DOCKETED	
Docket Number:	85-AFC-01C
Project Title:	Compliance - Watson Cogeneration Company AFC
TN #:	238772
Document Title:	Annual Compliance Report- 2019
Description:	Annual Compliance Report- 2019
Filer:	Anwar Ali
Organization:	Watson Cogen Company
Submitter Role:	Applicant
Submission Date:	7/9/2021 1:29:30 PM
Docketed Date:	7/9/2021

Darrin Fost Business Manager 310.816.8812

October 19, 2020

Mr. Anwar Ali Compliance Project Manager California Energy Commission 1516 Ninth Street Sacramento, CA 95814

Subject: 2019 Annual Compliance Report

Watson Cogeneration Project (85-AFC-01C)

Dear Mr. Ali,

Attached is the Annual Compliance Report for 2019 pursuant to the requirements of the California Energy Commission's Conditions of Certification for the Watson Cogeneration Company.

If you have any questions regarding this report, please contact me via telephone at (310) 816-8812 or via e-mail at DFost@Marathonpetroleum.com.

Sincerely,

Darrin Fost

Darrin Fost Business Manager Watson Cogeneration Company

AIR QUALITY CONDITIONS OF CERTIFICATION

AQ-25 A continuous monitoring system must be installed and operated to monitor and record the fuel consumption and the mass ratio of steam-to-fuel for each fuel being fired in each gas Turbines 1, 2, 3, 4 and 5. This system must be accurate to within +5.0 percent and calibrated once every 12 months.

Verification: The owner/operator shall maintain records of continuous fuel consumption and the steam-to-fuel mass ratio monitoring. These records will be maintained on file for at least two years and shall be made available to the SCAQMD and CEC staff upon request. CEM Relative Accuracy Test report will be submitted to the CEC annually.

Response: Instrumentation is in place for the purpose of continuous monitoring and recording of fuel consumption and steam injection to each of the four gas turbines at the facility (#5 was never constructed). The systems undergo regular calibration. A summary of fuel consumption and steam injection to each of the turbines is included below.

AQ-25			Unit	91		Unit 92					
	NG/RFG	<u>Butane</u>	Total Fuel	DeNOx Steam	Steam : Fuel	NG/RFG	<u>Butane</u>	Total Fuel	DeNOx Steam	Steam : Fuel	
	<u>lb/sec</u>	lb/sec	<u>lb/sec</u>	<u>lb/sec</u>	<u>Ratio</u>	<u>lb/sec</u>	lb/sec	<u>lb/sec</u>	<u>lb/sec</u>	<u>Ratio</u>	
Jan-19	11.426	0.264	11.513	14.604	1.216	11.660	0.585	12.372	14.759	1.192	
Feb-19	11.333	0.181	11.513	14.034	1.216	11.653	0.642	12.372	14.751	1.192	
Mar-19	11.618	0.164	11.513	13.995	1.216	11.683	0.719	12.372	14.793	1.192	
Apr-19	11.333	0.181	11.513	13.995	1.216	11.653	0.719	12.372	14.751	1.192	
May-19	11.333	0.181	11.513	13.995	1.216	11.653	0.719	12.372	14.751	1.192	
Jun-19	11.292	0.266	11.513	13.966	1.216	11.538	0.651	12.372	14.697	1.192	
Jul-19	10.548	0.327	11.513	12.704	1.216	10.974	0.518	12.372	14.484	1.192	
Aug-19	11.300	0.230	11.513	14.061	1.216	11.595	0.646	12.372	14.681	1.192	
Sep-19	11.324	0.181	11.513	13.995	1.216	11.653	0.719	12.372	14.751	1.192	
Oct-19	11.305	0.409	11.714	14.010	1.196	6.329	0.406	6.735	8.095	1.963	
Nov-19	11.514	0.321	11.836	14.294	1.208	10.650	0.696	11.346	12.704	1.120	
Dec-19	11.573	0.326	11.899	14.300	1.202	10.905	0.696	11.601	13.104	1.129	
			Unit	93		Unit 94					
	NG/RFG	<u>Butane</u>	Total Fuel	<u>DeNOx Steam</u>	Steam : Fuel	NG/RFG	<u>Butane</u>	<u>Total Fuel</u>	<u>DeNOx Steam</u>	Steam : Fuel	
	<u>lb/sec</u>	<u>lb/sec</u>	<u>lb/sec</u>	<u>lb/sec</u>	<u>Ratio</u>	<u>lb/sec</u>	<u>lb/sec</u>	<u>lb/sec</u>	<u>lb/sec</u>	<u>Ratio</u>	
Jan-19	11.219	0.503	11.946	13.902	1.172	4.801	0.052	11.408	6.188	1.242	
Feb-19	11.294	0.620	11.946	14.005	1.172	11.418	0.000	11.408	14.258	1.242	
Mar-19	11.317	0.628	11.946	13.855	1.172	11.408	0.047	11.408	14.174	1.242	
Apr-19	11.317	0.628	11.946	14.005	1.172	11.408	0.000	11.408	14.174	1.242	
May-19	11.317	0.628	11.946	14.005	1.172	11.408	0.000	11.408	14.174	1.242	
Jun-19	9.945	0.576	11.946	12.244	1.172	11.273	0.083	11.408	13.967	1.242	
Jul-19	10.361	0.516	11.946	12.598	1.172	10.681	0.152	11.408	13.140	1.242	
Aug-19	11.222	0.577	11.946	13.873	1.172	11.286	0.190	11.408	14.061	1.242	
Sep-19	11.317	0.628	11.946	14.005	1.172	11.408	0.000	11.408	14.174	1.242	
Oct-19	10.753	0.539	11.292	13.099	1.161	11.173	0.214	11.387	13.752	1.208	
Nov-19	11.171	0.442	11.613	13.575	1.169	11.374	0.116	11.491	14.016	1.220	
Dec-19	11.172	0.512	11.684	13.497	1.155	11.466	0.170	11.636	14.082	1.210	

AQ-42 No more than one of the cogeneration units 1, 2, 3, 4 or 5 shall startup or shutdown in any one day. For Turbine Trains 1, 2, 3 and 4, start up shall not exceed 8 hours and shutdown shall not exceed 4 hours. For Turbine Train 5, neither start up nor shutdown shall exceed 4 hours in duration.

Verification: The owner/operator shall maintain an operation log for the facility which, at a minimum, will identify startup and shutdown occurrences for each cogeneration unit. The owner/operator shall submit in its Annual Compliance Report to the CEC a summary of the operational log demonstrating compliance with this condition 5. (97-0924-4; 88-0525-18b)

Response: In the 2019 calendar year, APPC/Watson had 13 startups and 13 shutdowns. No startups exceeded an 8 hour duration and no shutdowns exceeded a 4 hour duration. Startup and shutdown dates shown in the tables below.

Incident Description for February 28, 2019 - At 11:58 AM on 2/28/2019, Unit 94 began a planned shutdown to address an economizer tube leak. Four hours later, at approximately 4:00 PM, an unplanned, immediate, forced outage was taken on Unit 93 due to a fuel leak on a control valve. At approximately 9:10 PM, Unit 94 was restarted to ensure reliable operation of the Facility.

Incident Description for October 28, 2019 - At 10:56 AM on 10/28/2019, Unit 93 underwent an unplanned, immediate forced outage due to a unit trip during a fuel switch. The unit was restarted later that same day at approximately 9:15 PM.

AQ-42: S	AQ-42: Shutdown Summary - 2019								
Unit	Date	Duration < 4 Hours							
91	4/16/2019	Yes							
91	7/12/2019	Yes							
91	9/7/2019	Yes							
92	5/9/2019	Yes							
92	6/8/2019	Yes							
92	10/11/2019	Yes							
93	2/28/2019	Yes							
93	6/24/2019	Yes							
93	6/28/2019	Yes							
93	10/28/2019	Yes							
94	1/11/2019	Yes							
94	2/28/2019	Yes							
94	3/1/2019	Yes							

AQ-42: St	AQ-42: Startup Summary - 2019								
Unit	Date	Duration < 8 Hours							
91	4/23/2019	Yes							
91	7/14/2019	Yes							
91	9/8/2019	Yes							
92	5/13/2019	Yes							
92	6/9/2019	Yes							
92	10/25/2019	Yes							
93	3/1/2019	Yes							
93	6/24/2019	Yes							
93	7/1/2019	Yes							
93	10/28/2019	Yes							
94	1/31/2019	Yes							
94	2/28/2019	Yes							
94	3/3/2019	Yes							

AQ-43 The duct burner of the cogeneration units 1, 2, 3, 4 and 5 shall not be fired during the startup mode of operation.

Verification: The owner/operator shall maintain an operation log for the facility which, at minimum will identify the hours of operation of the duct burners. The owner/operator shall submit in its Annual Compliance Report to the CEC a summary of the operational log demonstrating compliance with this condition.

Response: During the 2019 calendar year, APPC/Watson had 13 startups. Duct burners were not fired during the startup mode of operation for any of the 13 startup events. Startup dates shown in the table below.

AQ-43: S	AQ-43: Startup Summary - 2019								
Unit	Date	Duct Fuel After Startup							
91	4/23/2019	Yes							
91	7/14/2019	Yes							
91	9/8/2019	Yes							
92	5/13/2019	Yes							
92	6/9/2019	Yes							
92	10/25/2019	Yes							
93	3/1/2019	Yes							
93	6/24/2019	Yes							
93	7/1/2019	Yes							
93	10/28/2019	Yes							
94	1/31/2019	Yes							
94	2/28/2019	Yes							
94	3/3/2019	Yes							

BIOLOGICAL RESOURCES CONDITIONS OF CERTIFICATION

APPC shall monitor daily the zinc content, total volume and duration of all discharges from the ARCO Watson Refinery into the Dominguez Channel, which contain commingled cogeneration project cooling tower blowdown. The initial period of monitoring shall cover the first three years during which water is discharged into the Dominguez Channel. The need for subsequent monitoring will be determined by the CEC based on an evaluation of the zinc content of samples collected during the first three years of discharge. APPC shall take remedial action if monitored zinc levels exceed the EPA standard for salt water aquatic life.

Verification: APPC shall notify the CEC within 30 days of any discharge which exceeds EPA levels for zinc describing the cause of the exceedance and action taken to prevent similar occurrences. APPC shall submit written reports for the first three years during which APPC discharges to Dominguez Channel. The report shall contain the date, time, volume, duration and zinc content of the discharge. These reports can be appended to the annual compliance report for the years during which discharges to Dominguez Channel occurred. The reports shall be Submitted to the CEC and the Port of Los Angeles.

Response: APPC/Watson does not have its own NPDES permit. Low Volume Waste (LVW; boiler blowdown) from the Cogen are authorized to be discharged to the Dominguez Channel under the Tesoro Los Angeles Refinery – Carson Operations NPDES permit (Order No. R4-2015-0295, NPDES No. CA0000680). Zinc is listed in the permit with an effluent limitation; therefore, a discharge would be analyzed for zinc. A copy of the annual NPDES report has been included at the end of this annual compliance report.

COGENERATION CONDITIONS OF CERTIFICATION

COG-1 ARCO Petroleum Products Company (APPC) shall operate the facility as a cogeneration system in accordance with the definition of cogeneration contained in PRC Section 25134(a) and (b) and Title 18 CFR, Section 292.205(a)(1) and (a)(2)(i)(B).

Verification: APPC shall file with the CEC during each calendar year an annual report in which monthly average values of the following plant operating parameters will be given:

- a. Gas turbine, MW (gross) at the generator terminals for each unit
- b. Gas turbine operating hours for each unit
- c. For each CTG and each HRSG duct burner provide fuel input including:
 - type, natural gas, refinery gas or butane
 - rate, lb/hr
 - heating value (low), Btu/lb
 - firing hours
- d. Inlet air flow, lb/hr
- e. Combustion turbine exhaust gas temperature, Deg F
- f. NOx steam injection rate, lb/hr
- g. Stack exiting flue gas temperature, Deg F
- h. Steam turbine, MW (gross)

- i. Steam turbine operating hours
- j. Plant auxiliary load, MW (total)
- k. For the process steam:
 - process steam demand, lb/hr
 - demand hours
 - process steam temperature (Deg F), quality (%), pressure (PSIA)and enthalpy (Btu/lb) at plant boundary
- I. Feedwater rate (lb/hr), temperature (Deg F)
- m. Condensate return rate (lb/hr), temperature (Deg F)
- n. Process steam from auxiliary boilers, lb/hr; auxiliary boiler's operating hours

Or APPC may, with CEC concurrence, submit the following operating parameters:

- o. Monthly fuel use (includes quantity and Btu value) as evidenced by an invoice from the gas supplier
- p. Monthly electrical sales (includes kWh) as evidenced by an invoice to Southern California Edison Company
- q. Monthly steam sales (includes quantity and Btu value) as evidenced by an invoice (or equivalent) to APPC
- r. If the rate of items o, p, or q above differs by more than +5, +15, and +10 percent, respectively, from rated conditions, APPC shall provide, at the specific written request of the CEC Staff, an explanation of such anomaly
- s. Feedwater rate (lb/hr) and temperature (Deg F)
- t. Condensate return rate (lbs/hr) and temperature (Deg F)
- u. Process steam from auxiliary boilers, lb/hr; auxiliary boiler's operating hours.

Not less than thirty (30) days prior to the scheduled date for the CEC Decision on the AFC, APPC shall notify the CEC of APPC's preference for either conditions a-n, or o-u.

This report shall also provide information for each month on any partial or total power and/or process steam production curtailment, including duration of curtailment and reasons for curtailment. The report shall be certified by the plant manager.

Response: Monthly average values of the above listed plant operating parameters are included in the tables below. Please note that parameter n. (auxiliary boilers) is not applicable, as there are no auxiliary boilers at this location.

Subsection a	COG-1 (a-n)							Unit 9	91							
No. No.	Subsection:	а	b				С					d	е	f	g	
May						GTG				HRSG		Inlet	GTG	DeNOx	Stack	
								Firing	,		Firing				Exhaust	
Feb 19					· <u>-</u>											
Mar 19																
Apr. 19 72,0 670 40799 650 41494 22667 670 3.2 22667 261 2293699 854 14.0 800						+										
MAY-19 86.6																
						-										
	h - '		1			+										
Aug. 19			1			+										
Sep-10 80.2 697 40765 650 41469 20644 697 55.3 20644 595 22283699 1000 14.0 314						+										
Oct 19																
Dec-19 87.2 744 41562 1173 42835 20512 744 76.6 20512 746 299599 1020 14.3 33 33 33 33 34 34 34	<u> </u>					-		745								
CGG-1 (-ph	Nov-19	86.1	722	41451	1157	42608	20486	722	77.8	20486	710	2293699	1022	14.3	339	
Subsection: a	Dec-19	87.2	744	41662	1173	42835	20512	744	76.6	20512	744	2293699	1020	14.3	339	
	COG-1 (a-n)							Unit 9	92							
No. No	Subsection:	а	b				С					d	е	f	g	
MW														DeNOx	Stack	
Jan 19				-		+			-							
Feb-19 88.7 673							_									
Mar-19						1										
Agr-19																
May-19																
Jun-19			1			+									_	
Juli 9	'					+										
Aug. 19						+										
Sep-19																
Cot-19						-										
Nov-19	H		1			1										
Dec-19			1			+										
Subsection: a b C GTG HRSG Inlet GTG DeNOX Stack Stack						+										
NG/RFG	COG-1 (a-n)							Unit 9	93	ı				ı	ı	
NG/RFG	Subsection:	а	b				С					d	е	f	g	
MW Op Hours Ib/hr Ib/h						GTG				HRSG		Inlet	GTG	DeNOx	Stack	
Jan-19				NG/RFG	Butane	Total	HHV	Firing	NG/RFG	HHV	Firing	Air Flow	Exhaust	Steam	Exhaust	
Feb-19		MW	Op Hours	<u>lb/hr</u>	<u>lb/hr</u>	<u>lb/hr</u>		<u>Hours</u>	<u>lb/hr</u>	BTU/lb	<u>Hours</u>	<u>lb/hr</u>	<u>deg F</u>	<u>lb/sec</u>	<u>deg F</u>	
Mar-19	Jan-19					43004										
Apr-19						-										
May-19	—		1			+										
Jun-19	 					+										
Jul-19	<u> </u>					+										
Aug-19 79.8 745 40398 2078 43004 20376 745 91.4 20376 745 2293699 1022 13.9 346 Sep-19 77.8 721 40742 2262 43004 20644 721 92.6 20644 721 2293699 1026 14.0 346 Oct-19 77.2 733 38711 1940 40651 20577 733 131.3 20577 745 2293699 1026 13.1 345 Nov-19 81.1 722 40216 1592 41808 20486 722 224969 1018 13.6 347 Dec-19 81.4 744 40219 1844 42063 20512 744 80.5 20512 744 2293699 1017 13.5 348 COG-1 (a-n) Subsection: B C C C C C C <td c<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td>															
Sep-19 77.8 721 40742 2262 43004 20644 721 92.6 20644 721 2293699 1026 14.0 346 Oct-19 77.2 733 38711 1940 40651 20577 733 131.3 20577 745 2293699 1026 13.1 345 Nov-19 81.1 722 40216 1592 41808 20486 722 84.0 20486 722 2293699 1018 13.6 347 Dec-19 81.4 744 40219 1844 42063 20512 744 80.5 20512 744 2293699 1017 13.5 348 COG-1 (a-n) Unit 94 Subsection: a b C C HRSG Inlet GTG DeNOx Stack Subsection: a b C C B						-										
Oct-19 77.2 733 38711 1940 40651 20577 733 131.3 20577 745 2293699 1026 13.1 345 Nov-19 81.1 722 40216 1592 41808 20486 722 84.0 20486 722 2293699 1018 13.6 347 Dec-19 81.4 744 40219 1844 42063 20512 744 80.5 20512 744 2293699 1017 13.5 348 Compared to the comp																
Nov-19			1			+										
Dec-19	—															
COG-1 (a-n) Cognorm						1										
Subsection: a b GTG HRSG Inlet GTG DeNOx Stack MW Op Hours Ib/hr Ib/hr Ib/hr BUtane Total HHV Firing NG/RFG HHV Firing Air Flow Exhaust Steam Exhaust Jan-19 31.5 277 17282 188 41070 19708 277 42.0 19708 599 2293699 418 6.2 193 Feb-19 88.4 664 41104 0 41070 20256 664 56.2 20256 662 2293699 9121 14.3 344 Mar-19 81.0 693 41070 170 41070 19998 693 67.5 19998 691 2293699 962 14.2 329 Apr-19 84.1 721 41070 0 41070 22667 721 44.0 22667 547 2293699 1012 14.2 347 May-1								Unit 9	94							
NG/RFG Butane Total HHV Firing NG/RFG HHV Firing Air Flow Exhaust Steam Exhaust	Subsection:	а	b				С					d	е	f	g	
MW Op Hours lb/hr lb/hr lb/hr BTU/lb Hours lb/hr BTU/lb Hours lb/hr BTU/lb Hours lb/hr deg F lb/sec deg F Jan-19 31.5 277 17282 188 41070 19708 277 42.0 19708 599 2293699 418 6.2 193 Feb-19 88.4 664 41104 0 41070 20256 664 56.2 20256 662 2293699 1021 14.3 344 Mar-19 81.0 693 41070 170 41070 19998 693 67.5 19998 691 2293699 962 14.2 329 Apr-19 84.1 721 41070 0 41070 22667 721 44.0 22667 547 2293699 1012 14.2 347 May-19 84.2 745 41070 0 41070 22734 745 39.0 22734<						GTG				HRSG		Inlet	GTG	DeNOx	Stack	
Jan-19 31.5 277 17282 188 41070 19708 277 42.0 19708 599 2293699 418 6.2 193 Feb-19 88.4 664 41104 0 41070 20256 664 56.2 20256 662 2293699 1021 14.3 344 Mar-19 81.0 693 41070 170 41070 19998 693 67.5 19998 691 2293699 962 14.2 329 Apr-19 84.1 721 41070 0 41070 22667 721 44.0 22667 547 2293699 1012 14.2 347 May-19 84.2 745 41070 0 41070 22734 745 39.0 22734 490 2293699 1014 14.2 348 Jun-19 84.1 721 40584 300 41070 20558 721 88.0 20558 539 2293699 1028 14.0 346 Jul-19 82.3 745 38453 547 41070 20826 745 88.0 20558 539 2293699 1031 13.1 347 Aug-19 82.5 745 40628 683 41070 20376 745 88.6 20376 745 2293699 1032 14.1 348 Sep-19 82.0 721 41070 0 41070 20644 721 87.0 20644 721 2293699 1032 13.8 348 Oct-19 83.5 745 40222 770 40992 20577 745 133.0 20577 745 2293699 1032 13.8 348 Nov-19 85.1 722 40948 419 41367 20486 722 79.9 20486 722 2293699 1026 14.0 350				NG/RFG	Butane	Total	HHV	Firing	NG/RFG	HHV	Firing	Air Flow	Exhaust	Steam	Exhaust	
Feb-19 88.4 664 41104 0 41070 20256 664 56.2 20256 662 2293699 1021 14.3 344 Mar-19 81.0 693 41070 170 41070 19998 693 67.5 19998 691 2293699 962 14.2 329 Apr-19 84.1 721 41070 0 41070 22667 721 44.0 22667 547 2293699 1012 14.2 347 May-19 84.2 745 41070 0 41070 22734 745 39.0 22734 490 2293699 1014 14.2 348 Jul-19 84.1 721 40584 300 41070 20558 721 88.0 20558 539 2293699 1028 14.0 346 Jul-19 82.3 745 38453 547 41070 20826 745 81.4 20826 745 2293699			Op Hours		<u>lb/hr</u>			<u>Hours</u>					<u>deg F</u>		deg F	
Mar-19 81.0 693 41070 170 41070 19998 693 67.5 19998 691 2293699 962 14.2 329 Apr-19 84.1 721 41070 0 41070 22667 721 44.0 22667 547 2293699 1012 14.2 347 May-19 84.2 745 41070 0 41070 22734 745 39.0 22734 490 2293699 1014 14.2 348 Jul-19 84.1 721 40584 300 41070 20558 721 88.0 20558 539 2293699 1028 14.0 346 Jul-19 82.3 745 38453 547 41070 20826 745 81.4 20826 745 2293699 1031 13.1 347 Aug-19 82.5 745 40628 683 41070 20376 745 88.6 20376 745 2293699																
Apr-19 84.1 721 41070 0 41070 22667 721 44.0 22667 547 2293699 1012 14.2 347 May-19 84.2 745 41070 0 41070 22734 745 39.0 22734 490 2293699 1014 14.2 348 Jun-19 84.1 721 40584 300 41070 20558 721 88.0 20558 539 2293699 1028 14.0 346 Jul-19 82.3 745 38453 547 41070 20826 745 81.4 20826 745 2293699 1031 13.1 347 Aug-19 82.5 745 40628 683 41070 20376 745 88.6 20376 745 2293699 1032 14.1 348 Sep-19 82.0 721 41070 0 41070 20644 721 87.0 20644 721 2293699			1													
May-19 84.2 745 41070 0 41070 22734 745 39.0 22734 490 2293699 1014 14.2 348 Jun-19 84.1 721 40584 300 41070 20558 721 88.0 20558 539 2293699 1028 14.0 346 Jul-19 82.3 745 38453 547 41070 20826 745 81.4 20826 745 2293699 1031 13.1 347 Aug-19 82.5 745 40628 683 41070 20376 745 88.6 20376 745 2293699 1032 14.1 348 Sep-19 82.0 721 41070 0 41070 20644 721 87.0 20644 721 2293699 1032 14.1 348 Oct-19 83.5 745 40222 770 40992 20577 745 133.0 20577 745 2293699	h					+										
Jun-19 84.1 721 40584 300 41070 20558 721 88.0 20558 539 2293699 1028 14.0 346 Jul-19 82.3 745 38453 547 41070 20826 745 81.4 20826 745 2293699 1031 13.1 347 Aug-19 82.5 745 40628 683 41070 20376 745 88.6 20376 745 2293699 1032 14.1 348 Sep-19 82.0 721 41070 0 41070 20644 721 87.0 20644 721 2293699 1033 14.2 348 Oct-19 83.5 745 40222 770 40992 20577 745 133.0 20577 745 2293699 1032 13.8 348 Nov-19 85.1 722 40948 419 41367 20486 722 79.9 20486 722 2293699	<u> </u>		1			1										
Jul-19 82.3 745 38453 547 41070 20826 745 81.4 20826 745 2293699 1031 13.1 347 Aug-19 82.5 745 40628 683 41070 20376 745 88.6 20376 745 2293699 1032 14.1 348 Sep-19 82.0 721 41070 0 41070 20644 721 87.0 20644 721 2293699 1033 14.2 348 Oct-19 83.5 745 40222 770 40992 20577 745 133.0 20577 745 2293699 1032 13.8 348 Nov-19 85.1 722 40948 419 41367 20486 722 79.9 20486 722 2293699 1026 14.0 350																
Aug-19 82.5 745 40628 683 41070 20376 745 88.6 20376 745 2293699 1032 14.1 348 Sep-19 82.0 721 41070 0 41070 20644 721 87.0 20644 721 2293699 1033 14.2 348 Oct-19 83.5 745 40222 770 40992 20577 745 133.0 20577 745 2293699 1032 13.8 348 Nov-19 85.1 722 40948 419 41367 20486 722 79.9 20486 722 2293699 1026 14.0 350						-										
Sep-19 82.0 721 41070 0 41070 20644 721 87.0 20644 721 2293699 1033 14.2 348 Oct-19 83.5 745 40222 770 40992 20577 745 133.0 20577 745 2293699 1032 13.8 348 Nov-19 85.1 722 40948 419 41367 20486 722 79.9 20486 722 2293699 1026 14.0 350																
Oct-19 83.5 745 40222 770 40992 20577 745 133.0 20577 745 2293699 1032 13.8 348 Nov-19 85.1 722 40948 419 41367 20486 722 79.9 20486 722 2293699 1026 14.0 350						+										
Nov-19 85.1 722 40948 419 41367 20486 722 79.9 20486 722 2293699 1026 14.0 350	<u> </u>					+										

COG-1 (a-n)	ST	G 1	9	STG 2	Plant Load	600# Steam 150# Steam							
Subsection:	h	i	h	i	j			k			ı	k	
	MW	<u>Hours</u>	MW	<u>Hours</u>	MW	mlb/hr	<u>Hours</u>	<u>PSIG</u>	deg F	mlb/hr	<u>Hours</u>	<u>PSIG</u>	deg F
Jan-19	0	0	20	745	83	1057	744	621	750	17	744	161	494
Feb-19	0	17	18	666	84	1075	672	622	750	10	672	161	471
Mar-19	3	105	15	657	80	1112	744	621	750	9	744	161	482
Apr-19	25	721	15	608	51	733	720	621	746	17	720	156	472
May-19	24	745	13	540	60	820	744	621	748	9	744	162	484
Jun-19	21	721	0	0	84	1135	720	622	750	6	720	162	477
Jul-19	22	745	0	0	82	1110	744	622	750	8	744	162	501
Aug-19	20	745	0	0	85	1132	744	622	750	10	744	162	510
Sep-19	8	270	14	493	86	1085	720	621	750	10	720	161	493
Oct-19	16	605	4	139	88	1018	744	619	750	10	744	161	498
Nov-19	11	393	6	259	85	1064	720	620	750	11	720	161	494
Dec-19	8	327	10	418	87	1090	744	620	750	13	744	162	500

COG-1 (a-n)	Total Fe	edwater	Total Co	Total Condensate			
Subsection:	1 1		m	m	n		
	mlb/hr	deg F	mlb/hr	deg F			
Jan-19	1621	250	376	-	N/A		
Feb-19	1716	250	401	1	N/A		
Mar-19	1668	250	549	-	N/A		
Apr-19	1508	250	370	-	N/A		
May-19	1562	250	387	-	N/A		
Jun-19	1683	250	497	-	N/A		
Jul-19	1662	250	492	-	N/A		
Aug-19	1695	250	451	-	N/A		
Sep-19	1647	250	430	-	N/A		
Oct-19	1511	250	439 -		N/A		
Nov-19	1650	250	430	-	N/A		
Dec-19	1647	250	450	-	N/A		

DEMAND CONFORMANCE CONDITIONS OF CERTIFICATION

DC-2 The Energy Commission shall retain jurisdiction to require ARCO to periodically report on the performance of its facility and the payments made by SCE to purchase power from the facility.

Verification: On an annual basis following construction, ARCO shall report the monthly generation provided to SCE and the monthly payments received from SCE. Payments shall be disaggregated by capacity (firm and as-available), start-up and energy. ARCO shall provide the CEC a copy of the Prescribed Dispatch Schedule for the facility.

Response: Monthly values for generation provided to SCE and monthly payments disaggregated by capacity (firm and as-available) are included in the table below. Watson no longer follows a Prescribed Dispatch Schedule from SCE. All power is baseload firm under current PPA.

DC-2: Eve	DC-2: Event Summary 2019								
	SCE Sales	Energy	Capacity Payment -	Capacity Payment -					
Month	Volume	Payment	Firm	As Available					
	MWh	\$	\$	\$					
Jan-19	160,490	\$7,770,399.41	\$249,377.88	\$0.00					
Feb-19	180,502	\$16,616,076.38	\$359,000.47	\$0.00					
Mar-19	194,063	\$8,908,891.29	\$356,872.02	\$0.00					
Apr-19	210,980	\$6,267,297.78	\$359,000.47	\$0.00					
May-19	217,502	\$6,328,373.45	\$359,000.47	\$0.00					
Jun-19	178,007	\$4,864,266.48	\$3,790,011.12	\$0.00					
Jul-19	188,273	\$5,888,458.83	\$3,790,656.14	\$0.00					
Aug-19	189,329	\$6,096,157.53	\$3,790,946.48	\$0.00					
Sep-19	180,288	\$6,797,577.28	\$3,790,382.20	\$0.00					
Oct-19	162,394	\$6,228,362.51	\$330,716.86	\$0.00					
Nov-19	186,984	\$8,730,196.03	\$356,824.88	\$0.00					
Dec-19	<u> 194,415</u>	<u>\$10,251,544.03</u>	<u>\$357,289.48</u>	<u>\$0.00</u>					
Total	2,243,226	\$94,747,601.00	\$17,890,078.47	\$0.00					

PUBLIC HEALTH CONDITIONS OF CERTIFICATION

PH-2 APPC shall comply with all emission regulations established by the U.S. Environmental Protection Agency (EPA), South Coast Air Quality Management District (SCAQMD), and the California Air Resources Board (CARB) regarding the use of a non-chromium treatment method as an anti-fouling/corrosive agent in the cooling towers, and the prohibition of Hexavalent Chromium additives.

Verification: APPC shall submit to the CEC, within the Annual Compliance Report, documentation of their compliance with all EPA, SCAQMD, and CARB emission regulations for use of antifouling/corrosive agents in the cooling towers.

Response: In compliance with EPA, SCAQMD and CARB emission regulations for the use of antifouling/corrosive agents in cooling towers, APPC/Watson does not use any chemical products that contain chromium in its cooling towers. It is currently using Nalco 3D TRASAR 3DT199, a non-chromium product, as an anti-fouling agent in its cooling towers.

POWER PLANT RELIABILITY CONDITIONS OF CERTIFICATION

RELI-3 APPC shall file with the CEC an annual report documenting the plant availability and capacity factors achieved.

Verification: Beginning with commercial operation, APPC shall file an annual report containing the following:

- a. Operating hours, outage hours, cause of outage and downtime for each piece of major equipment including the following:
 - Combustion turbine/generators Heat recovery steam generators
 - Feedwater pumps

- Steam turbine/generators
- Condensers
- Condensate pumps
- Cooling water pumps
- Controls
- b. For each forced outage, a precise identification of the equipment whose failure resulted in the forced outage and the resulting forced outage hours.
- c. Identification of equipment or other causes (such as curtailment) for which planned outage was instituted in any given month.
- d. Annual plant availability and capacity factors, per EPRI definitions.

Response: Information regarding operating hours, outage causes, downtime and annual plant availability and capacity factors are shown in the two tables below.

RELI-3: Power Plan	nt Reliability - 2019					
CEC Generator						
Unit ID	Event Type	Start Date	End Date	Duration	Cause Code	Verbal Description
GN91	MO - Maintenance	04/16/2019 21:02 PPT	04/17/2019 14:00 PPT	16:58	3970 - Distributive Control System (DCS)	Replace bad PDAO card.
GN91	ME - Maintenance Extension	04/17/2019 14:00 PPT	04/18/2019 09:23 PPT	19:23	5414 - Compressor diaphragms/vanes	Inlet guide vane hydraulic oil leak repair.
GN91	MO - Maintenance	07/12/2019 23:17 PPT	07/14/2019 09:37 PPT	34:20:00	5013 - Compressor casing and bolts	Added seal to compressor casing to improve performance.
GN91	U1 - Forced - Immediate	09/07/2019 12:19 PPT	09/08/2019 12:39 PPT	24:20:00	5001 - Inlet air vanes / nozzles	Tripped on inlet guide vane reading malfunction.
GN92	MO - Maintenance	05/09/2019 23:49 PPT	05/13/2019 10:42 PPT	82:53:00	3834 - Auxiliary boiler tube leaks	Boiler tube leak repair.
GN92	U2 - Forced - Delayed	06/08/2019 14:27 PPT	06/09/2019 10:48 PPT	20:21	5110 - Lube oil system - general	Lube oil leak caused fire in turbine compartment.
GN92	PO - Planned	10/11/2019 21:22 PPT	10/25/2019 18:13 PPT	332:51:00	5670 - Hot end inspection A	Hot Gas Path Inspection
GN93	U2 - Forced - Delayed	02/28/2019 16:00 PPT	03/01/2019 10:25 PPT	18:25	5041 - Fuel piping and valves A	Butane balance line on control valve leak
GN93	U1 - Forced - Immediate	06/24/2019 08:29 PPT	06/25/2019 02:49 PPT	18:20	3649 - Other AC instrument power problems	Loss of control cab power while working on pump caused unit to trip offline.
GN93	MO - Maintenance	06/28/2019 08:29 PPT	07/01/2019 05:36 PPT	69:07:00	5013 - Compressor casing and bolts	Added compressor casing seal.
GN93	U1 - Forced - Immediate	10/28/2019 10:56 PPT	10/28/2019 22:17 PPT	11:21	5041 - Fuel piping and valves A	Tripped after transferring to butane
GN94	PO - Planned	01/11/2019 21:07 PPT	01/22/2019 14:36 PPT	257:29:00	5670 - Hot end inspection A	Hot Gas Path Inspection
GN94	PE - Planned Extension	01/22/2019 14:36 PPT	01/31/2019 09:34 PPT	210:58:00	3624 - Generator Voltage Supply System	Generator ground issue. Needed rewinding.
GN94	MO - Maintenance	02/28/2019 11:58 PPT	02/28/2019 22:50 PPT	10:52	3340 - LP heater tube leaks	Economizer tube leak repair. Needed to be restarted early after another unit tripped
GN94	MO - Maintenance	03/01/2019 11:45 PPT	03/03/2019 16:00 PPT	52:15:00	3340 - LP heater tube leaks	Rescheduled economizer leak repair after GTG 93 restarted.
GN95	RS - Reserve Shutdown	01/01/2019 00:00 PPT	02/27/2019 15:58 PPT	1383:58:00	0000 - Reserve shutdown	
GN95	RS - Reserve Shutdown	02/28/2019 10:14 PPT	03/22/2019 16:07 PPT	532:53:00	0000 - Reserve shutdown	
GN95	RS - Reserve Shutdown	03/22/2019 18:15 PPT	03/27/2019 15:42 PPT	117:27:00	0000 - Reserve shutdown	
GN95	RS - Reserve Shutdown	09/11/2019 10:30 PPT	09/20/2019 08:48 PPT	214:18:00	0000 - Reserve shutdown	
GN95	RS - Reserve Shutdown	09/21/2019 10:01 PPT	10/06/2019 18:09 PPT	368:08:00	0000 - Reserve shutdown	
GN95	RS - Reserve Shutdown	11/17/2019 08:23 PPT	12/18/2019 09:02 PPT	744:39:00	0000 - Reserve shutdown	
GN96	RS - Reserve Shutdown	03/28/2019 09:49 PPT	04/05/2019 16:26 PPT	198:37:00	0000 - Reserve shutdown	
GN96	RS - Reserve Shutdown	05/23/2019 13:24 PPT		2638:36:00	0000 - Reserve shutdown	
GN96	RS - Reserve Shutdown	10/07/2019 06:33 PPT	11/17/2019 09:29 PPT	987:56:00	0000 - Reserve shutdown	
GN96	RS - Reserve Shutdown	12/18/2019 10:34 PPT	01/01/2020 00:00 PPT	325:26:00	0000 - Reserve shutdown	

RELI-3: Ope	RELI-3: Operating Hours and Availiability - 2019								
Generator									
Unit ID	2019 Operating Hours	2019 Availability							
GN91	8,665	98.9%							
GN92	8,323	95.1%							
GN93	8,658	98.8%							
GN94	8,231	94.1%							
GN95	5,373	61.0%							
GN96	4,608	53.0%							
2019 Ar	nnual Plant Availability	83.47%							
201	19 Capacity Factor	84.38%							

PUBLIC AND WORKER SAFETY CONDITIONS OF CERTIFICATION

SAFETY-11 APPC and the Los Angeles County Fire Department shall annually reexamine the fire protection program.

Verification: APPC shall note and summarize the joint re-examination to the fire protection program in its annual compliance report to the CEC.

Response: APPC/Watson and a 3rd-party contractor who specializes in fire protection systems perform bi-annual inspections of all five zones for each GTG & Butane Skid. Additionally, monthly inspections are performed on our area monitors and extinguishers.

SAFETY-13 APPC shall facilitate onsite worker safety inspections conducted by Cal/DOSH during construction and operation of the facility when an employee complaint has been received.

Verification: APPC shall request Cal/DOSH to notify the CEC in writing in the event of a violation that will involve Cal/DOSH action affecting the construction and operation schedule and shall notify the CEC of the necessary corrective action. APPC shall note any Cal/DOSH inspections and actions in its periodic compliance reports.

Response: In the calendar year of 2019, APPC/Watson Cogen has not had any violations or nor received any complaints that would need to be reported to Cal/DOSH.

TRAFFIC AND TRANSPORTATION CONDITIONS OF CERTIFICATION

TRANS-1 ARCO Petroleum Products Corporation (APPC) shall comply with the California Department of Transportation (Caltrans) and Los Angeles County restrictions on oversize or overweight vehicles using state, county and City of Carson roadways. APPC shall obtain overload permits, as necessary, from Caltrans and the County of Los Angeles.

Verification: APPC shallow in its annual compliance report, notify the California Energy Commission (CEC) of any overload permits obtained from Caltrans and the County of Los Angeles.

Response: In the 2019 calendar year, APPC/Watson is not aware of any overload permits being obtained from Caltrans and the County of Los Angeles.

TRANS-2 APPC shall comply with the City of Carson encroachment and excavation permit and franchise requirements for installation of utility services (transmission line, natural gas pipeline) of the proposed project in or over city-owned rights-of-way.

Verification: APPC shall, in its annual compliance report, notify the CEC that the requirements for obtaining encroachment and excavation permits from the City of Carson have been satisfied. APPC shall file any required or requested information with the City of Carson.

Response: In the 2019 calendar year, APPC/Watson is not aware of any filings for encroachment and/or excavation permits from the City of Carson.

WASTE MANAGEMENT CONDITIONS OF CERTIFICATION

WASTE-5 If APPC intends to store hazardous wastes on-site for more than 90 days, it shall obtain a determination from DHS that the requirements of a hazardous waste facility have been satisfied. Storage of such wastes shall be in accordance with DHS regulations. APPC shall file any required or requested information with the Los Angeles County Fire Department, Hazardous Materials Unit.

Verification: APPC shall notify the CEC in the Annual Compliance Report if APPC applies for, or obtains, a Hazardous Waste Facility permit.

Response: APPC/Watson does not store bulk hazardous waste onsite for more than 90 days and therefore does not require a Hazardous Waste Facility Permit.

WASTE-6 APPC shall ensure that hazardous wastes are hauled by a permitted hazardous wastes hauler and disposed of in a proper manner at a site permitted by DHS and the Regional Water Quality Control Board, Los Angeles Region, for the disposal of hazardous wastes.

Verification: In the Annual Compliance Report, APPC shall submit to the CEC a verification that hazardous wastes have been transported by a DHS-licensed hazardous waste hauler, and that the wastes were disposed of at appropriate sites.

Response: Hazardous waste generated by APPC/Watson is transported by a DTSC licensed hazardous waste hauler and is disposed of in a proper manner at permitted hazardous waste facilities.

WATER QUALITY CONDITIONS OF CERTIFICATION

WQ-4 The project owner shall provide a copy of the revised or new National Pollutant Discharge Elimination System Permit for the Watson Cogeneration Project and the ARCO Los Angeles Refinery approved by the Los Angeles Regional Water Quality Control Board to the CEC Compliance Project Manager. The project owner shall also provide a copy of the annual monitoring report required by the NPDES Permit for all wastewater, with the exception of stormwater runoff, that is commingled with cooling tower blowdown from the Watson Cogeneration Plant and discharged to the Dominguez Channel.

Verification: The project owner shall provide a copy of the new NPDES Permit to the CEC Compliance Project Manager within one month of its approval by the Los Angeles Regional Water Quality Control Board. Annual NPDES Permit monitoring reports shall be provided to the CEC Compliance Project Manager with the annual compliance report.

Response: Annual NPDES reports for the Carson facility are submitted electronically on the California Integrated Water Quality System (CIWQS). A copy of the annual NPDES report has

been included at the end of this annual compliance report. A copy of the updated NPDES permit can be provided if requested by the CEC.

WATER RESOURCES CONDITIONS OF CERTIFICATION

WATER-3 The project owner will demonstrate that all feasible and practical measures to reduce additional water demand have been incorporated into the design of the fifth train. The measures may include, but are not limited to, recycling and reuse.

Verification: The project owner shall submit a report discussing all measures, whether adopted or not, considered to reduce project water demand. This report shall be contained in the first annual compliance report following the start of operation of the fifth train.

Response: Water-3 is not applicable as APPC/Watson did not construct a fifth train.

Tesoro Refining & Marketing Company LLC

A subsidiary of Marathon Petroleum Corporation

Los Angeles Refinery – Carson Operations 2350 E. 223rd Street Carson, California 90810 310-816-8100

January 24, 2020

VIA Certified Mail Return Receipt Requested

California Regional Water Quality Control Board Los Angeles Region 320 W. 4th Street, Suite 200 Los Angeles, CA 90013 NPDES Permit No. CA0000680 Order No. R4-2015-0259

NO DISCHARGE DURING REPORTING PERIOD

Re: 2019 Annual NPDES Self-Monitoring Report

Tesoro Refining and Marketing Company LLC Los Angeles Refinery – Carson Operations 1801 East Sepulveda Boulevard, Carson, California Reporting Period: January 1, 2019 – December 31, 2019

To Whom It May Concern:

Please find enclosed the Annual NPDES Self-Monitoring Report for the Tesoro Los Angeles Refinery – Carson Operations for the period of January 1, 2019 through December 31, 2019.

During the 2019 reporting period all process wastewater and wastewater commingled with storm water was discharged to the Los Angeles Sanitation District (LACSD) in compliance with Industrial Wastewater Permit No. 21299. Discharge of Low Volume Waste, NPDES Oder No. R4-2015-0259, did not commence during the 2019 reporting period to the Dominguez Channel from any of the permitted Outfalls.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions, please contact me by phone at 310-847-5645 or by email at RTNguyen@marathonpetroleum.com.

Robert Nguyen
Environmental Manager

Enclosure

cc: File 4E03

ecc: Q:\EHNS\ENV\ENV FILES\4 - WATER\4E - REPORTING - NOTIFICATIONS\4E2a -

NPDES CA0000680 (WDR) - Compliance File 5424\Reporting Period 2016-

2021\2019\Annual Report

NPDES Annual Self-Monitoring Report

Tesoro Refining & Marketing Company LLC Tesoro Los Angeles Refinery – Carson Operations 1801 East Sepulveda Boulevard Carson, California 90749

NPDES Permit No. CA0000680 Order No. R4-2015-0259

Reporting Period: January 1, 2019 – December 31, 2019

Report Prepared On: January 24, 2020

Table of Contents

Part I – Compliance Summary1
Part 2 – Summary of Monitoring Parameters1
Part 3 – Other Monitoring2
Certification4
<u>Attachments</u>
Attachment 1: Annual Comprehensive Site Compliance Evaluation
Attachment 2: Annual Rainfall Data

Attachment 3: Sediment Monitoring Report

2019 Annual NPDES Self-Monitoring Report Tesoro Los Angeles Refinery – Carson Operations NPDES Permit No. CA0000680 Order Number R4-2015-0259 Page 1 of 5

Part 1 – Compliance Summary

1. NPDES Permit Compliance Summary

There were <u>no discharges of Low Volume Wastes</u> through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel at the Los Angeles Refinery – Carson Operations (LARC) in calendar year 2019. Therefore, there were no violations of the discharge limits or Waste Discharge Requirements (WDRs).

2. NPDES Incident Release Report

See Table 1 for any incidental releases to the Dominguez Channel Estuary during calendar year 2019.

		TABLE 1: 2019 S	pills to the	Dominguez Channel
Date	Time	Material	Spill Amount	Comments
1/11/2019	14:15	Sulfur Plant Soot	8.3 lbs	A vessel was over pressured with nitrogen and released built-up carbon soot.
5/9/2019	11:45	Hydrocarbon Sheen	Sheen	Source was not identified
10/3/2019	9:20	Hydrocarbon Sheen	Sheen	LAR was not identified as the source

Part 2 – Summary of Monitoring Parameters

1. Presentation of Effluent Monitoring Data

There were <u>no discharges of Low Volume Wastes</u> through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel Estuary at LARC in calendar year 2019. Therefore, no effluent monitoring was required.

2. Changes in Discharge

There were <u>no discharges of Low Volume Wastes</u> through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel at LARC in

2019 Annual NPDES Self-Monitoring Report Tesoro Los Angeles Refinery – Carson Operations NPDES Permit No. CA0000680 Order Number R4-2015-0259 Page 2 of 5

calendar year 2019. There were no changes in the discharge as described in Order R4-2015-0259.

Part 3 – Other Monitoring

1. SWPPP, BMPP, and Spill Contingency Plan and Effectiveness Report

There were no discharges of Low Volume Wastes through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel Estuary at LARC in calendar year 2019. Therefore, there were no issues with the effectiveness of the SWPPP, BMPP, or Spill Contingency Plan.

However, internal policy dictates the annual review of all facility environmental plans. The Storm Water Pollution Prevention Plan (SWPPP) and Best Management Practices Plan (BMPP) were reviewed in July 2019. The Spill Contingency Plan (Spill Prevention Control & Countermeasure (SPCC) Plan) was reviewed in September 2019 with amendments planned for completion by July 31, 2020.

2. Chemical Use Report

See Table 2 for the chemical usage report summarizing the quantities of all chemicals which are used at the facility and which are discharged or have the potential to be discharged. There were no discharges of Low Volume Wastes, including chemicals, through Discharge Points 001, 002, 003, 004 or 005 to the Dominguez Channel Estuary at LARC in calendar year 2019. The Refinery diverts cooling tower blowdown, boiler blowdown, and commingled storm water / wastewater to the wastewater treatment system before discharging to the Los Angeles County Sanitation District (LACSD Permit No. 21299).

	TABLE 2: Chemical Usage Report		
Product ID	Chemical Name / Common Name	Amount	Units
3DT129	Corrosion Inhibitor/Phosphate	134,188	LBS
Ultam 120	Neutralizing Amine	330,980	LBS
7357.33	Molybdate	18,869	LBS
71D5Plus.11	CW Antifoam	10,1075	LBS
73550	Biodispersant/ Surfactant	44,666	LBS
7330	Non-oxidizing Biocide/Isothiazolin	1,707	LBS
1338	Biocide/Bromine	40,279	LBS

2019 Annual NPDES Self-Monitoring Report Tesoro Los Angeles Refinery – Carson Operations NPDES Permit No. CA0000680 Order Number R4-2015-0259 Page 3 of 5

	TABLE 2: Chemical Usage Report		
Product ID	Chemical Name / Common Name	Amount	Units
8735	BFW Alkalinity	69,340	LBS
1742.33	Scale Inhibitor	57,446	LBS
72350.33	Neutralizing Amine	9,610	LBS
1720.91	Oxygen Scavanger	69,005	LBS
22341.91	Scale Inhibitor	65,424	LBS
352.33	Neutralizing Amine	4,730	LBS
EC1001A.31	Alkalinity Source	76,175	LBS
22310	NexGuard® 22310 / Boiler Water Internal Treatment	99,033	LBS
3DT180	3D Trasar TM 3DT180 / Cooling Water Treatment	6,316	LBS
3DT304	3D Trasar TM 3DT304 / Cooling Water Treatment	402,417	LBS
3DT184	3D Trasar TM 3DT184 / Corrosion Inhibitor	5,209	LBS
3DT199	3D Trasar TM 3DT199 / Cooling Water Treatment	8,342	LBS
3DT391	3D Trasar™ 3DT391	36,603	LBS
Eliminox	NALCO® Eliminox / Oxygen Scavenger	68,567	LBS
N/A	Bleach ¹	4,094,166	LBS
N/A	Sulfuric Acid ²	1,187	LBS

3. Receiving Water Monitoring

There were <u>no discharges of Low Volume Wastes</u> through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel Estuary at LARC in calendar year 2019. Therefore, no receiving water sampling and associated visual observation was required.

Visual observations of the upstream and downstream receiving water sampling points was performed during 2019. Visual observations were performed at least monthly during

¹ This quantity assumes 20% of total annual facility bleach usage for use in cooling towers and boilers.

² This quantity assumes 1% of total annual facility sulfuric acid usage for use in cooling towers and boilers.

2019 Annual NPDES Self-Monitoring Report Tesoro Los Angeles Refinery – Carson Operations NPDES Permit No. CA0000680 Order Number R4-2015-0259 Page 4 of 5

January through December. No findings related to facility operations were reported on the visual observation logs.

4. Annual Comprehensive Compliance Evaluation

The Annual Comprehensive Compliance Evaluation (ACCE) was conducted by qualified personnel on January 21, 2020. See Attachment 1 for documentation.

5. Storm Water / Rainfall Monitoring

The daily rainfall data for calendar year 2019 are included in Attachment 2.

6. Sediment Monitoring

Although there were <u>no discharges of Low Volume Wastes</u> through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 to the Dominguez Channel at LARC in calendar year 2019, sediment monitoring was conducted on September 25-26, and December 16, 2019. A copy of the report is included in Attachment 3.

Certification

We report that there were no discharges of Low Volume Wastes through Discharge Points 001, 002, 003, 004 or 005 or Process Wastewater Commingled with Storm Water and Boiler Blowdown through Discharge Points 003 or 004 at LARC to the Dominguez Channel during the reporting period of January 1, 2019 – December 31, 2019, under the above-mentioned order.

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Robert Nguyen
(Print Name)
Environmental Manager
(Title)
Certified via CIWQS
(Signature)

Tesoro LA Refinery - Carson Operations

FORM 3 – ANNUAL CO	MPREHENSIVE FACILITY	COMPLIANCE EVAI	LUATION (ANNUAL	EVALUATION)
--------------------	----------------------	-----------------	-----------------	-------------

Evaluation Date:	1/2/20	Inspector's Name:	Amber	Ballrot	Inspector's Title:	Env. Compliance Specialist	Inspector's Signature:	
Has it been 8-1	6 months since t	he last Annual E	valuation?					YES NO NA
Was a review of	of all sampling, v	isual observation	is, and inspe	ection record	ls conducted du	ring the previous reporting ye	ar?	YES □ NO □ N/A
	trial activities an		ential pollu	tants source	s inspected for	evidence of, or the potential	for, entering the	YES NO N/A
Were all drains	age areas previou	sly identified as	having no e	xposure to i	ndustrial activit	ies and materials inspected?		YES NO NO N/A
Was all equipn	nent used to impl	ement BMPs ins	pected?					YES NO N/A
Were all BMP	s inspected?							YES NO N/A
Was the Storm	Water Pollution	Prevention Plan	and Monito	oring Implem	nentation Plan r	eviewed?		YES NO N/A
Are revisions t	o the Storm Water	er Pollution Prev	ention Plan	and Monito	ring Implement	ation Plan needed?		YES NO N/A

Section/Page Number	Date Revised or Planned Date of Revision	Revision Description
SWPPP 3.1	7/15/2019	Modify Pollution Prevention Team
SWPPP 4.0	(1	Modify discharge point information
SWPPP 8.0, 8.3	W.	Modify BMPS, adding Level 2 BMPS
MIP. 2.0,2.1,27	i,	Modify discharge and sample point explanations
MIP 4.1	· ·	Add watershed impairment assessment
		~

FORM 3 (Continued) - ANNUAL COMPREHENSIVE FACILITY COMPLIANCE EVALUATION (ANNUAL EVALUATION)

Potential Pollutant Source/Industrial Activity (as identified in your SWPPP)	Have any BMPs not been fully implemented?	□ yes □ No	If yes, to any of the three	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
Northeast Facility Area	Are any BMPs not effective in reducing and preventing pollutants in storm water discharges and NSWDs?	YES NO	questions, complete the next two		
	Are additional/revised BMPs necessary?	☐ YES ☐ NO	columns of this form.		
Potential Pollutant Source/Industrial Activity (as identified in your SWPPP)	Have any BMPs not been fully implemented?	☐ YES ☑ NO	If yes, to any of the three	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
INEOS	Are any BMPs not effective in reducing and preventing pollutants in storm water discharges and NSWDs?	☐ YES NO	questions, complete the next two		
Potential Pollutant Source/Industrial Activity (as identified in your SWPPP) Southeast Facility Area	Are additional/revised BMPs necessary?	□ YES NO	columns of this form.		
	Have any BMPs not been fully implemented?	☐ yes ☐ No	If yes, to any of	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation
	Are any BMPs not effective in reducing and preventing pollutants in storm water discharges and NSWDs?	□ YES □ NO	questions, complete the next two		
	Are additional/revised BMPs necessary?	☐ YES NO	columns of this form.		

