<table>
<thead>
<tr>
<th>Docket Number:</th>
<th>00-AFC-14C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>El Segundo Power Redevelopment Project Compliance</td>
</tr>
<tr>
<td>TN #:</td>
<td>201919</td>
</tr>
<tr>
<td>Document Title:</td>
<td>Preliminary Staff Assessment</td>
</tr>
<tr>
<td>Description:</td>
<td>N/A</td>
</tr>
<tr>
<td>Filer:</td>
<td>Christine Stora</td>
</tr>
<tr>
<td>Organization:</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>Submitter Role:</td>
<td>Commission Staff</td>
</tr>
<tr>
<td>Submission Date:</td>
<td>3/25/2014 4:09:29 PM</td>
</tr>
<tr>
<td>Docketed Date:</td>
<td>3/25/2014</td>
</tr>
</tbody>
</table>
EL SEGUNDO ENERGY CENTER

Preliminary Staff Assessment for the El Segundo Power Facility Modification

Amendment to the El Segundo Energy Center
DISCLAIMER

Staff members of the California Energy Commission prepared this report. As such, it does not necessarily represent the views of the Energy Commission, its employees, or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any part represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the Energy Commission nor has the Commission passed upon the accuracy or adequacy of the information in this report.
EXECUTIVE SUMMARY
Christine Stora

INTRODUCTION
This Preliminary Staff Assessment (PSA) is being published by California Energy Commission (Energy Commission) staff for the proposed amendment to the El Segundo Energy Center (ESEC) site. The El Segundo Energy Center, L.L.C. (ESEC LLC), project owner proposes to replace utility boiler Units 3 and 4 at the ESEC, with one new combined-cycle generator (Unit 9), one new steam turbine generator (Unit 10), and two new simple-cycle gas turbines (Units 11 and 12), totaling 449 megawatts (MW). The amendment, also known as the El Segundo Power Facility Modification (ESPFM) or the ESEC amendment, proposes the demolition of Units 3 and 4, to be replaced with Units 9, 10, 11, and 12, and the replacement of a once-through seawater cooling system with dry-cooling technology.

This PSA contains staff’s independent, objective evaluation of ESEC LLC’s Petition to Amend (PTA) (00-AFC-14C). The analyses are similar to those normally contained in an Environmental Impact Report (EIR) required by the California Environmental Quality Act (CEQA).

For an amendment for an existing power plant over which it has regulatory oversight, the Energy Commission is the lead state agency under CEQA. The Energy Commission’s certified regulatory program provides the environmental analysis that satisfies CEQA requirements. In fulfilling this responsibility, Energy Commission staff provides an independent assessment of the amendment’s engineering design, evaluates its potential effects on the environment and on public health and safety, and determines whether the project, if modified, would remain in conformance with all applicable local, state, and federal laws, ordinances, regulations and standards (LORS). Energy Commission staff also recommends any needed modifications to existing mitigation measures (known as conditions of certification) in the Energy Commission Final Decision and proposes additional conditions of certification to mitigate any significant adverse environmental effects of the proposed modifications.

This PSA is not the decision document for these proceedings, nor does it contain findings of the Energy Commission related to environmental impacts or the project’s compliance with local, state, and federal LORS. The Final Staff Assessment (FSA) will be prepared after staff receives and addresses comments and completes its analysis. In the evidentiary hearings, the Committee will consider the recommendations presented by staff, the petitioner, intervenors, governmental agencies, tribes, and the public prior to submitting its proposed decision (Presiding Member’s Proposed Decision (PMPD)) to the full Commission. Following a public hearing(s), the full Energy Commission will make a final decision on the proposed modifications.
PROPOSED PROJECT LOCATION AND DESCRIPTION

The site is located at the southernmost city limit of the City of El Segundo on the coast of the Pacific Ocean, between Dockweiler State Beach and the City of Manhattan Beach, in Los Angeles County.

Primary changes to the ESEC include the demolition and replacement of two once-through-cooled natural gas-fired utility boiler units (Units 3 and 4) with one new combined cycle generator (Unit 9), one steam turbine generator (Unit 10) and two simple-cycle gas turbines (Units 11 and 12). This change will eliminate the use of ocean water for once-through cooling at the facility. The proposed changes will also upgrade and improve the ESEC’s site infrastructure, provide fast start and dispatch flexibility capabilities to support Southern California grid load balancing and renewable energy integration, and implement improvements to coastal access. This amendment would result in a total ESEC generating capacity of 1,022 MW gross.

Specific changes proposed through this Petition to Amend (PTA) include:

- Shutdown and demolition of Units 3 and 4;
- Removal and remediation of existing ESEC retention basins;
- Construction of a new, combined administration, maintenance, and operations support building;
- Modifications to existing site access; and
- Improvements to beach access.

The following new major equipment will be installed:

- (Unit 9) - One NRG fast start combined-cycle generator unit (CC Fast), rated at 222 MW net, incorporating a General Electric natural gas combustion turbine generator designed to achieve 75 percent of base load output in 10 minutes;
- One two-pressure, duct-fired heat recovery steam generator (HRSG) designed for rapid startup with conventional selective catalytic reduction system (SCR)/carbon monoxide (CO) catalysts;
- (Unit 10) - One single-case, non-reheat axial exhaust admission condensing steam turbine generator (STG) rated at 112 MW and designed for non-traditional elevated condensing pressure to minimize cooling system size;
- One Heller dry cooling tower system;
- (Units 11 and 12) - Two Rolls Royce Trent 60 generators, rated at 55 MW/unit net, consisting of advanced aeroderivative simple-cycle gas turbines; and
- One Cleaver Brooks auxiliary boiler consisting of a direct contact spray condenser and a mechanically-induced-draft dry-cooling tower.
PURPOSE AND NEED FOR AN AMENDMENT

The purpose of this 2013 ESEC PTA is to decommission one unit (Unit 3), demolish two units (Units 3 and 4), and add fast-start and dispatch flexibility capabilities through the installation of 435 MW net (449 MW gross) of more efficient generation. This PTA proposes the replacement of steam boilers scheduled to retire by December 31, 2015, to meet the state’s once-through-cooling policy compliance deadline for ESEC. With the expected shutdown of other once-through-cooling units in the Los Angeles Basin, new generation at this location is intended to meet in-basin needs and the need for fast-start capability to complement the integration of renewable generation in the basin.

CUMULATIVE IMPACTS

See Attachment A at end of the section.

ENVIRONMENTAL JUSTICE

Environmental justice communities are commonly identified as those where residents are predominantly minorities or low-income; where residents have been excluded from the environmental policy setting or decision-making process; where they are subject to a disproportionate impact from one or more environmental hazards; and where residents experience disparate implementation of environmental regulations, requirements, practices, and activities in their communities. Environmental justice efforts attempt to address the inequities of environmental protection in these communities.

An environmental justice analysis is composed of three parts:

1. identification of areas potentially affected by various emissions or impacts from a proposed project;

2. a determination of whether there is a significant population of minority persons or persons below the poverty level living in an area potentially affected by the proposed project; and

3. a determination of whether there may be a significant adverse impact on a population of minority persons or persons below the poverty level caused by the proposed project alone, or in combination with other existing and/or planned projects in the area.

CALIFORNIA RESOURCES AGENCY

California law defines environmental justice as “the fair treatment of people of all races, cultures and income with respect to the development, adoption, implementation, and enforcement of environmental laws, regulations, and policies” (Gov. Code §65040.12; Pub. Resources Code, §72000). All departments, boards, commissions, conservancies and special programs of the Resources Agency must consider environmental justice in their decision-making process if their actions have an impact on the environment,
environmental laws, or policies. Such actions that require environmental justice consideration may include:

- adopting regulations;
- enforcing environmental laws or regulations;
- making discretionary decisions or taking actions that affect the environment;
- providing funding for activities affecting the environment; and
- interacting with the public on environmental issues.

DEMOGRAPHIC SCREENING ANALYSIS

In considering environmental justice in energy facility siting cases as part of its CEQA analysis, Energy Commission staff uses a demographic screening to determine whether a low-income and/or minority population exists within the potentially affected area of the proposed site. The demographic screening is based on information contained in two documents: Environmental Justice: Guidance Under the National Environmental Policy Act (Council on Environmental Quality, December, 1997) and Guidance for Incorporating Environmental Justice Concerns in EPA’s Compliance Analyses (U.S. Environmental Protection Agency, April, 1998), which provides staff with information on outreach and public involvement. The Council on Environmental Quality's document defines minority individuals as members of the following groups: American Indian or Alaskan Native; Asian or Pacific Islander; Black, not of Hispanic origin; or Hispanic.

Based on the 2010 Census data and presented in Socioeconomics Figure 1, a minority population of 63.4 percent of the total population lives within the six-mile buffer of the ESEC site. As the minority population is greater than fifty percent, this population constitutes an environmental justice population. Staff's demographic screening also identifies the presence of below-poverty-level populations within a six-mile buffer of the proposed project site. The CEQ and US EPA guidance documents identify a fifty percent threshold to determine whether minority populations are considered environmental justice populations but do not provide a discrete threshold for below-poverty-level populations. Using census data staff compares the below-poverty-level populations in the six-mile buffer to other appropriate geographies. Approximately 15.8 percent or 79,776 of the population within the six-mile buffer live below the federal poverty level, which is comparable to the below-poverty-level population in the comparison geographies.

SUMMARY OF ENVIRONMENTAL CONSEQUENCES AND MITIGATION

Below is a summary of environmental consequences and mitigation proposed in this PSA. This section also provides a summary of outstanding information that will be analyzed in the FSA.
Staff concludes that with the adoption of the attached conditions of certification, the ESPFM would not result in significant air quality related impacts, and that proposed modifications would comply with all applicable federal, state and South Coast Air Quality Management District (SCAQMD or district) air quality laws, ordinances, regulations, and standards.

Mitigation would be provided in the form of Regional Clean Air Incentives Market (RECLAIM) Trading Credits (RTCs) and Emission Reduction Credits (ERCs) to fully mitigate emissions of all nonattainment pollutants and their precursors at a minimum ratio of one-to-one and to reduce the potential impacts of the proposed facility modifications to less than significant.

Global climate change and greenhouse gas (GHG) emissions from the proposed facility modifications are discussed and analyzed in AIR QUALITY APPENDIX AIR-1. California's commitment to move to a high-renewable/low GHG electricity system in order to reduce GHG emissions by 80 percent over the next four decades will still require that efficient natural gas-fired power plants be used in the near term to ensure the reliable operation of the electricity system. The variable wind and solar resources that will increasingly make up the system of the future require complimentary resources to provide “balancing” services, providing energy and capacity when wind and solar are not available. These resources, like ESPFM, will have to turn down or shut off in mid-morning as more solar energy is generated, then ramp up to high levels of output as
solar output falls and the early evening demand peak is reached. They then have to ramp down again as loads fall after midnight and wind generation picks up. As wind generation falls and demand increases just before daybreak they will pick up again, then repeat the cycle as solar energy rises again.

Natural gas-fired generation is uniquely suited to be dispatched in this fashion; conventional baseload resources such as nuclear and coal-fired generation are not designed to operate in this manner. In the long-run, zero- and low carbon resources, including demand-side and storage resources, may provide a majority, if not all of the “balancing” services needed to reliability operate the system, but the technologies that are needed to do so are not expected to be available in sufficient quantities to obviate the use of dispatchable, flexible natural gas-fired electricity generation.

The facility owner expects to operate the proposed new gas turbines with less than 60 percent capacity factor annually. Thus the proposed new gas turbines are not subject to the Greenhouse Gases Emission Performance Standard (Title 20, California Code of Regulations, section 2900 et seq.). California Air Resources Board staff continues to develop and implement regulations to refine key elements of the GHG reduction measures to improve their linkage with other GHG reduction programs. ESPFM is expected to be subject to federal and state mandatory GHG reporting and state cap-and-trade requirements.

The proposed combined cycle (combustion turbine Unit 9 and steam turbine Unit 10) would comply with proposed federal New Source Performance Standard (NSPS) for CO₂. Staff may need to propose a condition of certification to limit the operation so that the capacity factor of each Trent 60 turbine would be below 33 percent (or possibly lower, depending on the final version of the NSPS, to ensure that these units would be exempt from the proposed standard).

BIOLOGICAL RESOURCES

The demolition of existing Units 3 and 4 and construction and operation of new Units 9 through 12 would result in similar impacts to biological resources as the demolition of Units 1 and 2 and the construction and operation of the existing Units 5 through 8. In addition, the ESPFM would not use ocean water for cooling, as is currently in use for the El Segundo Generating Station, Units 3 and 4. Therefore, the ESPFM would eliminate the potential for entrainment of aquatic species. The ESPFM would eliminate ocean discharge of industrial and sanitary wastewater. The elimination in outfall discharge into the Pacific Ocean and the elimination of impingement and entrainment of marine organisms is a noteworthy environmental public benefit.

Minor modifications to Conditions of Certification **BIO-6, BIO-7, BIO-8, BIO-9, BIO-10** have been proposed by staff to address that the ESPFM project would not include the beach delivery system that was proposed but not implemented as part of the previous ESEC amendment and also to align the existing conditions of certification with current standard language included in the general biological resources conditions of certification. Staff has also proposed modifying Condition of Certification **BIO-8** and adding Condition of Certification **BIO-15 (Biological Monitor Selection)** to allow for
approval and use of biological monitors to act on behalf of a Designated Biologist. Staff added Condition of Certification BIO-16 (Impact Avoidance and Minimization Measures), which would require exclusion measures, inspection and installation of escape ramps for open trenches. New Condition BIO-17 (Pre-Construction Nest Surveys and Impact Avoidance and Minimization Measures for Breeding Birds) would require a qualified biologist to monitor any bird nest locations exposed to excessive construction noise. Staff had deleted BIO-11 and BIO-13 as these conditions of certification no longer apply to the project.

Biology staff concludes that with implementation of proposed conditions of certification, compliance with LORS would be achieved and all direct, indirect, and cumulative impacts would be avoided, minimized, or mitigated to less than significant levels.

CULTURAL RESOURCES
Staff’s analysis of the proposed amendment is presently inconclusive. Insufficient data was available to staff at the time the PSA was prepared to conduct a reliable analysis of potential impacts on archaeological resources.

As a result of ethnographic research, staff concludes that there are no ethnographic resources that will be impacted by the proposed project.

As a result of the built-environment research and investigation completed to date, staff makes a preliminary conclusion that no historic built environment resources would be impacted by the proposed project. However, results of a literature search as requested in Data Request 78, dated August 12, 2013, were provided to staff on March 5, 2014. Staff is currently reviewing this information for completeness and will provide their findings in the FSA. Currently, staff does not propose any changes to the existing Cultural Resources conditions of certification.

HAZARDOUS MATERIALS
Staff proposes six (6) new or revised existing Conditions of Certification to address the safe handling of hazardous materials and site security. Staff recommends that two existing Conditions of Certification, HAZ-1 and HAZ-2 be retained but revised to reflect current nomenclature, current Energy Commission practice, and to clarify certain requirements for hazardous materials plans. Staff also recommends the deletion of existing Condition of Certification HAZ-3 because the requirements contained therein have been incorporated into Condition of Certification HAZ-2. Staff instead proposes a new Condition of Certification HAZ-3 that would require the development of a Safety Management Plan. This plan will address the delivery of all liquid hazardous materials during the demolition, construction, commissioning, and operation of the project thus further reducing the risk of any accidental release not specifically addressed by the proposed spill prevention mitigation measures, and also preventing the mixing of incompatible materials that could result in the generation of toxic vapors. New Condition of Certification HAZ-4 addresses the use of natural gas and prohibits its use to clear pipes. Condition of Certification HAZ-5 will require a review and update of the existing site security plan. Finally, staff proposes new Condition of Certification HAZ-6 which
would require the continued use of double-walled pipes for the transfer of 29.4 percent aqueous ammonia from the UST and portable catchment basins to collect and limit the spread of any spilled aqueous ammonia (29.4 or 19 percent) when transferring these hazardous materials from a delivery truck to a tank or tote. In this manner, no significant airborne concentration would migrate off-site to impact residents living to the south of the power plant.

LAND USE
Staff’s analysis concludes that the construction and operation of the proposed ESPFM, and the effective implementation of the existing Land Use Conditions of Certification, would not cause significant direct, indirect, or cumulatively adverse land use impacts and would be consistent with the applicable LORS pertaining to land use. No substantive changes to the land use conditions of certification are proposed.

NOISE AND VIBRATION
Staff determined that the demolition and removal of Units 3 and 4 and the installation and operation of new Units 9 through 12 would result in similar grading, excavation, foundation, and underground infrastructure activities as were required for the demolition of Units 1 and 2 and the construction of Units 5 through 7 under the original Energy Commission Decision (CEC 2005a). Thus, the ESPFM demolition, construction, and operations does not alter the assumptions and conclusions in the original Decision and no additional or revised LORS requirements have been identified since the original Decision. Staff does not propose any changes to the existing Conditions of Certification NOISE-1 through NOISE-10 established by the 2005 Decision.

PUBLIC HEALTH
Staff has established that the toxic emission increment from the ESPFM would not lead to significant cancer and non-cancer impacts in the project area. Since the related cancer and non-cancer risk estimates are below staff’s significance levels and reflect the efficiency of the applicant’s proposed emission controls, staff does not recommend changes to the existing conditions of certification.

SOCIOECONOMICS
Staff concludes that construction and operation of the ESPFM would not cause significant direct, indirect, or cumulative socioeconomic impacts on the project area’s population, housing, schools, law enforcement, or parks and recreation. Staff also concludes that the project would not induce a substantial population growth or displacement of population, or induce substantial increases in demand for housing, parks, or law enforcement services. Because the project would have no significant adverse socioeconomic impacts, the project would have no socioeconomic impact on the environmental justice population (as defined in the Socioeconomics section in this PSA).
Staff is proposing changes to Condition of Certification SOCIO-1 and a new Condition of Certification SOCIO-3, that would ensure project compliance with state and local LORS as they relate to development impacts and school fees.

SOIL & WATER RESOURCES

ESPFM would eliminate once-through-cooling (OTC) by using dry-cooling. Air cooled condensers would be to cool the steam cycle. The project would use recycled water exclusively for industrial operation and the use of a Zero-Liquid-Discharge system to reuse water and reduce wastewater volume. The proposed project would result in a 200 million gallon per day (mgd) reduction in intake and waste water volume to the Pacific Ocean.

Staff believes the proposed project’s water use is consistent with Energy Commission water policy and that the modified project would in compliance with State Water Resources Control Board’s (SWRCB) Resolution No. 2010-0020 and the OTC Plan that requires all coastal power plants that utilize OTC to meet new performance requirements through a reduction in intake volume and velocity. Staff has proposed that tertiary treated recycled water be used for construction purposes including dust suppression, concrete mixing, hydrostatic testing, and compaction. The Soil and Water Resources conditions of certification have updated and revised to reflect current project design.

TRAFFIC & TRANSPORTATION

Staff concludes that the addition of Condition of Certification TRANS-8 and TRANS-9 to the existing Traffic and Transportation Conditions of Certification will reduce traffic related impacts related to the project to a less than significant level. Condition of Certification TRANS-8 would require the project owner to advise pilots of the potential aviation hazards associated with thermal plumes and to avoid overflight of the facility below 2,020 feet. Condition of Certification TRANS-9 would require the project owner to install obstruction marking and lighting on all construction equipment which may pose an aviation hazard during project construction.

TRANSMISSION LINE SAFETY AND NUISANCE

Since no new transmission towers or lines would need to be constructed or replaced within or outside of the site boundaries, staff determined that the only changes to line impacts would be those from the additional 449 MW to be introduced into the existing transmission system. Staff recommends Condition of Certification TLSN-4 to measure the incremental impacts of increased electric and magnetic fields for comparison with existing levels at the ESEC project. Staff determined that the existing electric and magnetic levels are below the levels of health and safety concern.

VISUAL RESOURCES

Staff proposes minor additions to Condition of Certification VIS-2 to address plant survival issues encountered with recent landscape planting under the existing conditions. Additions to Condition of Certification VIS-6 were made to address night
lighting effects of the newly proposed administration building. New condition of Certification VIS-10 was added to address use of the highly visible former tank farm site as an on-site construction laydown area.

Staff concludes that the ESPFM would result in less than significant impacts to existing scenic resources within the project viewed. Staff also concludes that the ESPFM, with all recommended Conditions of Certification as modified, would be consistent with applicable LORS, including goals and policies of the California Coastal Act, and of the city of El Segundo.

WASTE MANAGEMENT

Staff proposes modifications to Condition of Certification WASTE-8 to reflect South Coast Air Quality Management District’s reporting requirements for the disposal of asbestos-containing materials in the Los Angeles air basin. Staff has added Condition of Certification WASTE-9 to mitigate any potential impact from the demolition of Units 3 and 4.

There are a number of Recognized Environmental Conditions (RECs) located on the ESEC project parcel where the ESPFM will be constructed. The project owner has established programs in place to address, develop and implement remediation strategies, and worker safety standards that would mitigate these conditions and protect the environment and ESEC personnel.

With staff’s proposed changes to the existing conditions of certification and the project owner’s established programs as discussed above, staff finds that the ESPFM would not result in any significant adverse impacts and would comply with applicable waste management laws, ordinances, regulations and standards, if the measures proposed in the staff’s analysis are implemented.

WORKER SAFETY AND FIRE PROTECTION

For Worker Safety and Fire Protection, staff is not proposing new conditions of certification for the modified project. Staff finds that the existing Conditions of Certification with minimal revisions to reflect current nomenclature, current Energy Commission practice, and to clarify requirements during demolition activities would be sufficient to ensure compliance with all LORS. Staff concludes that with the continued implementation of the currently-required six (6) mitigation measures, worker safety and fire protection at the modified project site would not present a significant risk to on-site workers. These conditions would ensure that the most modern fire prevention, detection, and suppressions systems are installed and implemented. With adoption of the proposed conditions of certification, the ESPFM will comply with all applicable LORS and will not result in any unmitigated significant adverse impacts.

FACILITY DESIGN

Staff concludes that the design, construction, and eventual closure of the modified ESEC and its linear facilities would likely comply with applicable engineering laws,
ordinances, regulations and standards. The proposed conditions of certification would ensure compliance with these laws, ordinances, regulations and standards.

GEOLOGY AND PALEONTOLOGY

Staff found that the demolition, construction, and operation of the ESPFM would not result in any significant adverse impacts to paleontological, geological or mineralogical resources; would not be subject to immitigable geologic hazards; and would comply with applicable LORS if the measures proposed in the staff’s analysis are implemented. The implementation of the current conditions of certification, including proposed modification to Condition of Certification PAL-7, and the addition of Condition of Certification PAL-8 for the ESEC will continue to mitigate impacts to below significance for the decommissioning and demolition of El Segundo Generating Station (ESGS) Units 3 and 4, and the construction and operation of ESEC Units 9, 10, 11, and 12. Condition of Certification PAL-7 was modified to clarify the responsibility of the Paleontological Resource Specialist (PRS) to describe the sensitivity and significance of discovered paleontological resources in the PRR required in PAL-7. Proposed Condition of Certification PAL-8 has been added to assure that the components described in the Paleontological Resources Monitoring and Mitigation Plan (PRMMP), (required in PAL-3) are adequately performed.

While valuable paleontological resources are expected to be discovered during construction of the proposed project, potential impacts to paleontological resources due to construction activities would be mitigated through worker training and monitoring by qualified paleontologists, as required by proposed Conditions of Certification PAL-1 through PAL-8.

POWER PLANT EFFICIENCY

Staff finds that while the ESPFM would consume substantial amounts of energy, it would do so in the most efficient manner practicable. It would not create significant adverse effects on energy supplies or resources, would not require additional sources of energy supply, and would not consume energy in a wasteful or inefficient manner. No energy standards apply to this project. Staff therefore concludes that this project would create no significant adverse impacts on energy resources. No cumulative impacts on energy resources are likely. Facility closure would not likely present significant impacts on electric system efficiency. No conditions of certification are proposed for Power Plant Efficiency.

POWER PLANT RELIABILITY

The project owner’s predictions of 60 percent capacity factor for Units 9-10 and 55 percent for Units 11 and 12 yield equivalent availability factors of 94 percent and 89 percent, respectively, which staff believes are achievable. Based on a review of the proposal, staff concludes that the plant would be built and operated in a manner consistent with industry norms for reliable operation. No conditions of certification are proposed.
TRANSMISSION SYSTEM ENGINEERING

Staff concluded that the modified ESEC would not impact the previously approved 230kV plant switchyard, outlet lines, and termination facilities. The certified facilities are adequate and in accordance with industry standards and good utility practices and are acceptable to staff according to engineering laws, ordinances, regulations and standards.

ALTERNATIVES

This section evaluates a reasonable range of alternatives to the proposed ESPFM. The range of alternatives considered by staff includes alternative sites, alternative site configurations, and alternative technologies. Each of these alternatives have been eliminated from detailed consideration due to a failure to meet most of the basic project objectives, infeasibility, inability to avoid significant environmental impacts, or any combination thereof. An evaluation of the No-Project Alternative has also been provided.

REFERENCES

CUMULATIVE IMPACTS

Preparation of a cumulative impact analysis is required under CEQA. In the CEQA Guidelines, “a cumulative impact consists of an impact which is created as a result of the combination of the project evaluated in the EIR together with other projects causing related impacts” (14 Cal. Code Regs., §15130(a)(1)). Cumulative impacts must be addressed if the incremental effect of a project, combined with the effects of other projects is “cumulatively considerable” (14 Cal. Code Regs., §15130(a)). Such incremental effects are to be “viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects” (14 Cal. Code Regs., §15164(b)(1)). Together, these projects comprise the cumulative scenario which forms the basis of the cumulative impact analysis.

CEQA also states that both the severity of impacts and the likelihood of their occurrence are to be reflected in the discussion, “but the discussion need not provide as great detail as is provided for the effects attributable to the project alone. The discussion of cumulative impacts shall be guided by standards of practicality and reasonableness, and shall focus on the cumulative impact to which the identified other projects contribute rather than the attributes of other projects which do not contribute to the cumulative impact” (14 Cal. Code Regs., §15130(b)).

DEFINITION OF THE CUMULATIVE PROJECT SCENARIO

Cumulative impacts analysis is intended to identify past, present, and probable future actions that are closely related either in time or location to the project being considered, and consider how they have harmed or may harm the environment. Most of the projects listed in the cumulative projects tables (Executive Summary Tables 1) and corresponding figure (Executive Summary Figure 1) have, are, or will be required to undergo their own independent environmental reviews under CEQA.

Under CEQA, there are two acceptable and commonly used methodologies for establishing the cumulative impact setting or scenario: the “list approach” and the “projections approach.” The first approach would use a “list of past, present, and probable future projects producing related or cumulative impacts.” (14 Cal. Code Regs., §15130(b)(1)(A)). The second approach is to use a “summary of projections contained in an adopted general plan or related planning document, or in a prior environmental document which has been adopted or certified, which described or evaluated regional or area wide conditions contributing to the cumulative impact.” (14 Cal. Code Regs., §15130(b)(1)(B)). This PSA uses the “list approach” for purposes of state law to provide a tangible understanding and context for analyzing the potential cumulative effects of the proposed project.

In order to provide a basis for cumulative analysis for each discipline, this section provides information on other projects in both maps and tables. All projects used in the Cumulative Impacts Analysis for this PSA are provided in cumulative projects tables. Executive Summary Figure 1, presented at the end of this section, shows projects
within 50 miles of the ESEC site. However, within the desert region, the specific area of cumulative effect varies by resource. For this reason, each discipline has identified the geographic scope for the discipline’s analysis of cumulative impacts, which may exceed the 50-mile buffer shown in Figure 1.

APPROACH TO CUMULATIVE IMPACT ANALYSIS

This PSA evaluates cumulative impacts within the analysis of each resource area, following these steps:

- Define the geographic scope of cumulative impact analysis for each discipline, based on the potential area within which impacts of the ESEC could combine with those of other projects.

- Evaluate the effects of the ESEC in combination with *past and present* (existing) projects within the area of geographic effect defined for each discipline.

- Evaluate the effects of the ESEC with *foreseeable future projects* that occur within the area of geographic effect defined for each discipline. This section is divided into Foreseeable Future Projects and Foreseeable Renewable Projects in the California Desert for ease of the reader.
Projects referenced with a POINT

<table>
<thead>
<tr>
<th>Label ID</th>
<th>Status</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Location</th>
<th>Distance (Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Completed/</td>
<td>El Segundo Redevelopment of power</td>
<td>Redevelopment of power plant Units 1 and 2.</td>
<td>301 Vista Del Mar, El Segundo</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Past</td>
<td>plant Units 1 and 2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Completed/</td>
<td>Chevron Coke Drum Project</td>
<td>Removal of six existing coke drums and installation of six new coke drums with the</td>
<td>324 West El Segundo Blvd., El Segundo</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>Past</td>
<td>Drum Project</td>
<td>same capacity and location in the Delayed Coker Unit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Planned/</td>
<td>EA-974 Central Reliability Center,</td>
<td>Central Reliability Center, central tool room. New: 101,000 sq. ft.; existing to</td>
<td>324 West El Segundo Blvd., El Segundo</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>EA-974 Central Reliability Center,</td>
<td>remain: 13,000 sq. ft.; new total is 114,000 sq. ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Foreseeable</td>
<td>Scattergood Generating Station</td>
<td>The Los Angeles Dept. of Water and Power would construct four power-generating units</td>
<td>12700 Vista Del Mar, Los Angeles</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scattergood Generating Station</td>
<td>the Scattergood Generating Station. Some structures would be demolished and two full</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>size units on the lower level and two smaller units on the middle level of the plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>would be constructed. The project work force will utilize on-site parking.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Planned/</td>
<td>EA-1020 New 5,127 sq. ft. office/research and development building</td>
<td>New 5,127 sq. ft. office/research and development building</td>
<td>138 Eucalyptus Dr., El Segundo</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Planned/</td>
<td>EA-961 386 sq. ft. office and 3019 sq. ft. warehouse</td>
<td>386 sq. ft. office and 3019 sq. ft. warehouse</td>
<td>130 Arena St., El Segundo</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Planned/</td>
<td>EA-1004 Two new creative office and research and development buildings. 1,297 sq. ft.</td>
<td>Two new creative office and research and development buildings. 1,297 sq. ft.</td>
<td>134 Penn St., El Segundo</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>EA-1004 Two new creative office and research and development buildings. 1,297 sq. ft.</td>
<td>research and development, 1,194 sq. ft. warehouse, total 10,294 sq. ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Planned/</td>
<td>EA-1003 Two new creative office and research and development buildings. 1,297 sq. ft.</td>
<td>Two new creative office and research and development buildings. 1,297 sq. ft.</td>
<td>130 Penn St., El Segundo</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td>EA-1003 Two new creative office and research and development buildings. 1,297 sq. ft.</td>
<td>office and research and development, 1,194 sq. ft. warehouse, total 10,294 sq. ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Planned/</td>
<td>EA-781 7-Unit Residential Condominium, 14,313 sq. ft.</td>
<td>7-Unit Residential Condominium, 14,313 sq. ft.</td>
<td>301,303,305 Palm Ave., El Segundo</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Foreseeable</td>
<td>EA-1038 4-unit condominium (6,963 sq. ft.), 2 stories, semi-subterranean parking.</td>
<td>4-unit condominium (6,963 sq. ft.), 2 stories, semi-subterranean parking.</td>
<td>711 Main St, El Segundo</td>
<td>1.25</td>
</tr>
<tr>
<td>11</td>
<td>Planned/</td>
<td>EA-1014 2-lot subdivision for two 6-unit multi-family residential condos (12 total units)</td>
<td>2-lot subdivision for two 6-unit multi-family residential condos (12 total units)</td>
<td>115 East Walnut Ave., El Segundo</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Planned/</td>
<td>EA-959 Two office buildings; 30,660 sq. ft.</td>
<td>Two office buildings; 30,660 sq. ft.</td>
<td>222 Kansas St, El Segundo</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Foreseeable</td>
<td>EA-993, The Point 119,275 sq. ft. total. Shopping center (71,343 sq. ft.), restaurant (25,627 sq. ft.), and office (27,338 sq. ft.)</td>
<td>119,275 sq. ft. total. Shopping center (71,343 sq. ft.), restaurant (25,627 sq. ft.), and office (27,338 sq. ft.)</td>
<td>820-850 S. Sepulveda Blvd., El Segundo</td>
<td>1.60</td>
</tr>
<tr>
<td>Label ID</td>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Distance (Miles)</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>14</td>
<td>Foreseeable</td>
<td>Civic Center/Metlox Development</td>
<td>Demolition and reconstruction of the existing police and fire department facilities to include a two-level (one level below grade), approx. 57,000 sq. ft. combined police and fire dept. public safety facility. The existing public library would be reconstructed by either adding on to the existing 12,100 sq. ft. public library or demolished and reconstructed with a new public library and cultural arts center for an approx. 40,000 sq. ft. structure with roughly 30,000 sq. ft. for library space and 10,000 sq. ft. for a 99-seat cultural arts center. The Metlox project consists of a mixed-use commercial development with subterranean parking, incl. some above-grade surface parking on the proposed 13th Street extension. The total floor area proposed is approx. 90,000 sq. ft. comprised of retail, restaurant, a 40-room bed and breakfast lodging component, and office uses.</td>
<td>Site boundaries: 15th St. on north, Valley Dr. on east, Manhattan Beach Blvd. on south, and Highland Ave. and Morningside Dr. on west; Manhattan Beach</td>
<td>1.67</td>
</tr>
<tr>
<td>15</td>
<td>Planned</td>
<td>EA-890, El Segundo Unified School District</td>
<td>304 Senior housing/assisted living facility up to 175,000 sq. ft.</td>
<td>540 E. Imperial Ave., El Segundo</td>
<td>1.72</td>
</tr>
<tr>
<td>16</td>
<td>Planned</td>
<td>EA-958</td>
<td>9 residential condo units</td>
<td>1700 E Mariposa Ave., El Segundo</td>
<td>1.79</td>
</tr>
<tr>
<td>17</td>
<td>Foreseeable</td>
<td>Manhattan Village Shopping Center Enhancement Project</td>
<td>A net increase of approx. 123,672 sq. ft. restaurant and retail (approx. 194,644 sq. ft. new area and demolition of approx. 70,972 sq. ft. existing retail, restaurant, and cinema) to be developed within three components. The shopping center would include a total of approx. 696,509 sq. ft. An “equivalency program” is proposed that provides for the exchange between land uses based on P.M. peak traffic equivalency factors. A max. of 133,389 sq. ft. net new area (approx. 204,361 sq. ft. new area and demolition of approx. 70,972 sq. ft. existing retail, restaurant, and cinema) would be developed for a total of up to 706,226 sq. ft.. Approx. 544 parking spaces would be provided in surface parking areas and within multiple parking structures.</td>
<td>3200-3600 North Sepulveda Blvd., Manhattan Beach</td>
<td>1.81</td>
</tr>
<tr>
<td>18</td>
<td>Planned</td>
<td>EA-912</td>
<td>New 3,714 sq. ft. restaurant with drive through; parking and landscaping redesign; outdoor dining</td>
<td>600 - 630 North Sepulveda Blvd., El Segundo</td>
<td>1.93</td>
</tr>
<tr>
<td>19</td>
<td>Planned</td>
<td>Cambria Suites, EA-844</td>
<td>152 room hotel – 71,000 sq. ft.</td>
<td>199 Continental Blvd., El Segundo</td>
<td>1.99</td>
</tr>
<tr>
<td>20</td>
<td>Foreseeable</td>
<td>EA-905, Raytheon Campus Specific Plan</td>
<td>Approx. 2.1 million (2,142,457) square-foot Office Park Expansion (office, retail, warehouse, light industrial).</td>
<td>2100 El Segundo Boulevard, El Segundo</td>
<td>2.00</td>
</tr>
</tbody>
</table>
Projects referenced with a POINT

<table>
<thead>
<tr>
<th>Label ID</th>
<th>Status</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Location</th>
<th>Distance (Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Foreseeable</td>
<td>EA-986, Mattel</td>
<td>R&D and office, 14 stories, 300,000 sq. ft., 810-space parking structure-8-stories</td>
<td>455 Continental Blvd. and 19055 E. Grand Ave., El Segundo</td>
<td>2.00</td>
</tr>
<tr>
<td>22</td>
<td>Planned/Present</td>
<td>EA-981</td>
<td>Office, 194,119 sq. ft.</td>
<td>1700 East Imperial Ave., El Segundo</td>
<td>2.07</td>
</tr>
<tr>
<td>23</td>
<td>Foreseeable</td>
<td>EA-997, Hotel</td>
<td>5-story, 190 room hotel, 107,090 sq. ft.</td>
<td>888 North Sepulveda, El Segundo</td>
<td>2.13</td>
</tr>
<tr>
<td>24</td>
<td>Planned/Present</td>
<td>EA-996</td>
<td>2800 sq. ft. convenience store</td>
<td>2161 E. El Segundo Blvd. El Segundo</td>
<td>2.13</td>
</tr>
<tr>
<td>25</td>
<td>Planned/Present</td>
<td>Central Utility Plant Replacement</td>
<td>Replace the 50-year old existing Central Utility Plant (CUP) with a more modern and energy efficient facility</td>
<td>LAX, Los Angeles</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>Planned/Present</td>
<td>New Tom Bradley International Terminal</td>
<td>18 new gates to the west side of the Tom Bradley International Terminal, great hall for dining and retail shopping.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned/Present</td>
<td>Elevator, Escalator, and Moving Walkway Modernization</td>
<td>Refurbish 212 outdated systems with new, modern units throughout the airport; new escalators, elevators, and walkways</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned/Present</td>
<td>Terminal 5 Renovation</td>
<td>Completed new in-line baggage screening system, expansion of passenger screening check points, and international passenger processing facilities. Renovate baggage claim areas, ticketing/check-in lobby, boarding gates, and other parts of passenger security screening area. Replace 13 bridges.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned/Present</td>
<td>LAX Curbside Appeal Project</td>
<td>Phase 1: New Canopy, landscaping, light band, and new light poles in front of Tom Bradley International Terminal; Phase 2: Light band, light poles, and canopies in front of the terminal in the LAX Central Terminal Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned/Present</td>
<td>Runway Status Lights</td>
<td>With completion of the installation of the prototype runway status lights in 2009, the full system will be installed. Runway status lights use a series of red lights embedded in the pavement to warn pilots if it is unsafe to cross or enter a runway, or to take off.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label ID</td>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Distance (Miles)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>26</td>
<td>Planned/Present</td>
<td>EA-971</td>
<td>Data Center, addition of 75,435 sq. ft., demo of 11,769 sq. ft. out of existing for new total sq. ft. of 180,422.</td>
<td>444 N Nash St., El Segundo</td>
<td>2.33</td>
</tr>
<tr>
<td>27</td>
<td>Foreseeable</td>
<td>West Aircraft Maintenance Area</td>
<td>Replace existing facilities and consolidate maintenance operations; paved area for aircraft parking, maintenance hangars, 300-space employee parking lot, storage, equipment related facilities, and ground run-up enclosure.</td>
<td>LAX, Los Angeles</td>
<td>2.35</td>
</tr>
<tr>
<td></td>
<td>Foreseeable</td>
<td>Midfield Satellite Concourse North</td>
<td>Phase 1 of the MSC Program (northern portion of the MSC facility and associated improvements). Project components include a concourse for up to 11 gates and assoc. facilities; improvements to taxiways and taxilanes; ramp tower or FAA supplemental airport traffic control tower; and utilities to support the North MSC facility.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreseeable</td>
<td>LAX Runway 7L/25R Runway Safety Area (RSA) Project & Associated Improvements</td>
<td>1) Extend Runway 7L/25R pavement; grade and compact the RSA; construct blast pad west of Runway 7L extension; several taxiways modifications as necessary; relocate existing Localizer Antenna and shelter to the west; replace existing Approach Lighting System (ALS) towers with in-pavement lights; and modify existing Runway and Taxiway lighting and markings in newly constructed pavements; 2) Reconstruct pavement of eastern portions of Runway 7L/25R and Taxiway B including connecting taxiways and installation of in-pavement approach lights; 3) Reconstruct pavement of aircraft parking apron west of Air Freight Building No. 8, including new markings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreseeable</td>
<td>LAX Runway 6L-24R Safety Area & Associated Improvements</td>
<td>Improve Runway 6L-24R and service roads to bring runway into compliance with applicable FAA design criteria.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Planned/Present</td>
<td>Wiseburn High School</td>
<td>New high school, 180,000 to 240,000 sq. ft.</td>
<td>201 North Douglas, El Segundo</td>
<td>2.37</td>
</tr>
<tr>
<td>29</td>
<td>Foreseeable</td>
<td>EA-1021</td>
<td>625,205 sq. ft. total; 611,545 sq. ft. office, 12,660 sq. ft. retail</td>
<td>710 North Nash St., El Segundo</td>
<td>2.38</td>
</tr>
<tr>
<td>30</td>
<td>Foreseeable</td>
<td>EA-1040</td>
<td>28,406 sq. ft. office, 33,475 sq. ft. light industrial, total 61,881 sq. ft.</td>
<td>400 Duley Rd. El Segundo</td>
<td>2.45</td>
</tr>
<tr>
<td>31</td>
<td>Planned/Present</td>
<td>EA-784</td>
<td>Data Center, 332,137 sq. ft.</td>
<td>445 N Douglas Street, El Segundo</td>
<td>2.45</td>
</tr>
<tr>
<td>32</td>
<td>Planned/Present</td>
<td>EA-1001</td>
<td>Creative office. 2355 Utah: Convert existing 42,548 sq. ft. to all office, add 1687 sq. ft. 2383 Utah: Convert existing 152,506 sq. ft. to all office, add 6850 sq. ft.</td>
<td>2355 Utah and 2383 Utah Ave., El Segundo</td>
<td>2.53</td>
</tr>
<tr>
<td>33</td>
<td>Planned/</td>
<td>Marine Avenue</td>
<td>Two hotels- Hyatt Place and Residence Inn by Marriott. Total between both</td>
<td>2410 Marine Ave.</td>
<td>3.25</td>
</tr>
<tr>
<td>Label ID</td>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Distance (Miles)</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Present</td>
<td>Hotels project</td>
<td>Hotels: 310 guest rooms and 35,000 sq. ft. of related meeting space with recreational vehicle parking and storage area. Hyatt Place is 92,672 sq. ft. with 155 rooms, restaurant, lounge, 1,500+ sq. ft. meeting space, outdoor pool and whirlpool, exercise room, business center, sundry shop and guest laundry. Four stories with max building height of approx. 61 feet. Residence Inn by Marriott is 116,146 sq. ft. with 154 rooms, breakfast dining area, 1,325+ sq. ft. meeting space, outdoor pool and whirlpool, exercise room, outdoor sport court, picnic area with grill, business center, sundry shop and guest laundry. Four stories with max building height of approx. 52 ft.</td>
<td>and 2420 Marine Ave., Redondo Beach</td>
<td>3.59</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Foreseeable</td>
<td>E&B Natural Resources Oil Development Project</td>
<td>Proposed onshore drilling and production site using directional drilling of 30 wells to access the oil and gas reserves in the tidelands (granted by the State of California to the City) and in an onshore area known as the uplands. Both of these areas are located within the Torrance Oil Field beneath the City. Relocate the city maintenance yard to another site and installation of offsite underground pipelines for the transport of the processed crude oil and gas from the project site to purchasers. 30 oil wells, four water injection wells, and supporting production equipment.</td>
<td>555 6th Street, Hermosa Beach</td>
<td>3.59</td>
</tr>
<tr>
<td>35</td>
<td>Foreseeable</td>
<td>Redondo Beach Energy Project</td>
<td>Natural gas fired air-cooled 496-megawatt electrical generating facility. Project would require demolition of existing power plant and construction of project.</td>
<td>Redondo Beach Generating Station site, Redondo Beach</td>
<td>4.30</td>
</tr>
<tr>
<td>36</td>
<td>Planned/ Present</td>
<td>Greenstreet Project</td>
<td>20,000- sq. ft. commercial development</td>
<td>901 N. Catalina Ave., Redondo Beach</td>
<td>4.40</td>
</tr>
<tr>
<td>37</td>
<td>Planned/ Present</td>
<td>Shade Hotel</td>
<td>Hotel with 54 rooms, conference space for up to 60 people, event/wedding space for up to 150 people, a rooftop Skydeck pool area and its own Zinc@Shade lounge featuring breakfast, lunch and dinner.</td>
<td>655 N. Harbor Drive, Redondo Beach</td>
<td>4.50</td>
</tr>
<tr>
<td>38</td>
<td>Foreseeable</td>
<td>Parcel 44 Development</td>
<td>Demolition of all existing landside structures on Parcel 44 and redevelopment that includes 83,778 sq. ft. of commercial, office, retail, restaurant and boater-serving uses. An open-air boat stacking/rack system allowing outdoor storage of up to 44 boats stacked three-boats-high, along with 13 "mast-up"/small sailboat storage spaces adjacent to the yacht club/boat repair building. Proposed parking includes 479 on-grade parking spaces (284 standard-dimensioned spaces, 11 accessible spaces, and 184 compact parking spaces) with 70 of the parking spaces in tandem configuration. The project also proposes 74 bicycle parking spaces</td>
<td>Mindanao Way and Admiralty Way, Marina Del Rey</td>
<td>5.02</td>
</tr>
</tbody>
</table>
Projects referenced with a POINT

<table>
<thead>
<tr>
<th>Label ID</th>
<th>Status</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Location</th>
<th>Distance (Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Foreseeable</td>
<td>ENV-2013-2713-MND</td>
<td>Legalize the change in use of a 1,013 sq. ft. office and a 553 sq. ft. take-out restaurant into 1,566 sq. ft. restaurant with the expansion of an existing 1,390 sq. ft. sit-down restaurant, resulting in a 2,956 sq. ft. sit-down restaurant with seating for 74 patrons.</td>
<td>1635 S. Abbot Kinney Boulevard, Los Angeles</td>
<td>6.08</td>
</tr>
</tbody>
</table>

Projects referenced with a LINE

<table>
<thead>
<tr>
<th>Label ID</th>
<th>Status</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Location</th>
<th>Distance (Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Planned/Present</td>
<td>Crenshaw/LAX Transit Corridor Project</td>
<td>An 8.5-mile light-rail line between existing Metro Exposition Line at Crenshaw & Exposition Blvds. to Metro Green Line's Aviation/LAX Station. Includes eight stations, a maintenance facility, park-ride lots, traction power substations and acquisition of rail vehicles and maintenance equipment.</td>
<td>Crenshaw Corridor, Inglewood, Westchester, and LAX area</td>
<td>2.97</td>
</tr>
<tr>
<td>2</td>
<td>Planned/Present</td>
<td>Western Ave. and Rolling Hills Rd. Water Main Replacement Project</td>
<td>Replace approx. 5,000 linear ft. of 12-inch diameter cast iron pipe with new 12-inch diameter ductile iron pipe (DIP) along Western Ave. Replace approx. 700 linear ft. of 8-inch diameter cast iron pipe in Rolling Hills Rd. with new 8-inch diameter DIP. The Recycled Water Retrofits for Anza Avenue Medians and Parks Project will substitute potable water for irrigation of medians and parks with recycled water, replacing existing potable water meters and new pipes. Retrofit Victor Park, Seaside Heroes Park, Paradise Park, and La Paloma Park.</td>
<td>Western Ave. between Del Amo Blvd. and 190th St. to the north, Torrance</td>
<td>7.21</td>
</tr>
</tbody>
</table>
On April 23, 2013, El Segundo Energy Center, LLC (ESEC LLC) filed a petition with the California Energy Commission (Energy Commission) requesting to demolish and replace utility boiler Units 3 and 4 with one new combined cycle generator (Unit 9), one steam turbine generator (Unit 10) using dry cooling, and two simple-cycle gas turbines (Units 11 and 12), for the El Segundo Energy Center (ESEC) project. This amendment, also known as the El Segundo Power Facility Modification (ESPFM) or the ESEC amendment, would result in a total generating capacity of 1,022 megawatt gross. (Units 5, 6, 7, 8, 9, 10, 11 and 12).

