate Number: Position ID: 1-PDIT-403

Device

Device ID

Serial Number

Manufacturer

Printed: 1/12/2021 2:06:36 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position Name

Function

Transfer Function

Name

Range

U1 SCR DP

Work Order Number

Location U1 ERU

Plant CANYON/ERU/U1/

Rangeability Operating

4 ... 20 mA

1 years

Calibration Event

Calibration time 1/12/2021 9:38:16 AM

Next Calibration

Environment Environment

1-PDIT-403

Calibration Procedure

Due Date 1/12/2022 Interval Reject If Error > 1 % of span

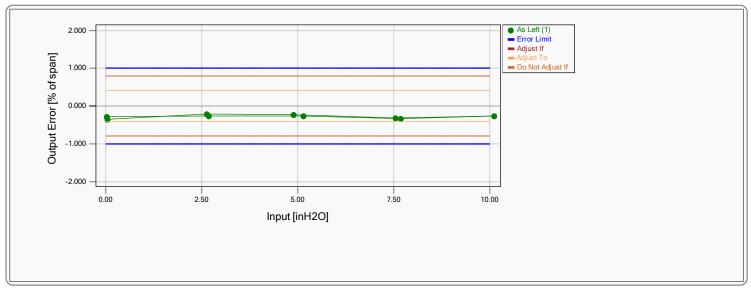
Linear

40 % of Reject If Error Classification Adjust To Error <

U1 SCR DP (ud)

0 ... 10 inH2O (G)

Calibration Strategy


Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** Input Module P2C: 69381 Due Date: 4/22/2021 **Output Calibrator** MC6: 605835 Due Date: 4/21/2021 **Output Module**

IN: 25613 Due Date: 4/21/2021

Rosemount 3051S2CD1A2F12A1AB3E5L4M5Q4

Operating Humidity

1. As Left

PASSED, DO NOT ADJUST

Maximum Error: -0.347 % of span

Nominal Input [inH2O]	Actual Input [inH2O]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]
0.0000	0.05	4.0000	4.0245	-0.347
2.500	2.63	8.000	8.1734	-0.216
5.000	4.88	12.000	11.7723	-0.223
7.500	7.54	16.000	16.0135	-0.316
10.000	10.12	20.000	20.1496	-0.265
7.500	7.68	16.000	16.2355	-0.328
5.000	5.15	12.000	12.1971	-0.268
2.500	2.68	8.000	8.2452	-0.268
0.0000	0.03	4.0000	4.0035	-0.278

Calibration Note: PERFORMED A/D & PRESS CAL TO RAISE ZERO

Calibrated by: VINCENT NGUYEN

1/12/2021 9:38:16 AM

Certificate Number: Position ID: 2-PDIT-403

Printed: 1/12/2021 2:07:15 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position Name

Function

Transfer Function

Name

Range

U2 SCR DP

Linear

U2 SCR DP (ud)

0 ... 10 inH2O (G)

Work Order Number

Location U2 ERU

Plant CANYON/ERU/U2/

2-PDIT-403 Device ID Serial Number

Manufacturer Rosemount 3051S2CD1A2F12A1AB3E5L4M5Q4

Rangeability

Device

Operating Operating Humidity

Calibration Event

Calibration time 1/12/2021 10:33:00 AM

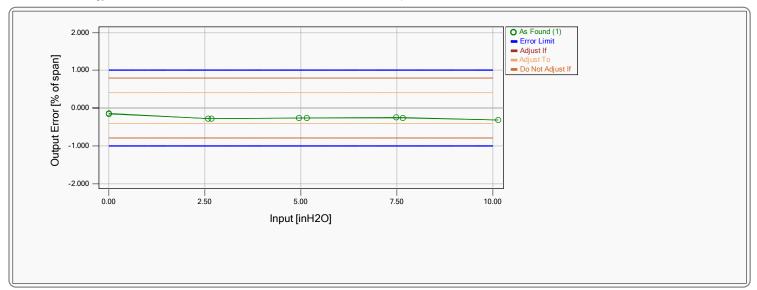
Next Calibration

Environment Environment

Calibration Procedure

Due Date 1/12/2022 Interval Reject If Error >

1 years 1 % of span


4 ... 20 mA

40 % of Reject If Error Classification

Adjust To Error < Calibration Strategy **Calibrators**

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** Input Module P2C: 69381 Due Date: 4/22/2021 **Output Calibrator** MC6: 605835 Due Date: 4/21/2021 **Output Module**

IN: 25613 Due Date: 4/21/2021

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.315 % of span

Nominal Input [inH2O]	Actual Input [inH2O]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]
0.0000	0.00	4.0000	3.9784	-0.135
2.500	2.60	8.000	8.1153	-0.279
5.000	4.95	12.000	11.8768	-0.270
7.500	7.49	16.000	15.9452	-0.243
10.000	10.14	20.000	20.1736	-0.315
7.500	7.66	16.000	16.2142	-0.261
5.000	5.17	12.000	12.2302	-0.261
2.500	2.68	8.000	8.2426	-0.284
0.0000	0.00	4.0000	3.9757	-0.152

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/12/2021 10:33:00 AM

Certificate Number: Position ID: 3-PDIT-403

Printed: 1/12/2021 2:07:46 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Function