Attach an explanation page if more room is needed. Please make copy of form if more rows are needed.

Tesoro LA Refinery – Carson Operations FORM 3_

FORM 3 (Continued) - ANNUAL COMPREHENSIVE FACILITY COMPLIANCE EVALUATION (ANNUAL EVALUATION)

Potential Pollutant Source/Industrial Activity (as identified in your SWPPP)	Have any BMPs not been fully implemented?	□ YES ☑ NO	If yes, to any of	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
Northwest Facility Area	Are any BMPs not effective in reducing and preventing pollutants in storm water discharges and NSWDs?	☐ YES ☐ NO	questions, complete the next two				
Potential Pollutant	Are additional/revised BMPs necessary?	□ yes □ NO	columns of this form.				
Potential Pollutant Source/Industrial Activity (as identified in your SWPPP)	Have any BMPs not been fully implemented?	☐ YES ☑ NO	If yes, to any of the three	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
Tank Farms	Are any BMPs not effective in reducing and preventing pollutants in storm water discharges and NSWDs?	☐ YES NO	questions, complete the next two				
	Are additional/revised BMPs necessary?	☐ YES NO	columns of this form.				
Potential Pollutant Source/Industrial Activity (as identified in your SWPPP)	Have any BMPs not been fully implemented?	☐ YES ☐ NO	If yes, to any of the three	Describe deficiencies in BMPs or BMP implementation	Describe additional/revised BMPs or corrective actions and their date(s) of implementation		
Loading Racks	Are any BMPs not effective in reducing and preventing pollutants in storm water discharges and NSWDs?	☐ YES NO	questions, complete the next two				
	Are additional/revised BMPs necessary?	☐ YES NO	columns of this form.				

Attach an explanation page if more room is needed. Please make copy of form if more rows are needed.

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000
CXUS56 KLOX 011655
CF6LGB
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: JANUARY
YEAR: 2019
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

	FEMPE						:PCPN:		SNOW:	WIN				SHINE			:PK	1000
1	2	3	4	5		6B	7		9 12Z	10	11	12 2MIN		14	15	16	17	18
DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	DPTH	SPD	SPD	DIR	MIN	PSBL	5-5	WX	SPD	DR
===	====	===:									===		====					===
1	62	46	54	-2	11	0	0.00	0.0	0	6.6	17	90	M	м	0		25	9
2	63	38	51	-5	14	0	0.00	0.0	0	2.4	10	300	M	M	0		13	24
3	68	42	55	-1	10	0	0.00	0.0	0	3.5	10	300	M	M	0		13	29
4	63	41	52	-4	13	0	0.00	0.0	0	2.6	10	220	M	M	0		14	20
5	59	49	54	-2	11	0	0.78	M	0	5.1	24	300	M	M	5	13	34	31
6	62	48	55	-1	10	0	0.04	M	0	4.5	13	300	M	M	4	1	17	30
7	62	52	57	1	8	0	0.12	0.0	0	4.3	13	100	M	M	7	1	15	7
8	72	49	61	4	4	0	0.00	0.0	0	3.5	9	200	M	M	0		14	4
9	67	48	58	1	7	0	0.00	0.0	0	3.5	15	290	M	M	2	1	18	29
10	64	48	56	-1	9	0	0.00	0.0	0	2.6	12	190	M	M	2	18	14	19
1	64	53	59	2	6	0	0.00	0.0	0	4.3	10	160	M	M	6	18	13	16
2	63	50	57	0	8	0	0.69	0.0	0	3.7	16	50	M	M	7	13	20	5
3	62	45	54	-3	11	0	0.00	0.0	0	1.7	7	50	M	M	0	1	10	26
4	59	52	56	-1	9	0	1.05	0.0	0	5.2	16	130	M	M	8	1	22	12
5	62	50	56	-1	9	0	0.93	0.0	0	6.8	17	90	M	M	8	1	22	5
6	62	55	59	2	6	0	0.98	0.0	0	7.0	17	120	M	M	10	1	22	14
17	64	56	60	3	5	0	0.59	0.0	0	7.9	15	220	M	M	8	1	22	22
8	65	53	59	2	6	0	T	0.0	0	3.9	9	200	M	M	6	12	12	26
9	79	49	64	7	1	0	0.00	0.0	0	3.5	10	320	M	M	0	1	12	32
20	75	52	64	7	1	0	0.00	0.0	0	6.9	21	290	M	M	0		27	26
11	65	51	58	1	7	0	0.00	0.0	0	15.8	25	310	M	M	0		33	27
22	69	43	56	-1	9	0	0.00	0.0	0	3.3	13	300	M	M	0		14	31
23	68	43	56	-1	9	0	0.00	0.0	0	3.6	10	290	M	M	0		13	30
4	78	46	62	5	3	0	0.00	0.0	0	3.7	9	220	M	M	0		13	20
25	78	47	63	6	2	0	0.00	0.0	0	5.5	13	300	M	M	0		15	31
26	79	49	64	7	1	0	0.00	0.0	0	4.4	13	260	M	M	0		16	27
27	76	49	63	6	2	0	0.00	0.0	0	2.1	10	190	M	M	0		12	19
28	74	48	61	4	4	0	0.00	0.0	0	1.3	10	180	M	M	1	18	13	18
29	69	53	61	4	4	0	0.00	0.0	0	3.7	10	150	M	M	1	18	13	16
30	67	54	61	4	4	0	0.00	0.0	0	3.2	10	200	M	M	2	18	13	20
31	61	51	56	-1	9		1.24	0.0	0	_000	17		M	M		1238	21	6
	2081				213	0	6.42		0.0	139.8			M		85		2002	===
	67.1										===	STST	====					===

MISC ---> 25

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

STATION: LONG BEACH AIRPORT CA

1 = FOG OR MIST

4 = ICE PELLETS

8 = SMOKE OR HAZE

9 = BLOWING SNOW X = TORNADO

3 = THUNDER

5 = HAIL

2 = FOG REDUCING VISIBILITY

TO 1/4 MILE OR LESS

6 = FREEZING RAIN OR DRIZZLE

7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS

MONTH: **JANUARY** YEAR: 2019

LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16

AVERAGE MONTHLY: 57.9 TOTAL FOR MONTH: 6.42 DPTR FM NORMAL: 1.2 DPTR FM NORMAL: 3.82

79 ON 26,19 GRTST 24HR 1.24 ON 31-31 HIGHEST:

38 ON 2 LOWEST:

> SNOW, ICE PELLETS, HAIL TOTAL MONTH: 0.0 INCH GRTST 24HR 0.0

GRTST DEPTH: 0

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0.01 INCH OR MORE: 9 MAX 90 OR ABOVE: 0 0.10 INCH OR MORE: 8 MIN 32 OR BELOW: 0 0.50 INCH OR MORE: 7 MIN Ø OR BELOW: 1.00 INCH OR MORE: Ø 2

[HDD (BASE 65)]

TOTAL THIS MO. 213 CLEAR (SCALE 0-3) 20 -46 PTCLDY (SCALE 4-7) DPTR FM NORMAL 426 TOTAL FM JUL 1 CLOUDY (SCALE 8-10) 2 DPTR FM NORMAL -253

[CDD (BASE 65)]

TOTAL THIS MO. 0

DPTR FM NORMAL -3 [PRESSURE DATA]

TOTAL FM JAN 1 0 HIGHEST SLP 30.35 ON 23 DPTR FM NORMAL 0 LOWEST SLP 29.85 ON 29

[REMARKS] #FINAL-01-19#

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000 CXUS56 KLOX 011758 CF6LGB PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: FEBRUARY YEAR: 2019 LATITUDE: 33 49 N LONGITUDE: 118 9 W

	TEMPE			77.0			:PCPN:		SNOW:	WIN	-		0	UNSHINE: SKY				:PK WND	
1	2	3	4			6B	7	8	9 12Z	10	11	12 2MIN		14		16		18	
DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	DPTH	SPD	SPD	DIR	MIN	PSBL	5-5	WX	SPD	DR	
==:													====				=====	====	
1	62	48	55	-2	10	0	T	М	0	4.6	10	180	M	М	3	18	13	186	
2	62	50	56	-1	9	0	1.39	0.0	0	7.8	29	140	M	M	8	-	37	150	
3	60	50	55	-2	10	0	0.27	0.0	0	5.6	15	240	M	M	8	18	M	M	
4	61	52	57	0	8	0	0.37	0.0	0	6.6	17	210	M	M	7	18	23	200	
5	57	47	52	-5	13	0	0.11	M	0	8.6	20	250	M	M	5	1	M	M	
6	58	40	49	-8	16	0	0.00	0.0	0	7.4	18	300	M	M	0		21	300	
7	62	40	51	-6	14	0	0.00	0.0	0	2.9	9	300	M	M	0		12	200	
8	62	40	51	-6	14	0	0.00	0.0	0	3.4	13	230	M	M	0		16	236	
9	61	45	53	-4	12	0	0.15	M	0	4.6	20	340	M	M	3	18	26	336	
10	59	46	53	-4	12	0	0.10	M	0	7.1	18	280	M	M	6	18	24	216	
11	59	38	49	-8	16	0	0.00	0.0	0	3.5	12	210	M	M	0		19	166	
12	69	38	54	-3	11	0	0.00	0.0	0	2.4	8	210	M	M	0	8	13	136	
13	60	51	56	-1	9	0	0.19	0.0	0	6.5	18	110	M	M	8	18	24	116	
14	63	53	58	0	7	0	2.25	0.0	0	8.7	20	260	M	M	9	18	28	266	
15	61	49	55	-3	10	0	0.16	M	0	4.7	16	280	M	M	7	18	21	286	
16	62	48	55	-3	10	0	0.00	0.0	0	13.1	23	290	M	M	1		30	316	
17	58	43	51	-7		0	0.01	M	0	11.2	2 25	300	M	M	4	8	35	286	
18	59	39	49	-9		0	T	M	0	5.8	26	70	M	M	1		33	66	
19	58	37	48	-10	17	0	0.00	0.0	0	3.9	13	200	M	M	0		16	210	
20	59	40	50	-8	15	0	0.06	M	0	6.7	20	270	M	M	5	8	27	266	
21	58	42	50	-8	15	0	0.00	0.0	0	4.7	23	330	M	M	3	18	27	336	
22	60	37	49	-9			0.00	0.0	0	4.1	16	220	M	M	0	18	20	276	
23	62	42	52	-6	13	0	0.00	0.0	0	3.5	12	300	M	M	0		14	186	
24	68	45	57	-1	8	0	0.00	0.0	0	3.4	1 15	290	M	M	0	8	18	316	
25	64	47	56	-2			0.00	0.0	0		20.00	190	M	M	0	150	20	W. 31	
26	63	47	55	-3		100	0.00	0.0	0				M	M	4	128	14	200	
27	64	52	58	0	7		7073	0.0	0	- 3000		220	M	М	8	18		200	
28	66	56	61	3	4	0	T.	0.0	0		1 25	330	M	M		18	72.5	180	
	1717		-		325	0	5.06		0.0			====	M		98		25555	===:	
	2002	-					0.000			20.0									
AV	61.3	45.	.1					MTC				STST	M	M	4		MAX (MP)		

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

STATION: LONG BEACH AIRPORT CA

3 = THUNDER

5 = HAIL

4 = ICE PELLETS

8 = SMOKE OR HAZE

9 = BLOWING SNOW X = TORNADO

2 = FOG REDUCING VISIBILITY

TO 1/4 MILE OR LESS

6 = FREEZING RAIN OR DRIZZLE

7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS

MONTH: FEBRUARY 2019 YEAR: LATITUDE: 33 49 N

LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16 AVERAGE MONTHLY: 53.2 TOTAL FOR MONTH: 5.06 1 = FOG OR MIST

DPTR FM NORMAL: -4.4 DPTR FM NORMAL: 1.97 HIGHEST: 69 ON 12 GRTST 24HR 2.25 ON 14-14

LOWEST: 37 ON 22,19

SNOW, ICE PELLETS, HAIL

GRTST 24HR 0.0 GRTST DEPTH: 0

TOTAL MONTH: 0.0 INCH

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0.01 INCH OR MORE: MAX 90 OR ABOVE: 0.10 INCH OR MORE: MIN 32 OR BELOW: 0.50 INCH OR MORE: 0 2 MIN Ø OR BELOW: 0 1.00 INCH OR MORE: 2

[HDD (BASE 65)]

325 TOTAL THIS MO. CLEAR (SCALE 0-3) 15 PTCLDY (SCALE 4-7) 11 DPTR FM NORMAL 113 TOTAL FM JUL 1 751 CLOUDY (SCALE 8-10) 2

DPTR FM NORMAL -140

[CDD (BASE 65)] TOTAL THIS MO.

0 DPTR FM NORMAL -5 [PRESSURE DATA]

TOTAL FM JAN 1 0 HIGHEST SLP 30.33 ON 23 DPTR FM NORMAL -8 LOWEST SLP 29.59 ON 21

[REMARKS] #FINAL-02-19#

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

OOO

CXUS56 KLOX 011155

CF6LGB

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: MARCH
YEAR: 2019
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

1	2	3	4	5	6A	6B	7	8	9	10	11	12	13	14	15	16	17	18
DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	12Z DPTH	0.00	7.7.6	2MIN DIR	MIN	PSBL	5-5	WX	SPD	DR
301		200	400	-	200		A	-	100		500	-	1002.00			ALK A		===
1	65	58	62	4		0	0.00	0.0	0	4.5	12	200	М	M	6	18	13	20
2	63	56	60	1	5	0	0.85	0.0	0	7.6	15	170	M	М	10	1		17
3	64	56	60	1	5	0	0.05	0.0	0	5.5	12	300	M	M		18	14	29
4	63	52	58	-1	7	0	0.00	0.0	0	4.8	12	220	M	M	5		16	20
5	66	48	57	-2	8	0	0.10	M	0	4.1	. 23	290	M	M	5	18	27	29
6	61	56	59	0	6	0	0.86	0.0	0	7.4	17	160	M	M	9	18	26	16
7	63	52	58	-1	7	0	0.01	0.0	0	6.6	16	290	M	M	6	1	20	29
8	61	49	55	-4	10	0	0.01	M	0	9.6	22	280	M	M	3		28	29
9	62	48	55	-4	10	0	0.00	0.0	0	6.2	16	300	M	M	2		21	28
10	61	48	55	-4	10	0	0.00	0.0	0	3.9	13	310	M	M	3		17	18
11	68	48	58	-1	7	0	0.02	M	0	4.6	15	320	M	M	5	8	18	8
12	70	53	62	3	3	0	0.00	0.0	0	7.0	21	270	M	M	4	8	26	29
13	65	50	58	-1	7	0	0.00	0.0	0	3.8	13	200	M	M	3	18	18	21
14	73	47	60	1	5	0	0.00	0.0	0	6.8	20	70	M	M	0		28	8
15	78	47	63	3	2	0	0.00	0.0	0	3.7	13	300	M	M	0		17	4
16	81	50	66	6	0	1	0.00	0.0	0	3.5	15	280	M	M	0	8	18	29
17	85	54	70	10	0	5	0.00	0.0	0	5.3	17	290	M	M	0		20	28
18	72	55	64	4	1	0	0.00	0.0	0	3.9	12	190	M	M	1	1	15	17
19	63	54	59	-1	6	0	0.00	0.0	0	6.2	14	180	M	M	9	128	18	16
20	66	56	61	1	4	0	T	0.0	0	7.7	21	300	M	M	6	35	25	30
21	61	52	57	-3	8	0	0.08	0.0	0			300	M	M	4	8	18	22
22	65	49	57	-3			0.00	0.0	0	4.5	13	300	M	M	3	8	17	19
23	67	54	61	1	4		0.00	0.0	0			290	M	M	6		20	29
24	70	54	62	2	3	0	0.00	0.0	0	4.5	14	300	M	M	3	18	16	30
25	77	51	64	4	1		0.00	0.0	0	6.6	18	300	M	M	0		23	28
26	73	50	62	2	3		0.00	0.0	0	4.6	13	310	M	M	0	100	16	29
27	72	56	64	4	1		0.00	0.0	0			300	М	M	- 7	18	177	30
28	70	55	63	3	_		0.00	0.0	0	- V.O.S.T		290	M	M	2	-	777	29
29	72	52	62	2	3		0.00	0.0	0	0.00	775	290	M	M	0	-	-	30
30	82	52	67	6	0		0.00	0.0	0	- 50.53		290	M	M	1.7	18	-	29
31	84	54	69	8	0	1	0.00	0.0	ø		5.5	290	M	M	0			29
		====			70.0				78.			====						===
SM	2143				139	12	1.98		0.0	166.8	3		M		110			

MISC ---> # 23 290

28 290

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

STATION: LONG BEACH AIRPORT CA

MONTH: MARCH YEAR: 2019 LATITUDE: 33 49 N

LONGITUDE: 118 9 W

	CONGITORE! IIO > W	
[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
DPTR FM NORMAL: 1.0	GRTST 24HR 0.86 ON 6-6 SNOW, ICE PELLETS, HAIL TOTAL MONTH: 0.0 INCH	2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER 4 = ICE PELLETS
[NO. OF DAYS WITH] MAX 32 OR BELOW: 0 MAX 90 OR ABOVE: 0 MIN 32 OR BELOW: 0 MIN 0 OR BELOW: 0	[WEATHER - DAYS WITH] 0.01 INCH OR MORE: 8 0.10 INCH OR MORE: 3	8 = SMOKE OR HAZE 9 = BLOWING SNOW X = TORNADO
	CLEAR (SCALE 0-3) 16 PTCLDY (SCALE 4-7) 11 CLOUDY (SCALE 8-10) 4	
[CDD (BASE 65)] TOTAL THIS MO. 12 DPTR FM NORMAL 2 TOTAL FM JAN 1 12	[PRESSURE DATA] HIGHEST SLP 30.22 ON 28	

LOWEST SLP 29.74 ON 12

[REMARKS] #FINAL-03-19#

DPTR FM NORMAL

-6

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000 CXUS56 KLOX 011655 CF6LGB PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: APRIL
YEAR: 2019
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

TEMPERATURE IN F: :PCPN: SNOW: WIND :SUNSHINE: SKY :PK WND ______ 1 5 6A 6B 7 8 9 10 11 12 13 14 15 16 17 18 12Z AVG MX 2MIN DY MAX MIN AVG DEP HDD CDD WTR SNW DPTH SPD SPD DIR MIN PSBL S-S WX SPD DR ______ 3.9 12 200 0 1 82 59 71 10 0 6 0.00 0.0 0 Μ 16 220 0 0.00 0.0 5 2 69 59 64 3 1 0 8.0 14 180 Μ Μ 21 140 3 67 57 62 3 0 0.00 0.0 0 6.1 14 300 Μ 3 19 210 1 М 7 8 4 68 57 63 2 2 Т 0.0 0 5.6 15 220 Μ Μ 20 200 0 5 68 57 63 2 0 0.00 0.0 0 6.5 17 300 5 2 Μ Μ M M 6 71 58 65 4 0 0 0.00 0.0 0 5.5 16 290 Μ Μ 4 21 250 7 80 57 69 8 0 4 0.00 0.0 0 4.6 17 300 0 20 290 M M 74 0 8 88 60 12 9 0.00 0.0 0 4.3 17 300 20 300 8 0 Μ Μ 9 75 60 68 3 0.00 0.0 0 12.7 39 330 0 18 49 340 6 0 Μ Μ 3 0.00 0 10 77 58 68 0 0.0 0 16.1 25 280 Μ 33 290 6 Μ 11 72 52 62 0 3 0 0.00 0.0 0 5.3 17 300 Μ 0 8 20 300 65 12 76 53 3 0 0 0.00 0.0 0 6.5 22 290 1 18 27 280 М M 13 80 55 68 6 0 3 0.00 0.0 0 4.6 16 310 Μ Μ 1 18 19 290 14 77 54 66 4 0 1 0.00 0.0 0 5.5 14 310 М Μ 2 128 17 310 15 65 53 59 -3 6 0 0.00 0.0 0 6.3 14 180 4 18 18 180 Μ Μ 69 57 1 2 0.0 0 4.9 18 290 6 23 280 16 63 0 Μ Μ 76 17 53 65 2 0 0 0.00 0.0 0 5.9 20 290 0 24 300 Μ Μ 18 83 55 69 0 4 0.00 0.0 0 5.4 16 310 Μ 0 18 20 300 6 Μ 0.0 21 300 19 75 57 66 1 0.00 \cap 5.1 17 290 4 18 3 0 Μ Μ 7 20 67 58 63 0 0 0.00 0.0 0 5.5 13 310 Μ 16 200 5 21 69 56 63 0 2 0 0.00 0.0 0 5.9 14 300 Μ 26 240 М 22 73 53 63 0 2 0 0.00 0.0 0 5.1 14 280 Μ Μ 1 19 280 23 73 57 65 2 0 0 0.00 0.0 0 4.8 13 150 Μ Μ 2 1 16 150 24 70 58 64 0 1 0 0.00 0.0 0 5.9 10 200 4 16 200 М Μ 25 75 58 67 3 0 2 0.00 0.0 0 5.1 12 300 3 14 320 Μ Μ 26 72 58 65 0 0.00 0.0 4.9 12 300 5 0 0 M M 1 М M 27 69 59 64 0 1 0 0.00 0.0 0 5.1 13 300 Μ Μ 10 15 200 28 69 59 64 0 1 0 0.00 0.0 0 4.6 14 200 Μ Μ 7 18 200 7 29 68 57 63 -1 2 0 0.02 0.0 0 6.1 14 220 Μ Μ 18 210 30 68 58 63 -1 0 0.00 0.0 0 5.7 13 280 Μ Μ 16 310

```
______
SM 2191 1702 32 36 0.02 0.0 181.5 M 100
______
                                  6.1 FASTST M M 3 MAX(MPH)
AV 73.0 56.7
                         MISC ---> # 39 330
                                                      # 49 340
______
# LAST OF SEVERAL OCCURRENCES
COLUMN 17 PEAK WIND IN M.P.H.
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2
                                  STATION: LONG BEACH AIRPORT CA
                                  MONTH: APRIL
                                  YEAR:
                                         2019
                                  LATITUDE: 33 49 N
                                  LONGITUDE: 118 9 W
[TEMPERATURE DATA] [PRECIPITATION DATA]
                                        SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 64.9 TOTAL FOR MONTH: 0.02
                                        1 = FOG OR MIST
DPTR FM NORMAL: 2.5 DPTR FM NORMAL: -0.58
                                         2 = FOG REDUCING VISIBILITY
HIGHEST: 88 ON 8 GRTST 24HR 0.02 ON 29-29 TO 1/4 MILE OR LESS
LOWEST: 52 ON 11
                                        3 = THUNDER
                   SNOW, ICE PELLETS, HAIL 4 = ICE PELLETS
                   TOTAL MONTH: 0.0 INCH 5 = HAIL
                   GRTST 24HR 0.0
                                        6 = FREEZING RAIN OR DRIZZLE
                                        7 = DUSTSTORM OR SANDSTORM:
                   GRTST DEPTH: 0
                                            VSBY 1/2 MILE OR LESS
                                         8 = SMOKE OR HAZE
[NO. OF DAYS WITH]
                  [WEATHER - DAYS WITH]
                                         9 = BLOWING SNOW
                                         X = TORNADO
MAX 32 OR BELOW: 0 0.01 INCH OR MORE: 1
MAX 90 OR ABOVE: 0 0.10 INCH OR MORE: 0
MIN 32 OR BELOW: 0 0.50 INCH OR MORE: 0 MIN 0 OR BELOW: 0 1.00 INCH OR MORE: 0
[HDD (BASE 65) ]
TOTAL THIS MO. 32 CLEAR (SCALE 0-3) 13
DPTR FM NORMAL -74 PTCLDY (SCALE 4-7) 16
TOTAL FM JUL 1 922 CLOUDY (SCALE 8-10) 1
DPTR FM NORMAL -254
[CDD (BASE 65) ]
TOTAL THIS MO. 36
DPTR FM NORMAL 7 [PRESSURE DATA]
TOTAL FM JAN 1 48 HIGHEST SLP 30.17 ON 7
DPTR FM NORMAL 1 LOWEST SLP 29.75 ON 12
[REMARKS]
#FINAL-04-19#
```

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000 CXUS56 KLOX 011655 CF6LGB PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: MAY
YEAR: 2019
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

TEMPERATURE IN F: :PCPN: SNOW: WIND :SUNSHINE: SKY :PK WND ______ 1 5 6A 6B 7 8 9 10 11 12 13 14 15 16 17 18 12Z AVG MX 2MIN DY MAX MIN AVG DEP HDD CDD WTR SNW DPTH SPD SPD DIR MIN PSBL S-S WX SPD DR ______ 2 1 72 53 63 -1 0 0.00 0.0 0 6.0 16 290 Μ 23 310 2 0 0.00 0.0 5.2 14 310 2 73 56 65 1 0 0 Μ Μ 18 290 -1 3 70 58 64 0 0.00 0.0 0 5.9 13 180 Μ 3 16 180 1 М 4 70 60 65 0 0 0 0.00 0.0 0 5.3 13 300 Μ Μ 5 16 180 5 70 60 65 Т 0.0 0 7.5 16 300 Μ 8 19 220 0 0 \cap Μ Т 7 6 70 59 65 0 0 0 0.0 0 7.6 18 300 Μ Μ 22 300 7 69 58 64 -1 1 0 Τ 0.0 0 5.3 13 190 7 20 180 M M 68 61 65 0 0 0 0.00 0.0 0 4.9 10 290 10 13 280 8 Μ Μ 9 69 65 0 0 0.00 0.0 0 4.6 13 210 10 15 210 61 0 Μ Μ 9 1 10 68 60 64 -1 0 0.01 0.0 0 3.3 10 130 13 130 1 Μ Μ 2 11 77 58 68 3 3 0.00 0.0 0 5.8 18 300 Μ 22 300 Μ 12 71 60 66 0 1 0.00 0.0 0 4.7 13 180 5 16 230 1 Μ 70 5.8 10 200 9 13 62 66 0 0 1 0.00 0.0 0 Μ Μ 13 180 14 73 61 67 1 0 2 0.00 0.0 0 5.8 13 300 М Μ 6 17 300 15 69 62 66 0 0 1 0.00 0.0 0 5.4 12 280 Μ 9 15 250 Μ 70 57 64 -2 1 0 0.25 0.0 0 12.9 26 280 5 1 34 290 16 Μ Μ 73 17 54 64 -2 0 0.00 0.0 0 5.5 20 280 0 25 270 1 Μ Μ 18 70 55 63 -3 2 0 0.01 0.0 0 5.7 14 200 3 19 210 Μ Μ 0.0 19 68 53 61 -5 \cap 8.9 23 290 6 1 29 290 4 0 0.18 Μ Μ 57 3 20 71 64 -2 0 Τ 0.0 0 9.2 18 290 Μ 25 300 21 69 58 64 -2 0 Т 0.0 0 9.6 24 290 Μ 5 30 280 1 М 22 71 56 -2 7.4 22 290 2 3 27 290 64 1 0 Τ 0.0 0 Μ Μ 7 23 67 58 63 -3 2 0 0.00 0.0 0 6.6 14 180 Μ Μ 18 160 24 74 55 65 -1 0 0 0.00 0.0 0 7.6 18 300 Μ 0 8 23 320 Μ 25 69 56 63 -3 2 0 0.00 0.0 5.8 14 220 2 21 210 Μ Μ -6 0 0.05 26 62 57 0.0 7.7 14 290 10 18 17 260 60 5 0 М Μ 27 69 51 60 -6 5 0 0.00 0.0 0 6.4 14 310 Μ Μ 1 20 290 28 70 54 62 -4 3 0 0.00 0.0 0 5.2 13 310 Μ Μ 0 17 190 59 1 29 74 67 0 2 0.00 0.0 0 5.4 17 300 \cap 19 300 М Μ 30 74 58 66 -1 0 1 0.00 0.0 0 4.8 12 200 Μ Μ 5 18 16 160

```
31 70 58 64 -3 1 0 0.00 0.0 0 4.7 13 210 M M 8 18 17 220
______
SM 2180 1785 34 11 0.50 0.0 196.4 M
                                                    150
______
AV 70.3 57.6
                                 6.3 FASTST M M 5 MAX(MPH)
                          MISC ---> # 26 280 # 34 290
______
# LAST OF SEVERAL OCCURRENCES
COLUMN 17 PEAK WIND IN M.P.H.
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2
                                    STATION: LONG BEACH AIRPORT CA
                                   MONTH: MAY
                                    YEAR: 2019
                                    LATITUDE: 33 49 N
                                   LONGITUDE: 118 9 W
[TEMPERATURE DATA] [PRECIPITATION DATA]
                                          SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 64.0 TOTAL FOR MONTH: 0.50 1 = FOG OR MIST
DPTR FM NORMAL: -1.6 DPTR FM NORMAL: 0.29
                                          2 = FOG REDUCING VISIBILITY
HIGHEST: 77 ON 11 GRTST 24HR 0.25 ON 16-16 TO 1/4 MILE OR LESS
                                          3 = THUNDER
LOWEST:
         51 ON 27
                    SNOW, ICE PELLETS, HAIL
                                          4 = ICE PELLETS
                                          5 = HAIL
                    TOTAL MONTH: 0.0 INCH
                    GRTST 24HR
                                0.0
                                           6 = FREEZING RAIN OR DRIZZLE
                    GRTST DEPTH: 0
                                          7 = DUSTSTORM OR SANDSTORM:
                                              VSBY 1/2 MILE OR LESS
                                           8 = SMOKE OR HAZE
[NO. OF DAYS WITH]
                   [WEATHER - DAYS WITH]
                                           9 = BLOWING SNOW
                                           X = TORNADO
MAX 32 OR BELOW: 0 0.01 INCH OR MORE: 5
MAX 90 OR ABOVE: 0 0.10 INCH OR MORE: 2
MIN 32 OR BELOW: 0 0.50 INCH OR MORE: 0
MIN 0 OR BELOW: 0 1.00 INCH OR MORE: 0
[HDD (BASE 65) ]
TOTAL THIS MO. 34 CLEAR (SCALE 0-3) 12
DPTR FM NORMAL -3 PTCLDY (SCALE 4-7) 13
TOTAL FM JUL 1 956 CLOUDY (SCALE 8-10) 6
DPTR FM NORMAL -257
[CDD (BASE 65) ]
TOTAL THIS MO. 11
DPTR FM NORMAL -45 [PRESSURE DATA]
TOTAL FM JAN 1 59 HIGHEST SLP 30.09 ON 7
DPTR FM NORMAL -44 LOWEST SLP 29.70 ON 22
[REMARKS]
#FINAL-05-19#
```

CXUS56 KLOX 011655

284

Explanation of the Preliminary Monthly Climate Data (F6) Product

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

CF6LGB PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) STATION: LONG BEACH AIRPORT CA MONTH: JUNE YEAR: 2019 LATITUDE: 33 49 N LONGITUDE: 118 9 W SNOW: WIND :SUNSHINE: SKY :PK WND TEMPERATURE IN F: :PCPN: ______ 9 10 11 12 13 3 4 5 6A 6B 12Z AVG MX 2MIN DY MAX MIN AVG DEP HDD CDD WTR SNW DPTH SPD SPD DIR MIN PSBL S-S WX SPD DR ______ 98 60 64 -3 1 0 0.00 0.0 0 5.1 10 180 14 310 67 71 23 270 70 20 220 5 70 16 190 6 72 18 190 71 16 190 8 74 21 240 19 310 9 84 10 95 18 310 11 88 14 190 12 83 17 300 13 72 16 180 14 70 17 180 15 73 17 290 16 72 17 300 17 200 17 71 71 18 15 190 19 79 18 200 73 20 16 190 21 72 17 210 22 76 20 290 23 19 300 24 74 16 210 25 71 14 150 26 74 19 190 2.7 78 17 300 28 80 19 200 29 86 16 210 87 19 310 ______ SM 2268 1871 2 127 0.03 0.0 164.7 M 187 ______ 5.5 FASTST M M 6 MAX(MPH) AV 75.6 62.4 MISC ----> # 16 300 ______ NOTES: # LAST OF SEVERAL OCCURRENCES COLUMN 17 PEAK WIND IN M.P.H. PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2 STATION: LONG BEACH AIRPORT CA MONTH: JUNE VEAR: 2019 LATITUDE: 33 49 N LONGITUDE: 118

[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 69.0 DPTR FM NORMAL: 0.1 HIGHEST: 95 ON 10 LOWEST: 60 ON 5, 4	SNOW, ICE PELLETS, HAIL TOTAL MONTH: 0.0 INCH GRTST 24HR 0.0 GRTST DEPTH: 0	2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER 4 = ICE PELLETS 5 = HAIL 6 = FREEZING RAIN OR DRIZZLE 7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH]	8 = SMOKE OR HAZE 9 = BLOWING SNOW X = TORNADO
	0.01 INCH OR MORE: 1 0.10 INCH OR MORE: 0 0.50 INCH OR MORE: 0 1.00 INCH OR MORE: 0	X - TORNADO
[HDD (BASE 65)] TOTAL THIS MO. 2 DPTR FM NORMAL -4 TOTAL FM JUL 1 958 DPTR FM NORMAL -261	CLEAR (SCALE 0-3) 5 PTCLDY (SCALE 4-7) 15 CLOUDY (SCALE 8-10) 10	
	[PRESSURE DATA] HIGHEST SLP 30.02 ON 28 LOWEST SLP 29.84 ON 16	
[REMARKS] #FINAL-06-19#		

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000 CXUS56 KLOX 011655 CF6LGB PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: JULY
YEAR: 2019
LATITUDE: 33 49 N

LONGITUDE: 118 9 W

	rempi	ERATU	JRE I	IN F	:	:	PCPN:		SNOW:	IIW	ND		SUNS	SHINE	: SK	Y	:PK 1	WND
1	2	3	4	5	-=== 6А	-=== 6B	7	8	9	10	11	12	13	14	15	16	17	18
DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	12Z DPTH	AVG SPD		2MIN DIR	MIN	PSBL	S-S	WX	SPD	DR
==:	====	====	====	====	====	====	=====	====	=====	====	====	:====:	====:	=====	====	=====	:====:	====
1	84	63	74	2	0	9	0.00	0.0	0	5.4	4 13	310	M	M	0		15	280
2	80	64	72	0	0	7	0.00	0.0	0	6.8	8 13	300	M	M	2		15	300
3	76	65	71	-1	0	6	0.00	0.0	0	6.	7 13	160	M	M	4		16	180
4	79	65	72	0	0	7	0.00	0.0	0	6.4	4 14	300	M	M	5	8	17	310
5	79	65	72	0	0	7	0.00	0.0	0	6.2	2 14	290	M	M	5	8	17	220
6	74	65	70	-2	0	5	0.00	0.0	0	5.8	8 13	190	M	M	6	8	18	180
7	74	64	69	-3	0	4	0.00	0.0	0	6.6	6 13	190	M	M	7	8	16	200
8	74	65	70	-3	0	5	0.00	0.0	0	6.9	9 15	200	M	M	7		18	210
9	82	65	74	1	0	9	0.00	0.0	0	5.9	9 15	300	M	M	4		20	300
10	83	64	74	1	0	9	0.00	0.0	0	5.	7 15	290	M	M	1	8	17	290

11	83	64	74	1	0	9	0.00	0.0	0	5.2	14	210	M	M	1	18	18	200
12	84	66	75	2	0	10	0.00	0.0	0	5.3	12	310	M	M	3	8	16	200
13	74	65	70	-3	0	5	0.00	0.0	0	5.6	12	190	M	M	6	18	15	190
14	85	65	75	2	0	10	0.00	0.0	0	4.9	12	310	M	M	4	8	16	290
15	85	65	75	2	0	10	0.00	0.0	0	4.1	13	190	M	M	4	18	19	170
16	77	64	71	-2	0	6	0.00	0.0	0			130	M	M	4	18	17	220
17	74	68	71	-3	0	6	0.00	0.0	0	6.8	13	150	M	M	6		M	M
18	82	65	74	0	0	9	0.00	0.0	0	5.7	13	290	M	M	4		19	290
19	80	65	73	-1	0	8	0.00	0.0	0	6.1	15	310	M	M	3		18	300
20	83	67	75	1	0	10	0.00	0.0	0			300	M	M	4		23	280
21	85	65	75	1	0		0.00	0.0	0			290	M	M	0			320
22	84	66	75	1	0	10	0.00	0.0	0	4.5	13	300	M	M	2		16	210
23	96	70	83	9	0	18	T	0.0	0			290	M	M	0		23	290
24	99	73	86	12	0	21	0.00	0.0	0			150	M	M	0			160
25	97	73	85	11	0	20	0.01	0.0	0	5.8	15	290	M	M	0		18	280
26	93	72	83	9	0	18	0.00	0.0	0	5.8	14	290	M	M	0	8	18	190
27	93	70	82	8	0	17	0.00	0.0	0			310	M	M	0		18	300
28	79	67	73	-1	0	8	0.00	0.0	0			200	M	M	0		17	210
29	83	67	75	1	0	10	0.00	0.0	0	4.5	12	180	M	M	4		16	160
30	78	68	73	-1	0	8	0.00	0.0	0	6.5	14	180	M	M	4		17	200
31	85	68	77	3	0	12	0.00	0.0	0	5.9	14	300	M	M	4	8	16	300
===	====	====	====	====	====	====	=====	=====	=====	====	===:	=====	=====	====	====	:	======	====
SM	2564	205	8		0	303	0.01		0.0 1	83.0			M		94			
===	====	====	====	====	====	====		=====	=====	====	===:	====		====	====	===:	======	====
AV	82.7	66.	4							5.9	FAS	STST	M	M	3		MAX (MPI	(F.
								MISC	!	>	18	M					23 I	M
===	====	====	====	====	====	====		=====	=====	====	===:	====		====	====	:	======	====

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

STATION: LONG BEACH AIRPORT CA

MONTH: JULY YEAR: 2019

LATITUDE: 33 49 N

LONGITUDE: 118 9 W

[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 74.6 DPTR FM NORMAL: 1.3 HIGHEST: 99 ON 24 LOWEST: 63 ON 1		<pre>2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER</pre>
	TOTAL MONTH: 0.0 INCH	5 = HAIL
	GRTST 24HR 0.0	6 = FREEZING RAIN OR DRIZZLE
	GRTST DEPTH: 0	7 = DUSTSTORM OR SANDSTORM:
		VSBY 1/2 MILE OR LESS
		8 = SMOKE OR HAZE
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH]	9 = BLOWING SNOW
		X = TORNADO
	0.01 INCH OR MORE: 1	
MAX 90 OR ABOVE: 5	0.10 INCH OR MORE: 0	
MIN 32 OR BELOW: 0	0.50 INCH OR MORE: 0	
MIN 0 OR BELOW: 0	1.00 INCH OR MORE: 0	
[HDD (BASE 65)]		
TOTAL THIS MO. 0	CLEAR (SCALE 0-3) 14	
DPTR FM NORMAL 0		
TOTAL FM JUL 1 0		
DPTR FM NORMAL 0	,	
[CDD (BASE 65)]		
TOTAL THIS MO. 303		
DPTR FM NORMAL 49	[PRESSURE DATA]	
	HIGHEST SLP 30.06 ON 10	
	LOWEST SLP 29.77 ON 12	
[REMARKS]		

[REMARKS]

#FINAL-07-19#

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000 CXUS56 KLOX 020337 CF6LGB PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: AUGUST
YEAR: 2019
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

7	TEMPI	ERATU	JRE I	IN F	:	:	:PCPN:		SNOW:	WIN	ID	:	SUNS	SHINE	: SKY	Y	:PK V	NND
1	2	3	4	5	==== бА	==== 6B	7	8	===== 9 12Z	==== 10 AVG	=== 11 MX	==== 12 2MIN	13	14	15	==== 16	17	18
DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	DPTH	SPD	SPD	DIR	MIN	PSBL	S-S	WX	SPD	DR
==:	====:	====	====	====:	====	====	=====	====:	=====	====	:===	====:	====	=====	====	====	=====	====
1	87	66	77	3	0	12	0.00	0.0	0	5.2	15	300	M	M	2	8	18	290
2	91	66	79	5	0	14	0.00	0.0	0	5.3	13	320	M	M	0		17	190
3	87	68	78	4	0	13	0.00	0.0	0	4.2	12	210	M	M	2	8	15	180
4	87	67	77	3	0	12	0.00	0.0	0	5.2	13	300	M	M	2	8	16	300
5	88	66	77	3	0	12	0.00	0.0	0	5.8	17	300	M	M	2	18	21	290
6	90	67	79	5	0	14	0.00	0.0	0	6.4	16	300	M	M	3		20	310

8 86 66 76 2 0 11 0.00 0.0 0.5.4 13 300 M M 3 8 15 280 10 82 65 74 0 0 9 9.00 0.0 0.5.6 13 290 M M 3 8 15 280 11 79 65 72 -2 0 7 0.00 0.0 0 5.0 13 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 3 18 15 320 14 89 64 77 3 0 12 0.00 0.0 0 5.4 13 300 M M 4 18 16 300 15 89 64 77 3 0 12 0.00 0.0 0 5.4 13 310 M M 4 18 16 300 16 78 64 77 3 0 12 0.00 0.0 0 5.4 13 310 M M 4 18 16 300 16 78 64 77 3 0 0 0 0.0 0 5.4 13 310 M M 4 18 16 300 16 78 64 75 1 0 10 0.00 0.0 0 5.8 12 180 M M 5 8 16 180 17 77 66 72 -2 0 7 0.00 0.0 0 5.8 12 180 M M 6 16 210 18 82 67 75 1 0 10 0.00 0.0 0 5.6 17 290 M M 3 19 290 20 88 64 76 2 0 11 0.00 0.0 0 5.6 17 290 M M 3 19 290 20 88 64 76 2 0 11 0.00 0.0 0 5.6 17 290 M M 3 19 290 21 92 65 79 5 0 14 0.00 0.0 0 5.7 14 300 M M 0 17 190 21 92 65 79 5 0 14 0.00 0.0 0 5.7 14 300 M M 0 17 290 21 92 65 79 5 0 14 0.00 0.0 0 5.7 14 300 M M 0 16 310 23 77 69 73 -1 0 8 0.00 0.0 0 6.9 13 210 M M 5 18 17 150 23 77 69 73 -1 0 8 0.00 0.0 0 6.9 13 210 M M 5 18 17 150 23 77 69 73 -1 0 8 0.00 0.0 0 6.9 13 210 M M 0 16 310 25 93 69 81 7 0 16 0.00 0.0 0 0 4.9 15 310 M M 0 16 310 26 89 70 80 6 0 15 0.00 0.0 0 4.9 12 310 M M 0 14 200 27 83 70 77 3 0 16 0.00 0.0 0 5.9 16 310 M M 0 12 15 170 28 79 71 75 1 0 10 0.00 0.0 0 5.9 16 380 M M 0 1 19 300 31 93 69 81 7 0 16 0.00 0.0 0 5.9 16 380 M M 0 1 19 300 31 93 69 81 7 0 16 0.00 0.0 0 5.9 16 380 M M 0 0 19 300 31 93 69 81 7 0 16 0.00 0.0 0 5.9 16 380 M M 0 0 19 300 31 93 69 81 7 0 16 0.00 0.0 0 5.9 16 380 M M 0 0 19 300 31 93 69 81 7 0 16 0.00 0.0 0 5.5 15 300 M M 1 8 17 300	===	====	====	====	====	====	====	=====	=====		- # ====:	/ ===:	====	=====	====	====	# ===:		==
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.00 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.00 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 170 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 14 89 64 76 3 0 12 0.00 0.0 0 5.8 14 300 M M <t< td=""><td>AV</td><td>85.5</td><td>66.</td><td>8</td><td></td><td></td><td></td><td></td><td>MTSO</td><td>·</td><td></td><td></td><td></td><td>M</td><td>M</td><td>2</td><td>#</td><td>•</td><td>,</td></t<>	AV	85.5	66.	8					MTSO	·				M	M	2	#	•	,
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 16 200 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.8 14 300 M M 4 18 16 200 <td>SM ===</td> <td>2650 ====</td> <td>207 ====</td> <td>1 ====</td> <td>====</td> <td>0 ====</td> <td>353 ====</td> <td>0.00</td> <td>====</td> <td>0.0 1</td> <td>68.6 ====</td> <td></td> <td>====</td> <td>M =====</td> <td>====</td> <td>75 ====</td> <td>===</td> <td>=====</td> <td>====</td>	SM ===	2650 ====	207 ====	1 ====	====	0 ====	353 ====	0.00	====	0.0 1	68.6 ====		====	M =====	====	75 ====	===	=====	====
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.00 0 5.6 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 4 18 16 200 14 89 64 77 3 0 12 0.00 0.0 0 5.4 13 310	===	====	====	====	====	====	====	=====	=====	=====	====	===:	====	=====	====	====	===	=====	=====
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.00 0 5.6 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 4 18 16 200 14 89 64 77 3 0 12 0.00 0.0 0 5.4 13 310		-		_		-				_						_	8		
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 4 18 16 200 14 89 64 77 3 0 12 0.00 0.0 0 5.8 14 33 <t< td=""><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>			_			_				_						_			
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 4 18 16 200 14 89 64 77 3 0 12 0.00 0.0 0 5.8 12 180														= =					
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 3 18 15 320 14 89 64 77 3 0 12 0.00 0.0 0 5.8 14 300						_				_									
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.8 14 300 <						_				_						_			
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 170 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 4 18 16 200 14 89 64 77 3 0 12 0.00 0.0 0 5.8 14 300 M <						_								= =		_			
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.4 13 300 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.8 14 300 <						_				_						_			
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.00 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.8 14 300						_				_			_						
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 170 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 3 18 15 320 14 89 64 77 3 0 12 0.00 0.0 0 5.8 14 300 M <						_				_							Т8		
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 <		-				_										_	1 0		
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.8 14 300 <			-	-		_				_				= =		_			
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.8 14 300 <	_	_					_			_				= =					
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.00 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 17 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.8 14 300 <		82	67	_		0	10	0.00	0.0	0			300	M	M	_			
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.8 14 300 <			66	72	-2	0			0.0	0				M	M	6			
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 <	16	78	64	71	-3	0	6	0.00	0.0	0	5.8	12	180	M	M	5	8	1	6 180
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200 13 88 64 76 2 0 11 0.00 0.0 0 5.4 13 300 <	15	89	64	77	3	0	12	0.00	0.0	0	5.4	13	310	M	M	4	18	1	6 300
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200 12 79 65 72 -2 0 7 0.00 0.0 0 5.1 12 170 M M 4 18 16 200	14	89	64	77	3	0	12	0.00	0.0	0	5.8	14	300	M	M	4	18	1	6 300
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.00 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170 11 79 65 72 -2 0 7 0.00 0.0 0 5.9 12 290 M M 2 18 16 200	13	88	64	76	2	0	11	0.00	0.0	0	5.4	13	300	M	M	3	18	1	5 320
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280 10 82 64 73 -1 0 8 0.00 0.0 0 5.0 13 290 M M 2 18 170		_				0				0				M	M				
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300 9 82 65 74 0 0 9 0.00 0.0 0 5.6 13 290 M M 3 8 15 280	_		-		_	0				-				= =			18		
8 86 66 76 2 0 11 0.00 0.0 0 5.4 13 300 M M 5 8 16 300					_		_							= =			O		
						_				-				= =		_			
	7 2	82 86	67 66	75 76	1	0			0.0	0				M	M	5 5	Ω		

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

DPTR FM NORMAL 0

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

STATION: LONG BEACH AIRPORT CA

MONTH: AUGUST YEAR: 2019

LATITUDE: 33 49 N LONGITUDE: 118 9 W

	HONGIIOD	DE TIO D W
[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
DPTR FM NORMAL: 1.8	SNOW, ICE PELLETS, HAIL TOTAL MONTH: 0.0 INCH	<pre>2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER 4 = ICE PELLETS 5 = HAIL 6 = FREEZING RAIN OR DRIZZLE</pre>
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH]	
MAX 32 OR BELOW: 0	0.01 INCH OR MORE: 0	
MAX 90 OR ABOVE: 8	0.10 INCH OR MORE: 0	
MIN 32 OR BELOW: 0	0.50 INCH OR MORE: 0	
MIN 0 OR BELOW: 0	1.00 INCH OR MORE: 0	
	CLEAR (SCALE 0-3) 17 PTCLDY (SCALE 4-7) 14	
TOTAL FM JUL 1 0	CLOUDY (SCALE 8-10) 0	

[CDD (BASE 65)]
TOTAL THIS MO. 353
DPTR FM NORMAL 63 [PRESSURE DATA]
TOTAL FM JAN 1 842 HIGHEST SLP M ON M
DPTR FM NORMAL 74 LOWEST SLP 29.69 ON 22

[REMARKS]
#FINAL-08-19#

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

191 CXUS56 KLOX 091155 CF6LGB PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: SEPTEMBER

YEAR: 2019
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

r	TEMPI	ERATU	JRE I	IN F	:	:	PCPN:		SNOW:	MIN	1D		SUNS	SHINE	: SK	Υ 	:PK 1	WND
1	2	3	4	5	6A	6B	7	8	9 12Z	 10 AVG	 11 MX	12 2MIN	13	14	15	16	17	18
DY	MAX	MIN	AVG	DEP	HDD	CDD	WTR	SNW	DPTH	SPD	SPD	DIR	MIN	PSBL	S-S	WX	SPD	DR
==:	====:			====	====:	=====	=====	====:	=====	=====	===	====	=====	=====	====	=====	:====:	====
1	80	67	74	0	0	9	0.00	0.0	0	5.0	14	180	M	M	4	18	17	190
2	91	70	81	7	0	16	0.00	0.0	0	4.6	12	200	M	M	0		16	150
3	95	74	85	11	0	20	0.00	0.0	0	5.3	3 14	300	M	M	0		17	290
4	98	74	86	12	0	21	0.00	0.0	0	5.5	20	160	M	M	0		27	160
5	94	73	84	10	0	19	0.00	0.0	0	5.2	12	300	M	M	0	8	16	190
6	93	72	83	9	0	18	0.00	0.0	0	4.3	3 16	300	M	M	1	18	19	300

						0.00						M M		21 300 17 200
SM	720	56	 4 	 0	125	0.00		0.0	40.5	 	М 		6	
AV	90.0	70.	 5 ====	 		.====	MISC]		STST M	M	M .====	1	MAX(MPH) 27 M

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6) , PAGE 2

STATION: LONG BEACH AIRPORT CA

MONTH: SEPTEMBER

YEAR: 2019

LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA]	[PRECIPITATION DATA]	SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 80.3 DPTR FM NORMAL: 6.2 HIGHEST: 98 ON 4 LOWEST: 65 ON 8	TOTAL FOR MONTH: 0.00 DPTR FM NORMAL: -0.01 GRTST 24HR 0.00 ON 8-8	<pre>1 = FOG OR MIST 2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS 3 = THUNDER</pre>
EGWEDT OF ON O	SNOW, ICE PELLETS, HAIL TOTAL MONTH: 0.0 INCH GRTST 24HR 0.0	4 = ICE PELLETS 5 = HAIL 6 = FREEZING RAIN OR DRIZZLE
	GRTST DEPTH: 0	7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS
[NO. OF DAYS WITH]	[WEATHER - DAYS WITH]	8 = SMOKE OR HAZE 9 = BLOWING SNOW

X = TORNADO

MAX 32 OR BELOW:	0	0.01 INCH OR MORE: 0
MAX 90 OR ABOVE:	6	0.10 INCH OR MORE: 0
MIN 32 OR BELOW:	0	0.50 INCH OR MORE: 0
MIN 0 OR BELOW:	0	1.00 INCH OR MORE: 0
[HDD (BASE 65)]		
TOTAL THIS MO.	0	CLEAR (SCALE 0-3) 7
DPTR FM NORMAL	0	PTCLDY (SCALE 4-7) 1
TOTAL FM JUL 1	0	CLOUDY (SCALE 8-10) 0
DPTR FM NORMAL	0	
[CDD (BASE 65)] TOTAL THIS MO.	125	
DPTR FM NORMAL	53	[PRESSURE DATA]
TOTAL FM JAN 1	967	HIGHEST SLP M ON M
DPTR FM NORMAL	127	LOWEST SLP 29.75 ON 4

[REMARKS]