The site is located at the southernmost city limit of the city of El Segundo on the coast of the Pacific Ocean, between Dockweiler State Beach and the city of Manhattan Beach, in Los Angeles County.

AMENDMENT PROCESS

The purpose of the Energy Commission’s review process is to assess the impacts of the proposed ESPFM on environmental quality and public health and safety. The Energy Commission will evaluate the impacts caused by the proposed changes to the existing ESEC site. The review process will determine if the proposed modification would remain in compliance with applicable laws, ordinances, regulations, and standards (LORS) (Title 20, Calif. Code of Regulations, section 1769).

The Energy Commission Committee assigned to this petition to amend has determined that this amendment will follow the siting review process in order to afford agencies, interested parties, intervenors, and the public, the greatest opportunity for participation and review of the proposed project.

PURPOSE OF THIS REPORT

This Preliminary Staff Assessment (PSA) is being published by the Energy Commission and is staff’s independent analysis of the petition to amend the ESEC. This PSA is a staff document. It is neither a Committee document, nor a draft Decision. The PSA describes the following:

- the proposed modified project (ESPFM);
- the updated existing environment from the existing site;
- whether the modified facilities can be constructed and operated safely and reliably in accordance with applicable LORS;
- the potential cumulative impacts of the modified project in conjunction with other existing and known planned developments;
• modified and/or new conditions of certification proposed by the project owner, staff, interested agencies, local organizations, tribes, and intervenors which may lessen or eliminate potential impacts of the modified project; and

• project alternatives.

The analyses contained in this PSA are based upon information from the: 1) Petition to Amend and Supplements to the Petition to Amend provided by the project owner; 2) responses to Energy Commission staff data requests; 3) supplementary information from local, state, and federal agencies, interested organizations and individuals; 4) existing documents and publications including the record from the approved ESEC; 5) independent research; 6) comments at public workshops; and 7) other docketed communications. The analyses for most technical areas include discussions of proposed modifications to conditions of certification and new, additional, conditions of certification. Each condition of certification is followed by a proposed means of “verification.” All changes to conditions of certification in the original decision are shown in this document so the reader can easily identify the changes being made to the project license. Deleted text to the conditions of certification is shown as strikethrough, new text is **bold and underlined**.

The PSA presents preliminary conclusions about potential environmental impacts and conformity with LORS of the modified project, as well as modified and/or new conditions that apply to the design, construction, operation and closure of the facility.

This document is intended to be a complete review of the modified project and in many cases relies on analysis that was prepared during the licensing process for the existing ESEC project as baseline information. This information has been reviewed and updated to reflect current conditions and the setting that exists today. Although this document provides a full analysis of the project as a whole, this petition will be processed as an amendment to the ESEC Final Decision for the site.

ORGANIZATION OF THE PRELIMINARY STAFF ASSESSMENT

The sections in this PSA include an Executive Summary, Introduction, Project Description, and a Project Analysis. The Project Analysis contains an Environmental Assessment, Engineering Assessment, Alternatives and General Conditions of Certification. The Environmental Assessment contains the following chapters: 1) Air Quality; 2) Biological Resources; 3) Cultural Resources; 4) Hazardous Materials Management; 5) Land Use; 6) Noise and Vibration; 7) Public Health, Socioeconomic Resources; 8) Soil and Water Resources; 9) Traffic and Transportation; 10) Transmission Line Safety and Nuisance; 11) Visual Resources; 12) Waste Management; and 13) Worker Safety and Fire Protection. The Engineering Assessment contains the following sections: 14) Facility Design; 15) Geology and Paleontology; 16) Power Plant Efficiency; 17) Power Plant Reliability; and 18) Transmission System Engineering. The Environmental Assessment, Engineering Assessment, and General Conditions of Certification are followed by a discussion of facility closure, project construction and operation, compliance monitoring plans, and a list of staff that assisted in preparing this report.
All of the sections under the Environmental Assessment, Engineering Assessment, and the General Conditions of Certification include a discussion of: LORS; the regional and site-specific setting; the modified projects’ specific and cumulative impacts; proposed mitigation measures; conclusions and recommendations; and modified and/or new conditions of certification for both construction and operation (if applicable).

ENERGY COMMISSION REVIEW PROCESS

The California Energy Commission has the exclusive authority to certify the construction and operation of thermal electric power plants 50 megawatts (MW) or larger. The Energy Commission certification is in lieu of any permit required by state, regional, or local agencies, and federal agencies to the extent permitted by federal law (Pub. Resources Code, §25500). The Energy Commission must review power plant applications for certification (AFCs) to assess potential environmental and public health and safety impacts, potential measures to mitigate those impacts (Pub. Resources Code, §25519), and compliance with applicable governmental laws and standards (Pub. Resources Code, §25523 (d)).

The Energy Commission’s regulations require staff to independently review the petition to amend and assess whether the list of environmental impacts it contains is complete, and whether additional or more effective mitigation measures are necessary, feasible and available (Cal. Code Regs., tit. 20, §§ 1742 and 1742.5(a)). Staff’s independent review is presented in this report (Cal. Code Regs., tit. 20, §1742.5). In addition, staff must assess the completeness and adequacy of the health and safety standards, and the reliability of power plant operations (Cal. Code Regs., tit. 20, § 1743(b)). Staff is required to coordinate with other agencies to ensure that applicable LORS are met (Cal. Code Regs., tit. 20, § 1744(b)).

Staff conducts its environmental analysis in accordance with the requirements of the California Environmental Quality Act. No Environmental Impact Report (EIR) is required because the Energy Commission’s site certification program has been certified by the Secretary of the Natural Resources Agency (Pub. Resources Code, §21080.5 and Cal. Code Regs., tit. 14, §15251 (k)). The Energy Commission is the CEQA lead agency and is subject to all portions of CEQA applicable to certified regulatory activities.

The staff prepares a PSA that presents for the applicant, intervenors, organizations, agencies, other interested parties, and members of the public, the staff’s analysis, conclusions, and recommendations. Where it is appropriate, the PSA incorporates comments received from agencies, the public, and parties to the siting case and comments made at the workshops.

Staff will provide a public comment period that follows the publication of the PSA. The comment period is also used to resolve issues between the parties and to narrow the scope of adjudicated issues in the evidentiary hearings. During this time, staff will conduct one or more workshops to discuss its conclusions, proposed mitigation, and proposed verification measures. Based on the workshop dialogue and any written comments received, staff may refine its analysis, correct any errors, and finalize conditions of certification to reflect any changes agreed to between the parties. These
revisions and changes will be presented in a Final Staff Assessment (FSA) that will be published and made available to the public and all interested parties.

The FSA is only one piece of evidence that will be considered by the Committee (two Energy Commission Commissioners who have been assigned to this project) in reaching a decision on whether or not to recommend that the full Energy Commission approve the proposed project. At the public evidentiary hearings, all parties will be afforded an opportunity to present evidence, thereby creating a hearing record on which a decision on the project can be based. The hearing before the Committee also allows all parties to argue their positions on disputed matters, if any, and it provides a forum for the Committee to receive comments from the public and other governmental agencies.

Following the hearings, the Committee’s recommendation to the full Energy Commission on whether or not to approve the proposed project will be contained in a document entitled the Presiding Member’s Proposed Decision (PMPD). Following February 2014 publication, the PMPD is circulated in order to receive written public comments. At the conclusion of the comment period, the Committee may prepare a revised PMPD. At the close of the comment period for the revised PMPD, the PMPD is submitted to the full Energy Commission for a decision.

A Compliance Monitoring Plan and General Conditions of Certification will be assembled from conditions contained in the Final Decision. The Energy Commission staff’s implementation of the plan ensures that a certified facility is constructed, operated, and closed, in compliance with the conditions of certification adopted by the Energy Commission.

PUBLIC AND AGENCY COORDINATION

The Energy Commission amendment process includes a schedule that provides public comment and participation opportunities along with staff technical review and analysis. The Energy Commission seeks comments from, and works closely with, other regulatory agencies that administer LORS that may be applicable to the proposed project.

During the review process of the amendment, staff coordination will include numerous local, state and federal agencies that have an interest in the project. Particularly, Energy Commission staff will be working with the Cities of El Segundo, Manhattan Beach, and Los Angeles; Los Angeles County; Los Angeles Regional Water Quality Control Board; South Coast Air Quality Management District; California Independent System Operator (California ISO); California Air Resources Board; California Coastal Commission; California Department of Fish and Wildlife; California State Lands Commission; California Department of Parks and Recreation; U.S. Environmental Protection Agency; U.S. Fish and Wildlife Service; U.S. Army Corp of Engineers; and the Federal Aviation Administration to identify and resolve issues of concern. In addition, Commission staff will coordinate the review and analysis of the project with any intervenors and interested residents of the community.
Staff anticipates several public events that include: workshops on the Preliminary Staff Assessment, evidentiary hearings and a public hearing for the Commission Decision by a vote at a Commission Business Meeting. Public agencies and interested parties will be active participants in this process.

OUTREACH EFFORTS

Energy Commission staff sent notices regarding receipt of a Petition to Amend and Commission events and reports related to proposed projects, at a minimum, to property owners within 1,000 feet of a project and 500 feet of a linear facility (such as transmission lines, gas lines and water lines). Notices have also been provided to local libraries, adjacent cities and counties, Native American communities, local elected representatives and other interested parties.

On May 14, 2013, a Notice of Receipt for the ESEC Amendment was mailed to the post certification mailing list along with updated interested parties. The Hearing Officer sent a public notice to appropriate parties on July 12, 2013, for an August 13, 2013, Informational Hearing and Site Visit. The Compliance Project Manager sent a public notice to appropriate parties on September 17, 2013, for an October 1, 2013, Data Response and Issue Resolution Workshop. Staff’s ongoing public and agency coordination activities for this project are discussed under the Public and Agency Coordination heading in the Executive Summary section of the PSA.

The Energy Commission’s outreach efforts are an ongoing process that, to date, has involved the following efforts:

LIBRARIES

On July 11, 2013, the Energy Commission staff sent the Notice of Receipt and copies of the Petition to Amend to various libraries within the project vicinity including; El Segundo Public Library, Manhattan Beach Library, Redondo Beach Public Library, Lawndale Public Library, Wiseburn Library, Masao W. Satow Library, View Park Library, Culver City Julian Dixon Library, Hawthorn Library, Lloyd Taber-Marina del Rey Library, Lennox Library, and Inglewood Public Library.

In addition, to these local libraries, copies of the Petition to Amend are also available at the Energy Commission's Library in Sacramento, the California State Library in Sacramento, as well as the public libraries in Eureka, Fresno, Los Angeles, San Diego, and San Francisco.

DATA RESPONSE AND ISSUE RESOLUTION WORKSHOPS

The Energy Commission staff provided notification by letter and enclosed notice of October 1, 2013, Data Response and Issue Resolution Workshops. In addition to property owners and persons on the post certification mailing list, notification was provided to local, state and federal public interest and regulatory organizations with an expressed or anticipated interest in this project.
NOTIFICATION TO THE LOCAL NATIVE AMERICAN COMMUNITY

The Energy Commission Cultural Recources staff contacted the Native American Heritage Commission to determine the appropriate communities affected by the ESEC amendment. On September 30, 2013, the local Native American communities were sent letters advising them of the proposed project and provided them with contact information. These Native American communities included: Gabrieleno Band of Mission Indians, Gabrielinio.Tongva Nation, Tongva Indians of California Tribal Council, Gabrielinio-Tongva Nation, Gabrielinio-Tongva Tribe, Gabrielinio-Tongva/San Gabriel Band of Mission and Los Angeles City / County Native American Indian Commission. In addition, their names have been added to the ESEC project mail-out list and will therefore be receiving a copy of all Commission notices for events and reports related to this project.

PUBLIC ADVISER’S OFFICE

The public adviser helps the public participate in the Energy Commissions hearings and meetings. The Public Adviser assists the public by advising them how they can participate in the Energy Commission process; however, they do not represent members of the public.

ENVIRONMENTAL JUSTICE

Executive Order 12898, “Federal Actions to address Environmental Justice in Minority Populations and Low-Income Populations,” focuses federal attention on the environment and human health conditions of minority communities and calls on federal agencies to achieve environmental justice as part of this mission. The order requires the U.S. Environmental Protection Agency (USEPA) and all other federal agencies (as well as state agencies receiving federal funds) to develop strategies to address this issue. The agencies are required to identify and address any disproportionately high and adverse human health or environmental effects of their programs, policies, and activities on minority and/or low-income populations.

Energy Commission staff conducts an environmental justice screening analysis in accordance with the “Final Guidance for Incorporating Environmental Justice Concerns in USEPA’s National Environmental Policy Act (NEPA) Compliance Analysis” dated April 1998. The purpose of the screening analysis is to determine whether a minority or low-income population exists within the potentially affected area of the proposed site.

California Statute, Section 65040.12 (c) of the Government Code, defines “environmental justice” to mean “fair treatment of people of all races, cultures, and incomes with respect to the development, adoption, implementation, and enforcement of environmental laws, regulations, and policies.” Staff’s specific activities, with respect to environmental justice for the ESEC amendment, are discussed in the Executive Summary.
INTRODUCTION

On April 23, 2013, El Segundo Energy Center, L.L.C. (ESEC LLC), filed a Petition to Amend (PTA) with the California Energy Commission (Energy Commission) requesting to replace utility boiler Units 3 and 4 at the El Segundo Energy Center (ESEC) with one new combined-cycle generator (Unit 9), one new steam turbine generator (Unit 10), and two new simple-cycle gas turbines (Units 11 and 12), totaling 449 megawatts (MW). The amendment, also called the El Segundo Power Facility Modification (ESPFM) or the ESEC amendment proposes the demolition of Units 3 and 4, to be replaced with Units 9, 10, 11, and 12, and the replacement of a once-through seawater cooling system with dry-cooling technology. (NRG 2013a)

PROJECT LOCATION

The proposed project is located within the existing 33-acre ESEC power plant site. The site is located at the southernmost city limit of the City of El Segundo on the coast of the Pacific Ocean, between Dockweiler State Beach and the City of Manhattan Beach, in Los Angeles County. (See Project Description Figures 1 and 2.)

The address is 301 Vista Del Mar, El Segundo, approximately two miles south of the Los Angeles International Airport. The facility is located less than 0.25 mile south of the Los Angeles Department of Water & Power’s Scattergood Generating Station and 0.5 mile south of the City of Los Angeles’s Hyperion Wastewater Treatment Plant. The Chevron El Segundo Refinery is located across Vista Del Mar from the ESEC site. The city of Manhattan Beach is immediately to the south.

PROJECT PURPOSE AND OBJECTIVES

The purpose of this project modification is to decommission one unit, demolish two units, and add fast-start and dispatch flexibility capabilities through the installation of 435 MW net (449 MW gross) of more efficient generation. This PTA proposes the replacement of steam boilers scheduled to retire by December 31, 2015, to meet the state’s once-through-cooling policy compliance deadline for ESEC. With the expected shutdown of other once-through-cooling units in the Los Angeles Basin, new generation at this location is intended to meet in-basin needs and the need for fast-start capability to complement the integration of renewable generation in the basin.

As described in the PTA, the proposed modifications are necessary to:

- Maximize use of limited existing air offsets by replacing older generating equipment with new, low-emission, combustion turbine equipment that would significantly reduce air pollutant emissions, as compared to the boilers they are replacing, pursuant to South Coast Air Quality Management District (SCAQMD) Rule 1304;
• Redevelop a brownfield site in close proximity to existing infrastructure;
• Eliminate the need for once-through ocean water cooling by installing an air-cooled condenser;
• Remove the existing once-through cooling process at ESEC as a means to meet the state’s once-through cooling policy, consistent with ESEC’s stated Once-Through Cooling Implementation Plan to replace Units 3 and 4 by December 31, 2015;
• Provide grid stability to complement increased renewable energy generation by adding dispatch capabilities to accommodate planned and unplanned grid outages in response to excessive demands and natural disasters;
• Incorporate visual elements into the facility design consistent with the ESEC license and subsequent PTAs related to 00-AFC-14C that consider community input;
• Integrate community-defined site improvements, including improvements to pedestrian/bicycle use of bike path, landscaping, and frontage improvements;
• Improve fire, emergency, public safety, and environmental protections through installation and operation of new, more efficient generating units; and
• Improve public access through implementation of existing Conditions of Certification (COCs) LAND-9–LAND-11.

DESCRIPTION OF PROPOSED MODIFICATION

ESEC LLC, a wholly owned subsidiary of NRG Energy, Inc. (NRG), proposes to make substantial changes to the ESEC. Primary changes include the demolition and replacement of two, once-through-cooled, natural gas-fired utility boiler units (Units 3 and 4) with one new combined-cycle generator (Unit 9), one new steam turbine generator (Unit 10), and two new simple-cycle gas turbines (Units 11 and 12). This change would eliminate the use of ocean water for once-through cooling at the ESEC. The proposed changes would also upgrade and improve the ESEC’s existing and approved site infrastructure, provide fast-start and dispatch flexibility capabilities to support Southern California grid load balancing and renewable energy integration, and implement improvements to coastal access for the public.

The existing units 3 and 4 are located on approximately 4 to 5 acres, in the northern third portion of the site. The existing unit 3 and 4 power block structure is a 90 feet tall boxy facility with one 200 feet tall exhaust stack. The proposed units 9, 10, 11 and 12 will be located within the footprint of units 3 and 4. The new power block facilities for units 9, 10, 11, and 12 will be lower profile and include more spacing between the structures. Visually the new units will be less than what is currently there. See Project Description Figures 3, 4, 5, and 6.
Specific changes proposed through this PTA include:

- Shutdown and demolition of Units 3 and 4;
- Removal and remediation of existing ESEC retention basins;
- Construction of a new, combined administration, maintenance, and operations-support building;
- Modifications to existing site access; and
- Improvements to beach access.

The following new major equipment would be installed:

- (Unit 9) - One NRG fast-start, combined-cycle generator unit (CC Fast), rated at 222 MW net, incorporating a General Electric natural gas-combustion turbine generator (CTG) designed to achieve 75 percent of base load output in 10 minutes;
- One two-pressure, duct-fired heat recovery steam generator (HRSG), designed for rapid startup with conventional selective catalytic reduction system (SCR)/carbon monoxide (CO) catalysts;
- (Unit 10) - One single-case, non-reheat axial exhaust admission condensing steam turbine generator (STG) rated at 112 MW and designed for non-traditional, elevated condensing pressure to minimize cooling system size;
- One Heller dry-cooling tower system;
- (Units 11 and 12) - Two Rolls Royce Trent 60 generators, rated at 55 MW/unit net, consisting of advanced aeroderivative, simple-cycle gas turbines; and,
- One Cleaver Brooks auxiliary boiler, consisting of a direct-contact spray condenser and a mechanically-induced-draft dry-cooling tower.

DECOMMISSIONING

In order for Units 9, 10, 11, and 12 to be constructed, Units 3 and 4 must cease operation and be removed. Unit 3 ceased operation on July 22, 2013. Unit 4 must cease operation by December 31, 2015. Units 3 and 4 are structurally connected and decommissioning and demolition would not occur until Unit 4 ceases operation. The project owner anticipates that Unit 4 would operate until December 2015, and would only cease operation earlier in order to allow for additional construction time, if needed.

DEMOLITION

Construction activities associated with the ESEC amendment include the demolition and removal of existing Units 3 and 4 and would involve:

- Removal of any asbestos and hazardous materials;
- Demolition of Unit 3 and 4 structures;
• Pull down Units 3 and 4 (20-90 feet tall—these are the main power plant structures and exhaust stacks);
• Demolish at-grade and below-grade concrete foundations;
• Crush on-site asphalt/concrete rubble; and
• Haul asphalt, concrete, and other demolition wastes.

Removal of existing Unit 3 and Unit 4 foundations would require excavations ranging from 5-20 feet deep. The deeper foundation removal excavations are located at the existing condensers and the cooling water pipes leading to the intake/discharge structure. It is anticipated that groundwater control would be provided for these excavations such that the base would be stable for placing structural fill. Structural fill would be brought up to the new power plant construction site working platform. Some new plant construction activities may take place prior to bringing up structural fill to the new site working platform. These activities may include ground improvement measures, deep foundation construction, constructing foundation mats, or laying the cooling water pipes.

ONCE-THROUGH COOLING FACILITIES

As part of this amendment, the project owner is requesting that the Energy Commission condition the once-through cooling facilities for Units 3 and 4 to be discontinued and plugged. This would include the intake/outfall tunnels for Units 3 and 4 (designated as Discharge 002) on the ESEC site east of the sea wall. The plug would be designed and constructed similar to that used to plug the Discharge 001 tunnels for Units 1 and 2, done as part of the 2007 ESEC dry-cooling amendment. All activities that involve the plugging of Discharge 002 would be on the power plant site. Permits from the State Lands Commission (SLC) would be required for off-site work activities, such as removal of the intake and outfall pipes in the ocean.

If the Energy Commission approves the PTA, the project owner would submit applications to the SLC, the U. S. Army Corps of Engineers (USACE), and the Los Angeles Regional Water Quality Control Board (LARWQCB), as needed, during the fourth quarter of 2014. The project owner anticipates that the USACE (401/404/Nationwide #7) and LARWQCB permits would be issued by October 2015, for the on-site work.

An amendment to the SLC lease for Discharge 002 would be submitted within 90 days after Unit 4 is shut down (December 2015, unless delayed), as the cessation of ocean water intake constitutes a change in lease conditions. A project description and environmental analysis for final disposition of the intake/outfall tunnels in the SLC’s jurisdiction would be prepared during 2016. The project owner anticipates that the SLC would prepare an Environmental Impact Report for the alternatives and the preferred alternative during 2017 and 2018. The project owner anticipates that a selected alternative and schedule for final disposition would be determined after 2018.
BACKGROUND/HISTORY

SUMMARY

Originally built in the 1950s, the ESEC was a 1,052-MW power plant, consisting of four simple-cycle, natural gas-fired, utility boiler generating units. In 2000, the project owner applied to the Energy Commission to demolish and replace Units 1 and 2 with combined-cycle Units 5, 6, and 7, and continue the use of once-through cooling. The modified project was certified by the Energy Commission on February 3, 2005. (CEC 2005a) In 2007, the project owner petitioned to amend the 2005 Energy Commission Decision, seeking to install smaller, rapid-start, combined-cycle units, using dry-cooling technology, to be designated as Unit 5 and 6 and Unit 7 and 8. (CEC 2010a) The Energy Commission approved this amendment on June 30, 2010. As part of this PTA, Unit 3 had to cease operation prior to Units 5–8 becoming operational and producing power.

NRG started construction on Units 5-8, in June 2011, and the project started commercial operation in August 2013. The following table identifies historic, existing, and proposed unit output ratings for the facility.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Gross</th>
<th>Net</th>
<th>Unit</th>
<th>Gross</th>
<th>Net</th>
<th>Unit</th>
<th>Gross</th>
<th>Net</th>
<th>Unit</th>
<th>Gross</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>183</td>
<td>175</td>
<td>5&6</td>
<td>286.5</td>
<td>280</td>
<td>9&10</td>
<td>334</td>
<td>325</td>
<td>5&6</td>
<td>286.5</td>
<td>280</td>
</tr>
<tr>
<td>2</td>
<td>183</td>
<td>175</td>
<td>7&8</td>
<td>286.5</td>
<td>280</td>
<td>11</td>
<td>57.4</td>
<td>55</td>
<td>7&8</td>
<td>286.5</td>
<td>280</td>
</tr>
<tr>
<td>3</td>
<td>343</td>
<td>335</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>57.4</td>
<td>55</td>
<td>9&10</td>
<td>334</td>
<td>325</td>
</tr>
<tr>
<td>4</td>
<td>343</td>
<td>335</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>57.4</td>
<td>55</td>
</tr>
<tr>
<td>Total</td>
<td>1052</td>
<td>1020</td>
<td>Total</td>
<td>573</td>
<td>560</td>
<td>Total</td>
<td>448.8</td>
<td>435</td>
<td>Total</td>
<td>1021.8</td>
<td>995</td>
</tr>
</tbody>
</table>

DETAILS OF DECEMBER, 2000 APPLICATION FOR CERTIFICATION

On December 21, 2000, the then project owner (a joint venture that included NRG Energy) filed an Application for Certification (AFC) seeking approval from the Energy Commission to replace the existing Units 1 and 2 with natural gas-fired, combined-cycle electric generating units totaling 630 MW. (ESPLLC 2000a) The AFC included demolition and removal of existing Units 1 and 2 and replacement with two combustion turbines and one steam turbine (designated Units 5, 6, and 7) in their footprint. The project owner proposed to use the existing steam-cycle heat rejection system, which took cooling water from Santa Monica Bay, for the new equipment.

The Energy Commission issued a Final Decision in February 2005, certifying the project and applying conditions.
DETAILS OF JUNE, 2007 PETITION TO AMEND

On June 18, 2007, the project owner (by this time a wholly owned subsidiary of NRG Energy) submitted a PTA requesting the addition of new Rapid Response Combined Cycle (R2C2) technology that was not available during the original proceedings. R2C2 technology provided fast starts, delivering electricity more quickly to the grid, and the ability to achieve the thermal efficiency of combined-cycle units while significantly reducing startup emissions. This new technology eliminated the need for once-through cooling by equipping these units with air-cooled condensers.

The R2C2 technology also eliminated the need for wastewater discharge to the ocean or to a publicly-owned treatment plant. Other modifications in the 2007 PTA included changes in the method and route for oversize equipment delivery; modification of the plant entrance road to allow for oversize equipment delivery and improved plant access; and modifications to the construction laydown areas. The project owner was also changed in August 2008, to ESEC LLC.

In June 2008, Energy Commission staff issued its Staff Assessment Report (CEC 2008a), and, in October 2008, issued its Addendum I Staff Assessment Report. (CEC 2008b) Energy Commission staff’s analysis in the respective reports noted legal challenges to the availability of SCAQMD air emission offsets through SCAQMD Rules 1304 and 1315, which corresponding delayed the Energy Commission and SCAQMD from completing their approvals of the June 2007, PTA. Regulatory and legislative resolution in January 2010, enabled SCAQMD to issue permits for the facility that relied on air emission offsets, through application of Rules 1304 and 1315.

Processing of the June 2007, PTA, resumed in 2010, at which time ESEC LLC filed a PTA Supplement to expand the scope of the request to include the permanent shutdown and closure-in-place of Unit 3, to ensure the availability of the necessary air emission offsets. The PTA Supplement was supported by additional analysis of the requested modification and the potential effects on environmental resources, compared to the previous evaluations (CEC 2008a; CEC2008b; NRG 2007; CEC 2010). The expanded PTA Supplement also included proposed changes to the approved COCs. The cosmetic and structural maintenance of Unit 3 was proposed, to ensure that it did not become an eyesore or a safety hazard. In addition, the permanent disconnection of the natural gas supply and the elimination and/or the permanent disconnection of hazardous materials storage and use associated with Unit 3 operations (e.g., lube oil, ammonia for air emissions control), were proposed. The shutdown of Unit 3 also reduced ammonia consumption and deliveries, but did not reduce the quantity of stored ammonia. This amendment was approved by the Energy Commission on June 30, 2010.

APRIL, 2012 PETITION TO AMEND CONDITIONS OF CERTIFICATION REVISIONS FOR AMMONIA USE AND FACILITY NAME CHANGE

On April 17, 2012, ESEC LLC submitted a PTA requesting to modify the range of ammonia injection rates, eliminate a venturi scrubber on the ammonia storage tank, eliminate the ammonia supply pipeline running from the Chevron refinery, and change the project name to the ESEC. (NRG 2012a) The Energy Commission found that these
changes did not have a significant effect on the environment and approved them on August 9, 2012.

FORMER AND EXISTING EL SEGUNDO ENERGY CENTER SITE FACILITIES

Former and current major power plant facilities present on the 33-acre ESEC project site:

- Units 1 and 2, demolished and removed from the site as part of the construction of Units 5, 6, 7, and 8;
- Units 3 and 4, comprised of once-through-cooled, natural gas-fired, utility boiler units from the 1950s that are currently generating up to 670 MW;
- Units 5 and 6 and Units 7 and 8, combined-cycle power blocks, comprised of two Siemens SGT6-5000F gas turbine generators (GTG), two BENSON technology, single-pressure HRSGs, and two Siemens STGs; the HRSG design is a single-pressure unit supplied with either a natural circulation evaporator, or a single-pass evaporator, to minimize thermal stresses during the startup process; heat in the gas turbine exhaust flue gas is recovered in the HRSG to generate high-pressure (HP) steam; the HRSG is of horizontal design and consists of an economizer, evaporator, and superheater heating surfaces; each of the STGs has a rated capacity of 60 MW; the STGs are non-reheat, single-pressure, back-pressure-type turbines;
- Two air-cooled condensers (also referred to as steam turbine fin/fan cooler, or air-cooled, back-pressure heat exchangers), utilized for steam turbine exhaust steam heat rejection;
- A 1,000,000-gallon, fire water system storage tank and a 1,000,000-gallon demineralized water tank;
- A Southern California Edison (SCE) switchyard within the project boundaries, owned by SCE and not part of the present project;
- Five temporary administration trailers at the site that would be removed when the permanent administration building is constructed;
- Three temporary construction trailers at the site;
- A gas-compression metering station within an enclosure;
- A retention basin for Units 3 and 4 that would be removed as part of the present project;
- An above-ground ammonia storage tank; and
- Large oil tanks removed from the south side of the project site.
PROJECT FEATURES

ADMINISTRATION BUILDING
A smaller administration-operations building that was to be located to the east of the presently proposed administration building was approved as part of the 2010 amendment approval, but was not constructed. The proposed administration-warehouse building would be located in the northern portion of the tank farm parcel, north of the former location of the North Fuel Oil Tank. The proposed administration building would be 100 feet wide, 150 feet long, and two stories tall. On the structure’s north side, where the full height would be visible, the distance from the foundation line to the roof would be about 40 feet.

The building would have a contemporary design, with a flat roof, extensive use of glass, and masonry with a flat, gray finish similar to the finish of the other project structures. See Project Description Figures 7 and 8.

AIR QUALITY
The CC Fast and Rolls Royce Trent 60 peaker units incorporate dry, low-nitrogen-oxide (NOx) combustion systems combined with catalyst technology to control NOx and CO emissions. In this combustion system, NOx control is achieved without use of water or steam injection. The units’ fast-start capability allows the gas turbine generators to reach their optimum air emissions performance operating levels faster, which significantly reduces startup emissions. The combustion and post-combustion emissions control technologies would optimize emissions reductions consistent with normal operational practices. Combustion design and clean fuels would be used to minimize emissions of other pollutants.

The HRSG for the CC Fast combined-cycle gas unit, and the exhaust ducts for the two Trent 60 simple-cycle gas turbines, would be equipped with air emissions controls equipment, including a SCR system for NOx control and an oxidation catalyst for carbon monoxide (CO) control. A continuous emissions monitoring system (CEM) would also be included, which would sample, analyze, and record the concentration of CO, NOx, and oxygen/carbon dioxide in the flue gas. The system generates a log of emissions data and provides alarm signals to the control room when the level of emissions exceeds pre-selected limits. Continuous compliance with the NOx and CO emission limits would be demonstrated with the CEM system, based on the applicable averaging time designated.

NATURAL GAS SUPPLY
Natural gas would continue to enter the ESEC at the existing metering station location to support the ESEC. Natural gas for the new Units 9, 11, and 12 and the HRSG and auxiliary boiler would be metered separately and proceed through a new natural gas compression station. An advantage of this system is the use of existing ESEC natural gas supply pipelines. No modifications to the Southern California Gas system would be required to meet the ESEC demand.
WATER SUPPLY
Similar to the permitted ESEC project design water, water would be supplied from two sources: potable water from the cities of El Segundo and Manhattan Beach (Metropolitan Water District of Southern California) and California State Title 22 reclaim water from West Basin Municipal Water District (West Basin). The ESEC amendment would use water from the West Basin for potable use and fire emergencies. The Title 22 reclaim water, single-pass reverse osmosis (RO) product water received from the District, would be used as the supply to the cycle makeup treatment system, as well as make-up to the inlet cooling, saving approximately 100 acre-feet a year (afy) of potable water. Title 22 reclaim water, irrigation quality, would be blended with the single-pass RO product water for use in the gas turbine inlet cooling. Seawater would no longer be used for heat rejection.

WASTEWATER
Process wastewaters from the CC Fast system would consist of HRSG and inlet evaporative cooler blowdowns. In addition, wastewater would be generated during off-line water washing of the 7FA.05 and Trent 60 compressors. HRSG and evaporative cooler blowdown streams would be recycled back to the single-pass RO water storage tank, partly for reprocessing by the mobile demineralizers and partly for reuse as make-up to the inlet coolers. Off-line water wash effluent would be impounded and disposed of into the City of Manhattan Beach Municipal Sanitary Sewer system. Waste streams would be sampled in accordance with the existing monitoring and reporting program to ensure that the chemistry of the process waste is within the limits of the discharge permits. While process wastewater from the CC Fast and Rolls Royce Trent 60 peaker unit system would be recycled when possible, wastewater would be disposed of off-site into the sewer system as necessary if the water cannot be recycled and processed in a manner to meet the CC Fast and Rolls Royce Trent 60 peaker unit system water quality objectives. No process wastewater would be discharged from the facility via the existing retention basin or either outfall structure. The dissolved and suspended solids captured in the demineralizer beds would be removed via regeneration process off-site. Plant drains that conveyed plant wastes from Units 3 and 4 to the retention basin would be removed.

Sanitary wastewater, including eyewash station water and shower water, would be directed to the City of Manhattan Beach Municipal Sanitary Sewer in accordance with the City Public Works Department’s discharge requirements and in accordance with existing COCs from the amended 00-AFC-14C Final Decision. The ESPFM is proposed as a zero-liquid-discharge facility, where only stormwater and sanitary effluent would leave the site.

STORMWATER DISCHARGE
Stormwater and surface drainage conveyances within the power block would be engineered to allow for segregation of stormwater discharges from non-stormwater discharges. Non-stormwater discharges would be routed to a pre-treatment system to remove oils, greases, and solids from the waste stream, then returned to the raw water tank for reuse in the power-generating process. The plant drainage system would
provide the capability to capture and contain non-stormwater discharges for off-site disposal or recycling. Per the requirement of the existing individual discharge permit, stormwater and non-stormwater runoff would be sampled prior to discharge into the ocean.

Stormwater generated during construction would be discharged under an existing Construction Stormwater National Pollutant Discharge Elimination System discharge permit obtained in compliance with existing COCs. Future site stormwater in the area of Units 5–8, following their construction, would be collected in yard drains that would route stormwater to an oil/water separator prior to discharge into the ocean.

FIRE PROTECTION

The fire protection systems limit personnel injury, loss of life, property loss, and plant downtime due to fire. The existing firewater system has been upgraded as part of the ESEC amendment; the location of the existing fire/service water storage tank and associated electric motor-driven firewater pump would not change. The firewater supply and pumping system would provide the code-required quantity of firefighting water to yard hydrants, hose stations, and water spray and sprinkler systems. Two sources of firewater would be provided. The primary source would be the existing fire/service water storage tank, and the secondary source would be the water main line from the City of Manhattan Beach.

The new firewater distribution system required for Units 5, 6, 7, and 8; proposed Units 9, 10, 11, and 12; and the new administration building-maintenance shop-warehouse would be incorporated into the existing firewater distribution system. The performance of the existing firewater distribution system would not be changed with the addition of the new loop and new services. This loop would connect into the existing fire main loop currently serving Units 3 and 4, the switchyard, and the existing fuel oil storage tank area.

TRANSMISSION SYSTEM

Implementation of the new ESPFM would not affect the approved transmission system. Consistent with the current purchase power agreement with SCE, electricity would be transmitted from SCE’s El Segundo 230-kV substation to users via the existing transmission and distribution network. No new towers would need to be constructed or replaced inside or outside of the site boundaries.

PROJECT CONSTRUCTION AND OPERATION

DECOMMISSIONING, DEMOLITION AND CONSTRUCTION SCHEDULE

The entire construction and commissioning schedule is anticipated to last approximately 30 months. The decommissioning, demolition, and removal of existing Units 3 and 4 is anticipated to take approximately six months. Following completion of site preparation activities, construction and startup of the ESPFM are expected to take approximately 24 months, from site mobilization to commercial operation.
The construction schedule is based on a double-shift through the site preparation period and the construction of the major equipment foundations and pedestals. This would be followed by a single-shift, five-day workweek basis. Overtime and additional shift work may be used to maintain or enhance the construction schedule. Construction staff would range from 100 to approximately 500 construction workers, with the peak number required for approximately seven months.

The timing for implementation of the construction of already approved components of the ESPFM resulted in the shutdown of Unit 3 on July 22, 2013, and will result in the eventual shutdown of Unit 4 by December 31, 2015, to meet the State of California’s requirement for once-through-cooling at the facility by that date. Commencement of demolition of Units 3 and 4 is planned for the first half of 2016. Construction of the proposed ESPFM is anticipated to commence by mid-2016, after Units 3 and 4 are removed, and to conclude in 2018, to meet a projected on-line date of summer, 2018. The demolition of units 3 and 4 and proposed unit 9, 10, 11 and 12 construction, operation, and generation, are subject to an approved power purchase agreement.

Construction of the facility is expected to accommodate concurrent efforts to minimize site constraints. The overall sequence of construction and startup includes constructing foundations, installing major piping and equipment, connecting major site interfaces, erecting major structures, and startup and testing. The schedule and staffing requirements are described in the following sections by major components.

OPERATION

The existing power plant facility requires 50 full-time employees. The proposed project would not require additional operations staff because of project efficiencies and automated operations. Plant operations for Units 5, 6, 7, 8, 9, 10, 11, and 12 would require 50 full-time employees. Plant operations would be controlled from the existing operator’s panel, located in the existing control room. A distributed control and information system (DCS) would provide modulating control, digital control, and monitoring and indicating functions for operation of the plant power block systems.

Generally, the combined-cycle plant would be operated to provide its maximum electrical output throughout the year. To start the plant from a zero-percent dispatched operating mode, power would be backfed through the 230-kV transmission lines to start the combustion turbine. The turbine would be fired with natural gas. Once the turbine has been fired and brought to full speed, the CTG can be synchronized with the existing transmission grid. The STG is loaded sequentially after the CTG is loaded. Planned maintenance would be coordinated to reduce the impact of having a unit shut down for maintenance and overhauls. Normally, this work would be done during the winter when the need for electricity is reduced.

FACILITY CLOSURE

Facility closure can be temporary or permanent. Temporary closure is a shutdown for a period exceeding the time required for normal maintenance, including closure for overhaul or replacement of the combustion turbines. Causes for temporary closure...
include a disruption in the supply of natural gas or damage to the plant from earthquake, fire, storm, or other natural acts. Permanent closure is a cessation in operations with no intent to restart operations owing to plant age, damage to the plant beyond repair, economic conditions, or other reasons.

For a temporary facility closure where there is no release of hazardous materials, ESEC would maintain security of the facilities on a 24-hour basis and would notify the Energy Commission and other responsible agencies. Depending on the length of the shutdown necessary, a contingency plan for the temporary cessation of operations would be implemented. The contingency plan would be designed to ensure conformance with all applicable laws, ordinances, regulations, and standards (LORS) and the protection of public health and safety, and of environmental quality. The contingency plan, depending on the expected duration of the shutdown, may include the draining of all chemicals from storage tanks and other equipment and the safe shutdown of all equipment.

The planned life of the generation facility is 30 years. However, if the facility were economically viable at the end of the 30-year operating period, it could continue to operate for a much longer period of time. As power plant operators continuously upgrade their generation equipment and maintain the equipment up to industry standards, there is every expectation that the generation facility would have value beyond its planned life.

At the time of facility closure, decommissioning would be completed in a manner that protects the health and safety of the public and is environmentally acceptable. Prior to a planned closure, the project owner would submit a specific decommissioning plan that would include the following:

- Identification, discussion, and scheduling of the proposed decommissioning activities for the power generating and other ancillary facilities;
- Description of measures taken to ensure safe shutdown and decommissioning of all equipment, including draining and cleaning of all fuel and chemical storage, and the removal of any hazardous waste;
- Identification of all applicable LORS in effect at the time of closure, and how decommissioning/closure would be accomplished in accordance with the LORS; and
- Notification to federal, state, and local agencies, including the Energy Commission.
REFERENCES

PROJECT DESCRIPTION - FIGURE 2
El Segundo Energy Center Amendment (ESEC)

Legend
- NRG El Segundo Units 9-12 Under CEC Review
- Other Coastal Power Plants
- Waste Water Treatment Plant
- Major Hwys
- City Boundary
- El Segundo & Manhattan Beach
- Schools
- State Park/Beach
- County Parks

CALIFORNIA ENERGY COMMISSION - SITING, TRANSMISSION AND ENVIRONMENTAL PROTECTION DIVISION
SOURCE: CEC Staff

PROJECT DESCRIPTION
PROJECT DESCRIPTION - FIGURE 3
El Segundo Energy Center Amendment (ESEC) - Site Plan

Existing Units 5, 6, 7 and 8
Proposed Units 9, 10, 11 and 12

NOTE: THE TANK ON THE NORTH END OF THE TANK PAD HAS BEEN REMOVED SINCE THE CREATION OF THESE SITE GRAPHICS.
El Segundo Energy Center Amendment (ESEC) - Units 7 & 8 and Proposed 9, 10, 11 and 12
El Segundo Energy Center Amendment (ESEC) - Facility Modification

SOURCE: 3-D El Segundo Power, Fig. DR1-1, NRG
ENVIRONMENTAL ASSESSMENT
SUMMARY OF CONCLUSIONS

Staff concludes that with the adoption of the attached conditions of certification, the proposed modifications to the El Segundo Energy Center (ESEC), which is designated El Segundo Power Facility Modification (ESPFM), would not result in significant air quality related impacts, and that proposed modifications would comply with all applicable federal, state and South Coast Air Quality Management District (SCAQMD or district) air quality laws, ordinances, regulations, and standards (LORS).