Transfer Function

Name

Range

Name

U3 SCR DP

Work Order Number

Location U3 ERU

Plant CANYON/ERU/U3/

Operating

Device

Device ID

Rosemount 3051S2CD1A2F12A1AB3E5L4M5Q4

Manufacturer Rangeability

Serial Number

Operating Humidity

3-PDIT-403

Calibration Event

Calibration time 1/12/2021 11:07:42 AM

Next Calibration

Environment Environment

Calibration Procedure

Due Date 1/12/2022 Reject If Error >

1 % of span

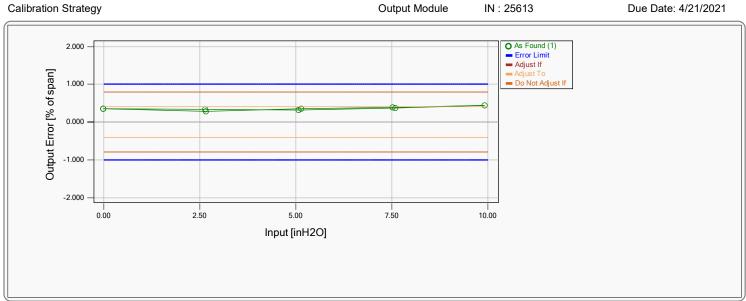
U3 SCR DP (ud)

0 ... 10 inH2O (G)

Linear

40 % of Reject If Error Classification

Interval


Adjust To Error < Calibration Strategy **Calibrators Input Calibrator**

Output Calibrator

Input Module

MC6: 605835 P2C: 69381 MC6: 605835 Due Date: 4/21/2021 Due Date: 4/22/2021 Due Date: 4/21/2021

IN: 25613 Due Date: 4/21/2021

1. As Found

PASSED, DO NOT ADJUST

4 ... 20 mA

1 years

Maximum Error: 0.449 % of span

Nominal Input [inH2O]	Actual Input [inH2O]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]
0.0000	-0.01	4.0000	4.0396	0.348
2.500	2.66	8.000	8.3001	0.276
5.000	5.14	12.000	12.2800	0.350
7.500	7.53	16.000	16.1114	0.396
10.000	9.92	20.000	19.9439	0.449
7.500	7.59	16.000	16.2041	0.376
5.000	5.07	12.000	12.1624	0.315
2.500	2.65	8.000	8.2938	0.336
0.0000	-0.01	4.0000	4.0391	0.344

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/12/2021 11:07:42 AM

Certificate Number: Position ID: 4-PDIT-403

Printed: 1/12/2021 2:08:21 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position Name

U4 SCR DP

Work Order Number

Location U4 ERU

Plant CANYON/ERU/U4/

Function

U4 SCR DP (ud) Name

Transfer Function Linear

4 ... 20 mA Range 0 ... 10 inH2O (G)

Interval

1 years

Calibration Procedure

Due Date 1/12/2022

Reject If Error > 1 % of span

Adjust To Error < 40 % of Reject If Error Classification

Calibration Strategy

Device

4-PDIT-403 Device ID Serial Number 393481

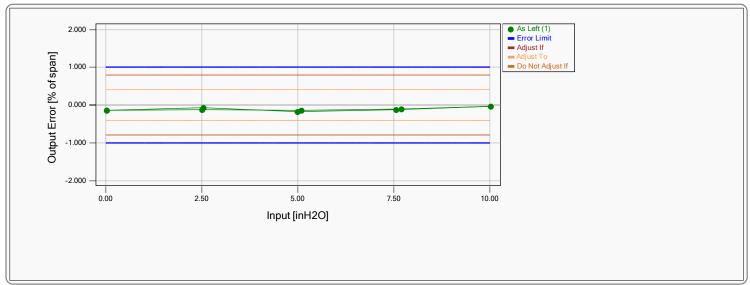
Manufacturer Rosemount 3051C

Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/12/2021 1:24:30 PM


Next Calibration

Environment Environment

Calibrators

MC6: 605835 Due Date: 4/21/2021 **Input Calibrator** Input Module P2C: 69381 Due Date: 4/22/2021 **Output Calibrator** MC6: 605835 Due Date: 4/21/2021 **Output Module**

IN: 25613 Due Date: 4/21/2021

1. As Left

PASSED, DO NOT ADJUST

Maximum Error: -0.168 % of span

Nominal Input [inH2O]	Actual Input [inH2O]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]
0.0000	0.02	4.0000	4.0104	-0.135
2.500	2.51	8.000	7.9957	-0.127
5.000	5.09	12.000	12.1201	-0.149
7.500	7.69	16.000	16.2858~	-0.114~
10.000	10.03	20.000	20.0423	-0.036
7.500	7.56	16.000	16.0753	-0.129
5.000	4.99	12.000	11.9571	-0.168
2.500	2.55	8.000	8.0696	-0.065
0.0000	0.02	4.0000	4.0095	-0.141

Calibration Note: PERFORMED A/D & PRESS CAL

Calibrated by: VINCENT NGUYEN

1/12/2021 1:24:30 PM

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 21

WASTE-10 COOLING TOWER SLUDGE TESTING

No Sludge developed for CY 2021

THIS IS THE LAST PAGE OF THIS DOCUMENT