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

528
CXUS56 KLOX 011655
CF6LGB
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

-	TEMPERATURE IN F:						PCPN:		SNOW:	WIN	ID		:SUNS	SHINE	: SK		:PK W	IND
1	2	3	4	5	6A	6B	7	8	9 12Z	10 AVG	11 MX	====: 12 2MTN	13	14	15	16		18
DY	MAX	MIN	AVG	DEP	HDD		WTR		DPTH	SPD	SPD	DIR	MIN	PSBL	S-S		SPD	DR
1	75	57	66	-4	0		0.00	0.0	0			310	М	М	1		_	230
2	84	58	71	1	0	_	0.00	0.0	0			290	М	М	0		-	300
3	78	58	68	-2	0	_	0.00	0.0	0			300	М	М	0		-	310
4	78	57	68	-2	0		0.00	0.0	0			300	М	М	0		_	190
5	83	58	71	1	0	_	0.00	0.0	0			300	М	М	0			300
6	89	58	74	5	0		0.00	0.0	0			310	М	М	0			310
7	88	60	74	5	0		0.00	0.0	0		_	310	М	М	0	8	_	280
8	78	59	69	0	0		0.00	0.0	0			310	М	М	0	128		210
9	73	63	68	-1	0	_	0.00	0.0	0		-	180	М	М	8			180
10	81	66	74	5	0		0.00	0.0	0			100	М	М	3		19	90
11	91	57	74	5	0		0.00	0.0	0		18	80	М	M	0		23	80
12	86	58	72	4	0		0.00	0.0	0			290	М	M	0			300
13	74	57	66	-2	0		0.00	0.0	0			200	М	М	0			170
14	75	61	68	0	0	_	0.00	0.0	0			300	М	М	2	4.0		220
15	86	58	72	4	0		0.00	0.0	0			290	М	М	0	18		290
16	91	60	76	8	0		0.00	0.0	0			310	М	М	1	18	M	М
17	79	64	72	4	0	-	0.00	0.0	М	4.6		М	М	М	6	18	M	M
18	80	60	70	2	0	_	0.00	0.0	М			300	М	М	1			290
19	79	57	68	1	0		0.00	0.0	0			200	М	М	0	10		180
20	90	59	75	8	0		0.00	0.0	0			190	М	М		18		200
21	96	62	79	12	0		0.00	0.0	0			290	М	М	0			290
22 23	99	61 61	80	13	0		0.00	0.0	0			290 210	М	М	0	0		290 200
23	87 99	60	74 80	7 14	0		0.00 0.00	0.0	0	2.6		110	M	М	0	8		100
25	98	66	82	16	0 0		0.00	0.0	0 0			300	M M	M M	0 0		_	300
26	86	60	73	7	0		0.00	0.0	0		_	150	M	M	1			170
27	71	61	66	0	0	_	0.00	0.0	0			160	M	M	8		_	150
28	81	54	68	2	0		0.00	0.0	0		_	280	M	M	0			280
29	71	53	62	-4	3		0.00	0.0	0			180	M	M	0			190
30	77	53	65	-4	0	_	0.00	0.0	0		25	80	M	M	_	8	30	80
31	83	50	67	2	0		0.00	0.0	0			300	М	M	0	8	16	60
===					====			====	=====	====	===	====	====	-====	====	====	======	===
SM	2586		26 =====			200	0.00		0.0) 		M		32			
AV	83.4							=	===		-==	STST	==== М	M	1	_===	MAX(MPH	-== I)

```
MISC ---> # 25 80
```

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6), PAGE 2

STATION: LONG BEACH AIRPORT CA

OCTOBER MONTH: YEAR: 2019 LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA] [PRECIPITATION DATA] SYMBOLS USED IN COLUMN 16

AVERAGE MONTHLY: 71.2 TOTAL FOR MONTH: 0.00 DPTR FM NORMAL: 3.5 DPTR FM NORMAL: -0.63

99 ON 24,22 GRTST 24HR 0.00 ON 31-31 HIGHEST:

LOWEST: 50 ON 31

> SNOW, ICE PELLETS, HAIL TOTAL MONTH: GRTST 24HR 0.0 GRTST DEPTH: 0

0.0 INCH

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0.01 INCH OR MORE: 0 MAX 90 OR ABOVE: 7 0.10 INCH OR MORE: 0 MIN 32 OR BELOW: 0 0.50 INCH OR MORE: 0 MIN 0 OR BELOW: 1.00 INCH OR MORE: 0

[HDD (BASE 65)]

TOTAL THIS MO. 3 CLEAR (SCALE 0-3) 28 DPTR FM NORMAL PTCLDY (SCALE 4-7) -17 3 CLOUDY (SCALE 8-10) TOTAL FM JUL 1 3 DPTR FM NORMAL -18

[CDD (BASE 65)]

TOTAL THIS MO. 200 DPTR FM NORMAL 95 [PRESSURE DATA] TOTAL FM JAN 1 1378 HIGHEST SLP M ON M DPTR FM NORMAL LOWEST SLP 29.69 ON M 274

[REMARKS] #FINAL-10-19# 1 = FOG OR MIST

2 = FOG REDUCING VISIBILITY TO 1/4 MILE OR LESS

3 = THUNDER4 = ICE PELLETS

5 = HAIL

6 = FREEZING RAIN OR DRIZZLE 7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS

8 = SMOKE OR HAZE 9 = BLOWING SNOW X = TORNADO

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000
CXUS56 KLOX 020658
CF6LGB
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: NOVEMBER
YEAR: 2019
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

	ГЕМРЕ						:PCPN:		SNOW:	WIN				SHINE			:PK	WND
1	2	3	4	5	6A	6B	7	8	9 12Z	10 AVG	11	12	13	14	15	16		18
DY	MAX				HDD		WTR		DPTH	SPD	SPD	DIR					SPD	DR DR
1	84	50	67	2	0		0.00	0.0	0			300	М	М	0		_	3 3 9 0
2	85	50	68	3	0	_	0.00	0.0	0			290	М	М		8		1 300
3	77	50	64	0	1	_	0.00	0.0	0			310	М	М		128		2 180
4	84	50	67	3	0		0.00	0.0	0			290	М	М		128		5 290
5	78	51	65	1	0		0.00	0.0	0			310	М	М		128		300
6	68	54	61	-3	4		0.00	0.0	0	2.8		170	М	М		128		L 180
7	75	56	66	2	0		0.00	0.0	0			300	М	М		18		300
8	86	53	70	7	0	_	0.00	0.0	0			300	М	М	_	18		1 310
9	90	54	72	9	0		0.00	0.0	0			280	М	М	0			L 290
10	69	59	64	1	1	_	0.00	0.0	0	4.1	_	230	М	М	_	18		2 140
11	68	58	63	0	2	_	0.00	0.0	0		_	200	М	М	_	18		3 200
12	73	58	66	4	0		0.00	0.0	0			300	М	М		18	_	300
13	70	57	64	2	1	_	0.00	0.0	0		_	290	М	М		18		290
14	71	54	63	1	2	_	0.00	0.0	0			300	М	М	_	18		310
15	70	54	62	0	3		0.00	0.0	0			310	М	М	_	18		310
16	79	51	65	4	0		0.00	0.0	0			310	М	М		128		3 3 2 0
17	93	53	73	12	0		0.00	0.0	0			300	М	М		12	16	-
18	92	56	74	13	0		0.00	0.0	0			290	М	М	0	_		290
19	75	58	67	7	0	2	Т	0.0	0			160	М	М		3		7 150
20	62	52	57	-3	8		0.38	0.0	0		_	200	М	М		138	-	200
21	65	51	58	-2	7	0	T	0.0	0	3.5		180	М	М	4		_	3 170
22	70	50	60	0	5	_	0.00	0.0	0			300	М	М	0			1 300
23	77	53	65	5	0	_	0.00	0.0	0			290	М	М	0			7 290
24	76	52	64	5	1	_	0.00	0.0	0			290	М	М	0			290
25	65	47	56	-3	9		0.00	0.0	0			140	М	М	3	_	19	
26	67	49	58	-1	7		0.00	0.0	0			290	М	М		1	_	290
27	58	50	54	-5	11		0.18	0.0	0			290	М	М	7		_	300
28	51	45		-10	17		2.18	М	0		20	50	М	М	_	18	24	
29	58	41	50	-8	15		0.10	М	0			290	М	М		1		290
30	59	43	51	-7	14		0.02	М	0	2.7	_	340	М	М		1	11	
	2195				108	40	2.86	===:	0.0)		М	=====	93	====		:====
==: ^\/	 73.2	====	-===: 0	====	====	====	=====	====:		-=== o c		====: STST	==== M	===== M	==== 3		MAY/M	:====
ΑV	/3.2	. 52.	Ø					мтс	2				141	M	3	#	MAX (MF	•
								MT20		-> Ŧ	- 21	290				#	29 29	שי

NOTES:

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6), PAGE 2

STATION: LONG BEACH AIRPORT CA

1 = FOG OR MIST

4 = ICE PELLETS

8 = SMOKE OR HAZE

9 = BLOWING SNOW X = TORNADO

3 = THUNDER

5 = HAIL

2 = FOG REDUCING VISIBILITY

TO 1/4 MILE OR LESS

6 = FREEZING RAIN OR DRIZZLE

VSBY 1/2 MILE OR LESS

7 = DUSTSTORM OR SANDSTORM:

MONTH: NOVEMBER
YEAR: 2019
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

TEMPERATURE DATA	[PRECIPITATION DA	ATA]	SYMBOLS	USED	ΙN	COLUMN	16

AVERAGE MONTHLY: 62.6 TOTAL FOR MONTH: 2.86
DPTR FM NORMAL: 1.2 DPTR FM NORMAL: 1.86
HIGHEST: 93 ON 17 GRTST 24HR 2.18 ON 28-28

LOWEST: 41 ON 29

SNOW, ICE PELLETS, HAIL TOTAL MONTH: 0.0 INCH GRTST 24HR 0.0

GRTST DEPTH: 0

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0 0.01 INCH OR MORE: 5
MAX 90 OR ABOVE: 3 0.10 INCH OR MORE: 4
MIN 32 OR BELOW: 0 0.50 INCH OR MORE: 1
MIN 0 OR BELOW: 0 1.00 INCH OR MORE: 1

[HDD (BASE 65)]

TOTAL THIS MO. 108 CLEAR (SCALE 0-3) 17
DPTR FM NORMAL -20 PTCLDY (SCALE 4-7) 11
TOTAL FM JUL 1 111 CLOUDY (SCALE 8-10) 2

DPTR FM NORMAL -38

[CDD (BASE 65)]
TOTAL THIS MO. 40
DPTR FM NORMAL 19

PTR FM NORMAL 19 [PRESSURE DATA]

TOTAL FM JAN 1 1418 HIGHEST SLP 30.20 ON 30 DPTR FM NORMAL 293 LOWEST SLP 29.53 ON 20

[REMARKS] #FINAL-11-19#

These data are preliminary and have not undergone final quality control by the National Climatic Data Center (NCDC). Therefore, these data are subject to revision. Final and certified climate data can be accessed at the NCDC - http://www.ncdc.noaa.gov.

WFO Monthly/Daily Climate Data

000
CXUS56 KLOX 011655
CF6LGB
PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6)

STATION: LONG BEACH AIRPORT CA

MONTH: DECEMBER
YEAR: 2019
LATITUDE: 33 49 N
LONGITUDE: 118 9 W

	ТЕМРІ						:PCPN:		SNOW:	WIN				SHINE			:PK W	IND
1	2	3	4	5	6A	6B	7	8	9 12Z	10	11	==== 12 2MIN	13	14	15	16	5 17	18
	MAX		_			_	WTR		DPTH	SPD	SPD	DIR					SPD	
1 2	63 69	49 46	56 58	-2 0	9 7	_	0.00	0.0	0 0	1.9		310 300	M M	M M	1 0			290 300
3	64	51	58	1	7	0	0.00 T	0.0	0	1.4	_	220	M	M		8		200
4	63	53	58	1	7	_	0.82	0.0	0			330	M	М		1	_	150
5	67	49	58	1	7	_	0.00	0.0	0	2.1		310	M	М		12	_	230
6	65	50	58	1	7	0		0.0	0	3.1		120	М	М	4			120
7	67	59	63	6	2	0	Т	0.0	0	2.9	9	140	М	М	9		11	190
8	65	56	61	4	4	0	0.03	0.0	0	4.3	3 14	290	М	М	7	18	19	230
9	67	50	59	3	6	0	0.00	0.0	0	1.7	7 9	130	М	М	3	128	3 11	200
10	66	48	57	1	8	0	0.00	0.0	0	1.4	8	200	М	М	1	1	11	200
11	66	46	56	0	9	0	0.00	0.0	0	2.9	10	300	М	М	1	128	3 13	300
12	69	50	60	4	5	0	0.00	0.0	0	1.8	8	180	М	М	0	18	10	150
13	66	50	58	2	7	0	0.00	0.0	0	2.2	10	310	М	М	5	128	3 12	180
14	65	51	58	2	7	0	Т	0.0	0		_	260	М	М	7	18	24	260
15	65	47	56	0	9	0	0.00	0.0	0			320	М	М	0			310
16	70	43	57	1	8	_	0.00	0.0	0		18	80	М	М	0		27	90
17	69	42	56	0	9	_	0.00	0.0	0		22	80	М	М	0		32	60
18	64	39	52	-4	13	_	0.00	0.0	0			290	М	М	1			290
19	67	40	54	-2	11		0.00	0.0	0	1.2		310	М	М	0			290
20	76	45	61	5	4		0.00	0.0	0			330	М	М	0			330
21	71	47	59	3	6		0.00	0.0	0	1.6		200	М	М	0		-	120
22	64	48	56	0	9	_	0.24	М	0		16	40	М	М	_	1	19	40
23	56	48	52	-4	13	_	1.28	М	0		18	80	М	М	9	1	25	80
24	60	44	52	-4	13	_	0.00	0.0	0			260	М	М		1		260
25	59	43	51	-5	14	_	1.03	М	0		_	110	М	М	_	13	_	160
26	55	45	50	-6	15	_	1.14	М	0		25	50	М	М	_	1	32	50
27	60	40	50	-6	15	_	0.00	0.0	0			200	М	М	0	1		200
28 29	60 60	42 43	51 52	-5 -4	14 13	_	0.00	0.0	0 0	2.6		180 200	M	M M	2 0	18	_	160 200
30	64	49	52 57	-4 1	13	_	0.00	0.0	0		_	120	M M	M M	4	10	_	110
31	73	49	60	4	5	_	0.00	0.0	0	2.2		240	M	M	1		13	50
===	====		====		====			====	=====		===:	====	====			====	:======	===
SM	201				271	0	4.63		0.0				M		85			
AV	65.6			=:	=	=	= = :	==:	==			STST	==== М	M	3	==	MAX(MPH	= I)

```
MISC ----> # 26 320
```

LAST OF SEVERAL OCCURRENCES

COLUMN 17 PEAK WIND IN M.P.H.

PRELIMINARY LOCAL CLIMATOLOGICAL DATA (WS FORM: F-6), PAGE 2

STATION: LONG BEACH AIRPORT CA

DECEMBER MONTH: YEAR: 2019 LATITUDE: 33 49 N LONGITUDE: 118 9 W

[TEMPERATURE DATA]	[PRECIPITATION DATA	.]	SYMBOLS USED IN COLUMN 16
AVERAGE MONTHLY: 56.0	TOTAL FOR MONTH:	4.63	1 = FOG OR MIST
DPTR FM NORMAL: -0.3	DPTR FM NORMAL:	2.68	2 = FOG REDUCTNG VISIBILIT

HIGHEST: 76 ON 20 LOWEST: 39 ON 18

GRTST 24HR 0.0 0

SNOW, ICE PELLETS, HAIL TOTAL MONTH: 0.0 INCH

GRTST DEPTH:

[NO. OF DAYS WITH] [WEATHER - DAYS WITH]

MAX 32 OR BELOW: 0 0.01 INCH OR MORE: 7 MAX 90 OR ABOVE: 0.10 INCH OR MORE: 5 MIN 32 OR BELOW: 0.50 INCH OR MORE: 0 4 MIN Ø OR BELOW: 1.00 INCH OR MORE: 3

[HDD (BASE 65)]

CLEAR (SCALE 0-3) 19 TOTAL THIS MO. 271 DPTR FM NORMAL PTCLDY (SCALE 4-7) 10 0 TOTAL FM JUL 1 CLOUDY (SCALE 8-10) 2 382 DPTR FM NORMAL -38

[CDD (BASE 65)] TOTAL THIS MO. 0

DPTR FM NORMAL [PRESSURE DATA] -1

TOTAL FM JAN 1 1418 HIGHEST SLP 30.27 ON 17 DPTR FM NORMAL 292 LOWEST SLP 29.73 ON 26

[REMARKS] #FINAL-12-19# GRTST 24HR 1.28 ON 23-23 TO 1/4 MILE OR LESS

3 = THUNDER4 = ICE PELLETS

5 = HAIL

6 = FREEZING RAIN OR DRIZZLE 7 = DUSTSTORM OR SANDSTORM: VSBY 1/2 MILE OR LESS

8 = SMOKE OR HAZE 9 = BLOWING SNOW X = TORNADO

Dominguez Channel Estuary September 2019 Sediment Monitoring Report

Prepared for:

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations 1801 East Sepulveda Boulevard Carson, CA 90745

Prepared by:

WGR Southwest, Inc. 11021 Winners Circle, Suite 101 Los Alamitos, CA 90720

Date:

November 1, 2019

TESORO REFINING & MARKETING COMPANY LLC LOS ANGELES REFINERY – CARSON OPERATIONS DOMINGUEZ CHANNEL ESTUARY SEDIMENT MONITORING REPORT 2019

TABLE OF CONTENTS

1.0	Introduction	
2.0	Sediment Monit	oring1
3.0	Laboratory Resu	ılts2
4.0	Executive Sumn	nary2
		<u>TABLES</u>
Table 2	2.0: Sedin	nent Monitoring Field Observation and Analyses
		<u>FIGURES</u>
Figure	1: Domi	nguez Channel Estuary Sediment Monitoring Locations
		<u>ATTACHMENTS</u>
Attach	ment 1:	Sediment Monitoring Field Logs
Attach	ment 2, Table 1:	Sediment Monitoring Laboratory Result Summary Table
Attach	ment 2, Table 2:	Sediment Monitoring Particle Grain Size Summary Table
Attach	ment 3:	Sediment Monitoring Eurofins Calscience Analytical Laboratory Report
Attach	ment 4:	Sediment Monitoring Aquatic Bioassay Analytical Laboratory Report
Attach	ment 5:	Organic/Inorganic Analytical Validation Report
Attach	ment 6:	Sediment Bioassay Data Validation Report

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations Dominguez Channel Estuary September 2019 Sediment Monitoring Report Page 1 of 2

1.0 Introduction

On behalf of Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations (Tesoro LAR Carson), WGR Southwest, Inc. (WGR) conducted sediment monitoring of the Dominguez Channel Estuary in accordance with National Pollutant Discharge Elimination System Waste Discharge Requirements Permit Number CA0000680 Order Number R4-2015-0259 (WDR Permit). As required in Table E-7 of WDR Permit Attachment E, Monitoring and Reporting Program Number 5424 (MRP No. 5424), sediment monitoring is required at least once a year for all parameters and at least twice a year for Chronic Toxicity regardless of Tesoro LAR Carson discharge associated with the WDR Permit¹. Therefore, this report constitutes sediment monitoring for the first event of 2019, where the sediment samples collected were analyzed for all required parameters and all required monitoring (i.e. field observations and field analyses) was completed.

2.0 Sediment Monitoring

As shown in Figure 1, the WDR Permit designates seven sediment monitoring locations: SED-001, SED-002, SED-003, SED-004, SED-005, SED-006, and SED-007. WGR field personnel utilized an Ekman dredge and a Horiba U-50 Series Multi-Parameter Meter. According to historic Tesoro LAR Carson Sediment Monitoring Reports, samplers have been unable to collect sediment samples from SED-001 since 2003, SED-002 since 2003, SED-003 since 2009, SED-004 since 2009, and have only infrequently been able to collect sediment samples from SED-005 since 2009.

Sediment monitoring was attempted at all designated sediment monitoring locations on September 25-26, 2019. As detailed in the field logs (see Attachment 1), sediment samples and associated monitoring could only be feasibly completed at three of the seven sediment monitoring locations. Table 2.0 provides a summary of the field observations and analyses.

	Table 2.0: S	ediment Monitoring Fig	eld Observation and An	alyse	s				
		Field Observations			Fi	eld A	nalys	ses	
Sample ID	Sediment Description	Biological Matter	Pollutants	pH (SU)	Salinity (PPT)	DO (mg/L)	SC (mS/Cm)	Turbidity (NTU)	Flow
SED-001	Not Sampled	Not Sampled	Not Sampled				I	-	I
SED-002	Not Sampled	Not Sampled	Not Sampled				1	-	I
SED-003	Not Sampled	Not Sampled	Not Sampled						-

_

¹ Tesoro LAR Carson did not discharge under the WDR Permit during the 2019 calendar year.

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations Dominguez Channel Estuary September 2019 Sediment Monitoring Report Page 2 of 2

	Table 2.0: S	ediment Monitoring Fie	eld Observation and An	alyse	S				
		Field Observations			Fi	eld A	nalys	ses	
Sample ID	Sediment Description	Biological Matter	Pollutants	pH (SU)	Salinity (PPT)	DO (mg/L)	SC (mS/Cm)	Turbidity (NTU)	Flow
SED-004	Not Sampled	Not Sampled	Not Sampled		ŀ		ŀ	ŀ	
SED-005	Dark in color and some odor	Algae, sticks and grass	Some trash/debris	8.07	25.1	5.55	39.6	3.7	
SED-006	Dark in color and moderate biological odor	Rocks and twigs	Some trash/debris	7.98	23.5	5.43	37.2	1.4	
SED-007	Dark color and strong biological odor	Vegetation and sticks	Some trash/debris	7.80	21.7	4.07	34.5	13.5	

DO: Dissolved Oxygen
SC: Specific Conductance

3.0 Laboratory Results

Table 2.0 summarizes the field observations and analyses for the September 2019 sediment monitoring event. Laboratory results are summarized in Attachment 2. The Eurofins Calscience laboratory report is in Attachment 3 and the Aquatic Bioassay laboratory report is in Attachment 4. Data validation reports for these laboratory analytical reports are in Attachment 5 and Attachment 6.

4.0 Executive Summary

Receiving water sediment monitoring and analysis was conducted independent of any discharge from Tesoro LAR Carson. Pollutant concentrations demonstrated in this report are not associated with any contribution from Tesoro LAR Carson to the receiving water. There are no pollutant concentration limits associated with this type of sampling as prescribed by the WDR Permit. Receiving water sediment monitoring and analysis was completed in compliance with the WDR Permit Attachment E, MRP No. 5424. As noted in the Organic/Inorganic Analytical Validation Report and the Sediment Bioassay Data Validation Report included in Attachment 5 and 6, respectively, analytical data obtained for this sampling event was deemed acceptable. No instances of non-compliance were identified.

FIGURE 1

DOMINGUEZ CHANNEL ESTUARY SEDIMENT MONITORING LOCATIONS

Figure 1: Dominguez Channel Estuary Sediment Monitoring Locations

ATTACHMENT 1

SEDIMENT MONITORING FIELD LOGS

	WGR Southwest, Inc.	Page of					
	Field Log	Date: 9-25-2019					
Project Nan	ne: LARC Sediment Sampling Field Person						
		onnel: Joe Podviguez					
	tions/Project Discrepancies: Ly Isunny, water in channel	J					
Time	Field Notes						
700a	Pack up equipment at WGR office	, Los Alamitos, load into					
	work truck, discuss PPE and s						
£15a	Arrive SED-007 sampling locat						
0	appears to be flowing days street.	Trash along channel and					
	water is murty in wolor with t						
	Measured 9x ft from the southeast corner of the bridge northward along the pedestrian walkway - this is the						
	location of the first sampling						
	Measured from top of water ine to bottom of bridge railing						
	= 23.3 feet	1 4					
	Measured from bottom of bridge ra	iling to bottom of channel					
	= 23.3 + 12.6 = 35.9 feet						
	First sediment sample provided	some dark sediment					
	containing biological matter of	and residual water, office.					
	Third pull was mostly grass. Mon	ed 3 ft north.					
857a	Sixty pull completed. Attempted	to filians bays, ned more					
913	Sixth pull completed. Attempted Begin swenty pull of sediment with	ule simul tenesus ly					
	collecting receiving under flow.	from top of water line					
7	for Horba probe measuremen						
9:9 9	this meter nersurements: to						
	\$7 NTY, 7.19 mg/LDD; 21.7	PPt : 7.8 pH;					
	34.5 mS cm, (3.5 NTU, 4.0	7 mg/LDO; 21,7 ppt					
9320	Complete tenth pull and contrue	(illing sample containers					
944a	Finished sample collection and	deran of equipment					
9490	finished decon of equipment and	pack up for hext point					
10051	arrive SED-ODG area find appropri	hate parking and upack					
	equipment						
1015	measure from northeast corner of						
i E Y	along pedestrian walkway - 133	It to sample location					
	mensured from mid vailing of br	idgle to top of water					
	line = 24.6 feet bottom o	F chann 1 = 29.6+19=436					

WGR Southwest, Inc. Field Log Page 2 of 6 Date: 9-25-2019 Project Name: UARC Sediment Sampling Field Personnel: Amber Balliast Project Number: 021. APC. 01 Field Personnel: Joe Rodrigue 2 Field Conditions/Project Discrepancies: Cloudy I survey, water in channel

Time	Field Notes
	- SeD-ODE continued -
	Some trash along channel along we regetation
	water flowing downstream (and caresing inland suntace were
10 23 2	after some maneuvering around fencietine along
	pedestrian wakway bridge, collect first sediment
	Sample
1030g	collect water sample, again after manucuiring around
464	the fenceline
1048a	conduct Horiba measurements = 7.98 pH; 37.2 mS/cm;
50	1.4 NTU, 5.43 my/LDD, 23.5 ppt
10 50 R	on seventh drop of dredge, one of two wive snap
	fixtures (trat hold dudge open until sample collection)
90	broke off the dredge and was lost in the channel
1100	fill collection containers a sediment sample volume
	obtained before dredge mathemetion to assess next steps
	sediment is dark in color, less of an odor than SED-UUT
1 10	some biological matter, nocks and twigs
11 to a	attempt additional sample collections w/ partially
	malfunctioned deedge to check whether half of
	a trap is sufficient to collect - it was not.
	set up secondary dredge, which requires two people
	who ropes to operate the duelge and pin release.
	must thread vopes and manuever around fence line
	(much more difficult than first duedge which was
	equipped w/a hand release "messenger" on the rope
11/12 6	to snap close the trap)
1º a	failed attempt at using second dredge - pin operated by
	second person unsuccessfully released pope snapped.
	contacting the for replacement diedge and
2000	visited Home Depot for replacement parts, assumbled new

	WGR Southwest, Inc.		Page 3 of 6					
	Field Log		Date: 9-25-299					
Project Nam	e: LARC Sediment Sampling	Field Personnel: /	Amber Ballrot					
	iber: O21 APC. O1	Field Personnel:	Joe Rodriquez					
Field Condi	tions/Project Discrepancies:		,					
(bouds dissipating, sunny	, water ind	rannel					
Time		Field Notes						
	- SED-ODG continued-							
150	lonch							
1450	return to SED-ODG to to	Enish sample	collection (verified					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	with lab that volum	ne collected	prior to dredge					
	malfunction was in		9					
1500	continue sediment san	ngling efforts						
7.2	collect five sample pull	s and empt	y into remainder					
	of containers.		V					
2150	decon equipment and	move onto	rext point.					
200	arrive SED-005		V .					
4	measure from northeast corner of bridge 121 feet							
	southward to sample point							
	25.5 ff from top o		ig to top of water a					
	41.7 ft to bottom of channel (16.2+25.5=41.7)							
	some trash in channel mostly Stuck in oil boom to							
	water flowing down streams winds causing inland lipples							
	water froming down street	nds winds co	using inland lieples					
	tide lower than earlie	v in day evide	nced by wet bruks					
	myrty water, few fe	et of visi bili	ty					
2950	Start sampling sedimen							
			. algae and sticks grass					
350	after 7 attempts and or							
	to north side of bridge							
	measured 68 feet from	east side of	bridge westward					
	to you sample point		0					
	first pull provided suffice	ient sample us	lume to continue					
300	collect water for Horiba							
	31.6 mS/cm; 3.7N	TU; 5.55 m	12/2 PO, 25.1 ppt					
	successfully pulled eight	additional sa	melcollections					
350	transfer in sumple conte							
	nead to next point							

	WGR Southwest, Inc.		Page of 6						
	Field Log		Date: 9-25-2019						
Project Name	: LARC Sediment Sampling	Field Personnel:	Amber Ballot						
Project Numb	ber: 021.APC.01	Field Personnel:	Joe Podriguez						
Field Conditi	ons/Project Discrepancies:		,						
5	slightly cloudy, mostly sunn	y, water in	channel						
Time		Field Notes							
415R	SED-000 arrive								
4	water murky not much	trash, veg	etation and vocks						
	along mannel edge	, ,							
	face line similar (but in	ore complete	(shielding) to SeD-006						
	measure 88 feet from								
	northward to sample	e location							
	measured from middle of	bridge func	ce to top of water						
	line - 20-4 feet; to channel bottom ~ 36 feet								
	first two sediment sample attempts pulled up missor								
	sediment and some shells, sticks and rocks								
	moved north about 10 feet and continued								
	next two sediment sample attempts also unsuccessful								
	moved to feet south of								
ONE	next two sediment sum								
490 P	pack up equipment, dos								
-22	thank floor as no	Comples (vere laten						
523 p	arrive buck at office, dece	on all equipm	rent and fill waters						
45	end of day								
5 p	end of day								
-									
_									

	WGR Southwest, Inc.		Page 5 of 6						
	Field Log		Date: 9-26-2019						
Project Nam	e: LARC Sediment Sumpling	Field Personnel:	Λ						
	ber: O21.APC.01		Joe Rodviquez						
	ions/Project Discrepancies:		J						
do	rdy, sun rising, water	in channe	A						
Time		Field Notes							
7-00 a	Prex up equipment at	wor office	, Los Alamitos, load						
	into work truck, discus								
800 a	arrive SED-003 sam	apling locat	ion.						
	water in channel, wind causing inland ripples, actual								
	flow direction appears inland, tide appears high								
	some trask in channel, water murky, vegetation								
	and works glong changel edges								
	measured from northwest corner of bridge southward								
	106 feet to sample p								
	measured from top of 6.								
	line = 18 feet; to bottom of channel = 18+ 15.4 = 33.4								
	first sedment sample pull produced no sidinent,								
	only shells and sticks; second pull, the same								
	move 10 feet south and continue cample attempts								
	next two sediment samples unsuccessful only								
	provided sediment-coased vegetation, shells, notes, debis								
	move to feet north of original sample location and								
	continue sample atte	empts							
	next too sediment sung	res sames as	last two						
822a	pack up I decon equipment	t and move	to next sample						
	Cocation								
8tha	after some maneuvering	through proi	und private roads, find						
	the appropriate pull-off a								
	bridge due to 8-10 foot	high tence	across entirety of						
	only pedestrian walker	my Also ass.	essed channel bounts						
	and no sediment sam								
	in our onto next sample !	ocation.							
855 6	arrive & SeD-001 avea,	and priking	g prek up egoi prim						
	into wagon as sample	location is	for form available						
	parking								

	WGR Southwest, Inc.		Page 6 of 6					
	Field Log		Date: 9-26-2019					
Project Nan	ne: LARC Sediment Sampling	Field Personnel: Amber Ballot						
Project Nur		Field Personnel:	Toe Podriquez					
Field Condi	tions/Project Discrepancies:		J					
Time		Field Notes	Si aboo Aux a saidan					
	measure from sweether of	MALLIN SI AUG	ridge towards spans					
	the channel and vail	road tracks o.	each side of					
	the channel southwar	d feet	to sample location					
	measure from bridge ra	iling to top	of water line = 50 fe					
-16	measure from bridge vailing to bottom of channel = 50+36							
glo a	attempt two samples of	nd only retr	ieved minor amount					
	of shells and nocks							
	more 10 feet north and continue sampling attempts							
	two additional attempts also ansuccessful, pulled nothing							
	move 10 feet south of original sample location and							
	continue sampling attempts							
	two additional attempts proved unsuccessful pulled nothing							
7.	pack up equipment							
940	Werd back to office							
10=3	arrive office and unl	ord essents.	als, prepare for					
2-1	sample delivery							
	end of field day	tr C						
	0							

ATTACHMENT 2

SEDIMENT MONITORING LABORATORY RESULT SUMMARY TABLE AND PARTICLE GRAIN SIZE SUMMARY TABLE

Sample ID	SED-001	SED-002	SED-003	SED-004	SED-005	SED-006	SED-007	
Date Sampled	NS	NS	NS	NS	9/25/2019	9/25/2019	9/25/2019	
Time Sampled	NS	NS	NS	NS	16:00	14:00	10:00	
Total Metals								
Cadmium (EPA 6020) (mg/Kg)	NS	NS	NS	NS	ND	0.877	2.64	
Chromium (EPA 6020) (mg/Kg)	NS	NS	NS	NS	35.6	57.1	67.1	
Copper (EPA 6020) (mg/Kg)	NS	NS	NS	NS	56.5	106	164	
Lead (EPA 6020) (mg/Kg)	NS	NS	NS	NS	43.7	77.8	151	
Nickel (EPA 6020) (mg/Kg)	NS	NS	NS	NS	13.7	23.3	35.3	
Zinc (EPA 6020) (mg/Kg)	NS	NS	NS	NS	220	519	960	
Mercury (EPA 7471A) (mg/Kg)	NS	NS	NS	NS	0.165	0.0837	0.139	
Volatile/Semi-Volatile Organic Compounds								
Chlordane (EPA 8081A) (ug/Kg)	NS	NS	NS	NS	28	16	35	
DDT (EPA 8081A) (ug/Kg, sum of 4,4'-DDT, 2,4'-DDT, 4,4'-DDE, 2,4'-DDE,	NS	NS	NS	NS	41.4	29.5	25.3	
4,4'-DDD, and 2,4'-DDD)								
CBs (EPA 8082) (ug/Kg, sum of Arochlor 1016, Arochlor 1221, Arochlor		NS	NS	NS	385	450	1220	
232, Arochlor 1242, Arochlor 1248, Arochlor 1254, and Arochlor 1260)								
PAHs (EPA 8270C) (mg/Kg, sum of acenaphthene, anthracene, 1,2-		NS	NS	NS NS	1.898	2.082	39.4	
penzanthracene, 3,4-benzofluoranthene, benzo(k)fluoranthene, 1,12-								
benzoperylene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene,	NS	NS	NS	NS	1.030	2.002	33.4	
fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, and pyrene)								
Total Petroleum Hydrocarbons (EPA 8015B) (mg/Kg)	NS	NS	NS	NS	74	140	240	
Sediment Grain Size (ASTM D4464)	Refer to Attachment 2, Table 2							
Total Organic Carbon (EPA 9060A) (mg/Kg)	NS	NS	NS	NS	30,400	25,400	46,900	
Tributyltin (Krone et al.) (ug/Kg)	NS	NS	NS	NS	ND	ND	ND	
Chronic Toxicity								
Eohaustorius estuarius (NOEC in mg/L)		NS	NS	NS	100%	100%	100%	
Mytilus galloprovincialis (NOEC in mg/L)	NS	NS	NS	NS	100%	100%	100%	

NS = Not Sampled

ND = Non-Detect

NOEC = No Observed Effect Concentration

		Particle Size Distribution (Weight Percent)								
Sample ID	Mean Grain Size (mm)	Total Silt & Clay (0 - 0.0626 mm)	Clay (< 0.00391 mm)	Silt (0.00391 - 0.0625 mm)	Very Fine Sand (0.0625 - 0.125 mm)	Fine Sand (0.125 - 0.25 mm)	Medium Sand (0.25 - 0.5 mm)	Coarse Sand (0.5 - 1 mm)	Very Coarse Sand (1 - 2 mm)	Gravel (>2 mm)
SED-001	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SED-002	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SED-003	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SED-004	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SED-005	0.061	66.90	11.68	55.23	12.53	19.57	1.00	ND	ND	ND
SED-006	0.727	8.69	0.91	7.77	6.47	17.40	14.17	21.00	32.28	ND
SED-007	0.328	8.94	0.83	8.11	6.07	24.52	41.05	19.33	0.09	ND

NS = Not Sampled

ND = Non-Detect

ATTACHMENT 3

SEDIMENT MONITORING EUROFINS CALSCIENCE ANALYTICAL LABORATORY REPORT

ANALYTICAL REPORT

Eurofins Calscience LLC 7440 Lincoln Way Garden Grove, CA 92841 Tel: (714)895-5494

Laboratory Job ID: 570-8761-1

Client Project/Site: Tesoro LA Refinery

For:

WGR Southwest Inc 11021 Winners Circle Suite 101 Los Alamitos, California 90720

Attn: Amber Ballrot

Authorized for release by: 10/11/2019 5:55:47 PM

Xuan Dang, Project Manager I

(714)895-5494

xuandang@eurofinsus.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Laboratory Job ID: 570-8761-1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	9
Surrogate Summary	23
QC Sample Results	25
QC Association Summary	35
Lab Chronicle	40
Certification Summary	44
Method Summary	45
Sample Summary	46
Chain of Custody	47
Receipt Checklists	48

12

11

11

Definitions/Glossary

Client: WGR Southwest Inc

Project/Site: Tesoro LA Refinery

Job ID: 570-8761-1

Qualifiers

GC/MS Semi VOA

Qualifier Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier Qualifier Description

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable

E Result exceeded calibration range.

F1 MS and/or MSD Recovery is outside acceptance limits.

F2 MS/MSD RPD exceeds control limits

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

p The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.

X Surrogate is outside control limits

Metals

Qualifier Qualifier Description

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

F1 MS and/or MSD Recovery is outside acceptance limits.

F2 MS/MSD RPD exceeds control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

^ ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

F1 MS and/or MSD Recovery is outside acceptance limits.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Eurofins Calscience LLC

Page 3 of 48 10/11/2019

Case Narrative

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery Job ID: 570-8761-1

Job ID: 570-8761-1

Laboratory: Eurofins Calscience LLC

Narrative

Job Narrative 570-8761-1

Comments

No additional comments.

Receipt

The samples were received on 9/26/2019 12:08 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.2° C.

GC/MS Semi VOA

Method(s) 8270C SIM: The method blank for preparation batch 570-23315 and analytical batch 570-23777 contained Benzo[a]anthracene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-23256 and 570-23333 and analytical batch 570-24191 were outside control limits.

Due to the additional level of 4,4'-DDE, 4,4'-DDT, and 4,4'-DDD present in the spiked samples, the concentration of 4,4'-DDE, 4,4'-DDT, and 4,4'-DDD in the MS/MSD was above the instrument calibration range. The associated laboratory control sample (LCS) recovery was within acceptance limits therefor, the data have been reported and qualified.

Method(s) 8081A: Surrogate Tetrachloro-m-xylene recovery for the following sample was outside control limits: SED-007 (570-8761-3). Evidence of matrix interference is present; therefore, re-extraction was not performed. Surrogate was passed on 5X dilution run

Method(s) 8082: The following samples appears to contain polychlorinated biphenyls (PCBs); however, due to weathering or other environmental processes, Arolcor 1248 pattern in the sample does not closely match of the laboratory's Aroclor 1248 standard used for instrument calibration: SED-005 (570-8761-1), SED-006 (570-8761-2) and SED-007 (570-8761-3). Due to the poor match with the Aroclor standard(s), there is increased qualitative and quantitative uncertainty associated with this result.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6020: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 570-23210 and analytical batch 570-23477 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 6020: Due to the high concentration of Chromium, Copper, Lead, Zinc, the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 570-23210 and analytical batch 570-23477 could not be evaluated for accuracy and precision. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

Method(s) 6020: Due to the high concentration of Chromium, Copper, Lead, Zinc, the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 570-23210 and analytical batch 570-23477 could not be evaluated for accuracy and precision. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) 9060A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for the following sample associated with analytical batch 570-23330 were outside control limits: (570-8832-A-1), (570-8832-A-1 MS) and (570-8832-A-1 MSD). The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) D4464: Shell debris in samples may affect results.

6

9

11

12

14

15

Case Narrative

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery Job ID: 570-8761-1

Job ID: 570-8761-1 (Continued)

Laboratory: Eurofins Calscience LLC (Continued)

SED-005 (570-8761-1), SED-006 (570-8761-2) and SED-007 (570-8761-3)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

9

10

12

4

1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery Job ID: 570-8761-1

Client Sample ID: SED-005

Lab Sample ID: 570-8761-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene - DL	0.037	J	0.10	0.0067	mg/Kg	5	₩	8270C SIM	Total/NA
1,2-Benzanthracene - DL	0.13	В	0.10	0.011	mg/Kg	5	₩	8270C SIM	Total/NA
Benzo[a]pyrene - DL	0.18		0.10	0.014	mg/Kg	5	₩	8270C SIM	Total/NA
3,4-Benzofluoranthene - DL	0.24		0.10	0.015	mg/Kg	5	₩	8270C SIM	Total/NA
Benzo[k]fluoranthene - DL	0.15		0.10	0.016	mg/Kg	5	₩	8270C SIM	Total/NA
1,12-Benzoperylene - DL	0.21		0.10	0.015	mg/Kg	5	₩	8270C SIM	Total/NA
Chrysene - DL	0.24		0.10	0.0078	mg/Kg	5	₩.	8270C SIM	Total/NA
Dibenz(a,h)anthracene - DL	0.049	J	0.10	0.011	mg/Kg	5	₩	8270C SIM	Total/NA
Fluoranthene - DL	0.24		0.10	0.0097	mg/Kg	5	₩	8270C SIM	Total/NA
Fluorene - DL	0.012	J	0.10	0.0084	mg/Kg	5	ф.	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene - DL	0.12		0.10	0.013	mg/Kg	5	₩	8270C SIM	Total/NA
2-Methylnaphthalene - DL	0.016	J	0.10	0.0072	mg/Kg	5	₩	8270C SIM	Total/NA
Naphthalene - DL	0.018	J	0.10	0.0078	mg/Kg	5	ф.	8270C SIM	Total/NA
Phenanthrene - DL	0.092	J	0.10	0.0085	mg/Kg	5	☼	8270C SIM	Total/NA
Pyrene - DL	0.29		0.10	0.0075	mg/Kg	5	₩	8270C SIM	Total/NA
C23-C24	8.0	J	10	7.1	mg/Kg	1	ф.	8015B	Total/NA
C25-C28	18		10	7.1	mg/Kg	1	☼	8015B	Total/NA
C29-C32	18		10	7.1		1	₩	8015B	Total/NA
C33-C36	13		10	7.1	mg/Kg	1	₩	8015B	Total/NA
C6-C44	74		10	7.1	mg/Kg	1	₩	8015B	Total/NA
2,4'-DDD	1.3		0.99	0.18	ug/Kg	1		8081A	Total/NA
2,4'-DDE	2.2	Jp	5.0	0.42	ug/Kg	1		8081A	Total/NA
4,4'-DDD	9.9		5.0	0.53	ug/Kg	5		8081A	Total/NA
4,4'-DDE	17		5.0		ug/Kg	5		8081A	Total/NA
4,4'-DDT	11		5.0	1.5	ug/Kg	5		8081A	Total/NA
Chlordane	28		5.0	0.69	ug/Kg	1		8081A	Total/NA
Aroclor-1248	210		20	2.4		1	₩	8082	Total/NA
Aroclor-1254	91		20	2.3	ug/Kg	1	л ф	8082	Total/NA
Aroclor-1260	84		20	4.7		1	₩	8082	Total/NA
Chromium	35.6		21.0	1.23		100	₩	6020	Total/NA
Copper	56.5		10.5	1.22	mg/Kg	100		6020	Total/NA
Lead	43.7		10.5	1.44		100	₩	6020	Total/NA
Nickel	13.7		10.5	1.34	mg/Kg	100	☼	6020	Total/NA
Zinc	220		52.4	8.31	mg/Kg	100	ф	6020	Total/NA
Mercury	0.165		0.165	0.0116		1	☼	7471A	Total/NA
Carbon, Total Organic	30400	٨	1020		mg/Kg	1	₽	9060A	Total/NA
Clay(less than 0.00391 mm)	11.68		0.01	0.01		1		D4464	Total/NA
Fine Sand (0.125 to 0.25mm)	19.57		0.01	0.01		1		D4464	Total/NA
Medium Sand (0.25 to 0.5 mm)	1.00		0.01	0.01		1		D4464	Total/NA
Silt (0.00391 to 0.0625mm)	55.23		0.01	0.01		· · · · · · · · · · · · · · · · · · ·		D4464	Total/NA
Total Silt and Clay (0 to 0.0626mm)	66.90		0.01	0.01		1		D4464	Total/NA
Very Fine Sand (0.0625 to 0.125 mm)	12.53		0.01	0.01		1		D4464	Total/NA

Client Sample ID: SED-006

Lab Sample ID: 570-8761-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Anthracene - DL	0.037 J	0.14	0.0093 mg/K		8270C SIM	Total/NA
1,2-Benzanthracene - DL	0.14 B	0.14	0.015 mg/Kg	g 5 ☼	8270C SIM	Total/NA
Benzo[a]pyrene - DL	0.18	0.14	0.019 mg/K	g 5 ☆	8270C SIM	Total/NA
3,4-Benzofluoranthene - DL	0.23	0.14	0.020 mg/K	g 5 🌣	8270C SIM	Total/NA
Benzo[k]fluoranthene - DL	0.17	0.14	0.023 mg/Kg	g 5 🌣	8270C SIM	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Calscience LLC

Page 6 of 48

Job ID: 570-8761-1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

Client Sample ID: SED-006 (Continued)

Lab Sample ID: 570-8761-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,12-Benzoperylene - DL	0.19		0.14	0.020	mg/Kg		₩	8270C SIM	Total/NA
Chrysene - DL	0.27		0.14	0.011	mg/Kg	5	₩.	8270C SIM	Total/NA
Dibenz(a,h)anthracene - DL	0.045	J	0.14	0.015	mg/Kg	5	₽	8270C SIM	Total/NA
Fluoranthene - DL	0.31		0.14	0.013	mg/Kg	5	₩	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene - DL	0.11	J	0.14	0.017	mg/Kg	5		8270C SIM	Total/NA
2-Methylnaphthalene - DL	0.012	J	0.14	0.010	mg/Kg	5	₩	8270C SIM	Total/NA
Naphthalene - DL	0.027	J	0.14	0.011	mg/Kg	5	₩	8270C SIM	Total/NA
Phenanthrene - DL	0.13	J	0.14	0.012	mg/Kg	5	Ф	8270C SIM	Total/NA
Pyrene - DL	0.40		0.14	0.010	mg/Kg	5	₩	8270C SIM	Total/NA
C23-C24	14		14	9.9	mg/Kg	1	₩	8015B	Total/NA
C25-C28	34		14	9.9	mg/Kg	1	₩	8015B	Total/NA
C29-C32	37		14	9.9	mg/Kg	1	₩	8015B	Total/NA
C33-C36	28		14	9.9	mg/Kg	1	₩	8015B	Total/NA
C37-C40	15		14	9.9	mg/Kg	1	₩	8015B	Total/NA
C6-C44	140		14	9.9	mg/Kg	1	₩	8015B	Total/NA
2,4'-DDD	1.3	p	1.0	0.18	ug/Kg	1		8081A	Total/NA
2,4'-DDE	2.3	Jр	5.0	0.42	ug/Kg	1		8081A	Total/NA
4,4'-DDD	8.3		5.0	0.53	ug/Kg	5		8081A	Total/NA
4,4'-DDE	16		5.0	0.72	ug/Kg	5		8081A	Total/NA
4,4'-DDT	1.6	р	1.0	0.30	ug/Kg	1		8081A	Total/NA
Chlordane	16	Εp	5.0	0.69	ug/Kg	1		8081A	Total/NA
Aroclor-1248	210		28	3.3	ug/Kg	1	₩	8082	Total/NA
Aroclor-1254	110		28	3.2	ug/Kg	1	₩	8082	Total/NA
Aroclor-1260	130		28	6.6	ug/Kg	1	₩	8082	Total/NA
Cadmium	0.877	J	2.80	0.336	mg/Kg	20	₩	6020	Total/NA
Chromium	57.1		5.61	0.328	mg/Kg	20	₩	6020	Total/NA
Copper	106		2.80	0.325	mg/Kg	20	₩	6020	Total/NA
Lead	77.8		2.80	0.384	mg/Kg	20	₩	6020	Total/NA
Nickel	23.3		2.80	0.359	mg/Kg	20	₩	6020	Total/NA
Zinc	519		14.0	2.22	mg/Kg	20	₩	6020	Total/NA
Mercury	0.0837	J	0.238	0.0167	mg/Kg	1	₩	7471A	Total/NA
Carbon, Total Organic	25400	Λ	1400	487	mg/Kg	1	₩	9060A	Total/NA
Clay(less than 0.00391 mm)	0.91		0.01	0.01	%	1		D4464	Total/NA
Coarse Sand (0.5mm to 1mm)	21.00		0.01	0.01	%	1		D4464	Total/NA
Fine Sand (0.125 to 0.25mm)	17.40		0.01	0.01	%	1		D4464	Total/NA
Medium Sand (0.25 to 0.5 mm)	14.17		0.01	0.01	%	1		D4464	Total/NA
Silt (0.00391 to 0.0625mm)	7.77		0.01	0.01	%	1		D4464	Total/NA
Total Silt and Clay (0 to 0.0626mm)	8.69		0.01	0.01	%	1		D4464	Total/NA
Very Coarse Sand (1 to 2mm)	32.28		0.01	0.01	%	1		D4464	Total/NA
Very Fine Sand (0.0625 to 0.125 mm)	6.47		0.01	0.01	%	1		D4464	Total/NA

Client Sample ID: SED-007

Lab Sample ID: 570-8761-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene - DL	0.20	0.19	0.0096	mg/Kg		₩	8270C SIM	Total/NA
Acenaphthylene - DL	17	0.95	0.81	mg/Kg	25	₩	8270C SIM	Total/NA
Anthracene - DL	3.4	0.19	0.013	mg/Kg	5	₩	8270C SIM	Total/NA
1,2-Benzanthracene - DL	1.9 B	0.19	0.021	mg/Kg	5	₩	8270C SIM	Total/NA
Benzo[a]pyrene - DL	5.4	0.19	0.026	mg/Kg	5	₩	8270C SIM	Total/NA
3,4-Benzofluoranthene - DL	2.6	0.19	0.028	mg/Kg	5	₩	8270C SIM	Total/NA
Benzo[k]fluoranthene - DL	2.8	0.19	0.031	mg/Kg	5	₩	8270C SIM	Total/NA

This Detection Summary does not include radiochemical test results.