Staff concludes that mitigation would be provided in the form of Regional Clean Air Incentives Market (RECLAIM) Trading Credits (RTCs) and Emission Reduction Credits (ERCs) to fully mitigate emissions of all nonattainment pollutants and their precursors at a minimum ratio of one-to-one and to reduce the potential impacts of the proposed facility modifications to less than significant.

Global climate change and greenhouse gas emissions from the proposed facility modifications are discussed and analyzed in AIR QUALITY APPENDIX AIR-1. The facility owner expects to operate the proposed new gas turbines with less than 60 percent capacity factor annually, thus the proposed new gas turbines are not subject to the Greenhouse Gases Emission Performance Standard (Title 20, California Code of Regulations, section 2900 et seq.). However, the proposed new units at ESEC would emit approximately 0.409 metric tonnes of carbon dioxide per megawatt hour (MTCO$_2$/MWh), which would be less than the limiting standard of 0.5 MTCO$_2$/MWh. The California Air Resources Board (ARB) adopted regulations implementing cap-and-trade regulations on December 22, 2011. The cap-and-trade program became active in January 2012, with enforcement beginning in January 2013. ARB staff continues to develop and implement regulations to refine key elements of the Greenhouse Gases (GHG) reduction measures to improve their linkage with other GHG reduction programs. The proposed facility modifications are expected to be subject to federal and state mandatory GHG reporting and state cap-and-trade requirements.

The proposed combined cycle (combustion turbine Unit 9 and steam turbine Unit 10) is also expected to comply with proposed federal New Source Performance Standard (NSPS) of 1,000 pounds of carbon dioxide per gross megawatt hour (lb CO$_2$/grossMWh) for large natural gas-fired stationary combustion turbine combined cycles. Unless further modifications are made, the proposed NSPS for GHG are applicable as of the date of publication in the Federal Register, January 8, 2014. While staff does not expect a simple cycle combustion turbine being installed as a peaking unit to operate more than 3 to 5 percent capacity factor on average, if it is determined that this requirement would apply to the Trent 60 turbines (Units 11 and 12), staff may have to propose a condition of certification to limit the operation so that the capacity factor of each Trent 60 turbine is below 33 percent and the net electric output is less than 219,000 MWh for each Trent 60 turbine so that they would be exempt from the proposed federal NSPS limit, since their emissions would exceed the expected NSPS limit.
The technical description of the nitrogen deposition analysis for the proposed facility modifications is discussed in Biological Resources Appendix-1. Staff used American Meteorological Society/Environmental Protection Agency Regulatory Model known as AERMOD, to estimate nitrogen deposition impacts from the proposed facility modifications. Considering the improvement in the nitrogen baseline concentrations in the South Coast Air Basin, and that the facility’s oxides of nitrogen emissions would be fully offset by district’s RECLAIM program, staff believes the nitrogen deposition impacts derived from this modeling and described in Biological Resources section are conservative, or an upper bound of potential impacts.

INTRODUCTION

The current amendment proposes to replace utility boiler Units 3 and 4 with one new GE 7FA combustion turbine generator (Unit 9) and one steam turbine generator (Unit 10), operating as a combined cycle, and two Rolls Royce Trent 60 simple-cycle gas turbines (Units 11 and 12) totaling 435 megawatts (MW) net / 448.8 MW gross. The modified facility would be located within the existing 33-acre ESEC site.

This analysis evaluates the expected air quality impacts of the emissions of criteria air pollutants from the decommissioning and demolition of Units 3 and 4 and the construction and operation of the proposed new units of the ESEC facility.

Criteria air pollutants are defined as air contaminants for which the state and/or federal government has established an ambient air quality standard to protect public health. The criteria pollutants analyzed are nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO), ozone (O₃), inhalable particulate matter (PM10), and fine particulate matter (PM2.5). In addition, emissions of nitrogen oxides (NOₓ, consisting primarily of nitric oxide [NO] and NO₂), sulfur oxides (SOₓ) and volatile organic compounds (VOC) are also analyzed. NOₓ and VOC readily react in the atmosphere as precursors to ozone. NOₓ and SOₓ also readily react in the atmosphere to form particulate matter, and are major contributors to acid rain. Global climate change and greenhouse gas (GHG) emissions from the proposed facility modifications are discussed and analyzed in the context of cumulative impacts (AIR QUALITY APPENDIX AIR-1).

In carrying out this analysis, the California Energy Commission (Energy Commission) staff evaluated the following major points:

- Whether the ESPFM is likely to conform with applicable federal, state, and SCAQMD air quality LORS (Title 20, California Code of Regulations, section 1744 (b));
- Whether the ESPFM is likely to cause significant air quality impacts, including new violations of ambient air quality standards, or make substantial contributions to existing violations of those standards (Title 20, California Code of Regulations, section 1743); and
- Whether the mitigation measures proposed for the facility modifications are adequate to lessen the potential impacts to a level of insignificance (Title 20, California Code of Regulations, section 1742 (b)).
The following federal, state, and local LORS and policies pertain to the control of criteria pollutant emissions and the mitigation of air quality impacts. Staff’s analysis describes or evaluates the proposed facility modifications’ compliance with these requirements, as in AIR QUALITY Table 1.

AIR QUALITY Table 1
Laws, Ordinances, Regulations, and Standards (LORS)

<table>
<thead>
<tr>
<th>Applicable Law or Regulation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal U.S. Environmental Protection Agency</td>
<td></td>
</tr>
<tr>
<td>Title 40 CFR Part 51 (New Source Review)</td>
<td>Requires new source review (NSR) facility permitting for construction or modification of specified stationary sources. NSR applies to sources of designated nonattainment pollutants. This requirement is addressed through SCAQMD Regulation XIII.</td>
</tr>
<tr>
<td>Title 40 CFR Part 52 (Prevention of Significant Deterioration Program)</td>
<td>Requires prevention of significant deterioration (PSD) review and facility permitting for construction of new or modified major stationary sources of pollutants that occur at ambient concentrations that attain the National Ambient Air Quality Standards (NAAQS). The United States Environmental Protection Agency (U.S. EPA) has delegated authority to the SCAQMD to implement the PSD program within the district’s geographical boundaries.</td>
</tr>
<tr>
<td>Title 40 CFR Part 60, Subpart KKKK (Standards of Performance for Stationary Combustion Turbines)</td>
<td>Requires the gas turbines to meet NOx and SO2 emission limits, which are determined based on the turbine’s heat input rate and fuel type. The NOx limit is 25 parts per million by volume (ppmv) for new natural gas fired turbines that are less than 850 Million British thermal units per hour (MMBtu/hr), 15 ppmv if the heat input is greater than 850 MMBtu/hr. The SO2 standard is 110 nanograms per Joule (ng/J), or 0.9 lb/MWh for units located in a continental area. Both the GE 7FA combined cycle and Trent 60 turbines will be subject to this regulation. Subpart KKKK requires continuous monitoring and performance test of the unit operation to ensure compliance. Subpart KKKK requires measurement of the fuel sulfur content unless it can demonstrate that the total sulfur in natural gas is less than 20 grains per 100 standard cubic feet (0.2 gr/scf).</td>
</tr>
<tr>
<td>Title 40 CFR Part 63 Subpart YYYY (National Emission Standards for Hazardous Air Pollutants [NESHAPs] for Gas Turbines)</td>
<td>Establishes national emission standards to limit emissions of hazardous air pollutants (HAPs) from facilities in specific categories. Projects would be subject to the Title 40 CFR, Part 63 requirements if the HAP Potential to Emit (PTE) is greater or equal to 25 tons per year (tpy) for total HAPs or 10 tpy for individual HAPs. 40 CFR Part 63 Subpart YYYY requires gas turbines to comply with a formaldehyde emission limit of 91 parts per billion by volume dry basis (ppbvd) measured at 15 percent O2. In addition, 40 CFR Part 63 Subpart YYYY requires an operating limitation such that the operator of the equipment maintains the 4-hour rolling average of the catalyst inlet</td>
</tr>
<tr>
<td>Applicable Law or Regulation</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>temperature within the range suggested by the catalyst manufacturer.</td>
<td></td>
</tr>
<tr>
<td>Title 40 CFR Part 64 (Compliance Assurance Monitoring [CAM])</td>
<td>The CAM regulation applies to major stationary sources, which use control equipment to achieve a specified emission limit. The rule is intended to provide “reasonable assurance” that the control systems are operating properly to maintain compliance with the emission limits. This subpart rule applies to the new turbines because the NOx and CO emissions are subject to the Best Available Control Technology (BACT) limits and are achieved with added equipment, i.e., selective catalytic reduction (SCR) and an oxidation catalyst.</td>
</tr>
<tr>
<td>Title 40 CFR Part 70</td>
<td>Title V Federal permit establishes a comprehensive federal operating permit program for major stationary sources that identify all applicable federal performance, operating, monitoring, recordkeeping, and reporting requirements. An application is required within one year of start of operation. Permitting and enforcement are delegated to SCAQMD. The project owner would be required to submit an application for an amendment to the facility’s Title V permit.</td>
</tr>
<tr>
<td>Title 40 CFR Part 72</td>
<td>The Acid Rain Program requires the monitoring and reporting of emissions of acidic compounds and their precursors from combustion equipment owned by a utility. Permitting and enforcement are delegated to SCAQMD. The facility is required to cover SO\textsubscript{2} emissions with “SO\textsubscript{2} Allowances”, or purchase of SO\textsubscript{2} credits on the open market. The facility is also required to monitor SO\textsubscript{2} emissions through use of fuel gas meters and gas constituent analysis (use of emission factors is also acceptable in certain cases) or with the use of exhaust gas continuous emission monitoring system (CEMS).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>California Air Resources Board and Energy Commission</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Health & Safety Code (H&SC) §41700 (Nuisance Regulation)</td>
<td>Prohibits discharge of such quantities of air contaminants that cause injury, detriment, nuisance, or annoyance.</td>
</tr>
<tr>
<td>H&SC §40910-40930</td>
<td>Permitting of source needs to be consistent with approved clean air plan.</td>
</tr>
<tr>
<td>California Public Resources Code §25523(a); 20 CCR §1752, 2300-2309 (CEC & ARB Memorandum of Understanding)</td>
<td>Requires that Energy Commission decision on an application for certification include requirements to assure protection of environmental quality. The Petition to Amend (PTA) is required to include information concerning air quality protection.</td>
</tr>
<tr>
<td>HSC Sections 21080, 39619.8,40440.14 (AB1318)</td>
<td>Requires the executive officer of the SCAQMD, upon making a specified finding, to transfer emission reduction credits for certain pollutants from the SCAQMD's internal emission credit accounts to eligible electrical generating facilities.</td>
</tr>
<tr>
<td>Applicable Law or Regulation</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Local</td>
<td>South Coast Air Quality Management District</td>
</tr>
<tr>
<td>Regulation II – Permits</td>
<td>This regulation sets forth the regulatory framework of the application for issuance of construction and operation permits for new, altered and existing equipment.</td>
</tr>
<tr>
<td>Rule 212 – Standards for Approving Permits</td>
<td>The facility modifications are subject to Rule 212(c)(2) and Rule 212(g) public notice requirements because the daily maximum CO, NOx, PM10, and VOC emissions from the proposed facility modifications would all exceed the emissions thresholds specified in subdivision (g) of this rule.</td>
</tr>
<tr>
<td>Rule 218 – Continuous Emission Monitoring</td>
<td>This rule applies to the CO CEMS, which is required to verify CO emission levels from each gas turbine. ESEC is required to submit an “Application for CEMS” for CO CEMS for each turbine and is required to adhere to retention of records requirements and reporting requirements once approval to operate CO CEMS is granted.</td>
</tr>
<tr>
<td>Regulation IV – Prohibitions</td>
<td>This regulation sets forth the restrictions for visible emissions, odor nuisance, fugitive dust, various air emissions, and fuel contaminants. This regulation also specifies additional performance standards for stationary gas turbines and other internal combustion engines.</td>
</tr>
<tr>
<td>Rule 401 – Visible Emissions</td>
<td>This rule prohibits any source from discharging any emissions of any air contaminant opacity of more than 20 percent (Ringelmann No.1) for a period or periods aggregating more than 3 minutes in any period of 60 consecutive minutes.</td>
</tr>
<tr>
<td>Rule 402 – Nuisance</td>
<td>This rule prohibits the discharge from a facility of air contaminants that cause injury, detriment, nuisance, or annoyance to the public, or cause damage to business or property.</td>
</tr>
<tr>
<td>Rule 407 – Liquid and Gaseous Air Contaminants</td>
<td>This rule limits SO₂ emissions to 500 ppm for equipment not subject to the gaseous fuel sulfur emission concentration limits of Rule 431.1. It also limits CO emissions to 2,000 ppm.</td>
</tr>
<tr>
<td>Rule 409 – Combustion Contaminants</td>
<td>This rule applies to the gas turbines and auxiliary boiler. This rule limits combustion generated PM emissions to 0.1 grains per dry standard cubic foot (gr/dscf) at 12 percent CO₂.</td>
</tr>
<tr>
<td>Rule 431.1 – Sulfur Content of Gaseous Fuels</td>
<td>This rule requires that the sulfur content as hydrogen sulfide (H₂S) of the natural gas shall be less than 16 ppmv.</td>
</tr>
<tr>
<td>Rule 475 – Electric Power Generating Equipment</td>
<td>This rule applies to power generating equipment greater than 10 MW installed after May 7, 1976. This rule limits combustion contaminants as PM to be either less than 11 lbs/hour, or less than 0.01 gr/dscf.</td>
</tr>
<tr>
<td>Regulation XIII: New Source Review for Non-RECLAIM Pollutants</td>
<td>New emissions sources are subject to the requirements of New Source Review (NSR). This regulation applies to non-attainment criteria pollutants that include VOC and PM10. CO and NO₂ are reviewed under PSD because they are attainment pollutants. NOx is also reviewed under Regulation XX – Regional Clean Air.</td>
</tr>
<tr>
<td>Applicable Law or Regulation</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Incentives Market (RECLAIM). NSR includes requirements of Best Available Control Technology (BACT), modeling analysis, and offsets. NH₃ is subject to BACT requirements only.</td>
<td></td>
</tr>
<tr>
<td>Rule 1304 – Exemptions</td>
<td>Rule 1304(a)(2) - Electric Utility Steam Boiler Replacement states that if electric utility boilers are replaced by combined cycle gas turbines, intercooled, or other advanced gas turbines, the project will be exempt from emission offsets unless there is a basin-wide electricity generation capacity increase on a per-utility basis. If there is an increase in basin-wide capacity, only the increased capacity must be offset.</td>
</tr>
<tr>
<td>Rule 1304.1 – Electrical Generating Facility Fee for Use of Offset Exemption</td>
<td>This rule requires electrical generating facilities which use the specific offset exemption described in Rule 1304(a)(2) to pay fees for up to the full amount of offsets provided by the SCAQMD. ESEC will be required to demonstrate compliance with the specific requirements of this rule prior to the issuance of the Permits to Construct.</td>
</tr>
<tr>
<td>Rule 1325 – Federal PM2.5 New Source Review Program</td>
<td>This rule applies to major polluting facilities, major modifications to a major polluting facility, or any modifications to an existing facility that would constitute a major polluting facility in, and, of, itself. A major polluting facility is defined as a facility which has actual emissions, or a potential to emit of greater than 100 tons per year. A major polluting facility is required to comply with these requirements: use of Lowest Achievable Emissions Rate (LAER), offset PM2.5 emissions at the offset ratio of 1.1:1, certification of compliance of emission limits, and conduct an alternative analysis of the project.</td>
</tr>
<tr>
<td>Regulation XVII: Prevention of Significant Deterioration</td>
<td>This regulation sets forth the preconstruction requirement for stationary sources to ensure that the air quality in clean air areas does not significantly deteriorate while maintaining a margin for future industrial growth. SCAQMD is authorized to issue new and modified PSD permits in accordance with SCAQMD’s Regulation XVII. The South Coast Air Basin (SCAB) is in attainment for federal NOₓ, SO₂, CO, and PM10 standards. Therefore, this regulation applies to NOₓ, SOₓ, CO, and PM10 emissions. BACT applies to all projects that have emission increases. A PSD analysis is required for a significant increase of emissions defined as an increase of 40 tons/year of either NOₓ or SOₓ or 100 tons/year of CO emissions. PSD review is required for the NOₓ and CO because the net emission increase in NOₓ and CO would exceed 40 tons per year and 100 tons per year respectively.</td>
</tr>
<tr>
<td>Regulation XX: Regional Clean Air Incentives Market (RECLAIM)</td>
<td>RECLAIM is designed to allow facilities flexibility in achieving emission reduction requirements for NOₓ and SOₓ through controls, equipment modifications, reformulated products, operational changes, shutdowns, other reasonable mitigation measures or the purchase of excess emission reductions.</td>
</tr>
<tr>
<td>Rule 2005 – NSR for</td>
<td>This rule applies to NOₓ emissions. It includes requirements of</td>
</tr>
</tbody>
</table>
Applicable Law or Regulation

<table>
<thead>
<tr>
<th>Applicable Law or Regulation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECLAIM Pollutants</td>
<td>BACT, modeling analysis, and offsets. This rule requires that a major source also: a) certify that all major sources in the state under control of the applicant are in compliance with all applicable federal emissions standards; b) submit an analysis of alternative sites, sizes, production processes, and environmental control techniques for the proposed source; c) demonstrate compliance with California Environmental Quality Act (CEQA); and d) demonstrate compliance with protection of visibility requirements.</td>
</tr>
<tr>
<td>Rule 2012 – Monitoring Recording and Record Keeping for RECLAIM</td>
<td>This rule establishes the monitoring, reporting, and record keeping requirements for NOx and SOx emissions under RECLAIM program, as applicable.</td>
</tr>
<tr>
<td>Regulation XXX: Title V Permits</td>
<td>The Title V federal program is the air pollution control permit system required by the federal Clean Air Act as amended in 1990. Regulation XXX defines the permit application and issuance as well as compliance requirements associated with the program. Any new or modified major source which qualifies as a Title V facility must obtain a Title V permit prior to construction, operation or modification of that source. Regulation XXX also integrates the Title V permit with the RECLAIM program such that a project cannot proceed without both. The existing El Segundo Energy Center is a federal Title V facility and is subject to Title V requirements. ARB The addition of the new turbines is considered a Significant Permit Revision as defined in Rule 3000.</td>
</tr>
<tr>
<td>Regulation XXXI Acid Rain Permits</td>
<td>Title IV of the federal Clean Air Act provides for the issuance of acid rain permits for qualifying facilities. Regulation XXXI integrates the Title V program with the RECLAIM program. Regulation XXXI requires a subject facility to obtain emission allowances for SOx emissions as well as monitoring SOx, NOx, and carbon dioxide (CO₂) emissions from the facility.</td>
</tr>
</tbody>
</table>

SETTING

METEOROLOGICAL CONDITIONS
The general climate of California is typically dominated by the eastern Pacific high-pressure system centered off the coast of California. In the summer, this system results in low inversion layers with clear skies inland and typically early morning fog by the coast. In winter, this system promotes wind and rainstorms originating in the Gulf of Alaska and striking California.

The large-scale wind flow pattern in the South Coast Air Basin (SCAB) is a diurnal cycle driven by the differences in temperature between the land and the ocean as well as the mountainous terrain surrounding the SCAB. The Tehachapi and Temblor Mountains separate the South Coast and San Joaquin Valley air basins. The San Bernardino, San Gabriel and Santa Rosa Mountains generally make up the eastern mountain range of
The Santa Monica and Santa Ana Mountains make up the northern and southern (respectively) coastal mountain ranges of the SCAB.

The nearest full-time meteorological monitoring station to the project site is located at Los Angeles International Airport (LAX), approximately 2.5 miles northeast of the project site. Wind roses at LAX meteorological station during 2005-2009 were provided in the Petition to Amend (PTA, NRG 2013a). The predominant annual wind direction at this monitoring site is from the southwest. The second predominant annual wind direction is from the northeast. The average wind speed at the LAX station during 2005-2009 is about 2.2 meters/second (m/s).

The nearest long-term meteorological station with available temperature and precipitation means and extremes is a National Weather Service Cooperative Network (COOP) station in Los Angeles County also located at LAX. Data collected at this station over a 30-year period (1981-2010) show the hottest month, August, has an average maximum temperature of 74.9°F; December has the lowest average minimum temperature of 48.7°F (WRCC 2013). The SCAB receives most of its rainfall between November and April. The recorded annual average precipitation at LAX is 12.8 inches during 1981-2010.

Along with the wind flow, atmospheric stability and mixing heights are important factors in the determination of pollutant dispersion. Atmospheric stability reflects the amount of atmospheric turbulence and mixing. In general, the less stable the atmosphere, the greater the turbulence, which results in more mixing and better dispersion. The mixing height, measured from the ground upward, is the height of the atmospheric layer in which convection and mechanical turbulence promote mixing. Good dispersion results from a high mixing height and at least moderate wind speeds within the mixing layer. In general, mixing is more limited at night and in the winter when there is a higher potential for lower level inversion layers being present along with low speed surface winds. The mixing heights recorded at LAX in the morning range from 335 meters (1,100 feet) to greater than 1,000 meters (3,280 feet). The mixing heights recorded at LAX in the afternoon range from 510 meters (1,670 feet) to 1,200 meters (3,940 feet).

AMBIENT AIR QUALITY STANDARDS

The United States Environmental Protection Agency (U.S. EPA) and the ARB have both established allowable maximum ambient concentrations of criteria air pollutants. These are based upon public health impacts and are called ambient air quality standards. The California Ambient Air Quality Standards (CAAQS), established by ARB, are typically lower (more stringent) than the federally established National Ambient Air Quality Standards (NAAQS).

Primary ambient air quality standards are designed to protect people who are most susceptible to respiratory distress such as asthmatics, the elderly, very young children, people already weakened by other disease or illness, and people engaged in strenuous work or exercise. Secondary ambient air quality standards are also set to protect public welfare, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings.
Current state and federal primary ambient air quality standards are listed in AIR QUALITY Table 2. The averaging time for the various ambient air quality standards (the duration over which all measurements taken are averaged) ranges from one hour to one year. The standards are read as a concentration, in parts per million (ppm), parts per billion (ppb), or as a weighted mass of material per unit volume of air, in milligrams (mg or 10^{-3} g) or micrograms (μg or 10^{-6} g) of pollutant in a cubic meter (m^3) of ambient air, drawn over the applicable averaging period.

Existing Ambient Air Quality

The U.S. EPA, the ARB, and the local air district classify an area as attainment, unclassified, or nonattainment, depending on whether or not the monitored ambient air quality data show compliance, insufficient data is available, or non-compliance with the ambient air quality standards, respectively. The ESEC project site is located within the SCAB in the SCAQMD. The federal and state attainment status of criteria pollutants in the SCAB are summarized in AIR QUALITY Table 3.

On February 17, 2012, U.S. EPA designated all of California as “unclassifiable/attainment” for the federal short-term NO$_2$ standard. On June 12, 2013, U.S. EPA approved the state’s request to re-designate the Los Angeles-SCAB to attainment for the 24-hour PM10 NAAQS.

AIR QUALITY Table 2

Federal and State Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Federal Standard</th>
<th>California Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O$_3$)</td>
<td>8 Hour</td>
<td>0.075 ppm (147 μg/m3)a</td>
<td>0.070 ppm (137 μg/m3)</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>—</td>
<td>0.09 ppm (180 μg/m3)</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>8 Hour</td>
<td>9 ppm (10 mg/m3)</td>
<td>9.0 ppm (10 mg/m3)</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>35 ppm (40 mg/m3)</td>
<td>20 ppm (23 mg/m3)</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO$_2$)</td>
<td>Annual</td>
<td>0.053 ppm (100 μg/m3)</td>
<td>0.030 ppm (57 μg/m3)</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>100 ppb (188 μg/m3)b</td>
<td>0.18 ppm (339 μg/m3)</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO$_2$)</td>
<td>24 Hour</td>
<td>—</td>
<td>0.04 ppm (105 μg/m3)</td>
</tr>
<tr>
<td></td>
<td>3 Hour</td>
<td>0.5 ppm (1300 μg/m3)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1 Hour</td>
<td>75 ppb (196 μg/m3)c</td>
<td>0.25 ppm (655 μg/m3)</td>
</tr>
<tr>
<td>Respirable Particulate Matter (PM10)</td>
<td>Annual</td>
<td>—</td>
<td>20 μg/m3</td>
</tr>
<tr>
<td></td>
<td>24 Hour</td>
<td>150 μg/m3</td>
<td>50 μg/m3</td>
</tr>
<tr>
<td>Fine Particulate Matter (PM2.5)</td>
<td>Annual</td>
<td>12 μg/m3</td>
<td>12 μg/m3</td>
</tr>
<tr>
<td></td>
<td>24 Hour</td>
<td>35 μg/m3</td>
<td>—</td>
</tr>
<tr>
<td>Sulfates</td>
<td>24 Hour</td>
<td>—</td>
<td>25 μg/m3</td>
</tr>
<tr>
<td>Lead</td>
<td>30 Day Average</td>
<td>—</td>
<td>1.5 μg/m3</td>
</tr>
<tr>
<td></td>
<td>Rolling 3-Month Average</td>
<td>0.15 μg/m3</td>
<td>—</td>
</tr>
<tr>
<td>Hydrogen Sulfide (H$_2$S)</td>
<td>1 Hour</td>
<td>—</td>
<td>0.03 ppm (42 μg/m3)</td>
</tr>
<tr>
<td>Pollutant</td>
<td>Averaging Time</td>
<td>Federal Standard</td>
<td>California Standard</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Vinyl Chloride (chloroethene)</td>
<td>24 Hour</td>
<td>—</td>
<td>0.01 ppm (26 μg/m³)</td>
</tr>
<tr>
<td>Visibility Reducing Particulates</td>
<td>8 Hour</td>
<td>—</td>
<td>In sufficient amount to produce an extinction coefficient of 0.23 per kilometer due to particles when the relative humidity is less than 70%.</td>
</tr>
</tbody>
</table>

Source: ARB 2013a, EPA 2013a

Note:

- Fourth highest maximum 8-hour concentration, averaged over 3 years.
- 98th percentile of daily maximum value, averaged over 3 years.
- 99th percentile of daily maximum value, averaged over 3 years.

AIR QUALITY Table 3

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Federal Classification</th>
<th>State Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (1-hour)</td>
<td>No Federal Standard</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>Ozone (8-hour)</td>
<td>Nonattainment</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>CO</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>NO₂</td>
<td>Unclassifiable/Attainment</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>SO₂</td>
<td>Attainment</td>
<td>Attainment</td>
</tr>
<tr>
<td>PM10</td>
<td>Attainment</td>
<td>Nonattainment</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Nonattainment</td>
<td>Nonattainment</td>
</tr>
</tbody>
</table>

Source: ARB 2013b, EPA 2013b.

Nonattainment Criteria Pollutants

The closest air quality monitoring station to the project site is located in LAX approximately 2.5 miles northeast of the site. There are no complex terrain features between the LAX monitoring site and the project site. Ambient concentrations of O₃, NO₂, SO₂, CO, and PM10 are recorded at the LAX monitoring station and are used to represent background air pollutant concentrations for the vicinity of the project. The closest station that monitors ambient PM2.5 is at the North Long Beach monitoring station, approximately 15 miles southeast of the project site. There are no complex terrain features between the North Long Beach monitoring station and the project site. PM2.5 concentrations at the North Long Beach station are used to represent PM2.5 background for the vicinity of the project site.

AIR QUALITY Table 4 summarizes the existing ambient monitoring data for nonattainment criteria pollutants (nitrogen dioxide, ozone and particulate matter) collected by ARB and SCAQMD from monitoring stations near the project site during 2006 to 2011. Data in this table that are marked in bold indicate that the most-stringent current standard was exceeded. Note that an exceedance is not necessarily a violation of the standard, and that only persistent exceedances lead to designation of an area as nonattainment.
Nitrogen Dioxide (NO₂)
Nitrogen oxide (NOx) emissions include nitric oxide (NO) and nitrogen dioxide (NO₂). The majority of the NOx emitted from combustion sources is NO. NO is oxidized in the atmosphere to NO₂ by oxygen and ozone. High concentrations of NO₂ usually occur during the fall when atmospheric conditions tend to trap ground-level emissions but lack significant photochemical activity due to less sunlight. In the summer, the conversion rates of NO to NO₂ are high, but the relatively high temperatures and windy conditions (atmospheric unstable conditions) generally disperse pollutants and also engage NO in reactions with VOCs to form ozone. The formation of NO₂ in the presence of ozone is according to the following reaction:

\[\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \]

Urban areas typically have high daytime ozone concentrations that drop substantially at night as the above reaction takes place, and ozone scavenges the available NO. If ozone is unavailable to oxidize the NO, less NO₂ will form because the reaction is “ozone-limited.” This reaction explains why, in urban areas, ground-level ozone concentrations drop at night, while aloft and in downwind rural areas (without sources of fresh NO emissions), ozone concentrations can remain relatively high.

The U.S. EPA implemented a new 1-hour NO₂ standard of 100 parts per billion (100 ppb or 0.100 ppm), which became effective on April 12, 2010. The new standard is expressed as a 3-year average of the 98th percentile of the daily maximum 1-hour concentration. The SCAQMD is currently designated as unclassified/attainment for federal 1-hour NO₂ standard but nonattainment with state NO₂ standard. AIR QUALITY Table 4 shows the maximum 1-hour, 98th percentile daily maximum 1-hour, and annual NO₂ concentrations at the LAX station. Data from 2006 to 2011 show that NO₂ concentrations measured at this station have not exceeded either the federal or state standards during that 2006 to 2011 time period.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂ (ppm)</td>
<td>State 1-hour</td>
<td>0.099</td>
<td>0.084</td>
<td>0.094</td>
<td>0.077</td>
<td>0.076</td>
<td>0.098</td>
</tr>
<tr>
<td>NO₂ (ppm)</td>
<td>Federal 1-hour</td>
<td>0.072</td>
<td>0.069</td>
<td>0.076</td>
<td>0.069</td>
<td>0.061</td>
<td>0.065</td>
</tr>
<tr>
<td>NO₂ (ppm)</td>
<td>Annual</td>
<td>0.015</td>
<td>0.014</td>
<td>0.014</td>
<td>0.014</td>
<td>0.012</td>
<td>0.013</td>
</tr>
<tr>
<td>Ozone (ppm)</td>
<td>1-hour</td>
<td>0.084</td>
<td>0.087</td>
<td>0.086</td>
<td>0.077</td>
<td>0.089</td>
<td>0.078</td>
</tr>
<tr>
<td>Ozone (ppm)</td>
<td>8-hour</td>
<td>0.066</td>
<td>0.075</td>
<td>0.075</td>
<td>0.075</td>
<td>0.07</td>
<td>0.067</td>
</tr>
<tr>
<td>PM10 (μg/m³)</td>
<td>24-hour</td>
<td>45.0</td>
<td>128.0</td>
<td>50.0</td>
<td>52.0</td>
<td>37.0</td>
<td>41.0</td>
</tr>
<tr>
<td>PM10 (μg/m³)</td>
<td>Annual</td>
<td>23.5</td>
<td>29.3</td>
<td>25.6</td>
<td>25.6</td>
<td>20.6</td>
<td>21.7</td>
</tr>
<tr>
<td>PM2.5 (μg/m³)</td>
<td>24-hour</td>
<td>35.0</td>
<td>41.0</td>
<td>39.0</td>
<td>34.2</td>
<td>28.3</td>
<td>28.8</td>
</tr>
<tr>
<td>PM2.5 (μg/m³)</td>
<td>Annual</td>
<td>14.1</td>
<td>14.6</td>
<td>14.2</td>
<td>13.0</td>
<td>10.5</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Source: SCAQMD 2013e, ARB 2013c, EPA 2013c.
Note: * The federal 1-hour NO₂ concentrations are the 98th percentile daily maximum 1-hour average NO₂ concentrations during that year.

The 24-hour PM2.5 concentrations are the 98th percentile daily maximum 24-hour average PM2.5 concentrations during that year.

There were insufficient (or no) data available to determine the value.
Ozone

Ozone is not directly emitted from stationary or mobile sources. It is a secondary pollutant formed through complex chemical reactions between nitrogen oxides (NOx) and volatile organic compounds (VOC). Ozone formation is highest in the summer and fall when abundant sunshine and high temperatures trigger the necessary photochemical reactions, and lowest in the winter. The days with the highest ozone concentrations in this region commonly occur between May and October. The SCAQMD is classified as a nonattainment area with respect to both state and national ambient air quality standards for ozone. AIR QUALITY Table 4 shows the state 1-hour ozone standard of 0.09 ppm was not exceeded during the 2006 to 2011 period; the state 8-hour ozone standard of 0.070 ppm was exceeded during 2007 and 2008. However, inland areas experience persistent higher ozone levels.

Respirable Particulate Matter (PM10)

PM10 is a mixture of small solid particles and liquid droplets with a size less than or equal to 10 microns diameter. PM10 can be emitted directly or it can be formed many miles downwind from emission sources when various precursor pollutants interact in the atmosphere. Gaseous emissions of pollutants like NOx, SOx and VOC from turbines, and ammonia from NOx control equipment, given the right meteorological conditions, can form particulate matter in the form of nitrates (NO₃), sulfates (SO₄), and organic particles. These pollutants are known as secondary particulates, because they are not directly emitted but are formed through complex chemical reactions in the atmosphere.

PM nitrate (mainly ammonium nitrate) is formed in the atmosphere from the reaction of nitric acid and ammonia. Nitric acid in turn originates from NOx emissions from combustion sources. The nitrate ion concentrations during the wintertime are a significant portion of the total PM10, and an even higher contributor to particulate matter of less than 2.5 microns (PM2.5), described more fully below.

As shown in AIR QUALITY Table 4, the federal 24-hour PM10 standard of 150 μg/m³ has not been exceeded at the stations near the project site since 2006. However, the state 24-hour standard of 50 μg/m³ has been exceeded in 2007 and 2009. The state annual standard of 20 μg/m³ has been exceeded every year during 2006 to 2011. The maximum 24-hour concentration recorded during the analysis period was 128 μg/m³ in 2007. The maximum annual concentration was 29.3 μg/m³, also in 2007. The SCAB is characterized as nonattainment for state PM10 standard. On June 12, 2013, U.S. EPA approved the state’s request to re-designate the Los Angeles-SCAB to attainment for the 24-hour PM10 NAAQS.

Fine Particulate Matter (PM2.5)

PM2.5 refers to a mixture of small solid particles and liquid droplets with a diameter less than or equal to 2.5 microns. PM2.5 is believed to pose a greater health risk than PM10 because it can lodge deeply into the lungs due to the small size. PM2.5 includes nitrates, sulfates, organic carbon and elemental carbon, which mainly result from combustion and atmospheric reactions. Almost all combustion-related particles, including those from wood smoke and cooking, are smaller than 2.5 microns. Nitrate and sulfate particles are formed through complex chemical reactions in the atmosphere.
Particulate nitrate (mainly ammonium nitrate) is formed in the atmosphere from the reaction of nitric acid and ammonia. Nitric acid in turn originates from NOx emissions from combustion sources. The nitrate ion concentrations during the winter comprise a large portion of the total PM2.5.

AIR QUALITY Table 4 summarizes the ambient PM2.5 data collected at the North Long Beach station. The national 24-hour average NAAQS is met if the 3-year average of the 98th percentile concentration is 35 μg/m³ or lower. This threshold was exceeded in 2007 and 2008 with the maximum values of 41 and 39 μg/m³. The annual arithmetic means during 2006-2009 exceeded both the state and federal standards of 12 μg/m³. For purpose of state and federal air quality planning and permitting, the SCAQMD designated as nonattainment for both federal and state PM2.5 standards.

Attainment Criteria Pollutants

Carbon Monoxide

Carbon monoxide (CO) is a product of incomplete combustion due to the insufficiency of oxygen content at the point of combustion. Mobile sources are the main sources of CO emissions and ambient concentrations of CO are highly dependent on motor vehicle activity. CO is a local pollutant, with high concentrations usually found near emission sources. The highest CO concentrations occur during rush hour traffic in the mornings and afternoons. Ambient CO concentrations attain the air quality standards due to two statewide programs: 1) the 1992 wintertime oxygenated gasoline program, and 2) Phase I and II of the reformulated gasoline program. New vehicles with oxygen sensors and fuel injection systems have also contributed to reduced CO emissions. **AIR QUALITY Table 5** shows the maximum 1-hour and 8-hour CO concentrations at the LAX station. These values are well below respective ambient air quality standards.

Sulfur Dioxide

Sulfur dioxide is typically emitted as a result of the combustion of fuels containing sulfur. The proposed new units would use natural gas, which contains very little sulfur and consequently has very low SOx emissions when burned. By contrast, fuels with high sulfur content, such as coal, emit very large amounts of SOx when burned. Sources of SOx emissions come from every economic sector and include a wide variety of fuels in gaseous, liquid and solid forms. The whole state is designated attainment for all state
and federal SO₂ ambient air quality standards. See AIR QUALITY Table 5 for maximum 1-hour, 3-hour, and 24-hour SO₂ concentrations at the LAX station.

Summary of Existing Ambient Air Quality

In summary, staff recommends using the background ambient air quality concentrations in AIR QUALITY Table 6 as the baseline for the modeling and impacts analysis. The highest criteria pollutant concentrations from the last three years (2009-2011) of available data collected at the LAX station (for NO₂, SO₂, CO, and PM10) and North Long Beach (for PM2.5) are used to determine the recommended background values. The 3-year average of the 98th percentile of the daily maximum during 2009-2011 is used for federal 1-hour NO₂ and 24-hour PM2.5 standards. Background concentrations in excess of the ambient air quality standards are shown in bold.

AIR QUALITY Table 6
Staff-Recommended Background Concentrations (μg/m³)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Background</th>
<th>Limiting Standard</th>
<th>Percent of Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>24-hour</td>
<td>52</td>
<td>50</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>25.6</td>
<td>20</td>
<td>128</td>
</tr>
<tr>
<td>PM2.5</td>
<td>24-hour</td>
<td>30.4</td>
<td>35</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>13</td>
<td>12</td>
<td>108</td>
</tr>
<tr>
<td>CO</td>
<td>1-hour</td>
<td>2,990</td>
<td>23,000</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>2,519</td>
<td>10,000</td>
<td>25</td>
</tr>
<tr>
<td>NO₂</td>
<td>State 1-hour</td>
<td>184.9</td>
<td>339</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Federal 1-hour</td>
<td>122.6</td>
<td>188</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>24.5</td>
<td>57</td>
<td>43</td>
</tr>
<tr>
<td>SO₂</td>
<td>1-hour</td>
<td>68.1</td>
<td>196</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>39.3</td>
<td>1300</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>15.7</td>
<td>105</td>
<td>15</td>
</tr>
</tbody>
</table>

Source: SCAQMD 2013e, ARB 2013c, EPA 2013c and Energy Commission staff analysis.

The background concentrations for PM10 and annual PM2.5 are at or above the most restrictive existing ambient air quality standards, while the background concentrations for the other pollutants are mostly well below the most restrictive existing ambient air quality standards.

The pollutant modeling analysis was limited to the pollutants listed in AIR QUALITY Table 6. Therefore recommended background concentrations were not determined for the other criteria pollutants (ozone, lead, visibility, etc.).

PROJECT DESCRIPTION AND PROPOSED EMISSIONS

The Petition to Amend (PTA) proposes to replace existing Units 3 and 4 with one combined-cycle combustion turbine/steam turbine train and two simple-cycle gas turbines. The air-cooled, GE 7FA Fast Start combined-cycle train would consist of a gas turbine generator (Unit 9), a heat recovery steam generator (HRSG), and a steam turbine generator (Unit 10). A small (36 MMBtu/hr) auxiliary boiler would be
incorporated into the operation of the combined-cycle train to reduce start-up time. The simple cycle turbines (Units 11 and 12) would consist of two air-cooled Rolls Royce Trent 60 advanced aeroderivative gas turbines (NRG 2013a).

Separate emissions estimates for the proposed project modifications during the construction (with decommissioning and demolition), initial commissioning, and operation are each described next.

PROPOSED CONSTRUCTION EMISSIONS

The construction phase of the proposed facility modifications is expected to take about 26 months, which includes decommissioning and demolition of existing units and construction of the new units (LL 2013e). The construction of the proposed new units would require removal of the existing Units 3 and 4. The decommissioning and demolition of Units 3 and 4 would take about 6 months. The construction of the proposed new units would take about 20 months. Construction activities to support the decommissioning, demolition, and removal of existing Units 3 and 4 and the addition of new units will involve excavation during demolition activities as well as offsite hauling of demolition wastes, grading and construction of foundations, and site equipment installation.

Emissions during the construction phase of the proposed facility modifications would be generated from vehicle and equipment exhaust and the fugitive dust from vehicle movement and material handling. Construction activities would be scheduled for 8 hours per day and 5 days per week (except during the grading phase, where 6 construction days per week was assumed [NRG 2013a]).

Estimates for the highest daily emissions and maximum annual emissions over the 26-month construction period are shown in **AIR QUALITY Table 7**. The maximum daily emissions were based on Months 15/16 for construction equipment and Months 9/10/11/12 for fugitive dust. Annual emissions were based on the worst 12 consecutive months of the construction period (Month 9 to Month 20 for construction equipment and Month 7 to Month 18 or Month 8 to Month 19 for fugitive dust).

AIR QUALITY Table 7

Estimated Maximum Construction Emissions

<table>
<thead>
<tr>
<th>Construction Activity</th>
<th>Daily Emissions (lbs/day)</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onsite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off-road Equipment – Combustion</td>
<td>116.45</td>
<td>137.85</td>
<td>5.78</td>
<td>0.27</td>
<td>5.44</td>
<td>5.44</td>
<td></td>
</tr>
<tr>
<td>On-site Vehicles – Combustion</td>
<td>0.20</td>
<td>1.49</td>
<td>0.11</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Off-road Equipment – Fugitive Dust</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.90</td>
<td>2.60</td>
<td></td>
</tr>
<tr>
<td>On-site Vehicles – Fugitive Dust</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.39</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Subtotal (On-site)</td>
<td>116.65</td>
<td>139.34</td>
<td>5.89</td>
<td>0.27</td>
<td>10.74</td>
<td>8.15</td>
<td></td>
</tr>
<tr>
<td>Offsite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worker Travel – Combustion</td>
<td>5.17</td>
<td>58.80</td>
<td>3.82</td>
<td>0.14</td>
<td>0.09</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Truck Emissions – Combustion</td>
<td>2.66</td>
<td>3.59</td>
<td>0.27</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>
PROPOSED INITIAL COMMISSIONING EMISSIONS

New electrical generation facilities must go through initial commissioning phases before becoming commercially available to generate electricity. The commissioning period begins when the turbines are prepared for first fire and ends upon successful completion of initial performance testing. Emissions of NOx, CO, and VOC during the commissioning period are typically higher than during normal operations due to the fact that the combustors may not be optimally tuned and the emission control systems may be only partially operational or not operational at all.

The commissioning schedule would comprise several phases in which each turbine would be operated at various loads. Based on ESEC’s recent experience commissioning approved Units 5 and 7 and consultation with the equipment manufacturers, ESEC expects the initial commissioning period for the GE 7FA turbine to be 800 operating hours and the initial commissioning period for the Trent 60 turbines to be 206 operating hours each (LL 2013e). ESEC expects the total duration of the commissioning period to be 4 months after the construction period.
AIR QUALITY Table 8 presents anticipated maximum commissioning emissions of criteria pollutants for the turbines from the facility owner and the district. Maximum hourly NOx emissions for the GE 7FA turbine would occur during the phase to establish steam purity. Maximum hourly CO and VOC emissions for the GE 7FA turbine would occur during the emissions tuning/drift test phase. Maximum hourly NOx emissions for the Trent 60 turbines would occur during the selective catalytic reduction (SCR) tuning phase. Maximum hourly CO and VOC emissions for the Trent 60 turbines would occur during first fire and engine idle running phase. NOx, CO and VOC emissions would all be higher than the emissions during normal operations. Staff does not expect emission rates for PM and SOx during commissioning would be higher than the emissions during normal operations. This is because PM and SOx emissions are proportional to fuel use.

