DOCKETED	
Docket Number:	21-IEPR-06
Project Title:	Building Decarbonization and Energy Efficiency
TN #:	238778
Document Title:	Presentation - Designing Electricity Rates for an Equitable Energy Transition
Description:	S3.7A David Roland-Holst, UC Berkeley
Filer:	Raquel Kravitz
Organization:	Berkeley, University of California
Submitter Role:	Public Agency
Submission Date:	7/9/2021 2:18:35 PM
Docketed Date:	7/9/2021

Building Decarbonization and Jobs: Innovation, Energy Efficiency, and Inclusive

David Roland-Holst UC Berkeley

Contact: dwrh@Berkeley.edu

Economic Growth

Prepared for the California Energy Commission July 13, 2021

BEAR BERKELEY ECONOMIC ADVISING AND RESEARCH www.bearecon.com

New Energy Paradigm: Supply

- Renewable energy delivers immense promise for GHG mitigation, but
- It also presents a new paradigm for energy supply
 - Conventional (carbon) energy is an exhaustible resource, with everincreasing cost
 - Renewable energy is a boundless resource, subject to a technology constraint

Renewable Innovations Make Energy Affordable

• In the US, costs have fallen over 50% for wind and 70% for solar and battery storage in the last decade.

New Paradigm: Demand

- It's time to redefine energy efficiency
- Energy itself is not a social "problem", it is existing energy's environmental and economic cost
- Saving energy is only one form of efficiency, what efficiency really means is saving money on energy services
- Innovative renewable technologies will allow us to have the energy we need at lower cost

Energy Use and Prosperity areSynonymous

Implications for Policy: Technology Supply

- An enabling policy environment
 - Corrects market distortions, gaps between private vs social costs and benefits
 - Evidence-based: CEC has a powerful legacy
- Supply Incentives for innovation
 - Standards: every time CA establishes a technology standard, it creates an incubator the size of the world's fifth largest economy
 - Clean energy is the next breakout knowledge-intensive sector, after IT and Biotech
 - Subsidies: don't pick winners, do correct distortions

Implications for Policy: Technology Demand

- Technology adoption is about behavior
 - Very difficult to predict, private sector should bear this risk
- Equity issues are very important
 - Large commercial property owners can lead with innovative investments, but these will be less labor intensive
 - Small enterprises and households have higher costs of capital and other financial constraints - but their installation, operation, and maintenance solutions will create more numerous and diverse jobs
 - In the residential space, it is essential to identify and support incentives for both owners and tenants.

Affordability - Heterogeneity

California's Long-Term Energy Strategy
Averted Health Costs and Job Creation in Disadvantaged
Communities, LA County, 2030

- California's diversity is a great asset, but it poses challenges for policy makers
- In times of dynamic change, it is essential to identify detailed patterns of incidence on <u>both sides</u> of energy/climate policy balance sheets (costs as well as benefits).
- Otherwise, we risk missing many benefits of complementary policies and anticipating adjustment needs for underrepresented groups.

Source: https://efiling.energy.ca.gov/GetDocument.aspx?tn=223754

Efficiency and Jobs

- Of course, decarbonization will generate extensive direct employment, but indirect benefits should not be underestimated
- Promoting energy efficiency saves money for households and enterprises
- These savings will be diverted to other expenditures, the majority of which go to instate services:
 - which employ workers of all skill levels and demographics
 - which are non-tradable, meaning these new jobs cannot be outsourced.

Energy efficiency creates jobs

- The conventional energy supply chain is among the least job-intensive in the economy.
- Shifting expenditure from energy to services stimulates new job growth.

Source: Authors calculations based on data from the US Bureau of Economic Analysis, US Bureau of Labor Statistics, and California Department of Finance⁷⁹

120 Sectors of the California economy, ordered by job-intensity (vertical axis).

Thank you