Page 7 of 48

Detection Summary

Client: WGR Southwest Inc Job ID: 570-8761-1 Project/Site: Tesoro LA Refinery

Client Sample ID: SED-007 (Continued)

Lab Sample ID: 570-8761-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,12-Benzoperylene - DL	1.6		0.19	0.028	mg/Kg	5	₩	8270C SIM	Total/NA
Chrysene - DL	1.8		0.19	0.015	mg/Kg	5	₩	8270C SIM	Total/NA
Dibenz(a,h)anthracene - DL	0.40		0.19	0.020	mg/Kg	5	₩	8270C SIM	Total/NA
Fluoranthene - DL	1.8		0.19	0.018	mg/Kg	5	₩	8270C SIM	Total/NA
Fluorene - DL	1.4		0.19	0.016	mg/Kg	5	₩	8270C SIM	Total/NA
Indeno[1,2,3-cd]pyrene - DL	1.1		0.19	0.024	mg/Kg	5	₩	8270C SIM	Total/NA
1-Methylnaphthalene - DL	0.17	J	0.19	0.014	mg/Kg	5	₩	8270C SIM	Total/NA
2-Methylnaphthalene - DL	0.35		0.19	0.014	mg/Kg	5	₩	8270C SIM	Total/NA
Naphthalene - DL	0.30		0.19	0.015	mg/Kg	5	₩	8270C SIM	Total/NA
Phenanthrene - DL	1.1		0.19	0.016	mg/Kg	5	₩	8270C SIM	Total/NA
Pyrene - DL	15		0.95	0.071	mg/Kg	25	₩	8270C SIM	Total/NA
C23-C24	22		19	14	mg/Kg	1	T	8015B	Total/NA
C25-C28	54		19	14	mg/Kg	1	₩	8015B	Total/NA
C29-C32	58		19	14	mg/Kg	1	₩	8015B	Total/NA
C33-C36	49		19	14	mg/Kg	1	₩	8015B	Total/NA
C37-C40	29		19	14	mg/Kg	1	₩	8015B	Total/NA
C6-C44	240		19	14	mg/Kg	1	₩	8015B	Total/NA
2,4'-DDE	2.6	Jр	5.0	0.42	ug/Kg	1		8081A	Total/NA
4,4'-DDD	6.8	p	5.0	0.53	ug/Kg	5		8081A	Total/NA
4,4'-DDE	13		5.0	0.72	ug/Kg	5		8081A	Total/NA
4,4'-DDT	2.9	р	0.99	0.30	ug/Kg	1		8081A	Total/NA
Chlordane	35	Εp	5.0	0.69	ug/Kg	1		8081A	Total/NA
Aroclor-1248	540		38	4.5	ug/Kg	1	₩	8082	Total/NA
Aroclor-1254	290		38	4.4	ug/Kg	1	₩	8082	Total/NA
Aroclor-1260	390		38	8.9	ug/Kg	1	₩	8082	Total/NA
Cadmium	2.64	J	3.87	0.464	mg/Kg	20	₩	6020	Total/NA
Chromium	67.1		7.74	0.452	mg/Kg	20	₩	6020	Total/NA
Copper	164		3.87	0.449	mg/Kg	20	₩	6020	Total/NA
Lead	151		3.87	0.530	mg/Kg	20	₩	6020	Total/NA
Nickel	35.3		3.87	0.495	mg/Kg	20	₩	6020	Total/NA
Zinc	960		19.3	3.07	mg/Kg	20	₩	6020	Total/NA
Mercury	0.139	J	0.319	0.0225	mg/Kg	1	₩	7471A	Total/NA
Carbon, Total Organic	46900	Λ	1910	665	mg/Kg	1	₽	9060A	Total/NA
Clay(less than 0.00391 mm)	0.83		0.01	0.01	%	1		D4464	Total/NA
Coarse Sand (0.5mm to 1mm)	19.33		0.01	0.01	%	1		D4464	Total/NA
Fine Sand (0.125 to 0.25mm)	24.52		0.01	0.01	%	1		D4464	Total/NA
Medium Sand (0.25 to 0.5 mm)	41.05		0.01	0.01	%	1		D4464	Total/NA
Silt (0.00391 to 0.0625mm)	8.11		0.01	0.01	%	1		D4464	Total/NA
Total Silt and Clay (0 to 0.0626mm)	8.94		0.01	0.01	%	1		D4464	Total/NA
Very Coarse Sand (1 to 2mm)	0.09		0.01	0.01	%	1		D4464	Total/NA
Very Fine Sand (0.0625 to 0.125 mm)	6.07		0.01	0.01	%	1		D4464	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 570-8761-1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

Pyrene

2-Fluorobiphenyl (Surr)

Nitrobenzene-d5 (Surr)

Method: 8270C SIM - PAHs (GC/MS SIM) - DL

Client Sample ID: SED-005 Date Collected: 09/25/19 16:00 Matrix: So									
Date Received: 09/26/19 12:0 Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.10	0.0051	mg/Kg	<u> </u>	10/02/19 16:36	10/04/19 21:01	5
Acenaphthylene	ND		0.10	0.086	mg/Kg	₩	10/02/19 16:36	10/04/19 21:01	5
Anthracene	0.037	J	0.10	0.0067	mg/Kg	₩	10/02/19 16:36	10/04/19 21:01	5
1,2-Benzanthracene	0.13	В	0.10	0.011	mg/Kg	₩	10/02/19 16:36	10/04/19 21:01	5
Benzo[a]pyrene	0.18		0.10	0.014	mg/Kg	₩	10/02/19 16:36	10/04/19 21:01	5
3.4-Benzofluoranthene	0.24		0.10	0.015	mg/Kg	₩	10/02/19 16:36	10/04/19 21:01	5

Benzo[k]fluoranthene 0.15 0.10 0.016 mg/Kg ÷ 10/02/19 16:36 10/04/19 21:01 10/02/19 16:36 10/04/19 21:01 1,12-Benzoperylene 0.21 0.10 0.015 mg/Kg 5 10/02/19 16:36 10/04/19 21:01 0.10 0.0078 mg/Kg Chrysene 0.24 0.10 0.011 mg/Kg 10/02/19 16:36 10/04/19 21:01 5 Dibenz(a,h)anthracene 0.049 J **Fluoranthene** 0.10 0.0097 mg/Kg 10/02/19 16:36 10/04/19 21:01 0.24 **Fluorene** 0.10 0.0084 mg/Kg 10/02/19 16:36 10/04/19 21:01 5 0.012 J 10/02/19 16:36 10/04/19 21:01 5 Indeno[1,2,3-cd]pyrene 0.10 0.013 mg/Kg 0.12 1-Methylnaphthalene ND 0.10 0.0072 mg/Kg 10/02/19 16:36 10/04/19 21:01 5 0.10 0.0072 mg/Kg 10/02/19 16:36 10/04/19 21:01 2-Methylnaphthalene 0.016 J 0.0078 mg/Kg 10/02/19 16:36 10/04/19 21:01 5 **Naphthalene** 0.018 J 0.10 **Phenanthrene** 10/02/19 16:36 10/04/19 21:01 0.092 J 0.10 0.0085 mg/Kg

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	85		22 - 130	10/02/19 16:36	10/04/19 21:01	5
Nitrobenzene-d5 (Surr)	53		20 - 145	10/02/19 16:36	10/04/19 21:01	5
p-Terphenyl-d14 (Surr)	99		33 - 147	10/02/19 16:36	10/04/19 21:01	5

0.10

0.0075 mg/Kg

0.29

73

46

Client Sample ID: SED-006 Lab Sample ID: 570-8761-2 Date Collected: 09/25/19 14:00 **Matrix: Solid** Date Received: 09/26/19 12:08

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.14	0.0070	mg/Kg	<u> </u>	10/02/19 16:36	10/04/19 21:20	5
Acenaphthylene	ND		0.14	0.12	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
Anthracene	0.037	J	0.14	0.0093	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
1,2-Benzanthracene	0.14	В	0.14	0.015	mg/Kg	ф.	10/02/19 16:36	10/04/19 21:20	5
Benzo[a]pyrene	0.18		0.14	0.019	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
3,4-Benzofluoranthene	0.23		0.14	0.020	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
Benzo[k]fluoranthene	0.17		0.14	0.023	mg/Kg	₽	10/02/19 16:36	10/04/19 21:20	5
1,12-Benzoperylene	0.19		0.14	0.020	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
Chrysene	0.27		0.14	0.011	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
Dibenz(a,h)anthracene	0.045	J	0.14	0.015	mg/Kg	₽	10/02/19 16:36	10/04/19 21:20	5
Fluoranthene	0.31		0.14	0.013	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
Fluorene	ND		0.14	0.012	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
Indeno[1,2,3-cd]pyrene	0.11	J	0.14	0.017	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
1-Methylnaphthalene	ND		0.14	0.010	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
2-Methylnaphthalene	0.012	J	0.14	0.010	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
Naphthalene	0.027	J	0.14	0.011	mg/Kg	ф	10/02/19 16:36	10/04/19 21:20	5
Phenanthrene	0.13	J	0.14	0.012	mg/Kg	₩	10/02/19 16:36	10/04/19 21:20	5
Pyrene	0.40		0.14	0.010	mg/Kg	≎	10/02/19 16:36	10/04/19 21:20	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Eurofins Calscience LLC

10/02/19 16:36 10/04/19 21:20

10/02/19 16:36 10/04/19 21:20

Page 9 of 48

22 - 130

20 - 145

5

5

5

5

5

10/02/19 16:36 10/04/19 21:01

5

5

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM) - DL (Continued)

15

Client Sample ID: SED-006 Lab Sample ID: 570-8761-2 Date Collected: 09/25/19 14:00 **Matrix: Solid**

Date Received: 09/26/19 12:08

Pyrene

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
p-Terphenyl-d14 (Surr)	95	33 - 147	10/02/19 16:36 10/04/19 21:	20 5

Client Sample ID: SED-007 Lab Sample ID: 570-8761-3 Date Collected: 09/25/19 10:00 **Matrix: Solid**

Date Received: 09/26/19 12: Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.20	0.19	0.0096	mg/Kg	<u></u> ₩	10/02/19 16:36	10/04/19 21:40	5
Acenaphthylene	17	0.95	0.81	mg/Kg	☼	10/02/19 16:36	10/08/19 15:08	25
Anthracene	3.4	0.19	0.013	mg/Kg	☼	10/02/19 16:36	10/04/19 21:40	5
1,2-Benzanthracene	1.9 B	0.19	0.021	mg/Kg	₽	10/02/19 16:36	10/04/19 21:40	5
Benzo[a]pyrene	5.4	0.19	0.026	mg/Kg	☼	10/02/19 16:36	10/04/19 21:40	5
3,4-Benzofluoranthene	2.6	0.19	0.028	mg/Kg	₽	10/02/19 16:36	10/04/19 21:40	5
Benzo[k]fluoranthene	2.8	0.19	0.031	mg/Kg	φ.	10/02/19 16:36	10/04/19 21:40	5
1,12-Benzoperylene	1.6	0.19	0.028	mg/Kg	₽	10/02/19 16:36	10/04/19 21:40	5
Chrysene	1.8	0.19	0.015	mg/Kg	☼	10/02/19 16:36	10/04/19 21:40	5
Dibenz(a,h)anthracene	0.40	0.19	0.020	mg/Kg	₽	10/02/19 16:36	10/04/19 21:40	5
Fluoranthene	1.8	0.19	0.018	mg/Kg	₽	10/02/19 16:36	10/04/19 21:40	5
Fluorene	1.4	0.19	0.016	mg/Kg	☼	10/02/19 16:36	10/04/19 21:40	5
Indeno[1,2,3-cd]pyrene	1.1	0.19	0.024	mg/Kg	₽	10/02/19 16:36	10/04/19 21:40	5
1-Methylnaphthalene	0.17 J	0.19	0.014	mg/Kg	☼	10/02/19 16:36	10/04/19 21:40	5
2-Methylnaphthalene	0.35	0.19	0.014	mg/Kg	☼	10/02/19 16:36	10/04/19 21:40	5
Naphthalene	0.30	0.19	0.015	mg/Kg	₽	10/02/19 16:36	10/04/19 21:40	5
Phenanthrene	1.1	0.19	0.016	mg/Kg	₩	10/02/19 16:36	10/04/19 21:40	5

Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	84		22 - 130	10/02/19 16:36	10/04/19 21:40	5
2-Fluorobiphenyl (Surr)	90		22 - 130	10/02/19 16:36	10/08/19 15:08	25
Nitrobenzene-d5 (Surr)	90		20 - 145	10/02/19 16:36	10/04/19 21:40	5
Nitrobenzene-d5 (Surr)	82		20 - 145	10/02/19 16:36	10/08/19 15:08	25
p-Terphenyl-d14 (Surr)	104		33 - 147	10/02/19 16:36	10/04/19 21:40	5
p-Terphenyl-d14 (Surr)	97		33 - 147	10/02/19 16:36	10/08/19 15:08	25

0.95

0.071 mg/Kg

25

☼ 10/02/19 16:36 10/08/19 15:08

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Tripentyltin

Method: Organotins SIM - Organotins (GC/MS SIM)

47

Client Sample ID: SED-005 Date Collected: 09/25/19 16:00 Date Received: 09/26/19 12:08							Lab Sa	mple ID: 570- Matrix	-8761-1 :: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		6.0	3.0	ug/Kg	<u> </u>	10/02/19 20:08	10/08/19 15:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	59		27 - 135				10/02/19 20:08	10/08/19 15:06	1
Client Sample ID: SED-006							Lab Sa	mple ID: 570-	-8761-2
Date Collected: 09/25/19 14:00								Matrix	: Solid
Date Received: 09/26/19 12:08									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		8.2	4.1	ug/Kg	₩	10/02/19 20:23	10/08/19 15:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	46		27 - 135				10/02/19 20:23	10/08/19 15:23	1
Client Sample ID: SED-007							Lab Sa	mple ID: 570-	-8761-3
Date Collected: 09/25/19 10:00								Matrix	: Solid
Date Received: 09/26/19 12:08									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		11	5.7	ug/Kg		10/02/19 20:23	10/08/19 15:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

27 - 135

10/02/19 20:23 10/08/19 15:41

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery Job ID: 570-8761-1

Method: 8015B - Diesel Range Organics (DRO) (GC)

Client Sample ID: SED-005							Lab Sa	mple ID: 570	
Date Collected: 09/25/19 16:0								Matrix	: Solid
Date Received: 09/26/19 12:0	-					_			5
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
C6 as C6	ND		10	7.1	mg/Kg	\$	10/02/19 09:36	10/02/19 17:15	1
C7 as C7	ND		10	7.1	mg/Kg	≎	10/02/19 09:36	10/02/19 17:15	1
C8 as C8	ND		10	7.1	mg/Kg	₩	10/02/19 09:36	10/02/19 17:15	1
C9-C10	ND		10	7.1	mg/Kg	ф.	10/02/19 09:36	10/02/19 17:15	1
C11-C12	ND		10	7.1	mg/Kg	₽	10/02/19 09:36	10/02/19 17:15	1
C13-C14	ND		10	7.1	mg/Kg	₩	10/02/19 09:36	10/02/19 17:15	1
C15-C16	ND		10	7.1	mg/Kg	ф.	10/02/19 09:36	10/02/19 17:15	1
C17-C18	ND		10	7.1	mg/Kg	₩	10/02/19 09:36	10/02/19 17:15	1
C19-C20	ND		10	7.1	mg/Kg	₩	10/02/19 09:36	10/02/19 17:15	1
C21-C22	ND		10	7.1	mg/Kg		10/02/19 09:36	10/02/19 17:15	1
C23-C24	8.0	J	10	7.1	mg/Kg	₩	10/02/19 09:36	10/02/19 17:15	1
C25-C28	18		10	7.1	mg/Kg	₩	10/02/19 09:36	10/02/19 17:15	1
C29-C32	18		10	7.1	mg/Kg	₩.	10/02/19 09:36	10/02/19 17:15	1
C33-C36	13		10	7.1	mg/Kg	₩	10/02/19 09:36	10/02/19 17:15	1
C37-C40	ND		10	7.1	mg/Kg	₩	10/02/19 09:36	10/02/19 17:15	1
C41-C44	ND		10	7.1	mg/Kg	₩.	10/02/19 09:36	10/02/19 17:15	1
C6-C44	74		10	7.1	mg/Kg	₽	10/02/19 09:36	10/02/19 17:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	100		61 - 145				10/02/19 09:36	10/02/19 17:15	1

Client Sample ID: SED-006 Date Collected: 09/25/19 14:00 Lab Sample ID: 570-8761-2 **Matrix: Solid**

Date Received: 09/26/19	12:08							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6 as C6	ND ND	14	9.9	mg/Kg	<u> </u>	10/02/19 09:36	10/02/19 19:02	1
C7 as C7	ND	14	9.9	mg/Kg	☼	10/02/19 09:36	10/02/19 19:02	1
C8 as C8	ND	14	9.9	mg/Kg	₩	10/02/19 09:36	10/02/19 19:02	1
C9-C10	ND	14	9.9	mg/Kg	₩.	10/02/19 09:36	10/02/19 19:02	1
C11-C12	ND	14	9.9	mg/Kg	☼	10/02/19 09:36	10/02/19 19:02	1
C13-C14	ND	14	9.9	mg/Kg	☼	10/02/19 09:36	10/02/19 19:02	1
C15-C16	ND	14	9.9	mg/Kg	₩.	10/02/19 09:36	10/02/19 19:02	1
C17-C18	ND	14	9.9	mg/Kg	☼	10/02/19 09:36	10/02/19 19:02	1
C19-C20	ND	14	9.9	mg/Kg	☼	10/02/19 09:36	10/02/19 19:02	1
C21-C22	ND	14	9.9	mg/Kg	₽	10/02/19 09:36	10/02/19 19:02	1
C23-C24	14	14	9.9	mg/Kg	☼	10/02/19 09:36	10/02/19 19:02	1
C25-C28	34	14	9.9	mg/Kg	☼	10/02/19 09:36	10/02/19 19:02	1
C29-C32	37	14	9.9	mg/Kg	₽	10/02/19 09:36	10/02/19 19:02	1
C33-C36	28	14	9.9	mg/Kg	☼	10/02/19 09:36	10/02/19 19:02	1
C37-C40	15	14	9.9	mg/Kg	₩	10/02/19 09:36	10/02/19 19:02	1
C41-C44	ND	14	9.9	mg/Kg		10/02/19 09:36	10/02/19 19:02	1
C6-C44	140	14	9.9	mg/Kg	₽	10/02/19 09:36	10/02/19 19:02	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
n-Octacosane (Surr)	98	61 - 145				10/02/19 09:36	10/02/19 19:02	1

10/11/2019

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-8761-1

Method: 8015B - Diesel Range Organics (DRO) (GC)

86

n-Octacosane (Surr)

Client Sample ID: SED-007 Date Collected: 09/25/19 10:00							Lab Sample ID: 570-8761-3 Matrix: Solid			
Date Received: 09/26/19 12:08 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
C6 as C6	ND		19	14	mg/Kg	<u> </u>	10/02/19 09:36	10/02/19 19:23	1	
C7 as C7	ND		19	14	mg/Kg	₩	10/02/19 09:36	10/02/19 19:23	1	
C8 as C8	ND		19	14	mg/Kg	₩	10/02/19 09:36	10/02/19 19:23	1	
C9-C10	ND		19	14	mg/Kg	₽	10/02/19 09:36	10/02/19 19:23	1	
C11-C12	ND		19	14	mg/Kg	☼	10/02/19 09:36	10/02/19 19:23	1	
C13-C14	ND		19	14	mg/Kg	₩	10/02/19 09:36	10/02/19 19:23	1	
C15-C16	ND		19	14	mg/Kg		10/02/19 09:36	10/02/19 19:23	1	
C17-C18	ND		19	14	mg/Kg	₩	10/02/19 09:36	10/02/19 19:23	1	
C19-C20	ND		19	14	mg/Kg	☼	10/02/19 09:36	10/02/19 19:23	1	
C21-C22	ND		19	14	mg/Kg		10/02/19 09:36	10/02/19 19:23	1	
C23-C24	22		19	14	mg/Kg	☼	10/02/19 09:36	10/02/19 19:23	1	
C25-C28	54		19	14	mg/Kg	₩	10/02/19 09:36	10/02/19 19:23	1	
C29-C32	58		19	14	mg/Kg		10/02/19 09:36	10/02/19 19:23	1	
C33-C36	49		19	14	mg/Kg	☼	10/02/19 09:36	10/02/19 19:23	1	
C37-C40	29		19	14	mg/Kg	☼	10/02/19 09:36	10/02/19 19:23	1	
C41-C44	ND		19	14	mg/Kg		10/02/19 09:36	10/02/19 19:23	1	
C6-C44	240		19	14	mg/Kg	₽	10/02/19 09:36	10/02/19 19:23	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	

61 - 145

-0

4

+

6

_

9

10

12

4 A

М

<u>10/02/19 09:36</u> <u>10/02/19 19:23</u>

15

Job ID: 570-8761-1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

Method: 8081A - Organochlorine Pesticides (GC)

Client Sample ID: SED-005 Date Collected: 09/25/19 16:	00						Lab Sa	mple ID: 570-	8761-1 :: Solid
Date Received: 09/26/19 12:0								Matrix	. Soliu
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4'-DDD	1.3		0.99	0.18	ug/Kg		10/02/19 17:47	10/07/19 15:17	1
2,4'-DDE	2.2	Jp	5.0	0.42	ug/Kg		10/02/19 17:47	10/07/19 15:17	1
2,4'-DDT	ND		0.99	0.089	ug/Kg		10/02/19 17:47	10/07/19 15:17	1
4,4'-DDD	9.9		5.0	0.53	ug/Kg		10/02/19 17:47	10/07/19 16:00	5
4,4'-DDE	17		5.0	0.72	ug/Kg		10/02/19 17:47	10/07/19 16:00	5
4,4'-DDT	11		5.0	1.5	ug/Kg		10/02/19 17:47	10/07/19 16:00	5
Chlordane	28		5.0	0.69	ug/Kg		10/02/19 17:47	10/07/19 15:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	128	p	25 - 145				10/02/19 17:47	10/07/19 15:17	1
Tetrachloro-m-xylene	131		25 - 145				10/02/19 17:47	10/07/19 16:00	5
DCB Decachlorobiphenyl (Surr)	143		24 - 168				10/02/19 17:47	10/07/19 15:17	1
DCB Decachlorobiphenyl (Surr)	150		24 - 168				10/02/19 17:47	10/07/19 16:00	5

Client Sample ID: SED-006 Date Collected: 09/25/19 14:00	Date Collected: 09/25/19 14:00						Lab Sa	mple ID: 570- Matrix	·8761-2 :: Solid
Date Received: 09/26/19 12:08									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4'-DDD	1.3	p	1.0	0.18	ug/Kg		10/02/19 17:47	10/07/19 15:31	1
			5 0	0.40	/1./		40/00/40 47:47	40/07/40 45:04	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4'-DDD	1.3	<u>р</u> –	1.0	0.18	ug/Kg		10/02/19 17:47	10/07/19 15:31	1
2,4'-DDE	2.3	J p	5.0	0.42	ug/Kg		10/02/19 17:47	10/07/19 15:31	1
2,4'-DDT	ND		1.0	0.090	ug/Kg		10/02/19 17:47	10/07/19 15:31	1
4,4'-DDD	8.3		5.0	0.53	ug/Kg		10/02/19 17:47	10/07/19 16:14	5
4,4'-DDE	16		5.0	0.72	ug/Kg		10/02/19 17:47	10/07/19 16:14	5
4,4'-DDT	1.6	р	1.0	0.30	ug/Kg		10/02/19 17:47	10/07/19 15:31	1
Chlordane	16	Εp	5.0	0.69	ug/Kg		10/02/19 17:47	10/07/19 15:31	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93	p	25 - 145	10/02/19 17:47	10/07/19 15:31	1
Tetrachloro-m-xylene	68		25 - 145	10/02/19 17:47	10/07/19 16:14	5
DCB Decachlorobiphenyl (Surr)	154	p	24 - 168	10/02/19 17:47	10/07/19 15:31	1
DCB Decachlorobiphenyl (Surr)	126		24 - 168	10/02/19 17:47	10/07/19 16:14	5

Client Sample ID: SED-007 Lab Sample ID: 570-8761-3 Date Collected: 09/25/19 10:00 **Matrix: Solid**

Date Received: 09/26/19 12:08									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4'-DDD	ND		0.99	0.18	ug/Kg		10/02/19 17:47	10/07/19 15:45	1
2,4'-DDE	2.6	Jp	5.0	0.42	ug/Kg		10/02/19 17:47	10/07/19 15:45	1
2,4'-DDT	ND		0.99	0.089	ug/Kg		10/02/19 17:47	10/07/19 15:45	1
4,4'-DDD	6.8	p	5.0	0.53	ug/Kg		10/02/19 17:47	10/07/19 16:28	5
4,4'-DDE	13		5.0	0.72	ug/Kg		10/02/19 17:47	10/07/19 16:28	5
4,4'-DDT	2.9	p	0.99	0.30	ug/Kg		10/02/19 17:47	10/07/19 15:45	1
Chlordane	35	Εp	5.0	0.69	ug/Kg		10/02/19 17:47	10/07/19 15:45	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	184	pΧ	25 - 145	10/02/19 17:47	10/07/19 15:45	1
Tetrachloro-m-xylene	130		25 - 145	10/02/19 17:47	10/07/19 16:28	5
DCB Decachlorobiphenyl (Surr)	160	p	24 - 168	10/02/19 17:47	10/07/19 15:45	1
DCB Decachlorobiphenyl (Surr)	166		24 - 168	10/02/19 17:47	10/07/19 16:28	5

Eurofins Calscience LLC

Job ID: 570-8761-1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Client Sample ID: SED-005 Date Collected: 09/25/19 16: Date Received: 09/26/19 12:							Lab Sa	mple ID: 570- Matrix	8761-1 :: Solid
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1016	ND			4.1	ug/Kg	<u> </u>	10/02/19 17:47	10/04/19 14:18	1
Aroclor-1221	ND		20	13	ug/Kg	☼	10/02/19 17:47	10/04/19 14:18	1
Aroclor-1232	ND		20	4.7	ug/Kg	☼	10/02/19 17:47	10/04/19 14:18	1
Aroclor-1242	ND		20	3.3	ug/Kg		10/02/19 17:47	10/04/19 14:18	1
Aroclor-1248	210		20	2.4	ug/Kg	☼	10/02/19 17:47	10/04/19 14:18	1
Aroclor-1254	91		20	2.3	ug/Kg	☼	10/02/19 17:47	10/04/19 14:18	1
Aroclor-1260	84		20	4.7	ug/Kg	φ.	10/02/19 17:47	10/04/19 14:18	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	120		24 - 168				10/02/19 17:47	10/04/19 14:18	1
Tetrachloro-m-xylene (Surr)	91		25 - 145				10/02/19 17:47	10/04/19 14:18	1

Client Sample ID: SED-006 Lab Sample ID: 570-8761-2 Date Collected: 09/25/19 14:00 **Matrix: Solid** Date Received: 09/26/19 12:08 Dil Fac

Analyte	Result Qualifier	KL	MDL	Unit	U	Prepared	Analyzeu	DII Fac
Aroclor-1016	ND —	28	5.7	ug/Kg	\	10/02/19 17:47	10/04/19 14:36	
Aroclor-1221	ND	28	18	ug/Kg	₩	10/02/19 17:47	10/04/19 14:36	•
Aroclor-1232	ND	28	6.6	ug/Kg	₩	10/02/19 17:47	10/04/19 14:36	•
Aroclor-1242	ND	28	4.6	ug/Kg	₩	10/02/19 17:47	10/04/19 14:36	• • • • • • • •
Aroclor-1248	210	28	3.3	ug/Kg	☆	10/02/19 17:47	10/04/19 14:36	•
Aroclor-1254	110	28	3.2	ug/Kg	₩	10/02/19 17:47	10/04/19 14:36	•
Aroclor-1260	130	28	6.6	ug/Kg	₩	10/02/19 17:47	10/04/19 14:36	•

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	143		24 - 168	10/02/19 17:47 10/04/19 14:36	1
Tetrachloro-m-xylene (Surr)	111		25 - 145	10/02/19 17:47 10/04/19 14:36	1

Client Sample ID: SED-007 Lab Sample ID: 570-8761-3 Date Collected: 09/25/19 10:00 **Matrix: Solid** Date Received: 09/26/19 12:08

Date Received: 00/20/10 12:00									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor-1016	ND	F2 F1	38	7.7	ug/Kg	₩	10/02/19 17:47	10/04/19 14:54	1
Aroclor-1221	ND		38	24	ug/Kg	₩	10/02/19 17:47	10/04/19 14:54	1
Aroclor-1232	ND		38	8.9	ug/Kg	₩	10/02/19 17:47	10/04/19 14:54	1
Aroclor-1242	ND		38	6.2	ug/Kg	₽	10/02/19 17:47	10/04/19 14:54	1
Aroclor-1248	540		38	4.5	ug/Kg	₩	10/02/19 17:47	10/04/19 14:54	1
Aroclor-1254	290		38	4.4	ug/Kg	₩	10/02/19 17:47	10/04/19 14:54	1
Aroclor-1260	390		38	8.9	ug/Kg	\$	10/02/19 17:47	10/04/19 14:54	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	133		24 - 168	10/02/19 17:47	10/04/19 14:54	1
Tetrachloro-m-xylene (Surr)	101		25 - 145	10/02/19 17:47	10/04/19 14:54	1

Eurofins Calscience LLC

Client: WGR Southwest Inc Job ID: 570-8761-1 Project/Site: Tesoro LA Refinery

Method: 6020 - Metals (ICP/MS)

Client Sample ID: SED-007

					Lab Sa	•	8761-1 : Solid
Result Qualifier	RI	MDI	Unit	D	Prepared		Dil Fac
ND Games	10.5			— ~			100
35.6	21.0	1.23	mg/Kg	☆	10/02/19 13:30	10/02/19 21:27	100
56.5	10.5	1.22	mg/Kg	₩	10/02/19 13:30	10/02/19 21:27	100
43.7	10.5	1.44	mg/Kg	.	10/02/19 13:30	10/02/19 21:27	100
13.7	10.5	1.34	mg/Kg	≎	10/02/19 13:30	10/02/19 21:27	100
220	52.4	8.31	mg/Kg	₩	10/02/19 13:30	10/02/19 21:27	100
	Result Qualifier ND 35.6 56.5 43.7 13.7	Result ND Qualifier RL 35.6 21.0 56.5 10.5 43.7 10.5 13.7 10.5	Result ND Qualifier RL 10.5 MDL 10.5 1.26 35.6 21.0 1.23 1.23 1.22 56.5 10.5 1.22 1.44 13.7 10.5 1.34	Result Qualifier RL MDL Unit ND 10.5 1.26 mg/Kg 35.6 21.0 1.23 mg/Kg 56.5 10.5 1.22 mg/Kg 43.7 10.5 1.44 mg/Kg 13.7 10.5 1.34 mg/Kg	Result ND Qualifier RL MDL unit D 35.6 21.0 1.23 mg/Kg ☼ 56.5 10.5 1.22 mg/Kg ⋩ 43.7 10.5 1.44 mg/Kg ⋩ 13.7 10.5 1.34 mg/Kg ⋩	Result ND Qualifier RL MDL 10.5 Unit mg/Kg D 10/02/19 13:30 35.6 21.0 1.23 mg/Kg ★ 10/02/19 13:30 56.5 10.5 1.22 mg/Kg ★ 10/02/19 13:30 43.7 10.5 1.44 mg/Kg ★ 10/02/19 13:30 13.7 10.5 1.34 mg/Kg ★ 10/02/19 13:30	Result ND Qualifier RL ND MDL Unit mg/Kg D mg/Kg Prepared mg/Kg Analyzed 10/02/19 13:30 Analyzed 10/02/19 21:27 35.6 21.0 1.23 mg/Kg 10/02/19 13:30 10/02/19 21:27 56.5 10.5 1.22 mg/Kg 10/02/19 13:30 10/02/19 21:27 43.7 10.5 1.44 mg/Kg 10/02/19 13:30 10/02/19 21:27 13.7 10.5 1.34 mg/Kg 10/02/19 13:30 10/02/19 21:27

Client Sample ID: SED-006 Date Collected: 09/25/19 14:00 Date Received: 09/26/19 12:08							Lab Sa	mple ID: 570- Matrix	8761-2 : Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.877	J	2.80	0.336	mg/Kg	<u> </u>	10/02/19 13:30	10/02/19 21:45	20
Chromium	57.1		5.61	0.328	mg/Kg	₩	10/02/19 13:30	10/02/19 21:45	20
Copper	106		2.80	0.325	mg/Kg	₩	10/02/19 13:30	10/02/19 21:45	20
Lead	77.8		2.80	0.384	mg/Kg	₽	10/02/19 13:30	10/02/19 21:45	20
Nickel	23.3		2.80	0.359	mg/Kg	₩	10/02/19 13:30	10/02/19 21:45	20
Zinc	519		14.0	2.22	mg/Kg	☼	10/02/19 13:30	10/02/19 21:45	20

Date Collected: 09/25/19 10:00 Date Received: 09/26/19 12:08								Matrix	: Solid
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	2.64	J	3.87	0.464	mg/Kg	<u> </u>	10/02/19 13:30	10/02/19 21:48	20
Chromium	67.1		7.74	0.452	mg/Kg	☼	10/02/19 13:30	10/02/19 21:48	20
Copper	164		3.87	0.449	mg/Kg	☼	10/02/19 13:30	10/02/19 21:48	20
Lead	151		3.87	0.530	mg/Kg	₩	10/02/19 13:30	10/02/19 21:48	20
Nickel	35.3		3.87	0.495	mg/Kg	₩	10/02/19 13:30	10/02/19 21:48	20
Zinc	960		19.3	3.07	mg/Kg	☼	10/02/19 13:30	10/02/19 21:48	20

Lab Sample ID: 570-8761-3

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Client Sample ID: SED-005	Lab Sample ID: 570-8761-1
Date Collected: 09/25/19 16:00	Matrix: Solid
Date Received: 09/26/19 12:08	

Date Received: 09/26/19 12:08

Analyte	Result Quali		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.165	0.165	0.0116	mg/Kg		10/02/19 16:00	10/02/19 19:06	1

Client Sample ID: SED-006 Lab Sample ID: 570-8761-2
Date Collected: 09/25/19 14:00 Matrix: Solid

Date Received: 09/26/19 12:08

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0837 J	0.238	0.0167 mg/Kg	☼	10/02/19 16:00	10/02/19 19:08	

Client Sample ID: SED-007

Date Collected: 09/25/19 10:00

Lab Sample ID: 570-8761-3

Matrix: Solid

Date Collected: 09/25/19 10:00 Date Received: 09/26/19 12:08

Date Received, 03/20/13 12.00							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.139 J	0.319	0.0225 mg/Kg	-	10/02/19 16:00	10/02/19 19:10	1

4

5

7

8

9

10

11

13

14

15

Client: WGR Southwest Inc Job ID: 570-8761-1 Project/Site: Tesoro LA Refinery

General Chemistry

Percent Moisture

Client Sample ID: SED-005 Date Collected: 09/25/19 16:00							Lab S	ample ID: 570- Matrix	-8761-1 c: Solid
Date Received: 09/26/19 12:08 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon, Total Organic	30400	^	1020	355	mg/Kg	<u> </u>		10/02/19 11:25	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	51.1		0.1	0.1	%			10/01/19 09:00	1
Client Sample ID: SED-006							Lab S	ample ID: 570-	-8761-2
Date Collected: 09/25/19 14:00								•	c: Solid
Date Received: 09/26/19 12:08									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon, Total Organic	25400	^	1400	487	mg/Kg	<u> </u>		10/02/19 11:25	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	64.3		0.1	0.1	%			10/01/19 09:00	1
Client Sample ID: SED-007							Lab S	ample ID: 570-	-8761-3
Date Collected: 09/25/19 10:00								•	c: Solid
Date Received: 09/26/19 12:08									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon, Total Organic	46900	۸	1910	665	mg/Kg	<u> </u>		10/02/19 11:25	1
Analyte	Result	Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fac

0.1

0.1 %

73.9

10/01/19 09:00

Client: WGR Southwest Inc Job ID: 570-8761-1 Project/Site: Tesoro LA Refinery

Method: D4464 - Particle Size Distribution of Catalytic Material (Laser light scattering)

mm)

mm)

Client Sample ID: SED-005 Date Collected: 09/25/19 16:00							Lab S	ample ID: 570- Matrix	-8761-1 c: Solid
Date Received: 09/26/19 12:08 Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Clay(less than 0.00391 mm)	11.68		0.01	0.01	%			10/04/19 14:53	1
Coarse Sand (0.5mm to 1mm)	ND		0.01	0.01	%			10/04/19 14:53	1
Fine Sand (0.125 to 0.25mm)	19.57		0.01	0.01	%			10/04/19 14:53	1
Gravel (greater than 2 mm)	ND		0.01	0.01	%			10/04/19 14:53	1
Medium Sand (0.25 to 0.5 mm)	1.00		0.01	0.01	%			10/04/19 14:53	1
Silt (0.00391 to 0.0625mm)	55.23		0.01	0.01	%			10/04/19 14:53	1
Total Silt and Clay (0 to 0.0626mm)	66.90		0.01	0.01	%			10/04/19 14:53	1
Very Coarse Sand (1 to 2mm)	ND		0.01	0.01	%			10/04/19 14:53	1
Very Fine Sand (0.0625 to 0.125	12.53		0.01	0.01	%			10/04/19 14:53	1

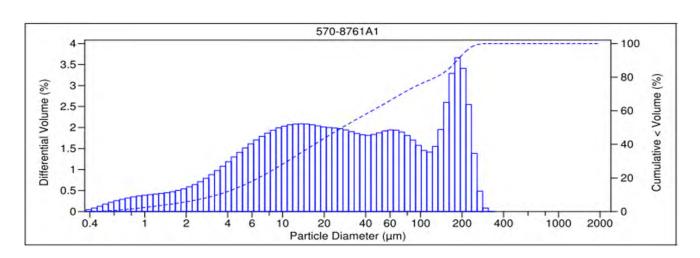
Client Sample ID: SED-006 Date Collected: 09/25/19 14:00							Lab S	ample ID: 570- Matrix	8761-2 :: Solid
Date Received: 09/26/19 12:08 Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Clay(less than 0.00391 mm)	0.91		0.01	0.01	%		-	10/04/19 14:53	1
Coarse Sand (0.5mm to 1mm)	21.00		0.01	0.01	%			10/04/19 14:53	1
Fine Sand (0.125 to 0.25mm)	17.40		0.01	0.01	%			10/04/19 14:53	1
Gravel (greater than 2 mm)	ND		0.01	0.01	%			10/04/19 14:53	1
Medium Sand (0.25 to 0.5 mm)	14.17		0.01	0.01	%			10/04/19 14:53	1
Silt (0.00391 to 0.0625mm)	7.77		0.01	0.01	%			10/04/19 14:53	1
Total Silt and Clay (0 to 0.0626mm)	8.69		0.01	0.01	%			10/04/19 14:53	1
Very Coarse Sand (1 to 2mm)	32.28		0.01	0.01	%			10/04/19 14:53	1
Very Fine Sand (0.0625 to 0.125	6.47		0.01	0.01	%			10/04/19 14:53	1

Client Sample ID: SED-007 Date Collected: 09/25/19 10:00						Lab S	ample ID: 570- Matrix	-8761-3 c: Solid
Date Received: 09/26/19 12:08 Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Clay(less than 0.00391 mm)	0.83	0.01	0.01	%			10/04/19 14:53	1
Coarse Sand (0.5mm to 1mm)	19.33	0.01	0.01	%			10/04/19 14:53	1
Fine Sand (0.125 to 0.25mm)	24.52	0.01	0.01	%			10/04/19 14:53	1
Gravel (greater than 2 mm)	ND	0.01	0.01	%			10/04/19 14:53	1
Medium Sand (0.25 to 0.5 mm)	41.05	0.01	0.01	%			10/04/19 14:53	1
Silt (0.00391 to 0.0625mm)	8.11	0.01	0.01	%			10/04/19 14:53	1
Total Silt and Clay (0 to 0.0626mm)	8.94	0.01	0.01	%			10/04/19 14:53	1
Very Coarse Sand (1 to 2mm)	0.09	0.01	0.01	%			10/04/19 14:53	1
Very Fine Sand (0.0625 to 0.125 mm)	6.07	0.01	0.01	%			10/04/19 14:53	1

11

13

15


PARTICLE SIZE SUMMARY

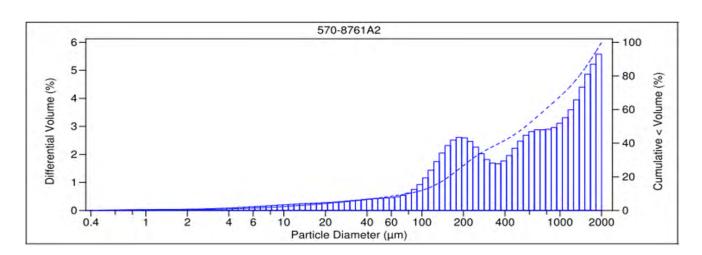
(ASTM D422 / D4464M)

WGR Southwest, Inc.	Date Sampled:	09/25/19
	Date Received:	09/26/19
	Work Order No:	570-8761
	Date Analyzed:	10/03/19
	Method:	ASTM D4464M
Project:		Page 1 of 4

	Sample ID	Depth ft	Description	Mean Grain Size mm
-	SED-005		Silt	0.061

	Particle Size Distribution, wt by percent								
	Very				Very			Total	
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &	
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay	
0.00	0.00	0.00	1.00	19.57	12.53	55.23	11.68	66.90	

V 3.0


PARTICLE SIZE SUMMARY

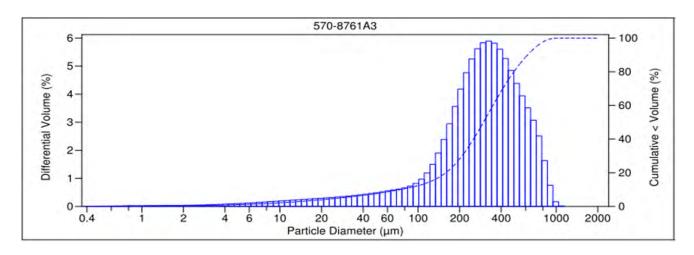
(ASTM D422 / D4464M)

WGR Southwest, Inc.	Date Sampled:	09/25/19
	Date Received:	09/26/19
	Work Order No:	570-8761
	Date Analyzed:	10/03/19
	Method:	ASTM D4464M
Project:		Page 2 of 4

Sample ID	Depth ft	Description	Mean Grain Size mm
SED-006		Coarse Sand	0.727

	Particle Size Distribution, wt by percent								
	Very				Very			Total	
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &	
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay	
0.00	32.28	21.00	14.17	17.40	6.47	7.77	0.91	8.69	

V 3.0


PARTICLE SIZE SUMMARY

(ASTM D422 / D4464M)

WGR Southwest, Inc.	Date Sampled:	09/25/19
	Date Received:	09/26/19
	Work Order No:	570-8761
	Date Analyzed:	10/03/19
	Method:	ASTM D4464M
Project:		Page 3 of 4

	Sample ID	Depth ft	Description	Mean Grain Size mm
_	SED-007	-	Medium Sand	0.328

	Particle Size Distribution, wt by percent								
	Very				Very			Total	
Total	Coarse	Coarse	Medium	Fine	Fine			Silt &	
Gravel	Sand	Sand	Sand	Sand	Sand	Silt	Clay	Clay	
0.00	0.09	19.33	41.05	24.52	6.07	8.11	0.83	8.94	

V 3.0

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(22-130)	(20-145)	(33-147)
570-8761-1 - DL	SED-005	85	53	99
570-8761-1 MS - DL	SED-005	85	54	95
570-8761-1 MSD - DL	SED-005	84	53	93
570-8761-2 - DL	SED-006	73	46	95
570-8761-3 - DL	SED-007	84	90	104
570-8761-3 - DL	SED-007	90	82	97
LCS 570-23315/2-A	Lab Control Sample	86	68	96
MB 570-23315/1-A	Method Blank	86	59	97
Surrogate Legend				

FBP = 2-Fluorobiphenyl (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Method: Organotins SIM - Organotins (GC/MS SIM)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		TPTT	
Lab Sample ID	Client Sample ID	(27-135)	
570-8761-1	SED-005	59	
570-8761-2	SED-006	46	
570-8761-3	SED-007	47	
570-8761-3 MS	SED-007	56	
570-8761-3 MSD	SED-007	67	
LCS 570-23682/2-A	Lab Control Sample	71	
MB 570-23682/1-A	Method Blank	44	

TPTT = Tripentyltin

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		OTCSN1	
Lab Sample ID	Client Sample ID	(61-145)	
570-8761-1	SED-005	100	
570-8761-2	SED-006	98	
570-8761-3	SED-007	86	
570-8872-A-8-A MS	Matrix Spike	98	
570-8872-A-8-B MSD	Matrix Spike Duplicate	100	
LCS 570-23135/2-A	Lab Control Sample	100	
MB 570-23135/1-A	Method Blank	102	

OTCSN = n-Octacosane (Surr)

Surrogate Summary

Client: WGR Southwest Inc Job ID: 570-8761-1 Project/Site: Tesoro LA Refinery

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acc	ceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(25-145)	24-168)	
570-8761-1	SED-005	128 p	143	
570-8761-1	SED-005	131	150	
570-8761-1 MS	SED-005	131 p	162 p	
570-8761-1 MSD	SED-005	123 p	142	
570-8761-2	SED-006	93 p	154 p	
570-8761-2	SED-006	68	126	
570-8761-3	SED-007	184 p X	160 p	
570-8761-3	SED-007	130	166	
LCS 570-23333/2-A	Lab Control Sample	91	105	
MB 570-23333/1-A	Method Blank	90	105	

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl (Surr)

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Surrogate Recovery (Acceptance Limits)	
		DCB2	TCX2	
Lab Sample ID	Client Sample ID	(24-168)	(25-145)	
570-8761-1	SED-005	120	91	
570-8761-2	SED-006	143	111	
570-8761-3	SED-007	133	101	
570-8761-3 MS	SED-007	137	98	
570-8761-3 MSD	SED-007	145 p	107	
LCS 570-23333/5-A	Lab Control Sample	124	103	
MB 570-23333/1-A	Method Blank	125	102	

Surrogate Legend

DCB = DCB Decachlorobiphenyl (Surr)

TCX = Tetrachloro-m-xylene (Surr)

Client: WGR Southwest Inc Job ID: 570-8761-1 Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM)

Lab Sample ID: MB 570-23315/1-A

Matrix: Solid

Analysis Batch: 23777

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 23315

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.010	0.00051	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Acenaphthylene	ND		0.010	0.0085	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Anthracene	ND		0.010	0.00067	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
1,2-Benzanthracene	0.001143	J	0.010	0.0011	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Benzo[a]pyrene	ND		0.010	0.0014	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
3,4-Benzofluoranthene	ND		0.010	0.0015	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Benzo[k]fluoranthene	ND		0.010	0.0016	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
1,12-Benzoperylene	ND		0.010	0.0015	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Chrysene	ND		0.010	0.00078	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Dibenz(a,h)anthracene	ND		0.010	0.0011	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Fluoranthene	ND		0.010	0.00097	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Fluorene	ND		0.010	0.00084	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Indeno[1,2,3-cd]pyrene	ND		0.010	0.0012	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
1-Methylnaphthalene	ND		0.010	0.00072	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
2-Methylnaphthalene	ND		0.010	0.00072	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Naphthalene	ND		0.010	0.00078	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Phenanthrene	ND		0.010	0.00084	mg/Kg		10/02/19 16:36	10/04/19 16:30	1
Pyrene	ND		0.010	0.00075	mg/Kg		10/02/19 16:36	10/04/19 16:30	1

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	86		22 - 130	10/02/19 16:36	10/04/19 16:30	1
Nitrobenzene-d5 (Surr)	59		20 - 145	10/02/19 16:36	10/04/19 16:30	1
p-Terphenyl-d14 (Surr)	97		33 - 147	10/02/19 16:36	10/04/19 16:30	1

Lab Sample ID: LCS 570-23315/2-A

Matrix: Solid

Client Sample ID:	Lab (Contro	I Sample
	Prep	Type:	Total/NA

Analysis Batch: 23777							Prep Batch: 23315
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	0.100	0.07628		mg/Kg		76	53 - 125
Acenaphthylene	0.100	0.08878		mg/Kg		89	50 - 123
Anthracene	0.100	0.07295		mg/Kg		73	50 - 132
1,2-Benzanthracene	0.100	0.08330		mg/Kg		83	50 - 133
Benzo[a]pyrene	0.100	0.08589		mg/Kg		86	50 - 134
3,4-Benzofluoranthene	0.100	0.08700		mg/Kg		87	50 - 142
Benzo[k]fluoranthene	0.100	0.09236		mg/Kg		92	49 - 150
1,12-Benzoperylene	0.100	0.08284		mg/Kg		83	50 - 130
Chrysene	0.100	0.08175		mg/Kg		82	51 - 129
Dibenz(a,h)anthracene	0.100	0.08472		mg/Kg		85	50 - 133
Fluoranthene	0.100	0.07606		mg/Kg		76	55 - 127
Fluorene	0.100	0.07924		mg/Kg		79	55 - 127
Indeno[1,2,3-cd]pyrene	0.100	0.08202		mg/Kg		82	50 - 148
1-Methylnaphthalene	0.100	0.07309		mg/Kg		73	54 - 132
2-Methylnaphthalene	0.100	0.07724		mg/Kg		77	50 - 127
Naphthalene	0.100	0.07298		mg/Kg		73	51 - 129
Phenanthrene	0.100	0.07018		mg/Kg		70	50 - 122
Pyrene	0.100	0.07680		mg/Kg		77	50 - 134

Eurofins Calscience LLC

Page 25 of 48

Client: WGR Southwest Inc Job ID: 570-8761-1 Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM) (Continued)

Lab Sample ID: LCS 570-23315/2-A

Matrix: Solid

Analysis Batch: 23777

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 23315

LCS LCS

Surrogate	%Recovery Qualifier	r Limits
2-Fluorobiphenyl (Surr)	86	22 - 130
Nitrobenzene-d5 (Surr)	68	20 - 145
p-Terphenyl-d14 (Surr)	96	33 - 147

Method: 8270C SIM - PAHs (GC/MS SIM) - DL

Lab Sample ID: 570-8761-1 MS

Matrix: Solid

Client Sample ID: SED-005 Prep Type: Total/NA

Prep Batch: 23315

Analysis Batch: 23777 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ☼ Acenaphthene - DL ND 0.201 0.1750 mg/Kg 87 29 - 137 Ö Acenaphthylene - DL ND 0.201 0.2115 mg/Kg 105 29 - 131Anthracene - DL 0.037 J 0.201 0.2081 mg/Kg 85 26 - 134 ₩ 1,2-Benzanthracene - DL 0.13 B 0.201 0.2852 mg/Kg 78 24 - 150 Benzo[a]pyrene - DL 0.18 0.201 0.3503 mg/Kg ₩ 86 29 - 1493,4-Benzofluoranthene - DL 0.4009 ₩ 78 0.24 0.201 mg/Kg 21 - 153 Benzo[k]fluoranthene - DL 0.15 0.201 0.3270 ď 87 28 - 148 mg/Kg 1,12-Benzoperylene - DL 80 0.21 0.201 0.3712 20 - 148 mg/Kg ∜ Chrysene - DL 0.201 0.3992 78 25 - 145 0.24 mg/Kg . . 20 - 132 Dibenz(a,h)anthracene - DL 86 0.049 J 0.201 0.2227 mg/Kg Ö Fluoranthene - DL 0.24 0.201 0.3971 mg/Kg 78 20 - 151 Fluorene - DL 0.012 J 0.201 0.1885 mg/Kg 88 36 - 132Indeno[1,2,3-cd]pyrene - DL 0.12 0.201 0.2502 mg/Kg ₩ 65 20 - 154 1-Methylnaphthalene - DL ND 0.201 0.1633 ₩ 81 34 - 136 mg/Kg ₩ 79 2-Methylnaphthalene - DL 0.016 J 0.201 0.1752 mg/Kg 29 - 137 ₩ Naphthalene - DL 0.018 J 0.201 0.1475 mg/Kg 64 20 - 150 Phenanthrene - DL ₩ 72 0.092 J 0.201 0.2381 20 - 144 mg/Kg ☼ Pyrene - DL 0.29 0.201 0.4645 mg/Kg 20 - 150

MS MS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr) - DL	85		22 - 130
Nitrobenzene-d5 (Surr) - DL	54		20 - 145
p-Terphenyl-d14 (Surr) - DL	95		33 - 147

Lab Sample ID: 570-8761-1 MSD

Matrix: Solid

Analysis Batch: 23777

Client Sample ID: SED-005 Prep Type: Total/NA

Prep Batch: 23315

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene - DL	ND		0.201	0.1720		mg/Kg	<u></u>	85	29 - 137	2	28
Acenaphthylene - DL	ND		0.201	0.2147		mg/Kg	≎	107	29 - 131	1	32
Anthracene - DL	0.037	J	0.201	0.2045		mg/Kg	☼	83	26 - 134	2	27
1,2-Benzanthracene - DL	0.13	В	0.201	0.2871		mg/Kg	₽	79	24 - 150	1	24
Benzo[a]pyrene - DL	0.18		0.201	0.3509		mg/Kg	☼	86	29 - 149	0	22
3,4-Benzofluoranthene - DL	0.24		0.201	0.4210		mg/Kg	☼	88	21 - 153	5	26
Benzo[k]fluoranthene - DL	0.15		0.201	0.3450		mg/Kg	\$	96	28 - 148	5	26
1,12-Benzoperylene - DL	0.21		0.201	0.3545		mg/Kg	₽	71	20 - 148	5	27

Eurofins Calscience LLC

Page 26 of 48

10/11/2019

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Method: 8270C SIM - PAHs (GC/MS SIM) - DL (Continued)

Lab Sample ID: 570-8761-1 MSD

Matrix: Solid

Analysis Batch: 23777

Client Sample ID: SED-005

Prep Type: Total/NA Prep Batch: 23315

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chrysene - DL	0.24		0.201	0.3972	-	mg/Kg	<u></u>	77	25 - 145	1	28
Dibenz(a,h)anthracene - DL	0.049	J	0.201	0.2194		mg/Kg	₩.	84	20 - 132	1	26
Fluoranthene - DL	0.24		0.201	0.3946		mg/Kg	₩	77	20 - 151	1	26
Fluorene - DL	0.012	J	0.201	0.1864		mg/Kg	☼	87	36 - 132	1	27
Indeno[1,2,3-cd]pyrene - DL	0.12		0.201	0.2464		mg/Kg	₽	63	20 - 154	2	25
1-Methylnaphthalene - DL	ND		0.201	0.1600		mg/Kg	₩	80	34 - 136	2	29
2-Methylnaphthalene - DL	0.016	J	0.201	0.1737		mg/Kg	☼	78	29 - 137	1	31
Naphthalene - DL	0.018	J	0.201	0.1460		mg/Kg	₽	64	20 - 150	1	33
Phenanthrene - DL	0.092	J	0.201	0.2492		mg/Kg	☼	78	20 - 144	5	27
Pyrene - DL	0.29		0.201	0.4668		mg/Kg	☼	89	20 - 150	0	32

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr) - DL	84		22 - 130
Nitrobenzene-d5 (Surr) - DL	53		20 - 145
p-Terphenyl-d14 (Surr) - DL	93		33 - 147

Method: Organotins SIM - Organotins (GC/MS SIM)

Lab Sample ID: MB 570-23682/1-A

Matrix: Solid

Analysis Batch: 24307

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 23682

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tributyltin	ND		3.0	1.5	ug/Kg		10/02/19 20:08	10/07/19 19:00	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tripentyltin	44		27 - 135				10/02/19 20:08	10/07/19 19:00	1

Lab Sample ID: LCS 570-23682/2-A

Matrix: Solid

Analysis Batch: 24307

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 23682

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Tetrabutyltin 100 76 40 - 142 75.62 ug/Kg Tributyltin 100 59.63 ug/Kg 60 33 - 147

LCS LCS

Surrogate %Recovery Qualifier Limits Tripentyltin 27 - 135

Lab Sample ID: 570-8761-3 MS

Matrix: Solid

Analysis Batch: 24481

Client Sample ID: SED-007 Prep Type: Total/NA

Prep Batch: 23682

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrabutyltin	ND		370	191.9		ug/Kg		52	33 - 129	
Tributyltin	ND		370	161.2		ug/Kg	☼	44	34 - 142	

Eurofins Calscience LLC

10/11/2019

Client Sample ID: SED-007

Client Sample ID: SED-007 Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 23682

Prep Batch: 23682

RPD

RPD

Limit

36

50

Method: Organotins SIM - Organotins (GC/MS SIM) (Continued)

Lab Sample ID: 570-8761-3 MS

Matrix: Solid

Surrogate

Tripentyltin

Tributyltin

Analysis Batch: 24481

Client: WGR Southwest Inc

Project/Site: Tesoro LA Refinery

MS MS

%Recovery Qualifier Limits 27 - 135 56

Lab Sample ID: 570-8761-3 MSD

Matrix: Solid

inalysis Batch: 24481		
•	Sample	Sample
nalyte	Result	Qualifier

Tetrabutyltin

fier ND ND

MSD MSD

Spike Added 368 368

MSD MSD Result Qualifier 230.3 188.9

ug/Kg ug/Kg

Unit

₩

63 51

%Rec

D

33 - 129 34 - 142

Client Sample ID: Method Blank

%Rec.