The lbs/hour difference in the SOx emissions in **AIR QUALITY Table 8** and those in **AIR QUALITY Table 9** is because the district used a lower SOx emission factor of 0.6 pounds per million standard cubic feet (lb/mmscf) for routine operations while the commissioning SOx emissions provided by the turbine manufacturers were based on maximum sulfur content of 0.75 gr/100 scf. Staff and the facility owner both commented on the SOx emission factor of 0.6 lb/mmscf that the district used in the Preliminary Determination of Compliance (PODC) (CEC 2014b, LL 2014d). The facility owner suggested a SOx emission factor of 0.71 lb/mmscf should be used to be consistent with the annual average sulfur content limit of 0.25 gr/100 scf (LL 2014d). The SOx emission factor and emissions need to be confirmed by the district and may change in the Final Determination of Compliance (FDOC) and Final Staff Assessment (FSA). The PM emissions shown in **AIR QUALITY Table 8** are from facility owner’s revised commissioning data submitted in the data responses set one (LL 2013e and LL 2013h), which are different from those shown in the PODC. Staff noted the inconsistency in the comment letter to the district dated January 24, 2014 (CEC 2014b). The PM emissions from the Trent 60 turbines during commissioning need to be confirmed by the district and may change in the FDOC and FSA.

AIR QUALITY Table 8

<table>
<thead>
<tr>
<th>Commissioning Source</th>
<th>Maximum Hourly Emissions (lbs/hr)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOx</td>
<td>CO</td>
<td>VOC</td>
<td>SOx</td>
<td>PM10/PM2.5</td>
<td></td>
</tr>
<tr>
<td>GE 7FA Turbine (Unit 9)</td>
<td>105.8</td>
<td>118.8</td>
<td>16.0</td>
<td>4.7</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Trent 60 Turbine (Unit 11)</td>
<td>100.2</td>
<td>346.3</td>
<td>48.4</td>
<td>1.5</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Trent 60 Turbine (Unit 12)</td>
<td>100.2</td>
<td>346.3</td>
<td>48.4</td>
<td>1.5</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Total Commissioning Emissions (lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GE 7FA Turbine (Unit 9)</td>
<td>46,126</td>
<td>33,636</td>
<td>6,433</td>
<td>3,188</td>
<td>8,011</td>
<td></td>
</tr>
<tr>
<td>Trent 60 Turbine (Unit 11)</td>
<td>10,421</td>
<td>27,886</td>
<td>2,370</td>
<td>126</td>
<td>1,021</td>
<td></td>
</tr>
<tr>
<td>Trent 60 Turbine (Unit 12)</td>
<td>10,421</td>
<td>27,886</td>
<td>2,370</td>
<td>126</td>
<td>1,021</td>
<td></td>
</tr>
</tbody>
</table>

Source: LL 2013e, LL 2013h, SCAQMD 2013b, and Energy Commission staff analysis

PROPOSED OPERATION EMISSIONS

AIR QUALITY Tables 9 through 11 summarize the maximum (worst-case) hourly, daily and annual criteria pollutant emissions associated with normal and routine operation of...
the proposed new units at ESEC. Emissions for the combustion gas turbines are based upon:

- NOx emissions would be controlled to 2.0 parts per million by volume, dry basis (ppmvd), corrected to 15 percent oxygen for the combined cycle unit and duct burner, 2.5 ppmvd for the simple cycle units, and 9 ppmvd\(^1\) corrected to 3 percent oxygen for the auxiliary boiler;
- VOC emissions would be controlled to 2.0 ppmvd with the use of good combustion practices;
- CO emissions would be controlled to 2.0 ppmvd for the combined cycle unit and duct burner, 4.0 ppmvd for the simple cycle units, and 50 ppmvd corrected to 3 percent oxygen for the auxiliary boiler;
- PM10/PM2.5 emissions would be limited to 9.5 lbs/hr for the combined cycle unit and 5.0 lbs/hr for each of the simple cycle units;
- SOx emissions would be based on emission factor of 0.6 lb/mmscf (SCAQMD 2013b);
- Maximum annual operating emissions from the combined cycle unit would be based on 5,056 hours of full load operation, plus 200 hours including a startup, and 200 hours including a shutdown; and
- Maximum annual operating emissions from each simple cycle Trent 60 unit would be based on 3,840 hours of full load operation, plus 480 hours including a startup, and 480 hours including a shutdown.

AIR QUALITY Table 9 lists the maximum hourly emissions from the proposed new units estimated by the facility owner and the district. Emissions for NOx, CO, and VOC during startup and shutdown events would have higher emissions than during normal operation. The GE 7FA turbine would have two types of startups: fast start and traditional. The traditional startup would take 60 minutes and a fast start would take 30 minutes. The worst case hourly NOx emissions from the GE 7FA turbine would be during traditional startups; the worst case hourly CO and VOC emissions would be during shutdown hours. For the Trent 60 turbines, there could be an hour when both a startup and shutdown occur. For such hours, there would be 30 minutes of elevated emissions due to the startup, 10 minutes of normal operation, and 20 minutes of elevated emissions due to shutdown. Since PM10/PM2.5 and SOx emissions are proportional to fuel use, PM10/PM2.5 and SOx have higher emissions rates during full-load operation. Therefore the maximum hourly PM10/PM2.5 and SOx emissions are based on each turbine operating at full load with the duct burner firing for the combined cycle train’s heat recovery steam generator. The worst case hourly emissions of the auxiliary boiler are based on operations at 100 percent load.

\(^1\) The PDOC shows the NOx BACT for the auxiliary boiler is 5 ppmvd. In the comment letter to the district (LL 2014d), the facility owner suggested the BACT level should be corrected to 9 ppmvd. The facility owner is working with the district and the vendor to ensure that the correct BACT is included. The limit may change in the FDOC and FSA.
AIR QUALITY Table 9
Maximum Hourly Emissions Rates during Routine Operation (pounds per hour [lbs/hr])

<table>
<thead>
<tr>
<th>Source</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10/PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE 7FA Turbine (Unit 9)</td>
<td>62.3</td>
<td>322.0</td>
<td>34.6</td>
<td>1.3</td>
<td>9.5</td>
</tr>
<tr>
<td>Duct Burner</td>
<td>2.0</td>
<td>1.2</td>
<td>0.7</td>
<td>0.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Trent 60 Turbine (Unit 11)</td>
<td>35.9</td>
<td>148.3</td>
<td>11.6</td>
<td>0.3</td>
<td>5.0</td>
</tr>
<tr>
<td>Trent 60 Turbine (Unit 12)</td>
<td>35.9</td>
<td>148.3</td>
<td>11.6</td>
<td>0.3</td>
<td>5.0</td>
</tr>
<tr>
<td>Auxiliary Boiler</td>
<td>0.4</td>
<td>1.3</td>
<td>0.1</td>
<td>0.02</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>136.4</td>
<td>621.1</td>
<td>58.7</td>
<td>2.0</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Source: NRG 2013a, LL 2013e, LL 2013h, SCAQMD 2013b, and Energy Commission staff analysis

AIR QUALITY Table 10 lists the maximum daily emissions of the proposed new units at ESEC. The maximum daily emissions for the GE 7FA turbine are estimated based on 1 fast start hour, 1 traditional startup hour, 2 shutdown hours, and 20 normal operating hours. The maximum daily emissions for each Trent 60 turbine are estimated based on 4 startup hours, 4 shutdown hours, and 16 normal operating hours. The maximum daily emissions for the duct burner are based on 30 day average of the monthly emissions, which are based on 730 hours of operation per month (SCAQMD 2013b).

AIR QUALITY Table 11 lists maximum potential annual emissions from the proposed new units during a non-commissioning year. The maximum annual emissions from the GE 7FA turbine are based on 5,056 hours of full load operation, 150 fast start hours, 50 traditional startup hours, and 200 shutdown hours. The maximum annual emissions of the duct burner are based on 5,456 hours of operation per year. The maximum annual emissions from each Trent 60 turbine are based on 3,840 hours of full load operation, 480 startup hours, and 480 shutdown hours.

AIR QUALITY Table 10
Maximum Daily Emissions during Routine Operation (pounds per day [lbs/day])

<table>
<thead>
<tr>
<th>Source</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10/PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE 7FA Turbine (Unit 9)</td>
<td>536.1</td>
<td>1,308.8</td>
<td>232.8</td>
<td>28.3</td>
<td>228</td>
</tr>
<tr>
<td>Duct Burner</td>
<td>48.7</td>
<td>29.7</td>
<td>17.0</td>
<td>3.8</td>
<td>42.8</td>
</tr>
<tr>
<td>Trent 60 Turbine (Unit 11)</td>
<td>239.2</td>
<td>686.1</td>
<td>73.1</td>
<td>6.9</td>
<td>120</td>
</tr>
<tr>
<td>Trent 60 Turbine (Unit 12)</td>
<td>239.2</td>
<td>686.1</td>
<td>73.1</td>
<td>6.9</td>
<td>120</td>
</tr>
<tr>
<td>Auxiliary Boiler a</td>
<td>1.4</td>
<td>8.2</td>
<td>0.6</td>
<td>0.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Total</td>
<td>1,064.6</td>
<td>2,719.5</td>
<td>396.4</td>
<td>47.2</td>
<td>512.4</td>
</tr>
</tbody>
</table>

Source: SCAQMD 2013b
Note: a The auxiliary boiler operates at 25% load when Unit 9 is not operating. The auxiliary boiler does not operate at all when Unit 9 is operating, except for the first 20 minutes of startup, when it operates at 100% load. The PDOC assumed that the auxiliary boiler would operate at 100% load for 20 minutes (0.33 hours) and 25% load for the remainder of the day (23.67 hours).
AIR QUALITY Table 11
Maximum Annual Emissions during Routine Operation (tons per year [tpy])

<table>
<thead>
<tr>
<th>Source</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10/PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE 7FA Turbine (Unit 9)</td>
<td>53.4</td>
<td>78.6</td>
<td>20.9</td>
<td>3.3</td>
<td>25.9</td>
</tr>
<tr>
<td>Duct Burner</td>
<td>5.5</td>
<td>3.3</td>
<td>1.9</td>
<td>0.4</td>
<td>4.8</td>
</tr>
<tr>
<td>Trent 60 Turbine (Unit 11)</td>
<td>18.9</td>
<td>45.6</td>
<td>5.7</td>
<td>0.7</td>
<td>12</td>
</tr>
<tr>
<td>Trent 60 Turbine (Unit 12)</td>
<td>18.9</td>
<td>45.6</td>
<td>5.7</td>
<td>0.7</td>
<td>12</td>
</tr>
<tr>
<td>Auxiliary Boiler<sup>a</sup></td>
<td>0.3</td>
<td>1.5</td>
<td>0.1</td>
<td>0.02</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>97.0</td>
<td>174.8</td>
<td>34.2</td>
<td>5.3</td>
<td>55.0</td>
</tr>
</tbody>
</table>

Source: SCAQMD 2013b
Note: * The PDOC assumed that the auxiliary boiler would operate at 100% load for 20 minutes (0.33 hours) and 25% load for the remainder of the day (23.67 hours) under worst conditions. The annual emissions of the auxiliary boiler are based on the conservative assumption that the auxiliary boiler would have maximum daily emissions for every day (365 days) of the year.

Ammonia Emissions

Ammonia (NH₃) is injected into the flue gas stream as part of the SCR system that controls NOx emissions. In the presence of the catalyst, the ammonia and NOx react to form harmless elemental nitrogen and water vapor. However, not all of the ammonia reacts with the flue gases to reduce NOx; a portion of the ammonia passes through the SCR and is emitted unaltered from the stacks. These ammonia emissions are known as ammonia slip.

SCAQMD requires a maximum ammonia slip rate of 5 ppmvd at 15 percent oxygen (SCAQMD 2013b). The facility owner expects the ammonia slip rate from the SCRs of the GE 7FA combined cycle and Trent 60 turbines would not exceed the 5 ppmvd limit. Energy Commission staff notes that control systems can be operated and maintained to routinely achieve less than 5 ppmvd, as established in the Guidance for Power Plant Siting (ARB 1999). Staff recommends that the Energy Commission impose a 5 ppmvd emissions limit on all proposed turbines.

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

METHOD AND THRESHOLD FOR DETERMINING SIGNIFICANCE

Staff characterizes air quality impacts as follows: All project emissions of nonattainment criteria pollutants and their precursors (NOx, VOC, PM10, PM2.5, and SOx) are considered significant and must be mitigated. For short-term construction activities that essentially cease before operation of the power plant, our assessment is qualitative and mitigation consists of controlling construction equipment tailpipe emissions and fugitive dust emissions to the maximum extent feasible. For operating emissions, mitigation includes both the Best Available Control Technology (BACT) and emission reduction credits (ERC) or other valid emission reductions to mitigate emissions of both nonattainment criteria pollutants and their precursors.

The ambient air quality standards used by staff as the basis for characterizing project impacts are health-based standards established by the ARB and U.S. EPA. They are
set at levels that contain a margin of safety to adequately protect the health of all people, including those most sensitive to adverse air quality impacts such as the elderly, persons with existing illnesses, children, and infants.

DIRECT/INDIRECT IMPACTS AND MITIGATION

Ambient air quality impacts occur when project emissions cause the ambient concentration of a pollutant to increase. Project-related emissions are the actual mass of emitted pollutants, which are diluted in the atmosphere before reaching the ground. Analysis begins with quantifying the emissions, and then uses an atmospheric dispersion model to determine the probable change in ground-level concentrations due to the project.

Dispersion models complete the complex, repeated calculations that consider emissions in the context of various ambient meteorological conditions, local terrain, and nearby structures that affect air flow. The district provided ESEC a meteorological data set for use in the dispersion modeling. The data set combined the hourly surface meteorological data (e.g. wind speed and direction, temperature) measured at the LAX monitoring station during five years (2005-2009) and the upper air data from the Marine Corps Air Station Miramar (MCAS Miramar) in San Diego. The use of upper air data from San Diego is acceptable because these data represent large-scale effects and as such, these data are measured only at a few locations in California.

The facility owner conducted air dispersion modeling based on guidance presented in the *Guideline on Air Quality Models* (40 CFR Part 51, Appendix W) and the American Meteorological Society/Environmental Protection Agency Regulatory Model known as AERMOD (version 12345). The U.S. EPA designates AERMOD as a “preferred” model for refined modeling in all types of terrain. For determining NO₂ short-term impacts (1-hour averaging period), the facility owner used the Ozone Limiting Method (OLM) option of AERMOD to account for the reaction between nitric oxide (NO) and ozone to form NO₂. The district provided hourly ozone measurements at the LAX monitoring station during the same five years of the meteorological data to support the OLM calculations.

Project-related modeled concentrations are then added to highest background concentrations to arrive at the total impact of the project even if they are not likely to occur at the same time. The total impact is then compared with the ambient air quality standards for each pollutant to determine whether the project’s emissions would either cause a new violation of the ambient air quality standards or contribute to an existing violation.

The federal 1-hour NO₂ standard is statistically based (i.e., the three year average of the 98th percentile of 1-hour daily maximum concentration cannot exceed the applicable limit). In order to demonstrate compliance with this standard, the modeled impacts from the project were added to seasonal hour-of-day background concentrations (defined as the three year average of the third-highest concentrations for each hour of the day and season) conservatively derived from the measured ambient background levels. The resulting impacts were then evaluated following U.S. EPA guidance to demonstrate
construction impacts and mitigation

This section discusses the direct construction (including decommissioning and demolition of the Units 3 and 4) ambient air quality impacts of the proposed facility modifications assessed by the facility owner and, as necessary, independently assessed by Energy Commission staff. The ambient air quality impacts are modeled using AERMOD (version 12345).

The facility owner provided the 1-hour NO$_2$ (state and federal), PM10, and PM2.5 impacts analysis accounting for the overlap of the construction phase and the operation of Units 5 and 7. Staff did an additional analysis for other pollutants and averaging periods by adding Units 5 and 7 in the construction impact analysis. Staff noticed that the contribution from existing Units 5 and 7 to the maximum construction impacts is negligible because the maximum impacts from Units 5 and 7 and from the construction emission sources do not overlap with each other.

AIR QUALITY Table 12 summarizes the results of the modeling analysis for construction activities. The total impact is the sum of the existing background condition plus the maximum impact predicted by the modeling analysis for construction activity, except for the 24-hour PM2.5 standard and 1-hour NO$_2$ standards. The values in bold in the Total Impact and Background columns represent the values that either equal or exceed the relevant ambient air quality standard.

Staff believes that particulate matter emissions from construction would cause a significant impact because they would contribute to existing violations of PM10 and PM2.5 ambient air quality standards, and additionally that those emissions can and should be mitigated to a level of insignificance. Significant secondary impacts would also occur for PM10, PM2.5, and ozone because construction-phase emissions of particulate matter precursors (including SOx) and ozone precursors (NOx and VOC) would also contribute to existing violations of these standards. The direct impacts of NO$_2$, in conjunction with worst-case background conditions, would not create a new violation of the current annual or state 1-hour NO$_2$ ambient air quality standard.

The federal 24-hour PM2.5 and federal 1-hour NO$_2$ standards are based on three-year average of 98th percentile daily maximum values. The construction phase would only take 26 months, followed by 4 months of commissioning and then normal operations. The facility owner provided maximum impacts during the peak construction phase, as well as maximum impacts during commissioning and normal operations. Since the federal 24-hour PM2.5 and federal 1-hour NO$_2$ standards are based on three year averages, staff did its own analysis by computing the three year weighted average of the modeled impacts according to the length of each phase during the three consecutive year period (i.e. 26 months of construction, 4 months of commissioning, and 6 months of normal operations). The approach still conservatively estimates the impacts because the air dispersion model assumes worst case emissions occur every hour of the modeling period. The impacts based on staff’s own analysis as shown AIR QUALITY Table 12 would not create a new violation of the current federal 24-hour
PM2.5 and federal 1-hour NO₂ standards. Staff does not expect the proposed facility modifications to have a significant impact for both the federal 24-hour PM2.5 and federal 1-hour NO₂ standards due to limited peak construction period compared to the three year averaging period for these standards.

AIR QUALITY Table 12

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Modeled Impact</th>
<th>Background</th>
<th>Total Impact</th>
<th>Limiting Standard</th>
<th>Percent of Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>24-hour</td>
<td>8.0</td>
<td>52</td>
<td>60.0</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>1.5</td>
<td>25.6</td>
<td>27.1</td>
<td>20</td>
<td>135</td>
</tr>
<tr>
<td>PM2.5</td>
<td>24-hour</td>
<td>3.9</td>
<td>30.4</td>
<td>34.3</td>
<td>35</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>1.2</td>
<td>13</td>
<td>14.2</td>
<td>12</td>
<td>118</td>
</tr>
<tr>
<td>CO</td>
<td>1-hour</td>
<td>810.9</td>
<td>2,990</td>
<td>3,801</td>
<td>23,000</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>313.3</td>
<td>2,519</td>
<td>2,832</td>
<td>10,000</td>
<td>28</td>
</tr>
<tr>
<td>NO₂</td>
<td>State 1-hour</td>
<td>-</td>
<td>-</td>
<td>245.4</td>
<td>339</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Federal 1-hour</td>
<td>-</td>
<td>-</td>
<td>185.4</td>
<td>188</td>
<td>99</td>
</tr>
<tr>
<td>SO₂</td>
<td>1-hour</td>
<td>1.6</td>
<td>68.1</td>
<td>69.7</td>
<td>196</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>0.8</td>
<td>39.3</td>
<td>40.1</td>
<td>1300</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.2</td>
<td>15.7</td>
<td>15.9</td>
<td>105</td>
<td>15</td>
</tr>
</tbody>
</table>

Source: LL 2014a and Energy Commission staff analysis

Notes:

* The 24-hour PM2.5 and federal 1-hour NO₂ standards are based on 3-year average of 98th percentile daily maximum values. Staff did its own analysis by computing the three year weighted average of the modeled impacts according to the length of each phase of the first three consecutive year period (i.e. 26 months of construction, 4 months of commissioning, and 6 months of normal operations).

* Total concentration for 1-hour NO₂ is the highest value of the sum of the modeled impact plus the corresponding ambient background concentration for that time of day. OLM option in AERMOD with assumption of the in-stack NO₂/NOx ratio of 0.2 was used to compute the construction impacts.

The direct impacts of CO and SO₂ would not be significant because construction of the proposed facility modifications would neither cause nor contribute to a violation of these standards. Mitigation for construction emissions of PM10, PM2.5, SOx, NOx, and VOC would be appropriate for reducing impacts to PM10, PM2.5, NO₂, and ozone.

Construction Mitigation

The facility owner proposes the following mitigation measures to reduce the exhaust emissions from the diesel heavy equipment and fugitive dust emissions during the construction of the proposed project modifications (NRG 2013a):

- Unpaved roads and disturbed areas in the project construction site will be watered as frequently as necessary to prevent fugitive dust plumes. The frequency of watering can be reduced or eliminated during periods of precipitation.
- The vehicle speed limit will be 15 miles per hour within the construction site.
- The construction site entrances shall be posted with visible speed limit signs.
• Construction equipment vehicle tires will be inspected and washed as necessary to be cleaned free of dirt prior to entering paved roadways.
• Gravel ramps of at least 20 feet in length will be provided at the tire washing/cleaning station.
• Unpaved exits from the construction site will be graveled or treated to prevent track-out to public roadways.
• Construction vehicles will enter the construction site through the treated entrance roadways, unless an alternative route has been submitted to and approved by the Compliance Project Manager.
• Construction areas adjacent to any paved roadway will be provided with sandbags or other measures as specified in the Storm Water Pollution Prevention Plan (SWPPP) to prevent run-off to roadways.
• Paved roads within the construction site will be swept at least twice daily (or less during periods of precipitation) on days when construction activity occurs to prevent the accumulation of dirt and debris.
• At least the first 500 feet of any public roadway exiting from the construction site shall be swept at least twice daily (or less during periods of precipitation) on days when construction activity occurs or on any other day when dirt or runoff from the construction site is visible on public roadways.
• Soil storage piles and disturbed areas that remain inactive for longer than 10 days will be covered or treated with appropriate dust suppressant compounds.
• Vehicles used to transport solid bulk material on public roadways and having the potential to cause visible emissions will be provided with a cover, or the materials will be sufficiently wetted and loaded onto the trucks in a manner to provide at least one foot of freeboard.
• Wind erosion control techniques (such as windbreaks, water, chemical dust suppressants, and/or vegetation) will be used on all construction areas that may be disturbed. Any windbreaks installed to comply with this condition shall remain in place until the soil is stabilized or permanently covered with vegetation.

Adequacy of Proposed Mitigation
Staff generally concurs with the facility owner’s proposed mitigation measures, which mirror many of the staff’s mitigation recommendations from previous siting cases. But staff has been proposing additional fugitive dust mitigation, such as requiring the use of soil binders or paving to reduce emissions on unpaved roads, considered necessary to reduce the high fugitive dust emission potential during construction. Staff incorporates off-road equipment mitigation measures beyond those proposed by the facility owner to fully implement current staff recommendations.

Staff Proposed Mitigation
Additional measures recommended by staff would reduce construction-phase impacts to a less than significant level by further limiting construction emissions of particulate matter and combustion contaminants. Staff believes that the short-term and variable
nature of construction activities warrants a qualitative approach to mitigation. Construction emissions and the effectiveness of mitigation varies widely depending on variable levels of activity, the specific work taking place, the specific equipment, soil conditions, weather conditions, and other factors, making precise quantification of emissions and air quality impacts difficult. Despite this uncertainty, there are a number of feasible control measures that can and should be implemented to significantly reduce construction emissions. Staff has determined that the use of oxidizing soot filters is a viable emissions control technology for all heavy diesel-powered construction equipment that does not use an ARB-certified low emission diesel engine. In addition, staff proposes that prior to beginning construction the facility owner should provide an Air Quality Construction Mitigation Plan (AQCMP) that specifically identifies mitigation measures to limit air quality impacts during construction. Staff proposes Conditions of Certification AQ-SC1 through AQ-SC4 and AQ-SC9 to implement these requirements. These conditions update the facility owner’s proposed mitigation to be consistent with the conditions of certification adopted in similar prior Energy Commission licensing cases. Compliance with these conditions is expected to greatly reduce or eliminate the potential for significant adverse air quality impacts during construction of the proposed facility modifications.

Operation Impacts and Mitigation

The following section discusses ambient air quality impacts that were estimated by the facility owner and subsequently evaluated by Energy Commission staff. The facility owner performed a number of direct impact modeling analyses for routine operations, including fumigation modeling, modeling for impacts during the commissioning activities and modeling for the whole facility.

Routine Operation Impacts

A refined dispersion modeling analysis was performed by the facility owner to identify off-site criteria pollutant impacts that would occur from routine operational emissions throughout the life of the project. The worst case 1-hour NO₂ and CO impacts are based on the worst case assumption that all three gas turbines would startup within the same hour and the auxiliary boiler would operate at 100 percent load for the first 20 minutes of startup of Unit 9 (NRG 2013a, LL 2013o). The 8-hour CO impacts are based on the assumption of one hour of startup/shutdown and seven hours of normal operation for each of the three gas turbines. SO₂ and PM impacts reflect the maximum allowable hourly emissions. Annual impacts are based on the annual emissions in AIR QUALITY Table 11. The modeled impacts are extremely conservative, since the maximum impacts are evaluated under a combination of highest allowable emission rates and the most extreme meteorological conditions, which are unlikely to occur simultaneously. Emissions rates are shown in AIR QUALITY Tables 9 to 11. The predicted maximum concentrations of criteria pollutants are summarized in AIR QUALITY Table 13. PM10 and annual PM2.5 values are shown in bold because they exceed ambient air quality standards due to high background levels.
AIR QUALITY Table 13
Routine Operation Maximum Impacts for New Units (μg/m³)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Modeled Impact</th>
<th>Background</th>
<th>Total Impact</th>
<th>Limiting Standard</th>
<th>Percent of Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>24-hour</td>
<td>1.2</td>
<td>52</td>
<td>53.2</td>
<td>50</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.3</td>
<td>25.6</td>
<td>25.9</td>
<td>20</td>
<td>129</td>
</tr>
<tr>
<td>PM2.5</td>
<td>24-hour</td>
<td>1.2</td>
<td>30.4</td>
<td>31.6</td>
<td>35</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.3</td>
<td>13</td>
<td>13.3</td>
<td>12</td>
<td>111</td>
</tr>
<tr>
<td>CO</td>
<td>1-hour</td>
<td>160</td>
<td>2,990</td>
<td>3,149</td>
<td>23,000</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>12.2</td>
<td>2,519</td>
<td>2,531</td>
<td>10,000</td>
<td>25</td>
</tr>
<tr>
<td>NO₂</td>
<td>State 1-hour</td>
<td>25.2</td>
<td>184.9</td>
<td>210.0</td>
<td>339</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Federal 1-hour</td>
<td>-</td>
<td>-</td>
<td>120.8</td>
<td>188</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.5</td>
<td>24.5</td>
<td>25.0</td>
<td>57</td>
<td>44</td>
</tr>
<tr>
<td>SO₂</td>
<td>1-hour</td>
<td>1.3</td>
<td>68.1</td>
<td>69.4</td>
<td>196</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>0.8</td>
<td>39.3</td>
<td>40.1</td>
<td>1300</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.3</td>
<td>15.7</td>
<td>16.0</td>
<td>105</td>
<td>15</td>
</tr>
</tbody>
</table>

Source: NRG 2013a, LL 2013g, LL 2013o, Energy Commission staff analysis

Note:
- Total NO₂ impact is the five-year average of the sum of the modeled 98th percentile value for each year and the Seasonal Hour-Of-Day background (defined as the three-year average of the third-highest concentrations for each hour of the day and season). OLM option in AERMOD with assumption of the in-stack NO₂/NOx ratio of 0.45 during startup/commissioning and 0.30 during normal operations for the GE 7FA turbine and 0.24 during startup/commissioning and 0.13 during normal operations for the Trent 60 turbines was used to compute the 1-hour NO₂ impacts. The NO₂/NOx ratios were based on vendor data for the GE 7FA turbine and EPA approved ratio for turbines similar to the Trent 60 turbines. The NO₂/NOx ratios were reviewed and approved by the district.

AIR QUALITY Table 13 shows that particulate matter emissions from routine operation could cause a significant impact because they will contribute to existing violations of PM10 and PM2.5 ambient air quality standards. Significant secondary impacts would also occur for PM10, PM2.5, and ozone because operational emissions of particulate matter precursors (including SOx) and ozone precursors (NOx and VOC) would also contribute to existing violations of these standards. The direct impacts of NO₂, in conjunction with worst-case background conditions, would not create a new violation of the current state or federal NO₂ ambient air quality standards. The direct impacts of CO and SO₂ would not be significant because routine operation of the proposed facility modifications would neither cause nor contribute to a violation of these standards. Mitigation for emissions of PM10, PM2.5, SOx, NOx, and VOC would be appropriate for reducing impacts to PM10, PM2.5, NO₂, and ozone.

Secondary Pollutant Impacts

The gaseous emissions of NOx, SOx, VOC, and ammonia from the proposed facility modifications are precursor pollutants that can contribute to the formation of secondary pollutants (ozone, PM10, and PM2.5). Gas-to-particulate conversion in ambient air involves complex chemical and physical processes that depend on many factors, including local humidity, pollutant travel time, and the presence of other compounds. Currently, there are no agency-recommended models or procedures for estimating secondary pollutant ozone or particulate nitrate or sulfate formation from a single project or source. However, because of the known relationships of NOx and VOC to form...
ozone and of NOx, SOx, and ammonia emissions to form secondary PM10 and PM2.5, it can be said that unmitigated emissions of these pollutants would contribute to higher ozone and PM10/PM2.5 levels in the region. Mitigating SOx and NOx emissions would both avoid significant secondary PM10/PM2.5 impacts and reduce secondary pollutant impacts to a less than significant level.

Ammonia (NH₃) is a particulate precursor but not a criteria pollutant because there is no air quality standard for ammonia. Reactive with sulfur and nitrogen compounds, ammonia can be found from natural sources, agricultural sources, and as a byproduct of tailpipe controls on motor vehicles and stack controls on power plants.

Energy Commission staff recommends limiting ammonia slip emissions to the maximum extent feasible. This level of control is appropriate for avoiding unnecessary ammonia emissions, consistent with staff policy to reduce emissions of all nonattainment pollutant precursors to the lowest feasible levels. Consistent with the district’s requirement on the ammonia slip rate (SCAQMD 2013b), staff recommends an ammonia slip limit of 5 ppmvd at 15 percent oxygen.

Fumigation Impacts

There is the potential that higher short-term concentrations of pollutants may occur during fumigation conditions. Inversion breakup fumigation occurs when a plume is emitted into a stable layer of air and that layer is then mixed to the ground in a short period of time through convective heating and microscale turbulence. Shoreline fumigation occurs when a plume is emitted into a stable layer of air and is then mixed to the surface as a result of advection of the air mass to less stable surroundings. Under both conditions, an exhaust plume may be drawn to the ground with little diffusion, causing high ground-level pollutant concentrations.

Fumigation conditions are generally short-term in nature and impacts are only compared to short-term standards. The facility owner analyzed the air quality impacts during startup/shutdown hours and normal operating hours under fumigation conditions using the EPA SCREEN3 Model (NRG 2013a and accompanying modeling CD). For comparison, the same operating scenario identified in the operational impact analysis is considered for fumigation. Staff did a conservative analysis by assuming all the proposed three turbines would startup/shutdown during the same hour under fumigation conditions and the maximum impacts would overlap at the same time and place. The short-term worst case impacts from the proposed facility modifications during either inversion breakup fumigation or shoreline fumigation are shown in **AIR QUALITY Table 14**. Impacts from the whole facility (including existing Units 5-8 and proposed new units) are shown in **AIR QUALITY Table 16**. Although the short-term concentrations of CO, NO₂, SO₂, and 24-hour PM2.5 are higher than those in routine operation, the project impacts combined with the background concentrations do not exceed the ambient air quality standards. The 24-hour PM10 fumigation impact would contribute to existing violations of the 24-hour PM10 standard. Since the fumigation does not occur on a regular basis, the statistically based federal 1-hour NO₂ standard is not applicable in this case.
AIR QUALITY Table 14
Operation Fumigation Impacts for New Units (μg/m³)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Modeled Impact</th>
<th>Background</th>
<th>Total Impact</th>
<th>Limiting Standard</th>
<th>Percent of Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>24-hour</td>
<td>1.4</td>
<td>52</td>
<td>53.4</td>
<td>50</td>
<td>107</td>
</tr>
<tr>
<td>PM2.5</td>
<td>24-hour</td>
<td>1.4</td>
<td>30.4</td>
<td>31.8</td>
<td>35</td>
<td>91</td>
</tr>
<tr>
<td>CO</td>
<td>1-hour</td>
<td>819.1</td>
<td>2,990</td>
<td>3,809</td>
<td>23,000</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>178.8</td>
<td>2,519</td>
<td>2,698</td>
<td>10,000</td>
<td>27</td>
</tr>
<tr>
<td>NO₂</td>
<td>State 1-hour</td>
<td>135.9</td>
<td>184.9</td>
<td>320.8</td>
<td>339</td>
<td>95</td>
</tr>
<tr>
<td>SO₂</td>
<td>1-hour</td>
<td>6.6</td>
<td>68.1</td>
<td>74.7</td>
<td>196</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>3.4</td>
<td>39.3</td>
<td>42.7</td>
<td>1300</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.5</td>
<td>15.7</td>
<td>16.2</td>
<td>105</td>
<td>15</td>
</tr>
</tbody>
</table>

Source: NRG 2013a with accompanying modeling CD, Energy Commission staff analysis

Note: a Staff conservatively assumed all the three turbines would startup/shutdown during the same hour under fumigation conditions and the maximum impacts would overlap at the same place.

Commissioning-Phase Impacts
Commissioning impacts would occur over a short-term period. The commissioning of the proposed new units is expected to be completed within 4 months. The maximum hourly and total commissioning emissions estimates are shown in AIR QUALITY Table 8.

It was assumed that the maximum short-term NO₂ and CO impacts would occur if all three turbines were simultaneously undergoing commissioning activities with the maximum hourly emissions. Since federal 1-hour NO₂ standard is expressed as a 3-year average of the 98th percentile of the daily maximum 1-hour concentration, it is not applicable to the short commissioning phase. Staff does not expect commissioning would have significant impact due to the very limited commissioning period compared to the 3-year averaging time used for the standard. The project owner also conducted a modeling analysis to evaluate the annual NO₂ standard, which is based on project owner’s estimate of the emissions during the first year that includes commissioning and normal operations (LL 2013g). Impacts due to PM10, PM2.5, and SO₂ during commissioning would occur under similar exhaust conditions as those for startup while in routine operation because these emissions are proportional to fuel use. As a result, the SO₂, PM10, and PM2.5 impacts from the commissioning would be the same as those from normal operation shown in AIR QUALITY Table 13.

AIR QUALITY Table 15 shows that the commissioning-phase emissions would not cause new exceedances of any state or federal air quality standard. The PM10 and PM2.5 emissions from commissioning would contribute to existing violations of ambient air quality standards due to the high background concentrations.
AIR QUALITY Table 15
Commissioning-Phase Maximum Impacts for New Units (μg/m³)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Modeled Impact</th>
<th>Background</th>
<th>Total Impact</th>
<th>Limiting Standard</th>
<th>Percent of Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>24-hour</td>
<td>a</td>
<td>52</td>
<td>-</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>a</td>
<td>25.6</td>
<td>-</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>PM2.5</td>
<td>24-hour</td>
<td>a</td>
<td>30.4</td>
<td>-</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>a</td>
<td>13</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>CO</td>
<td>1-hour</td>
<td>165.4</td>
<td>2,990</td>
<td>3,155</td>
<td>23,000</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>117.3</td>
<td>2,519</td>
<td>2,636</td>
<td>10,000</td>
<td>26</td>
</tr>
<tr>
<td>NO₂</td>
<td>State 1-hour</td>
<td>53.0<sup>c</sup></td>
<td>184.9</td>
<td>237.9</td>
<td>339</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Federal 1-hour</td>
<td>b</td>
<td>122.6</td>
<td>-</td>
<td>188</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.5</td>
<td>24.5</td>
<td>25.0</td>
<td>57</td>
<td>44</td>
</tr>
<tr>
<td>SO₂</td>
<td>1-hour</td>
<td>a</td>
<td>68.1</td>
<td>-</td>
<td>196</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>a</td>
<td>39.3</td>
<td>-</td>
<td>1300</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>a</td>
<td>15.7</td>
<td>-</td>
<td>105</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: LL 2013g and Energy Commission staff analysis
Notes:
^a Not applicable, because emissions for this pollutant/averaging period are not elevated above normal levels during commissioning.
^b Not applicable, because commissioning is expected to finish within 4 months and is thus not applicable to the form of the federal 1-hour NO₂ standard.
^c OLM option in AERMOD with assumption of the in-stack NO₂/NOx ratio of 0.45 during startup/commissioning and 0.30 during normal operations for the GE 7FA turbine and 0.24 during startup/commissioning and 0.13 during normal operations for the Trent 60 turbines was used to compute the 1-hour NO₂ impacts. The NO₂/NOx ratios were based on vendor data for the GE 7FA turbine and EPA approved ratio for turbines similar to the Trent 60 turbines. The NO₂/NOx ratios were reviewed and approved by the district.

Impacts for Entire Facility

The facility owner provided a modeling analysis of the impacts of the entire ESEC facility with the approved combined-cycle Units 5 and 7 and proposed new units. The facility owner evaluated the worst case impacts from the entire facility for routine operations, including modeling for impacts during startups/shutdowns, fumigation modeling, and modeling for impacts during the commissioning activities. Based on the facility owner’s fumigation modeling, staff did a conservative fumigation analysis by assuming all the proposed new turbines would startup/shutdown during the same hour with Units 5 and 7 under normal operating conditions and the maximum impacts would overlap at the same place. AIR QUALITY Table 16 shows the worst case impacts from the entire facility for routine operations based on facility owner’s modeling analysis and staff’s conservative assumptions.

AIR QUALITY Table 16 shows that the emissions from the entire facility during routine operations would not cause new exceedances of any state or federal air quality standard. The PM10 and PM2.5 emissions from the entire facility would contribute to
existing violations of ambient air quality standards due to the high background concentrations.

AIR QUALITY Table 16
Maximum Impacts for Entire Facility (μg/m³)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Modeled Impact</th>
<th>Background</th>
<th>Total Impact</th>
<th>Limiting Standard</th>
<th>Percent of Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>24-hour</td>
<td>1.9<sup>a</sup></td>
<td>52</td>
<td>53.9</td>
<td>50</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.4</td>
<td>25.6</td>
<td>26.0</td>
<td>20</td>
<td>130</td>
</tr>
<tr>
<td>PM2.5</td>
<td>24-hour</td>
<td>1.9<sup>a</sup></td>
<td>30.4</td>
<td>32.3</td>
<td>35</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.4</td>
<td>13</td>
<td>13.4</td>
<td>12</td>
<td>112</td>
</tr>
<tr>
<td>CO</td>
<td>1-hour</td>
<td>829.0<sup>a</sup></td>
<td>2,990</td>
<td>3,819</td>
<td>23,000</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>8-hour</td>
<td>195.0<sup>b</sup></td>
<td>2,519</td>
<td>2,714</td>
<td>10,000</td>
<td>27</td>
</tr>
<tr>
<td>NO₂</td>
<td>State 1-hour</td>
<td>146.7<sup>a</sup></td>
<td>184.9</td>
<td>331.6</td>
<td>339</td>
<td>98</td>
</tr>
<tr>
<td>NO₂</td>
<td>Federal 1-hour</td>
<td>32.7<sup>c</sup></td>
<td>122.6</td>
<td>130.5<sup>d</sup></td>
<td>188</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.6</td>
<td>24.5</td>
<td>25.1</td>
<td>57</td>
<td>44</td>
</tr>
<tr>
<td>SO₂</td>
<td>1-hour</td>
<td>9.7<sup>a</sup></td>
<td>68.1</td>
<td>77.8</td>
<td>196</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>4.2<sup>a</sup></td>
<td>39.3</td>
<td>43.5</td>
<td>1300</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>0.7</td>
<td>15.7</td>
<td>16.4</td>
<td>105</td>
<td>16</td>
</tr>
</tbody>
</table>

Source: NRG 2013a, LL 2013g and Energy Commission staff analysis

Notes:
- Maximum impacts occur under fumigation conditions. Staff conservatively assumed all the proposed new turbines would startup/shutdown during the same hour with Units 5 and 7 under normal operating conditions and the maximum impacts would overlap at the same place.
- Maximum impacts occur when Units 9, 11, and 12 are under commissioning conditions and Units 5 and 7 are under startup conditions.
- Maximum impacts occur when Units 5, 7, 9, 11, and 12 are all under startup conditions. OLM option in AERMOD with assumption of the in-stack NOₓ/NOx ratio of 0.45 during startup/commissioning and 0.30 during normal operations for the GE 7FA turbine and 0.24 during startup/commissioning and 0.13 during normal operations for the Trent 60 turbines was used to compute the 1-hour NO₂ impacts. The NO₂/NOx ratios were based on vendor data for the GE 7FA turbine and EPA approved ratio for turbines similar to the Trent 60 turbines. The NO₂/NOx ratios were reviewed and approved by the district.
- Total NO₂ impact is the five-year maximum of the sum of the modeled 98th percentile value for each year and the Seasonal Hour-Of-Day background (defined as the three-year average of the third-highest concentrations for each hour of the day and season).

Mitigation for Routine Operation

Facility owner’s Proposed Mitigation

The facility owner proposes a combination of BACT and emission reduction credits to mitigate air quality impacts. The equipment description, equipment operation, and emission control devices are provided in Project Description and Proposed Emissions (above).
Emission Controls

ESEC proposes the use of dry low NOx combustors with SCR to control NOx to 2.0 ppmvd (1-hour average) for the GE 7FA turbine with and without duct burning and 2.5 ppmvd (1-hour average) for the Trent 60 turbines. ESEC proposes the use of Ultra-Low-NOx burner and Flue Gas Recirculation (FGR) to control NOx to 9 ppmvd\(^2\) (15-minute average) for the auxiliary boiler. The BACT for CO emissions is best combustion design and the installation of the oxidation catalyst system to reduce CO to 2.0 ppmvd (1-hour average) for the GE 7FA turbine with and without duct burning and and 4.0 ppmvd (1-hour average) for the Trent 60 turbines. The BACT for CO emissions of the auxiliary boiler is good combustion practices to control CO to 50 ppmvd (15-minute average). The BACT for VOC emissions is best combustion practices and the installation of an oxidation catalyst system to control VOC emissions to 2.0 ppmvd (1-hour average) for the GE 7FA turbine and Trent 60 turbines. The use of good combustion practices for VOC control is BACT for the auxiliary boiler. Best combustion practice and use of pipeline-quality natural gas limit PM10/PM2.5 emissions to 9.5 lbs/hr for the GE 7FA turbine and 5.0 lbs/hr for the Trent 60 turbines. The use of pipeline quality natural gas is the BACT for PM10/PM2.5 emissions of the auxiliary boiler. Operating exclusively on low sulfur pipeline quality natural gas with a maximum fuel sulfur content of 0.75 grains/100 scf is the BACT for SOx.

Emission Offsets

District Rule 1303(b)(2) requires that all increases in emissions be offset unless exempt from per 100 standard cubic feet limits SO\(_2\) emissions offset requirements pursuant to district Rule 1304, as described next.

District Rule 1304(a)(2) – Electric Utility Steam Boiler Replacement states that if the electric utility boilers are replaced by combined cycle gas turbines, intercooled, or other advanced gas turbines, the project will be exempt from emission offset requirements unless there is a basin-wide electricity generation capacity increase on a per-utility basis. If there is an increase in basin-wide capacity, only the increased capacity must be offset. The proposed combined cycle generating system complies with this rule. The two Trent 60 gas turbines are simple cycle gas turbines and only comply if they are deemed to be advanced gas turbines. SCAQMD Rule 1135 defines advance combustion sources as those which emit NOx at no greater than 0.10 lb/net MWh on a daily average basis, excluding commissioning, start-up and shutdown periods, if the source is located within the South Coast Air Basin. The Preliminary Determination of Compliance (PDOC) shows the proposed Trent 60 simple cycle gas turbines would emit 0.091 lb/net MWh under baseload conditions. Therefore, the two Trent 60 simple cycle gas turbines qualify as advanced gas turbines, and replacement of Boilers 3 and 4 with Trent 60 simple cycle gas turbines is allowed by Rule 1304(a)(2) and qualifies for the exemption.

