DOCKETED			
Docket Number:	21-IEPR-06		
Project Title:	Building Decarbonization and Energy Efficiency		
TN #:	239952		
Document Title:	Presentation - Grid Interactive Efficient Buildings Technology, a Case Study and the Demand Response Potential Study		
Description:	S1.2A Mary Ann Piette, LBNL		
Filer:	Raquel Kravitz		
Organization:	Lawrence Berkeley National Laboratory		
Submitter Role:	Public Agency		
Submission Date:	10/4/2021 12:17:10 PM		
Docketed Date:	10/4/2021		

Grid Interactive Efficient Buildings: Technology, a Case Study and the Demand Response Potential Study

Presentation to the IEPR Workshop on GEBs Sep 24, 2021

Mary Ann Piette Division Director, Building Technology and Urban Systems Research Sponsors: US DOE BTO, CPUC and CEC

ENERGY TECHNOLOGIES AREA

Issues Motivating Advanced Buildings Technologies Changing Climate **Equity Energy and** Oil Embargo Indoor Health Urbanization **Electric Grid Environmental Justice** Change TIME

Grid Interactive Efficient Buildings Use Efficient Devices

Grid Interactive Efficient Buildings Are Integrated

Grid Interactive Efficient Buildings (GEBs) Communicate with Grid and Optimize Use of Clean Energy

GEB Technology Will Unlock Opportunities to Improve Building Efficiency plus Deep Grid-Interactivity

DF-ENABLED TECHNOLOGIES

GEB TECHNOLOGY LAYERSNeed to expand cSupervisory ControlPhysical SystemsNeed to expand cLocal ControlThermal Energy Systemsintegrate with PV,

Need to expand control R&D to integrate with PV, EVs, Elec Storage

GEB Predictive Control Reduces GHG and Energy Costs

Predictive Control with PV and Thermal Energy Storage

 Identified optimal control for campus chiller plants w/ TES and PV to decarbonize and stabilizing the grid

Societal/Market Impact

- CO2 reduction of ~ 1 mTCO2e/day while reducing peak demand \$.
- Approx **2500** miles in a car at 22 mpg.

UC-Merced Campus

CPUC Demand Response Potential Studies Explore Size and Value of GEBs

- Shape: persistent daily load modifications
- Shed: acts like virtual generation capacity
- Shift: acts like a virtual storage resource
- Shimmy: acts like a virtual regulation/ancillary services resource
- Phases 1, 2 and 3 provided the shed capacity (GW) and shift (GWh) from GEBs. Buildings could provide about 2 GW at \$200/kW-yr Levelized cost for 2025.
- Current modeling (Phase 4) will cover new end-uses and update customer data.
- Key questions: How large is Shed and Shift resource, where are resources and when is it available, and at what cost?
- Key takaway: Shift can play important role in California's renewable grid, but it will need to grow. We can explore ways to bring down costs and drive participation.

ENERGY TECHNOLOGIES AREA

Enabling Technology Modeling Framework

Components:

Costs

- Initial
- Operating

Performance

- Speed of response
- Magnitude
- Persistence

Propensity to Adopt

Based on customer factors

Shift Supply Curve for 2030

Battery threshold (reference price)

- Shift DR in California: 4-6 GWh of virtual storage cheaper than BTM batteries (~\$150/yr/kWh), about 40% from buildings, a significant portion of current grid challenges.
- **Electrification** will introduce a new Shift resource, modeled in new Phase 4.
- Shift resource will be **much larger** if customer participation is higher than observed historically for Shed DR.
- With ~1 percent of load shifted in 2017, ~150 GWh of total curtailment could have been avoided (~ 50 % of curtailment), replacing non-renewable generation with zero carbon renewable energy.

Cost Barriers to Enabling Shift Reducing technology costs can unlock new resources

New Load-Shape Clusters

Residential: double-peakers

Cluster 9, N=2884 1DW Unweighted Weighted 1DN 1EN Rate class 100000 EV-TOU-Care EV-TOU-nonCare 1EW 1DM 80000 nonEV-TOU-Care nonEV-TOU-nonCare nonEV-nonTOU-Care 60000 nonEV-nonTOU-nonCare 1MN 0 40000 Building type total master_mtr other mult_fam 1MW ZMNEN 20000 heating sin fam cooling pv generation 0 2DNEN 1NN 15 20 10 1NW h_of_d_clock Winter Spring Climate region 100000 100000 hot-dry marine 50000 50000 0 0 io 15 20 ıò 15 20 ò Ś. ò 5 h_of_d_clock h_of_d_clock Fall Summer All electric 100000 100000 False True 50000 50000 0 0 ś 10 15 20 10 15 20 5 ò Ò h_of_d_clock h_of_d_clock total Net metered pv_generation False 100000 True 0 2000 6000 4000 8000

New Load-Shape Clusters

Residential: daytime occupants

Cluster 10, N=1996

New Load-Shape Clusters

Residential: EV rate responders

End-Uses Considered in Cluster Load Shapes

Recent updated AMI data analysis expands scope of buildings and end uses

Residential Sector		Commercial Sector	
Building Types	End Uses	Building Types	End Uses
 Single-family Multi-family Master meter 	 Cooling Heating Ventilation Indoor Lighting Outdoor lighting Outdoor lighting Cooking Dishwasher Clothes Washer Clothes Dryer Refrigerator Freezer Pool pump Spa heater Spa pump Talovicion 	 Office Retail-food Retail-other Dining Lodging Medical Education Assembly Datacenter Warehouse Refrigerated warehouse 	 Cooling Heating Ventilation Indoor lighting Outdoor lighting Office equipment Refrigeration Water heating Datacenter IT Misc. EV charging Rooftop PV
ENERGY TECHNOLOGIES AREA	 Office equipment PCs Water heating EV level 1 EV level 2 Rooftop PV 	Entries in red under development from AMI data in Phase 4 eta.lbl.gov	

Summary and Future Directions

GEBs are critical for decarbonization

BERKELEY

- Key technologies: heat pumps, envelope, controls, communications, integration with EVs, PV, storage
- Customer Engagement: We need more of it!

The California Load Flexibility Research and Deployment Hub: will enable automated flexible demand