Limits

18 16

Prep Type: Total/NA

Prep Batch: 23135

Surrogate %Recovery Qualifier Limits Tripentyltin 67 27 - 135

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 570-23135/1-A

Matrix: Solid

Analysis Batch: 23170

MR MR

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6 as C6	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C7 as C7	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C8 as C8	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C9-C10	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C11-C12	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C13-C14	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C15-C16	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C17-C18	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C19-C20	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C21-C22	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C23-C24	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C25-C28	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C29-C32	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C33-C36	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C37-C40	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C41-C44	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
C6-C44	ND		5.0	3.6	mg/Kg		10/02/19 09:36	10/02/19 13:02	1
	C6 as C6 C7 as C7 C8 as C8 C9-C10 C11-C12 C13-C14 C15-C16 C17-C18 C19-C20 C21-C22 C23-C24 C25-C28 C29-C32 C33-C36 C37-C40 C41-C44	Analyte Result C6 as C6 ND C7 as C7 ND C8 as C8 ND C9-C10 ND C11-C12 ND C13-C14 ND C15-C16 ND C17-C18 ND C19-C20 ND C21-C22 ND C23-C24 ND C25-C28 ND C23-C32 ND C33-C36 ND C37-C40 ND C41-C44 ND	Analyte Result Qualifier C6 as C6 ND C7 as C7 ND C8 as C8 ND C9-C10 ND C11-C12 ND C13-C14 ND C15-C16 ND C17-C18 ND C19-C20 ND C21-C22 ND C23-C24 ND C25-C28 ND C29-C32 ND C33-C36 ND C37-C40 ND C41-C44 ND	Analyte Result Qualifier RL C6 as C6 ND 5.0 C7 as C7 ND 5.0 C8 as C8 ND 5.0 C9-C10 ND 5.0 C11-C12 ND 5.0 C13-C14 ND 5.0 C15-C16 ND 5.0 C17-C18 ND 5.0 C19-C20 ND 5.0 C21-C22 ND 5.0 C23-C24 ND 5.0 C25-C28 ND 5.0 C29-C32 ND 5.0 C33-C36 ND 5.0 C37-C40 ND 5.0 C41-C44 ND 5.0	Analyte Result Qualifier RL MDL C6 as C6 ND 5.0 3.6 C7 as C7 ND 5.0 3.6 C8 as C8 ND 5.0 3.6 C9-C10 ND 5.0 3.6 C11-C12 ND 5.0 3.6 C13-C14 ND 5.0 3.6 C15-C16 ND 5.0 3.6 C17-C18 ND 5.0 3.6 C19-C20 ND 5.0 3.6 C21-C22 ND 5.0 3.6 C23-C24 ND 5.0 3.6 C25-C28 ND 5.0 3.6 C29-C32 ND 5.0 3.6 C33-C36 ND 5.0 3.6 C37-C40 ND 5.0 3.6 C41-C44 ND 5.0 3.6	Analyte Result Coalifier RL MDL Unit C6 as C6 ND 5.0 3.6 mg/Kg C7 as C7 ND 5.0 3.6 mg/Kg C8 as C8 ND 5.0 3.6 mg/Kg C9-C10 ND 5.0 3.6 mg/Kg C11-C12 ND 5.0 3.6 mg/Kg C13-C14 ND 5.0 3.6 mg/Kg C15-C16 ND 5.0 3.6 mg/Kg C17-C18 ND 5.0 3.6 mg/Kg C19-C20 ND 5.0 3.6 mg/Kg C21-C22 ND 5.0 3.6 mg/Kg C23-C24 ND 5.0 3.6 mg/Kg C29-C32 ND 5.0 3.6 mg/Kg C33-C36 ND 5.0 3.6 mg/Kg C37-C40 ND 5.0 3.6 mg/Kg C41-C44 ND 5.0 3.6 mg/Kg	Analyte Result Code Qualifier RL MDL Unit Dod D C6 as C6 ND 5.0 3.6 mg/Kg Result Code ND 5.0 3.6 mg/Kg Result Code ND 5.0 3.6 mg/Kg ND Sole 3.6 mg	Analyte Result Color (Color of the color of	Analyte Result Qualifier RL MDL unit D Prepared Analyzed C6 as C6 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C7 as C7 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C8 as C8 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C9-C10 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C11-C12 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C13-C14 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C15-C16 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C17-C18 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C19-C20 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C21-C22 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C23-C24 ND 5.0 3.6 mg/Kg 10/02/19 09:36 10/02/19 13:02 C25-C28 ND 5.0 3.6 mg/Kg 1

MB MB

Surrogate %Recovery Qualifier n-Octacosane (Surr) 102

Limits 61 - 145

Spike

Added

400

Prepared <u>10/02/19 09:36</u> <u>10/02/19 13:02</u>

D %Rec

111

Analyzed

Dil Fac

Lab Sample ID: LCS 570-23135/2-A

Matrix: Solid

Analysis Batch: 23170

Analyte

Diesel Range Organics [C10-C28]

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 23135 %Rec.

Limits

67 - 121

LCS LCS

444.4

Result Qualifier

Unit

mg/Kg

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 570-23135/2-A **Matrix: Solid**

Analysis Batch: 23170

Result Qualifier

414.0

Prep Type: Total/NA Prep Batch: 23135

LCS LCS

Limits Surrogate %Recovery Qualifier n-Octacosane (Surr) 100 61 - 145

Lab Sample ID: 570-8872-A-8-A MS **Client Sample ID: Matrix Spike**

Spike

Added

395

Matrix: Solid

Analysis Batch: 23170

Diesel Range Organics

Prep Type: Total/NA Prep Batch: 23135 MS MS

%Rec.

Client Sample ID: Lab Control Sample

Unit D %Rec Limits 33 - 153 105 mg/Kg

[C10-C28]

Analyte

MS MS

ND

Sample Sample

Result Qualifier

Surrogate %Recovery Qualifier Limits n-Octacosane (Surr) 98 61 - 145

Lab Sample ID: 570-8872-A-8-B MSD **Client Sample ID: Matrix Spike Duplicate**

Matrix: Solid

Analysis Batch: 23170

Prep Type: Total/NA Prep Batch: 23135 Sample Sample Spike MSD MSD %Rec. **RPD**

Analyte **Result Qualifier** Added Result Qualifier Unit Limits RPD Limit D %Rec 396 ND 416.1 mg/Kg 105 33 - 153 0 Diesel Range Organics

[C10-C28]

MSD MSD

Surrogate %Recovery Qualifier Limits 61 - 145 n-Octacosane (Surr) 100

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 570-23333/1-A

Matrix: Solid

Analysis Batch: 24191

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 23333 MR MR

	IVID	IVID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
2,4'-DDD	ND		1.0	0.18	ug/Kg		10/02/19 17:47	10/07/19 14:20	1	
2,4'-DDE	ND		5.0	0.42	ug/Kg		10/02/19 17:47	10/07/19 14:20	1	
2,4'-DDT	ND		1.0	0.090	ug/Kg		10/02/19 17:47	10/07/19 14:20	1	
4,4'-DDD	ND		1.0	0.11	ug/Kg		10/02/19 17:47	10/07/19 14:20	1	
4,4'-DDE	ND		1.0	0.14	ug/Kg		10/02/19 17:47	10/07/19 14:20	1	
4,4'-DDT	ND		1.0	0.30	ug/Kg		10/02/19 17:47	10/07/19 14:20	1	
Chlordane	ND		5.0	0.69	ug/Kg		10/02/19 17:47	10/07/19 14:20	1	

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 90 25 - 145 10/02/19 17:47 10/07/19 14:20 DCB Decachlorobiphenyl (Surr) 105 24 - 168 10/02/19 17:47 10/07/19 14:20

Eurofins Calscience LLC

Job ID: 570-8761-1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 570-23333/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

5.948

ug/Kg

119

50 - 135

Analysis Batch: 24191 Prep Batch: 23333 LCS LCS Spike %Rec. Analyte Added Result Qualifier %Rec Limits Unit 4,4'-DDD 5.00 50 - 135 5.709 ug/Kg 114 4,4'-DDE 5.00 5.261 ug/Kg 105 50 - 135

5.00

LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 91 25 - 145 DCB Decachlorobiphenyl (Surr) 105 24 - 168

Lab Sample ID: 570-8761-1 MS Client Sample ID: SED-005

Matrix: Solid Prep Type: Total/NA Prep Batch: 23333 **Analysis Batch: 24191**

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier %Rec Limits Added Result Qualifier Unit 4,4'-DDD 7.1 F1 4.98 18.41 E F1 228 50 - 135 ug/Kg 4,4'-DDE 4.98 50 - 135 17 EF1 32.48 E F1 ug/Kg 317 4,4'-DDT 7.3 F1 4.98 17.50 E F1 ug/Kg 204 50 - 135MS MS

Surrogate %Recovery Qualifier Limits 25 - 145 Tetrachloro-m-xylene 131 p DCB Decachlorobiphenyl (Surr) 162 p 24 - 168

Client Sample ID: SED-005 Lab Sample ID: 570-8761-1 MSD

Matrix: Solid

4,4'-DDT

Prep Type: Total/NA **Analysis Batch: 24191** Prep Batch: 23333

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit 4,4'-DDD 7.1 F1 4.98 18.85 E F1 ug/Kg 237 50 - 135 2 25 4,4'-DDE 17 EF1 4.98 30.79 E F1 ug/Kg 283 50 - 135 5 25 4,4'-DDT 7.3 F1 4.98 145 50 - 135 25 14.54 E F1 ug/Kg 19

MSD MSD Surrogate %Recovery Qualifier Limits Tetrachloro-m-xvlene 123 a 25 - 145 142 24 - 168 DCB Decachlorobiphenyl (Surr)

Method: 8082 - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

MB MB

Lab Sample ID: MB 570-23333/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 23692** Prep Batch: 23333

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Aroclor-1016 10 2.0 10/02/19 17:47 10/04/19 13:06 \overline{ND} ug/Kg Aroclor-1221 ND 10 6.3 ug/Kg 10/02/19 17:47 10/04/19 13:06 ND 10 Aroclor-1232 2.3 ug/Kg 10/02/19 17:47 10/04/19 13:06 Aroclor-1242 ND 10 10/02/19 17:47 10/04/19 13:06 1.6 ug/Kg Aroclor-1248 ND 10 1.2 ug/Kg 10/02/19 17:47 10/04/19 13:06 Aroclor-1254 ND 10 1.2 ug/Kg 10/02/19 17:47 10/04/19 13:06 Aroclor-1260 ND 10 2.3 ug/Kg 10/02/19 17:47 10/04/19 13:06

Eurofins Calscience LLC

10/11/2019

Page 30 of 48

Job ID: 570-8761-1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery

ed
Ĕ
ij
jo
9
h
ap
g
atc
Ë
10
\dot{c}
as
y Gas
by
s)
(PCBs)
<u>P</u>
<u>s</u>
ű
he
3ip
d B
ate
ing
<u>o</u>
ch
> <
P
2 -
8082 - Poly
ω
po
)th
Met

	W	MB MB									
Surrogate	"Recovery	ry Qualifier	Limits				Pre	Prepared	Analyzed		Dil Fac
DCB Decachlorobiphenyl (Surr)	12	125	24 - 168				10/02	10/02/19 17:47	10/04/19 13:06	90:	7
Tetrachloro-m-xylene (Surr)	5	102	25 - 145				10/02	10/02/19 17:47	10/04/19 13:06	90:	1
Lab Sample ID: LCS 570-23333/5-A	3333/5-A					Clien	t Sarr	ple ID:	Client Sample ID: Lab Control Sample	ol San	nple
Matrix: Solid								_	Prep Type: Total/NA	: Tota	¥ N
Analysis Batch: 23692			:		;				Prep Batch: 23333	tch: 23	3333
(\$1]C < V			Spike	rcs Pour	LCS	<u>‡</u>	2	000	%Rec.		
Alialyte			Panne	lineau	dualier						
Arocior-1016			20.0	71.91		ug/Kg		110	50 - 135		
Aroclor-1260			20.0	23.56		ug/Kg		118	50 - 135		
	7 SO7	SO7									
Surrogate	"Recovery Q	Qualifier	Limits								
DCB Decachlorobiphenyl (Surr)	124		24 - 168								
Tetrachloro-m-xylene (Surr)	103		25-145								
Lab Sample ID: 570-8761-3 MS	S							Client	Client Sample ID: SED-007	SED	-007
Matrix: Solid									Prep Type: Total/NA	: Tota	₹ Z
Analysis Batch: 23692									Prep Batch: 23333	tch: 23	3333
•	Sample S	Sample	Spike	MS	MS				%Rec.		
Analyte	Result Q	Qualifier	Added	Result	Qualifier	Unit		%Rec	Limits		
Aroclor-1016	N N	F2 F1	75.1	347.6	F1	ug/Kg	ı I¤ I	463	50 - 135	 	
Aroclor-1260	510 E		75.1	378.5	4	ug/Kg	₩	-180	50 - 135		
	M S M	MS									
Surrogate		Qualifier	Limits								
DCB Decachlorobiphenyl (Surr)			24 - 168								
Tetrachloro-m-xylene (Surr)	86		25 - 145								
Lab Sample ID: 570-8761-3 MSD	OSM							Client	Client Sample ID: SED-007	S	-007
Matrix: Solid								_	Prep Type: Total/NA	Tota	Z Z
Analysis Batch: 23692									Prep Batch: 23333	tch: 23	3333
`	Sample S	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result Q	Qualifier	Added	Result	Qualifier	Unit		%Rec	Limits	RPD	Limit
Aroclor-1016	N E	F2 F1	75.4	282.7	F1 F2	ug/Kg	ı I¤ I	375	50 - 135	48	20
Aroclor-1260	510 E		75.4	397.9	4	ug/Kg	☆	-154	50 - 135	2	20
	MSD M	MSD									
Surrogate	"Recovery Q	Qualifier	Limits								
DCB Decachlorobiphenyl (Surr)	145 p		24 - 168								
Tetrachloro-m-xylene (Surr)	107		25 - 145								

 ∞

Method: 6020 - Metals (ICP/MS)

): MB 57(0-23210/1-A ^20			Ö	ent Samp	Client Sample ID: Method Blank	Blank
Matrix: Solid Analysis Batch: 23477	!					Prep Type: Total/NA Prep Batch: 23210	23210
	MB MB						
Analyte	Result Qualifier	R	MDL Unit	٥	Prepared	Analyzed	Dil Fac
Cadmium	N ON	0.985	0.118 mg/Kg	10/(0/02/19 13:30	10/02/19 20:31	20
Chromium	QV	1.97	0.115 mg/Kg	10/0	02/19 13:30	0/02/19 13:30 10/02/19 20:31	20
Copper	QN	0.985	0.114 mg/Kg	10/0	0/02/19 13:30	10/02/19 20:31	20
Lead	ND	0.985	0.135 mg/Kg	10/0	02/19 13:30	0/02/19 13:30 10/02/19 20:31	20
Nickel	QN	0.985	0.126 mg/Kg	10/0	02/19 13:30	0/02/19 13:30 10/02/19 20:31	20

Eurofins Calscience LLC

10/11/2019

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 570-23210/1-A ^20

Matrix: Solid

Analyte

Zinc

Analysis Batch: 23477

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 23210

MB MB Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed ND 4.93 0.781 mg/Kg <u>10/02/19 13:30</u> <u>10/02/19 20:31</u>

Lab Sample ID: LCS 570-23210/2-A ^20

Lab Sample ID: LCSD 570-23210/3-A ^20

Analysis Batch: 23477

Matrix: Solid

Prep Type: Total/NA
Prep Batch: 23210

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	24.4	24.17		mg/Kg	_	99	80 - 120	
Chromium	24.4	23.77		mg/Kg		97	80 - 120	
Copper	24.4	23.94		mg/Kg		98	80 - 120	
Lead	24.4	23.73		mg/Kg		97	80 - 120	
Nickel	24.4	23.97		mg/Kg		98	80 - 120	
Zinc	24.4	25.74		mg/Kg		106	80 - 120	

Client Sample ID: Lab Control Sample Dun

Matrix: Solid

Analysis Batch: 23477

ment Jampie ID. Lab	Control Sample Dup
	Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Batch: 23210

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	24.8	26.34		mg/Kg	_	106	80 - 120	9	20
Chromium	24.8	25.48		mg/Kg		103	80 - 120	7	20
Copper	24.8	25.66		mg/Kg		104	80 - 120	7	20
Lead	24.8	25.69		mg/Kg		104	80 - 120	8	20
Nickel	24.8	25.45		mg/Kg		103	80 - 120	6	20
Zinc	24.8	27.92		mg/Kg		113	80 - 120	8	20

Lab Sample ID: 570-8764-A-1-B MS ^100

Matrix: Solid

Analysis Batch: 23477

Client Sample ID: Matrix Spike
Prep Type: Total/NA
Pren Batch: 23210

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D '	%Rec	Limits	
Cadmium	5.25	F1 F2	25.6	33.37		mg/Kg		110	85 - 121	
Chromium	141	F2	25.6	152.6	4	mg/Kg		45	20 - 182	
Copper	211	F2	25.6	852.6	4	mg/Kg		2502	25 - 157	
Lead	1330	F2	25.6	1534	4	mg/Kg		776	62 - 134	
Nickel	35.4	F2	25.6	65.99		mg/Kg		119	46 - 154	
Zinc	947	F2	25.6	1231	4	mg/Kg		1108	23 - 173	

Lab Sample ID: 570-8764-A-1-C MSD ^100

Matrix: Solid

Analysis Batch: 23477

Cilent	Sample	ו:טו	watrix	Spike	Duplicate
--------	--------	------	--------	-------	-----------

Prep Type: Total/NA Prep Batch: 23210

Alialysis Dalcii. 23411									Frep E	alcii. 4	23210
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	5.25	F1 F2	25.8	25.03	F1 F2	mg/Kg		77	85 - 121	29	12
Chromium	141	F2	25.8	116.5	4 F2	mg/Kg		-95	20 - 182	27	15
Copper	211	F2	25.8	203.4	4 F2	mg/Kg		-30	25 - 157	123	22
Lead	1330	F2	25.8	1012	4 F2	mg/Kg		-1252	62 - 134	41	23
Nickel	35.4	F2	25.8	52.73	F2	mg/Kg		67	46 - 154	22	15
Zinc	947	F2	25.8	875.8	4 F2	mg/Kg		-276	23 - 173	34	18

Page 32 of 48

Eurofins Calscience LLC

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 570-23284/1-A

Matrix: Solid

Analysis Batch: 23303

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 23284

 Analyte
 Result Mercury
 Qualifier ND
 RL ND
 MDL VINIT
 Unit Mg/Kg
 D VINIT
 Prepared T0/02/19 16:00
 Analyzed Analyzed Mil Fac T0/02/19 18:52
 D VINIT T0/02/19 16:00
 MIL T0/02/19 16:00
 MI

Lab Sample ID: LCS 570-23284/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 23303** Prep Batch: 23284 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 0.820 Mercury 0.7876 mg/Kg 96 85 - 121

Lab Sample ID: LCSD 570-23284/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 23303** Prep Batch: 23284 Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit Limits RPD Limit D %Rec 0.862 98 85 - 121 Mercury 0.8427 mg/Kg

Lab Sample ID: 570-8501-A-5-D MS **Client Sample ID: Matrix Spike Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 23303** Prep Batch: 23284 Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier D %Rec Limits Unit Mercury 0.0144 J 0.862 0.8012 91 71 - 137 mg/Kg

Lab Sample ID: 570-8501-A-5-E MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 23303** Prep Batch: 23284 Sample Sample Spike MSD MSD **RPD** %Rec. Result Qualifier Added **Analyte** Result Qualifier Unit %Rec Limits **RPD** Limit 0.0144 J 0.820 0.7772 Mercury mg/Kg 71 - 137

Method: 9060A - Organic Carbon, Total (TOC)

Lab Sample ID: MB 570-23330/4

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 23330

MB MB

Analyte Result Qualifier RL MDL Unit Driganic ND \(^{\text{NDL}}\) 10/02/19 11:25 1

Lab Sample ID: LCS 570-23330/5

Matrix: Solid

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 23330

Eurofins Calscience LLC

10/11/2019

QC Sample Results

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Method: 9060A - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: LCSD 570-23330/10 Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 23330

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 80 - 120 Carbon, Total Organic 30000 28510 ^ 95 mg/Kg 16

Lab Sample ID: 570-8832-A-1 MS **Client Sample ID: Matrix Spike** Matrix: Solid Prep Type: Total/NA

Analysis Batch: 23330

Spike MS MS %Rec. Sample Sample Result Qualifier Analyte Result Qualifier Added Unit D %Rec Limits 23070 F1 ^ 1900 F1 ^ 29000 Carbon, Total Organic mg/Kg 73 75 - 125

Lab Sample ID: 570-8832-A-1 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 23330

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit D Carbon, Total Organic 1900 F1 ^ 29300 23270 F1 ^ ₩ 25 mg/Kg 73 75 - 125

Method: Moisture - Percent Moisture

Lab Sample ID: 570-8761-1 DU **Client Sample ID: SED-005** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 22809

RPD Sample Sample DU DU Analyte Result Qualifier Result Qualifier Unit D RPD Limit Percent Moisture 51.1 52.9 % 10

QC Association Summary

Client: WGR Southwest Inc Job ID: 570-8761-1 Project/Site: Tesoro LA Refinery

GC/MS Semi VOA

Cleanup Batch: 22920

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1 - DL	SED-005	Total/NA	Solid	Homogenize	
				Prep	
570-8761-1	SED-005	Total/NA	Solid	Homogenize	
				Prep	
570-8761-2 - DL	SED-006	Total/NA	Solid	Homogenize	
F=0.0=04.0				Prep	
570-8761-2	SED-006	Total/NA	Solid	Homogenize	
570 0764 2 DI	CED 007	Total/NIA	Calid	Prep	
570-8761-3 - DL	SED-007	Total/NA	Solid	Homogenize	
570-8761-3	SED-007	Total/NA	Solid	Prep	
370-0701-3	GEB-001	Total/NA	Oolid	Homogenize Prep	
570-8761-1 MS - DL	SED-005	Total/NA	Solid	Homogenize	
				Prep	
570-8761-1 MSD - DL	SED-005	Total/NA	Solid	Homogenize	
				Prep	
570-8761-3 MS	SED-007	Total/NA	Solid	Homogenize	
				Prep	
570-8761-3 MSD	SED-007	Total/NA	Solid	Homogenize	
				Prep	

Prep Batch: 23315

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1 - DL	SED-005	Total/NA	Solid	3541	22920
570-8761-2 - DL	SED-006	Total/NA	Solid	3541	22920
570-8761-3 - DL	SED-007	Total/NA	Solid	3541	22920
MB 570-23315/1-A	Method Blank	Total/NA	Solid	3541	
LCS 570-23315/2-A	Lab Control Sample	Total/NA	Solid	3541	
570-8761-1 MS - DL	SED-005	Total/NA	Solid	3541	22920
570-8761-1 MSD - DL	SED-005	Total/NA	Solid	3541	22920

Prep Batch: 23682

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	Organotin Prep	22920
570-8761-2	SED-006	Total/NA	Solid	Organotin Prep	22920
570-8761-3	SED-007	Total/NA	Solid	Organotin Prep	22920
MB 570-23682/1-A	Method Blank	Total/NA	Solid	Organotin Prep	
LCS 570-23682/2-A	Lab Control Sample	Total/NA	Solid	Organotin Prep	
570-8761-3 MS	SED-007	Total/NA	Solid	Organotin Prep	22920
570-8761-3 MSD	SED-007	Total/NA	Solid	Organotin Prep	22920

Analysis Batch: 23777

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1 - DL	SED-005	Total/NA	Solid	8270C SIM	23315
570-8761-2 - DL	SED-006	Total/NA	Solid	8270C SIM	23315
570-8761-3 - DL	SED-007	Total/NA	Solid	8270C SIM	23315
MB 570-23315/1-A	Method Blank	Total/NA	Solid	8270C SIM	23315
LCS 570-23315/2-A	Lab Control Sample	Total/NA	Solid	8270C SIM	23315
570-8761-1 MS - DL	SED-005	Total/NA	Solid	8270C SIM	23315
570-8761-1 MSD - DL	SED-005	Total/NA	Solid	8270C SIM	23315

Analysis Batch: 24307

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 570-23682/1-A	Method Blank	Total/NA	Solid	Organotins SIM	23682

QC Association Summary

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery Job ID: 570-8761-1

GC/MS Semi VOA (Continued)

Analysis Batch: 24307 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 570-23682/2-A	Lab Control Sample	Total/NA	Solid	Organotins SIM	23682

Analysis Batch: 24407

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-3 - DL	SED-007	Total/NA	Solid	8270C SIM	23315

Analysis Batch: 24481

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	Organotins SIM	23682
570-8761-2	SED-006	Total/NA	Solid	Organotins SIM	23682
570-8761-3	SED-007	Total/NA	Solid	Organotins SIM	23682
570-8761-3 MS	SED-007	Total/NA	Solid	Organotins SIM	23682
570-8761-3 MSD	SED-007	Total/NA	Solid	Organotins SIM	23682

GC Semi VOA

Cleanup Batch: 22920

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	Homogenize	
				Prep	
570-8761-2	SED-006	Total/NA	Solid	Homogenize	
				Prep	
570-8761-3	SED-007	Total/NA	Solid	Homogenize	
				Prep	

Prep Batch: 23135

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	3550C	22920
570-8761-2	SED-006	Total/NA	Solid	3550C	22920
570-8761-3	SED-007	Total/NA	Solid	3550C	22920
MB 570-23135/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 570-23135/2-A	Lab Control Sample	Total/NA	Solid	3550C	
570-8872-A-8-A MS	Matrix Spike	Total/NA	Solid	3550C	
570-8872-A-8-B MSD	Matrix Spike Duplicate	Total/NA	Solid	3550C	

Analysis Batch: 23170

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	8015B	23135
570-8761-2	SED-006	Total/NA	Solid	8015B	23135
570-8761-3	SED-007	Total/NA	Solid	8015B	23135
MB 570-23135/1-A	Method Blank	Total/NA	Solid	8015B	23135
LCS 570-23135/2-A	Lab Control Sample	Total/NA	Solid	8015B	23135
570-8872-A-8-A MS	Matrix Spike	Total/NA	Solid	8015B	23135
570-8872-A-8-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B	23135

Cleanup Batch: 23256

Lab Sample ID 570-8761-1	Client Sample ID SED-005	Prep Type Total/NA	Matrix Solid	Method Prep Ba Homogenize	atch
570-8761-2	SED-006	Total/NA	Solid	Prep Homogenize	
570-8761-3	SED-007	Total/NA	Solid	Prep Homogenize Prep	

Eurofins Calscience LLC

10/11/2019

Page 36 of 48

ムウス:
Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-8761-1

GC Semi VOA (Continued)	ntinued)				
Cleanup Batch: 23256 (Continued)	(Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1 MS	SED-005	Total/NA	Solid	Homogenize	
570-8761-1 MSD	SED-005	Total/NA	Solid	Homogenize	
570-8761-3 MS	SED-007	Total/NA	Solid	Homogenize Formation	
570-8761-3 MSD	SED-007	Total/NA	Solid	Prep Homogenize Prep	
Prep Batch: 23333					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	3541	23256
570-8761-2	SED-006	Total/NA	Solid	3541	23256
5/U-6/61-3 MB 570-2333/1-A	SED-00/ Method Blank	I Otal/NA Total/NA	pilon Vilov	3541	00757
LCS 570-23333/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCS 570-23333/5-A	Lab Control Sample	Total/NA	Solid	3541	
570-8761-1 MS	SED-005	Total/NA	Solid	3541	23256
570-8761-1 MSD	SED-005	Total/NA	Solid	3541	23256
570-8761-3 MS	SED-007	Total/NA	Solid	3541	23256
570-8761-3 MSD	SED-007	Total/NA	Solid	3541	23256
Analysis Batch: 23692					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	8082	23333
570-8761-2	SED-006	Total/NA	Solid	8082	23333
570-8761-3	SED-007	Total/NA	Solid	8082	23333
MB 570-23333/1-A	Method Blank	Total/NA	Solid	8082	23333
LCS 570-23333/5-A	Lab Control Sample	Total/NA	Solid	8082	23333
570-8761-3 MS	SED-007	Total/NA	Solid	8082	23333
570-8761-3 MSD	SED-007	Total/NA	Solid	8082	23333
Analysis Batch: 24191					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	8081A	23333
570-8761-1	SED-005	Total/NA	Solid	8081A	23333
570-8761-2	SED-006	Total/NA	Solid	8081A	23333
570-8761-2	SED-006	Total/NA	Solid	8081A	23333
570-8761-3	SED-007	Total/NA	Solid	8081A	23333
570-8761-3	SED-007	Total/NA	Solid	8081A	23333
MB 570-23333/1-A	Method Blank	Total/NA	Solid	8081A	23333
LCS 570-23333/2-A	Lab Control Sample	Total/NA	Solid	8081A	23333
570-8761-1 MS	SED-005	Total/NA	Solid	8081A	23333
570-8761-1 MSD	SED-005	Total/NA	Solid	8081A	23333
Metals					
Cleanup Batch: 22920					
•					

0

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	Homogenize	
570-8761-2	SED-006	Total/NA	Solid	Prep Homogenize Prep	

Eurofins Calscience LLC

QC Association Summary

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-8761-1

Metals (Continued)

Cleanup Batch: 22920 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-3	SED-007	Total/NA	Solid	Homogenize	
				Prep	

Prep Batch: 23210

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	3050B	22920
570-8761-2	SED-006	Total/NA	Solid	3050B	22920
570-8761-3	SED-007	Total/NA	Solid	3050B	22920
MB 570-23210/1-A ^20	Method Blank	Total/NA	Solid	3050B	
LCS 570-23210/2-A ^20	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 570-23210/3-A ^20	Lab Control Sample Dup	Total/NA	Solid	3050B	
570-8764-A-1-B MS ^100	Matrix Spike	Total/NA	Solid	3050B	
570-8764-A-1-C MSD ^100	Matrix Spike Duplicate	Total/NA	Solid	3050B	

Prep Batch: 23284

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	7471A	22920
570-8761-2	SED-006	Total/NA	Solid	7471A	22920
570-8761-3	SED-007	Total/NA	Solid	7471A	22920
MB 570-23284/1-A	Method Blank	Total/NA	Solid	7471A	
LCS 570-23284/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 570-23284/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	
570-8501-A-5-D MS	Matrix Spike	Total/NA	Solid	7471A	
570-8501-A-5-E MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	

Analysis Batch: 23303

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	7471A	23284
570-8761-2	SED-006	Total/NA	Solid	7471A	23284
570-8761-3	SED-007	Total/NA	Solid	7471A	23284
MB 570-23284/1-A	Method Blank	Total/NA	Solid	7471A	23284
LCS 570-23284/2-A	Lab Control Sample	Total/NA	Solid	7471A	23284
LCSD 570-23284/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	23284
570-8501-A-5-D MS	Matrix Spike	Total/NA	Solid	7471A	23284
570-8501-A-5-E MSD	Matrix Spike Duplicate	Total/NA	Solid	7471A	23284

Analysis Batch: 23477

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	6020	23210
570-8761-2	SED-006	Total/NA	Solid	6020	23210
570-8761-3	SED-007	Total/NA	Solid	6020	23210
MB 570-23210/1-A ^20	Method Blank	Total/NA	Solid	6020	23210
LCS 570-23210/2-A ^20	Lab Control Sample	Total/NA	Solid	6020	23210
LCSD 570-23210/3-A ^20	Lab Control Sample Dup	Total/NA	Solid	6020	23210
570-8764-A-1-B MS ^100	Matrix Spike	Total/NA	Solid	6020	23210
570-8764-A-1-C MSD ^100	Matrix Spike Duplicate	Total/NA	Solid	6020	23210

General Chemistry

Analysis Batch: 22809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	Moisture	

Eurofins Calscience LLC

Page 38 of 48

2

3

6

10

12

13

1

iscience LLO

Job ID: 570-8761-1

Client: WGR Southwest Inc

≥	
Refinen	
≤	
Tesoro	
/Site:	
<u>ject</u>	

Project/Site: Tesoro LA General Chemistry
--

Analysis Batch: 22809 (C	(Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-2	SED-006	Total/NA	Solid	Moisture	
570-8761-3	SED-007	Total/NA	Solid	Moisture	
570-8761-1 DU	SED-005	Total/NA	Solid	Moisture	
Cleanup Batch: 22920					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	Homogenize	
				Prep	
570-8761-2	SED-006	Total/NA	Solid	Homogenize	
				Prep	
570-8761-3	SED-007	Total/NA	Solid	Homogenize	
				Prep	

6

Analysis Batch: 23330

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	9060A	22920
570-8761-2	SED-006	Total/NA	Solid	9060A	22920
570-8761-3	SED-007	Total/NA	Solid	9060A	22920
MB 570-23330/4	Method Blank	Total/NA	Solid	9060A	
LCS 570-23330/5	Lab Control Sample	Total/NA	Solid	9060A	
LCSD 570-23330/10	Lab Control Sample Dup	Total/NA	Solid	9060A	
570-8832-A-1 MS	Matrix Spike	Total/NA	Solid	9060A	
570-8832-A-1 MSD	Matrix Spike Duplicate	Total/NA	Solid	9060A	

Geotechnical

Analysis Batch: 23878

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
570-8761-1	SED-005	Total/NA	Solid	D4464	
570-8761-2	SED-006	Total/NA	Solid	D4464	
570-8761-3	SED-007	Total/NA	Solid	D4464	

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Client Sample ID: SED-005

Date Collected: 09/25/19 16:00 Date Received: 09/26/19 12:08 Lab Sample ID: 570-8761-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Cleanup	Homogenize Prep	DL				22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	3541	DL		20.3 g	2 mL	23315	10/02/19 16:36	UM1W	ECL 1
Total/NA	Analysis	8270C SIM	DL	5			23777	10/04/19 21:01	AJ2Q	ECL 1
	Instrumer	nt ID: GCMSAAA								
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	Organotin Prep			10.27 g	5 mL	23682	10/02/19 20:08	W8MO	ECL 1
Total/NA	Analysis Instrumer	Organotins SIM nt ID: GCMSY		1			24481	10/08/19 15:06	AJ2Q	ECL 1
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	3550C			10.21 g	10 mL	23135	10/02/19 09:36	UFLU	ECL 1
Total/NA	Analysis	8015B		1	· ·		23170	10/02/19 17:15	N5Y3	ECL 1
	•	nt ID: GC47								
Total/NA	Cleanup	Homogenize Prep					23256	10/02/19 14:30	C4LT	ECL 1
Total/NA	Prep	3541			20.2 g	2 mL	23333	10/02/19 17:47	UM1W	ECL 1
Total/NA	Analysis Instrumer	8081A nt ID: GC44		1			24191	10/07/19 15:17	UHHN	ECL 1
Total/NA	Cleanup	Homogenize Prep					23256	10/02/19 14:30	C4LT	ECL 1
Total/NA	Prep	3541			20.2 g	2 mL	23333	10/02/19 17:47		ECL 1
Total/NA	Analysis	8081A nt ID: GC44		5	J		24191	10/07/19 16:00	UHHN	ECL 1
Total/NA	Cleanup	Homogenize Prep					23256	10/02/19 14:30	C4I T	ECL 1
Total/NA	Prep	3541			20.2 g	2 mL	23333	10/02/19 17:47		ECL 1
Total/NA	Analysis	8082		1	9		23692	10/04/19 14:18		ECL 1
	•	nt ID: GC58								
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	3050B			1.95 g	100 mL	23210	10/02/19 13:30	I3IN	ECL 1
Total/NA	Analysis Instrumer	6020 nt ID: ICPMS05		100			23477	10/02/19 21:27	UFLE	ECL 1
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	7471A			0.62 g	100 mL	23284	10/02/19 16:00	MD3A	ECL 1
Total/NA	Analysis Instrumer	7471A nt ID: HG7		1			23303	10/02/19 19:06	I3IN	ECL 1
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Analysis Instrumer	9060A nt ID: TOC10		1	203.0 mg	203.0 mg	23330	10/02/19 11:25	CY2M	ECL 1
Total/NA	Analysis Instrumer	Moisture nt ID: NOEQUIP		1			22809	10/01/19 09:00	KAP4	ECL 2
Total/NA	Analysis Instrumer	D4464 nt ID: NOEQUIP		1			23878	10/04/19 14:53	C4LT	ECL 1

- -

4

5

9

11

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Client Sample ID: SED-006

Lab Sample ID: 570-8761-2

Matrix: Solid

Date	Collected:	09/25/19	14:00
Date	Received:	09/26/19	12:08

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Cleanup	Homogenize Prep	DL				22920	10/01/19 13:25	-	ECL 1
Total/NA	Prep	3541	DL		20.1 g	2 mL	23315	10/02/19 16:36	UM1W	ECL 1
Total/NA	Analysis	8270C SIM	DL	5			23777	10/04/19 21:20	AJ2Q	ECL 1
	Instrumen	t ID: GCMSAAA								
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	Organotin Prep			10.20 g	5 mL	23682	10/02/19 20:23	W8MO	ECL 1
Total/NA	Analysis	Organotins SIM		1			24481	10/08/19 15:23	AJ2Q	ECL 1
	Instrumen	t ID: GCMSY								
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	3550C			10.10 g	10 mL	23135	10/02/19 09:36	UFLU	ECL 1
Total/NA	Analysis	8015B		1			23170	10/02/19 19:02	N5Y3	ECL 1
	Instrumen	t ID: GC47								
Total/NA	Cleanup	Homogenize Prep					23256	10/02/19 14:30	C4LT	ECL 1
Total/NA	Prep	3541			20.0 g	2 mL	23333	10/02/19 17:47	UM1W	ECL 1
Total/NA	Analysis	8081A		1			24191	10/07/19 15:31	UHHN	ECL 1
	Instrumen	t ID: GC44								
Total/NA	Cleanup	Homogenize Prep					23256	10/02/19 14:30	C4LT	ECL 1
Total/NA	Prep	3541			20.0 g	2 mL	23333	10/02/19 17:47	UM1W	ECL 1
Total/NA	Analysis	8081A		5			24191	10/07/19 16:14	UHHN	ECL 1
	Instrumen	t ID: GC44								
Total/NA	Cleanup	Homogenize Prep					23256	10/02/19 14:30	C4LT	ECL 1
Total/NA	Prep	3541			20.0 g	2 mL	23333	10/02/19 17:47	UM1W	ECL 1
Total/NA	Analysis	8082		1			23692	10/04/19 14:36	UHHN	ECL 1
	Instrumen	t ID: GC58								
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	3050B			2.00 g	100 mL	23210	10/02/19 13:30	I3IN	ECL 1
Total/NA	Analysis	6020		20			23477	10/02/19 21:45	UFLE	ECL 1
	Instrumen	t ID: ICPMS05								
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	7471A			0.59 g	100 mL	23284	10/02/19 16:00	MD3A	ECL 1
Total/NA	Analysis	7471A		1			23303	10/02/19 19:08	I3IN	ECL 1
	Instrumen	t ID: HG7								
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Analysis	9060A		1	206.2 mg	206.2 mg	23330	10/02/19 11:25	CY2M	ECL 1
	Instrumen	t ID: TOC10								
Total/NA	Analysis	Moisture		1			22809	10/01/19 09:00	KAP4	ECL 2
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	D4464		1			23878	10/04/19 14:53	C4LT	ECL 1
	-	t ID: NOEQUIP								

Client: WGR Southwest Inc Job ID: 570-8761-1

Project/Site: Tesoro LA Refinery

Client Sample ID: SED-007

Lab Sample ID: 570-8761-3

Matrix: Solid

Date	Collected:	09/25/19	10:00
Date	Received:	09/26/19	12:08

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Cleanup	Homogenize Prep	DL				22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	3541	DL		20.1 g	2 mL	23315	10/02/19 16:36	UM1W	ECL 1
Total/NA	Analysis Instrument	8270C SIM ID: GCMSAAA	DL	5			23777	10/04/19 21:40	AJ2Q	ECL 1
Total/NA	Cleanup	Homogenize Prep	DL				22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	3541	DL		20.1 g	2 mL	23315	10/02/19 16:36	UM1W	ECL 1
Total/NA	Analysis Instrument	8270C SIM ID: GCMSAAA	DL	25			24407	10/08/19 15:08	AJ2Q	ECL 1
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	Organotin Prep			10.06 g	5 mL	23682	10/02/19 20:23	W8MO	ECL 1
Total/NA	Analysis Instrument	Organotins SIM ID: GCMSY		1			24481	10/08/19 15:41	AJ2Q	ECL 1
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	3550C			9.96 g	10 mL	23135	10/02/19 09:36	UFLU	ECL 1
Total/NA	Analysis Instrument	8015B ID: GC47		1			23170	10/02/19 19:23	N5Y3	ECL 1
Total/NA	Cleanup	Homogenize Prep					23256	10/02/19 14:30	C4LT	ECL 1
Total/NA	Prep	3541			20.2 g	2 mL	23333	10/02/19 17:47	UM1W	ECL 1
Total/NA	Analysis Instrument	8081A ID: GC44		1			24191	10/07/19 15:45	UHHN	ECL 1
Total/NA	Cleanup	Homogenize Prep					23256	10/02/19 14:30	C4LT	ECL 1
Total/NA	Prep	3541			20.2 g	2 mL	23333	10/02/19 17:47	UM1W	ECL 1
Total/NA	Analysis Instrument	8081A : ID: GC44		5			24191	10/07/19 16:28	UHHN	ECL 1
Total/NA	Cleanup	Homogenize Prep					23256	10/02/19 14:30	C4LT	ECL 1
Total/NA	Prep	3541			20.2 g	2 mL	23333	10/02/19 17:47	UM1W	ECL 1
Total/NA	Analysis Instrument	8082 ID: GC58		1			23692	10/04/19 14:54	UHHN	ECL 1
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	3050B			1.98 g	100 mL	23210	10/02/19 13:30	I3IN	ECL 1
Total/NA	Analysis Instrument	6020 ID: ICPMS05		20			23477	10/02/19 21:48	UFLE	ECL 1
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Prep	7471A			0.60 g	100 mL	23284	10/02/19 16:00	MD3A	ECL 1
Total/NA	Analysis Instrument	7471A : ID: HG7		1			23303	10/02/19 19:10	I3IN	ECL 1
Total/NA	Cleanup	Homogenize Prep					22920	10/01/19 13:25	C4LT	ECL 1
Total/NA	Analysis Instrument	9060A :ID: TOC10		1	206.6 mg	206.6 mg	23330	10/02/19 11:25	CY2M	ECL 1
Total/NA	Analysis Instrument	Moisture ID: NOEQUIP		1			22809	10/01/19 09:00	KAP4	ECL 2
Total/NA	Analysis Instrument	D4464 ID: NOEQUIP		1			23878	10/04/19 14:53	C4LT	ECL 1

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery Job ID: 570-8761-1

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494 ECL 2 = Eurofins Calscience LLC Lampson, 7445 Lampson Ave, Garden Grove, CA 92841, TEL (714)895-5494

-

4

5

7

ŏ

10

11

14

14

Accreditation/Certification Summary

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

Job ID: 570-8761-1

Laboratory: Eurofins Calscience LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Arizona	State	AZ0781	03-13-20	
California	SCAQMD LAP	17LA0919	11-30-19	
California	State	2944	09-29-20	
Guam	State	19-004R	10-31-19	
Hawaii	State	<cert no.=""></cert>	07-02-20	
Nevada	State	CA00111	07-31-20	
Oregon	NELAP	CA300001	01-29-20	
Washington	State	C916-18	10-11-19	

_

4

6

8

10

11

13

14

Method Summary

Client: WGR Southwest Inc
Project/Site: Tesoro LA Refinery

lethod	Method Description	Protocol	Laboratory
270C SIM	PAHs (GC/MS SIM)	SW846	ECL 1
rganotins SIM	Organotins (GC/MS SIM)	Lab SOP	ECL 1
015B	Diesel Range Organics (DRO) (GC)	SW846	ECL 1
081A	Organochlorine Pesticides (GC)	SW846	ECL 1
082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	ECL 1
020	Metals (ICP/MS)	SW846	ECL 1
171A	Mercury (CVAA)	SW846	ECL 1
060A	Organic Carbon, Total (TOC)	SW846	ECL 1
oisture	Percent Moisture	EPA	ECL 2
4464	Particle Size Distribution of Catalytic Material (Laser light scattering)	ASTM	ECL 1
050B	Preparation, Metals	SW846	ECL 1
541	Automated Soxhlet Extraction	SW846	ECL 1
541	Automated Soxhlet Extraction (Low Level)	SW846	ECL 1
550C	Ultrasonic Extraction	SW846	ECL 1
471A	Preparation, Mercury	SW846	ECL 1
omogenize Prep	Preparation, Homogenization	None	ECL 1
rganotin Prep	Extraction (Organotins)	None	ECL 1

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

Lab SOP = Laboratory Standard Operating Procedure

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ECL 1 = Eurofins Calscience LLC Lincoln, 7440 Lincoln Way, Garden Grove, CA 92841, TEL (714)895-5494

ECL 2 = Eurofins Calscience LLC Lampson, 7445 Lampson Ave, Garden Grove, CA 92841, TEL (714)895-5494

4

Job ID: 570-8761-1

4

6

8

9

11

12

4 /

Sample Summary

Client: WGR Southwest Inc Project/Site: Tesoro LA Refinery Job ID: 570-8761-1

Lab Sample ID Client Sample ID Matrix Collected Received	ab Sample ID Client
570-8761-1 SED-005 Solid 09/25/19 16:00 09/26/19 12:08	70-8761-1 SED-0
570-8761-2 SED-006 Solid 09/25/19 14:00 09/26/19 12:08	70-8761-2 SED-0
570-8761-3 SED-007 Solid 09/25/19 10:00 09/26/19 12:08	70-8761-3 SED-0

6

Ω

9

11

14

10/11/2019

Page

47

of 48

Client: WGR Southwest Inc

Job Number: 570-8761-1

Login Number: 8761 List Source: Eurofins Calscience

List Number: 1 Creator: Le, Danny

Creator. Le, Dainly		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Calscience LLC

ATTACHMENT 4

SEDIMENT MONITORING AQUATIC BIOASSAY ANALYTICAL LABORATORY REPORT

October 25, 2019

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA/R-95/136. Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-005
DATE RECEIVED: 9/26/2019
ABC LAB. NO.: WGR0919.187

CHRONIC MYTILUS SEDIMENT WATER INTERFACE BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours very truly,

Scott Johnson Laboratory Director

CETIS Summary Report

Report Date:

31 Oct-19 10:17 (p 1 of 1)

Test Code/ID:

WGR0919.187m / 01-7161-5322

							lest	Code/ID:	WGR09	19.18/m/	J1-7161-5	322
Mussel Shell	Development T	est						Aquatic	Bioassay &	Consultin	g Labs, II	nc,
Batch ID:	00-2536-6135	Test	Type:	Development-S	Survival		Anal	yst: Joe	Freas			
Start Date:	08 Oct-19 12:0	0 Prote	ocol:	EPA/600/R-95	/136 (1995)		Dilu	ent: Lab	oratory Wate	er		
Ending Date:	10 Oct-19 12:0	0 Spec	ies:	Mytilus gallopr	ovincialis		Brin	e:				
Test Length:	48h	Taxo	n:	Bivalvia			Sou	rce: Car	sbad Aquafa	arms CA	Age:	
Sample ID:	16-1084-4840	Code	e:	WGR0919.18	7m		Proj	ect: 021	APC.01			
Sample Date:	25 Sep-19 16:0	00 Mate	rial:	Sediment			Sou	rce: Bioa	assay Repor	t-		
Receipt Date:	26 Sep-19 12:2	cas	(PC):				Stat	ion: SEI	0-005			
Sample Age:	12d 20h	Clier	nt:	WGR Southwe	est Inc.							
Single Compa	rison Summar	у										
Analysis ID	Endpoint		Comp	arison Method	1		P-Value	Comparis	on Result			s
11-8180-8464	Combined Prop	portion Normal	Equal	Variance t Two	-Sample Test		0.8527	100% pas	sed combine	ed proportio	n normal	- 1
Test Acceptal	oility					TAC	Limits					
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision			
11-8180-8464	Combined Prop	oortion Normal	PMSC)	0.02078	<<	0.25	No	Passes C	riteria		
Combined Pro	oportion Norma	al Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe	ct
0	N	5	0.955	0.9381	0.9724	0.9361	0.9726	0.0062	0.0139	1.45%	0.00%	1
100		5	0.9653	3 0.9471	0.9835	0.9498	0.9863	0.0066	0.0147	1.52%	-1.059	6
Combined Pro	oportion Norma	al Detail			700							
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	0.9635	0.949	3 0.9726	0.9361	0.9543						
100		0.9635	0.9863	0.9726	0.9498	0.9543						
Combined Pro	oportion Norma	al Binomials										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	211/219	208/2	19 213/219	205/219	209/219						
100		211/219	216/2	19 213/219	208/219	209/219						

CETIS Ana	alyti	cal Repo	rt								ort Date: Code/ID:	31 Oct-19 10 WGR0919.187m /	0:17 (p 1 of 2) 01-7161-5322
Mussel Shell	Deve	lopment Tes	t								Aquatic E	lioassay & Consultir	ig Labs, Inc.
Analysis ID:	11-8	180-8464		Endpoint:	Cor	nbined Prop	ortion No	orma		CET	S Version:	CETISV1.9.5	
Analyzed:	25 0	Oct-19 9:57		Analysis:	Par	ametric-Two	Sample			State	ıs Level:	1	
Batch ID:	00-2	2536-6135	- Y	Test Type:	Dev	elopment-Si	urvival			Anal	yst: Joe i	reas	
Start Date:	08 0	Oct-19 12:00		Protocol:	EP/	A/600/R-95/	136 (199	(5)		Dilue	ent: Labo	ratory Water	
Ending Date:	100	oct-19 12:00		Species:	Myt	ilus gallopro	vincialis			Brine	e:		
Test Length:	48h			Taxon:	Biva	alvia				Sour	rce: Carls	sbad Aquafarms CA	Age:
Sample ID:	16-1	084-4840		Code:	WG	R0919.187	m			Proje	ect: 021.	APC.01	
Sample Date:	25 5	Sep-19 16:00		Material:	Sec	liment				Sour	ce: Bioas	ssay Report	
Receipt Date:	26 5	Sep-19 12:25		CAS (PC):						Stati	on: SED	-005	
Sample Age:	12d	20h		Client:	WG	R Southwes	st Inc.						
Data Transfor	m		Alt H	ур						Comparis	on Result		PMSD
Angular (Corre	cted)		C>T							100% pas	sed combine	d proportion normal	2.08%
Equal Variance	e t T	wo-Sample	Test										
Control	vs	Conc-%		Test 5	Stat	Critical	MSD	DF	P-Type	P-Value	Decision(x:5%)	
Negative Contr	rol	100		-1.122	2	1.86	0.046	8	CDF	0.8527	Non-Signif	cant Effect	
Test Acceptal	bility	Criteria	TA	AC Limits									
Attribute		Test Stat	Lower	. S	r	Overlap	Decis	ion					
PMSD		0.02078	<<	0.25		No	Passe	s Cri	iteria				
ANOVA Table													
Source		Sum Squa	res	Mean	Squ	are	DF		F Stat	P-Value	Decision(c	x:5%)	
Retween		0.0010128		0.001	0129		-1		1 258	0.2045	Non Sinnif	icant Effort	

ANOVA Table							
Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)	
Between	0.0019128	0.0019128	1	1.258	0.2945	Non-Significant Effect	
Error	0.0121624	0.0015203	8				
Total	0.0140752		9				

ANOVA ASSUM	puons rests					
Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)	
Variance	Levene Equality of Variance Test	0.3679	11,26	0.5610	Equal Variances	
	Mod Levene Equality of Variance Test	0.3436	13.75	0.5791	Equal Variances	
	Variance Ratio F Test	1.653	23.15	0.6381	Equal Variances	
Distribution	Anderson-Darling A2 Normality Test	0.2693	3.878	0.7075	Normal Distribution	
	D'Agostino Skewness Test	0.7935	2.576	0.4275	Normal Distribution	
	Kolmogorov-Smirnov D Test	0.1458	0.3025	1.0000	Normal Distribution	

	Shapiro-	Wilk W Norn	nality Test		0.9453	0.7411	0.6134	Normal Distribution				
Combined Proportion Normal Summary												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	N	5	0.9553	0.9381	0.9724	0.9543	0.9361	0.9726	0.0062	1.45%	0.00%	
100		5	0.9653	0.9471	0.9835	0.9635	0.9498	0.9863	0.0066	1.52%	-1.05%	

Angular (Corr	rected) Transfo	rmed Sumn	nary									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect	
0	N	5	1.36	1.318	1.402	1.355	1.315	1.405	0.01514	2.49%	0.00%	
100		5	1.387	1.333	1.441	1.378	1.345	1.453	0.01947	3.14%	-2.03%	

Combined Proportion Normal Detail												
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	0.9635	0.9498	0.9726	0.9361	0.9543						
100		0.9635	0.9863	0.9726	0.9498	0.9543						

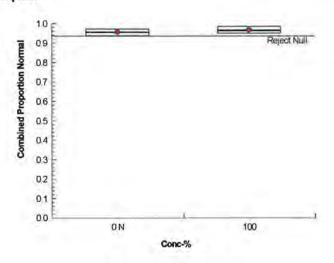
Angular (Corrected) Transformed Detail											
Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
N	1.378	1.345	1,405	1.315	1.355						
	1.378	1 453	1.405	1.345	1.355						
	2000	Code Rep 1 N 1.378	Code Rep 1 Rep 2 N 1.378 1.345	Code Rep 1 Rep 2 Rep 3 N 1.378 1.345 1.405	Code Rep 1 Rep 2 Rep 3 Rep 4 N 1.378 1.345 1.405 1.315	Code Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 N 1.378 1.345 1.405 1.315 1.355					

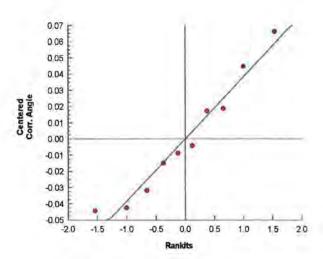
CETIS Analytical Report

Report Date: Test Code/ID: 31 Oct-19 10:17 (p 2 of 2) WGR0919.187m / 01-7161-5322

Mussel Shell Development Test

Aquatic Bioassay & Consulting Labs, Inc.