\(^2\) The PDOC shows the NOx BACT for the auxiliary boiler is 5 ppmvd. In the comment letter to the district (LL 2014d), the facility owner suggested the BACT level should be corrected to 9 ppmvd. The facility owner is working with the district and the vendor to ensure that the correct BACT is included. The limit may change in the FDOC and FSA.
The language of this exemption allows for exemptions from offset and modeling normally required if the in-basin megawatt capacity of the utility receiving the facility’s energy does not increase. The purpose was to facilitate the removal of older and less efficient boiler/steam turbine technology with cleaner gas turbine technology at the utilities. Since the advent of RECLAIM, the exemption was expanded to include modifications conducted for compliance with Regulation XX rules.

The GE 7FA has a combined power rating of 334 gross megawatts. The PDOC shows the Trent 60 turbines have a combined power rating of 112 gross megawatts at 78 degrees Fahrenheit (°F). The PDOC shows the total power generating capacity from the proposed new power generating system would be 447 MW. Boiler #3 was retired from service with 112 MW of unused credits. The PDOC states that these credits will be combined with the 335 MW from the permanent retirement of Boiler #4 for a total of 447 MW which will exempt the facility from the offsets and modeling requirements normally required.

However, staff noticed the PDOC is not consistent regarding the total output from the two Trent 60 turbines. The PDOC shows each Trent 60 simple cycle turbine has rating of 57.4 gross MW. Based on this, the combined capacity for the two Trent 60 turbines would be 114.8 gross MW, instead of 112 MW as shown in the PDOC. Using these values, the total combined rating for all proposed new turbines would be 448.8 gross MW, instead of 447 MW as shown in PDOC. The Petition to Amend (NRG 2013a) shows the total rating for the original El Segundo Units 1 through 4 is 1,052 gross MW and 1,020 net MW; the total rating for the future Units 5 through 12 would be 1,021.8 gross MW and 995 net MW. The total rating for the future Units 5 through 12 would be less than the total rating for the original El Segundo Units 1 through 4 whether the basis for the comparison is gross MW or net MW, meaning that the requirement of Rule 1304 is met and there is no net increase in electric utility capacity. However, the district should explicitly state the basis for meeting Rule 1304 requirements, using corrected MW ratings and consistent ambient temperatures. Staff made these comments in the comment letter to the district dated January 24, 2014 (CEC 2014b).

The PDOC stated that the net megawatts increase would be zero and the new power generating system would qualify for the Rule 1304(a)(2) exemption. The facility does not have to provide emission reduction credits for VOC, SOx, and PM10 emissions of the new gas turbines. Instead, the VOC, SOx, and PM10 emissions of the new gas turbines would be fully offset from SCAQMD’s internal bank. However, the district decided that the auxiliary boiler is not exempt under Rule 1304(a)(2) and the facility owner is required to provide offsets for these emissions (SCAQMD 2013b).

District Rule 1304.1 – Electrical Generating Fee for Use of Offset Exemption requires electrical generating facilities which use the specific offset exemption described in Rule 1304(a)(2) [Electric Utility Steam Boiler Replacement] to pay fees for up to the full amount of offsets provided by the SCAQMD. ESEC would be required to demonstrate compliance with the specific requirements of this rule prior to the issuance of the Permits to Construct for the proposed facility modifications.

3 Capacity values may be updated in the FDOC and FSA.
The modified ESEC would be subject to the Regional Clean Air Incentives Market (RECLAIM) program for NOx emissions. The facility would be required to demonstrate that it holds sufficient RECLAIM Trading Credits (RTCs) to offset the annual NOx emission increase for the first year of operation using a 1-to-1 offset ratio.

AIR QUALITY Table 17 shows the California Environmental Quality Act (CEQA) mitigation that is provided for the emission impacts from the proposed facility modifications, which is based on the new source review (NSR) offsets/emissions identified in the SCAQMD PDOC (SCAQMD 2013b), the facility owner’s revised offset plan (LL 2014e), and staff’s own analysis.

As mentioned in the Energy Commission’s comment letter to the district (CEC 2014b), the PDOC is not consistent regarding the total RTC requirements in multiple locations. In AIR QUALITY Table 17, staff computed the total RTC requirements based on the RTC requirements of each new unit shown in the PDOC.

<table>
<thead>
<tr>
<th>CEQA Mitigation (30-day average lbs/day)</th>
<th>NOx (lbs/year)</th>
<th>VOC</th>
<th>PM10</th>
<th>SOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission Reduction Credits or RECLAIM Trading Credits</td>
<td>242,097 (194,049)</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1304 Exemption Credits</td>
<td>0</td>
<td>452</td>
<td>484</td>
<td>116</td>
</tr>
<tr>
<td>Total Credits</td>
<td>242,097 (194,049)</td>
<td>453</td>
<td>486</td>
<td>116</td>
</tr>
</tbody>
</table>

Source: SCAQMD 2013b, LL 2014e, and Energy Commission staff analysis

Note:
- NOx emissions for the commissioning year would be higher than non-commissioning years. All NOx emissions for both commissioning year and non-commissioning years (shown in parentheses) would be offset by RTCs.

The emissions shown in AIR QUALITY Table 18 are calculated from the maximum monthly emissions limits in the PDOC divided by 30 to produce the 30-day average lbs/day values (with the exception of NOx, which is pounds per year). Staff has found it appropriate to use the 30-day average lbs/day value for characterizing the project emission profile in the SCAQMD. That is due to the fact that the SCAQMD calculates ERCs on a 30-day lb/day average value as described below.

The project’s emissions on a 30-day average is calculated by totaling the worst case month that the project is expected to have and dividing that total by 30 to create an estimate of the 30-day averaged daily emissions. A project must obtain ERCs for the 30-day average lbs/day value. A lbs/day average based on an annual average is always going to be lower than a lbs/day average based on a worst case month for the same emitting source. Any emitting source will always have a month where it emits more pollutants than any other month, but in an annual average this peak month is washed out over the year. Thus the lbs/day ERC calculation is more conservative than the lbs/day annual average emission calculation. Therefore, for projects located in the SCAQMD, staff uses the 30-day average lbs/day value to characterize the project emissions profile when comparing it to the ERCs being offered.
The VOC, PM10, and SOx emissions offsets requirement for the auxiliary boiler are based on the 30-day average emissions multiplied by an offset ratio of 1.2:1 according to district Rule 1303. ESEC will have to provide ERCs of 1 lb/day for VOC and 2 lbs/day for PM10 as shown in AIR QUALITY Table 18. The facility owner proposes to surrender 1 lb/day of VOC from Certificate AQ006547 and 2 lbs/day of PM10 ERCs from Certificate AQ003462 to the district prior to commencing construction of the proposed facility modifications (LL 2014e).

The district’s offset requirement for the SOx emissions from the auxiliary boiler is rounded to zero lb/day. However, Energy Commission requires the SOx emissions be offset as PM precursors in PM nonattainment areas. The facility owner calculated the annual SOx emissions from the auxiliary boiler to be 55 lbs/yr (based on fuel sulfur content of 0.25 gr/100 scf and continuous operation at 25 percent load). The SOx offsets required by the district would fall short of project emissions by 55 lbs/yr.

However, the facility owner converted the district’s offset requirement of 2 lbs/day of PM10 to 730 (=2*365) lbs/yr, while the facility owner also calculated the annual PM10 emissions from the auxiliary boiler to be 587 lbs/yr (based on vendor guaranteed emission factor of 0.0075 lb/MMBtu and continuous operation at 25 percent load [LL 2014e]). The PM10 offsets required by the district would exceed project emissions by 143 (=730-587) lbs/yr of PM10. The facility owner proposes to use the 143 lbs/yr of excess PM10 offsets to meet the CEQA mitigation requirement for SOx as PM10 precursors at 1:1 ratio.

AIR QUALITY Table 18b

<table>
<thead>
<tr>
<th>Balance of Project Emissions and Mitigation (30-day average lbs/day)</th>
<th>NOx (lbs/year)a</th>
<th>VOC</th>
<th>PM10</th>
<th>SOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions from gas turbines</td>
<td>241,576 (193,528)</td>
<td>452</td>
<td>484</td>
<td>116</td>
</tr>
<tr>
<td>Emissions offsets requirement for auxiliary boiler</td>
<td>521</td>
<td>1</td>
<td>2</td>
<td>~0c</td>
</tr>
<tr>
<td>CEQA Mitigation</td>
<td>242,097 (194,049)</td>
<td>453</td>
<td>486</td>
<td>116</td>
</tr>
<tr>
<td>Further Mitigation Needed</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Source: SCAQMD 2013b, LL 2014e, and Energy Commission staff analysis
a NOx emissions for the commissioning year would be higher than non-commissioning years. All NOx emissions for both commissioning year and non-commissioning years would be offset by RTCs.
b Values subject to refinement in the FDOC and FSA.
c CEQA mitigation of SOx at 1:1 ratio as PM precursor is provided by PM10 offsets from facility owner’s Feb. 14, 2014 letter, Table 1 (LL 2014e), based upon SCAQMD offset ratio of 1.2:1 required for PM10. See more detailed discussion in the text.

As mentioned in the Energy Commission’s comment letter to the district (CEC 2014b), the PDOC is not consistent regarding the total RTC requirements in multiple locations. In AIR QUALITY Table 18, staff computes the total RTC requirements based on the RTC requirements of each new unit shown in the PDOC. However, the PDOC is also inconsistent regarding the NOx emission rate for the auxiliary boiler. The facility owner noted that the RTC requirement for the auxiliary boiler in the PDOC was based on the NOx limit of 5 ppmvd, while the vendor data is based on 9 ppmvd (LL 2014d). The facility owner is working with the district and the vendor to ensure that the appropriate
BACT level is used. The NOx limit of the auxiliary boiler and the RTC requirements may change in the FDOC and FSA.

District Rule 1325 requires a major PM2.5 facility to offset PM2.5 emissions at the offset ratio of 1.1:1. A major polluting facility is defined in the rule as a facility which has actual emissions, or a potential to emit of greater than 100 tons per year. The 2010 amended decision (CEC 2010a) limits the PM2.5 emissions of the facility to below 100 tons per year in Condition of Certification AQ-37. ESEC is not a major PM2.5 facility. Page 109 of the PDOC shows that with the addition of the GE 7FA combined cycle generating system, the two Trent 60 simple cycle gas turbines, the auxiliary boiler, and the subsequent retirement of Boilers 3 and 4, the total PM2.5 potential to emit of the facility would still be less than the 100 tons per year threshold. Therefore, ESEC would continue to be a non-major polluting facility for PM2.5 and no PM2.5 offsets are required.

Because the facility area is classified as attainment for CO, the district NSR regulations do not require ERCs for this pollutant. Staff does not require mitigation for this pollutant other than the installation of BACT and modeling to show that the proposed facility modifications do not cause or contribute to a violation of a CO ambient air quality standard.

Adequacy of Proposed Mitigation

Staff believes that the NOx RTCs are a valid mechanism to mitigate the ESPFM NOx emissions due to the extensive monitoring and reporting requirement for the RECLAIM program.

Commission staff have long recommended that mitigation be provided by projects certified by the Energy Commission to address adverse air quality impacts. Emission reductions of nonattainment pollutants and their precursors at a minimum overall one-to-one ratio of annual operating emissions can provide this mitigation. For the proposed new gas turbines, the district would provide emission offsets from its internal bank that would meet or exceed a one-to-one offset ratio for all ozone and particulate matter precursors. Staff concludes that adverse impacts are mitigated for CEQA purposes by these emissions reductions.

For the auxiliary boiler, the facility owner proposes to surrender 2 lbs/day of PM10 ERCs from Certificate AQ003462 and 1 lb/day of VOC from Certificate AQ006547 to the district prior to commencing construction of the proposed facility modifications (LL 2014e). The 2 lbs/day of PM10 ERCs, which are based upon SCAQMD offset ratio of 1.2:1, would provide CEQA mitigation of both PM10 and its precursors (SOx) at 1:1 ratio (LL 2014e).

PM2.5 emissions are not required to be offset separately from PM10 emissions. Staff notes that the annual total offsets for PM10 would fully offset PM2.5 emissions. How the offsets provide PM2.5 mitigation is discussed separately in **Secondary Pollutant Impacts** (above).
Energy Commission staff’s position since the year 2000 for CEQA mitigation in this region has been that all nonattainment pollutant and precursor emissions must be reduced by a ratio of at least one-to-one. As discussed above, the relationship of PM10/PM2.5 precursors to PM is well known, although the conversion process is complex. Staff concludes that providing CEQA mitigation at a minimum ratio of 1:1 will reduce secondary PM10/PM2.5 impacts to less than significant for the proposed facility modifications.

Staff’s evaluation of the adequacy of project mitigation was determined solely based on the merits of this case, including the district offset requirements, the project’s emission limits, the specific ERCs proposed, and ambient air quality considerations of the region, and does not in any way provide a precedence or obligation for the acceptance of offset proposals for any other current or future licensing cases.

Staff Proposed Mitigation

Staff proposes Condition of Certification AQ-SC10 to ensure that the license is amended as necessary to incorporate future changes to the air quality permits and to ensure ongoing compliance during commissioning and routine operation through quarterly reports (AQ-SC8). Staff also proposes a Condition of Certification (AQ-SC11) to ensure that the emissions of the auxiliary boiler would be mitigated with the quantity of SCAQMD offsets recommended by staff and to ensure agency consultation if substitutions are made to the credits.

Cumulative Impacts and Mitigation

“Cumulative impacts” are defined as “two or more individual effects which, when considered together, are considerable or which compound or increase other environmental impacts” (CEQA Guidelines, §15355). Such impacts can be relatively minor and incremental yet still be significant because of the existing environmental background, particularly when considering other closely related past, present, and reasonably foreseeable future projects.

Criteria pollutants have impacts that are usually (though not always) cumulative by their nature. Rarely will a project itself cause a violation of a federal or state criteria pollutant standard. However, many new sources contribute to violations of criteria pollutant standards because of elevated background conditions. Air districts attempt to reduce background criteria pollutant levels by adopting attainment plans, which are multi-faceted programmatic approaches to attainment. Attainment plans typically include new source review requirements that provide offsets and use Best Available Control Technology, combined with more stringent emissions controls on existing sources.

The discussion of cumulative air quality impacts includes the following three analyses:

- a summary of projections for criteria pollutants by the air district and the air district’s programmatic efforts to abate such pollution;
- an analysis of the project’s “localized cumulative impacts” direct emissions locally when combined with other local major emission sources; and
a discussion of greenhouse gas emissions and global climate change impacts (in AIR QUALITY APPENDIX AIR-1).

Summary of Projections
The SCAQMD is the agency with principal responsibility for analyzing and addressing cumulative air quality impacts, including the impacts of ambient ozone and particulate matter. The SCAQMD has summarized the cumulative impact of ozone and particulate matter on the air basin from the broad variety of its sources. Analyses of these cumulative impacts, as well as the measures the SCAQMD proposes to reduce impacts to air quality and public health, are summarized in four publicly available documents that the SCAQMD has adopted. These adopted air quality plans are summarized below.

- **Final 2012 Air Quality Management Plan** (adopted 12/07/2012)
 Link: http://www.aqmd.gov/aqmp/2012aqmp/index.htm

- **Final 2007 Air Quality Management Plan** (adopted 06/01/2007)
 Link: http://www.aqmd.gov/aqmp/07aqmp/index.html

- **Final Socioeconomic Report for the Final 2012 AQMP** (adopted 12/07/2012)

- **State of California’s SIP for the new federal PM2.5 and 8-hour ozone standards** (adopted July 21, 2011)

2012 Air Quality Management Plan
The following paragraphs are excerpted from the Executive Summary of the 2012 Air Quality Management Plan adopted by the SCAQMD December 7, 2012:

The SCAQMD adopted (December 7, 2012) the 2012 Air Quality Management Plan (AQMP) primarily in response to changes in the federal Clean Air Act (CAA). The CAA requires a 24-hour PM2.5 nonattainment area to prepare a State Implementation Plan (SIP) which must be submitted to U.S. EPA by December 14, 2012. The SIP must demonstrate attainment with the 24-hour PM2.5 standard by 2014, with the possibility of up to a five-year extension to 2019, if needed. U.S. EPA approval of any extension request is based on the lack of feasible control measures to move forward the attainment date by one year. The District’s attainment demonstration shows that, with implementation of all feasible controls, the earliest possible attainment date is 2014, and thus no extension of the attainment date is needed. In addition, the U.S. EPA requires that transportation conformity budgets be established based on the most recent planning assumptions (i.e., within the last five years) and approved motor vehicle emission models. The Final Plan is based on the most recent assumptions provided by both ARB and Southern California Association of Governments (SCAG) for motor vehicle emissions and demographic updates and includes updated transportation conformity budgets.

The Final 2012 AQMP outlines a comprehensive control strategy that meets the requirement for expeditious progress towards attainment with the 24-hour PM2.5 standards.
The Plan also includes specific measures to further implement the ozone strategy in the 2007 AQMP to assist attaining the 8-hour ozone standard by 2023. The control measures contained in the Final 2012 AQMP can be categorized as follows:

Basin-wide Short-term PM2.5 Measure. Measures that apply Basin-wide, have been determined to be feasible, will be implemented by the 2014 attainment date, and are required to be implemented under state and federal law. The main short-term measures are episodic, in that they only apply during high PM2.5 days and will only be implemented as needed to achieve the necessary air quality improvements.

Contingency Measures. Measures to be automatically implemented if the Basin fails to achieve the 24-hour PM2.5 standard by 2014.

8-hour Ozone Measures. Measures that provide for necessary actions to maintain progress towards meeting the 2023 8-hour ozone NAAQS, including regulatory measures, technology assessments, key investments, and incentives.

Transportation Control Measures. Measures generally designed to reduce vehicle miles travelled (VMT) as included in SCAG’s 2012 Regional Transportation Plan.

Many of the control measures proposed are not regulatory in form, but instead focus on incentives, outreach, and education to bring about emissions reductions through voluntary participation and behavioral changes needed to complement regulations.

The Basin faces several ozone and PM attainment challenges, as strategies for significant emission reductions become harder to identify and the federal standards continue to become more stringent. California’s Greenhouse Gas reductions targets under AB32 add new challenges and timelines that affect many of the same sources that emit criteria pollutants. In finding the most cost-effective and efficient path to meet multiple deadlines for multiple air quality and climate objectives, it is essential that an integrated planning approach is developed. Responsibilities for achieving these goals span all levels of government, and coordinated and consistent planning efforts among multiple government agencies are a key component of an integrated approach.

To this end, and concurrent with the development of the 2012 AQMP, the District, the Air Resources Board, and San Joaquin Valley Air Pollution Control District engaged in a joint effort to take a coordinated and integrated look at strategies needed to meet California's multiple air quality and climate goals, as well as its energy policies. California’s success in reducing smog has largely relied on technology and fuel advances, and as health-based air quality standards are tightened, the introduction of cleaner technologies must keep pace. More broadly, a transition to zero- and near-zero emission technologies is necessary to meet 2023 and 2032 air quality standards and 2050 climate goals. Many of the same technologies will address air quality, climate and energy goals. As such, strategies developed for air quality and climate change planning should be coordinated to make the most efficient use of limited resources and the time needed to develop cleaner technologies.
2007 Air Quality Management Plan

The following paragraphs are excerpted from the Executive Summary of the 2007 Air Quality Management Plan adopted by the SCAQMD June 1, 2007:

The SCAQMD adopted (June 1, 2007) the 2007 Air Quality Management Plan (AQMP) primarily in response to changes in the federal Clean Air Act (CAA). The CAA requires an 8-hour ozone non-attainment area to prepare a SIP revision by June 2007 and a PM2.5 non-attainment area to submit by April 2008. The SCAQMD has decided that it is most prudent to prepare a single comprehensive and integrated SIP revision that satisfies both the ozone and PM2.5 requirements. Additionally, the U.S. EPA requires that transportation conformity budgets be established based on the most recent planning assumptions and approved motor vehicle emission model. The AQMP is based on assumptions provided by both the California Air Resources Board (ARB) and the Southern California Association of Governments (SCAG) reflecting their upcoming model (EMFAC) for motor vehicle emissions and demographic updates.

The Final 2007 AQMP relies on a comprehensive and integrated control approach to achieve the PM2.5 standard by 2015 through implementation of short-term and mid-term control measures and achieve the 8-hour ozone standard by 2024 based on implementation of additional long-term measures. In order to demonstrate attainment by the prescribed deadlines, emission reductions needed for attainment must be in place by 2014 and 2023 timeframe.

The AQMP control measures consist of four components: 1) the District's Stationary and Mobile Source Control Measures; 2) ARB's Proposed State Strategy; 3) District Staff's Proposed Policy Options to Supplement ARB's Control Strategy; and 4) Regional Transportation Strategy and Control Measures provided by SCAG.

In order to achieve necessary reductions for meeting air quality standards, all four agencies (i.e., SCAQMD, ARB, U.S. EPA, and SCAG) would have to aggressively develop and implement control strategies through their respective plans, regulations, and alternative approaches for pollution sources within their primary jurisdiction. Even though SCAG does not have direct authority over mobile source emissions, it will commit to the emission reductions associated with implementation of the 2004 Regional Transportation Plan and 2006 Regional Transportation Improvement Program which are imbedded in the emission projections. Similarly, the Ports of Los Angeles and Long Beach have authority they must utilize to assist in the implementation of various strategies if the region is to attain clean air by federal deadlines.

Although the SCAQMD has completely met its obligations under the 2003 AQMP and stationary sources subject to the District's jurisdiction account for only 12% of NOx and 37% of SOx emissions in the Basin in 2014, the Final 2007 AQMP contains several short-term and mid-term control measures aimed at achieving further NOx and SOx reductions (as well as VOC and PM2.5 reductions) from these already regulated sources. These strategies are based on facility modernization, energy conservation measures and more stringent requirements for existing equipment (e.g., space heaters, ovens, dryers, furnaces).
Clean air for this region requires ARB to aggressively pursue reductions and strategies for on-road and off-road mobile sources and consumer products. In addition, considering the significant contribution of federal sources such as marine vessels, locomotives, and aircraft in the Basin (i.e., 56% of SOx in 2014 and 37% of NOx in 2023), it is imperative that the U.S. EPA pursue and develop regulations for new and existing federal sources to ensure that these sources contribute their fair share of reductions toward attainment of the federal standards. Unfortunately, regulation of these emission sources has not kept pace with other source categories and as a result, these sources are projected to represent a significant and growing portion of emissions in the Basin. Without a collaborative and serious effort among all agencies, attainment of the federal standards would be seriously jeopardized.

Final Socioeconomic Report for the Final 2012 AQMP

The following are excerpted from the Final Socioeconomic Report for the Final 2012 AQMP adopted by the SCAQMD December 7, 2012:

The 2012 AQMP has been prepared to meet the challenge of achieving healthful air quality in the South Coast Air Basin (Basin) and the Coachella Valley. This report accompanies the 2012 AQMP and presents the potential socioeconomic impacts resulting from implementation of this Plan. The information contained herein is considered by the South Coast Air Quality Management District (District) Governing Board when taking action on the Plan.

The 2012 AQMP control strategy is comprised of a traditional command-and-control approach, voluntary/incentive programs, and advanced technologies. Short- and near-term control strategies are proposed and will be implemented by the District, local and regional governments (e.g., transportation control measures provided in the 2012 Regional Transportation Plan), and the California Air Resources Board (ARB). These strategies include basin-wide short-term PM2.5 measures, episodic control measures for high PM2.5 days, measures to partially implement the Section 182(e)(5) commitment in the 2007 ozone SIP toward meeting the 8-hour ozone standard by 2024, and transportation control measures (TCM) adopted by the Southern California Association of Governments (SCAG). Many of the measures require behavioral changes and voluntary participation through outreach, incentive, and education. Implementation of these control strategies has potential effects on the region’s economy.

The District relies on a number of methods, tools, and data sources to assess the impact of proposed control strategies on the economy. The involved applications include: integration of air quality data and concentration-response relationships to estimate benefits of clean air; capital, operating and maintenance expenditures on control devices and emission reductions to assess the cost of the Plan; and REMI (Regional Economic Models, Inc.) model to assess potential employment and other socioeconomic impacts (e.g., population and competitiveness).

Over the years, there has been an overall trend of steady improvement in air quality in the Basin. Additional emission reductions are still needed in order to bring the Basin into compliance with the federal 24-hour PM2.5 standard. Complying with the air quality standard would allow the District to avoid potential sanctions that could increase offset...
ratios for major sources and result in suspension of highway transportation funding. The benefits of better air quality through implementation of the 2012 AQMP include reductions in morbidity and mortality, visibility improvements, reduced expenditures on refurbishing building surfaces, and reduced traffic congestion.

The Draft 2012 Plan is projected to comply with the federal PM2.5 standard with an average annual benefit of $10.7 billion between 2014 and 2035. The $10.7 billion includes approximately $7.7 billion for congestion relief for all TCMs in the 2012 RTP, $2.2 billion for averted illness and higher survival rates, $696 million for visibility improvements, and $14 million for reduced damage to materials.

The analysis contained herein estimates that the benefits for the Plan significantly outweigh the anticipated costs. The measurement of clean air benefits is performed indirectly since clean air is not a commodity purchased or sold in a market. This often results in incomplete and underestimated benefits. The benefits of clean air (based on the total emission reductions required for attainment) for which a monetary figure can be applied are estimated to be $10.7 billion (including congestion relief benefits for all the TCMs) as compared to the estimated costs of $448 million on an average annual basis. There are, however, many benefits which are still unaccounted for, such as reductions in chronic illness and lung function impairment in human beings, reduced damage to livestock and plant life, erosion of building materials, and the value of reduced vehicle hours traveled for personal trips.

The Plan is designed to bring northwest Riverside (the Mira Loma area), the only area in exceedance of the federal PM2.5 standard, into attainment. However, PM2.5 air quality benefits occur throughout the Basin. The San Fernando Valley, southern Los Angeles County, and the northwest Riverside County would experience the highest shares of air quality benefits. The western portions of Los Angeles and Orange Counties and the eastern and northern portions of San Bernardino County are projected to have the highest shares of health benefits.

Implementation of PM2.5 and ozone measures would impose costs on various communities. The sub-regions with the highest costs are the central, southeast, and San Fernando areas of Los Angeles County. These three areas are projected to have the highest cost shares from SCAG TCMs and relative higher cost shares from ozone measures.

All sub-regions are projected to have additional jobs created from cleaner air. The eastern, southern, and San Fernando sub-regions in Los Angeles County and Riverside County are projected to have more jobs created than other sub-regions resulting from clean air benefits. Implementation of quantified control measures would result in jobs forgone between 2013 and 2035. Orange County is projected to have the highest share of jobs forgone from implementation of control measures. This is because the majority of SCAG transportation control measures (TCM) in Orange County would be financed by development fees, which would have a heavy burden on one single sector of the economy—the construction sector. For the entire Plan, all sub-regions would show positive job impacts as the four-county area becomes more competitive and attractive with the progress in clean air.
Job gains from cleaner air would benefit all wage groups. Conversely, all five groups would experience jobs forgone from control measures. However, there is no significant difference in impacts expected for high- versus low-paying jobs. The same is observed for impacts on the price of consumption goods from one income group to another. These findings will be further evaluated during individual rule development.

State of California SIP for the new federal PM2.5 and 8-hour Ozone Standards (adopted July 21, 2011)

On April 28, 2011, the ARB considered revisions to the South Coast (and San Joaquin Valley) State Implementation Plans (SIPs) for PM2.5 that accounted for reductions of emissions that contribute to PM2.5 levels. The revisions were formally adopted by the ARB’s Executive Officer on May 18, 2011, when Executive Order S-11-010 was signed. The April 2011 PM2.5 SIP Revisions accounted for recent regulatory actions and recessionary impacts on emissions that occurred after the South Coast (and San Joaquin Valley) PM2.5 SIPs were adopted in 2007 and 2008. Those revisions accounted for the impact the recession has had on emissions and the benefits of ARB’s in-use diesel truck and off-road equipment regulations. The revisions updated the PM2.5 SIP’s reasonable further progress calculations, transportation conformity budgets, and ARB’s rulemaking calendar.

Localized Cumulative Impacts

The proposed facility modifications and other reasonably foreseeable projects could cause impacts that would be locally combined and future projects would introduce stationary sources that are not included in the “background” conditions. Reasonably foreseeable future projects are those that are either currently under construction or in the process of being approved by a local air district or municipality. Projects that have not yet entered the approval process do not normally qualify as “foreseeable” since the detailed information needed to conduct this analysis is not available. Sources that are presently operational are included in the background concentrations. Background conditions also take into account the effects of non-stationary sources.

Projects with stationary sources located up to six miles from the proposed project site usually need to be considered in the cumulative analysis.

The project owner requested that the SCAQMD identify potential new stationary sources within six miles of the ESEC site. The district provided a list of such projects. The facility owner used the district’s Facility Information Detail (FIND) database to identify additional information about the nearby projects on the district’s list. ESEC eliminated all of the projects on the list from further review because the source emissions of both NOx and PM are less than significant (below 5 tpy), or the project was change of ownership, or the changes were administrative, or the associated emission increase is less than significant (below 5 tpy, NRG 2013a).

However, since the project is subject to PSD review for NO2 and CO, the project impacts must be below the PSD significant impact levels (SILs) and applicable preconstruction monitoring thresholds for these pollutants or an increments analysis and/or preconstruction monitoring may be required. The PM, SO2, CO, and annual NO2...
impacts from the new units shown in AIR QUALITY Table 13 are all below corresponding SILs levels. However, the maximum 1-hour NO$_2$ impacts would exceed the applicable NO$_2$ SIL (7.5 µg/m3), so an increments analysis is required. Based on consultation with district staff, Sierra Research, on behalf of the facility owner, submitted a supplemental impact analysis to demonstrate compliance of combined impact of ESEC and nearby sources with 1-hour NO$_2$ NAAQS (LL 2013i). The nearby sources included in the supplemental impact analysis submitted to the district are:

- Chevron Products Company
- Los Angeles Department of Water and Power (LADWP) Scattergood Generating Station

Energy Commission staff identified additional reasonably forseeable emission sources from the AES’ Application for Certification (AFC) to the Energy Commission for Redondo Beach Energy Project which would replace the existing Redondo Beach Generating Station units (12-AFC-03). In response to Energy Commission staff’s Data Request, the facility owner added the following units to the cumulative analysis (LL 2013g):

- New units at AES Redondo Beach

The facility owner also added ExxonMobil emission sources according to U.S. EPA Region 9’s comments (LL 2013p). Modeling results show that adding the ExxonMobil would have essentially no effect on the results.

The maximum modeled cumulative impacts of NO$_2$ for different source categories during each year of the 5-year modeling period are presented below in AIR QUALITY Table 19. Emissions from the Chevron sources dominate the results. The worst-case impacts are well above the federal 1-hour NO$_2$ standard of 188 µg/m3 but most of the exceedances are on Chevron Refinery property.

PSD analysis considers a project’s impact would cause or contribute to an exceedance of the standard if, at the time and place of the exceedance, the project’s impact is above the SIL. In order to determine whether the impacts from the proposed facility modifications cause or contribute to an exceedance of the standard, the facility owner examined the model results at every time and place where the standard was exceeded. This detailed examination shows the impact from the proposed facility modifications would never be above the SIL at any time and place when the standard was exceeded. Thus the proposed facility modifications would not significantly cause or contribute to an exceedance of the federal 1-hour NO$_2$ standard.
AIR QUALITY Table 19
Maximum 1-hour NO₂ Impacts from Cumulative Sources\(^a\) (μg/m\(^3\))

<table>
<thead>
<tr>
<th>Combustion Sources</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESEC Units 9, 11,& 12</td>
<td>24.1</td>
<td>23.5</td>
<td>24.4</td>
<td>25.1</td>
<td>24.5</td>
</tr>
<tr>
<td>ESEC Units 5 & 7</td>
<td>1.8</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>All 5 ESEC Units</td>
<td>24.4</td>
<td>23.6</td>
<td>24.67</td>
<td>25.2</td>
<td>24.8</td>
</tr>
<tr>
<td>Chevron Refinery</td>
<td>691.1</td>
<td>546.5</td>
<td>688.4</td>
<td>523.3</td>
<td>709.8</td>
</tr>
<tr>
<td>LADWP Scattergood</td>
<td>5.7</td>
<td>5.6</td>
<td>5.7</td>
<td>5.7</td>
<td>5.9</td>
</tr>
<tr>
<td>AES Redondo Beach</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Background(^b)</td>
<td>109.6</td>
<td>109.6</td>
<td>109.6</td>
<td>109.6</td>
<td>109.6</td>
</tr>
<tr>
<td>All Sources+ Background</td>
<td>753.1</td>
<td>619.7</td>
<td>750.5</td>
<td>618.9</td>
<td>771.8</td>
</tr>
</tbody>
</table>

Source: LL 2013p, SCAQMD 2013b

Notes:
\(^a\) The table shows maximum results in the project impact area for each individual category of combustion source for each calendar year of meteorological data, which may not overlap at the same time and place. As a result, the overall maximum impacts (“All sources”, “All sources + Background”) are less than the sum of individual maximum impacts.

\(^b\) The background concentration for each hour is based on a seasonal daily profile provided by the district. Each hour of the profile is the 3rd highest measured value for that clock hour and season. The background concentration was not adjusted to account for the modeled impact of existing sources (i.e. Chevron) at the monitoring site.

Staff did its own analysis considering the cumulative PM10 and PM2.5 impacts from the modified ESEC facility and emissions sources with more than 5 tons per year (tpy) of PM10/PM2.5 emission increase at Chevron Products Company, LADWP Scattergood Generating Station, and AES Redondo Beach. The modeling parameters and the emissions estimates are based on communications between Energy Commission staff and district staff, and Application for Certification for AES Redondo Beach. Sources that are presently operational are assumed to be included in the background concentrations thus not included in the modeling analysis. The results of staff’s own analysis are shown in **AIR QUALITY Table 20**.

AIR QUALITY Table 20
Ambient Air Quality Impacts from Cumulative Sources (μg/m\(^3\))

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>Modeled Impact</th>
<th>Background</th>
<th>Total Impact</th>
<th>Limiting Standard</th>
<th>Percent of Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM10</td>
<td>24-hour</td>
<td>2.2</td>
<td>52</td>
<td>54.2</td>
<td>50</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.6</td>
<td>25.6</td>
<td>26.2</td>
<td>20</td>
<td>131</td>
</tr>
<tr>
<td>PM2.5</td>
<td>24-hour</td>
<td>2.2</td>
<td>30.4</td>
<td>32.6</td>
<td>35</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Annual</td>
<td>0.6</td>
<td>13</td>
<td>13.6</td>
<td>12</td>
<td>113</td>
</tr>
</tbody>
</table>

Source: Energy Commission staff analysis

AIR QUALITY Table 20 shows that particulate matter emissions from the ESPFM would be cumulatively considerable because they would contribute to existing violations of the PM10 and PM2.5 ambient air quality standards. The project owner would mitigate emissions through the use of BACT, RTCs, emission offsets from the district’s internal...
bank, and ERCs for the auxiliary boiler. Therefore, the cumulative operating impacts after mitigation are considered to be less than significant.

CO and SO₂ are not considered in the cumulative analysis because the impacts of these two pollutants from the proposed new units at ESEC alone are well below the most stringent ambient air quality standards even under the worst case conditions. In addition, there are no new sources with CO and SO₂ emissions that are large enough to create an impact that would threaten the standards in the project area.

Environmental Justice Impacts

Staff has considered the minority population surrounding the site and reviewed *Socioeconomics Figure 1* (see the *Socioeconomics* and *Executive Summary* sections of this PSA for further discussion of environmental justice), which shows the minority population within portions of the 6 mile buffer zone is greater than 50% thus would qualify as environmental justice population. *SOCIOECONOMICS Table 3* also shows that the poverty level within six miles of the project site is 24 percent which is meaningfully greater than comparison geographies in the local area and does constitute an environmental justice population as defined by *Environmental Justice: Guidance Under the National Environmental Policy Act*.

The staff-proposed CEQA mitigation measures noted as conditions of certification would reduce the proposed facility modifications’ direct and cumulative Air Quality impacts to a less than significant level, including impacts to the environmental justice population. Therefore, there are no Air Quality environmental justice issues related to the proposed facility modifications and no minority or low-income populations would be significantly or adversely impacted.

COMPLIANCE WITH LORS

The Preliminary Determination of Compliance (PDOC) for the ESPFM was released and dated December 24, 2013 (SCAQMD 2013a and SCAQMD 2013b). Compliance with all district Rules and Regulations was demonstrated to the district’s satisfaction in the PDOC, and the PDOC conditions are included in the staff-proposed conditions of certification.

FEDERAL

40 CFR 51, Nonattainment New Source Review. The PDOC includes conditions that would implement the federal nonattainment New Source Review (NSR) permit for the ESPFM.

40 CFR 52, Prevention of Significant Deterioration. The ESPFM is subject to permit requirements under the Prevention of Significant Deterioration (PSD) program. The facility owner submitted the PSD application to the district on March 14, 2013.

40 CFR 60 Subpart KKKK, Standards of Performance for Stationary Combustion Turbines. The NOx limit is 25 ppmv for new natural gas fired turbines that are less than 850 MMBtu/hr, 15 ppmv if the heat input is greater than 850 MMBtu/hr. The SO₂
standard is 110 ng/J, or 0.9 lb/MWh for units located in a continental area. The GE 7FA turbine will have a NOx limit of 2.0 ppmv, and a SO2 limit equivalent to 0.006 lb/MWh (1.26 lb/hr divided by 222 MW = 0.0057 lbs/MWh). The Trent 60 gas turbines will have a NOx limit of 2.5 ppmv, and a SO2 limit equivalent to 0.005 lb/MWh (0.30 lb/hr divided by 57 MW = 0.0053 lbs/MWh). Compliance with the emission limits is expected.

In addition to the emission limits, Subpart KKKK requires continuous monitoring of the unit operation to ensure compliance. For units that use SCR and water injection to control NOx emissions, the facility owner is required to install a CEMS, and to conduct a performance test within 60 days of installation. The facility owner is required to measure fuel sulfur content unless it can demonstrate that the total sulfur in natural gas is less than 20 grains per 100 standard cubic feet (0.2 grain/scf). The facility owner would install a NOx CEMS for each gas turbine in accordance with the SCAQMD Rule 2012. The installation of the CEMS would satisfy the requirements for NOx monitoring. The facility owner would prepare and issue all reports as required and maintain all appropriate records. The pipeline natural gas would have sulfur content below 16 ppmv, which is equivalent to 0.01 grains/scf, as it is subject to Rule 431.1. Compliance with monitoring requirements is expected.

40 CFR 63, National Emission Standards for Hazardous Air Pollutants (NESHAPs). The PDOC shows that with the installation of the proposed new units, the facility total HAP emissions would be approximately 26.55 tons per year. Thus, the PDOC states that the ESEC facility is a major source facility of HAPs and is subject to the requirements of this subpart. §63.6100 of 40 CFR Part 63 Subpart YYYY requires gas turbines to comply with a formaldehyde emission limit of 91 ppbvd measured at 15 percent O2. In addition, §63.6100 of 40 CFR 63 Subpart YYYY requires an operating limitation such that the operator of the equipment maintains the 4-hour rolling average of the catalyst inlet temperature within the range suggested by the catalyst manufacturer. In the comment letter to the district (LL 2014d), the facility owner suggested the controlled emission factors should be used in the emissions calculations of HAPs instead of the uncontrolled emission factors used by the district in the PDOC. Using the controlled emission factors, the facility HAPs emissions would be less than 25 tpy threshold thus the facility would not be a major facility for HAPs and would not be subject to requirements of 40 CFR Part 63 Subpart YYYY. The methodology needs to be confirmed by the district and the conclusion may change in the FDOC and FSA.

40 CFR 64, Compliance Assurance Monitoring (CAM). The turbines are major sources for NOx, CO, and VOC emissions, and will be subject to a BACT limit for each of these pollutants. NOx and CO BACT limits are met with added pollution control equipment, i.e., SCR and oxidation catalyst. Thus, this subpart rule applies to NOx and CO emissions. For each of the three proposed gas turbines, the facility owner would install a continuous emission monitoring system (CEMS) for NOx and another one for CO. The NOx CEMS would be certified in accordance with Rule 2012 requirements and the CO CEMS would be certified in accordance with Rule 218 requirements. The CEMSs are equivalent to the Acid Rain CEMS and are considered as a continuous compliance determination method, which allows an exemption to the CAM rule per Part 64.2(b)(vi).
The PDOC states that the CAM rule also applies to the VOC emissions because the VOC BACT limit is achieved with the help of the oxidation catalyst. The catalyst effectiveness is dependent upon the catalyst temperature. There would be a temperature gauge that monitors exhaust temperature continuously and records values on the hourly basis. In addition the facility owner would conduct periodic source testing. Compliance is expected. In the comment letter to the district (LL 2014d), the facility owner noted that since the VOC BACT limit is achieved through good combustion design and does not rely on the help of the oxidation catalyst, the CAM rule does not apply to the VOC emissions. The district needs to confirm on this statement and the applicability of the CAM rule to the VOC emissions may change in the FDOC and FSA.

40 CFR 70, Operating Permits Program. The existing ESEC is a federal Title V facility and is subject to Title V requirements. SCAQMD has received delegation authority for this program. The facility owner filed an application for an amendment to the ESEC facility Title V permit on March 14, 2013.

40 CFR 72, Acid Rain Program. SCAQMD has received delegation authority to implement Title IV. A permit application must be submitted to SCAQMD at least 24 months before operation of the new units commences. The ESPFM would comply with the acid rain program requirements and would file an acid rain permit application in accordance with the deadlines in SCAQMD Regulation XXXI.

The ESPFM would comply with the monitoring requirements of the acid rain provisions with the use of gas meters in conjunction with natural gas default sulfur data as allowed by the Acid Rain regulations (Appendix D to 40 CFR Part 75). If additional SO₂ credits are needed, the project owner would obtain the credits from the SO₂ trading market. Compliance with this rule is expected.

STATE
The facility owner has demonstrated that the proposed facility modifications would comply with Section 41700 of the California State Health and Safety Code, which restricts emissions that would cause nuisance or injury. Compliance with the PDOC (SCAQMD 2013a and SCAQMD 2013b) and the Energy Commission staff’s conditions of certification enable staff’s affirmative finding.

LOCAL
The facility owner provided an air quality permit application to the SCAQMD and the district has issued a PDOC (SCAQMD 2013a and SCAQMD 2013b), which states that the proposed facility modifications are expected to comply with all applicable district rules and regulations.

The district rules and regulations specify the emissions control and offset requirements for new sources such as the proposed modifications at ESEC. Best Available Control Technology would be implemented, RECLAIM trading credits (RTCs) for NOx emissions would be provided, ERCs for the VOC and PM10 emissions of the auxiliary boiler would be provided, and VOC, SO₂ and PM10 emissions from the proposed new gas turbines are exempt from the offset requirements according to district rules and regulations.
based on the permitted emission levels for the facility modifications. Compliance with the district’s new source requirements would ensure that the modified facility would be consistent with the strategies and future emissions anticipated under the district’s air quality attainment and maintenance plans.

As part of the Energy Commission’s licensing process, in lieu of issuing a construction permit to the facility owner for the ESPFM, the district has prepared and presented to the Energy Commission a PDOC and will file a FDOC after receiving comments. The DOCs evaluate whether, and under what conditions, the proposed project modifications would comply with the district’s applicable rules and regulations, as described below.

Compliance with specific SCAQMD rules and regulations is discussed below via excerpts from the PDOC (SCAQMD 2013a and SCAQMD 2013b). For a more detailed discussion of the compliance of the proposed facility modifications, please refer to the PDOC (SCAQMD 2013a and SCAQMD 2013b).

Regulation II – Permits

Rule 212 – Standards for Approving Permits

The facility modifications are subject to Rule 212(c)(2) and Rule 212(g) public notice requirements because the daily maximum CO, NOx, PM10, and VOC emissions from the proposed facility modifications would all exceed the emissions thresholds specified in subdivision (g) of this rule. The district will prepare the public notice and it will contain sufficient information to fully describe the proposed facility modifications. In accordance with subdivision (d) of this rule, the facility owner will be required to distribute the public notice to each address within ¼ mile radius of the project.

Rule 218 – Continuous Emission Monitoring

This rule applies to the CO CEMS, which is required to verify CO emission levels from each gas turbine. The facility owner is required to submit an “Application for CEMS” for CO CEMS for each turbine and required to adhere to retention of records requirements and reporting requirements once approval to operate CO CEMS is granted. Compliance with this rule is expected.

Regulation IV – Prohibitions

Rule 401 – Visible Emissions

Visible emissions from the three gas turbines and the auxiliary boiler are not expected since each would be fired exclusively with pipeline quality natural gas and each device would use BACT. Compliance with this rule is expected.

Rule 402 – Nuisance

Nuisance problems are not expected under normal operating conditions of the gas turbines and the auxiliary boiler. Compliance is anticipated.
Rule 407 – Liquid and Gaseous Air Contaminants

This rule limits SO₂ emissions to 500 ppm for equipment not subject to the gaseous fuel sulfur emission concentration limits of 431.1. It limits CO emissions to 2,000 ppm. Since gas turbines will be subject to Rule 431.1 and are expected to comply with Rule 431.1, the sulfur limit does not apply. Compliance with the CO limit of this rule is expected since the equipment is subject to the BACT CO emission limit of no more than 2 ppmv for the GE 7FA combined cycle generating system and no more than 4 ppmv for the Trent 60 turbines. The auxiliary boiler will comply with a CO emission limit of 50 ppmv. Compliance with CO will also be verified through the CEMS data for the gas turbines.

Rule 409 – Combustion Contaminants

This rule applies to the gas turbines and auxiliary boiler. This rule limits combustion generated PM emissions to 0.1 grains/dscf at 12 percent CO₂. The PDOC demonstrated that the PM loading would be 0.003 grains/dscf and 0.008 grains/dscf for the GE 7FA combined cycle generating system and Trent 60 turbines respectively. Compliance is demonstrated for the GE 7FA combined cycle generating system and Trent 60 turbines. In the comment letter to the district (CEC 2014b), Energy Commission staff noted that the district didn’t demonstrate compliance with this rule for the auxiliary boiler. The district should address this in the FDOC.

Rule 431.1 – Sulfur Content of Gaseous Fuels

This rule requires that the sulfur content as H₂S of the natural gas shall be less than 16 ppmv. The natural gas fuel that ESEC would use is pipeline quality natural gas. Pipeline quality natural gas is certified to have sulfur content less than 1.0 gr/100 scf, or about 16 ppmv. Compliance is expected.

RULE 475 – Electric Power Generating Equipment

This rule applies to power generating equipment greater than 10 MW installed after May 7, 1976. This rule limits combustion contaminants as PM to be either less than 11 lbs/hour, or less than 0.01 gr/dscf. For natural gas fired gas turbine engines almost all PM emissions are PM10 emissions. As calculated in the Rule 409 evaluation PM10 emissions are 0.003 gr/dscf for the GE 7FA combined cycle generating system, and 0.008 gr/dscf for the Trent 60 gas turbines. Since they both are less than 0.01 gr/dscf, compliance is expected.

Regulation XIII – New Source Review for Non-RECLAIM Pollutants

New emissions sources are subject to the requirements of New Source Review (NSR) as specified in Regulation XIII, which includes SCAQMD Rules 1300 through 1325. This regulation applies to non-attainment criteria pollutants that include VOC and PM10. CO and NO₂ are reviewed under PSD because they are attainment pollutants. NOx is also reviewed under RECLAIM. NSR includes requirements of Best Available Control Technology (BACT), modeling analysis, and offset. NH₃ is subject to BACT requirements only.
Best Available Control Technology (BACT)
SCAQMD determined the BACT/LAER limit for VOC is 2.0 ppmv, dry at 15 percent O₂, 1-hour average for the combined cycle gas turbine and simple cycle gas turbine. ESEC has proposed to use the same emission limits for the GE 7FA combined cycle generating system and the Trent 60 simple cycle gas turbines. Thus, the BACT/LAER requirement would be met. Compliance would be ensured through testing, monitoring and reporting requirements.

The SCR’s BACT requirement includes an ammonia (NH₃) slip limit of 5 ppmv. ESPFM has proposed to limit the NH₃ slip limit to 5 ppmv for the GE 7FA combined cycle generating system and the Trent 60 simple cycle gas turbines. Compliance is expected.

SCAQMD’s BACT/LAER determination for a natural gas fired auxiliary boiler is based on the use of pipeline quality natural gas for VOC. ESEC will use pipeline quality natural gas with the proposed new auxiliary boiler. Compliance is expected.

Modeling Analysis
PM10 was designated as a federal attainment pollutant in the SCAB on June 26, 2013. However, PM10 remains non-attainment at the state level and will be evaluated under NSR as well. As such, modeling analysis is required for PM10 emissions per Rule 1303(b). Rule 1303 requires that through modeling, the applicant must substantiate that the proposed facility modifications do not exceed the most stringent ambient air quality standard for attainment pollutants or cause a significant change in air quality concentration for non-attainment pollutants. Modeling analysis was performed for startup, shutdown, commissioning, and normal operations. The district determined that both the 24-hour average and the annual average PM10 emissions are below the respective significant change thresholds. ESEC submitted the air quality modeling analysis in March 2013 to the SCAQMD for review. The SCAQMD found the analysis acceptable for Rule 1303 requirements.

Offsets
Rule 1303(b)(2) requires that all increases in emissions be offset unless exempt from offset requirements pursuant to Rule 1304.

Rule 1304(a)(2) – Electric Utility Steam Boiler Replacement states that if the electric utility boilers are replaced by advanced gas turbines, including combined cycle and simple cycle configurations, the project will be exempt from emission offsets unless there is a basin-wide electricity generation capacity increase on a per-utility basis. If there is an increase in basin-wide capacity, only the increased capacity must be offset via traditional offset rules and regulations. The GE 7FA combined cycle generating system complies with this rule. The two Trent 60 gas turbines are simple cycle gas turbines and only comply if they are deemed to be advanced gas turbines. SCAQMD Rule 1135 defines advance combustion sources as those which emit NOx at no greater

4 The source is replacement of electric utility steam boiler(s) with combined cycle gas turbine(s), intercooled, chemically-recuperated gas turbines, other advanced gas turbine(s); solar, geothermal, or wind energy or other equipment, to the extent that such equipment will allow compliance with Rule 1135 or Regulation XX rules.
than 0.10 lb/net MWh on a daily average basis, excluding commissioning, start-up and shutdown periods, if the source is located within the South Coast Air Basin. The PDOC shows the proposed Trent 60 simple cycle gas turbines would emit 0.091 lb/net MWh under baseload conditions. Therefore, the two Trent 60 simple cycle gas turbines qualify as advanced gas turbines, and replacement of Boilers 3 and 4 with Trent 60 simple cycle gas turbines is allowed by Rule 1304(a)(2) and qualifies for the exemption.

The language of this exemption allows for offset and modeling exemptions on a MW-to-MW basis. The purpose was to facilitate the removal of older and less efficient boiler/steam turbine technology with cleaner gas turbine technology at the utilities. Since the advent of RECLAIM, the exemption was expanded to include modifications conducted for compliance with Regulation XX rules.

The GE 7FA has a combined power rating of 334 gross megawatts. The PDOC shows the Trent 60 turbines have a combined power rating of 112 gross megawatts at 78 degrees Fahrenheit (°F). The PDOC shows the total power generating capacity from the proposed new power generating system will be 447 MW. Boiler #3 was retired from service with 112 MW of unused credits. The PDOC states that these credits will be combined with the 335 MW from the permanent retirement of Boiler #4 for a total of 447 MW which will allow for the facility to be exempt from offset requirements that would otherwise apply to the proposed facility modifications.

However, staff noticed the PDOC is not consistent regarding the total output from the two Trent 60 turbines. The PDOC shows each Trent 60 simple cycle turbine has rating of 57.4 gross MW. Based on this, the combined capacity for the two Trent 60 turbines would be 114.8 gross MW, instead of 112 MW as shown in the PDOC. Using these values, the total combined rating for all proposed new turbines would be 448.8 gross MW, instead of 447 MW as shown in PDOC. The Petition to Amend (NRG 2013a) shows the total rating for the original El Segundo Units 1 through 4 is 1,052 gross MW and 1,020 net MW; the total rating for the future Units 5 through 12 would be 1,021.8 gross MW and 995 net MW. The total rating for the future Units 5 through 12 would be less than the total rating for the original El Segundo Units 1 through 4 whether the basis for the comparison is gross MW or net MW, meaning that the requirement of Rule 1304 is met and there is no net increase in electric utility capacity. However, the district should explicitly state the basis for meeting Rule 1304 requirements, using corrected gross or net MW ratings, and consistent ambient temperatures or load conditions. Staff sent these comments in the comment letter to the district dated January 24, 2014 (CEC 2014b).

The PDOC states that the net megawatts increase would be zero and thus the new power generating system qualifies for the Rule 1304(a)(2) exemption. The facility does not have to provide emission reduction credits for the proposed gas turbines. However, the auxiliary boiler is not exempt under Rule 1304(a)(2) and is required to provide 1 lb/day of VOC and 2 lbs/day of PM10 offsets as shown in Air QUALITY Table 18. The facility owner proposes to surrender 1 lb/day of VOC from Certificate AQ006547 and 2

5 Values are subject to revision in the FDOC and FSA.
lbs/day of PM10 ERCs from Certificate AQ003462 to the district prior to commencing construction of the proposed facility modifications (LL 2014e).

Rule 1304.1 – Electrical Generating Fee for Use of Offset Exemption

This rule requires electrical generating facilities which use the specific offset exemption described in Rule 1304(a)(2) [Electric Utility Steam Boiler Replacement] to pay fees for up to the full amount of offsets provided by the SCAQMD. ESEC would be required to demonstrate compliance with the specific requirements of this rule prior to the issuance of the Permits to Construct for the proposed facility modifications.

Rule 1325 – Federal PM2.5 New Source Review Program

This rule applies to major polluting facilities, major modifications to a major polluting facility, or any modifications to an existing facility that would constitute a major polluting facility in and of itself. A major polluting facility is defined as a facility which has actual emissions, or a potential to emit of greater than 100 tons per year. The 2010 amended decision (CEC 2010a) limits the PM2.5 emissions of the facility to below 100 tons per year in Condition of Certification AQ-37. ESEC is not a major PM2.5 facility.

As shown in the PDOC, with the addition of the GE 7FA combined cycle generating system, the two Trent 60 simple cycle gas turbines, the auxiliary boiler, and the subsequent retirement of Boilers 3 and 4, the total PM2.5 potential to emit of the facility (including existing Units 5-8) would still be below the 100 ton/year threshold. Therefore, for purposes of Rule 1325, ESEC would continue to be a non-major polluting facility for PM2.5.

Regulation XVII – Prevention of Significant Deterioration

The SCAB is in attainment for NOx, SOx, CO, and PM10 ambient air quality standards. Therefore, this regulation applies to NOx, SOx, CO, and PM10 emissions.

Best Available Control Technology (BACT)

BACT applies to all projects that have emission increases. BACT requirements for NOx, CO and SOx emissions are evaluated in this section.

- **NOx** – The requirement is consistent with the NOx BACT emission limits. The limit is 2.0 ppmvd, 1-hour average at 15 percent O2 for the combined cycle generating system, and 2.5 ppmvd, 1-hour average at 15 percent O2 for the simple cycle gas turbine. Use of the SCR for control of NOx emissions is considered BACT for combustion gas turbines. The auxiliary boiler is required to comply with a 5 ppmvd6 limit measured at 3 percent O2. Compliance is expected.

- **SOx** – The requirement is to use pipeline quality natural gas. The ESPFM would use pipeline quality natural gas for the gas turbines and auxiliary boiler. Compliance is expected.

6 The PDOC shows the NOx BACT for the auxiliary boiler is 5 ppmvd. In the comment letter to the district (LL 2014d), the facility owner suggested the BACT level should be corrected to 9 ppmvd. The facility owner is working with the district and the vendor to ensure that the correct BACT is included. The limit may change in the FDOC and FSA.
• CO – The BACT limit is set at 2.0 ppmvd based on 1-hour average at 15 percent O₂ for a combined cycle generating system, 4.0 ppmvd based on 1-hour average at 15 percent O₂ for a simple cycle gas turbine. ESEC has proposed the same emission limits. The auxiliary boiler is required to comply with a 50 ppmvd CO emission limit measured at 3 percent O₂. Compliance is expected.

• PM10 – BACT for PM10 is use of natural gas with a sulfur content (calculated as H₂S) less than 1 grain per 100 scf. The ESPFM would use pipeline quality natural gas. Compliance is expected.

PSD analysis
PSD analysis is required for NOx and CO because the net emission increase in NOx emissions would exceed 40 tons per year and CO emissions would exceed 100 tons per year.

The district performed the PSD analysis and concluded:

1. Pre-construction monitoring is not required for the proposed modifications of ESEC since the maximum annual NO₂ and 8-hour CO impacts would not exceed the preconstruction monitoring thresholds.

2. Annual NO₂, 1-hour and 8-hour CO, and 24-hour PM10 impacts would be lower than the corresponding PSD SIL limits, thus are not considered significant.

The federal 1-hour NO₂ average impact for the proposed new units exceeds the PSD SIL of 7.5 μg/m³ based on a 1-hour average. Therefore, a cumulative impact analysis is required to demonstrate that the proposed new units would not cause a new or make significantly worse, an existing 1-hour NO₂ violation of the National Ambient Air Quality Standards (NAAQS). The facility owner provided a cumulative impact analysis for NO₂ and found the peak contribution from the proposed new units to a modeled violation of the 1-hour NO₂ NAAQS is 3.38 μg/m³ which is less than the SIL and thus insignificant. Therefore, the proposed new units at ESEC would not cause a new, or make significantly worse, an existing 1-hour NO₂ violation of the NAAQS. The district modeling staff has reviewed the facility owner’s approach and methodology with respect to the cumulative impact analysis and has determined that the approach and methodology are acceptable.

3. The facility owner provided Class I impact analysis for the San Gabriel Wilderness Area (53 km from ESEC) and Cucamonga Wilderness Area (78 km from ESEC). The results of the Class I PSD increment analysis showed that the model predicted concentrations are well below the EPA proposed Class I significance thresholds. Both the San Gabriel and Cucamonga Wilderness Areas are located at a distance greater than 50 km from the ESEC project site. Therefore, no further modeling was required for PSD increment analysis.

The visibility impact analysis required by Rule 1703(a)(3)(E) requires assessment of the impairment to visibility in the area surrounding the project (Class II Visibility Impairment Analysis). The facility owner has conducted a Class II Visibility
Impairment Analysis for the four Class II State Parks (Dockweiler State Beach, Will Rogers State Historic Park, Kenneth Hahn State Historic Park, and Santa Monica State Beach) within the 20 km from the ESEC project site. SCAQMD modeling staff have reviewed the facility owner’s analysis and have determined that the approach and methodology are acceptable. However, the SCAQMD did not determine compliance with Rule 1703 and the Energy Commission letter commenting on the PDOC (CEC 2014b) requested the district to include this in the FDOC.

Regulation XX – Regional Clean Air Incentives Market (RECLAIM)

Rule 2005 – NSR for RECLAIM Pollutants

This regulation applies only to NOx emissions for this facility because the owner intends to obtain any needed SO2 credits from the SO2 trading market (PDOC page 28).

1. BACT

For a combined cycle combustion turbine the most stringent NOx emissions limit is 2.0 ppmv, 15 percent O2, dry, 1-hour average. ESEC would use SCR combined with dry low NOx combustion technology to ensure that the GE 7FA combined cycle generating system meets the 2.0 ppmv NOx limit. For a simple cycle combustion turbine the most stringent NOx emissions limit is 2.5 ppmv, 15 percent O2, dry, 1-hour average. ESEC would use a SCR control system in conjunction with water injection to meet the 2.5 ppmv NOx limit.

2. Modeling

The facility is located in the South Coast air basin, which is in attainment of NO2 emissions. Thus, Rule 2005(c)(1)(B) requires the facility to demonstrate, through modeling analysis, that the proposed NOx emission sources will not cause a violation of the most stringent ambient air quality standards. The PDOC demonstrated that the proposed NOx emission sources would not cause a violation of the most stringent ambient air quality standards.

3. Offset (RTC)

The facility is required to demonstrate that it holds sufficient RECLAIM Trading Credits (RTCs) to offset the annual emission increase for the first year of operation using a 1-to-1 offset ratio. Furthermore, Rule 2005(b)(2)(B) states that the RTCs must comply with the zone requirements of Rule 2005(e). Since the facility is located in Zone 1, RTCs may only be obtained from Zone 1. The total NOx RTC requirements of the proposed facility modifications for the 1st year of operation are 242,097 lbs7. This requirement is based on the emissions from the commissioning, and based on the annual operating schedule provided by the project owner. After the 1st year the proposed facility

7 As mentioned in the Energy Commission’s comment letter to the district (CEC 2014b), the PDOC is not consistent regarding the total RTC requirements in multiple locations. Staff computed the total RTC requirements based on the RTC requirements of each new unit shown in the PDOC. The total RTC requirements need to be confirmed by the district and the values may change in the FDOC and FSA.
modifications will require 194,049 lbs8 of NOx RTC per year. It is lower than the 1st year requirement since the emissions from the commissioning are not included. Compliance with the offset requirement is expected.9

4. Additional Requirements for Major Sources

Rule 2005 requires that a major source also comply with the following:

A) Certify that all major sources in the state under control of the applicant are in compliance with all applicable federal emissions standards.

B) Submit an analysis of alternative sites, sizes, production processes, and environmental control techniques for the proposed source.

C) Compliance with CEQA

D) Protection of Visibility

ESEC certifies in the permit application that all major sources under their control in the state currently comply with federal regulations. An alternative analysis under the California Environmental Quality Act (CEQA) process is being performed as part of the Preliminary Staff Analysis (PSA). The minimum distance between the project site and the nearest Class I area (San Gabriel Wilderness Area) is 54 km, which is greater than the maximum distance requirement of 29 kilometers. Thus, no visibility analysis is required for the proposed facility modifications. Thus, the above requirements have been met for the proposed facility modifications.

Rule 2012 – Monitoring Recording and Record Keeping for RECLAIM

ESEC is currently in compliance with all monitoring, record-keeping, and reporting requirements of NOx RECLAIM. The new gas turbine generators would be classified as major sources for RECLAIM purposes. As such each turbine would be provided with a NOx CEMS and a fuel meter, and emissions would be reported through a remote terminal unit (RTU) on a daily basis. The CEMS would be installed within 12 months from the date of installation of the turbines. Thus, the operation of the new turbines would be in compliance with Rule 2012.

Regulation XXX – Title V Operating Permit

ESEC is a federal Title V facility and is subject to Title V requirements. The addition of the new turbines is considered a Significant Permit Revision as defined in Rule 3000. The facility is required to provide public notification of the proposed facility modifications. The U.S. EPA will also be provided with this information for their review comments (45 day review period). The Title V public notice will be combined with Rule 212 notice, which is also required for the facility modifications. The facility owner filed an application for an amendment to the ESEC facility Title V permit on March 14, 2013.

8 See Footnote 7.

9 Values are subject to refinement in the FDOC and FSA.
CONCLUSIONS

Staff recommends the following conclusions about the ESPFM:

- Construction impacts would contribute to violations of the ozone, PM10, and PM2.5 ambient air quality standards. Staff recommends Conditions of Certification AQ-SC1 to AQ-SC4 (revised) and Condition of Certification AQ-SC9 (new) to mitigate the construction-phase impacts of the proposed facility modifications to a less than significant level.

- Operation of the proposed facility modifications would comply with applicable SCAQMD rules and regulations, including New Source Review, BACT requirements, and requirements to offset emission increases; staff recommends the inclusion of the district’s PDOC conditions as Conditions of Certification AQ-37 (revised), AQ-39 (revised), and AQ-41 through AQ-82 (new) for the proposed facility modifications.

- The proposed facility modifications would neither cause new violations of any CO, NO2, or SO2 ambient air quality standard nor contribute to existing violations for these pollutants. Therefore, the direct CO, NO2, and SO2 impacts of the proposed facility modifications are less than significant.

- The NOx and VOC emissions from the proposed facility modifications would contribute to existing violations of state and federal ozone ambient air quality standards. The RTCs and VOC offsets from the district’s internal bank would mitigate the ozone impact to a less than significant level.

- The PM10 and PM2.5 emissions and the PM10/PM2.5 precursor emissions from the proposed facility modifications would contribute to the existing violations of PM10 and PM2.5 ambient air quality standards. The district would offset the PM10 emissions from its internal bank to mitigate the PM10/PM2.5 impacts of the new gas turbines to a less than significant level. The offsets would be in sufficient quantities to satisfy Energy Commission staff’s recommendation that all nonattainment pollutant and precursor emissions be offset at least one-to-one.

- The facility owner proposes to surrender 2 lbs/day of PM10 ERCs and 1 lb/day of VOC to the district prior to commencing construction of the proposed facility modifications to mitigate the impacts of the auxiliary boiler. Staff proposes a Condition of Certification (AQ-SC11) to ensure that the emissions of the auxiliary boiler would be mitigated with the quantity of SCAQMD offsets recommended by staff and to ensure agency consultation if substitutions are made to the credits.

- The cumulative air quality impacts from the proposed facility modifications would be mitigated to less than significant, including impacts to the environmental justice population. Staff concludes that there are no Air Quality environmental justice issues related to the proposed facility modifications and no minority or low-income populations would be significantly or adversely impacted.
PROPOSED CONDITIONS OF CERTIFICATION

Staff has proposed modifications to the Air Quality Conditions of Certification as shown below. For completeness, all Air Quality Conditions of Certification are shown, those that need changes and those that do not change. These changes make the conditions of certification consistent with current SCAQMD permit requirements and current staff conditions. Strike-through is used to indicate deleted language and underline and bold is used for new language. R QUALITY Table 21 maps out the relationship between Energy Commission condition numbering and district condition numbering and proposed modifications to each condition.

AIR QUALITY Table 21
Mapping of Energy Commission and District Condition Numbering

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ-SC1</td>
<td>(none)</td>
<td>Revision</td>
<td>AQ-37</td>
<td>F2.1</td>
<td>Revision</td>
</tr>
<tr>
<td>AQ-SC2</td>
<td>(none)</td>
<td>Revision</td>
<td>AQ-38</td>
<td>A327.1</td>
<td>None</td>
</tr>
<tr>
<td>AQ-SC3</td>
<td>(none)</td>
<td>Revision</td>
<td>AQ-39</td>
<td>E193.2</td>
<td>Revision</td>
</tr>
<tr>
<td>AQ-SC4</td>
<td>(none)</td>
<td>Revision</td>
<td>AQ-40</td>
<td>E193.3</td>
<td>None</td>
</tr>
<tr>
<td>AQ-SC5</td>
<td>(none)</td>
<td>None</td>
<td>AQ-41</td>
<td>F52.1</td>
<td>New</td>
</tr>
<tr>
<td>AQ-SC6</td>
<td>(none)</td>
<td>None</td>
<td>AQ-42</td>
<td>A63.3</td>
<td>New</td>
</tr>
<tr>
<td>AQ-SC7</td>
<td>(none)</td>
<td>None</td>
<td>AQ-43</td>
<td>A63.4</td>
<td>New</td>
</tr>
<tr>
<td>AQ-SC8</td>
<td>(none)</td>
<td>Revision</td>
<td>AQ-44</td>
<td>A99.12</td>
<td>New</td>
</tr>
<tr>
<td>AQ-SC9</td>
<td>(none)</td>
<td>New</td>
<td>AQ-45</td>
<td>A99.13</td>
<td>New</td>
</tr>
<tr>
<td>AQ-SC10</td>
<td>(none)</td>
<td>New</td>
<td>AQ-46</td>
<td>A99.14</td>
<td>New</td>
</tr>
<tr>
<td>AQ-SC11</td>
<td>(none)</td>
<td>New</td>
<td>AQ-47</td>
<td>A99.15</td>
<td>New</td>
</tr>
<tr>
<td>AQ-1</td>
<td>(deleted)</td>
<td>None</td>
<td>AQ-48</td>
<td>A195.12</td>
<td>New</td>
</tr>
<tr>
<td>AQ-2</td>
<td>D12.11</td>
<td>None</td>
<td>AQ-49</td>
<td>A195.13</td>
<td>New</td>
</tr>
<tr>
<td>AQ-3</td>
<td>D12.12</td>
<td>None</td>
<td>AQ-50</td>
<td>A195.14</td>
<td>New</td>
</tr>
<tr>
<td>AQ-4</td>
<td>D12.13</td>
<td>None</td>
<td>AQ-51</td>
<td>A195.15</td>
<td>New</td>
</tr>
<tr>
<td>AQ-5</td>
<td>D29.8</td>
<td>None</td>
<td>AQ-52</td>
<td>A195.16</td>
<td>New</td>
</tr>
<tr>
<td>AQ-6</td>
<td>D29.7</td>
<td>None</td>
<td>AQ-53</td>
<td>A195.17</td>
<td>New</td>
</tr>
<tr>
<td>AQ-7</td>
<td>D29.9</td>
<td>None</td>
<td>AQ-54</td>
<td>C1.7</td>
<td>New</td>
</tr>
<tr>
<td>AQ-8</td>
<td>K40.4</td>
<td>None</td>
<td>AQ-55</td>
<td>C1.8</td>
<td>New</td>
</tr>
<tr>
<td>AQ-9</td>
<td>(deleted)</td>
<td>None</td>
<td>AQ-56</td>
<td>C1.9</td>
<td>New</td>
</tr>
<tr>
<td>AQ-10</td>
<td>(deleted)</td>
<td>None</td>
<td>AQ-57</td>
<td>D12.14</td>
<td>New</td>
</tr>
<tr>
<td>AQ-11</td>
<td>A63.2</td>
<td>None</td>
<td>AQ-58</td>
<td>D12.15</td>
<td>New</td>
</tr>
<tr>
<td>AQ-12</td>
<td>D12.10</td>
<td>None</td>
<td>AQ-59</td>
<td>D12.16</td>
<td>New</td>
</tr>
<tr>
<td>AQ-13</td>
<td>(deleted)</td>
<td>None</td>
<td>AQ-60</td>
<td>D12.17</td>
<td>New</td>
</tr>
<tr>
<td>AQ-14</td>
<td>D82.4</td>
<td>None</td>
<td>AQ-61</td>
<td>D12.18</td>
<td>New</td>
</tr>
<tr>
<td>AQ-15</td>
<td>D82.5</td>
<td>None</td>
<td>AQ-62</td>
<td>D12.19</td>
<td>New</td>
</tr>
<tr>
<td>AQ-16</td>
<td>A99.7</td>
<td>None</td>
<td>AQ-63</td>
<td>D29.10</td>
<td>New</td>
</tr>
<tr>
<td>AQ-17</td>
<td>A99.8</td>
<td>None</td>
<td>AQ-64</td>
<td>D29.11</td>
<td>New</td>
</tr>
</tbody>
</table>
AQ-C1: The project owner shall submit the resume(s) of their selected Construction Mitigation Manager(s) (CMM) to the Compliance Project Manager (CPM for approval). The CMM shall preferably have a minimum of 8 years experience as follows; however, the CPM will consider all resumes submitted regardless of experience:

- 5 years construction experience, as a subcontractor or general contractor;
- 1 year experience in construction project management;
- 2 year experience in air quality assessment; and
- Must have an engineering degree or equivalent or an additional 5 years construction experience.

The project owner shall make available a dedicated office for the CMM. The CMM shall be responsible for implementing all mitigation measures related to construction, as outlined in Conditions of Certification for construction AQ-C1 through AQ-C4. The CMM shall be on-site or available to be on-site at any time. The CMM will be granted access to all areas of the main and related linear facility construction sites. The CMM shall have the authority to stop construction on either the main or the related linear facility construction sites as warranted by specific mitigation measures. The CMM position may not be terminated prior
to the cessation of all construction activities unless written approval is granted by the CPM.

Verification: The project owner shall submit the CMM resume at least 60 days prior to site mobilization.

AQ-SC1 Air Quality Construction Mitigation Manager (AQCMM): The project owner shall designate and retain an on-site AQCMM who shall be responsible for directing and documenting compliance with Conditions of Certification AQ-SC3, AQ-SC4, and AQ-SC9 for the entire duration of project site and linear facility construction. The on-site AQCMM may delegate responsibilities to one or more AQCMM Delegates. The AQCMM and AQCMM Delegates shall have full access to all areas of construction on the project site and linear facility, and shall have the authority to stop any or all construction activities as warranted by applicable construction mitigation conditions. The AQCMM and AQCMM Delegates may have other responsibilities in addition to those described in this Condition. The AQCMM shall not be terminated without written consent of the Compliance Project Manager (CPM).

Verification: At least 30 days prior to the start of ground disturbance, the project owner shall submit to the CPM for approval the name, resume, qualifications, and contact information for the on-site AQCMM and all AQCMM Delegates. The AQCMM and all delegates must be approved by the CPM before the start of ground disturbance.

AQ-C2: The CMM shall prepare and submit for approval to the CPM, a Fugitive Dust Mitigation Plan that will specifically identify fugitive dust mitigation measures that will be employed during the construction phase of the main and related linear construction sites. The CMM will be responsible for implementing and maintaining all measures identified in the Fugitive Dust Mitigation Plan. The Fugitive Dust Mitigation Plan must address at a minimum the following:

- the identification of the employee parking area(s) and surface of the parking area(s);
- the frequency of watering of unpaved roads;
- the application of chemical dust suppressants;
- the use of gravel in high traffic areas;
- the use of paved access aprons;
- the use of sandbags to prevent run off;
- the use of posted speed limit signs;
- the use of wheel washing areas prior to large trucks leaving the project site;
- the methods that will be used to clean tracked-out mud and dirt from the project site onto public roads;
• the transport of borrowed fill material;
• the use of vehicle covers;
• the use of wetting of the transported material;
• the use of appropriate freeboard;
• the method for the stabilization of storage piles and disturbed areas;
• the use of windbreaks at appropriate locations;
• the suspension of all earth-moving activities under windy conditions; and
• the use of on-site monitoring devices.

Verification: The CMM shall submit the Fugitive Dust Mitigation Plan to the CPM for approval at least 30 days prior to site mobilization.

AQ-SC2 Air Quality Construction Mitigation Plan (AQCMP): The project owner shall provide an AQCMP, for approval, which details the steps that will be taken and the reporting requirements necessary to ensure compliance with Conditions of Certification AQ-SC3, AQ-SC4 and AQ-SC9.

Verification: At least 30 days prior to the start of any ground disturbance, the project owner shall submit the AQCMP to the CPM for approval. The CPM will notify the project owner of any necessary modifications to the plan within 15 days from the date of receipt. The AQCMP must be approved by the CPM before the start of ground disturbance.

AQ-C3: The CMM shall prepare and submit to the CPM a Diesel Construction Equipment Mitigation Plan that will specifically identify diesel engine mitigation measures that will be employed during the construction phase of the main and related linear construction sites. The CMM will be responsible for implementing and maintaining all measures identified in the Diesel Construction Equipment Mitigation Plan. The CMM shall submit to the CPM, in the Monthly Compliance Report, a construction mitigation report that demonstrates compliance with the AQCMP mitigation measures for purposes of controlling diesel construction related emissions. Any deviation from the AQCMP mitigation measures shall require prior and CPM notification and approval.

The Diesel Construction Equipment Mitigation Plan shall include the following mitigation measures:

a. All diesel-fueled engines used in the construction of the facility shall have clearly visible tags issued by the on-site AQCMM showing that the engine meets the conditions set forth herein.

b. All construction diesel engines with a rating of 50 hp or higher shall meet, at a minimum, the Tier 3 California Emission Standards for Off-Road Compression-Ignition Engines, as specified in California Code of Regulations, Title 13, section 2423(b)(1), unless a good faith effort to the satisfaction of the CPM that is certified by the on-site AQCMM demonstrates
that such engine is not available for a particular item of equipment. In the event that a Tier 3 engine is not available for any offroad equipment larger than 100 hp, that equipment shall be equipped with a Tier 2 engine, or an engine that is equipped with retrofit controls to reduce exhaust emissions of nitrogen oxides (NOx) and diesel particulate matter (DPM) to no more than Tier 2 levels unless certified by engine manufacturers or the on-site AQCMM that the use of such devices is not practical for specific engine types. For purposes of this condition, the use of such devices is “not practical” for the following, as well as other, reasons:

1. There is no available retrofit control device that has been verified by either the California Air Resources Board or U.S. Environmental Protection Agency to control the engine in question to Tier 2 equivalent emission levels and the highest level of available control using retrofit or Tier 1 engines is being used for the engine in question; or

2. The construction equipment is intended to be on-site for 10 days or less.

The CPM may grant relief from this requirement if the AQCMM can demonstrate a good faith effort to comply with this requirement and that compliance is not practical.

e. The use of a retrofit control device may be terminated immediately, provided that the CPM is informed within 10 working days of the termination and that a replacement for the equipment item in question meeting the controls required in item “b” occurs within 10 days of termination of the use, if the equipment would be needed to continue working at this site for more than 15 days after the use of the retrofit control device is terminated, if one of the following conditions exists:

1. The use of the retrofit control device is excessively reducing the normal availability of the construction equipment due to increased down time for maintenance, and/or reduced power output due to an excessive increase in back pressure.

2. The retrofit control device is causing or is reasonably expected to cause engine damage.

3. The retrofit control device is causing or is reasonably expected to cause a substantial risk to workers or the public.

4. Any other seriously detrimental cause which has the approval of the CPM prior to implementation of the termination.

d. All heavy earth-moving equipment and heavy duty construction-related trucks with engines meeting the requirements of (b) above shall be properly maintained and the engines tuned to the engine manufacturer’s specifications.

e. All diesel heavy construction equipment shall not idle for more than five minutes. Vehicles that need to idle as part of their normal operation (such as concrete trucks) are exempted from this requirement.

f. Construction equipment will employ electric motors when feasible.

Verification: The CMM shall submit the initial Diesel Construction Equipment Mitigation Plan to the CPM for approval at least 30 days prior to site mobilization. The
CMM will update the initial Diesel Construction Equipment Mitigation Plan as necessary, no less than 10 days prior to a specific contractor gaining access to either the main or related linear construction sites. The CMM will notify the CPM of any emergency termination within 10 working days of the termination.

AQ-SC3 Diesel-Fueled Engine Control: The AQCMM shall submit to the CPM, in the MCR, a table that demonstrates compliance with the AQCMP mitigation measures for purposes of controlling diesel construction-related combustion emissions. Any deviation from the AQCMP mitigation measures requires prior CPM notification and approval.

All off-road diesel construction equipment with a rating of 50 hp or greater used in the construction of this facility shall be powered by the cleanest engines reasonably and locally available that also comply with the California Air Resources Board’s (ARB’s) Regulation for In-Use Off-Road Diesel Fleets (California Code of Regulations Title 13, Article 4.8, Chapter 9, Section 2449 et. seq.) and shall be included in the Air Quality Construction Mitigation Plan (AQCMP) required by AQ-SC2. The AQCMP measures shall include the following, with the lowest-emitting engine chosen in each case, as available:

a. All off-road vehicles with compression ignition engines shall comply with the California Air Resources Board’s (ARB’s) Regulation for In-Use Off-Road Diesel Fleets (California Code of Regulations Title 13, Article 4.8, Chapter 9, §2449 et. seq.).

b. To meet the highest level of emissions reduction available for the engine family of each piece of diesel-powered equipment shall be powered by a Tier 4 engine (without add-on controls) or Tier 4i engine (without add-on controls), or a Tier 3 engine with a post-combustion retrofit device verified for use on the particular engine powering the device by the ARB or the US EPA. For PM, the retrofit device shall be a particulate filter if verified, or a flow-through filter, or at least an oxidation catalyst. For NOx, the device shall meet the latest Mark level verified to be available (as of January 2012, none meet this NOx requirement).

c. For diesel powered equipment where the requirements of Part “b” cannot be met, the equipment shall be equipped with a Tier 3 engine without retrofit control devices or with a Tier 2 or lower Tier engine using retrofit controls verified by ARB or US EPA as the best available control device to reduce exhaust emissions of PM or nitrogen oxides (NOx) unless certified by engine manufacturers or the on-site AQCMM that the use of such devices is not practical for specific engine types. For purposes of this condition, the use of such devices can be considered “not practical” for the following, as well as other reasons:
1. There is no available retrofit control device that has been verified by either the California Air Resources Board or U.S. Environmental Protection Agency to control the engine in question and the highest level of available control using retrofit or Tier 1 engines is being used for the engine in question; or

2. The use of the retrofit device would unduly restrict the vision of the operator such that the vehicle would be unsafe to operate because the device would impair the operator’s vision to the front, sides, or rear of the vehicle, or

3. The construction equipment is intended to be on site for 10 work days or less.

d. The CPM may grant relief from a requirement in Part “b” or “c” if the AQCMMM can demonstrate a good faith effort to comply with the requirement and that compliance is not practical.

e. The use of a retrofit control device may be terminated immediately provided that: (1) the CPM is informed within 10 working days following such termination; (b) a replacement for the construction equipment in question which meets the level of control required, occurs within 10 work days following such termination of the use (if the equipment would be needed to continue working at this site for more than 15 work days after the use of the retrofit control device is terminated); and (3) one of the following conditions exists:

1. The use of the retrofit control device is excessively reducing the normal availability of the construction equipment due to increased down time for maintenance, and/or reduced power output due to an excessive increase in exhaust back pressure.

2. The retrofit control device is causing or is reasonably expected to cause engine damage.

3. The retrofit control device is causing or is reasonably expected to cause a substantial risk to workers or the public.

4. Any other seriously detrimental cause which has the approval of the CPM prior to implementation of the termination.

f. All equipment with engines meeting the requirements above shall be properly maintained and the engines tuned to the engine manufacturer’s specifications. Each engine shall be in its original configuration and the equipment or engine must be replaced if it exceeds the manufacturer’s approved oil consumption rate.

g. Construction equipment will employ electric motors when feasible.

h. If the requirements detailed above cannot be met, the AQCMMM shall certify that a good faith effort was made to meet these requirements and this determination must be approved by the CPM.
i. All off-road diesel-fueled engines used in the construction of the facility shall have clearly visible tags issued by the on-site AQCMM showing that the engine meets the conditions set forth herein.

Verification: The AQCMM shall include in the MCR the following to demonstrate control of diesel construction-related emissions:

A. A summary of all actions taken to control diesel construction related emissions;

B. A table listing of all heavy equipment used on site during that month, showing the tier level of each engine and the basis for alternative compliance with this condition for each engine not meeting Part “b” requirements. The MCR shall identify the owner of the equipment and contain a letter from each owner indicating that the equipment has been properly maintained; and

C. Any other documentation deemed necessary by the CPM and AQCMM to verify compliance with this condition.

AQ-C4: The CMM will submit to the CPM for approval, the Monthly Construction Compliance Report that will summarize all compliance actions taken germane to Conditions of Certification AQ-C2 and AQ-C3. The Monthly Construction Compliance Report will include the following elements:

Fugitive Dust Mitigation Monthly Report (see Condition of Certification AQ-C2):

- Identification of each mitigation measure approved by the CPM.
- Identification of specific mitigation measure performed, the location performed, date performed and date enforced or verified as remaining effective.
- Identification of any transgressions or circumventions of mitigation measure and the actions taken to correct the situation.
- Identification of any observation by the CMM of dust plumes beyond the property boundary of the main construction-site or beyond an acceptable distance from the linear construction-site and what actions (if any) were taken to abate the plume.

Diesel Construction Equipment Mitigation Monthly Report (see Condition of Certification AQ-C3):

- Identification of any changes, as approved by the CPM, to the Diesel Construction Equipment Mitigation Plan from the initial report or the last monthly report including any new contractors and their diesel construction equipment.
- A copy of all receipts or other documentation indicating type and amount of fuel purchased, from whom, where delivery occurred and on what date for the main and related linear construction-sites.
- Identification and verification of all diesel engines required to meet EPA or CARB Tier 3 or better off-road diesel equipment emission standards.
The identification of any suitability report being initiated, pursued or the completed report should be included in the monthly report (in the month that it was completed) as should the verification of any subsequent installation of a catalyzed diesel particulate filter. The suitability of the use of a catalyzed diesel particulate filter for a specific piece of construction equipment is to be determined by a qualified mechanic or engineer who must submit a report through the CMM to the CPM for approval.

Identification of any observation by the CMM of dark plumes emanating from diesel-fired construction equipment that extend beyond the property boundary of the main construction site or beyond an acceptable distance from the linear construction site and what actions (if any) were taken to abate the plume or future expected plumes.

Verification: CMM shall submit to the CPM for approval, the Monthly Construction Compliance Report by the 10th day of each month while construction is occurring at the main or related linear construction sites.

AQ-SC4 Construction Fugitive Dust Control: The AQCMM shall submit documentation to the CPM in each Monthly Compliance Report (MCR) that demonstrates compliance with the Air Quality Construction Mitigation Plan (AQCMP) mitigation measures for the purposes of minimizing fugitive dust emission creation from construction activities and preventing all fugitive dust plumes that would not comply with the performance standards identified in AQ-SC9 from leaving the project site. The following fugitive dust mitigation measures shall be included in the Air Quality Construction Mitigation Plan (AQCMP) required by AQ-SC2, and any deviation from the AQCMP mitigation measures shall require prior CPM notification and approval.

a. The main access roads through the facility to the power block areas will be either paved or stabilized using soil binders, or equivalent methods, to provide a stabilized surface that is similar for the purposes of dust control to paving, that may or may not include a crushed rock (gravel or similar material with fines removed) top layer, prior to initiating construction in the main power block area, and delivery areas for operations materials (chemicals, replacement parts, etc.) will be paved or treated prior to taking initial deliveries.

b. All unpaved construction roads and unpaved operation site roads, as they are being constructed, shall be stabilized with a non-toxic soil stabilizer or soil weighting agent that can be determined to be both as efficient or more efficient for fugitive dust control as ARB approved soil stabilizers, and shall not increase any other environmental impacts including loss of vegetation to areas beyond where the soil stabilizers are being applied for dust control. All other disturbed areas in the project and linear facility construction sites shall be watered as frequently as necessary during grading; and after active construction activities shall be stabilized with a non-toxic soil
stabilizer or soil weighting agent, or alternative approved soil stabilizing methods, in order to comply with the dust mitigation objectives of Condition of Certification AQ-SC9. The frequency of watering can be reduced or eliminated during periods of precipitation.

c. No vehicle shall exceed 10 miles per hour on unpaved areas within the construction site, with the exception that vehicles may travel up to 25 miles per hour on stabilized unpaved roads as long as such speeds do not create visible dust emissions.

d. Visible speed limit signs shall be posted at the construction site entrances.

e. All construction equipment vehicle tires shall be inspected and washed as necessary to be cleaned free of dirt prior to entering paved roadways.

f. Gravel ramps of at least 20 feet in length must be provided at the tire washing/cleaning station.

g. All unpaved exits from the construction site shall be graveled or treated to prevent track-out to public roadways.

h. All construction vehicles shall enter the construction site through the treated entrance roadways, unless an alternative route has been submitted to and approved by the CPM.

i. Construction areas adjacent to any paved roadway below the grade of the surrounding construction area or otherwise directly impacted by sediment from site drainage shall be provided with sandbags or other equivalently effective measures to prevent run-off to roadways, or other similar run-off control measures as specified in the Storm Water Pollution Prevention Plan (SWPPP), only when such SWPPP measures are necessary so that this Condition does not conflict with the requirements of the SWPPP.

j. All paved roads within the construction site shall be swept daily or as needed (less during periods of precipitation) on days when construction activity occurs to prevent the accumulation of dirt and debris.

k. At least the first 500 feet of any paved public roadway exiting the construction site or exiting other unpaved roads en route from the construction site or construction staging areas shall be swept as needed (less during periods of precipitation) on days when construction activity occurs or on any other day when dirt or runoff resulting from the construction site activities is visible on the public paved roadways.
1. All soil storage piles and disturbed areas that remain inactive for longer than 10 days shall be covered, or shall be treated with appropriate dust suppressant compounds.

m. All vehicles that are used to transport solid bulk material on public roadways and that have potential to cause visible emissions shall be provided with a cover, or the materials shall be sufficiently wetted and loaded onto the trucks in a manner to provide at least one foot of freeboard.

n. Wind erosion control techniques (such as windbreaks, water, chemical dust suppressants, and/or vegetation) shall be used on all construction areas that may be disturbed. Any windbreaks installed to comply with this Condition shall remain in place until the soil is stabilized or permanently covered with vegetation.

Verification: The AQCMM shall provide the CPM a Monthly Compliance Report to include the following to demonstrate control of fugitive dust emissions:

A. a summary of all actions taken to maintain compliance with this Condition;

B. copies of any complaints filed with the District or facility representatives in relation to project construction; and

C. any other documentation deemed necessary by the CPM or AQCMM to verify compliance with this Condition. Such information may be provided via electronic format or disk at the project owner’s discretion.

AQ-SC5 Within 90 days of startup of the combined cycle gas turbines, the project owner shall shutdown El Segundo Generating Station Units 1, 2, and 3 and use the SCAQMD Rule 1304 boiler replacement offset exemption to fully offset the project SOx, VOC, and PM10 emissions. The project owner shall request from the District a report of the NSR Ledger Account for the ESPRP after the District has granting the ESPRP a Permit to Construct. Such report to specifically identify the Rule 1304 Exempted Emissions used to offset the project emissions. The project owner shall submit this report to the CPM prior to turbine first fire.