Analysis ID: 11-8180-8464 Endpoint: Combined Proportion Normal CETIS Version: CETISv1.9.5


Analyzed: 25 Oct-19 9:57 Analysis: Parametric-Two Sample Status Level: 1

Combined Proportion Normal Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	211/219	208/219	213/219	205/219	209/219	
100		211/219	216/219	213/219	208/219	209/219	

Graphics

CETIS Measurement Report

Report Date:

31 Oct-19 10:17 (p 1 of 2)

Test Code/ID:

WGR0919.187m / 01-7161-5322

Mussel Shell	Development Te	st						Aquat	ic Bioassay 8	Consultir	g Labs, Inc.	
Batch ID: Start Date: Ending Date: Test Length:	00-2536-6135 08 Oct-19 12:00 10 Oct-19 12:00 48h		Test Type: Protocol: Species: Taxon:	EPA/600/R-95				Analyst: Joe Freas Diluent: Laboratory Water Brine: Source: Carlsbad Aquafarms CA			Age:	
	16-1084-4840 25 Sep-19 16:00 26 Sep-19 12:25 12d 20h		Code: Material: CAS (PC): Client:	WGR0919.187 Sediment WGR Southwe				Project: 021.APC.01 Source: Bioassay Report Station: SED-005				
Dissolved Oxy	ygen-mg/L										1000	
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count	
0	N	2	9.7	8,43	10.97	9.6	9.8	0.09998	0.1414	1.46%	0	
100		2	10	8.729	11.27	9.9	10.1	0.1	0.1414	1.41%	0	
Overall		4	9,85	9,519	10.18	9,6	10.1	0.1041	0.2082	2.11%	0 (0%)	
pH-Units												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count	
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.0%	0	
100		2	8.05	7.415	8.685	8	8.1	0.05001	0.07073	0.88%	0	
Overall		4	7.975	7.823	8.127	7.9	8.1	0.04787	0.09574	1.20%	0 (0%)	
Salinity-ppt	A			Table	-							
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count	
0	N	2	34	34	34	34	34	0	0	0.0%	0	
100		2	34	34	34	34	34	0	0	0.0%	0	
Overall		4	34	34	34	34	34	0	0	0.00%	0 (0%)	
Temperature-	°C											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count	
0	N	2	14.75	14.11	15.39	14.7	14.8	0.05002	0.07075	0.48%	0	
100		2	14.75	14.11	15.39	14.7	14.8	0.05002	0.07075	0.48%	0	
Overall		4	14.75	14.66	14.84	14.7	14.8	0.02887	0.05774	0.39%	0 (0%)	

Report Date:

31 Oct-19 10:17 (p 2 of 2)

Test Code/ID: WGR0919.187m / 01-7161-5322

Mussel Shell Deve	elopment	Test							Aquatic Bioassay & Consulting Labs, Inc.
Dissolved Oxyger	n-mg/L								
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		9.8					
100				9.9					
0	N	2		9.6					
100				10.1					
pH-Units									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		7.9					
100				8.1					
0	N	2		7.9					
100				8					
Salinity-ppt									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		34					
100				34					
0	N	2		34					
100				34					
Temperature-°C									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		14.8					
100				14.8					
0	N	2		14.7					
100				14.7					

October 25, 2019

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA/R-95/136. Results were as follows:

CLIENT:

WGR Southwest, Inc.

SAMPLE I.D.:

SED-006

DATE RECEIVED:

9/26/2019

ABC LAB. NO .:

WGR0919.188

CHRONIC MYTILUS SEDIMENT WATER INTERFACE BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 %

EC50 = >100.00 %

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

25 Oct-19 10:14 (p 1 of 1)

Test Code/ID:

WGR0919.188m / 20-4728-7390

Mussel Shell I	Development T	est						Aquatic	Bioassay &	Consultin	g Labs, Ir	ıc.
Batch ID:	00-9754-0668	Test	Type:	Development-Si	urvival		Anal	yst: Joe	Freas			
Start Date:	08 Oct-19 12:0	1 Prote	ocol:	EPA/600/R-95/	136 (1995)		Dilue	ent: Lal	oratory Wate	er		
Ending Date:	10 Oct-19 12:0	1 Spec		Mytilus gallopro			Brine	e:				
Test Length:	48h	Taxo	n:	Bivalvia			Soul	ce: Ca	risbad Aquafa	arms CA	Age:	
Sample ID:	10-2054-8747	Code):	WGR0919.188	m		Proje	ect: 02	LAPC.01			
Sample Date:	25 Sep-19 14:0	00 Mate	rial:	Sediment			Sour	ce: Bio	assay Report	t-		
Receipt Date:	26 Sep-19 12:2	25 CAS	(PC):				Stati	on: SE	D-006			
Sample Age:	12d 22h	Clien	it:	WGR Southwes	st Inc.							
Single Compa	rison Summar	у										
Analysis ID	Endpoint		Compa	rison Method			P-Value	Compari	son Result			s
02-7220-2942	Combined Prop	ortion Normal	Equal \	/ariance t Two-S	Sample Test		0.9879	100% pa	ssed combine	ed proportio	n normal	1
Test Acceptat	oility					TAC	Limits					
Analysis ID	Endpoint		Attribu	ite	Test Stat	Lower	Upper	Overlap	Decision			
02-7220-2942	Combined Prop	ortion Normal	PMSD		0.01642	<<	0.25	No	Passes C	riteria		
Combined Pro	portion Norma	at Summary										_
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effec	ct
0	N	5	0.9553	0.9381	0.9724	0.9361	0.9726	0.0062	0.0139	1.45%	0,00%	
100		5	0.9753	0.9643	0.9864	0.9635	0.9863	0.0040	0.0089	0.91%	-2.10%	6
Combined Pro	portion Norma	al Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	0.9635	0.9498	0.9726	0.9361	0.9543						
100		0.9635	0.9726	0.9863	0.9726	0.9817						
Combined Pro	portion Norma	al Binomials			7.77							
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	211/219	208/21	9 213/219	205/219	209/219						
100		211/219	213/21	9 216/219	213/219	215/219						

CETIS Analytical Report

Report Date:

25 Oct-19 10:14 (p 1 of 2)

Test Code/ID: WGR0919.188m / 20-4728-7390

												10.100111.	
Mussel Shell (Develop	ment Tes	st							Aquatic I	Bioassay &	Consultin	g Labs, Ir
Analysis ID:	02-722	0-2942	En	dpoint:	Combin	ed Prop	ortion Norma	ď	CET	IS Version:	CETISv1	.9.5	
Analyzed:	25 Oct-	19 10:00	Ar	alysis:	Parame	etric-Two	Sample		State	us Level:	1		
Batch ID:	00-975	4-0668	Te	st Type:	Develor	oment-Su	urvival		Anal	yst: Joe	Freas		
Start Date:		19 12:01		otocol:			136 (1995)		Dilue		oratory Wate	er	
Ending Date:	10 Oct-	19 12:01	Sp	ecles:		gallopro	And the second second		Brin				
Test Length:				xon:	Bivalvia				Sou	rce: Carl	sbad Aquafa	arms CA	Age:
Sample ID:	10-205	4-8747	Co	ode:	WGROS	919.188	m		Proje	ect: 021.	APC.01		
Sample Date:				aterial:	Sedime				Soul		ssay Report		
Receipt Date:				AS (PC):					Stati		0-006		
Sample Age:				ient:	WGRS	Southwes	st Inc.						
Data Transfor	m		Alt Hyp						Comparis	on Result			PMSD
Angular (Correc			C>T							sed combine	d proportion	normal	1.64%
Equal Varianc	e f Two	-Sample	Test										
		Conc-%		Test :	Stat Cr	ritical	MSD DF	P-Type	P-Value	Decision(α:5%)		
Negative Contro		100		-2.77		86	0.037 8	CDF	0.9879		ficant Effect		
Test Acceptab		7.7	-2.3				7.00 %	-1.0	7 303.30		7720,000	-	-
Attribute		est Stat	Lower	Limits Uppe	. 0	verlap	Decision						
PMSD		.01642	<<	0.25	No		Passes Ci	riteria					
ANOVA Table		CALL TO		1,000			1-21-50/2	0.94					
Source		um Saus	roc	Maan	Square		DF	F Stat	P-Value	Decision(a-504)		
Between		um Squa .0077194		0.007			1	7.693	0.0242	Significant			
Error		.0077194		0.007			8	7.093	0.0242	Significani	LINGUL		
Total		.0157468		0.001	5054		9	-					
ANOVA Assur	nptions	Tests	-										_
Attribute		est					Test Stat	Critical	P-Value	Decision(g:1%)		
Variance	_		uality of V	ariance To	est		0.04515	11.26	0.8371	Equal Vari			
T GIT INTO			e Equality				0.1066	13.75	0.7552	Equal Vari			
			atio F Tes		00.130		1.331	23.15	0.7884	Equal Vari			
Distribution			Darling A2		y Test		0.2983	3.878	0.6171	Normal Di			
C 2 (1/10) 1000 W			Skewnes				0.1341	2.576	0.8933	Normal Di	stribution		
			v-Smirnov				0.1563	0.3025	0.8510	Normal Di	stribution		
		12 St. 16 Th. 16	ilk W Nor		st		0.9492	0.7411	0.6592	Normal Di	stribution		
Combined Pro	portion	Normal	Summary	1									
Conc-%	C	ode	Count	Mean	95	5% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0	ı	1	5	0.955	3 0.	9381	0.9724		0.9361	0.9726	0.0062	1.45%	0.00%
100			5	0.975	53 0.	9643	0.9864		0.9635	0.9863	0.0040	0.91%	-2.10%
Angular (Corr	ected)	Transform	ned Sumi	mary									
Conc-%		ode	Count	Mean	95	5% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0	١	1	5	1.36	1.3	318	1.402		1.315	1.405	0.01514	2.49%	0.00%
100			5	1.415	1.	379	1,452		1.378	1.453	0.01312	2.07%	-4.09%
Combined Pro	portion	Normal	Detail										
Conc-%		Code	Rep 1	Rep 2	2 R	ер 3	Rep 4	Rep 5					
0	1		0.9635	0.949		9726	0.9361	0.9543					
100			0.9635	0.972		9863	0.9726	0.9817					
Angular (Corr	ected)	Transform	ned Detai	1									
Conc-%	and the last	ode	Rep 1	Rep) p.	ep 3	Rep 4	Rep 5					
0			1.378	1.345		405	1,315	1.355					
50.4	1												
100			1.378	1.405	1.	453	1.405	1.435					

CETIS Analytical Report

Report Date:

25 Oct-19 10:14 (p 2 of 2)

Test Code/ID:

WGR0919.188m / 20-4728-7390

Mussel Shell Development Test

Aquatic Bioassay & Consulting Labs, Inc.

Analyzed:

Analysis ID: 02-7220-2942

25 Oct-19 10:00

Analysis:

Endpoint: Combined Proportion Normal

Parametric-Two Sample

CETIS Version: Status Level:

CETISV1.9.5

Analyst QA:

Report Date:

25 Oct-19 10:14 (p 1 of 2)

Test Code/ID:

WGR0919.188m / 20-4728-7390

Mussel Shell	Development Te	st						Aquat	ic Bioassay &	Consultin	g Labs, Inc.
Batch ID: Start Date: Ending Date: Test Length:	00-9754-0668 08 Oct-19 12:01 10 Oct-19 12:01 48h		Test Type: Protocol: Species: Taxon:	EPA/600/R-95/136 (1995) Mytilus galloprovincialis Bivalvia				Diluent: L Brine:	oe Freas aboratory Wat arlsbad Aqua		Age:
	10-2054-8747 25 Sep-19 14:00 26 Sep-19 12:25 12d 22h		Code: Material: CAS (PC): Client:	WGR0919.188 Sediment WGR Southwe			T.	Project: 0 Source: B Station: S			
Dissolved Oxy	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	9.7	8.43	10.97	9.6	9.8	0.09998	0.1414	1.46%	0
100		2	9.7	8.43	10.97	9.6	9.8	0.09998	0.1414	1.46%	0
Overall		4	9.7	9.516	9.884	9.6	9.8	0.05773	0.1155	1.19%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.0%	0
100		2	8.05	7.415	8.685	8	8.1	0.05001	0.07073	0.88%	0
Overall		4	7.975	7.823	8.127	7.9	8.1	0.04787	0.09574	1.20%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	34	34	34	34	34	0	0	0.0%	0
100		2	34	34	34	34	34	0	0	0.0%	0
Overall		4	34	34	34	34	34	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.75	14.11	15.39	14.7	14.8	0.05002	0.07075	0.48%	0
100		2	14.75	14.11	15.39	14.7	14.8	0.05002	0.07075	0.48%	0
Overall		4	14.75	14.66	14.84	14.7	14.8	0.02887	0.05774	0.39%	0 (0%)

Analyst: Analyst: QA:

Report Date:

25 Oct-19 10:14 (p 2 of 2)

Test Code/ID: WGR0919.188m / 20-4728-7390

Mussel Shell Deve	ssel Shell Development Test								Aquatic Bioassay & Consulting Labs, Inc.		
Dissolved Oxyger	ı-mg/L										
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes		
0	N	1		9.8							
100				9.8							
0	N	2		9.6							
100				9.6							
pH-Units											
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes		
0	N	1		7.9				_			
100				8.1							
0	N	2		7.9							
100				8							
Salinity-ppt											
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes		
0	N	1		34							
100				34							
0	N	2		34							
100				34							
Temperature-°C											
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes		
0	N	18.1		14.8							
100				14.8							
0	N	2		14.7							
100				14.7							

October 25, 2019

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in Short-Term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA/R-95/136. Results were as follows:

CLIENT:

WGR Southwest, Inc.

SAMPLE I.D.:

SED-007

DATE RECEIVED:

9/26/2019

ABC LAB. NO .:

WGR0919.189

CHRONIC MYTILUS SEDIMENT WATER INTERFACE BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 %

EC50 = >100.00%

Yours Very truly,

W. Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

25 Oct-19 10:14 (p 1 of 1)

Test Code/ID: WGR0919.189m / 08-9568-3219

										F		
Mussel Shell	Development T	est						Aquatio	Bioassay &	Consultin	g Labs, Ir	ıc.
Batch ID:	12-1238-6343	Test	Type:	Development-S	urvival		Anal	yst: Jo	e Freas			
Start Date:	08 Oct-19 12:0	2 Prote	ocol:	EPA/600/R-95/	136 (1995)		Dilu	ent: La	boratory Wate	er		
Ending Date:	10 Oct-19 12:0	2 Spec	cies:	Mytilus gallopro	vincialis		Brin	e:				
Test Length:	48h	Taxo	on:	Bivalvia			Sou	rce: Ca	risbad Aquaf	arms CA	Age:	
Sample ID:	04-8505-2834	Code	e:	WGR0919.189	m		Proj	ect: 02	1.APC.01			
Sample Date:	25 Sep-19 10:0	00 Mate	erial:	Sediment			Sou	rce: Bio	passay Repor	t:		
Receipt Date:	26 Sep-19 12:2	25 CAS	(PC):				Stati	ion: SE	D-007			
Sample Age:	13d 2h	Clier	nt:	WGR Southwes	st Inc.							
Single Compa	rison Summar	у										
Analysis ID	Endpoint		Compa	arison Method			P-Value	Compar	ison Result			S
10-2114-0353	Combined Prop	portion Normal	Equal 9	Variance t Two-	Sample Test		0.5037	100% pa	ssed combine	ed proportio	n normal	1
Test Acceptal	oility					TAC	Limits					
Analysis ID	Endpoint		Attribu	ute	Test Stat	Lower	Upper	Overlap	Decision			
10-2114-0353	Combined Pro	portion Normal	PMSD	7	0.04436	<<	0.25	No	Passes C	riteria		
Combined Pro	portion Norma	al Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effe	ct
0	N.	5	0.9553	0.9381	0.9724	0.9361	0.9726	0.0062	0.0139	1.45%	0.00%	
100		5	0.9489	0.9114	0.9863	0.9269	1.0000	0.0135	0.0302	3.18%	0.67%	(
Combined Pro	oportion Norma	al Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	0.9635	0.9498	0.9726	0.9361	0.9543						
100		1.0000	0.9269	0.9406	0.9498	0.9269						
Combined Pro	oportion Norma	al Binomials			7.2							
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5						
0	N	211/219	208/21	9 213/219	205/219	209/219						
100		219/219	203/21	9 206/219	208/219	203/219						

CETIS Analytical Report

Report Date:

25 Oct-19 10:14 (p 1 of 2)

ussel Shell Development Test

Aguatic Bioassay & Consulting Labs, Inc.

Mussel Shell	Development Test			Aquatic Bioassay & Consulting Labs, Inc						
Analysis ID: Analyzed:	10-2114-0353 25 Oct-19 10:04	Endpoint: Analysis:	Combined Proportion Normal Parametric-Two Sample	CETIS Ver Status Lev		CETISv1.9.5				
Batch ID:	12-1238-6343	Test Type:	Development-Survival	Analyst:	Joe F	Freas				
Start Date:	08 Oct-19 12:02	Protocol:	EPA/600/R-95/136 (1995)	Diluent:	Labo	ratory Water				
Ending Date:	10 Oct-19 12:02	Species:	Mytilus galloprovincialis	Brine:						
Test Length:	48h	Taxon:	Bivalvia	Source:	Carls	sbad Aquafarms CA	Age:			
Sample ID:	04-8505-2834	Code:	WGR0919.189m	Project:	021.	APC.01				
Sample Date:	25 Sep-19 10:00	Material:	Sediment	Source:	Bioas	ssay Report				
Receipt Date:	26 Sep-19 12:25	CAS (PC):		Station:	SED	-007				
Sample Age:	13d 2h	Client:	WGR Southwest Inc.							

Data Transform	Alt Hyp	Comparison Result	PMSD
Angular (Corrected)	C > T	100% passed combined proportion normal	4.44%

Equal Variance t Two-Sample Test

Control	VS	Conc-%	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(a:5%)	
Negative Con	trol	100	-0.009442	1.86	0.089	8	CDF	0.5037	Non-Significant Effect	

Test Acceptab	ility Criteria	TAC	Limits			
Attribute	Test Stat	Lower	Upper	Overlap	Decision	
PMSD	0.04436	<<	0.25	No	Passes Criteria	

ANOVA Table

Source	Sum Squares	Mean Square	DF	F Stat	P-Value	Decision(a:5%)
Between	5.049E-07	5.049E-07	1	8.915E-05	0.9927	Non-Significant Effect
Error	0.0453072	0.0056634	8			
Total	0,0453077		9			

ANOVA Assumptions Tests

Attribute	Test	Test Stat	Critical	P-Value	Decision(a:1%)
Variance	Levene Equality of Variance Test	2.408	11.26	0.1593	Equal Variances
	Mod Levene Equality of Variance Test	0.7457	13.75	0.4210	Equal Variances
	Variance Ratio F Test	8.884	23.15	0.0573	Equal Variances
Distribution	Anderson-Darling A2 Normality Test	0.8613	3.878	0.0269	Normal Distribution
	D'Agostino Skewness Test	2.69	2.576	0,0072	Non-Normal Distribution
	Kolmogorov-Smirnov D Test	0.2238	0.3025	0.1761	Normal Distribution
	Shapiro-Wilk W Normality Test	0.8013	0.7411	0.0150	Normal Distribution

Combined Proportion Normal Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	5	0.9553	0.9381	0.9724		0.9361	0.9726	0.0062	1.45%	0.00%
100		5	0.9489	0.9114	0.9863		0.9269	1.0000	0.0135	3.18%	0.67%

Angular (Corrected) Transformed Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	5	1,36	1.318	1.402		1,315	1.405	0.01514	2.49%	0.00%
100		5	1.36	1.235	1.485		1.297	1.537	0.04512	7 42%	-0.03%

Combined Proportion Normal Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	0.9635	0.9498	0.9726	0.9361	0.9543	
100		1.0000	0.9269	0.9406	0.9498	0.9269	

Angular (Corrected) Transformed Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	1.378	1,345	1.405	1.315	1.355	
100		1.537	1.297	1.325	1.345	1.297	

Analyst: D QA:

CETIS Analytical Report

Report Date:

25 Oct-19 10:14 (p 2 of 2)

Test Code/ID:

WGR0919.189m / 08-9568-3219

Mussel Shell Development Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: Analyzed:

Analysis ID: 10-2114-0353

10-2114-0353 Endpoint: 25 Oct-19 10:04 Analysis:

Endpoint: Combined Proportion Normal

Parametric-Two Sample

CETIS Version: Status Level:

on: CETISv1.9.5

CETIS Measurement Report

Report Date:

25 Oct-19 10:14 (p 1 of 2)

Test Code/ID:

WGR0919.189m / 08-9568-3219

Mussel Shell	Development Te	st						Aqua	tic Bioassay 8	Consultin	ng Labs, Inc.
Batch ID: Start Date: Ending Date: Test Length:	12-1238-6343 08 Oct-19 12:02 10 Oct-19 12:02 48h		Test Type: Protocol: Species: Taxon:	Development-S EPA/600/R-95/ Mytilus gallopro Bivalvia	136 (1995)			Diluent: Brine:	Joe Freas Laboratory Wat Carlsbad Aquat		Age:
	04-8505-2834 25 Sep-19 10:00 26 Sep-19 12:25 13d 2h		Code: Material: CAS (PC): Client:	WGR0919.189 Sediment WGR Southwe				Source:	021.APC.01 Bioassay Repoi SED-007	t	
Dissolved Oxy	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	9.7	8.43	10.97	9.6	9.8	0.0999	0.1414	1.46%	0
100		2	9.5	4.418	14.58	9.1	9.9	0.4	0.5657	5.96%	0
Overall		4	9,6	9.034	10.17	9.1	9.9	0.178	0.3559	3.71%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std En	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.0%	0
100		2	7.85	5.944	9.756	7.7	8	0.15	0.2121	2.7%	0
Overall		4	7.875	7.675	8.075	7.7	8	0.0629	2 0.1258	1.60%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	Std Dev	CV%	QA Count
0	N	2	34	34	34	34	34	0	0	0.0%	0
100		2	34	34	34	34	34	0	0	0.0%	0
Overall		4	34	34	34	34	34	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std En	Std Dev	CV%	QA Count
0	N	2	14.75	14.11	15.39	14.7	14.8	0.0500	2 0.07075	0.48%	0
100		2	14.75	14.11	15.39	14.7	14.8	0.0500	2 0.07075	0.48%	0
Overall		4	14.75	14.66	14.84	14.7	14.8	0.0288	7 0.05774	0.39%	0 (0%)

Report Date:

25 Oct-19 10:14 (p 2 of 2)

Test Code/ID:

WGR0919.189m / 08-9568-3219

								1000	oue/ib.	VVGRU313.103117 00-3300-3213
Mussel Shell Deve	elopment	Test							Aquatic	Bioassay & Consulting Labs, Inc.
Dissolved Oxyger	ı-mg/L		7, 1							
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	N	1		9.8						
100				9.1						
0	N	2		9.6						
100				9.9						
pH-Units							7			
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	N	1		7.9						
100				8						
0	N	2		7.9						
100				7.7						
Salinity-ppt										
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	N	1		34						
100				34						
0	N	2		34						
100				34						
Temperature-°C										
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes	
0	N	1		14.8						
100				14.8						
0	N	2		14.7						
100				14.7						

October 25, 2019

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT:

WGR Southwest, Inc.

SAMPLE I.D.:

SED-005

DATE RECEIVED:

09/26/2019

ABC LAB. NO .:

WGR0919.187

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 %

EC50 = >100.00%

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date: Test Code/ID: 25 Oct-19 10:14 (p 1 of 1) WGR0919 187e / 18-4196-7957

								Code/ID:	WGROS	119.18/e/1	8-4196-795
Eohaustorius	10-d Survival an	d Rebur	ial Sedime	ent Test				Aquatic	Bioassay &	Consulting	g Labs, Inc.
Batch ID:	09-3560-5522	T	est Type:	Survival-Reburi	al		Anal	yst: Joe	Freas		
Start Date:	04 Oct-19 12:00	P	rotocol:	EPA/600/R-94/	025 (1994)		Diluent: Laboratory Seawater		/ater		
Ending Date:	14 Oct-19 12:00	S	pecies:	Echaustorius es	estuarius			e: Not	Applicable		
Test Length:	10d 0h	T	axon:	Malacostraca			Sou	rce: Nor	Northwestern Aquatic Scienc Age		
Sample ID:	08-0284-6087	С	ode:	WGR0919.187	e		Proj	ect: 021	.APC.01		
Sample Date:	25 Sep-19 16:00	M	laterial:	Sediment			Sou	rce: Bio	assay Repor	6	
Receipt Date:	26 Sep-19 12:25	C	AS (PC):				Stati	ion: SE	D-005		
Sample Age:	8d 20h	C	lient:	WGR Southwes	st Inc.						
Single Compa	rison Summary										
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compari	son Result		3
20-1644-3170	Survival Rate		Wilco	xon Rank Sum T	wo-Sample 1	Γest	0.7778	100% pas	sed survival	rate	110
Test Acceptability						TAC	Limits				
Analysis ID	Endpoint		Attrib	ute	Test Stat	Lower	Upper	Overlap	Decision		
20-1644-3170	Survival Rate		Contro	ol Resp	0.99	0.9	>>	Yes	Passes C	riteria	
Survival Rate	Summary				-						
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	0.990	0 0.9622	1.0000	0.9500	1.0000	0.0100	0.0224	2.26%	0.00%
100		5	0.990	0.9622	1.0000	0.9500	1.0000	0.0100	0.0224	2.26%	0.00%
Survival Rate	Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	1.0000	1.000	0.9500	1.0000	1.0000					
100		1.0000	1.000	0.9500	1.0000	1.0000					
Survival Rate	Binomials		77								
						G					
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
Conc-%	Code N	Rep 1 20/20	20/20		Rep 4 20/20	20/20					

Analyst: 1 of 2

Report Date: Test Code/ID: 25 Oct-19 10:14 (p 1 of 2) WGR0919.187e / 18-4196-7957

Enhaustorius :	40 40 - 4 - 4	VA. 40. 2 . 50								- I - C	
Longustonus	10-d Survival a	nd Reburia	Sediment	Test				Aquatic E	Bioassay &	Consultin	g Labs, li
Analysis ID:	20-1644-3170	End	dpoint: S	urvival Rate			CETI	S Version:	CETISv1	.9.5	
	25 Oct-19 9:39			onparametric-	Two Sample		Statu	s Level:	1		
Batch ID:	09-3560-5522	Ter	st Type: S	urvival-Reburia	al .		Anal	vet: loe l	Freas	_	
	04 Oct-19 12:00		ALC: NO THE RESERVE OF THE PERSON NAMED IN	PA/600/R-94/0	The contract		Dilue		rieas oratory Seaw	erer	
	14 Oct-19 12:00			ohaustorius es			Brine		Applicable	vater	
Test Length:				lalacostraca	ituarius		Sour		hwestern Ac	uatic Scien	oc Age:
	rance cha					_				qualic ociei	ic Age.
	08-0284-6087	Co	20 5 112	VGR0919.187			Proje		APC.01		
	25 Sep-19 16:00			ediment			Sour		ssay Report		
	26 Sep-19 12:25		S (PC):	IOD Coudbase	4122		Stati	on: SED	-005		
Sample Age:	80 20h	Cil	ent: V	VGR Southwes	st Inc.						
Data Transform		Alt Hyp					Comparis	*****	44		PMSD
Angular (Correc		C>T					100% pass	sed survival i	rate		2.76%
Wilcoxon Rank	k Sum Two-San	nple Test						A. A. C. C. C. C. C.			
2.022	vs Conc-%	1 10	Test Sta	Andrew Address and the Control of th		P-Type	P-Value	Decision(
Negative Contro	ol 100		27.5	n/a	2 8	Exact	0.7778	Non-Signif	icant Effect		
Test Acceptab	ility Criteria	TAC	Limits								
Attribute	Test Stat	27.32	Upper	Overlap	Decision						
Control Resp	0.99	0.9	>>	Yes	Passes Cr	iteria					
ANOVA Table							100				
Source	Sum Squ	ares	Mean S	quare	DF	F Stat	P-Value	Decision(a:5%)		
Between	0		0		1	0	1.0000		icant Effect		
Error	0.020602	8	0.00257	54	8			4.00			
Total	0.020602	8			9						
ANOVA Assum	nptions Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision(a:1%)		
Variance		quality of Va	riance Test		0	11.26	1.0000	Equal Vari			
	Levene Ed	quality of va	Harriot I cou		•		200				
	Levene Ed Mod Leve	ne Equality			0	13.75	1.0000	Equal Vari	ances		
	Mod Leve		of Variance		a li	13.75 23.15	1.0000	Equal Vari			
Distribution	Mod Leve Variance	ne Equality	of Variance	Test	a li			Equal Vari		on	
Distribution	Mod Leve Variance Anderson	ne Equality Ratio F Test	of Variance : Normality T	Test	0	23.15	1.0000	Equal Vari	ances al Distributio	оп	
Distribution	Mod Leve Variance Anderson D'Agostin	ne Equality Ratio F Test -Darling A2	of Variance Normality T Test	Test	0 1 2.912	23.15 3.878	1.0000 <1.0E-37	Equal Vari Non-Norm Normal Dis	ances al Distributio		
Distribution	Mod Leve Variance Anderson D'Agostin Kolmogor	ne Equality Ratio F Test -Darling A2 o Skewness	of Variance Normality T Test D Test	Test	0 1 2.912 2.495	23.15 3.878 2,576	1.0000 <1.0E-37 0.0126	Equal Vari Non-Norm Normal Dis Non-Norm	ances al Distributio stribution	on	
	Mod Leve Variance Anderson D'Agostin Kolmogon Shapiro-V	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov	of Variance Normality T Test D Test	Test	0 1 2.912 2.495 0.4824	23.15 3.878 2.576 0.3025	1.0000 <1.0E-37 0.0126 2.2E-07	Equal Vari Non-Norm Normal Dis Non-Norm	ances al Distributio stribution al Distributio	on	
Distribution Survival Rate :	Mod Leve Variance Anderson D'Agostin Kolmogon Shapiro-V	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov	of Variance Normality T Test D Test	Test	0 1 2.912 2.495 0.4824	23.15 3.878 2.576 0.3025	1.0000 <1.0E-37 0.0126 2.2E-07	Equal Vari Non-Norm Normal Dis Non-Norm	ances al Distributio stribution al Distributio	on	%Effec
Survival Rate : Conc-%	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn	of Variance Normality T Test D Test nality Test	Test	0 1 2.912 2.495 0.4824 0.5093	23.15 3.878 2.576 0.3025 0.7411	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm	ances al Distributio stribution al Distributio al Distributio	on on	%Effec
Survival Rate : Conc-% 0	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn Count	of Variance Normality T Test D Test nality Test Mean	Test est 95% LCL	0 1 2.912 2.495 0.4824 0.5093	23.15 3.878 2.576 0.3025 0.7411	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm	ances al Distributio stribution al Distributio al Distributio	on on CV%	
Survival Rate : Conc-% 0 100	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn Count 5 5	Normality To Test D Test Daility Test Mean 0.9900 0.9900	95% LCL 0.9622	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1,0000	23.15 3.878 2.576 0.3025 0.7411	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000	ances al Distribution stribution al Distributio al Distributio Std Err 0,0100	cv% 2.26%	0.00%
Survival Rate : Conc-% 0 100	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code N	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn Count 5 5	Normality To Test D Test Daility Test Mean 0.9900 0.9900	95% LCL 0.9622	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1,0000	23.15 3.878 2.576 0.3025 0.7411	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000	ances al Distribution stribution al Distributio al Distributio Std Err 0,0100	cv% 2.26%	0.00%
Survival Rate : Conc-% 0 100 Angular (Corre Conc-%	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code N ected) Transfor	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn Count 5 5 med Sumn Count	Normality T Test D Test hality Test Mean 0,9900 0,9900 hary	95% LCL 0.9622 0.9622	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1,0000 1,0000	23.15 3.878 2.576 0.3025 0.7411 Median	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500 0.9500	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000 1,0000	ances al Distribution al Distribution al Distribution al Distribution Std Err 0,0100 0.0100	CV% 2.26% 2.26%	0.00% 0.00%
Survival Rate : Conc-% 0 100 Angular (Corre Conc-%	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code N ected) Transfor	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn Count 5 5	Normality T Test D Test hality Test Mean 0,9900 0,9900 mary Mean	95% LCL 0.9622 0.9622 95% LCL	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1,0000 1.0000	23.15 3.878 2.576 0.3025 0.7411 Median	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500 0.9500	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000 1.0000	ances al Distribution al Distributio al Distributio Std Err 0,0100 0.0100 Std Err	CV% 2.26% 2.26% CV%	0.00% 0.00% %Effec
Survival Rate : Conc-% 0 100 Angular (Corre Conc-% 0	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code N ected) Transfor Code N	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn Count 5 5 med Summ Count 5	Normality To Test D Test Dality Test Mean 0,9900 0,9900 Dary Mean 1,436	95% LCL 0.9622 0.9622 95% LCL 1.373	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1,0000 1.0000 95% UCL	23.15 3.878 2.576 0.3025 0.7411 Median	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500 0.9500 Min 1.345	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000 1,0000 Max 1,459	ances al Distribution al Distributio al Distributio Std Err 0,0100 0.0100 Std Err 0.02269	CV% 2.26% 2.26% CV% 3.53%	0.00% 0.00% %Effect 0.00%
Survival Rate : Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate :	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code N ected) Transfor Code N	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn Count 5 5 med Sumn Count 5 5	Normality To Test D Test D Test Mean 0.9900 0.9900 mary Mean 1.436 1.436	95% LCL 0.9622 0.9622 95% LCL 1.373 1.373	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1.0000 1.0000 95% UCL 1.499 1.499	23.15 3.878 2.576 0.3025 0.7411 Median	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500 0.9500 Min 1.345	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000 1,0000 Max 1,459	ances al Distribution al Distributio al Distributio Std Err 0,0100 0.0100 Std Err 0.02269	CV% 2.26% 2.26% CV% 3.53%	0.00% 0.00% %Effect 0.00%
Survival Rate : Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate !	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code N ected) Transfor Code N Detail Code	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn Count 5 5 med Summ Count 5 5	Normality To Test D Test D Test Mean 0.9900 0.9900 Mary Mean 1.436 1.436	95% LCL 0.9622 0.9622 95% LCL 1.373	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1,0000 1,0000 95% UCL 1.499 1.499	23.15 3.878 2.576 0.3025 0.7411 Median	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500 0.9500 Min 1.345	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000 1,0000 Max 1,459	ances al Distribution al Distributio al Distributio Std Err 0,0100 0.0100 Std Err 0.02269	CV% 2.26% 2.26% CV% 3.53%	0.00% 0.00% %Effec
Survival Rate : Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate :	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code N ected) Transfor Code N	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn Count 5 5 med Sumn Count 5 5	Normality To Test D Test D Test Mean 0.9900 0.9900 mary Mean 1.436 1.436	95% LCL 0.9622 0.9622 95% LCL 1.373 1.373	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1.0000 1.0000 95% UCL 1.499 1.499	23.15 3.878 2.576 0.3025 0.7411 Median	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500 0.9500 Min 1.345	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000 1,0000 Max 1,459	ances al Distribution al Distributio al Distributio Std Err 0,0100 0.0100 Std Err 0.02269	CV% 2.26% 2.26% CV% 3.53%	0.00% 0.00% %Effect 0.00%
Survival Rate : Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate : Conc-% 0 100	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code N ected) Transfor Code N Detail Code	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norm Count 5 5 med Summ Count 5 5 Rep 1 1,0000 1,0000	Normality To Test D Test D Test Mean 0.9900 0.9900 Mary Mean 1.436 1.436 Rep 2 1.0000 1.0000	95% LCL 0.9622 0.9622 95% LCL 1.373 1.373	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1.0000 1.0000 95% UCL 1.499 1.499 Rep 4	23.15 3.878 2.576 0.3025 0.7411 Median Median	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500 0.9500 Min 1.345	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000 1,0000 Max 1,459	ances al Distribution al Distributio al Distributio Std Err 0,0100 0.0100 Std Err 0.02269	CV% 2.26% 2.26% CV% 3.53%	0.00% 0.00% %Effec
Survival Rate : Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate : Conc-% 0 100 Angular (Corre	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code N ected) Transfor Code N Detail Code N	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norn Count 5 5 med Summ Count 5 1,0000 1,0000 med Detail	Mean 0.9900 0.9900 0.436 1.436 1.436 Rep 2 1.0000	95% LCL 0.9622 0.9622 95% LCL 1,373 1.373 Rep 3 0.9500 0.9500	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1.0000 1.0000 95% UCL 1.499 1.499 Rep 4	23.15 3.878 2.576 0.3025 0.7411 Median Median Rep 5 1.0000 1.0000	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500 0.9500 Min 1.345	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000 1,0000 Max 1,459	ances al Distribution al Distributio al Distributio Std Err 0,0100 0.0100 Std Err 0.02269	CV% 2.26% 2.26% CV% 3.53%	0.00% 0.00% %Effect 0.00%
Conc-% 0 100 Angular (Corre Conc-% 0 100 Survival Rate Conc-% 0 100	Mod Leve Variance Anderson D'Agostin Kolmogor Shapiro-V Summary Code N ected) Transfor Code N Detail Code	ne Equality Ratio F Test -Darling A2 o Skewness ov-Smirnov Vilk W Norm Count 5 5 med Summ Count 5 5 Rep 1 1,0000 1,0000	Normality To Test D Test D Test Mean 0.9900 0.9900 Mary Mean 1.436 1.436 Rep 2 1.0000 1.0000	95% LCL 0.9622 0.9622 95% LCL 1.373 1.373	0 1 2.912 2.495 0.4824 0.5093 95% UCL 1.0000 1.0000 95% UCL 1.499 1.499 Rep 4	23.15 3.878 2.576 0.3025 0.7411 Median Median	1.0000 <1.0E-37 0.0126 2.2E-07 4.7E-06 Min 0.9500 0.9500 Min 1.345	Equal Vari Non-Norm Normal Dis Non-Norm Non-Norm Max 1,0000 1,0000 Max 1,459	ances al Distribution al Distributio al Distributio Std Err 0,0100 0.0100 Std Err 0.02269	CV% 2.26% 2.26% CV% 3.53%	0.00% 0.00% %Effect 0.00%

Analyst: QA: Z

008-575-097-1 CETIS™ v1.9.5.5

CETIS Analytical Report

Report Date: Test Code/ID: 25 Oct-19 10:14 (p 2 of 2) WGR0919.187e / 18-4196-7957

Eohaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 20-1644-3170 Analyzed: 25 Oct-19 9:39 Endpoint: Survival Rate

25 Oct-19 9:39 Analysis:

Nonparametric-Two Sample

CETIS Version: Status Level:

: CETISv1.9.5

Report Date:

25 Oct-19 10:14 (p 1 of 2)

Test Code/ID: WGR0919.187e / 18-4196-7957

Eohaustorius	10-d Survival an	d Reb	urial Sedime	ent Test				Aqua	tic Bioassay 8	Consultin	ng Labs, Inc.
Batch ID: Start Date: Ending Date: Test Length:	09-3560-5522 04 Oct-19 12:00 14 Oct-19 12:00 10d 0h		Test Type: Protocol: Species: Taxon:	Survival-Rebur EPA/600/R-94 Eohaustorius e Malacostraca	(025 (1994)			Analyst: . Diluent: ! Brine: !	nc Age:		
	08-0284-6087 25 Sep-19 16:00 26 Sep-19 12:25 8d 20h		Code: Material: CAS (PC): Client:	WGR0919.187 Sediment WGR Southwe			Y	Source:	021.APC.01 Bioassay Repor SED-005	t	
Dissolved Oxy	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	10	8.729	11.27	9.9	10.1	0.1	0.1414	1.41%	0
100		2	10.05	9,415	10.69	10	10.1	0.0500	0.07073	0.7%	0
Overall		4	10.03	9.873	10.18	9.9	10.1	0.0478	7 0.09574	0.96%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N.	2	7.9	7.884	7.916	7.9	7.9	0	0	0.0%	0
100		2	7.75	7.115	8.385	7.7	7.8	0.0500	0.07072	0.91%	0
Overall		4	7.825	7.673	7.977	7.7	7.9	0.0478	7 0.09574	1.22%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std En	Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.0%	0
100		2	20	20	20	20	20	0	0	0.0%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std En	Std Dev	CV%	QA Count
0	N	2	14.7	13.43	15.97	14.6	14.8	0.0999	9 0.1414	0.96%	0
100		2	14.7	13.43	15.97	14.6	14.8	0.0999	9 0.1414	0.96%	0
Overall		4	14.7	14.52	14.88	14.6	14.8	0.05773	3 0.1155	0.79%	0 (0%)

Analyst: 1 QA

Report Date:

25 Oct-19 10:14 (p 2 of 2) WGR0919.187e / 18-4196-7957

Test Code/ID:

Eohaustorius 10-	d Survival	and Rebu	ırial Sedim		Aquatic Bioassay & Consulting Labs, Ir				
Dissolved Oxyger	n-mg/L								
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		10.1					
100				10					
0	N	2		9.9					
100				10.1					
pH-Units									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		7.9					
100				7.8					
0	N	2		7.9					
100				7.7					
Salinity-ppt									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	11		20					
100				20					
0	N	2		20					
100				20					
Temperature-°C								4	
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		14.8					
100				14.8					
0	N	2		14.6					
100				14.6					

October 25, 2019

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT:

WGR Southwest, Inc.

SAMPLE I.D.:

SED-006

DATE RECEIVED:

09/26/2019

ABC LAB. NO .:

WGR0919.188

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 %

EC50 = >100.00%

Yours very truly,

- Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date: Test Code/ID: 25 Oct-19 10:14 (p 1 of 1) WGR0919.188e / 13-7436-7059

							1000	Code/ID.	AACITO	13.10067	3-1430-103		
Eohaustorius	10-d Survival an	d Reburial	Sedime	ent Test				Aquatic	Bioassay &	Consulting	g Labs, Inc.		
Batch ID:	09-3543-4630	Test	Type:	Survival-Reburia	al		Ana	yst: Joe	Freas				
Start Date:	04 Oct-19 12:01	Prote	ocol:	EPA/600/R-94/0	025 (1994)		Dilu	ent: Lab	oratory Seav	/ater			
Ending Date:	14 Oct-19 12:01	Spec	ies:	Eohaustorius es	stuarius		Brin	e: No	Applicable				
Test Length:	10d 0h	Taxo	n:	Malacostraca			Sou	rce: No	thwestern Ad	quatic Scien	c Age:		
Sample ID:	09-0072-5676	Code	e:	WGR0919.188	e		Proj	ect: 021	.APC.01				
Sample Date:	25 Sep-19 14:00	Mate	rial:	Sediment			Sou	rce: Bio	passay Report				
Receipt Date:	26 Sep-19 12:25	CAS	(PC):				Stat	ion: SE	D-006				
Sample Age:	8d 22h	Clier	ıt:	WGR Southwes	st Inc.								
Single Compa	rison Summary												
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compari	son Result		- 19		
10-8075-7058	Survival Rate		Wilco	on Rank Sum T	wo-Sample 1	est	1.0000	100% pas	sed survival	rate			
Test Acceptat	oility					TAC	Limits						
Analysis ID	Endpoint		Attrib	ute	Test Stat			Overlap	Decision				
10-8075-7058	Survival Rate		Contro	ol Resp	0.99	0.9	>>	Yes	Passes C	riteria			
Survival Rate	Summary												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect		
0	N	5	0.9900	0.9622	1.0000	0.9500	1.0000	0.0100	0.0224	2.26%	0.00%		
100		5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	-1.01%		
Survival Rate	Detail												
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5							
0	N	1.0000	1.0000	0.9500	1.0000	1.0000							
100		1.0000	1,0000	1.0000	1.0000	1.0000							
Survival Rate	Binomials												
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5							
0	N	20/20	20/20	19/20	20/20	20/20							

100

20/20

20/20

20/20

20/20

20/20

CETIS Analytical Report

Report Date: Test Code/ID: 25 Oct-19 10:14 (p 1 of 2) WGR0919.188e / 13-7436-7059

Eohaustorius	10-d s	Survival ar	d Reburia	al Sedime	ent To	est					Aquati	c Bioassay &	Consultin	g Labs, In
Analysis ID:	10-80	75-7058	En	dpoint:	Sun	vival Rate	7.1	ī		3.7.1	IS Versio	n: CETISV1	.9.5	
Analyzed:	25 Oc	ot-19 9:43	Ar	alysis:	Non	parametric-	Two Samp	ole		State	ıs Level:	1		
Batch ID:	09-35	43-4630	Te	st Type:	Surv	vival-Reburi	al			Anal	yst: J	oe Freas		
Start Date:	04 00	ot-19 12:01	Pr	otocol:	EPA	V600/R-94/	025 (1994))		Dilue	ent: L	aboratory Seav	vater	
Ending Date:	1400	ct-19 12:01	Sp	ecies:		austorius es	7 7 7 7 7 7 7 7			Brine		ot Applicable		
Test Length:			2.5	xon:		acostraca				Sour		orthwestern A	quatic Scien	nc Age:
Sample ID:	09-00	72-5676	Co	de:	WG	R0919.188	e			Proje	ect: 0	21.APC.01		
Sample Date:	100			aterial:		iment				Sour		ioassay Repor		
Receipt Date:				AS (PC):	000	into it				Stati		ED-006		
Sample Age:				ent:	WG	R Southwes	st Inc.			Otati	J.I. J	LD-000		
Data Transfor	m		Alt Hyp		10.5	-0 -0.0	2.0034			Comparis	on Pacul	+		PMSD
Angular (Corre	103		C > T		_					100% pas				2.12%
Wilcoxon Ran		Two Sam	nle Test	_	-			-	_	000000	22, 200	2117200		200700
	vs	Conc-%	pie rest	Test	Ctat	Critical	Ties I	ne	P-Type	P-Value	Donicio	n(a:5%)		
Negative Contr	23	100		30	Stat	n/a		В	Exact	1.0000		nificant Effect	_	
	20.07.2.00	47.0	-	55	-	1,104		_	LINGUS	1,0000	TTOTI-OIL	, anodit chect		
Test Acceptab	onity C			Limits		*****								
Attribute		Test Stat	1 700 110711	Uppe	r	Overlap	Decisio	-7	Maria at a					
Control Resp		0.99	0.9	>>		Yes	Passes	Cri	iteria					
ANOVA Table														
Source		Sum Squa		Mean	_		DF F Stat			P-Value	h / // - /// -	n(a:5%)		
Between		0.0012877		0.001	2877		1		1	0.3466	Non-Sig	nificant Effect		
Error		0.0103014	0.00	0.001	2877		8							
Total		0.0115891					9							
ANOVA Assur	nption	ns Tests												
Attribute		Test					Test Sta	at	Critical	P-Value	Decisio	n(a:1%)		
Variance	+	Levene Eq	uality of Va	ariance Te	est		7.111		11.26	0.0285		ariances		
		Mod Lever	e Equality	of Varian	ce Te	est	1		13.75	0.3559	Equal V	ariances		
Distribution		Anderson-	Darling A2	Normalit	y Tes	t	1.796		3.878	<1.0E-37	Non-No	rmal Distribution	on	
		D'Agostino	Skewnes	s Test			3.335		2.576	8.5E-04	Non-No	rmal Distribution	on	
		Kolmogoro	v-Smirnov	D Test			0.4		0.3025	6.1E-05	Non-No	rmal Distribution	on	
		Shapiro-W	ilk W Nort	nality Tes	it		0.6247		0.7411	1.1E-04	Non-No	rmal Distributi	on	
Survival Rate	Sumn	nary												
Conc-%	Ή,	Code	Count	Mean		95% LCL	95% UC	L	Median	Min	Max	Std Err	CV%	%Effect
0	-	N	5	0.990		0.9622	1.0000		2,570	0.9500	1.0000	0.0100	2.26%	0.00%
100		11	5	1.000		1.0000	1.0000			1.0000	1.0000	0.0000	0.00%	-1.01%
Angular (Corr	ected	Transform	ned Sumr	narv										
Conc-%		Code	Count	Mean		95% LCL	95% UC	L	Median	Min	Max	Std Err	CV%	%Effect
0	-	N	5	1.436		1.373	1.499	_		1.345	1.459	0.02269	3.53%	0.00%
100		10	5	1.459		1.458	1.459			1.459	1.459	0.02203	0.00%	-1.58%
Survival Rate	Detail									V-74-1				
Conc-%		Code	Rep 1	Rep 2	,	Rep 3	Rep 4		Rep 5					
0		N	1.0000	1.000		0.9500	1.0000	_	1.0000					
100		14	1.0000	1.000		1.0000	1.0000		1.0000					
Angular (Corr	antad	Transform			-		-7-7-7-8	_	4,4259,					
	ected	. 71.50				Day 2	Dor 4		Dan f					
Conc-%	_	Code	Rep 1	Rep 2		Rep 3	Rep 4	_	Rep 5					
0		N	1.459	1.459		1.345	1.459		1.459					
100			1.459	1,459	5	1,459	1.459		1.459					

Analyst: 4/ QA: 7

CETIS Analytical Report

Report Date:

25 Oct-19 10:14 (p 2 of 2)

Test Code/ID:

WGR0919.188e / 13-7436-7059

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 10-8075-7058 Analyzed: 25 Oct-19 9:43

Endpoint: Survival Rate

Analysis: Nonparametric-Two Sample **CETIS Version:** Status Level:

CETISv1.9.5

Report Date:

25 Oct-19 10:14 (p 1 of 2)

Test Code/ID:

WGR0919.188e / 13-7436-7059

Eohaustorius	10-d Survival an	d Rebi	urial Sedime	ent Test				Aquat	ic Bioassay 8	Consultir	ng Labs, Inc.
Batch ID: Start Date: Ending Date: Test Length:	09-3543-4630 04 Oct-19 12:01 14 Oct-19 12:01 10d 0h		Test Type: Protocol: Species: Taxon:	Survival-Rebur EPA/600/R-94 Eohaustorius e Malacostraca	/025 (1994)		D B	nalyst: Jiluent: L rine: N ource: N	nc Age:		
	09-0072-5676 25 Sep-19 14:00 26 Sep-19 12:25 8d 22h		Code: Material: CAS (PC): Client:	WGR0919.188 Sediment WGR Southwe			S	ource: B	21.APC.01 loassay Repor ED-006	t	
Dissolved Ox	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	10	8.729	11.27	9.9	10.1	0.1	0.1414	1.41%	0
100		2	10.2	8.929	11.47	10.1	10.3	0.1	0.1414	1.39%	0
Overall		4	10.1	9.84	10.36	9.9	10.3	0.08165	0.1633	1.62%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.0%	0
100		2	7.85	7.215	8.485	7.8	7.9	0.05	0.07071	0.9%	0
Overall		4	7.875	7.795	7.955	7.8	7.9	0.025	0.05	0.63%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.0%	0
100		2	20	20	20	20	20	0	0	0.0%	0
Overall	-	4	20	20	20	20	20	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.7	13.43	15.97	14.6	14.8	0.09999	0.1414	0.96%	0
100		2	14.7	13.43	15.97	14.6	14.8	0.09999	0.1414	0.96%	0
Overall		4	14.7	14.52	14.88	14.6	14.8	0.05773	0.1155	0.79%	0 (0%)

Report Date:

25 Oct-19 10:14 (p 2 of 2)

Test Code/ID:

WGR0919.188e / 13-7436-7059

Eohaustorius 10-	d Survival	and Rebu	rial Sedim		Aquatic Bioassay & Consulting Labs, I				
Dissolved Oxyger		- Quite				- And	n A	200	6.00
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		10.1					
100				10.1					
0	N	2		9.9					
100				10.3					
pH-Units									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		7.9					
100				7.9					
0	N	2		7.9					
100				7,8					
Salinity-ppt									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		20					
100				20					
0	N	2		20					
100				20					
Temperature-°C				7					
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		14.8					
100				14.8					
0	N	2		14.6					
100				14.6					

Analyst: QAT

October 25, 2019

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs. Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025*. Results were as follows:

CLIENT:

WGR Southwest, Inc.

SAMPLE I.D.:

SED-007

DATE RECEIVED:

09/26/2019

ABC LAB. NO .:

WGR0919.189

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 %

EC50 = >100.00 %

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date: Test Code/ID: 25 Oct-19 10:15 (p 1 of 1) WGR0919.189e / 09-9090-7541

							1,000	-Dacino.	*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 0000 104
Eohaustorius	10-d Survival an	d Reburia	l Sedime	ent Test				Aquatio	: Bioassay &	Consulting	g Labs, Inc.
Batch ID:	01-9262-0039	Te	st Type:	Survival-Reburia	al		Anal	yst: Jo	e Freas		
Start Date:	04 Oct-19 12:02	Pre	otocol:	EPA/600/R-94/	025 (1994)		Dilue	ent: La	boratory Seav	vater	
Ending Date:	14 Oct-19 12:02	Sp	ecies:	Eohaustorius es	stuarius		Brin	e: No	t Applicable		
Test Length:	10d 0h	Ta	xon:	Malacostraca			Soul	rce: No	orthwestern Ad	quatic Scien	c Age:
Sample ID:	04-1241-5260	Co	de:	WGR0919.189	9		Proje	ect: 02	1.APC.01		
Sample Date:	25 Sep-19 10:00	Ma	terial:	Sediment			Soul	rce: Bid	oassay Report	t	
Receipt Date:	25 Sep-19 12:25	CA	S (PC):				Stati	on: SE	D-007		
Sample Age:	9d 2h	Cli	ent:	WGR Southwes	st Inc.						
Single Compa	arison Summary			1. 10							
Analysis ID	Endpoint		Comp	arison Method			P-Value	Compar	ison Result		- P
17-9097-2898	Survival Rate		Wilco	xon Rank Sum T	wo-Sample	Test	0.5000	100% passed survival rate			
Test Acceptal	bility					TAC	Limits				
Analysis ID	Endpoint		Attrib	oute	Test Stat	Lower	Upper	Overlap	Decision		
17-9097-2898	Survival Rate		Contr	ol Resp	0.99	0.9	>>	Yes	Passes C	riteria	
Survival Rate	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	0.990	0 0.9622	1.0000	0.9500	1.0000	0.0100	0.0224	2.26%	0.00%
100		5	0.980	0.9460	1.0000	0.9500	1.0000	0.0123	0.0274	2.79%	1.01%
Survival Rate	Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	1.0000	1.000	0 0.9500	1.0000	1.0000					
100		0.9500	0.950	0 1.0000	1.0000	1.0000					
	ALC: THEY										
Survival Rate	Binomials										
	Binomials Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
Survival Rate Conc-%	7711707-10	Rep 1 20/20	Rep 2		Rep 4 20/20	Rep 5 20/20					

Analyst: QAZ

CETIS Analytical Report

Report Date: Test Code/ID: 25 Oct-19 10:15 (p 1 of 2) WGR0919.189e / 09-9090-7541

Eohaustorius	10-d Surviva	and Rebur	ial Sedimer	nt Test		Aquatic Bioassay & Cor					
Analysis ID: Analyzed:	17-9097-2898 25 Oct-19 9:4			Survival Rate Nonparametric-	Two Sample		CET	.9,5			
Batch ID:	01-9262-0039			12114	0.0243		Anal	unts lan	Freas		
				Survival-Reburi			2007		111444		
	04 Oct-19 12			EPA/600/R-94/			Dilue		oratory Seav	vater	
Ending Date: Test Length:				Eohaustorius es Malacostraca	stuarius		Brine		Applicable	matte Cale	
7 100 1			27.312				Sour		thwestern Ad	quatic Scie	nc Age:
	04-1241-5260			WGR0919,189	е		Proje		APC.01		
Sample Date:			3,100,100	Sediment			Sour		ssay Report	1	
Receipt Date:			AS (PC):		100		Stati	on: SED	0-007		
Sample Age:	9d 2h	C	lient:	WGR Southwes	st inc.						
Data Transfon Angular (Correc		Alt Hy	p .					sed survival	rate		9MSD 3.03%
Wilcoxon Ran		ample Test						27.7.50.1144	. 1000		74.5.54
	vs Conc-	A April 2 total	Test S	tat Critical	Ties DF	P-Type	P-Value	Decision(a:50/1		
Negative Control	17 - 41 27	70	25	n/a	2 8	Exact	0.5000		ficant Effect		
Test Acceptab			Gertard.	772		2.00	2000				
Attribute	Test St		Limits Upper	Overlap	Decision						
Control Resp	0.99	0.9	>>	Yes	Passes Cr	riteria				-	
ANOVA Table	7355.	7.2		A-C	- 10-20-030 D	0.403				_	
Source	Sum S	quares	Mean S	Square	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.0012		0.0012		1	0.4	0.5447	Non-Signi			
Error	0.0257		0.0032	77.7	8	3.9	9.9.11	List, Olgin	TOWN CHOOL		
Total	0.0270		J.000E		9	-					
ANOVA Assun	nptions Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision(a:1%)		
Variance	Levene	Equality of V	/ariance Tes	st	1.524	11.26	0.2521	Equal Vari			
		vene Equality			0.4286	13.75	0.5370	Equal Vari			
		e Ratio F Te			1.5	23.15	0.7040	Equal Vari	iances		
Distribution	Anders	on-Darling A	2 Normality	Test	1.329	3.878	0.0014		al Distribution	on	
	D'Agos	tino Skewnes	ss Test		1.407	2.576	0.1594	Normal Di	stribution		
	Kolmog	orov-Smirno	v D Test		0.3643	0,3025	4.8E-04	Non-Norm	al Distribution	on	
	Shapiro	-Wilk W Nor	mality Test		0.7586	0.7411	0.0045	Non-Norm	al Distribution	on	
Survival Rate	Summary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	5	0.9900	0.9622	1.0000		0.9500	1.0000	0.0100	2.26%	0.00%
100		5	0.9800	0.9460	1.0000		0.9500	1.0000	0.0123	2.79%	1.01%
Angular (Corre	ected) Transf	ormed Sum	mary								
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	5	1.436	1.373	1.499		1.345	1.459	0.02269	3.53%	0.00%
100		5	1.413	1.336	1.491		1.345	1.459	0.0278	4.40%	1.58%
Survival Rate	Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	1,0000	1,0000	0.9500	1.0000	1,0000					
100		0,9500	0.9500	1.0000	1.0000	1.0000					
Angular /Corr	ected) Transf	ormed Deta	ii -		X 2 C F						
Angulai (Com		2.0.5	Dan 0	Rep 3	Rep 4	Rep 5					
	Code	Rep 1	Rep 2	Keps	Mep 4	uch a					
Conc-%	Code	Rep 1 1.459	1.459	1.345	1.459	1.459		-			

CETIS Analytical Report

Report Date: Test Code/ID: 25 Oct-19 10:15 (p 2 of 2) WGR0919.189e / 09-9090-7541

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 17-9097-2898 Analyzed: 25 Oct-19 9:47 Endpoint: Survival Rate

Analysis: Nonparametric-Two Sample

CETIS Version: Status Level:

: CETISv1.9.5

Report Date:

25 Oct-19 10:15 (p 1 of 2)

Test Code/ID:

WGR0919.189e / 09-9090-7541

Eohaustorius	10-d Survival an	d Reb	urial Sedime	ent Test				Aqua	itic Bioassay 8	Consultin	ng Labs, Inc.
Batch ID: Start Date: Ending Date: Test Length:	01-9262-0039 04 Oct-19 12:02 14 Oct-19 12:02 10d Oh		Test Type: Protocol: Species: Taxon:	Survival-Rebur EPA/600/R-94 Eohaustorius e Malacostraca	(025 (1994)			Diluent: Brine:	Joe Freas Laboratory Sea Not Applicable Northwestern A		nc Age:
	04-1241-5260 25 Sep-19 10:00 25 Sep-19 12:25 9d 2h		Code: Material: CAS (PC): Client:	WGR0919.189 Sediment WGR Southwe			Ī	Source:	021 APC.01 Bioassay Repor SED-007	t	
Dissolved Oxy	ygen-mg/L										- 6
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std En	r Std Dev	CV%	QA Count
0	N	2	10	8.729	11.27	9.9	10.1	0.1	0.1414	1.41%	0
100		2	10.15	9.515	10.79	10.1	10.2	0.05	0.0707	0.7%	0
Overall		4	10.08	9.875	10.28	9.9	10.2	0.0629	2 0.1258	1.25%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	Std Dev	CV%	QA Coun
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.0%	0
100		2	7.8	6.529	9.071	7.7	7.9	0.1	0.1414	1.81%	0
Overall		4	7.85	7.691	8.009	7.7	7.9	0.05	0.1	1.27%	0 (0%)
Salinity-ppt		-									
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Coun
0	N	2	20	20	20	20	20	0	0	0.0%	0
100		2	20	20	20	20	20	0	0	0.0%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Er	r Std Dev	CV%	QA Coun
0	N	2	14.7	13.43	15.97	14.6	14.8	0.0999	9 0.1414	0.96%	0
100		2	14.7	13.43	15.97	14.6	14.8	0.0999	9 0.1414	0.96%	0

Overall

4

14.7

14.52

14.88

14.6

14.8

0.05773

0.1155

0.79%

0 (0%)

Report Date: Test Code/ID: 25 Oct-19 10:15 (p 2 of 2)

WGR0919.189e / 09-9090-7541

Eohaustorius 10-c	d Survival	and Rebu	irial Sedim	ent Test					Aquatic Bioassay & Consulting Labs, Inc.
Dissolved Oxyger	n-mg/L								
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		10.1					
100				10.2					
0	N	2		9.9					
100				10.1					
pH-Units									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		7.9					
100				7.9					
0	N	2		7.9					
100				7.7					
Salinity-ppt									4.5
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		20					
100				20					
0	N	2		20					
100				20					
Temperature-°C									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		14.8					
100				14.8					
0	N	2		14.6					
100				14.6					

Analyst: QA:

Facility Name LA Refinery - Carson Operations		City 180	, Sta 01 E.	te (Fa	oulve) eda l	Blvd	., Ca	arson CA 9	0749	Projec	t Man	ager (Consul yer	tant)		Proje	021	(Cons				4	Laboratory Name Aquatic Bioassay
Facility Contact		Fac	ility T									hone N 62) 79					Fax I	No. (Co					7	29 N Olive Street
Nate Busch Consultant Company			(31)	0) 84	7-39	20	Cor	nsulta	ant Address		(5	02) 79	9-851	o ex.	003	4		(56)	2) 799	9-8510	_		-1	Ventura 93001 (805) 643-5621
WGR Southwest, Inc.							100		Vinners Circl	e #101 Lo	s Alam	itos. C	aliform	nia 90	720									(000) 0 10 000.
							_	SV.					MIT	T	II		- 5			7				
							Г						1		П									Special Detection Limit/Reporting
	હ									tuarius 25)	vincialis	(0)											Please report MDL and RL for all analytes	
Sample I.D.	Lab Sample No.	No. of Containers	Soil	Water	Air	Other	Yes	No	Sampling Date	Sampling Time	Eohaustorius estuarius (EPA 600/R-94/025)	Mytilus galloprovincialis	(ELA 000/N-90/12											Duplicate amples must be analyzed at a frequency of 5%
SED-001		5	X				X			-	-X-	×	_	1									Spe	ecial QA/QC
SED-002			×				×				×	×	1			1				1				
		5	×				¥				×	v	1	+	11	+	+			1	+	+	Sul	o'd COC Attch'd:
SED-003		10	Y				x				v	×	1	-	+	+	+	-		+	+	+	+	
SED-004		- 5	1						at L			-	-	+	+	+	-		_	-	+	+	+	
SED-005		5	X				X		9/25/19			X	-		11	1	-	_		-	-		4	
SED-006		5	X		LN		X		9/35/19	14:00	X	X												
SED-007		5	X				X	4	9/25/19	00:00	X	X				(II								8
							11	H															_	Ē
Sample bottles required for	or each sample p	point:																\perp						<u>e</u>
(2) x 1 liter containers for Ed	A COLUMN TO THE																						_ œ	et r
(3) x 1 liter containers for My	tilus								1	-	10												_ <	d 8 8
				1										312							\perp		Σ	to:
																								ara ara
																							œ	mg was
			11											14										S S S S S S S S S S S S S S S S S S S
Sample Received Intact: Yes No									Temperatur		14.				No io	e								Email Results to: nbusch@marathonpetroleum.co m cdreyer@wgr-sw.com
Relinquished by SAMPLER (Print & Sign Nan	ne) A			Date			Tim			Received	by (Pri	nt & Si	gn Na	me)				0	1	1)				
Issed Red aims	1/2/1	1	>_	-9	126	119	3	17	25	(CW	V	N		É	-1	MA	n	MI	7 1			1	
Relinquished by (Print & Sign Name)	F 0	-		Date			Tim	e		Received	by LAE	BORA	TORY	(Print				1	o)				Lat	Work No.

ATTACHMENT 5

ORGANIC/INORGANIC ANALYTICAL VALIDATION REPORT

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Organic/Inorganic Analytical Validation Report

Table of Contents

1.0	Overview
	Data Assessment
	Overall Data Review Narrative 2

Attachments:

Attachment I - Dominguez Channel Estuary Sediment Monitoring Inorganic/Organic Analytical Validation Form

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Organic/Inorganic Analytical Validation Report Page 1 of 3

1.0 Overview

The Tesoro Refining & Marketing Company LLC, Los Angeles Refinery – Carson Operations (herein facility) collected sediment samples at monitoring locations SED-005, SED-006, and SED-007 on September 25, 2019. Collected samples were submitted to the laboratory on September 26, 2019 for analysis as required in NPDES Permit No. CA0000680 Attachment E, Table E-7.

Sediment monitoring analysis was performed by laboratories certified under the Environmental Laboratory Accreditation Program (ELAP). Sediment chemistry samples were analyzed by Eurofins Calscience, Inc. in Garden Grove California with ELAP accreditation number 2944 and chronic toxicity samples were submitted to Aquatic Bioassay and Consulting Laboratories, Inc. in Ventura, California with ELAP accreditation number 1907. This document presents the analytical validation criteria used to determine the usability of data gathered as result of the sediment monitoring conducted. Analytical data was evaluated based on the validation criteria set forth in the *National Functional Guidelines for Organic Superfund Methods Data Review*, document number USEPA-540-R-2017-002, January 2017, and the *USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review*, document number USEPA 540-R-2017-001, January 2017, as applied to the reported methodology. Sediment monitoring parameters, including the sample type and corresponding analytical method, are listed in Table 1.0 below.

Table 1.0 - Se	diment Monitoring Pa	rameters
Parameters	Sample Type	Analytical Method
Cadmium, Total Recoverable	Surface Grab	EPA 6020B
Chlordane	Surface Grab	EPA 8081A
Chromium, Total	Surface Grab	EPA 6020B
Copper, Total Recoverable	Surface Grab	EPA 6020B
Lead, Total Recoverable	Surface Grab	EPA 6020B
Mercury, Total Recoverable	Surface Grab	EPA 7471A
Nickel, Total Recoverable	Surface Grab	EPA 6020B
Zinc, Total Recoverable	Surface Grab	EPA 6020B
PCBs	Surface Grab	EPA 8082A
Sediment Grain Size	Surface Grab	ASTM D4464
Chronic Toxicity	Surface Grab	-
Pesticides	Surface Grab	EPA 8081A
Total Organic Carbon	Surface Grab	EPA 9060A
Total Petroleum Hydrocarbons	Surface Grab	EPA 8015B
Tributyltin	Surface Grab	Krone et. Al.
Polynuclear Aromatic Hydrocarbons	Surface Grab	EPA 8270C

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Organic/Inorganic Analytical Validation Report Page 2 of 3

Analytical laboratory report is included in Attachment 3 and Attachment 4 of the Dominguez Channel Estuary September 2019 Sediment Monitoring Report. All of the sediment monitoring parameters listed in Table 1.0 were analytically validated except for Sediment Grain Size and Chronic Toxicity. Data from these analyses do not qualify for environmental data validation guidance procedures. As a result, sediment grain size and chronic toxicity data was assessed for completion using Chain of Custody records and field sample preservation guidelines. Detailed analytical validation for chronic toxicity is provided in the Sediment Bioassay Data Validation Report in Attachment 6 of the Dominguez Channel Estuary September 2019 Sediment Monitoring Report.

Analytical data validation for organic/inorganic parameters determinations are included in the *Dominguez Channel Estuary Sediment Monitoring Organic/Inorganic Analytical Data Validation Form* in Attachment I included in this report.

1.1 Data Assessment

Analytical data validation consisted of evaluating laboratory precision, laboratory accuracy, method compliance, and overall completeness of laboratory data provided. Based on this assessment, it was determined that data obtained for the September 25, 2019 sediment samples at SED-005, SED-006, and SED-007 is acceptable. Data components reviewed during the data review process included:

- Chain of Custody records and holding times
- Sample integrity/case narratives
- Sample results, reporting limits, dilution factors
- Laboratory QA/QC data

A summary of the sediment samples collected are provided in Table 1.0 below:

Ta	ble 2.0 – Dominguez Cha	nnel Sediment Sam	ples
Sample ID	Sample Date	Sample Time	Laboratory ID
SED-005	September 25, 2019	16:00	570-8761-1
SED-006	September 25, 2019	14:00	570-8761-2
SED-007	September 25, 2019	10:00	570-8761-3

1.2 Overall Data Review Narrative

Analytical data was assessed for precision, accuracy, method compliance and overall completeness. Data review determined these components to be acceptable. There were, however, certain analytical parameters that did not meet matrix spike/matrix spike duplicate recoveries in QA/QC samples as explained in the

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Organic/Inorganic Analytical Validation Report Page 3 of 3

attached data validation form. Despite this occurrence, all associated Laboratory Control Sample recoveries were within acceptance limits and, therefore, the data was qualified and deemed acceptable.

[Remainder of page intentionally left blank]

Attachment I

Dominguez Channel Estuary Sediment Monitoring Inorganic/Organic Analytical Validation Form

Tesoro Refining & Marketing LLC

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Sediment Monitoring Organic/Inorganic Analytical Data Validation Form

PROJECT INFORMATION

Project Name: Dominguez Channel Sediment Sampling

Analytical Laboratories: Eurofins Calscience, Inc.

Aquatic Bioassays & Consulting Laboratories Inc.

Sample Collection Date: September 25, 2019

Sample Collection Locations: SED-005, SED-006, SED-007

Data Validator: Ana Horn

Validation Date: October 29, 2019

Signature: Ana Hom

		SEDIN	MENT MONITO	RING PARAM	ETERS	
Parameters	Sample Ty	ype	Analytica	l Method	Holding Times	Parameter Validation Comments:
Cadmium, Total Recoverable	Surface G	rab	EPA 6	6020B	180 days	All sediment monitoring parameters were
Chlordane	Surface Gi	rab	EPA 8	8081A	14 days	analytically validated except for Sediment Grain
Chromium, Total	Surface G	rab	EPA 6	6020B	180 days	Size and Chronic Toxicity. Data from these
Copper, Total Recoverable	Surface G	rab	EPA 6	6020B	180 days	· •
Lead, Total Recoverable	Surface G	rab	EPA 6	6020B	180 days	analyses do not qualify for environmental data
Mercury, Total Recoverable	Surface G	rab	EPA 7	'471A	180 days	validation guidance procedures. Grain size and
Nickel, Total Recoverable	Surface G	rab	EPA 6	6020B	180 days	chronic toxicity data was assessed for
Zinc, Total Recoverable	Surface G		EPA 6	6020B	180 days	completion based on Chain of Custody records
PCBs	Surface G	rab	EPA 8	8082A	14 days	and field sample preservation procedures.
Sediment Grain Size	Surface G	rab	ASTM	D4464	-	
Chronic Toxicity	Surface G			-	-	
Pesticides	Surface G		EPA 8	8081A	14 days	
Total Organic Carbon	Surface G	rab	EPA 9	060A	28 days	
Total Petroleum Hydrocarbons	Surface G	rab	EPA 8	8015B	14 days	
Tributyltin	Surface G	rab	Krone	et. Al.	14 days	
Polynuclear Aromatic Hydrocarbons	Surface G	rab	EPA 8	3270C	14 days	
			VALIDATIO	N CRITERIA		
1. Was the Chain of Custody (COC) form comple samples submitted?	ete for all	☑ YES [complete. The and laborator	e COC includes samp	(COC) form submitted to the laboratory is le location information, field parameter results, es denoting the date and time the samples were aboratory.
2. Were ALL of the requested analyses specified completed by the laboratory?	in the COC	☑ YES [□ NO□ N/A	Comments: Al requested.	ll parameters listed o	on the COC were analyzed by the laboratory as

Tesoro Refining & Marketing LLC Los Angeles Refinery - Carson Operations Dominguez Channel Estuary Sediment Monitoring Organic/Inorganic Analytical Data Validation Form Comments: Samples received by the laboratory were received in good condition 3. Were samples received in good condition and \square YES \square NO \square N/A and were appropriately preserved as required. No sample receipt deficiencies were appropriately preserved as required by each analysis? noted in the laboratory report's Sample Job Narrative. 4. Were the reported analytical methods in compliance Comments: Analytical methods were completed as requested in the COC and are in ☑ YES □ NO□ N/A with the facility's NPDES permit and/or COC requests? compliance with the facility's NPDES permit. Comments: The method detection limits and reporting limits were reported for each analytical method. Certain analytes required additional dilution due to the high analyte concentration that may have resulted in sample matrix interference 5. Were detection limits in accordance with the facility's ☑ YES □ NO □ N/A and/or non-homogeneity. Sediment results were primarily reported on a dry NPDES permit or analytical method? weight basis except for DDT analyzed by method 8081A. DDT was reported on a wet weight basis. Comments: A Job Narrative is included in the laboratory report outlining QA/QC issues and the associated resolution observed for results analyzed by method 6. Did the laboratory identify any deficiencies/non-🗹 YES 🗌 NO 🗌 N/A 8081A, 8270C, 6020 and 9060A. QA/QC issues are further discussed in the conformances related to the analytical results? comment section to questions 11, 14, and 16. Comments: Sample holding times were met for all analytical methods. The ☑ YES □ NO□ N/A analytical methods and the corresponding holding time is provided in the Sediment 7. Were sample holding times met? Monitoring Parameter Table above. Comments: Results reported in dry weight as mg/kg included PAHs analyzed by method EPA 8270C, TPH analyzed by method 8015B, PCBs analyzed by method 8082, total metals analyzed by method 6020, mercury analyzed by method 7471A and total organic carbon analyzed by method 9060A. Results reported in dry weight ☑ YES ☐ NO ☐ N/A as ug/kg included PCBs analyzed by method 8082. Results reported in wet weight 8. Were correct concentration units reported? as ug/kg included DDT analyzed by 8081A. Results are appropriately reported for the sediment matrix analyzed, however, it is important to note the varying units reported for the samples collected. This unit trend is consistent at all three sampling stations.

Tesoro Refining & Marketing LLC Los Angeles Refinery - Carson Operations Dominguez Channel Estuary Sediment Monitoring Organic/Inorganic Analytical Data Validation Form Comments: Reporting requirements for flagged data were met. Qualifiers included: J - result is less than RL but greater than or equal to MDL and the result is approximate value B - Compound was found in the blank and sample p - The %RPD between the primary and confirmation column/detector is >40%. The 9. Were the reporting requirements for flagged data met? ☑ YES □ NO□ N/Allower value was reported F1 - MS and/or MSD recovery is outside acceptance limits F2 - MS/MSD RPD exceeds control limits X - surrogate is outside of control limits Data with the above qualifiers, except for J flag results, are discussed in the comment section to questions 11, 14, and 16. Comments: Laboratory report includes results for the required parameters as included in Table E-7 of the NPDES Permit; however, the laboratory report includes 5 additional PAH results not requested in the COC including Acenaphthylene, 1-10. Does the laboratory report include results for only those 🗆 YES 🗹 NO 🗀 N/A Methylnaphthalene, 2-Methylnaphthalene, Naphthalene, and Phenanthrene. These constituents requested in the COC? additional PAH parameters are reported for all three sampling station SED-005, SED-006, SED-007. Data for these parameters are not required and are therefore not accounted for in this data validation. Comments: Laboratory method blanks were free of target analyte for all parameters, except 1,2 - Benzanthracene. Method blank results for 1,2-11. Were laboratory method blank samples free of target ☐ YES ☑ NO ☐ N/A Benzanthracene was J flagged with a result of 0.001146 mg/kg which is between. analyte contamination? the RL of 0.010 mg/kg and MDL result of 0.0011mg/kg. Since the target analyte was less than the reporting limit, re-extraction of the sample was not performed. 12. Were instrument calibrations within method or data Comments: Instrument calibration data was not supplied in the analytical report □ YES □ NO □ N/A and, therefore, not included in this analytical data validation analysis. validation control limits?

		& Marketing LLC
Dominguez Channel Estuary	-	y - Carson Operations Organic/Inorganic Analytical Data Validation Form
13. Were trip blank, field blank, and/or equipment rinse blank samples free of target analyte contamination?	□ YES □ NO☑ N/A	Comments: Not applicable. Trip blanks, field blanks and/or equipment rinse blank samples were not collected for this project.
14. Were surrogate recoveries within control limits?	□ YES ☑ NO□ N/A	Comments: Surrogate recoveries were within control limits for all sample stations including surrogates used for PAHs, Tributyltin, TPH, and PCBs. Surrogate recovery was within control limits for DDT constituents at Station SED-005 and SED-006. Percent surrogate recovery at Station SED-007 is within control limits for all surrogates except for tetrachloro-m-xylene. Evidence of matrix interference is present; therefore, re-extraction of the surrogate was not performed. As noted in the laboratory Job Narrative, surrogate tetrachloro-m-xylene was passed on the fifth dilution run.
15. Were laboratory control sample recoveries within control limits?	☑ YES □ NO□ N/A	Comments: Laboratory control sample recoveries were within acceptable control limits for all parameters.

Dominguez Channel Estuary	Los Angeles Refinery	& Marketing LLC / - Carson Operations Organic/Inorganic Analytical Data Validation Form
16. Were Matrix Spike (MS) / Matrix Spike Duplicate (MSD) recoveries within control limits?	□ YES ☑ NO□ N/A	Comments: Matrix Spike (MS) / Matrix Spike Duplicate (MSD) recoveries were within control limits for all parameters except for total metals including cadmium, chromium, copper, lead, nickel and zinc. In addition, MS/MSD recoveries were also above control limits for 4,4'-DDE, 4,4'- DDT, and 4'4 DDD, and Total Organic Carbon. Due to total metals having a relatively high concentration in the matrix spike recovery, these parameters could not be evaluated for accuracy and precision. However, the associated Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) met the acceptable criteria for these metals and therefore the data is deemed acceptable. MS and MSD for 4,4'-DDE, 4,4'- DDT, and 4'4 DDD are above the MS/MSD control limits due to the additional levels of 4,4'-DDE, 4,4'-DDT, and 4'4 DDD present in the spiked samples remaining above the instrument calibration range. Since the associated LCS/LCSD recovery for 4,4'-DDE, 4,4'-DDT, and 4'4 DDD was within the acceptance limits the data is deemed acceptable. Similarly, the MS/MSD for Total Organic Carbon was outside of the control limits. However, this data is acceptable due to the associated LCS/LCSD recovery meeting acceptance criteria.
17. Were internal standards within method criteria for GC/MS sample analysis?	□ YES □ NO☑ N/A	Comments: Does not apply to this level of data validation. In addition, GC/MS internal standard data was not supplied in the analytical reports and was therefore not included in this data review.
18. Were 100% of the Electronic Data Deliverable (EDD) concentrations and reporting limits compared to the hardcopy data reports?	□ YES ☑ NO□ N/A	Comments: No EDD was used for this project.

Tesoro Refining & Marketing LLC

	Los Angeles R	terinery - Carson Operations
Dominguez	Channel Estuary Sediment Moni	itoring Organic/Inorganic Analytical Data Validation Form
PF	ECISION, ACCURACY, METHOD	COMPLIANCE AND COMPLETENESS ASSESSMENT
Precision Determination:	Acceptable	☐ Not Acceptable
results. To evaluate laboratory duplicates for divided by the mean and expressed as a percentage of the control	precision the Relative Percent di ent. RPD precision measurement m. The associated laboratory con	irements. Laboratory precision was determined by examination of laboratory duplicate lifference (RPD) was used. RPD is defined as the difference between two duplicate sample its were compared to laboratory QC limits and it was determined that RPDs were within the itrol sample / laboratory sample duplicate for these parameters, however, was within items was determined to be acceptable.
Accuracy Determination:	☑ Acceptable	☐ Not Acceptable
system bias measured by evaluating Lab Con organic system monitoring compound surrog	trol Samples (LCS), Lab Control Sagate percent recoveries (%Rs). Da Parameters except for total metal	Ference value usually measured as percent recoveries. Laboratory accuracy is a measure of ample Duplicate (LCSD), matrix spikes (MS) and/or matrix spike duplicates (MSD), and at a validation assessments revealed all LCS/LCSD were within acceptable criteria. MS ls, 4,4'-DDE, 4,4'-DDT, 4,4'-DDD and Total Organic Carbon as discussed in Question 16. Du neters was determined to be acceptable.
Method Compliance Determination:	☑ Acceptable	☐ Not Acceptable
		ity, holding time, reporting limits and laboratory blanks per method specific requirements ta validation determined method compliance to be acceptable.
Completeness Determination:	Acceptable	☐ Not Acceptable
<u> </u>	ical methods, and detection limit	ned versus the number of samples with valid analyses. Project completeness was performents as well as sample data results and QC summary reports. Data assessment for the e.

ATTACHMENT 6

SEDIMENT BIOASSAY DATA VALIDATION REPORT

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report

Table of Contents

1.0	Chronic Toxicity Test Overview	1
2.0	Data Review	
2.0	Data Review	1
3.0	Eohaustorius estuarius Chronic Toxicity Test	2
3.1	Sample Collection, Sample Preservation, Chain of Custody	2
3.2	Test Setup	
3.3	Test Implementation	2
3	.3.1 Reference Toxicant	2
3	.3.2 Negative Control Samples	
3.4		
3.5		3
4.0	Mytilus galloprovincialis Chronic Toxicity Test	
4.1	Sample Collection, Sample Preservation, Chain of Custody	
4.2	Test Setup	
4.3	Test Implementation	
4	.3.1 Test Acceptability Criteria	
4.4		
4.5	Overall Data Usability	
-	\mathcal{J}	

Attachment:

Attachment I – Dominguez Channel Estuary Sediment Bioassay Data Validation Form

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 1 of 4

1.0 Chronic Toxicity Test Overview

The Tesoro Refining & Marketing Company LLC, Los Angeles Refinery – Carson Operations (herein facility) collected sediment samples at monitoring locations SED-005, SED-006, and SED-007 as required in National Pollutant Discharge Elimination System (NPDES) No. CA0000680. Sediment samples for chronic toxicity testing were collected on September 25, 2019 and submitted to Aquatic Bioassay & Consulting Laboratories Inc. on September 26, 2019 for analysis. Aquatic Bioassay & Consulting Laboratories has Environmental Laboratory Accreditation Program (ELAP) Certification number 1907.

As required by NPDES No. CA0000680 Attachment E, Section V.A.4, the facility is required to conduct a species sensitivity screening for chronic toxicity testing. To fulfill this requirement, the facility performed two chronic toxicity tests for each sample station different sediment species: Eohaustorius estuarius and Mytilus galloprovincialis. Eohaustorius estuarius chronic toxicity testing was performed following EPA 600/R-95/025 Methods for Assessing the Toxicity of Sediment Associated Contaminants with Estuarine and Marine Amphipods. The chronic toxicity test with Eohaustorius estuarius was conducted over a 10-day period. Overlying water was not renewed, and test organisms were not fed during the duration of the test. Mytilus galloprovincialis chronic toxicity testing was performed following EPA 600/R-94/136 Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organism. The chronic toxicity test with Mytilus galloprovincialis was performed using a 48-hour static non-renewal toxicity test using embryos and larvae of the test species. Aquatic bioassay laboratory results are included in the Dominguez Channel Estuary September 2019 Sediment Monitoring Report in Attachment 4. As demonstrated in the bioassay chronic toxicity test results, both species exhibited no observed effect concentration to the sediment samples at SED-005, SED-006 and SED-007. Based on these results, the facility has opted to utilize Eohaustorius estuarius in all future chronic toxicity testing.

2.0 Data Review

A level 2 data verification protocol was used for bioassay validation. The level 2 data review compares bioassay testing holding conditions, test setup, test implementation, and test termination in accordance with bioassay protocols. As part of the level 2 data verification protocol the laboratory was expected to follow all internal quality control procedures as directed in the applicable analytical method. Outcome of the data review for each of the chronic toxicity tests performed is documented in the *Chronic Toxicity QA/QC Bioassay Data Validation Form* included in Attachment I of this report.

Sediment samples at station at SED-005, SED-006, and SED-007 were collected on September 25, 2019 by WGR Southwest Inc. All collected samples were preserved as required and submitted to Aquatic Bioassay and Consulting Laboratories Inc. on

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 2 of 4

September 26, 2019. A summary of data usability determinations for the chronic toxicity tests performed are described in Section 3.0 and Section 4.0 below.

3.0 Eohaustorius estuarius Chronic Toxicity Test

3.1 Sample Collection, Sample Preservation, Chain of Custody

Sediment samples for *E. estuarius* chronic toxicity testing were collected from station SED-005, SED-006, and SED-007 using an Eckman dredge sampler. Sampling equipment was decontaminated prior to use at each station to prevent cross contamination. Field samples were handled with care in order to minimize sediment disturbance and prevent the loss of sample integrity, chemical speciation and chemical equilibrium. Collected samples were maintained at 4°C and a Chain of Custody documenting collected samples was completed and submitted to Aquatic Bioassay & Consulting Laboratories Inc. Chronic toxicity testing was initiated for all samples within the required 14-day holding time for sample collection and analysis. Document review of sample collection, sample preservation and Chain of Custody procedures was deemed acceptable.

3.2 Test Setup

Chronic toxicity testing with *E. estuarius* was completed in accordance with EPA method 600/R-94-025. Organisms used for testing were cultured and supplied by Northwestern Aquatic Sciences in Newport, Oregon. Amphipods ranging in 3-5 mm in size were used, with at least twenty organisms per replicate. Test setup review is provided in the bioassay data validation form attached to this document. Based on a review of laboratory test setup procedures, test set up procedure were deemed acceptable and in accordance with EPA requirements.

3.3 Test Implementation

Test implementation for chronic toxicity testing with *E. estuarius* was completed in accordance with EPA method 600/R-94-025. Water quality measurements were recorded during the duration of the test and were found to be in the acceptable range as specified in the test protocol. Ranges for the water quality measurements are provided in the QA/QC Checklist of Attachment I. No abnormal conditions were observed throughout the duration of the test. Thus, the test implementation was determined to be acceptable and in accordance with EPA requirements.

3.3.1 Test Acceptability Criteria

3.3.1.1 Reference Toxicant

The reference toxicant used during *E. estuarius* chronic toxicity testing was unionized ammonia. The length of the reference

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 3 of 4

toxicant test was 96 hours. All reference toxicant testing was within the 2 standard deviation quality control limits.

3.3.1.2 Negative Control Samples

Negative control samples demonstrated a 99% survival at all sample stations, which is above the 90% mean acceptability survival criteria. As a result, the negative control sample results are considered acceptable at all sampled stations.

3.4 Reporting

Bioassay results were delivered in an acceptable laboratory report documenting a summary of water quality results, reference toxicity results, test results, statistical calculations and percent mortality. Additional information regarding test setup/test implementation procedures was provided by the laboratory to complete the QA/QC bioassay data validation form. Overall, the reporting component presenting chronic toxicity test results for *E. estuarius* was deemed acceptable.

3.5 Overall Data Usability

Review of laboratory data indicated chronic toxicity testing was performed in accordance in accordance with EPA method 600/R-94-025 as documented in Attachment I. Through the bioassay laboratory report and additional clarification from the laboratory, the bioassay test results at all sample stations was deemed acceptable and in accordance with EPA requirements.

4.0 Mytilus galloprovincialis Chronic Toxicity Test

4.1 Sample Collection, Sample Preservation, Chain of Custody

Sediment samples for chronic toxicity testing were collected from station SED-005, SED-006 and SED-007 using an Ekman dredge. Sampling equipment was decontaminated prior to use at each station to prevent cross contamination. Field samples were handled with care in order to minimize sediment disturbance and prevent the loss of sample integrity, chemical speciation and chemical equilibrium. Collected samples were maintained at 4°C and a Chain of Custody documenting collected samples was completed and submitted to Aquatic Bioassay & Consulting Laboratories Inc. Chronic toxicity testing was initiated for all samples within the required 14-day holding time for sample collection and analysis. Review of sample collection, sample preservation and Chain of Custody procedures was deemed acceptable.

4.2 Test Setup

Chronic toxicity testing with *M. galloprovincialis* was completed in accordance with EPA method 600/R-95-136. Organisms used for testing were cultured and

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 4 of 4

supplied by Carlsbad Aquafarm in Carlsbad, California. Testing was initiated using at least 200 fertilized embryo test organisms. Test setup review is provided in the bioassay data validation form attached to this document. Based on the review of laboratory test setup procedures, test setup procedures were deemed acceptable and in accordance with EPA requirements.

4.3 Test Implementation

Test implementation for chronic toxicity testing with *M. galloprovincialis* was completed in accordance with EPA method 600/R-95-136. Water quality measurements were recorded during the duration of the test and were found to be in the acceptable range as specified in the test protocol. Ranges for the water quality measurements are provided in the QA/QC Checklist of Attachment I. No abnormal conditions were observed throughout the duration of the test. Thus, the test implementation was determined to be acceptable and in accordance with EPA requirements.

4.3.1 Test Acceptability Criteria

Testing performed at all stations demonstrated a Minimum Significant Difference (MSD) less than 25%, which is within the test acceptability criteria. Performance of negative control replicates was similar to test sample performance. Therefore, the chronic toxicity test results were deemed acceptable at all sampled stations.

4.4 Reporting

Bioassay results were delivered in an acceptable laboratory report documenting a summary of water quality results, reference toxicity results, test results, statistical calculations and percent mortality. Additional information regarding test setup/test implementation procedures were provided by the laboratory to complete the QA/QC bioassay data validation form. Overall, the reporting component presenting chronic toxicity test results for *M. galloprovincialis* was deemed acceptable.

4.5 Overall Data Usability

Review of laboratory data indicated chronic toxicity testing was performed in accordance with EPA method 600/R-94-136 as documented in Attachment I. Through the bioassay laboratory report and additional clarification from the laboratory, the bioassay test results at all sample stations was deemed acceptable and in accordance with EPA requirements.

Attachment I Dominguez Channel Estuary Sediment Bioassay Data Validation Form

Tesoro Refining & Marketing LLC

	Tesoro Ro Los Angeles R	Tesoro Refining & Marketing LLC Los Angeles Refinery - Carson Operat	n Operations
	Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation	onic Toxicity C	A/QC Bioassay Data Validation
	PROJ	PROJECT INFORMATION	TION
Project Name:	Dominguez Channel Sediment Sampling	ling	
Analytical Laboratory:	Aquatic Bioassays & Consulting Laboratories Inc.	ratories Inc.	
Laboratory Technician:	Joe Freas		
Sample Collection Date:	September 25, 2019		
Sample Locations/Lab Number:	SED-005 / WGR019.187		
	SED-006 / WGR019.188		
	SED-007 / WGR019.189		
Species/Test Method Referenced:	Eohaustorius estuarius	Test	SED-005: October 4, 2019 @12:00 – October 14, 2019 @ 12:00 (10day)
	EPA/600/R-94-025	Duration:	SED-006: October 4, 2019 @12:01 – October 14, 2019 @ 12:01 (10day) SED-007: October 4, 2019 @12:02 – October 14, 2019 @ 12:02 (10day)
	Mytilus galloprovincialis	Test	SED-005: October 8, 2019 @12:00 – October 12, 2019 @12:00 (48 hr)
	1.74000/1700 400		SED-007: October 8, 2019 @12:02 — October 10, 2019 @12:02 (48 hr)
Sample Matrix:	Sediment		
Type of Species:	Estuarine		
Data Validator:	Ana Horn		
Validation Date:	October 31, 2019		
Signature:	Ana Hom		
Problems Noted:	No problems or deficiencies identific	d. Chronic tox	No problems or deficiencies identified. Chronic toxicity testing was performed in accordance with EPA method guidelines.
	ЕОНАО	EOHAUSTORIUS ESTUARIUS	JARIUS JARIUS
Completeness and Holding Conditions:	s:		
Type of Samples Collected: Grab Sediment Samples	nent Samples		Number of Samples Analyzed: 3
Were samples maintained at 4°C and in the dark after collection? Yes	in the dark after collection? Yes		
Did chronic toxicity testing begin within 14 days of sample collection? Yes	in 14 days of sample collection? Yes		
Holding conditions acceptable? Yes			
If holding conditions were not acceptable, explain: N/A	able, explain: N/A		
Quality of Test Organism, Collection and Acclimation:	and Acclimation:		
Who is the supplier of the test organisms?	sms? Northwestern Aquatic Sciences in Newport Oregon	es in Newport	Dregon

Tesoro Refining & Marketing LLC

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

Are organisms field collected or cultured?

Field Collected

If field collected:

Where was the collection location? Newport, Oregon

What was the organism collection date? Organism collection date was on 9/25/2019. Organisms were received by the laboratory on 9/27/2019.

What was the water salinity and temperature at the time of collection? Water salinity at time of collection was 30 ppt. Organisms were acclimated at 25 ppt after collection and later, lab acclimated at 20ppt.

Was site sediment collected for holding an acclimation purposes? Yes

Additional Comments: Quality of test organisms and acclimation is deemed acceptable.

Field Collection Sorting Methods

Were healthy amphipods placed into 10 cm diameter finger bowls with 2 cm sieved site sediment and seawater of appropriate salinity? Yes, only healthy organisms were used for bioassay testing.

Were organisms held for 2-10 days? Yes, organisms were held for 7 days.

Was test sediment sieved through 2 mm sieve or forceps for predator removal? Yes

Was control sediment sieved twice through 0.5 mm? Yes

Did control sediment have a 4-hour settling period after each sieving? Yes

Test Initiation

Was salinity adjusted in all testing chambers? Yes

Was overlying ammonia detected? All overlying water was screened for ammonia and results were ND <0.1 mg/L.

Were there at least 5 replicates per sample? Yes

Was there at least 20 animals per replicate? Yes

Was the organism length between 3-5 mm during test initiation? Yes

Was the overlying water volume 800 mL? Yes

Were there any water quality adjustments? Yes, water quality measurements were collected during the duration of the test and are provided in the corresponding laboratory report.

Test Implementation

Photoperiod for 24 hours? Continuous light was provided.

Was daily water quality monitoring conducted? Yes.

What was the overlying daily temperature range (15°C)? The overlying daily temperature was between 14.6-14.8°C.

Was the daily salinity range 20+/-1 ppt? Yes, salinity range 20ppt.

Tesoro Refining & Marketing LLC

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

Was water renewal conducted? No, water remained static and was not renewed over the 10-day exposure period as required in the EPA method.

Was the overlying daily pH between 7 – 8 standard units? Yes

What was the overlying ammonia detection (ND)? All overlying water was screened for ammonia and results were ND <0.1 mg/L.

Were appropriate test changes used (1-liter glass containers with 10 cm diameter)? Yes

Was water in each test chamber aerated overnight before start and throughout the test? Yes

Did the water maintain at least more than 90% saturation of dissolved oxygen concentration? Yes

Test Results and Analysis

Were the number of amphipods reported for each replicate? Yes

Was the percent mortality reported for each replicate? Yes

Was the sample mean for survival reported? Yes, the mean control survival was 98-100%

QA/QC Samples

QA/QC 3amples	
Positive Control	Negative Control
Length of reference toxicity test? 96 hours	Negative control response above 90% acceptability criteria? Yes
What reference toxicant was used? Unionized Ammonia	Mean control survival? 99%
Exposure concentrations? Exposure ammonia concentrations were 15.6, 31.2, 62.5, 125.0, 250 mg/L	Did EC 50 fall within lab standards? Yes
Did EC 50 fall within lab standards? Yes	

MYTILUS GALLOPROVINCIALIS

Completeness and Holding Conditions:

Type of Samples Collected? Grab Sediment Samples	Number of Samples Analyzed: 3
--	-------------------------------

Were samples maintained at 4°C and < 2 weeks in darkness? Yes

Did chronic toxicity testing begin within 14 days of sample collection? Yes

Holding conditions acceptable? Yes

If holding conditions were not acceptable, explain: N/A

Organism Collection and Acclimation:

Who is the supplier of the test organisms? Carlsbad Aquafarms

Are organisms field collected or cultured? Cultured

Was there an even sex ratio of brood stock? Yes

Were organisms maintained at 15°C? Yes

Were organisms brushed to remove encrusting organisms? Yes, organisms were brushed and rinsed prior to entering spawning tanks.

Tesoro Refining & Marketing LLC Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

Test Initiation

Were at least 12 test organisms used per test? Testing was initiated using at least 200 fertilized embryo test organisms.

Was spawning successful within the first 30 minutes of beginning spawning process? Yes

If spawning was unsuccessful, were any stimulants (i.e.- algae) used to promote spawning? Not necessary, spawning was successful at test initiation.

Was temperature maintained at 20°C during spawning? Yes, temperature was decreased post spawning

Test Implementation

Was the photoperiod 16 hr. light/8 hr. darkness? Yes

Were appropriate 30 mL chamber used? Yes, for the reference toxicant. Screen tube were utilized for the sediment water interface.

Was initial water quality monitoring conducted? Yes

Did light intensity remain at ambient laboratory conditions? Yes

What was the temperature range of the water? The temperature of the water ranged between 14.7-14.8 degree Celsius

Did dissolved oxygen concentrations remain above 4 mg/l? Yes, dissolved oxygen ranged between 7.9-8.1 mg/L

Did salinity range 30 +/- 2 ppt? Salinity was maintained at 34 ppt

What reference toxicant was used? Unionized ammonia for a 48-hour period. Concentrations included 2.0, 4.0, 6.0, 8.0 and 10.0, mg/L

What were the concentrations used for the reference toxicant? Concentrations included 2.0, 4.0, 6.0, 8.0 and 10.0, mg/L

Test Results and Analysis

Did mussel embryos show 50% survival in control vials? Yes

Did mussels show 90% normal shell development in surviving controls? Yes

QA/QC Samples

Was a percent MSD of <25% demonstrated? Yes

Dominguez Channel Estuary December 2019 Sediment Monitoring Report

Prepared for:

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations 1801 East Sepulveda Boulevard Carson, CA 90745

Prepared by:

WGR Southwest, Inc. 11021 Winners Circle, Suite 101 Los Alamitos, CA 90720

Date:

January 20, 2020

TESORO REFINING & MARKETING COMPANY LLC LOS ANGELES REFINERY – CARSON OPERATIONS DOMINGUEZ CHANNEL ESTUARY SEDIMENT MONITORING REPORT 2019

TABLE OF CONTENTS

1.0	Introduction	on
2.0	Sediment	Monitoring1
3.0	Laborator	y Results
4.0	Executive	Summary
		<u>TABLES</u>
Table 2	2.0:	Sediment Monitoring Field Observation and Analyses
		<u>FIGURES</u>
Figure	1:	Dominguez Channel Estuary Sediment Monitoring Locations
		<u>ATTACHMENTS</u>
Attach	ment 1:	Sediment Monitoring Field Logs
Attach	ment 2:	Sediment Monitoring Laboratory Result Summary Table
Attach	ment 3:	Sediment Monitoring Aquatic Bioassay Analytical Laboratory Report
Attach	ment 4:	Sediment Bioassay Data Validation Report

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations Dominguez Channel Estuary December 2019 Sediment Monitoring Report Page 1 of 2

1.0 Introduction

On behalf of Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations (Tesoro LAR Carson), WGR Southwest, Inc. (WGR) conducted sediment monitoring of the Dominguez Channel Estuary in accordance with National Pollutant Discharge Elimination System Waste Discharge Requirements Permit Number CA0000680 Order Number R4-2015-0259 (WDR Permit). As required in Table E-7 of WDR Permit Attachment E, Monitoring and Reporting Program Number 5424 (MRP No. 5424), sediment monitoring is required at least once a year for all parameters and at least twice a year for Chronic Toxicity regardless of Tesoro LAR Carson discharge associated with the WDR Permit¹. Therefore, this report constitutes sediment monitoring for the second event of 2019, where the sediment samples collected were analyzed for Chronic Toxicity and required monitoring (i.e. field observations and field analyses) was completed.

2.0 Sediment Monitoring

As shown in Figure 1, the WDR Permit designates seven sediment monitoring locations: SED-001, SED-002, SED-003, SED-004, SED-005, SED-006, and SED-007. WGR field personnel utilized an Ekman dredge and a Horiba U-50 Series Multi-Parameter Meter. According to historic Tesoro LAR Carson Sediment Monitoring Reports, samplers have been unable to collect sediment samples from SED-001 since 2003, SED-002 since 2003, SED-003 since 2009, SED-004 since 2009, and have only infrequently been able to collect sediment samples from SED-005 since 2009.

Sediment monitoring was attempted at all designated sediment monitoring locations on December 16, 2019. As detailed in the field logs (see Attachment 1), sediment samples and associated monitoring could only be feasibly completed at three of the seven sediment monitoring locations. Table 2.0 provides a summary of the field observations and analyses.

Table 2.0: Sediment Monitoring Field Observation and Analyses														
		Field Observations							Field Analyses ¹					
Sample ID	Sediment Description	Pollutants	pH (SU)	Temperature (°C)	DO (mg/L)	SC (mS/Cm)	Turbidity (NTU)	Flow						
SED-001	Not Sampled	Not Sampled	Not Sampled		ŀ		1	1	I					
SED-002	Not Sampled	Not Sampled	Not Sampled											
SED-003	Not Sampled	Not Sampled	Not Sampled											

_

¹ Tesoro LAR Carson did not discharge under the WDR Permit during the 2019 calendar year.

Tesoro Refining & Marketing Company LLC Los Angeles Refinery – Carson Operations Dominguez Channel Estuary December 2019 Sediment Monitoring Report Page 2 of 2

	Table 2.0: Sediment Monitoring Field Observation and Analyses										
		Field Observations		Field Analyses ¹							
Sample ID	Sediment Description Biological Matter Pollutants					DO (mg/L)	SC (mS/Cm)	Turbidity (NTU)	Flow		
SED-004	Not Sampled	Not Sampled	Not Sampled Not Sampled								
SED-005	Dark in color and some biological odor	Substantial debris	Trash present	7.55	18.07	8.09	34.1	0.0			
SED-006	Dark in color and moderate biological odor; limited sediment available for collection	Debris present	No trash present	7.33	15.92	2.62	32.1	0.5			
SED-007	Dark color and strong biological odor	Leaves present	Trash present	6.14	15.14	11.97	29.6	104			

DO: Dissolved Oxygen

SC: Specific Conductance

3.0 Laboratory Results

Table 2.0 summarizes the field observations and analyses for the December 2019 sediment monitoring event. Laboratory results are summarized in Attachment 2. The Aquatic Bioassay laboratory report is in Attachment 3. A data validation report for this laboratory analytical report is in Attachment 4.

4.0 Executive Summary

Receiving water sediment monitoring and analysis was conducted independent of any discharge from Tesoro LAR Carson. Pollutant concentrations demonstrated in this report are not associated with any contribution from Tesoro LAR Carson to the receiving water. There are no pollutant concentration limits associated with this type of sampling as prescribed by the WDR Permit. Receiving water sediment monitoring and analysis was completed in compliance with the WDR Permit Attachment E, MRP No. 5424. As noted in the Sediment Bioassay Data Validation Report included in Attachment 4, analytical data obtained for this sampling event was deemed acceptable. No instances of non-compliance were identified.

¹ Due to field sampling error, field analyses for salinity were not conducted during this sampling event. Field analyses for temperature are submitted in place of salinity within this report. Field sampling personnel have implemented corrective actions to ensure salinity field analyses are conducted for all future sampling events.