Verification: No more than 15 days following the issuance of the District’s Permit to Construct, the project owner shall request from the District the report of the NSR Ledger Account for the ESPRP. The project shall submit the report of the NSR Ledger Account for the ESPRP to the CPM no less than 30 days prior to turbine first fire.

AQ-SC6 The owner/operator shall employ tug boats and self-propelled motorized transporters (SPMT) for all barge delivery operations that are equipped with EPA Tier 2 diesel engines or better, unless certified by the onsite environmental compliance manager that tugboats equipped with Tier 2 diesel engines are not available. For purposes of this condition, “not available” means that proper size tugboats equipped with Tier 2 diesel engines are not
in existence at the Ports of Los Angeles/Long Beach and cannot readily be made available for use by the project owner at or near the time of the barge deliveries to the project site.

As a contract element for the employment of any and all SPMT and tug boats for the purpose of barge delivery operations, the project owner shall include a provision to certify that the SPMT or tug boat primary source of power is based on an EPA Tier 2 diesel engine or that SPMTs or tugboats with Tier 2 diesel engines are not available.

Verification: No less than 5 days prior to a SPMT or tug boat being used for any type of barge delivery operation, the owner/operator shall submit the certification to the CPM for approval.

AQ-SC7 The owner/operator shall install and make operational an oxidation catalyst at the earliest point practical during the initial commissioning phase of each combustion turbine train. The installation must seek to maximize the reduction of VOC emissions and must not compromise safety in any way.

Verification: The owner/operator shall submit to the CPM for approval a letter stating that the installation of the oxidation catalyst is complete and operational and include the estimated effectiveness in terms of percent of VOC emission reduction achieved. This letter shall be signed and stamped by a California Registered Professional Engineer.

AQ-SC8 The project owner shall submit to the Commission, CPM Quarterly Operational Reports, following the end of each calendar quarter, that include operational and emissions information as necessary to demonstrate compliance with the conditions of certification herein. The Quarterly Operation Reports will specifically note or highlight any incidences of noncompliance. The fuel use associated with each gas turbine, in addition to the CO and NOx CEMS recorded data for each gas turbine exhaust stack on an hourly basis in order to verify the following emissions limits.

- NOx (measured as NO₂): 2.0 ppm at 15% oxygen on a dry basis averaged over 1 hour.
- CO: 2.0 ppm at 15% oxygen on a dry basis averaged over 1 hour.
- VOC: 2.0 ppm at 15% oxygen on a dry basis averaged over 1 hour.
- Ammonia: 5 ppm at 15% oxygen on a dry basis.

Verification: The project owner shall submit the Quarterly Operational Reports as specified herein to the CPM and APCO no later than 30 days following the end of each calendar quarter.
AQ-SC9 Dust Plume Response Requirement: The AQCMM or an AQCMM Delegate shall monitor all construction activities for visible dust plumes. Observations of visible dust plumes that have the potential to be transported (A) off the project site and within 400 feet upwind of any regularly occupied structures not owned by the project owner or (B) 200 feet beyond the centerline of the construction of linear facilities indicate that existing mitigation measures are not resulting in effective mitigation. The AQCMP shall include a section detailing how the additional mitigation measures will be accomplished within the time limits specified. The AQCMM or Delegate shall implement the following procedures for additional mitigation measures in the event that such visible dust plumes are observed:

Step 1: The AQCMM or Delegate shall direct more intensive application of the existing mitigation methods within 15 minutes of making such a determination.

Step 2: The AQCMM or Delegate shall direct implementation of additional methods of dust suppression if Step 1 specified above fails to result in adequate mitigation within 30 minutes of the original determination.

Step 3: The AQCMM or Delegate shall direct a temporary shutdown of the activity causing the emissions if Step 2 specified above fails to result in effective mitigation within one hour of the original determination. The activity shall not restart until the AQCMM or Delegate is satisfied that appropriate additional mitigation or other site conditions have changed so that visual dust plumes will not result upon restarting the shutdown source. The owner/operator may appeal to the CPM any directive from the AQCMM or Delegate to shut down an activity, if the shutdown shall go into effect within one hour of the original determination, unless overruled by the CPM before that time.

Verification: The AQCMM shall provide the CPM a Monthly Compliance Report (MCR) to include:

A. a summary of all actions taken to maintain compliance with this Condition;

B. copies of any complaints filed with the District in relation to project construction; and

C. any other documentation deemed necessary by the CPM or AQCMM to verify compliance with this Condition. Such information may be provided via electronic format or disk at the project owner’s discretion.

AQ-SC10 The project owner shall provide the CPM copies of all district issued Authority-to-Construct (ATC) and Permit-to-Operate (PTO) documents for the facility. The project owner shall submit to the CPM for review and approval any modification proposed by the project owner to any
project air permit. The project owner shall submit to the CPM any modification to any permit proposed by the district or U.S. EPA, and any revised permit issued by the district or U.S. EPA, for the project.

Verification: The project owner shall submit any ATC, PTO, and proposed air permit modifications to the CPM within five working days of its submittal either by: 1) the project owner to an agency, or 2) receipt of proposed modifications from an agency. The project owner shall submit all modified air permits to the CPM within 15 days of receipt.

AQ-SC11 The project owner shall provide emission reductions for the auxiliary boiler in the form of offsets or emission reduction credits (ERCs) in the quantities of at least 1 lb/day of VOC and 2 lbs/day of PM10 emissions. The project owner shall demonstrate that the reductions are provided in the form required by the district.

The project owner shall provide an ERC list and surrender the ERCs as required in the district’s Preliminary Determination of Compliance. The project owner shall request CPM approval for any substitutions, modifications, or additions to the ERCs.

The CPM, in consultation with the district, may approve any such change to the ERC list provided that the project remains in compliance with all applicable laws, ordinances, regulations, and standards, and that the requested change(s) will not cause the project to result in a significant environmental impact. The district must also confirm that each requested change is consistent with applicable federal and state laws and regulations.

Verification: The project owner shall submit to the CPM records showing that the project’s offset requirements have been met prior to initiating construction. If the CPM approves a substitution or modification to the list of ERCs, the CPM shall file a statement of the approval with the project owner and Commission docket. The CPM shall maintain an updated list of approved ERCs for the project.

AQ-1 Deleted (CEC 2005a)

AQ-2 The operator shall install and maintain a flow meter to accurately indicate the flow rate of the total hourly throughput of injected ammonia (NH₃) to the SCR in combined cycle turbines 5 and 7. The operator shall also install and maintain a device to continuously record the parameter being measured. The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every twelve months. The ammonia injection rate shall remain between 1 gallon per hour and 75 gallons per hour.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).
AQ-3 The operator shall install and maintain a temperature gauge to accurately indicate the temperature in the exhaust at the inlet to the SCR reactor in combined cycle turbines 5 and 7. The operator shall also install and maintain a device to continuously record the parameter being measured. The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every twelve months. The temperature shall remain between 400 degrees F and 750 degrees F. The catalyst temperature shall not exceed 750 degrees F during the startup period.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-4 The operator shall install and maintain a pressure gauge to accurately indicate the differential pressure across the SCR catalyst bed in inches water column in combined cycle turbines 5 and 7. The operator shall also install and maintain a device to continuously record the parameter being measured. The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every twelve months. The pressure drop across the catalyst shall remain between 1 inch of water column and 4 inches of water column. The pressure drop across the catalyst shall not exceed 4 inches of water column during the startup period.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-5 The operator shall conduct source test(s) for the pollutant(s) identified below.

<table>
<thead>
<tr>
<th>Pollutants to be Tested</th>
<th>Test Method</th>
<th>Averaging Time</th>
<th>Test Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃ Emissions</td>
<td>District Method 207.1 and 5.3 or EPA Method 17</td>
<td>1 hour</td>
<td>Outlet of SCR serving this equipment</td>
</tr>
</tbody>
</table>

The test shall be conducted and the results submitted to the District within 45 days after the test date. The District shall be notified of the date and time of the test at least 7 days prior to the test.

The test shall be conducted at least quarterly during the first twelve months of operation and at least annually thereafter. The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using District Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.
If the equipment is not operated in any given quarter, the operator may elect to defer the required testing to a quarter in which the equipment is operated.

Verification: The project owner shall submit the proposed protocol for the source tests no later than 45 days prior to the proposed source test date to both the District and CPM for approval. The project owner shall notify the District and CPM no later than 10 days prior to the proposed source test date and time. The project owner shall submit source test results no later than 60 days following the source test date to both the District and CPM.

AQ-6 The operator shall conduct source test(s) for the pollutant(s) identified below on combined-cycle turbine units 5 and 7.

<table>
<thead>
<tr>
<th>Pollutants To be Tested</th>
<th>Required Test Method</th>
<th>Averaging Time</th>
<th>Test Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx Emissions</td>
<td>District Method 100.1</td>
<td>1 hour</td>
<td>Outlet of SCR serving this equipment</td>
</tr>
<tr>
<td>CO Emissions</td>
<td>District Method 100.1</td>
<td>1 hour</td>
<td>Outlet of SCR serving this equipment</td>
</tr>
<tr>
<td>SOx Emissions</td>
<td>District Method 307-91</td>
<td>N/A</td>
<td>Fuel Sample</td>
</tr>
<tr>
<td>VOC Emissions</td>
<td>District Method 25.3</td>
<td>1 hour</td>
<td>Outlet of SCR serving this equipment</td>
</tr>
<tr>
<td>PM10 Emissions</td>
<td>District Method 5</td>
<td>4 hours</td>
<td>Outlet of SCR serving this equipment</td>
</tr>
<tr>
<td>NH3 Emissions</td>
<td>District Method 207.1 and 5.3 or EPA Method 17</td>
<td>1 hour</td>
<td>Outlet of SCR serving this equipment</td>
</tr>
</tbody>
</table>

The test shall be conducted after District and CPM approval of the source test protocol, but no later than 180 days after initial start-up. The District and CPM shall be notified of the date and time of the test at least 10 days prior to the test.

The test shall be conducted to determine the oxygen levels in the exhaust. In addition, the tests shall measure the fuel flow rate (CFH), the flue gas flow rate, and the turbine generating output in MW.

The test shall be conducted in accordance with a District and CPM approved source test protocol. The protocol shall be submitted to the District and the CPM no later than 45 days before the proposed test date and shall be approved by the District and CEC before the test commences. The test protocol shall include the proposed operating conditions of the turbine during the tests, the identity of the testing lab, a statement from the testing lab certifying that it meets the criteria of District Rule 304, and a description of all sampling and analytical procedures.

The test shall be conducted when this equipment is operating at maximum, average and minimum loads.

The test shall be conducted for compliance verification of the BACT VOC 2.0 ppmv limit.

For natural gas-fired turbines only, VOC compliance shall be demonstrated as follows: a) Stack gas samples are extracted into Summa canisters maintaining a final canister pressure between 400-500 mm Hg absolute, b) Pressurization of canisters is done with zero gas analyzed/certified to contain less than 0.5 ppmv.
total hydrocarbon as carbon, and c) Analysis of canisters are per EPA method TO-12 (with preconcentration) and temperature of canisters when extracting samples for analysis is not below 70 deg. F. The use of this alternative method for VOC compliance determination does not mean that it is more accurate than District method 25.3, nor does it mean that it may be used in lieu of District method 25.3 without prior approval except for the determination of compliance with the VOC BACT level of 2.0 ppmv calculated as carbon for natural gas fired turbines. The test results shall be reported with two significant digits.

For the purpose of this condition, alternative test methods may be allowed for each of the above pollutants upon concurrence of the District, EPA and CPM.

Verification: The project owner shall submit the proposed protocol for the initial source tests no later than 45 days prior to the proposed source test date to both the District and CPM for approval. The project owner shall submit source test results no later than 60 days following the source test date to both the District and CPM. The project owner shall notify the District and CPM no later than 10 days prior to the proposed initial source test date and time.

AQ-7 The operator shall conduct source test(s) for the pollutant(s) identified below on combine cycle turbine units 5 and 7.

<table>
<thead>
<tr>
<th>Pollutants to be Tested</th>
<th>Required Test Method</th>
<th>Averaging Time</th>
<th>Test Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOx Emissions</td>
<td>AQMD Method 307-91</td>
<td>N/A</td>
<td>Fuel Sample</td>
</tr>
<tr>
<td>VOC Emissions</td>
<td>District Method 25.3</td>
<td>1 hour</td>
<td>Outlet of SCR serving this equipment</td>
</tr>
<tr>
<td>PM Emissions</td>
<td>District Method 5</td>
<td>4 hours</td>
<td>Outlet of SCR serving this equipment</td>
</tr>
</tbody>
</table>

The tests shall be conducted at least once every three years for SOx and PM	extsubscript{10}, and annually for VOC.

The tests shall be conducted to determine the oxygen levels in the exhaust. In addition, the test shall measure the fuel flow rate (CFH), the flue gas flow rate, and the turbine generating output in megawatts (MW).

The test shall be conducted in accordance with District-approved test protocol. The protocol shall be submitted to the District and the CPM no later than 45 days before the proposed test date and shall be approved by the District and the CEC before the test commences. The test protocol shall include the proposed operating conditions of the turbine during the tests, the identity of the testing lab, a statement from the testing lab certifying that it meets the criteria of Rule 304, and a description of all sampling and analytical procedures.

The test shall be conducted when this equipment is operating at 100 percent load.
The test shall be conducted for compliance verification of the BACT VOC 2.0 ppmv limit.

For natural gas-fired turbines only, VOC compliance shall be demonstrated as follows: a) Stack gas samples are extracted into Summa canisters maintaining a final canister pressure between 400-500 mm Hg absolute, b) Pressurization of canisters is done with zero gas analyzed/certified to contain less than 0.5 ppmv total hydrocarbon as carbon, and c) Analysis of canisters are per EPA method TO-12 (with preconcentration) and temperature of canisters when extracting samples for analysis is not below 70 deg. F. The use of this alternative method for VOC compliance determination does not mean that it is more accurate than District method 25.3, nor does it mean that it may be used in lieu of District method 25.3 without prior approval except for the determination of compliance with the VOC BACT level of 2.0 ppmv calculated as carbon for natural gas fired turbines. The test results shall be reported with two significant digits.

For the purpose of this condition, alternative test methods may be allowed for each of the above pollutants upon concurrence of the District, EPA and CPM.

Verification: The project owner shall submit the proposed protocol for the source tests no later than 45 days prior to the proposed source test date to both the District and CPM for approval. The project owner shall notify the District and CPM no later than 10 days prior to the proposed source test date and time. The project owner shall submit source test results no later than 60 days following the source test date to both the District and CPM.

AQ-8

The operator shall provide to the District and CPM any source test report in accordance with the following specifications:

- Source test results shall be submitted to the District and CPM no later than 60 days after the source test was conducted.
- Emission data shall be expressed in terms of concentration (ppmvcd), corrected to 15 percent oxygen (dry basis), mass rate (lbs/hr), and lbs/MM cubic feet. In addition, solid PM emissions, if required to be tested, shall also be reported in terms of grains per DSCF.
- All exhaust flow rates shall be expressed in terms of dry standard cubic feet per minute (DSCFM) and dry actual cubic feet per minute (DACFM).
- All moisture concentration shall be expressed in terms of percent corrected to 15 percent oxygen.
- Source test results shall also include the oxygen levels in the exhaust, the fuel flow rate (CFH), the flue gas temperature, and the generator power output (MW) under which the test was conducted.

Verification: See verifications for AQ-5, -6, and –7.

AQ-9 Deleted (CEC 2010a)

AQ-10 Deleted (CEC 2010a)
AQ-11 The operator shall limit emissions from this equipment as follows:

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Emissions Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}$</td>
<td>6,935 LBS IN ANY 1 MONTH</td>
</tr>
<tr>
<td>VOC</td>
<td>4,930 LBS IN ANY 1 MONTH</td>
</tr>
<tr>
<td>SOx</td>
<td>1,065 LBS IN ANY 1 MONTH</td>
</tr>
</tbody>
</table>

The operator shall calculate the monthly emissions for VOC, PM$_{10}$ and SOx using the equation below and the following emission factors: PM$_{10}$ 4.66 lbs/mmscf, VOC 2.93 lbs/mmscf, and SOx 0.72 lbs/mmscf.

Monthly Emissions, lb/month = X (E. F.)

Where X = monthly fuel use, mmscf/month and E. F = emission factor indicated above.

For the purposes of this condition, the limit(s) shall be based on the emissions from each individual combined cycle gas turbine No. 5 and No. 7.

Verification: The project owner shall submit the monthly fuel use data and emission calculations to the CPM in the Quarterly Operation Reports (AQ-SC8).

AQ-12 The operator shall install and maintain a flow meter to accurately indicate the fuel usage for each of the turbines. The operator shall also install and maintain a device to continuously record the parameter being measured.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-13 Deleted (CEC 2010a)

AQ-14 The operator shall install and maintain a CEMS to measure CO concentration in ppmv. Concentrations shall be corrected to 15 percent oxygen on a dry basis. The CEMS shall be installed and operated, in accordance with an approved District Rule 218 CEMS plan application. The operator shall not install the CEMS prior to receiving initial approval from District. The CO CEMS shall be installed and operated within 90 days after the initial start-up of the gas turbines. The CEMS shall be installed and operated to measure CO concentration over a 15 minute averaging time period. Within two weeks of turbine start-up, the operator shall provide written notification to the District of the exact date of start-up.

The CEMS shall convert the actual CO concentrations to mass emission rates (lbs/hr) using the equation below and record the hourly emission rates on a continuous basis:

\[
\text{CO Emission Rate (lb/hr) = } K \times C_{co} \times F_d \times (20.9/(20.9\%-%O_2 \text{ d})) \times ((Q_g \times HHV)/1E6),
\]
Where:
K = 7.267E-8 (lb/scf)/ppm
Cco = Hourly average ppm based on four consecutive 15-min average CO concentrations, ppm
Fd = 8710 dscf/mmBtu natural gas
%O2 d = Hourly average % by volume O2, dry basis, corresponding to Cco
Qg = Fuel gas usage during the hour, scf/hr
HHV = Gross high heating value of fuel, Btu/scf

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-15 The operator shall install and maintain a CEMS to measure NOx concentration in ppmv. Concentrations shall be corrected to 15 percent oxygen on a dry basis. The CEMS shall be installed and operating (for BACT purposes only) no later than 90 days after initial start-up of the turbine and shall comply with the requirements of Rule 2012. During the interim period between the initial startup and the provisional certification date of the CEMS, the operator shall comply with the monitoring requirements of Rule 2012(h)(2) and 2012(h)(3). Within two weeks of the turbine startup date, the operator shall provide written notification to the District of the exact date of start-up.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-16 The 2.0 PPM NOx emission limit(s) shall not apply during turbine commissioning, startup and shutdown periods. The commissioning period shall not exceed 415 gas turbine operating hours. Startup time shall not exceed 60 minutes for each startup. Shutdown periods shall not exceed 60 minutes for each shutdown. The turbine shall be limited to a maximum of 200 startups per year. Written records of commissioning, start-ups and shutdowns shall be maintained and made available upon request from the District.

A gas turbine operating hour during the commissioning period consists of 60 operating minutes. An operating minute occurs when the gas turbine fuel flow during that minute is greater than zero.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-17 The 2.0 PPM CO emission limits shall not apply during turbine commissioning, startup and shutdown periods. The commissioning period shall not exceed 415 gas turbine operating hours. Startup time shall not exceed 60 minutes for each
shutdown. Shutdown periods shall not exceed 60 minutes for each shutdown. The turbine shall be limited to a maximum of 200 startups per year. Written records of commissioning, start-ups and shutdowns shall be maintained and made available upon request from the District.

A gas turbine operating hour during the commissioning period consists of 60 operating minutes. An operating minute occurs when the gas turbine fuel flow during that minute is greater than zero.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-18 The 16.55 LBS/MMCF NOx emission limit(s) shall only apply during the interim reporting period during the initial turbine commissioning period to report RECLAIM emissions. The interim reporting period shall not exceed 12 months from entry into RECLAIM.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-19 The 8.66 LBS/MMCF NOx emission limit(s) shall only apply during the interim reporting period after initial turbine commissioning to report RECLAIM emissions. The interim reporting period shall not exceed 12 months entry into RECLAIM.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-20 The owner/operator shall comply at all times with the 2.0 ppm 1-hour BACT limit for NOx, except as defined in condition **AQ-16** and with the following additional restriction on startup. NOx emissions shall not exceed 112 lbs total per startup per turbine. Each turbine shall be limited to 200 startups per year with each startup not to exceed 60 minutes in duration.

Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operational Report required in **AQ-SC8**.

AQ-21 Deleted (CEC 2010a)

AQ-22 For the purpose of the following condition numbers, the phrase “continuously record” shall be defined as recording at least once every hour and shall be calculated based upon the average of the continuous monitoring for that hour.

Condition no. **AQ-2**

Condition no. **AQ-3**
Verification: See verifications for AQ-2 and 3.

AQ-23 For the purpose of the condition number AQ-4, the phrase “continuously record” shall be defined as recording at least once every month and shall be calculated based upon the average of the continuous monitoring for that month. See condition AQ-4.

Verification: See verifications for AQ-4.

AQ-24 The 2.0 PPMV NOx emission limit is averaged over 60 minutes at 15 percent oxygen, dry.

Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operational Report required in AQ-SC8.

AQ-25 The 2.0 PPMV CO emission limit is averaged over 60 minutes at 15 percent oxygen, dry.

Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operational Report required in AQ-SC8.

AQ-26 The 5 PPMV NH₃ emissions limit(s) are averaged over 60 minutes at 15 percent O₂, dry. The operator shall calculate and continuously record the NH₃ slip concentration using the following:

\[
\text{NH}_3 \text{ (ppmv)} = \frac{[a-b* \frac{c}{1E6}]*1E6}{b}
\]

Where:

- \(a\) = NH₃ injection rate (lb/hr) / 17(lb/lb-mol),
- \(b\) = dry exhaust gas flow rate (scf/hr) / 385.3 (scf/lb-mol),
- \(c\) = change in measured NOx across the SCR (ppmvd at 15% O₂)

The owner/operator shall install and maintain a NOx analyzer to measure the SCR inlet NOx ppm accurate to within +/- 5 percent calibrated at least once every 12 months. The NOx analyzer shall be installed and operated within 90 days of initial startup. The owner/operator shall use the above described method or another alternative method approved by the District’s Executive Officer. The above described ammonia slip calculation procedure shall not be used for compliance determination or emission information determination without corroborative data using a reference method approved by the District for the determination of ammonia.

Verification: The project owner shall include ammonia slip concentrations averaged on an hourly basis as part of the Quarterly Operational Report required in Condition of Certification AQ-SC8. The project owner shall submit all calibration results performed to the CPM within 60 days of the calibration date. The project owner shall submit all calibration results performed to the CPM within 60 days of the calibration date. Exceedances of the ammonia limit shall be reported as prescribed herein. Chronic exceedances of the ammonia slip limit shall be identified by the project owner and confirmed by the CPM within 60 days of the fourth quarter Quarterly Operational Report.
(AQ-SC8) being submitted to the CPM. If a chronic exceedance is identified and confirmed, the project owner shall work in conjunction with the CPM to develop a reasonable compliance plan to investigate and redress the chronic exceedance of the ammonia slip limit within 60 days of the above confirmation.

AQ-27 This equipment shall not be operated unless the operator demonstrates to the District’s Executive Officer that the facility holds sufficient RTCs to offset the prorated annual emissions increase for the first compliance year of operation. In addition, this equipment shall not be operated unless the operator demonstrates to the District’s Executive Officer that, at the commencement of each compliance year after the first compliance year of operation, the facility holds sufficient RTCs in an amount equal to the annual emissions increase. The project owner shall submit all such information to the CPM for approval.

The operator shall, prior to the 1st compliance year, hold a minimum NOx Reclaim Trading Credits (RTCs) of 104,864 lbs/yr. This condition shall apply during the 1st months of operation, commencing with the initial operation of the gas turbine.

The operator shall, prior to the beginning of all years subsequent to the 1st compliance year, hold a minimum of lbs/yr of 90,953 NOx RTC’s for operation of the gas turbine. In accordance with District Rule 2005 (f), unused RTC’s may be sold only during the reconciliation period for the fourth quarter of the applicable compliance year inclusive of the 1st compliance year.

This condition shall apply to each turbine individually.

Verification: The project owner shall submit to the CPM copies of all RECLAIM reports filed with the District in each Quarterly Operational Report (see AQ-SC8).

AQ-28 Deleted (CEC 2010a)

Conditions of Certification AQ-29 through AQ-31, below, pertain to the following equipment:

Underground Aqueous Ammonia Storage Tank, TK-001, carbon steel, double walled with three transfer pumps and a PVR set at 50 PSIG, 20000 gallons capacity. (ID. No. D30)

(Ammonia Storage Tank)

AQ-29 The operator shall install and maintain a pressure relief valve with a minimum pressure set at 50 psig.

Verification: The project owner shall make the site available for inspection by representatives of the District, CARB, EPA and the Commission.

AQ-30 The operator shall vent this equipment, during filling, only to the vessel from which it is being filled.

Verification: The project owner shall make the site available for inspection by
representatives of the District, CARB, EPA and the Commission.

AQ-31 Deleted (CEC 2012a)

AQ-32 The 2.0 PPM VOC emission limit shall not apply during turbine commissioning, startup and shutdown periods. The commissioning period shall not exceed 415 operating hours. Startup time shall not exceed 60 minutes for each startup.

Shutdown periods shall not exceed 60 minutes for each shutdown. The turbine shall be limited to a maximum of 200 startups per year. Written records of commissioning, startups and shutdowns shall be maintained and made available upon request from the District.

A gas turbine operating hour during the commissioning period consists of 60 operating minutes. An operating minute occurs when the gas turbine fuel flow during that minute is greater than zero.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-33 The 2.0 ppmv VOC emission limit is averaged over 60 minutes at 15 percent O2, dry basis.

Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operational Report required in AQ-SC8.

AQ-34 The project owner/operator shall not use natural gas containing H2S greater than 0.25 gains per 100 scf. This concentration limit is an annual average based on monthly samples of natural gas composition or gas supplier documentation. The gaseous fuel samples shall be tested using District Method 307-91 for total sulfur calculated as H2S.

Verification: The project owner shall submit fuel usage records and all other records and calculations required to demonstrate compliance with this condition as part of the Quarterly Operational Report required in AQ-SC8.

AQ-35 The owner/operator shall limit the total fuel usage for each turbine to no more than 1,500 million cubic standard feet (mmcsf) in any one calendar month.

The operator shall maintain records in a manner approved by the District to demonstrate compliance with this condition.

Verification: The project owner shall submit fuel usage records and all other records and calculations required to demonstrate compliance with this condition as part of the Quarterly Operational Report required in AQ-SC8.

AQ-36 The owner/operator shall keep records, in a manner approved by the District, for the following parameters or items:
Natural gas fuel use after CEMS certification.
Natural gas fuel use during the commissioning period.
Natural gas fuel use after the commissioning period and prior to the CEMS certification.

Verification: The project owner shall submit fuel usage records and all other records and calculations required to demonstrate compliance with this condition as part of the Quarterly Operational Report required in AQ-SC8.

AQ-37 The owner/operator shall limit PM emissions from this facility to less than 100 tons in any one year. For the purpose of this condition, the PM emission limit shall be applicable to defined as particulate matter with an aerodynamic diameter of less than 2.5 microns or less. **The operator shall not operate any of the new gas turbines #9, 11, and 12 or the auxiliary boiler unless it demonstrates compliance with this limit.** The operator shall calculate the emission limits(s) by using the calendar monthly fuel use data and the following emission factors:
- PM2.5: 4.09 lb/mmscf for GE 7FA combined cycle gas turbine;
- 9.98 lb/mmscf for Trent 60 simple cycle gas turbines;
- 8.82 lb/mmscf for auxiliary boiler. For the purpose of this condition, any one year shall be defined as a period of twelve (12) consecutive months determined on a rolling basis with a new 12 month period beginning on the first day of each calendar month.

Verification: The project owner shall submit to the CPM for approval all emissions and emission calculations on a quarterly basis as part of the quarterly emissions report of Condition of Certification AQ-SC8.

AQ-38 For the purpose of determining compliance with District Rule 475, combustion contaminants emissions may exceed the concentration limit or the mass emission limit listed, but not both limits at the same time.

Verification: The project owner shall submit to the CPM for approval all emissions and emission calculations on a quarterly basis as part of the quarterly emissions report of Condition of Certification AQ-SC8.

AQ-39 The operator shall on completion of construction, operate and maintain this equipment according to the following specifications:

In accordance with all air quality mitigation measures stipulated in the final California Energy Commission decision for the 00-AFC-14C project.

All the gas turbines (No. 5, 7, 9, 11, and 12), the duct burners, the selective catalytic reduction units, and the auxiliary boiler are subject to this condition.

Verification: The project owner shall make the site available for inspection by representatives of the District, CARB, EPA and the Commission.

AQ-40 The operator shall on completion of construction, operate and maintain this equipment according to the following specifications:
The combined cycle gas turbine units 5 and 7 shall not operate simultaneously with boiler units 1, 2, or 3 except for the 90 day period as stipulated in District Rule 1313. El Segundo Power shall surrender the Permit to Operate (P/N F14448) for boiler no. 3 within 90 days of the start-up of the combined cycle gas turbines.

Verification: The project owner shall make the site available for inspection by representatives of the District, CARB, EPA and the Commission.

AQ-41 The facility is subject to the applicable requirements of the following rules or regulations(s):

The facility shall submit a detailed retirement plan for the permanent shutdown of Boiler #4 (Device D13) describing in detail the steps and schedule that will be taken to render Boiler #4 permanently inoperable. The retirement plan shall be submitted to SCAQMD within 60 days after the permits to construct for Gas Turbine Units 9, 11, and 12 are issued.

The retirement plan must be approved in writing by SCAQMD. The facility owner shall not commence any construction of the facility modifications including Gas Turbine Units 9, 11, and 12, Steam Turbine Unit 10, SCR/CO Catalysts for Gas Turbines 9, 11, and 12, and the Auxiliary Boiler before the retirement plan is approved in writing by SCAQMD. If SCAQMD notified the facility owner that the plan is not approvable, the facility owner shall submit a revised plan addressing SCAQMD’s concerns within 30 days.

The facility owner shall provide SCAQMD by December 31, 2015 with a notarized statement that Boiler #4 is permanently shut down and that any re-start or operation of the unit shall require new Permit to Construct and be subject to all requirements of nonattainment new source review and the prevention of significant deterioration program.

The facility owner shall notify SCAQMD 30 days prior to the implementation of the approved retirement plan for permanent shutdown of Boiler #4, or advise SCAQMD as soon as practicable should the facility owner undertake permanent shutdown prior to December 31, 2015.

The facility owner shall cease operation of Boiler #4 within 90 calendar days for the first fire of Gas Turbine Unit 9 (Device D90), Unit 11 (Device D100), or Unit 12 (Device D106), whichever occurs first.

Verification: The project owner shall submit any correspondence with SCAQMD within five working days of its submittal either by: 1) the project owner to SCAQMD, or 2) SCAQMD to the project owner.

AQ-42 The operator shall limit emissions from the combined cycle gas turbine No. 9. and duct burner as follows:
<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>EMISSIONS LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>39,191 LBS IN ANY 1 CALENDAR MONTH</td>
</tr>
<tr>
<td>VOC</td>
<td>7,546 LBS IN ANY 1 CALENDAR MONTH</td>
</tr>
<tr>
<td>PM10</td>
<td>8,222 LBS IN ANY 1 CALENDAR MONTH</td>
</tr>
<tr>
<td>SOx</td>
<td>945 LBS IN ANY 1 CALENDAR MONTH</td>
</tr>
</tbody>
</table>

The above limits apply after the equipment is commissioned.

The operator shall calculate the emission limit(s) by using calendar monthly fuel use data and the following emission factors: VOC: 2.92 lbs/mmscf, PM10: 4.51 lbs/mmscf, SOx: 0.60 lbs/mmscf.

The operator shall calculate the emission limits for CO after the CO CEMS certification based upon readings from the SCAQMD certified CEMS. In the event the CO CEMS is not operating or the emissions exceed the valid upper range of the analyzer, the emissions shall be calculated by using monthly fuel use data and the following factors: natural gas commissioning: 22.52 lbs/mmscf, normal operation: 13.86 lbs/mmscf.

Verification: The project owner shall submit the monthly fuel use data and emission calculations to the CPM in the Quarterly Operation Reports (AQ-SC8).

AQ-43 The operator shall limit emissions from each individual gas turbine No. 11 and No. 12. as follows:

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>EMISSIONS LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>10,663 LBS IN ANY 1 CALENDAR MONTH</td>
</tr>
<tr>
<td>VOC</td>
<td>1,203 LBS IN ANY 1 CALENDAR MONTH</td>
</tr>
<tr>
<td>PM10</td>
<td>2,200 LBS IN ANY 1 CALENDAR MONTH</td>
</tr>
<tr>
<td>SOx</td>
<td>130 LBS IN ANY 1 CALENDAR MONTH</td>
</tr>
</tbody>
</table>

The above limits apply after the equipment is commissioned. The above limits apply to each turbine individually.

The operator shall calculate the emission limit(s) by using calendar monthly fuel use data and the following emission factors: VOC: 2.66 lbs/mmscf, PM10: 9.98 lbs/mmscf, SOx: 0.60 lbs/mmscf.

The operator shall calculate the emission limits for CO after the CO CEMS certification based upon readings from the SCAQMD certified CEMS. In the event the CO CEMS is not operating or the emissions exceed the valid upper range of the analyzer, the emissions shall be calculated by using monthly fuel use data and the following factors: natural gas commissioning: 258.44 lbs/mmscf, normal operation: 9.30 lbs/mmscf.
Verification: The project owner shall submit the monthly fuel use data and emission calculations to the CPM in the Quarterly Operation Reports (AQ-SC8).

AQ-44 The 30.88 lbs/mmscf NOx emission limit(s) shall only apply during the turbine commissioning period to report RECLAIM emissions.

The combined cycle gas turbine No. 9 and the duct burner are subject to this condition.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-45 The 9.42 lbs/mmscf NOx emission limit(s) shall only apply during the interim period after commissioning to report RECLAIM emissions.

The combined cycle gas turbine No. 9 and the duct burner are subject to this condition.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-46 The 96.58 lbs/mmscf NOx emission limit(s) shall only apply during the turbine commissioning period to report RECLAIM emissions.

Each individual gas turbine No. 11 and No. 12 is subject to this condition.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-47 The 16.16 lbs/mmscf NOx emission limit(s) shall only apply during the interim period after commissioning to report RECLAIM emissions.

Each individual gas turbine No. 11 and No. 12 is subject to this condition.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-48 The 2.0 PPMV NOx emission limit is averaged over 1 hour, dry basis at 15 percent oxygen. This limit shall not apply to turbine commissioning, fast start-ups, traditional startups, and shutdown periods. The
commissioning period shall not exceed 800 hours. A fast start-up shall not exceed 30 minutes. A Traditional start-up shall not exceed 60 minutes. Shutdown time shall not exceed 30 minutes. The turbine shall be limited to a maximum of 150 fast start-ups per year, and a maximum of 50 traditional start-ups per year. Written records of commissioning, fast-start-ups, traditional start-ups, and shutdowns shall be maintained and made available upon request from the Executive Officer.

For the purpose of this condition, the limit(s) shall be based on the emissions from combined cycle gas turbine No. 9 and the duct burner.

Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operation Report required in AQ-SC8.

AQ-49 The 2.0 PPMV CO emission limit is averaged over 1 hour, dry basis at 15 percent oxygen. This limit shall not apply to turbine commissioning, fast start-ups, traditional start-ups, and shutdown periods. The commissioning period shall not exceed 800 hours. A fast start-up shall not exceed 30 minutes. A Traditional start-up shall not exceed 60 minutes. Shutdown time shall not exceed 30 minutes. The turbine shall be limited to a maximum of 150 fast start-ups per year, and a maximum of 50 traditional start-ups per year. Written records of commissioning, fast-start-ups, traditional start-ups, and shutdowns shall be maintained and made available upon request from the Executive Officer.

For the purpose of this condition, the limit(s) shall be based on the emissions from combined cycle gas turbine No. 9 and the duct burner.

Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operation Report required in AQ-SC8.

AQ-50 The 2.0 PPMV VOC emission limit is averaged over 1 hour, dry basis at 15 percent oxygen. This limit shall not apply to turbine commissioning, fast start-ups, traditional start-ups, and shutdown periods. The commissioning period shall not exceed 800 hours. A fast start-up shall not exceed 30 minutes. A Traditional start-up shall not exceed 60 minutes. Shutdown time shall not exceed 30 minutes. The turbine shall be limited to a maximum of 150 fast start-ups per year, and a maximum of 50 traditional start-ups per year. Written records of commissioning, fast-start-ups, traditional start-ups, and shutdowns shall be maintained and made available upon request from the Executive Officer.

For the purpose of this condition, the limit(s) shall be based on the emissions from combined cycle gas turbine No. 9 and the duct burner.
Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operation Report required in AQ-SC8.

AQ-51 The 2.5 PPMV NOx emission limit is averaged over 1 hour, dry basis at 15 percent oxygen. This limit shall not apply to turbine commissioning, startup and shutdown periods. The commissioning period shall not exceed 206 hours. Start-up shall not exceed 30 minutes. Shutdown time shall not exceed 20 minutes. The turbine shall be limited to a maximum of 480 start-ups per year. Written records of commissioning, fast-start-ups, traditional start-ups, and shutdowns shall be maintained and made available upon request from the Executive Officer.

For the purpose of this condition, the limit(s) shall be based on the emissions from each individual gas turbine No. 11 and No. 12.

Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operation Report required in AQ-SC8.

AQ-52 The 4.0 PPMV CO emission limit is averaged over 1 hour, dry basis at 15 percent oxygen. This limit shall not apply to turbine commissioning, startup and shutdown periods. The commissioning period shall not exceed 206 hours. Start-up shall not exceed 30 minutes. Shutdown time shall not exceed 20 minutes. The turbine shall be limited to a maximum of 480 start-ups per year. Written records of commissioning, fast-start-ups, traditional start-ups, and shutdowns shall be maintained and made available upon request from the Executive Officer.

For the purpose of this condition, the limit(s) shall be based on the emissions from each individual gas turbine No. 11 and No. 12.

Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operation Report required in AQ-SC8.

AQ-53 The 2.0 PPMV VOC emission limit is averaged over 1 hour, dry basis at 15 percent oxygen. This limit shall not apply to turbine commissioning, startup and shutdown periods. This limit shall not apply to turbine commissioning, startup and shutdown periods. The commissioning period shall not exceed 206 hours. Start-up shall not exceed 30 minutes. Shutdown time shall not exceed 20 minutes. The turbine shall be limited to a maximum of 480 start-ups per year. Written records of commissioning, fast-start-ups, traditional start-ups, and shutdowns shall be maintained and made available upon request from the Executive Officer.
For the purpose of this condition, the limit(s) shall be based on the emissions from each individual gas turbine No. 11 and No. 12.

Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operation Report required in AQ-SC8.

AQ-54 The operator shall limit the number of startups to no more than 62 in any one calendar month.

The number of fast start-ups shall not exceed 47 per month. The number of traditional start-ups shall not exceed 15 per calendar month.

The number of fast start-ups shall not exceed 1 per day. The number of traditional start-ups shall not exceed 1 per day.

The NOx emissions during a fast start-up shall not exceed 36 lbs. NOx emissions during a traditional start-up shall not exceed 62 lbs.

The beginning of startup occurs at initial fire in the combustor and the end of startup occurs when the BACT levels are achieved. If during startup the process is aborted the process will count as one startup.

The operator shall maintain records in a manner approved by the District, to demonstrate compliance with this condition.

For the purpose of this condition, the limit(s) shall apply to the combined cycle gas turbine No. 9 and the duct burner.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-55 The operator shall limit the number of startups to less than 60 in any one calendar month.

The number of startups shall not exceed 4 per day.

The NOx emissions from a startup shall not exceed 28 lbs. The beginning of startup occurs at initial fire in the combustor and the end of startup occurs when the BACT levels are achieved. If during startup the process is aborted the process will count as one startup.

The operator shall maintain records in a manner approved by the District, to demonstrate compliance with this condition.

For the purpose of this condition, the limit(s) shall apply to each individual gas turbine No. 11 and No. 12.
Verification: The project owner shall submit CEMS records demonstrating compliance with this condition as part of the Quarterly Operation Report required in AQ-SC8.

AQ-56 The operator shall limit the natural gas usage of the auxiliary boiler to no more than 0.82 MMSCF per day.

Verification: The project owner shall submit the fuel use data demonstrating compliance with this condition as part of the Quarterly Operation Reports in AQ-SC8.

AQ-57 The operator shall install and maintain a(n) flow meter to accurately indicate the flow rate of the total hourly throughput of injected ammonia (NH3) to the SCR in combined cycle turbine No. 9.

The operator shall also install and maintain a device to continuously record the parameter being measured.

The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every twelve months.

The ammonia injection rate shall not exceed 135 lb/hr.\(^{10}\)

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-58 The operator shall install and maintain a(n) temperature gauge to accurately indicate the temperature in the exhaust at the inlet to the SCR reactor in combined cycle turbine No. 9.

The operator shall also install and maintain a device to continuously record the parameter being measured.

The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every twelve months. The temperature shall be between 300°F and 650°F.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

\(^{10}\) In the comment letter to the district (LL 2014d), the facility owner clarifies the maximum ammonia injection rate for the combined cycle turbine 9 should be 139.8 lb/hr, instead of 135 lb/hr. The value needs to be confirmed by the district and may change in the Final Determination of Compliance (FDOC) and Final Staff Assessment (FSA).
AQ-59 The operator shall install and maintain a(n) pressure gauge to accurately indicate the differential pressure across the SCR catalyst bed in inches water column in combined cycle turbine No. 9.

The operator shall also install and maintain a device to continuously record the parameter being measured.

The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every twelve months.

The pressure drop across the catalyst shall remain between 1 inch of water column and 4 inches of water column.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-60 The operator shall install and maintain a(n) flow meter to accurately indicate the flow rate of the total hourly throughput of injected ammonia (NH₃) to the SCR in each individual simple cycle gas turbine No. 11 and 12.

The operator shall also install and maintain a device to continuously record the parameter being measured.

The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every twelve months.

The ammonia injection rate shall not exceed 47 lb/hr¹¹.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-61 The operator shall install and maintain a(n) temperature gauge to accurately indicate the temperature in the exhaust at the inlet to the SCR reactor in each individual simple cycle gas turbine No. 11 and 12.

The operator shall also install and maintain a device to continuously record the parameter being measured.

The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every twelve months. The temperature shall be between 600°F and 1,125°F.

¹¹ In the comment letter to the district (LL 2014d), the facility owner clarifies the maximum ammonia injection rate for each simple cycle turbine No. 11 and 12 should be 67.8 lb/hr, instead of 47 lb/hr. The value needs to be confirmed by the district and may change in the FDOC and FSA.
Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-62 The operator shall install and maintain a(n) pressure gauge to accurately indicate the differential pressure across the SCR catalyst bed in inches water column.

The operator shall also install and maintain a device to continuously record the parameter being measured.

The measuring device or gauge shall be accurate to within plus or minus 5 percent. It shall be calibrated once every twelve months.

The pressure drop across the catalyst shall remain between 1 inch of water column and 12 inches of water column.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-63 The operator shall conduct source test(s) for the pollutant(s) identified below on combined cycle turbine No. 9 and each simple cycle gas turbine No. 11 and No. 12.

<table>
<thead>
<tr>
<th>Pollutant(s) to be tested</th>
<th>Required Test Method(s)</th>
<th>Averaging Time</th>
<th>Test Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx Emissions</td>
<td>District Method 100.1</td>
<td>1 hour</td>
<td>Outlet of SCR</td>
</tr>
<tr>
<td>CO Emissions</td>
<td>District Method 100.1</td>
<td>1 hour</td>
<td>Outlet of SCR</td>
</tr>
<tr>
<td>SOx Emissions</td>
<td>Approved District Method</td>
<td>District Approved Avg. Time</td>
<td>Fuel Sample</td>
</tr>
<tr>
<td>VOC Emissions</td>
<td>Approved District Method</td>
<td>1 hour</td>
<td>Outlet of SCR</td>
</tr>
<tr>
<td>PM10 Emissions</td>
<td>Approved District Method</td>
<td>District Approved Avg. Time</td>
<td>Outlet of SCR</td>
</tr>
<tr>
<td>PM2.5 Emissions</td>
<td>Approved District Method</td>
<td>District Approved Avg. Time</td>
<td>Outlet of SCR</td>
</tr>
<tr>
<td>NH₃ Emissions</td>
<td>District Method 207.1 and 5.3 or EPA Method 17</td>
<td>1 hour</td>
<td>Outlet of SCR</td>
</tr>
</tbody>
</table>

The test shall be conducted after District and CPM approval of the source test protocol, but no later than 180 days after initial start-up or three hundred hours of operation after startup. The District and CPM
shall be notified of the date and time of the test at least 10 days prior to the test.