FIGURE 1

DOMINGUEZ CHANNEL ESTUARY SEDIMENT MONITORING LOCATIONS

Figure 1: Dominguez Channel Estuary Sediment Monitoring Locations

ATTACHMENT 1

SEDIMENT MONITORING FIELD LOGS

	WGR Southwest, Inc. Field Log		Page 1 of 2
Project No.	k i i	Field Personnel: 005	2 /1
		Field Personnel:	
	itions/Project Discrepancies:	ricia reisonnei.	e mintelongo
Time		Field Notes	
700	- agthered supplies @ u	SGR OFFICE	e Tesled
	Hariba meter batterie	died repl	aced with
× - 0 A	Dack ups.	7 1 - 5	Huring down
0930	- Horaca at SD-00.	twater is	
	= 246" to bottom	- F sample point	100
	· 22'7" from Top of br	71	10-6001
	. 5 Palls with Dr	edra from	SE side of brid
	· Hariba meter shot	2794	pacze
	· Sample had leaves &	debits nixe	d with sediment
1057	- Amued to SED-006.	water flow.	of down stream.
	· 121 to conser at br	idge 2 h	
	, 22'7" to voter from		50
	" Bridge has kod from	force, place	doredge over
	-6-11	annel	clabals
	· Southeast Side of	Substanta !	4011)
		190-	
	e Horiba Radings V		
Bear	1		
1145	Liench		
1215	- Arrived at SEP-005	7	
	- 113 ft to center of	Pridge	
		dge (Sw Com	
	to apost trans	is due to a	instration
	water dirt with d	1 1 - 1	
	* F.VS+ 2 pulls reco	ebis & flowing	
	/ Sediment _ 202, 4		
	1 2 1 6 2 1	2 corrance	10 1

	WGR Southwest, Inc.	Page 2 of 2			
	Field Log	Date:			
Project Nan	ne: LARC Soment Sample Field Personnel: Use	oh Rodiquez			
Project Nun	ober: Oll APCOL Field Personnel: Dav	1 4			
Field Condi	tions/Project Discrepancies:	J			
Time	Field Notes				
1240	After 3 attempts noved der	loft, to the west			
178	· Hittengted & more drops with a	ne doe			
	only recovered 121 a gallon	pag made			
	grove to secure 12 galon	in take back			
0	To other				
1315	- Arrive of at SED-024, Sample	d & East bide			
	· water flowing downward.	a po buso sice			
		dge,			
	· 1 g' 9" from top we bridge to top	16, -100 2013 1	notice		
	· 1st attempt was a few los		OLAX		
	· 2nd, F3rd attempt recove	red more leones			
	· moved Mo of 10ft, I sample d)	nore times			
	with no scament recovered, pa	Elec eg upman			
	and moved on to SE	0-003			
1340	-Amined at SED-003	/ 2			
	-969 to center of Brid.	se Sample print			
	· 19' 5' to top of water, 13 }	est to bettom from	dop		
	e water flow is communic	of wed	· ·		
	· first 4 attempts not s				
	100 1 2 most 15 and 00	tsuccess 1			
	· Tried 2 more tomes and no · Packed equipment to move o	to nox L poly			
1408	- Arrived at SEX-002, bridge no	toccassible			
1 0-13	beause of 10-12 por Force	191200			
1420	55 feet to ten tuater line				
	-001-0 31 feet to bottom from to	op structer			
	· water flain and chunus	rd			
	measured 68 ft from RR Track	S to sample (Eastwar	rd)		
	· Alle 3 attempts pecked up				
	· Samples attempted @ Morsh and	at Bridge			

ATTACHMENT 2

SEDIMENT MONITORING LABORATORY RESULT SUMMARY TABLE

Sample ID	SED-001	SED-002	SED-003	SED-004	SED-005	SED-006	SED-007
Date Sampled	NS	NS	NS	NS	12/16/2019	12/16/2019	12/16/2019
Time Sampled	NS	NS	NS	NS	13:00	11:42	10:36
Total Metals							
Cadmium (EPA 6020) (mg/Kg)	NS	NS	NS	NS	NR	NR	NR
Chromium (EPA 6020) (mg/Kg)	NS	NS	NS	NS	NR	NR	NR
Copper (EPA 6020) (mg/Kg)	NS	NS	NS	NS	NR	NR	NR
Lead (EPA 6020) (mg/Kg)	NS	NS	NS	NS	NR	NR	NR
Nickel (EPA 6020) (mg/Kg)	NS	NS	NS	NS	NR	NR	NR
Zinc (EPA 6020) (mg/Kg)	NS	NS	NS	NS	NR	NR	NR
Mercury (EPA 7471A) (mg/Kg)	NS	NS	NS	NS	NR	NR	NR
Volatile/Semi-Volatile Organic Compounds							
Chlordane (EPA 8081A) (ug/Kg)	NS	NS	NS	NS	NR	NR	NR
DDT (EPA 8081A) (ug/Kg, sum of 4,4'-DDT, 2,4'-DDT, 4,4'-DDE, 2,4'-DDE,	NS	NS	NS	NS	NR	NR	NR
4,4'-DDD, and 2,4'-DDD)	INS	INS	INS	INS	INIT	INIT	INIT
PCBs (EPA 8082) (ug/Kg, sum of Arochlor 1016, Arochlor 1221, Arochlor	NS	NS	NS	NS	NR	NR	NR
1232, Arochlor 1242, Arochlor 1248, Arochlor 1254, and Arochlor 1260)	INS	INS	INS	INS	INIT	INIX	INIT
PAHs (EPA 8270C) (mg/Kg, sum of acenaphthene, anthracene, 1,2-							
benzanthracene, 3,4-benzofluoranthene, benzo(k)fluoranthene, 1,12-	NS	NS	NS	NS	NR	NR	NR
benzoperylene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene,	INS	INS	INS	INS	INIT	INIT	INIX
fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, and pyrene)							
Total Petroleum Hydrocarbons (EPA 8015B) (mg/Kg)	NS	NS	NS	NS	NR	NR	NR
Sediment Grain Size (ASTM D4464)				NR			
Total Organic Carbon (EPA 9060A) (mg/Kg)	NS	NS	NS	NS	NR	NR	NR
Tributyltin (Krone et al.) (ug/Kg)	NS	NS	NS	NS	NR	NR	NR
Chronic Toxicity							
Eohaustorius estuarius (NOEC in mg/L)	NS	NS	NS	NS	100%	100%	100%
Mytilus galloprovincialis (NOEC in mg/L)	NS	NS	NS	NS	100%	100%	100%

NS = Not Sampled

NR = Not Required

ND = Non-Detect

NOEC = No Observed Effect Concentration

ATTACHMENT 3

SEDIMENT MONITORING AQUATIC BIOASSAY ANALYTICAL LABORATORY REPORT

January 17, 2020

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-005
DATE RECEIVED: 12/17/2019
ABC LAB. NO.: WGR1219.165

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours very truly,

Scott Johnson Laboratory Director

CETIS Summary Report

Report Date:

17 Jan-20 10:44 (p 1 of 1)

Test Code/ID:

WGR1219.165e / 07-0314-1733

Eohaustorius 10-d Survival and Reburial Sediment Test	Aquatic Bioassay & Consulting Labs, Inc				

Batch ID: 18-1980-2178 Test Type: Survival-Reburial Analyst: Joe Freas Start Date: 18 Dec-19 12:30 Protocol: EPA/600/R-94/025 (1994) Diluent: Laboratory Seawater Ending Date: 28 Dec-19 12:30 Brine: Species: Echaustorius estuarius Not Applicable

Test Length: 10d 0h Taxon: Malacostraca Source: Northwestern Aquatic Scienc Age:

Sample ID: 21-0045-7029 Code: WGR1219.165e Project: 021.APC.01 Bioassay Report Sample Date: 16 Dec-19 13:00 Material: Sediment Source: Receipt Date: 17 Dec-19 11:30 CAS (PC): Station: SED-005 Client: WGR Southwest Inc.

Single Comparison Summary

Sample Age: 48h

Analysis ID	Endpoint Comparison Method		P-Value	Comparison Result	S
08-6987-1074 Survival Rate		Wilcoxon Rank Sum Two-Sample Test	0.7778	100% passed survival rate	- 1
Test Accepta	bility	T/	AC Limits		
and the same				Committee Commit	

Analysis ID	Endpoint	Attribute	Test Stat	Lower	Upper	Overlap	Decision
08-6987-1074	Survival Rate	Control Resp	0.99	0.9	>>	Yes	Passes Criteria

Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	0.9900	0.9622	1.0000	0.9500	1.0000	0.0100	0.0224	2.26%	0.00%
100		5	0.9900	0.9622	1.0000	0.9500	1.0000	0.0100	0.0224	2.26%	0.00%

Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	0.9500	1.0000	1.0000	1.0000	1.0000	
100		1.0000	1.0000	0.9500	1.0000	1.0000	

Survival Rate Binomials

		Sec. 19.	A. Sand	5-72	55.50		
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	19/20	20/20	20/20	20/20	20/20	
100		20/20	20/20	19/20	20/20	20/20	

CETIS Analytical Report

Report Date: Test Code/ID: 17 Jan-20 10:44 (p 1 of 2) WGR1219.165e / 07-0314-1733

Eohaustorius 10-d Survival and Reburial Sediment Test Analysis ID: 08-6987-1074 Endpoint: Survival Rate Analyzed: 17 Jan-20 10:33 Analysis: Nonparametric-Two Sample								Aquatic	Bioassay &	Consultin	g Labs, In
	6987-1074			Survival Rate			CET	S Version:	CETISv1	.9.5	
Analyzed: 17.	Jan-20 10:33	Ar	nalysis:	Nonparametric-	Two Sample		Statu	is Level:	1		
Batch ID: 18-	1980-2178	Te	est Type:	Survival-Reburia	al		Anal	yst: Joe	Freas		-
Start Date: 18	Dec-19 12:30	Pr	otocol:	EPA/600/R-94/0	025 (1994)		Dilue	nt: Lab	oratory Seaw	ater	
Ending Date: 28	Dec-19 12:30	S	ecies:	Eohaustorius es			Brine	: Not	Applicable		
Test Length: 10d			ixon:	Malacostraca			Sour		thwestern Ad	quatic Scien	nc Age:
Sample ID: 21-	0045-7029	C	ode:	WGR1219.165	e		Proje	ect: 021	.APC.01		
Sample Date: 16		M	aterial:	Sediment			Sour		assay Report		
Receipt Date: 17			AS (PC):				Stati		D-005		
Sample Age: 48h			ient:	WGR Southwes	st Inc.						
Data Transform		Alt Hyp					Comparis	on Result			PMSD
Angular (Corrected)	C > T						sed survival	rate		2,76%
Wilcoxon Rank Su	ım Two-San	ple Test									
Control vs	Conc-%		Test S	Stat Critical	Ties DF	P-Type	P-Value	Decision	(a:5%)		
Negative Control	100		27.5	n/a	2 8		0.7778		ificant Effect		
Test Acceptability	Criteria	TAC	Limits								
Attribute	Test Stat		Upper	Overlap	Decision						
Control Resp	0.99	0.9	>>	Yes	Passes Cr	riteria					
ANOVA Table											
Source	Sum Squ	ares	Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0		0		1	0	1.0000		ificant Effect		
Error	0.0206028	3	0.002	5754	8		10.000		TO SERVICE		
Total	0.0206028		0,539		9						
ANOVA Assumpti	ons Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision	(a:1%)		
Variance	Levene Ed	quality of V	ariance Te	est	0	11.26	1.0000	Equal Var	riances		
	Mod Level				0	13.75	1.0000	Equal Var	riances		
	Variance I	Ratio F Tes	st		1	23.15	1,0000	Equal Var	riances		
Distribution	Anderson-	Darling A	2 Normality	/ Test	2.912	3.878	<1.0E-37	Non-Norn	nal Distribution	on	
	D'Agostine				2.495	2,576	0.0126	Normal D	istribution		
	Kolmogoro	ov-Smirnov	D Test		0.4824	0.3025	2.2E-07	Non-Norn	nal Distribution	n	
	Shapiro-W	ilk W Nor	mality Tes	t	0.5093	0.7411	4.7E-06	Non-Norn	nal Distribution	on	
Survival Rate Sur	nmary										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	5	0.990	0 0,9622	1.0000	1.0000	0.9500	1.0000	0.0100	2.26%	0.00%
100		5	0,990	0 0.9622	1.0000	1.0000	0.9500	1.0000	0.0100	2.26%	0.00%
Angular (Correcte	ed) Transfor	med Sum	mary								
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
	N	5	1.436	1.373	1.499	1.459	1.345	1.459	0.02269	3.53%	0.00%
0		5	1.436	1.373	1.499	1.459	1.345	1.459	0.02269	3.53%	0.00%
7,0											
100	ail										
100 Survival Rate Det	ail Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
100 Survival Rate Det Conc-%		Rep 1	Rep 2		Rep 4	Rep 5					
100 Survival Rate Det Conc-%	Code			0 1,0000							
100 Survival Rate Det Conc-% 0 100	Code N	0.9500 1.0000	1.000	0 1,0000	1.0000	1.0000					
Survival Rate Det Conc-% 0 100 Angular (Correcte	Code N ed) Transfor	0.9500 1.0000 med Deta	1,000 1,000	0 1,0000 0 0.9500	1.0000	1,0000					
0 100 Survival Rate Det Conc-% 0 100 Angular (Correcte Conc-%	Code N	0.9500 1.0000	1.000	0 1,0000 0 0.9500	1.0000	1.0000					

Analyst: ____ QA:~__

CETIS Analytical Report

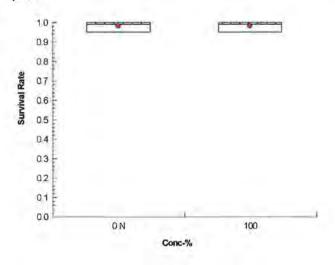
Report Date: Test Code/ID: 17 Jan-20 10:44 (p 2 of 2) WGR1219.165e / 07-0314-1733

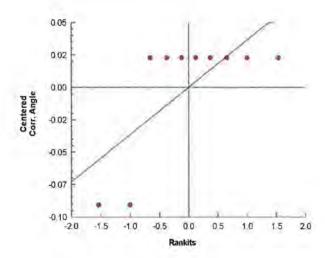
Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analysis ID: 08-6987-1074 Analyzed: 17 Jan-20 10:33 Endpoint: Survival Rate

Analysis: Nonparametric-Two Sample


CETIS Version: CE Status Level: 1


n: CETISV1.9.5

Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	19/20	20/20	20/20	20/20	20/20	
100		20/20	20/20	19/20	20/20	20/20	

Graphics

Report Date:

17 Jan-20 10:44 (p 1 of 2)

Test Code/ID:

WGR1219.165e / 07-0314-1733

Eohaustorius	10-d Survival an	d Reb	urial Sedime	ent Test				Aquati	c Bioassay 8	Consultin	ig Labs, Inc.
	18-1980-2178 18 Dec-19 12:30 28 Dec-19 12:30 10d 0h		Test Type: Protocol: Species: Taxon:	Survival-Rebur EPA/600/R-94, Eohaustorius e Malacostraca	(025 (1994)		D B	iluent: Li rine: N	oe Freas aboratory Seav ot Applicable orthwestern A		nc Age:
	21-0045-7029 16 Dec-19 13:00 17 Dec-19 11:30 48h		Code: Material: CAS (PC): Client:	WGR1219.165 Sediment WGR Southwe			S	ource: B	21.APC.01 loassay Repor ED-005	t	
Dissolved Oxy	ygen-mg/L										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	10.05	9.415	10.69	10	10.1	0,05001	0.07073	0.7%	0
100		2	10.1	10.08	10.12	10.1	10.1	0	0	0.0%	0
Overall		4	10.08	9.995	10.15	10	10.1	0.025	0.05	0.50%	0 (0%)
pH-Units											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.0%	0
100		2	8.05	7.415	8,685	8	8.1	0.05001	0.07073	0.88%	0
Overall		4	7,975	7.823	8.127	7.9	8.1	0.04787	0.09574	1.20%	0 (0%)
Salinity-ppt											
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	20	20	20	20	20	0	0	0.0%	0
100		2	20	20	20	20	20	0	0	0.0%	0
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)
Temperature-	°C										
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count
0	N	2	14.7	13.43	15.97	14.6	14.8	0.09999	0.1414	0.96%	0
100		2	14.7	13.43	15.97	14.6	14.8	0.09999	0.1414	0.96%	0
Overall		4	14.7	14.52	14.88	14.6	14.8	0.05773	0.1155	0.79%	0 (0%)

Report Date: Test Code/ID: 17 Jan-20 10:44 (p 2 of 2)

WGR1219.165e / 07-0314-1733

Eohaustorius 10-c	Survival	and Rebu	rial Sedim	ent Test					Aquatic Bioassay & Consulting Labs, Inc.
Dissolved Oxyger	-mg/L								
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		10.1					
100				10.1					
0	N	2		10				No.	
100				10,1					
pH-Units							-71	47174	
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		7.9				-	
100				8.1					
0	N	2		7.9					
100				8					
Salinity-ppt									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	11		20					
100				20					
0	N	2		20					
100				20					
Temperature-°C									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		14.8					
100				14.8					
0	N	2		14.6					
100				14.6					

January 17, 2020

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-006

DATE RECEIVED: 12/17/2019

ABC LAB. NO.: WGR1219.166

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

17 Jan-20 10:44 (p 1 of 1)

Test Code/ID:

WGR1219.166e / 03-4840-5932

Aquatic Bioassay & Consulting Labs, Inc.

Batch ID:	02-6590-7584	Test Type:	Survival-Reburial	Analyst:	Joe Freas
Start Date:	18 Dec-19 12:31	Protocol:	EPA/600/R-94/025 (1994)	Diluent:	Laboratory Seawater
Ending Date:	28 Dec-19 12:31	Species:	Eohaustorius estuarius	Brine:	Not Applicable

Ending Date: 28 Dec-19 12:31 Species: Echaustorius estuarius Brine: Not Applicable

Test Length: 10d 0h Taxon: Malacostraca Source: Northwestern Aquatic Scienc Age:

 Sample ID:
 08-9186-2121
 Code:
 WGR1219.166e
 Project:
 021.APC.01

 Sample Date:
 16 Dec-19 11:42
 Material:
 Sediment
 Source:
 Bioassay Report

 Receipt Date:
 17 Dec-19 11:30
 CAS (PC):
 Station:
 SED-006

Sample Age: 49h Client: WGR Southwest Inc.

Single Comparison Summary

Analysis ID	Endpoint	Comparison Met	hod		P-Value	Comparis	on Result	S
07-0635-0603	Survival Rate	Wilcoxon Rank Su	m Two-Sample	Test	1.0000	100% pas	sed survival rate	- 1
Test Accepta	bility			TAC	Limits			
Analysis ID	Endpoint	Attribute	Test Stat	Lower	Upper	Overlap	Decision	
07-0635-0603	Survival Rate	Control Resp	0.99	0.9	>>	Yes	Passes Criteria	
FIF TO BUSH I								

Survival Rate Summary

Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
0	N	5	0.9900	0.9622	1.0000	0.9500	1.0000	0.0100	0.0224	2.26%	0.00%
100		5	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.00%	-1.01%

Survival Rate Detail

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	0.9500	1.0000	1.0000	1.0000	1,0000	
100		1.0000	1.0000	1,0000	1.0000	1 0000	

Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	
0	N	19/20	20/20	20/20	20/20	20/20	
100		20/20	20/20	20/20	20/20	20/20	

CETIS Analytical Report

Report Date: Test Code/ID: 17 Jan-20 10:44 (p 1 of 2) WGR1219.166e / 03-4840-5932

Eohaustorius	10-d Survival a	and Reburia	al Sedime	ent Test				Aquatic	Bioassay &	Consultin	g Labs, In
Analysis ID:	07-0635-0603	En	dpoint:	Survival Rate			CET	S Version:	CETISv1	.9.5	
Analyzed:	17 Jan-20 10:3	9 An	alysis:	Nonparametric-	Two Sample		State	us Level:	1		
Batch ID:	02-6590-7584	Te	st Type:	Survival-Reburi	al		Anal	yst: Joe	Freas		
Start Date:	18 Dec-19 12:3	n Pre	otocol:	EPA/600/R-94/	025 (1994)		Dilue	ent: Lab	oratory Seav	vater	
Ending Date:	28 Dec-19 12:3	31 Sp	ecies:	Eohaustorius e			Brine		Applicable		
Test Length:		4	xon:	Malacostraca	21,000		Sour		thwestern Ac	quatic Scien	nc Age:
Sample ID:	08-9186-2121	Co	de:	WGR1219.166	e		Proje	ect: 021	.APC.01	,	
	16 Dec-19 11:4		iterial:	Sediment			Sour		assay Report		
Receipt Date:			AS (PC):	Gediment			Stati		0-006		
Sample Age:			ient:	WGR Southwe	st Inc		Stati	on. SEL	J-006		
Data Transform				7.5-21.5-4.8-4.10.19	at mas		Comparie	on Result			PMSD
Angular (Correct		C > T						sed survival	rate		2.12%
	k Sum Two-Sa	mole Test					7-7-4-6	den nen entre			
	vs Conc-%		Test S	Stat Critical	Ties DF	P-Type	P-Value	Decision	a:50/.)		
Negative Contro			30	n/a	1 8	Exact	1.0000		ficant Effect		_
Test Acceptab		-				30) (Fr)	A		E W. Elect		
Attribute	Test Sta		Limits Upper	Overlap	Decision						
Control Resp	0.99	0.9	>>	Yes	Passes Ci	riteria					
ANOVA Table											
Source	Sum Sqi	uares	Mean	Square	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.001287		0.001		1	1	0.3466		ficant Effect		
Error	0.010301		0.001		8		D.O-100	rion-oigh	HOURT LIJECT		
Total	0.01050		0.001	2017	9	-					
ANOVA Assun	nptions Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision	(a:1%)		
Variance	F-10-17	quality of Va	ariance Te	et	7.111	11.26	0.0285	Equal Var			
Variance		ene Equality			1	13.75	0.3559	Equal Var			
Distribution		n-Darling A2			1.796	3.878	<1.0E-37		nal Distribution	nn	
Distribution		no Skewnes	the state of the s	rest	3.335	2.576	8.5E-04		nal Distribution		
		rov-Smirnov			0.4	0.3025	6.1E-05		nal Distribution		
		Wilk W Norr			0.6247	0.7411	1.1E-04		nal Distribution	7.0	
Condinated		VVIIK VV NOTI	namy res		0.0247	0.7411.	1.1E-04	Non-Norm	iai Distributio	on	
Survival Rate				Wash of the	Sec. No.	WG-2700	100	72.5			
Conc-%	Code	Count	Mean		95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	5	0.990		1.0000		0.9500	1.0000	0.0100	2.26%	0.00%
100		5	1.000	0 1.0000	1.0000		1.0000	1.0000	0.0000	0.00%	-1.01%
Angular (Corre	ected) Transfo	rmed Sumr	nary								
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0	N	5	1.436	1.373	1,499		1.345	1.459	0.02269	3.53%	0.00%
100		5	1,459		1.459		1.459	1.459	0	0.00%	-1.58%
Survival Rate	Detail										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	0.9500	1.000	0 1.0000	1.0000	1.0000	_				
100		1.0000	1.000		1_0000	1.0000					
Angular (Corre	ected) Transfo	rmed Detai	1								
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
0	N	1.345	1,459		1.459	1.459					
Torres .	14										
100		1.459	1.459	1.459	1.459	1.459					

CETIS Analytical Report

Report Date: Test Code/ID:

17 Jan-20 10:44 (p 2 of 2) WGR1219.166e / 03-4840-5932

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

CETISV1.9.5

Analyzed: 17 Jan-20 10:39

Analysis ID: 07-0635-0603

Endpoint: Survival Rate

Analysis: Nonparametric-Two Sample

CETIS Version: Status Level:

Report Date:

17 Jan-20 10:44 (p 1 of 2)

Test Code/ID:

WGR1219_166e / 03-4840-5932

Eohaustorius	10-d Survival an	d Rebu	urial Sedime	ent Test				Aquat	ic Bioassay 8	Consultin	ng Labs, Inc.		
Batch ID: Start Date: Ending Date: Test Length:	02-6590-7584 18 Dec-19 12:31 28 Dec-19 12:31 10d 0h		Test Type: Protocol: Species: Taxon:	Survival-Rebur EPA/600/R-94 Eohaustorius e Malacostraca	/025 (1994)		D B	iluent: L rine: N	oe Freas aboratory Sea lot Applicable lorthwestern A		nc Age:		
	08-9186-2121 16 Dec-19 11:42 17 Dec-19 11:30 49h	08-9186-2121		WGR1219.166 Sediment WGR Southwe			S	Project: 021.APC.01 Source: Bioassay Report Station: SED-006					
Dissolved Ox	ygen-mg/L												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	N	2	10,05	9.415	10.69	10	10.1	0.05001	0.07073	0.7%	0		
100		2	10.15	9.515	10.79	10.1	10.2	0.05	0.0707	0.7%	0		
Overall		4	10.1	9.97	10.23	10	10.2	0.04082	0.08165	0.81%	0 (0%)		
pH-Units													
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Coun		
0	N	2	7.9	7.884	7.916	7.9	7.9	0	0	0.0%	0		
100		2	7.85	7.215	8.485	7.8	7.9	0.05	0.07071	0.9%	0		
Overall		4	7,875	7,795	7,955	7.8	7.9	0,025	0.05	0.63%	0 (0%)		
Salinity-ppt													
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	N	2	20	20	20	20	20	0	0	0.0%	0		
100		2	20	20	20	20	20	0	0	0.0%	0		
Overall		4	20	20	20	20	20	0	0	0.00%	0 (0%)		
Temperature-	°C												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	QA Count		
0	N	2	14.7	13.43	15.97	14.6	14.8	0.09999	0.1414	0.96%	0		
100			14.7	13.43	15.97	14.6	14.8	0.09999	0.1414	0.96%	0		
Overall		4	14.7	14.52	14.88	14.6	14.8	0.05773	0.1155	0.79%	0 (0%)		

Analyst QA

Report Date:

17 Jan-20 10:44 (p 2 of 2)

Test Code/ID: WGR

WGR1219 166e / 03-4840-5932

Eohaustorius 10-	d Survival	and Rebu	rial Sedim	ent Test				10000	Aquatic Bioassay & Consulting Labs, Inc
Dissolved Oxyge		100					Cut in		Control of the Contro
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		10.1					
100				10.2					
0	N.	2		10					
100				10.1					
pH-Units									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		7.9					
100				7.9					
0	N	2		7.9					
100				7.8					
Salinity-ppt									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		20					
100				20					
0	N	2		20					
100				20					
Temperature-°C	77	1. 1.		7			1.7		- 41
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		14.8					
100				14.8					
0	N	2		14.6					
100				14.6					

January 17, 2020

Amber Ballrot WGR Southwest, Inc. 1801 E. Sepulveda Blvd. Carson, CA 90749

Dear Mrs.Ballrot:

We are pleased to present the enclosed bioassay report. The test was conducted under guidelines prescribed in *Methods for Assessing the Toxicity of Sediment-associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.* Results were as follows:

CLIENT: WGR Southwest, Inc.

SAMPLE I.D.: SED-007
DATE RECEIVED: 12/17/2019
ABC LAB. NO.: WGR1219.167

ACUTE EOHAUSTORIUS SURVIVAL BIOASSAY

NOEC = 100.00 %

TUc = 1.00

EC25 = >100.00 % EC50 = >100.00 %

Yours very truly,

Scott Johnson

Laboratory Director

CETIS Summary Report

Report Date:

17 Jan-20 10:44 (p 1 of 1)

Test Code/ID:

WGR1219.167e / 08-3864-3990

Eohaustorius	10-d Survival an	d Reburia	al Sedime	ent Test				Aquatic	Bioassay &	Consultin	g Labs, Inc.		
Batch ID:	07-9448-1575	Te	st Type:	Survival-Reburia	al		Anal	yst: Joe	Freas				
Start Date:	18 Dec-19 12:32	Pre	otocol:	EPA/600/R-94/	025 (1994)		Dilue	ent: Lab	oratory Seav	vater			
Ending Date:	28 Dec-19 12:32	Sp	ecies:	Eohaustorius es	stuarius		Brine	e: Not	Applicable				
Test Length:	10d 0h	Ta	xon:	Malacostraca			Sour	ce: Nor	thwestern Ad	quatic Scien	c Age:		
Sample ID:	05-0762-1617	Co	de:	WGR1219.167	e		Proje	ect: 021	.APC.01				
Sample Date:	mple Date: 16 Dec-19 10:36 Ma ceipt Date: 17 Dec-19 11:30 CA			Sediment			Sour	ce: Bio	Bioassay Report				
Receipt Date:							Stati	on: SE	SED-007				
Sample Age:	50h	Cli	ent:	WGR Southwes	st Inc.								
Single Compa	arison Summary												
Analysis ID	Endpoint		Comp	oarison Method			P-Value	Comparis	son Result		S		
02-8789-2065	Survival Rate		Wilco	xon Rank Sum T	wo-Sample	Γest	0.5000	100% pas	ssed survival	rate	- 1		
Test Acceptal	bility				TAC	Limits							
Analysis ID				oute	Test Stat	Lower	Upper	Overlap	p Decision Passes Criteria				
02-8789-2065				ol Resp	0.99	0.9	>>	Yes					
Survival Rate	Summary												
Conc-%	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect		
0	N	5	0.990	0 0.9622	1.0000	0.9500	1.0000	0.0100	0.0224	2.26%	0.00%		
100		5	0.980	0 0.9460	1.0000	0.9500	1.0000	0.0123	0.0274	2.79%	1.01%		
Survival Rate	Detail												
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5							
0	N	0.9500	1.000	0 1.0000	1.0000	1.0000							
200	N 0.9500 0.9500 al Rate Binomials		0.950	0 1.0000	1.0000	1.0000							
100													
Terror or to a con-	Binomials	210377	137.0		7.7								
Survival Rate	Binomials Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5							
100 Survival Rate Conc-%			Rep 2		Rep 4 20/20	Rep 5							

Analyst: 4 QA: 1

CETIS Analytical Report

Report Date:

17 Jan-20 10:44 (p 1 of 2)

Test Code/ID: WG

WGR1219 167e / 08-3864-3990

Eohaustorius 10-	d Survival a	nd Rebur	ial Sedime	ent Test				Aquatic	Bioassay &	Consultin	g Labs, In
	8789-2065 Jan-20 10:42		ndpoint: nalysis:	Survival Rate Nonparametric-	Two Sample			S Version: is Level:	CETISv1	9.5	
Batch ID: 07-	9448-1575	1	est Type:	Survival-Reburia	al		Anal	vst: Joe	Freas		
	Dec-19 12:3		rotocol:	EPA/600/R-94/0			Dilue		oratory Seaw	ater	
Ending Date: 28			pecies:	Echaustorius es			Brine		Applicable	4,01	
Test Length: 10c			axon:	Malacostraca	oldando.		Sour		rthwestern Ac	uatic Scien	c Age:
	0762-1617		ode:	WGR1219.1676			Proje		1.APC.01	14000 4000	(a) (a) (a)
Sample Date: 16			Material:				Sout				
Annual Control of the				Sediment					assay Report		
Receipt Date: 17			AS (PC):	MOD O- H	at tile		Stati	on: SE	D-007		
Sample Age: 50h			lient:	WGR Southwes	st ing.						30.61
Data Transform Angular (Corrected	· ·	C > T	р	-				sed survival	Leata		3.03%
							100% pas	seu surviva	rate		3.03%
Wilcoxon Rank S		nple Test		an amag	Jacob	0.40	A Tomore	Amorro de			
Control vs Negative Control	100	-	Test s	Stat Critical	Ties DF	P-Type Exact	0.5000	Non-Sign	i(α:5%) hificant Effect		
	1000		23	IVa	2 0	CYACI	0.3000	Non-aigh	micant Effect		
Test Acceptability			C Limits	Alles William	n. delta						
Attribute Control Resp	Test Stat	0.9	Uppe >>	Overlap Yes	Passes Ci	riteria					
12 12 17	0.98	0.5	- 50	169	1 45565 01	nena					
ANOVA Table				c.	nc.	E Ct-1	0.00	By A. C.	des PROD		
Source Between	0.001287		0.001	Square	DF 1	F Stat	P-Value 0.5447	Decision Non-Sign	i(a:5%) ificant Effect		
E-1 - 1 7	0.001287		87179 0			0.4	0.544/	Non-Sign	micarit Effect		
Error Total	0.025753		0.003	2192	9	-					
							_				
ANOVA Assumpti						Outs:	6.606.0	W	emant.		
Attribute	Test				Test Stat	23 100 000	P-Value	Decision			
Variance		and the second second	Variance Te		1.524	11.26	0.2521	Equal Va			
		to the second	y of Varian	ce Test	0.4286	13.75	0.5370	Equal Va			
St. Line of	200000000000000000000000000000000000000	Ratio F Te		474	1.5	23.15	0.7040	Equal Va			
Distribution			2 Normalit	rest	1.329	3.878	0.0014		mal Distribution	on	
		o Skewne			1.407	2.576	0.1594	8 5 5 5 5 5 E	Distribution	7200	
		ov-Smirno			0.3643	0.3025	4.8E-04	200	mal Distribution		
	Shapiro-V	VIIK W No	rmality Tes	t.	0.7586	0.7411	0.0045	Non-Norr	mal Distribution	on	
Survival Rate Sur	nmary										
Conc-%	Code	Count	Mean		95% UCL	Median	Min	Max	Std Err	CV%	%Effec
0	N	5	0.990		1.0000		0.9500	1.0000	0.0100	2.26%	0.00%
100		5	0.980	0 0.9460	1.0000		0.9500	1.0000	0.0123	2.79%	1.01%
	ed) Transfor	med Sun	nmary								
Angular (Correcte		Count	Mean			Median	Min	Max	Std Err	CV%	%Effec
Angular (Correcte Conc-%	Code	Oddin		1.373	1.499		1.345	1.459	0.02269	3.53%	0.00%
Conc-%	Code	5	1.436					4 456	0.0070		1.58%
Conc-%		_	1.436 1.413		1.491		1.345	1.459	0.0278	4 40%	1.0070
Conc-% 0 100	N	5					1.345	1.459	0.0278	4,40%	1.00.11
Conc-% 0 100 Survival Rate Det	N	5		1.336		Rep 5	1.345	1.459	0.0278	4,40%	1.00 //
Conc-% 0 100 Survival Rate Det	N ail	5 5	1.413 Rep 2	1.336 Rep 3	1.491	Rep 5	1.345	1.459	0.0278	4,40%	1.30%
Conc-% 0 100 Survival Rate Det Conc-%	N ail Code	5 5 Rep 1	1.413 Rep 2	1.336 Rep 3	1.491 Rep 4		1.345	1.459	0.0278	4,40%	1.30.4
Conc-% 0 100 Survival Rate Det Conc-% 0 100	N ail Code N	5 5 Rep 1 0.9500 0.9500	1.413 Rep 2 1.000 0.950	1.336 Rep 3	1.491 Rep 4 1.0000	1.0000	1.345	1.459	0.0278	4,40%	1.30%
Conc-% 0 100 Survival Rate Det Conc-% 0 100 Angular (Correcte	N Code N ed) Transfor	5 5 Rep 1 0.9500 0.9500	1.413 Rep 2 1.000 0.950	1.336 Rep 3 0 1.0000 0 1.0000	1.491 Rep 4 1.0000 1.0000	1.0000	1.345	1.459	0.0278	4,40%	1.00%
Conc-% 0 100 Survival Rate Det Conc-% 0	N ail Code N	5 5 Rep 1 0.9500 0.9500	1.413 Rep 2 1.000 0.950	1.336 Rep 3 0 1.0000 0 1.0000	1.491 Rep 4 1.0000	1.0000	1.345	1.459	0.0278	4,40%	1.00%

Analyst N QA

CETIS Analytical Report

Report Date:

17 Jan-20 10:44 (p 2 of 2)

Test Code/ID:

WGR1219.167e / 08-3864-3990

Echaustorius 10-d Survival and Reburial Sediment Test

Aquatic Bioassay & Consulting Labs, Inc.

Analyzed:

Analysis ID: 02-8789-2065 17 Jan-20 10:42 Endpoint:

Survival Rate Analysis: Nonparametric-Two Sample **CETIS Version:** Status Level:

CETISv1.9.5

Analyst _____ QA:_____

CETIS™ v1.9.5.5

CETIS Measurement Report

Report Date:

17 Jan-20 10:44 (p 1 of 2)

Test Code/ID:

WGR1219.167e / 08-3864-3990

Echaustorius	10-d	Survival	and	Reburial	Sediment	Test

Aquatic Bioassay & Consulting Labs, Inc.

Batch ID: 07-9448-1575 Test Type: Survival-Reburial Analyst: Joe Freas

Start Date: 18 Dec-19 12:32 Protocol: EPA/600/R-94/025 (1994) Diluent: Laboratory Seawater
Ending Date: 28 Dec-19 12:32 Species: Eohaustorius estuarius Brine: Not Applicable

Test Length: 10d 0h Taxon: Malacostraca Source: Northwestern Aquatic Scienc Age:

 Sample ID:
 05-0762-1617
 Code:
 WGR1219.167e
 Project:
 021.APC.01

 Sample Date:
 16 Dec-19.10:36
 Material:
 Sediment
 Source:
 Bioassay Report

Receipt Date: 17 Dec-19 11:30 CAS (PC): Station: SED-007 Client: WGR Southwest Inc. Sample Age: 50h Dissolved Oxygen-mg/L Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% **QA** Count Conc-% 2 10.05 9,415 10.69 10 10.1 0.05001 0.07073 0.7% 0 9,515 10.79 10.1 10.2 0.0707 0.7% 100 2 10.15 0.05 0 0.04082 0.81% 0 (0%) 4 9,97 10.23 10 10.2 0.08165 Overall 10.1 pH-Units Max **QA** Count 95% LCL 95% UCL Min Std Err Std Dev CV% Conc-% Code Count Mean 0 N 2 7.9 7.884 7.916 7.9 79 0 0.0% 0 0.07073 100 2 8.05 7.415 8.685 8 8.1 0.05001 0.88% 0 7.823 7.9 1.20% 0 (0%) Overall 4 7.975 8.127 8.1 0.04787 0.09574 Salinity-ppt CV% **QA** Count 95% LCL 95% UCL Min Max Std Err Std Dev Conc-% Code Count Mean 20 0 N 2 20 20 20 20 0 0 0.0% 0 20 0.0% 100 2 20 20 20 20 0 0 0 Overall 4 20 20 20 20 20 0 0 0.00% 0 (0%) Temperature-°C **QA** Count Conc-% Code Count Mean 95% LCL 95% UCL Min Max Std Err Std Dev CV% 2 14.7 15.97 14.6 14.8 0.09999 0.1414 0.96% N 13.43 0 0.09999 0.1414 0.96% 100 2 14.7 13.43 15.97 14.6 14.8 0 Overall 4 14.7 14.52 14.88 14.6-14.8 0.05773 0.1155 0.79% 0 (0%)

Report Date:

17 Jan-20 10:44 (p 2 of 2)

Test Code/ID: WGF

WGR1219.167e / 08-3864-3990

Eohaustorius 10-	d Survival	and Rebu	ırial Sedim	ent Test					Aquatic Bioassay & Consulting Labs, Inc.
Dissolved Oxyger	n-mg/L								
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		10.1					
100				10.1					
0	N	2		10					
100				10.2					
pH-Units									V.
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		7.9					
100				8.1					
0	N.	2		7.9					
100				8					
Salinity-ppt									
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		20					
100				20					
0	N	2		20					
100				20					
Temperature-°C								100	
Conc-%	Code	Read	Time	Measure	QA	Diff-%	Inst ID	Analyst	Notes
0	N	1		14.8					
100				14.8					
0	N	2		14.6					
100				14.6					

acility Name A Refinery - Carson Operations			te (Fa			Blvd.,	, Ca	rson CA 90	749		Manage elsea D	er (Consu Preyer	iltant)	Pr	oject No	. (Const				Laboratory Name Aquatic Bioassay
acility Contact late Busch	Fa		Telep							Teleph	one No.	(Consulta	ant)	Fa	x No. (C					29 N Olive Street
Consultant Company	_	(31	0) 84	7-39	20	Cons	sulta	nt Address		(56	2) 799-8	510 ex.	1003	1	(56	32) 799-	8510			Ventura 93001 (805) 643-5621
VGR Southwest, Inc.		_				1102	21 W	inners Circle	#101 Los	Alamitos	Califor	mia 9072	20							3,000,000,000
		H	М	atrix	K	Prs	sv.						11	-	FIE	LD A	NALY	SES	-	Special Detection
													Ш				(m		possible]	Limit/Reporting
							١			tuarius 25)					. Celsius)	(mg/L)	ince (mS/c	SoJ) [if po	Please report MDL and RL for all analytes
Sample I.D.	No. of Containers	Soil	Water	Air	Other	Yes	No	Sampling Date	Sampling Time	Eohaustorius estuarius (EPA 600/R-94/025)				рн (SU) [6.5-8.5]	Temperature (Deg. Celsius)	Dissolved Oxygen (mg/L) [mean>7; single>5]	Specific Conductance (mS/cm)	Turbidity (NTU) [<50]	Flow (units =	Duplicate samples must be analyzed at a frequency of 5%
ED-001												Π					1-1-	1		Special QA/QC
ED-002							Ш										100			
ED-003															1					Sub'd COC Attch'd:
ED-004	9.1																	100	1	
ED-005	1	X				х		12/16/2019	13:00	X			Π	7.55	18.07	8.09	34.1	0.0		
ED-006	1	x				x		12/16/2019	11:42	X	5 8	110	934	7.33	15.92	2.62	32.1	0.5	-	
ED-007	1	X				X		12/16/2019	10:36	X				6.14	15.14	11.97	9.67	104	-	REMARK Email Results to: nbusch@marathonpetroleum.com cdreyer@wgr-sw.com aballrot@wgr-sw.com
																			-	Ę
Sample bottles required for each sample po	int:																			¥ j
(1) x 1-gallon plastic bag											\perp	11	11					-		Detro
(1), 1 3 3 3 3 3 3	-	4	-		4	-	-			H	+	++	++	+	\vdash		-	-	+	M ::0
						-	-		-	+++	+	++	++	++	\vdash	-			H	E n s to rath
	-	Н	H	\vdash		+	-			Н	+	++	++	++	1	-	+	H		wgr wgr
	-	1				-	-			H	+	+	+	+	+		-			\$ 999
comple Descripted Intents V N-		1			7	-1	1	Tamasantan				1-1-	NI- II							R E M Email Results to: nbusch@marath cdreyer@wgr-sw aballrot@wgr-sw
ample Received Intact: Yes No							_1	Temperature			ce		No ic	e						a de de de
elinquished by SAMPLER (Print & Sign Name)	72	_	Date	1	10	Time			Received	by (Print	1-		M	1 my	140	62	17	791	119]	
elinquished by (Print & Sign Name)	1		Date	-	1	Time			Received	by LAB	RATOR	RY (Print	& Sign	Name)			-			Lab Work No.

ATTACHMENT 4

SEDIMENT BIOASSAY DATA VALIDATION REPORT

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report

Table of Contents

1.0	Chronic Toxicity Test Overview	1
2.0	Data Review	
2.0	Data Review	1
3.0	Eohaustorius estuarius Chronic Toxicity Test	2
3.1	Sample Collection, Sample Preservation, Chain of Custody	
3.1		
3.3	1	
3	3.3.1 Test Acceptability Criteria	3
3.4	Reporting	3
	Overall Data Usability	

Attachment:

Attachment I – Dominguez Channel Estuary Sediment Bioassay Data Validation Form

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 1 of 4

1.0 Chronic Toxicity Test Overview

The Tesoro Refining & Marketing Company LLC, Los Angeles Refinery – Carson Operations (herein facility) collected sediment samples at monitoring locations SED-005, SED-006, and SED-007 as required in National Pollutant Discharge Elimination System (NPDES) No. CA0000680. Sediment samples for chronic toxicity testing were collected on December 16, 2019 and submitted to Aquatic Bioassay & Consulting Laboratories Inc. on December 17, 2019 for analysis. Aquatic Bioassay & Consulting Laboratories has Environmental Laboratory Accreditation Program (ELAP) Certification number 1907.

In accordance with NPDES No. CA0000680 Attachment E, Section V.A.4, chronic toxicity samples are required to undergo a species sensitivity screening by concurrently conducting three toxicity tests using the fish, invertebrate and alga species listed in the permit order. Based on the results of the species sensitivity screening, the single species exhibiting the highest percent effect is required to be used for routine monitoring during the permit cycle. The species listed in the permit order, however, are more commonly used to evaluate for effluent chronic toxicity rather than sediment toxicity. Therefore, with laboratory staff and Regional Water Quality Control Board guidance, a species sensitivity screening was conducted for chronic toxicity samples on September 25, 2019 using two different sediment species: Eohaustorius estuarius and Mytilus galloprovincialis. As explained in the September 25th sediment report, both sediment species exhibited no observed effect concentration to the sediment samples collected from Stations SED-005, SED-006 and SED-007. Given that both species exhibited no toxicity effect, the facility opted to utilize Eohaustorius estuarius in all future chronic toxicity testing. Therefore, sediment chronic toxicity samples collected on December 16, 2019 were tested using Eohaustorius estuarius in accordance with the guidelines prescribed in Methods for Assessing the Toxicity of Sediment Associated Contaminants with Estuarine and Marine Amphipods, Method EPA/600/R-94/025.

2.0 Data Review

A level 2 data verification protocol was used for bioassay validation. The level 2 data review compares bioassay testing holding conditions, test setup, test implementation, and test termination in accordance with bioassay protocols. As part of the level 2 data verification protocol the laboratory was expected to follow all internal quality control procedures as directed in the applicable analytical method. Outcome of the data review for each of the chronic toxicity tests performed is documented in the *Chronic Toxicity QA/QC Bioassay Data Validation Form* included in Attachment I of this report.

Sediment samples at Stations SED-005, SED-006, and SED-007 were collected on December 16, 2019 by WGR Southwest Inc. All collected samples were preserved as required and submitted to Aquatic Bioassay and Consulting Laboratories Inc. on December 17, 2019. Chronic toxicity tests for all three stations began on December 18,

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 2 of 3

2019 and concluded on December 28, 2019. A summary of data usability determinations for the chronic toxicity test performed are described in the following section.

3.0 Eohaustorius estuarius Chronic Toxicity Test

3.1 Sample Collection, Sample Preservation, Chain of Custody

Sediment samples for *E. estuarius* chronic toxicity testing were collected from Stations SED-005, SED-006, and SED-007 using an Eckman dredge sampler. Sampling equipment was decontaminated prior to use at each station to prevent cross contamination. Field samples were handled with care in order to minimize sediment disturbance and prevent the loss of sample integrity, chemical speciation and chemical equilibrium. Collected samples were maintained at 4°C and a Chain of Custody documenting the collected samples was completed and submitted to Aquatic Bioassay & Consulting Laboratories Inc. Chronic toxicity testing was initiated for all samples within the required 14-day holding time for sample collection and analysis. Document review of sample collection, sample preservation and Chain of Custody procedures was deemed acceptable and in compliance with the facility's Waste Discharge Requirements (WDRs).

3.2 Test Setup

Chronic toxicity testing with *E. estuarius* was completed in accordance with EPA method 600/R-94-025. Organisms used for testing were field collected and supplied by Northwestern Amphipod in Oregon. Amphipods ranging in 3-5 mm in size were used, with at least twenty organisms per replicate. Test setup review is provided in the bioassay data validation form attached to this document. Based on a review of laboratory test setup procedures, test set up procedure were deemed acceptable and in compliance with EPA method requirements.

3.3 Test Implementation

Test implementation for chronic toxicity testing with *E. estuarius* was completed in accordance with EPA method 600/R-94/025. Water quality measurements were recorded during the duration of the test and were found to be in the acceptable range as specified in the test protocol. Ranges for the water quality measurements are provided in the QA/QC Checklist of Attachment I. No abnormal conditions were observed throughout the duration of the test. Thus, the test implementation was determined to be acceptable and in compliance with EPA method requirements.

Tesoro Refining & Marketing LLC Los Angeles Refinery – Carson Operations Sediment Bioassay Data Validation Report Page 3 of 3

3.3.1 Test Acceptability Criteria

3.3.1.1 Reference Toxicant

The reference toxicant used during *E. estuarius* chronic toxicity testing was unionized ammonia. The length of the reference toxicant test was 96 hours. All reference toxicant testing was within the two standard deviation quality control limit meeting the test acceptability criteria in compliance with EPA method requirements.

3.3.1.2 Negative Control Samples

Negative control samples demonstrated a 99% survival at all sample stations, which is above the 90% mean acceptability survival criteria. As a result, the negative control sample results are considered acceptable at all sampled stations and in compliance with EPA method requirements.

3.4 Reporting

Bioassay results were delivered in an acceptable laboratory report documenting a summary of water quality results, reference toxicity results, test results, statistical calculations and percent mortality. Additional information regarding test setup/test implementation procedures was provided by the laboratory to complete the QA/QC bioassay data validation form. Overall, the reporting component presenting chronic toxicity test results for *E. estuarius* was deemed acceptable.

3.5 Overall Data Usability

Review of laboratory data indicated chronic toxicity testing was performed in accordance with EPA method 600/R-94/025 as documented in Attachment I. Through the bioassay laboratory report and additional clarification from the laboratory, the bioassay test results at all sample stations was deemed acceptable and in compliance with EPA method requirements.

Attachment I Dominguez Channel Estuary Sediment Bioassay Data Validation Form

Project Name: Dominguez Channel Sediment Sampling Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation **Los Angeles Refinery - Carson Operations Tesoro Refining & Marketing LLC** PROJECT INFORMATION

Analytical Laboratory: Laboratory Technician: Sample Collection Date: Sample Locations/Lab Number: Species/Test Method Referenced:	Aquatic Bioassays & Consulting Laboratories Inc. Joe Freas December 16, 2019 SED-005 / WGR1219.165 SED-007 / WGR1219.166 SED-007 / WGR1219.167 Eohaustorius estuarius EPA/600/R-94-025 Duration: SED	ing Laboratoric Test Duration:	s Inc. SED-005: December 18, 2019 @12:30 — December 28, 2019 @ 12:30 (10day) SED-006: December 18, 2019 @12:31 — December 28, 2019 @ 12:31 (10day)
Species/Test Method Referenced:	Eohaustorius estuarius	Test	SED-005: December 18, 2019 @12:30 – December 28, 2019 @ 12:30 (1
	EPA/600/R-94-025	Duration:	SED-006: December 18, 2019 @12:31 – December 28, 2019 @ 12:31 (10day)
			SED-007: December 18, 2019 @12:32 – December 28, 2019 @ 12:32 (10day)
Sample Matrix:	Sediment		
Type of Species:	Estuarine		
Data Validator:	Ana Horn		
Validation Date:	January 23, 2020		
Signature:	Ana Hom		
Problems Noted:	No problems or deficiencies identified. Chronic toxicity testi	identified. Chr	onic toxicity testing was performed in accordance with EPA method guidelines.

EOHAUSTORIUS ESTUARIUS

Completeness and Holding Conditions:

Type of Samples Collected: Grab Sediment Samples Number of Samples Analyzed: 3

Did chronic toxicity testing begin within 14 days of sample collection? Yes

Were samples maintained at 4°C and in the dark after collection? Yes

If holding conditions were not acceptable, explain: N/A

Quality of Test Organism, Collection and Acclimation:

Holding conditions acceptable? Yes

Who is the supplier of the test organisms? Northwestern Amphipod in Oregon	Northwestern Amphipod in Oregon
Are organisms field collected or cultured? Field Collected	Field Collected
If field collected:	
Where was the collection location? Oregon	

Tesoro Refining & Marketing LLC

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

What was the organism collection date? Organism were collected on December 10, 2019 and received by the laboratory on December 12, 2019.

What was the water salinity and temperature at the time of collection? Water salinity at the time of collection was 30 ppt. Acclimation after collection began at 20 ppt. Final acclimation in laboratory was from 28 ppt to 20 ppt at 2 ppt/day.

Was site sediment collected for holding and acclimation purposes? Yes, 4L of site sediment was collected and used for acclimation and negative control testing.

Additional Comments: Quality of test organisms, collection, and acclimation is deemed acceptable.

Field Collection Sorting Methods

Were healthy amphipods placed into 10 cm diameter finger bowls with 2 cm sieved site sediment and seawater of appropriate salinity? Yes, only healthy organisms were used for bioassay testing. Health is verified visually on a light table.

Were organisms held for 2-10 days? Yes, organisms were acclimated for 6 days.

Was test sediment sieved through 2 mm sieve or forceps for predator removal? Yes

Was control sediment sieved twice through 0.5 mm? Yes

Did control sediment have a 4-hour settling period after each sieving? Yes

Test Initiation

Was salinity adjusted in all testing chambers? Yes

Was overlying ammonia detected? No overlying ammonia was detected during testing.

Were there at least 5 replicates per sample? Yes

Was there at least 20 animals per replicate? Yes

Was the organism length between 3-5 mm during test initiation? Yes, verified by observation on light table prior to test initiation.

Was the overlying water volume 800 mL? Yes

Were there any water quality adjustments? Yes, water quality measurements were collected during the duration of the test and are provided in the corresponding laboratory report.

Test Implementation

Photoperiod for 24 hours? Yes, continuous light was provided.

Was daily water quality monitoring conducted? Yes

What was the overlying daily temperature range (15°C)? The overlying daily temperature was between 14.6-14.8°C.

Was the daily salinity range 20+/-1 ppt? Yes, salinity range was 20ppt.

Was water renewal conducted? No, water remained static and was not renewed over the 10-day exposure period as required in the EPA method.

Was the overlying daily pH between 7-8 standard units? Yes

What was the overlying ammonia detection (ND)? No ammonia was detected during testing.

Tesoro Refining & Marketing LLC

Los Angeles Refinery - Carson Operations

Dominguez Channel Estuary Chronic Toxicity QA/QC Bioassay Data Validation

Were appropriate test chambers used (1-liter glass containers with 10 cm diameter)? Yes

Was water in each test chamber aerated overnight before start and throughout the test? Yes, 24-hour aeration was performed.

Did the water maintain at least more than 90% saturation of dissolved oxygen concentration? Yes

Test Results and Analysis

Were the number of amphipods reported for each replicate? Yes

Was the percent mortality reported for each replicate? Yes

Was the sample mean for survival reported? Yes, the mean control survival was 98-100%

Positive Control Length of reference toxicity test? 96 hours What reference toxicant was used? Unionized Ammonia Exposure concentrations? Exposure ammonia concentrations were 0, 15.6, 31.2, 62.5, 125.0, 250 mg/L Did EC 50 fall within lab standards? Yes