The test shall be conducted to determine the oxygen levels in the exhaust. In addition, the tests shall measure the fuel flow rate (CFH), the flue gas flow rate. The combined gas turbine and steam turbine generating output in MW shall also be recorded if applicable.

The test shall be conducted in accordance with a District and CPM approved source test protocol. The protocol shall be submitted to the AQMD engineer and the CPM no later than 90 days before the proposed test date and shall be approved by the District and CEC before the test commences. The test protocol shall include the proposed operating conditions of the turbine during the tests, the identity of the testing lab, a statement from the testing lab certifying that it meets the criteria of Rule 304, and a description of all sampling and analytical procedures.

For gas turbines only the VOC test shall use the following method: a) Stack gas samples are extracted into Summa canisters, maintaining a final canister pressure between 400-500 mm Hg absolute, b) Pressurization of Summa canisters is done with zero gas analyzed/certified to having less than 0.05 ppmv total hydrocarbons as carbon, and c) Analysis of Summa canisters is per EPA Method TO-12 (with pre-concentration) and the canisters temperature when extracting samples for analysis is not to be below 70 degrees F.

The use of this alternative VOC test method is solely for the determination of compliance with the VOC BACT level of 2.0 ppmv calculated as carbon for natural gas fired turbines. The test results must be reported with two significant digits.

The test shall be conducted when this equipment is operating at loads of 100 and 75 percent of maximum load for the NOx, CO, VOC, and ammonia tests. The PM10 and PM2.5 test shall be conducted when this equipment is operating at 100 percent of maximum load.

Verification: The project owner shall submit the proposed protocol for the initial source tests no later than 90 days prior to the proposed source test date to both the District and CPM for approval. The project owner shall submit source test results no later than 60 days following the source test date to both the District and CPM. The project owner shall notify the District and CPM no later than 10 days prior to the proposed initial source test date and time.

AQ-64 The operator shall conduct source test(s) for the pollutant(s) identified below on combined cycle turbine No. 9 and each simple cycle gas turbine No. 11 and No. 12.
<table>
<thead>
<tr>
<th>Pollutant(s) to be tested</th>
<th>Required Test Method(s)</th>
<th>Averaging Time</th>
<th>Test Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOx Emissions</td>
<td>Approved District Method</td>
<td>District Approved Avg. Time</td>
<td>Fuel Sample</td>
</tr>
<tr>
<td>VOC Emissions</td>
<td>Approved District Method</td>
<td>1 hour</td>
<td>SCR Outlet</td>
</tr>
<tr>
<td>PM Emissions</td>
<td>Approved District Method</td>
<td>District Approved Avg. Time</td>
<td>SCR Outlet</td>
</tr>
</tbody>
</table>

The test(s) shall be conducted at least once every three years.

The test shall be conducted and the results submitted to the District and CPM within 60 days after the test date. The SCAQMD District and CPM shall be notified of the date and time of the test at least 10 days prior to the test.

The test shall be conducted when the gas turbine is operating at 100 percent of maximum heat input.

For gas turbines only the VOC test shall use the following method: a) Stack gas samples are extracted into Summa canisters, maintaining a final canister pressure between 400-500 mm Hg absolute, b) Pressurization of Summa canisters is done with zero gas analyzed/certified to having less than 0.05 ppmv total hydrocarbons as carbon, and c) Analysis of Summa canisters is per EPA Method TO-12 (with pre-concentration) and the canisters temperature when extracting samples for analysis is not to be below 70 degrees F.

The use of this alternative VOC test method is solely for the determination of compliance with the VOC BACT level of 2.0 ppmv calculated as carbon for natural gas fired turbines. The test results must be reported with two significant digits.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration and/or monthly emissions limit.

Verification: The project owner shall submit the proposed protocol for the initial source tests no later than 90 days prior to the proposed source test date to both the District and CPM for approval. The project owner shall submit source test results no later than 60 days following the source test date to both the District and CPM. The project owner shall notify the District and CPM no later than 10 days prior to the proposed initial source test date and time.
AQ-65 The operator shall conduct source test(s) for the pollutant(s) identified below on combined cycle turbine No. 9 and each simple cycle gas turbine No. 11 and No. 12.

<table>
<thead>
<tr>
<th>Pollutant(s) to be tested</th>
<th>Required Test Method(s)</th>
<th>Averaging Time</th>
<th>Test Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃ Emissions</td>
<td>District Method 207.1 and 5.3 or EPA Method 17</td>
<td>1 hour</td>
<td>SCR Outlet</td>
</tr>
</tbody>
</table>

The test shall be conducted and the results submitted to the District and CPM within 60 days after the test date. The SCAQMD and CPM shall be notified of the date and time of the test at least 10 days prior to the test.

The test shall be conducted at least quarterly during the first twelve months of operation and at least annually thereafter. The NOx concentration, as determined by the certified CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable or not yet certified, a test shall be conducted to determine the NOx emissions using District Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

Verification: The project owner shall submit the proposed protocol for the initial source tests no later than 90 days prior to the proposed source test date to both the District and CPM for approval. The project owner shall submit source test results no later than 60 days following the source test date to both the District and CPM. The project owner shall notify the District and CPM no later than 10 days prior to the proposed initial source test date and time.

AQ-66 The operator shall conduct source test(s) for the pollutant(s) identified below on the auxiliary boiler.

<table>
<thead>
<tr>
<th>Pollutant(s) to be tested</th>
<th>Required Test Method(s)</th>
<th>Averaging Time</th>
<th>Test Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx Emissions</td>
<td>District Method 100.1</td>
<td>1 hour</td>
<td>Outlet of SCR</td>
</tr>
<tr>
<td>CO Emissions</td>
<td>District Method 100.1</td>
<td>1 hour</td>
<td>Outlet of SCR</td>
</tr>
<tr>
<td>PM10 Emissions</td>
<td>Approved District Method</td>
<td>District</td>
<td>(Location to be determined in FDOC and FSA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approved Avg. Time</td>
<td></td>
</tr>
</tbody>
</table>

The test shall be conducted after District and CPM approval of the source test protocol, but no later than the later of 180 days after the de-rate project. The District and CPM shall be notified of the date and time of the test at least 10 days prior to the test.

The test shall be conducted to determine compliance with the BACT emission limits. NOx and CO concentrations shall be corrected to 3%
excess O2, dry. In addition, the tests shall measure the fuel flow rate (CFH), the flue gas flow rate, oxygen level in the flue gas. The steam turbine generator output in MW shall also be recorded.

The test shall be conducted in accordance with a District and CPM approved source test protocol. The protocol shall be submitted to the AQMD engineer and CPM no later than 90 days before the proposed test date and shall be approved by the District and CPM before the test commences. The test protocol shall include the proposed operating conditions of the turbine during the tests, the identity of the testing lab, a statement from the testing lab certifying that it meets the criteria of Rule 304, and a description of all sampling and analytical procedures.

The test shall be conducted when this equipment is operating at loads of 100 and 75 percent of maximum load.

Test results shall be submitted to AQMD and CPM with 90 days of the completion of the tests.

Verification: The project owner shall submit the proposed protocol for the initial source tests no later than 90 days prior to the proposed source test date to both the District and CPM for approval. The project owner shall submit source test results no later than 90 days following the source test date to both the District and CPM. The project owner shall notify the District and CPM no later than 10 days prior to the proposed initial source test date and time.

AQ-67 The operator shall install and maintain a CEMS to measure the following parameters on combined cycle turbine No. 9 and each simple cycle gas turbine No. 11 and No. 12:

- CO concentration in ppmv

Concentrations shall be corrected to 15 percent oxygen on a dry basis.

The CEMS shall be installed and operated to measure CO concentrations over a 15 minute averaging time period.

The CEMS shall be installed and operated no later than 90 days after initial start-up of the turbine, and in accordance with an approved AQMD Rule 218 CEMS plan application. The operator shall not install the CEMS prior to receiving initial approval from AQMD.

Within two weeks of the turbine start-up, the operator shall provide written notification to the District of the exact date of start-up.

The CEMS would convert the actual CO concentrations to mass emission rates (lbs/hr) using the equation below and record the hourly emission rates on a continuous basis.
CO Emission Rate, lbs/hr = \(K \times C_{co} \times F_d \times \left[\frac{20.9}{(20.9\% - \%O_2\text{ d})} \right] \times \frac{(Q_g \times \text{HHV})}{10^6} \), where

\[K = 7.267 \times 10^{-8} \text{ (lb/scf)/ppm} \]
\[C_{co} = \text{Average of four consecutive 15 min. average CO concentration, ppm} \]
\[F_d = 8710 \text{ dscf/MMBTU natural gas} \]
\[\%O_2\text{ d} = \text{Hourly average } \%\text{ by vol. } O_2 \text{ dry, corresponding to } C_{co} \]
\[Q_g = \text{Fuel gas usage during the hour, scf/hr} \]
\[\text{HHV} = \text{Gross high heating value of fuel gas, BTU/scf} \]

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-68 The operator shall install and maintain a CEMS to measure the following parameters on combined cycle turbine No. 9 and each simple cycle gas turbine No. 11 and No. 12:

- NOx concentration in ppmv

Concentrations shall be corrected to 15 percent oxygen on a dry basis.

The CEMS shall be installed and operated no later than 90 days after initial start-up of the turbine, and in accordance with an approved SCAQMD REG XX CEMS plan application. The operator shall not install the CEMS prior to receiving initial approval from AQMD. Within two weeks of the turbine start-up, the operator shall provide written notification to the District of the exact date of start-up.

Rule 2012 provisional RATA testing shall be completed and submitted to the SCAQMD within 90 days of the conclusion of the turbine commissioning period. During the interim period between the initial start-up and the provisional certification date of the CEMS, the operator shall comply with the monitoring requirements of Rule 2012(h)(2) and 2012(h)(3).

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).
AQ-69 For the purpose of the following condition number(s) continuously record shall be defined as recording at least once every 15 minutes and shall be calculated based upon the average of the continuous monitoring for that hour.

Condition AQ-57
Verification: See verification for AQ-57.

AQ-70 For the purpose of the following condition number(s) continuously record shall be defined as recording at least once every hour and shall be calculated based upon the average of the continuous monitoring for that month.

Condition AQ-58
Condition AQ-59
Verification: See verifications for AQ-58 and AQ-59.

AQ-71 For the purpose of the following condition number(s) continuously record shall be defined as recording at least once every 15 minutes and shall be calculated based upon the average of the continuous monitoring for that hour.

Condition AQ-60
Verification: See verification for AQ-60.

AQ-72 For the purpose of the following condition number(s) continuously record shall be defined as recording at least once every hour and shall be calculated based upon the average of the continuous monitoring for that month.

Condition AQ-61
Condition AQ-62
Verification: See verifications for AQ-61 and AQ-62.

AQ-73 The operator shall operate and maintain this equipment according to the following requirements:

The operator shall vent this equipment to the CO oxidation catalyst and SCR control system whenever the turbine is in operation after initial commissioning.

The operator shall provide the SCAQMD and CPM with written notification of the initial startup date.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United
The operator shall provide the SCAQMD and CPM with written notification of the initial startup date 45 days before initial startup.

AQ-74 The operator shall operate and maintain the combined cycle gas turbine No. 9 and the duct burner according to the following requirements:

- The operator shall record the total net power generated in a calendar month in megawatt-hours.
- The operator shall calculate and record greenhouse gas emissions of each calendar month using the following formula:
 \[\text{GHG} = 60.139 \times FF \]
 Where, GHG is the greenhouse gas emissions in tons of CO2e and FF is the monthly fuel usage in millions standard cubic feet.
- The operator shall calculate and record the GHG emissions in pounds per net megawatt-hours on the 12-month rolling average. The GHG emissions from this equipment shall not exceed 763,684 tons per year\(^{12}\). The GHG emissions shall not exceed 967 lbs per net megawatt-hours.
- The operator shall maintain records in a manner approved by the District to demonstrate compliance with this condition. The records shall be made available to AQMD upon request.

Verification: The project owner shall make the site available for inspection by representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-75 The operator shall operate and maintain the selective catalytic reduction units for gas turbines No. 9, No. 11, and No. 12 according to the following requirements:

- The operator shall calculate and continuously record the NH3 slip concentration using the following:
 \[\text{NH}_3 \text{ (ppmvd)} = \left[\frac{a-b*(c*1.2)}{1,000,000} \right] \times 1,000,000/b, \]
 where \(a = \text{NH}_3\) injection rate (lb/hr)/17(lb/lb-mol), \(b = \text{dry exhaust flow rate (scf/hr)/385.5 scf/lb-mol} \), \(c = \text{change in measured NOx across the SCR, ppmvd at 15 percent O}_2\).

\(^{12}\) Staff changed the GHG limit from 878,679 tons per year (as shown in the PDOC) to 763,684 tons per year because staff believes it was a typographical error in the PDOC. The change is based on the calculations on page 105 of the PDOC, and it needs to be confirmed by the district. The value may change in the FDOC and FSA.
The operator shall install a NOx analyzer to measure the SCR inlet NOx ppm accurate to within +/- 5 percent calibrated at least once every 12 months. The operator shall use the method described above or another alternative method approved by the Executive Officer.

The ammonia slip calculation procedures described above shall not be used for compliance determination or emission information determination without corroborative data using an approved reference method for the determination of ammonia. The ammonia slip calculation procedure shall be in-effect no later than 90 days after initial startup of the turbine.

Verification: The project owner shall include ammonia slip concentrations averaged on an hourly basis as part of the Quarterly Operation Report required in Condition of Certification AQ-SC8. The project owner shall submit all calibration results performed to the CPM within 60 days of the calibration date. The project owner shall submit all calibration results performed to the CPM within 60 days of the calibration date. Exceedances of the ammonia limit shall be reported as prescribed herein. Chronic exceedances of the ammonia slip limit shall be identified by the project owner and confirmed by the CPM within 60 days of the fourth quarter Quarterly Operation Report (AQ-SC8) being submitted to the CPM. If a chronic exceedance is identified and confirmed, the project owner shall work in conjunction with the CPM to develop a reasonable compliance plan to investigate and redress the chronic exceedance of the ammonia slip limit within 60 days of the above confirmation.

AQ-76 The operator shall operate and maintain each individual simple cycle gas turbine No. 11 and No. 12 according to the following requirements:

The operator shall record the total net power generated in a calendar month in megawatt-hours.

The operator shall calculate and record greenhouse gas emissions of each calendar month using the following formula:

$$ \text{GHG} = 60.139 \times FF $$

Where, GHG is the greenhouse gas emissions in tons of CO2e and FF is the monthly fuel usage in millions standard cubic feet.

The operator shall calculate and record the GHG emissions in pounds per net megawatt-hours on the 12-month rolling average. The GHG emissions from this equipment shall not exceed 140,998 tons per year. The GHG emissions shall not exceed 1,503 lbs per net megawatt-hours.

The operator shall maintain records in a manner approved by the District to demonstrate compliance with this condition. The records shall be made available to AQMD upon request.

Verification: The project owner shall make the site available for inspection by
representatives of the District, California Air Resources Board (CARB), the United States Environmental Protection Agency (EPA) and the California Energy Commission (Commission).

AQ-77 The combined cycle gas turbine No. 9 and duct burner shall not be operated unless the facility holds 148,226 pounds of NOx RTCs in its allocation account to offset the annual emissions increase for the first year of operation. The RTCs held to satisfy the first year of operation portion of this condition may be transferred only after one year from the initial start of operation. If the initial hold amount is partially satisfied by holding RTCs that expire midway through the hold period, those RTCs may be transferred upon their respective expiration dates. This hold amount is in addition to any other amount of RTCs required to be held under other condition(s) stated in this permit.

Verification: The project owner shall submit to the CPM copies of all RECLAIM reports filed with the District in each Quarterly Operation Report (see AQ-SC8).

AQ-78 The simple cycle gas turbine No. 11 shall not be operated unless the facility holds 46,675 pounds of NOx RTCs in its allocation account to offset the annual emissions increase for the first year of operation. The RTCs held to satisfy the first year of operation portion of this condition may be transferred only after one year from the initial start of operation. If the initial hold amount is partially satisfied by holding RTCs that expire midway through the hold period, those RTCs may be transferred upon their respective expiration dates. This hold amount is in addition to any other amount of RTCs required to be held under other condition(s) stated in this permit.

Verification: The project owner shall submit to the CPM copies of all RECLAIM reports filed with the District in each Quarterly Operation Report (see AQ-SC8).

AQ-79 The simple cycle gas turbine No. 12 shall not be operated unless the facility holds 46,675 pounds of NOx RTCs in its allocation account to offset the annual emissions increase for the first year of operation. The RTCs held to satisfy the first year of operation portion of this condition may be transferred only after one year from the initial start of operation. If the initial hold amount is partially satisfied by holding RTCs that expire midway through the hold period, those RTCs may be transferred upon their respective expiration dates. This hold amount is in addition to any other amount of RTCs required to be held under other condition(s) stated in this permit.

Verification: The project owner shall submit to the CPM copies of all RECLAIM reports filed with the District in each Quarterly Operation Report (see AQ-SC8).
AQ-80 The auxiliary boiler shall not be operated unless the facility holds 521 pounds of NOx RTCs in its allocation account to offset the annual emissions increase for the first year of operation. The RTCs held to satisfy the first year of operation portion of this condition may be transferred only after one year from the initial start of operation. If the initial hold amount is partially satisfied by holding RTCs that expire midway through the hold period, those RTCs may be transferred upon their respective expiration dates. This hold amount is in addition to any other amount of RTCs required to be held under other condition(s) stated in this permit.

Verification: The project owner shall submit to the CPM copies of all RECLAIM reports filed with the District in each Quarterly Operation Report (see AQ-SC8).

AQ-81 The operator shall provide to the District a source test report in accordance with the following specifications:

Source test results shall be submitted to the District no later than 90 days after the source test was conducted.

Emission data shall be expressed in terms of concentration (ppmvd), corrected to 15 percent oxygen (dry basis), mass rate (lbs/hr), and lbs/MM cubic feet. In addition, solid PM emissions, if required to be tested, shall also be reported in terms of grains per DSCF and in terms of lbs/MMBtu.

All exhaust flow rates shall be expressed in terms of dry standard cubic feet per minute (DSCFM) and dry actual cubic feet per minute (DACFM).

All moisture concentration shall be expressed in terms of percent corrected to 15 percent oxygen.

Source test results shall also include the oxygen levels in the exhaust, the fuel flow rate (CFH), the flue gas temperature, and the generator power output (MW) under which the test was conducted.

This condition shall apply to combined cycle gas turbine No. 9 and duct burner, simple cycle gas turbines No. 11 and No. 12, and the auxiliary boiler.

Verification: See verifications for AQ-63, AQ-64, AQ-65, and AQ-66.

13 The PDOC is inconsistent regarding the NOx emission rate for the auxiliary boiler. The facility owner noted that the RTC requirement for the auxiliary boiler in the PDOC was based on the NOx limit of 5 ppmvd, while the vendor data is based on 9 ppmvd (LL 2014d). The facility owner is working with the district and the vendor to ensure that the correct BACT is included. The NOx limit and RTC requirement may change in the FDOC and FSA.
The operator shall keep records, in a manner approved by the District, for the following parameter(s) or item(s):

Natural gas fuel use during the commissioning period

This condition shall apply to combined cycle gas turbine No. 9 and duct burner, simple cycle gas turbines No. 11 and No. 12.

Verification: The project owner shall submit fuel usage records and all other records and calculations required to demonstrate compliance with this condition as part of the Quarterly Operation Report required in AQ-SC8.

REFERENCES

CEC 2012a - CEC (Order No. 12-0808-4). Order Approving a Petition to Modify the Range Of Ammonia Injection Rates, Eliminate a Venturi Scrubber, and Change The Project Name, dated 8/16/2012.

SCAQMD 1993 - South Coast Air Quality Management District. CEQA air quality handbook, dated April 1993.

ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAQS</td>
<td>Ambient Air Quality Standard</td>
</tr>
<tr>
<td>AERMOD</td>
<td>AMS/EPA Regulatory Model</td>
</tr>
<tr>
<td>AFC</td>
<td>Application for Certification</td>
</tr>
<tr>
<td>APCO</td>
<td>Air Pollution Control Officer</td>
</tr>
<tr>
<td>AQCMM</td>
<td>Air Quality Construction Mitigation Manager</td>
</tr>
<tr>
<td>AQCMP</td>
<td>Air Quality Construction Mitigation Plan</td>
</tr>
<tr>
<td>AQMD</td>
<td>Air Quality Management District</td>
</tr>
<tr>
<td>AQMP</td>
<td>Air Quality Management Plan</td>
</tr>
<tr>
<td>ARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>ASOS</td>
<td>Automated Surface Observing Systems</td>
</tr>
<tr>
<td>ATC</td>
<td>Authority to Construct</td>
</tr>
<tr>
<td>BACT</td>
<td>Best Available Control Technology</td>
</tr>
<tr>
<td>bhp</td>
<td>brake horsepower</td>
</tr>
<tr>
<td>Btu</td>
<td>British Thermal Unit</td>
</tr>
<tr>
<td>CAAQS</td>
<td>California Ambient Air Quality Standards</td>
</tr>
<tr>
<td>CCR</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission (or Energy Commission)</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>CPM</td>
<td>(CEC) Compliance Project Manager</td>
</tr>
<tr>
<td>DPM</td>
<td>Diesel Particulate Matter</td>
</tr>
<tr>
<td>Degrees F</td>
<td>Degrees Fahrenheit</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ERC</td>
<td>Emission Reduction Credit</td>
</tr>
<tr>
<td>ESEC</td>
<td>El Segundo Energy Center</td>
</tr>
<tr>
<td>FDOC</td>
<td>Final Determination of Compliance</td>
</tr>
<tr>
<td>FSA</td>
<td>Final Staff Assessment</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas</td>
</tr>
<tr>
<td>gr/dscf</td>
<td>Grains per Dry Standard Cubic Foot (7,000 grains = 1 pound)</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen Sulfide</td>
</tr>
<tr>
<td>HAPs</td>
<td>Hazardous Air Pollutants</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>hp</td>
<td>Horsepower</td>
</tr>
<tr>
<td>HSC</td>
<td>Health and Safety Code</td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolt</td>
</tr>
<tr>
<td>lb/mmscf</td>
<td>Pounds per Million Standard Cubic Feet</td>
</tr>
<tr>
<td>lbs</td>
<td>Pounds</td>
</tr>
<tr>
<td>LLC</td>
<td>Limited Liability Company</td>
</tr>
<tr>
<td>LORS</td>
<td>Laws, Ordinances, Regulations and Standards</td>
</tr>
<tr>
<td>MCR</td>
<td>Monthly Compliance Report</td>
</tr>
<tr>
<td>μg/m3</td>
<td>microgram per cubic meter</td>
</tr>
<tr>
<td>mg/m3</td>
<td>milligrams per cubic meter</td>
</tr>
<tr>
<td>MMBtu/hr</td>
<td>Million British Thermal Units per Hour</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatts (1,000,000 Watts)</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawatt-hour</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Protection Act</td>
</tr>
<tr>
<td>ng/J</td>
<td>Nanograms per Joule</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen Dioxide</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Oxides of Nitrogen or Nitrogen Oxides</td>
</tr>
<tr>
<td>NSPS</td>
<td>New Source Performance Standard</td>
</tr>
<tr>
<td>NSR</td>
<td>New Source Review</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>OLM</td>
<td>Ozone Limiting Method</td>
</tr>
<tr>
<td>PDOC</td>
<td>Preliminary Determination of Compliance</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PM10</td>
<td>Particulate Matter less than 10 microns in diameter</td>
</tr>
<tr>
<td>PM2.5</td>
<td>Particulate Matter less than 2.5 microns in diameter</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>ppmv</td>
<td>Parts Per Million by Volume</td>
</tr>
<tr>
<td>ppmvd</td>
<td>Parts Per Million by Volume, Dry</td>
</tr>
<tr>
<td>PSA</td>
<td>Preliminary Staff Assessment (this document)</td>
</tr>
<tr>
<td>PSD</td>
<td>Prevention of Significant Deterioration</td>
</tr>
<tr>
<td>PTA</td>
<td>Petition to Amend</td>
</tr>
<tr>
<td>PTC</td>
<td>Permit to Construct</td>
</tr>
<tr>
<td>PTE</td>
<td>Potential to Emit</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PTO</td>
<td>Permit to Operate</td>
</tr>
<tr>
<td>RECLAIM</td>
<td>Regional Clean Air Incentives Market</td>
</tr>
<tr>
<td>SB</td>
<td>Senate Bill</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>South Coast Air Quality Management District</td>
</tr>
<tr>
<td>scf</td>
<td>standard cubic feet</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Sulfur Dioxide</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>Sulfate</td>
</tr>
<tr>
<td>SOx</td>
<td>Oxides of Sulfur</td>
</tr>
<tr>
<td>SCAB</td>
<td>South Coast Air Basin</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>tpy</td>
<td>tons per year</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>VMT</td>
<td>Vehicle Miles Traveled</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compounds</td>
</tr>
</tbody>
</table>
SUMMARY

The modifications to El Segundo Energy Center (ESEC) facility are proposed additions to the state’s electricity system that would produce greenhouse gas (GHG) emissions while generating electricity for California consumers. The proposed facility modifications would be rated at a nominal 435 megawatts (MW) net / 448.8 MW gross\(^\text{14}\) and would be located within the existing 33-acre ESEC site in the City of El Segundo, California. The existing steam boiler Units 3 and 4 would be replaced with an air-cooled GE 7FA Fast Start combined-cycle train (rated at 325 MW net/ 334 MW gross) and two air-cooled Trent 60 advanced aeroderivative gas turbines (rated at 55 MW net/ 57.4 MW gross each). The GE 7FA combined cycle train is expected to operate 5,456 hours per year including 200 startup/shutdown cycles; each of the Trent 60 turbines is expected to operate 4,800 hours including 480 startup/shutdown cycles.

The proposed facility modifications would displace other less efficient, higher GHG-emitting generation and provide fast start and dispatch flexibility capabilities to support southern California grid load balancing and renewable energy integration. Because the proposed facility modifications would improve the efficiency of existing system resources, the addition of new units at ESEC would contribute to a reduction of the California GHG emissions and GHG emission rate average. The relative efficiency of the proposed facility modifications and the system build-out of renewable resources in California would result in a net cumulative reduction of GHG emissions from new and existing fossil sources of electricity. Electricity is produced by operation of an interconnected system of generation sources. Operation of one power plant, like the ESEC project, affects all other power plants in the interconnected system.

While the ESEC burns natural gas for fuel and thus produces GHG emissions that contribute cumulatively to climate change, it would have a beneficial impact on system operation and facilitate a reduction in GHG emissions in several ways:

- When dispatched,\(^\text{15}\) the proposed facility modifications at ESEC would displace less efficient (and thus higher GHG-emitting) generation. Because the GHG emissions per megawatt-hour (MWh) from the proposed facility modifications would be lower than those power plants that the proposed facility modifications would displace, the addition of the proposed facility modifications would contribute

\(^{14}\) The MW values throughout this section and the entire Staff Assessment vary as different numbers are used for different purposes, and based on slightly different ambient temperatures and load points.

\(^{15}\) The entity responsible for balancing a region’s electrical load and generation will “dispatch” or call on the operation of generation facilities. The “dispatch order” is generally dictated by the facility’s electricity production cost, efficiency, location or contractual obligations.
to a reduction of California and overall Western Electricity Coordinating Council (WECC) system GHG16 emissions and GHG emission rate average.

- The proposed facility modifications would provide fast start and dispatch flexibility capabilities necessary to integrate the large amounts of intermittent renewable generation (also known as “variable energy resources”) expected to meet the state’s renewable portfolio standard (RPS) and GHG emission reduction targets.

- The proposed facility modifications would replace capacity and generation provided by once-through cooled boiler Units 3 and 4 to comply with the State Water Resources Control Board’s (SWRCB) policy on the use of coastal estuarine waters for power plant cooling.

- The proposed facility modifications would replace less efficient generation in the South Coast local reliability area required to meet local reliability needs, reducing the GHG emissions associated with providing local reliability services and facilitating the retirement of aging, high GHG-emitting resources in the area.

- The proposed facility modifications would facilitate to some degree the replacement of high GHG emitting (e.g., out-of-state coal) electricity generation that must be phased out to meet the State’s new Emissions Performance Standard implemented by SB 1368.17

CONCLUSIONS

The proposed facility modifications would lead to a net reduction in GHG emissions across the electricity system that provides energy and capacity to California. Thus, staff believes that the proposed facility modifications would result in a cumulative overall reduction in GHG emissions from the state’s power plants, would not worsen current conditions, and would thus not result in impacts that are cumulatively significant. In addition, the proposed facility modifications would provide flexible, dispatchable and fast start power, which is an important backup in a high-renewables, low-GHG system.

Staff notes that mandatory reporting of GHG emissions per federal government and Air Resources Board greenhouse gas regulations would occur, and these reports will enable these agencies to gather the information needed to regulate the ESEC facility in trading markets, such as those that are required by regulations implementing the California Global Warming Solutions Act of 2006 (AB 32). The proposed facility modifications may be subject to additional reporting requirements and GHG reduction and trading requirements as these regulations are more fully developed and implemented.

Staff does not believe that the minor GHG emission increases from construction activities would be significant for several reasons. First, construction emissions would

16 Fuel-use closely correlates to the efficiency of and carbon dioxide (CO\textsubscript{2}) emissions from natural gas-fired power plants. And since CO\textsubscript{2} emissions from fuel combustion dominate greenhouse gas (GHG) emissions from power plants, the terms CO\textsubscript{2} and GHG are used interchangeably in this section.

17 Title 20, California Code of Regulations, section 2900 et seq.
be short-term and intermittent, and not continue during the life of the project. Additionally, the control measures or best practices that staff recommends such as limiting idling times and requiring, as appropriate, equipment that meet the latest emissions standards, would further minimize greenhouse gas emissions. Staff believes that the use of newer equipment will increase efficiency and reduce GHG emissions and be compatible with low-carbon fuel (e.g., bio-diesel and ethanol) mandates that will likely be part of the ARB regulations to reduce GHG from construction vehicles and equipment. For all these reasons, staff concludes that the minor short-term emission of greenhouse gases during construction would be sufficiently reduced and would, therefore, not be significant.

The proposed new units at ESEC would emit approximately 0.409 metric tonnes of carbon dioxide per megawatt hour (MTCO$_2$/MWh). Although the ESEC is not subject to the Greenhouse Gases Emission Performance Standard (Title 20, California Code of Regulations, section 2900 et seq.) because its capacity factor would not be higher than 60 percent thus it is not a base load power plant, the emission rate from the proposed new units is still less than the limiting standard of 0.5 MTCO$_2$/MWh. The GE 7FA combined cycle (combustion turbine Unit 9 and steam turbine Unit 10) is also expected to comply with proposed federal New Source Performance Standard (NSPS) of 1,000 pounds of carbon dioxide per gross megawatt hour (lb CO$_2$/grossMWh) for large natural gas-fired stationary combustion turbine combined cycles. Unless further modifications are made, the proposed NSPS for GHG are applicable as of the date of publication in the Federal Register, January 8, 2014. While staff does not expect a simple cycle combustion turbine being installed as a peaking unit to operate more than 3 to 5 percent capacity factor on average, if it is determined that this requirement would apply to the Trent 60 turbines (Units 11 and 12), staff may have to propose a condition of certification to limit the operation so that the capacity factor of each Trent 60 turbine is below 33 percent and the net electric output is less than 219,000 MWh for each Trent 60 turbine so that they would be exempt from the proposed federal NSPS limit, since their emissions would exceed the expected NSPS limit.

The proposed facility modifications would be consistent with all three main conditions in the Energy Commission’s precedent decision regarding GHG emissions established by the Avenal Energy Project’s Final Energy Commission Decision (not increase the overall system heat rate for natural gas plants, not interfere with generation from existing renewables or with the integration of new renewable generation, and ensure a reduction of systemwide GHG emissions).

INTRODUCTION – Wenjun Qian

Generation of electricity using any fossil fuel, including natural gas, can produce greenhouse gases along with the criteria air pollutants that have been traditionally regulated under the federal and state Clean Air Acts (CAA). The **Air Quality** section evaluates proposed modifications to ESEC for these criteria pollutants and this appendix evaluates proposed modifications to ESEC for GHG emissions.
AIR QUALITY GHG ANALYSIS

California is actively pursuing policies to reduce GHG emissions that include adding low-GHG emitting renewable electricity generation resources to the system. The GHGs evaluated in this analysis include carbon dioxide (CO₂), nitrous oxide (N₂O), methane...
(CH$_4$), sulfur hexafluoride (SF$_6$), hydrofluorocarbons (HFC), and perfluorocarbons (PFC). CO$_2$ emissions are far and away the most common of these emissions; as a result, even though the other GHGs may have a greater impact on climate change on a per-unit basis due to their greater global warming potential as described more fully below, GHG emissions are often "normalized" in terms of metric tons of CO$_2$-equivalent (MTCO$_2$E) for simplicity. Global warming potential (GWP) is a relative measure, compared to carbon dioxide, of a compound's ability to warm the planet, taking into account each compound's expected residence time in the atmosphere. By convention, carbon dioxide is assigned a global warming potential of one. In comparison, for example methane has a GWP of 21, which means that it has a global warming effect 21 times greater than carbon dioxide on an equal-mass basis. The carbon dioxide equivalent (CO$_2$E) for a source is obtained by multiplying each GHG by its GWP and then adding the results together to obtain a single, combined emission rate representing all GHGs in terms of CO$_2$E.

GHG emissions are not included in the class of pollutants traditionally called “criteria pollutants.” Since the impact of the GHG emissions from a power plant’s operation has global rather than local effects, those impacts should be assessed not only by analysis of the plant’s emissions, but also in the context of the operation of the entire electricity system of which the plant is an integrated part. Furthermore, the impact of the GHG emissions from a power plant’s operation should be analyzed in the context of applicable GHG laws and policies, especially Assembly Bill (AB) 32, California’s Global Warming Solutions Act of 2006.

GLOBAL CLIMATE CHANGE AND CALIFORNIA

Worldwide, with the exception of 1998, over the past 132-year record the nine warmest years all have occurred since 2000, with the two hottest years on record being 2010 and 2005 (NASA 2013). According to “The Future Is Now: An Update on Climate Change Science Impacts and Response Options for California,” an Energy Commission document, the American West is heating up faster than other regions of the United States (CEC 2009c). The California Climate Change Center (CCCC) reports that, by the end of this century, average global surface temperatures could rise by 4.7°F to 10.5°F due to increased GHG emissions.

The accumulation of GHGs in the atmosphere regulates the earth’s temperature. Without these natural GHGs, the earth’s surface would be approximately 61°F (34°C) cooler (CalEPA 2006); however, emissions from fossil fuel combustion for activities such as electricity production and vehicular transportation have elevated the concentration of GHGs in the atmosphere above natural levels. California Air Resources Board (ARB) estimated that the mobile source sector accounted for approximately 38 percent of the GHG emissions generated in California in 2009, while the electricity generating sector accounted for approximately 23 percent of the 2009 California GHG emissions inventory with just more than half of that from in-state generation sources (ARB 2011).

The Fourth U.S. Climate Action Report concluded, in assessing current trends, that CO$_2$ emissions increased by 20 percent from 1990 to 2004, while methane and nitrous oxide
emissions decreased by 10 percent and 2 percent, respectively. The Intergovernmental Panel on Climate Change (IPCC) constructed several emission trajectories of GHGs needed to stabilize global temperatures and climate change impacts. It concluded that stabilization of GHGs at 450 ppm carbon dioxide equivalent concentration is required to keep the global mean warming increase below 3.8°F (2.1°C) from year 2000 base line levels (IPCC 2007a).

GHGs differ from criteria pollutants in that GHG emissions from a specific project do not cause direct adverse localized human health effects. Rather, the direct environmental effect of GHG emissions is the cumulative effect of an overall increase in global temperatures, which in turn has numerous indirect effects on the environment and humans. The impacts of climate change include potential physical, economic and social effects. These effects could include inundation of settled areas near the coast from rises in sea level associated with melting of land-based glacial ice sheets, exposure to more frequent and powerful climate events, and changes in suitability of certain areas for agriculture, reduction in Arctic sea ice, thawing permafrost, later freezing and earlier break-up of ice on rivers and lakes, a lengthened growing season, shifts in plant and animal ranges, earlier flowering of trees, and a substantial reduction in winter snowpack (IPCC 2007b). For example, current estimates include a 70 to 90 percent reduction in snow pack in the Sierra Nevada mountain range. Current data suggests that in the next 25 years, in every season of the year, California could experience unprecedented heat, longer and more extreme heat waves, greater intensity and frequency of heat waves, and longer dry periods. More specifically, the CCCC predicted that California could witness the following events (CCCC 2006):

- Temperature rises between 3 and 10.5 ºF
- 6 to 20 inches or greater rise in sea level
- 2 to 4 times as many heat-wave days in major urban centers
- 2 to 6 times as many heat-related deaths in major urban centers
- 1 to 1.5 times more critically dry years
- Losses to mountaintop snowpack and water supply (e.g., according to the CCCC, Sierra Nevada snowpack could be reduced by as much as 70 to 90 percent by 2100 [CEC 2009c])
- 25 to 85 percent increase in days conducive to ozone formation
- 3 to 20 percent increase in electricity demand
- 10 to 55 percent increase in the risk of wildfires

There is general scientific consensus that climate change is occurring and that human activity contributes in some measure (perhaps substantially) to that change. Man-made emissions of GHGs, if not sufficiently curtailed, are likely to contribute further to continued increases in global temperatures. Indeed, the California Legislature found that "[g]lobal warming poses a serious threat to the economic well-being, public health, natural resources, and the environment of California" (Cal. Health & Safety Code, sec. 38500, division 25.5, part 1).
The state has demonstrated a clear willingness to address global climate change (GCC) through research, adaptation\(^{18}\), and GHG emission reductions. In that context, staff evaluates the GHG emissions from the proposed project, presents information on GHG emissions related to electricity generation (see *Electricity System GHG Impacts* below), and describes the applicable GHG policies and programs.

In April 2007, the U.S. Supreme Court held that GHG emissions are pollutants within the meaning of the CAA. In reaching its decision, the Court also acknowledged that climate change results, in part, from anthropogenic causes (Massachusetts et al. v. Environmental Protection Agency 549 U.S. 497, 2007). The Supreme Court’s ruling paved the way for the regulation of GHG emissions by U.S. Environmental Protection Agency (U.S. EPA) under the CAA.

In response to this Supreme Court decision, on December 7, 2009 the U.S. EPA Administrator signed two distinct findings regarding GHGs under Section 202(a) of the CAA:

- **Endangerment Finding:** That the current and projected concentrations of the GHGs in the atmosphere threaten the public health and welfare of current and future generations; and
- **Cause or Contribute Finding:** That the combined emissions of GHGs from new motor vehicles and new motor vehicle engines contribute to the GHG pollution which threatens public health and welfare.

As a result, regulating GHGs at the federal level is now required by U.S. EPA’s Prevention of Significant Deterioration Program (PSD) for sources that exceed 100,000 tons per year of carbon dioxide-equivalent emissions and federal rules require federal reporting of GHGs. As federal rulemaking evolves, staff at this time focuses on analyzing the ability of the project to comply with existing federal- and state-level policies and programs for GHGs.

In 1998, the Energy Commission identified a range of strategies to prepare for an uncertain climate future, including a need to account for the environmental impacts associated with energy production, planning, and procurement (CEC 1998, p. 5). In 2003, the Energy Commission recommended that the state require reporting of GHGs or global climate change\(^{20}\) emissions as a condition of state licensing of new electric generating facilities (CEC 2003, IEPR p. 42). In 2006, California enacted the California Global Warming Solutions Act of 2006 (AB 32). It requires the ARB to adopt standards that will reduce 2020 statewide GHG emissions to 1990 levels.

\(^{18}\) While working to understand and reverse global climate change, it is prudent to also adapt to potential changes in the state’s climate (for example, changing rainfall patterns).

\(^{19}\) The Supreme Court is expected to once again review the endangerment finding in early 2014, according to an article published online October 15, 2013 by E & E Publishing.

\(^{20}\) Global climate change is the result of greenhouse gases, or air emissions with global warming potentials, affecting the global energy balance and thereby the global climate of the planet. The terms greenhouse gases (GHGs) and global climate change (GCC) gases are used interchangeably.
AB 32 includes a number of specific requirements:

ARB shall prepare and approve a scoping plan for achieving the maximum technologically feasible and cost-effective reductions in greenhouse gas emissions from sources or categories of sources of greenhouse gases by 2020 (Health and Safety Code (HSC) §38561). The scoping plan, approved by the ARB on December 12, 2008, provides the outline for actions to reduce greenhouse gases in California. The approved scoping plan indicates how these emission reductions will be achieved from significant greenhouse gas sources via regulations, market mechanisms and other actions. In 2014, ARB will complete its five year update to the Scoping Plan, tracking progress towards the 2020 emission goals and proposing new measures as appropriate.

The adopted Scoping Plan anticipates that four-fifths of the planned reductions will come from cost-effective programs and regulations, with the remainder provided by economy-wide cap-and-trade. Measures which affect the electricity sector directly include a 33% Renewable Portfolio Standard, alternative transportation fuels such as vehicle and ship electrification, building energy efficiency, and combined heat and power. Most of these measures have been implemented, such as Senate Bill X1 2 (Simitian, Chapter 1, Statutes of 2011-12) which established a firm goal requiring all retail providers have 33 percent of California’s electricity supplies by renewable sources by 2020.

Identify the statewide level of greenhouse gas emissions in 1990 to serve as the emissions limit to be achieved by 2020 (HSC §38550). In December 2007, the ARB approved the 2020 emission limit of 427 million metric tons of carbon dioxide equivalent (MMTCO2E) of greenhouse gases. In 2013, ARB used EPA's updated information to re-calculate that level to 431 million metric tons.

Adopt a regulation requiring the mandatory reporting of greenhouse gas emissions (HSC §38530). In December 2007, the ARB adopted a regulation requiring the largest electric power generation and industrial sources to report and verify their greenhouse gas emissions. The reporting regulation serves as a solid foundation to determine greenhouse gas emissions and track future changes in emission levels. Facilities which emit more than 25,000 metric tons per year are covered. That includes most emitting power plants of five megawatts or larger. Reported emissions from individual facilities may be found on the Mandatory Reporting website, http://www.arb.ca.gov/cc/reporting/ghg-rep/reported-data/ghg-reports.htm.

Adopt a regulation that establishes a system of market-based declining annual aggregate emission limits for sources or categories of sources that emit greenhouse gas emissions, applicable from January 1, 2012, to December 31, 2020 (HSC §38562(c)). In 2011, the ARB adopted the cap-and-trade original regulation. Amendments are scheduled to be adopted in spring, 2014. The cap-and-trade program covers major sources of GHG emissions in the state such as refineries, power plants, industrial facilities, and transportation fuels. The cap-and-trade program includes an enforceable emissions cap that will decline over time. The state will distribute allowances, which are tradable permits, equal to the emissions allowed under
the cap. Sources under the cap will need to surrender allowances and offsets equal to their emissions at the end of each compliance period.

Individual in-state generating facilities and the first deliverers of imported electricity are the point of regulation. They are responsible for measuring their GHG emissions using ARB and U.S. EPA regulations, and purchasing either carbon allowances or offsets to meet their emissions obligation. Third party verification is required. If facilities find that it is not economic to operate and to purchase sufficient compliance instruments to cover its GHG obligations, facilities must lower their annual energy output. Further information on cap-and-trade may be found at http://www.arb.ca.gov/cc/capandtrade/capandtrade.htm.

The first mandatory compliance period21 with cap-and-trade requirements commenced on January 1, 2012, although enforcement was delayed until January 2013.

Convene an Environmental Justice Advisory Committee (EJAC) to advise the Board in developing the Scoping Plan and any other pertinent matter in implementing AB 32 (HSC §38591). The EJAC met between 2007 and 2010, providing comments on the proposed early action measures and the development of the scoping plan, public health issues, issues for impacted communities and cap-and-trade. To advise the ARB on the 2013 Scoping Plan Update, ARB reconvened a new EJAC on March 21, 2013. The committee met three times in 2013 and will continue in 2014 to provide advice to the ARB.

It is likely that GHG reductions mandated by ARB will be non-uniform or disproportional across emitting sectors, in that most reductions will be based on cost-effectiveness (i.e., the greatest GHG reduction for the least cost). For example, ARB proposes a 40 percent reduction in statewide GHG emissions from the electricity sector even though that sector currently only produces about 25 percent of the state’s GHG emissions.

SB 1368,22 enacted in 2006, and regulations adopted by the Energy Commission and the CPUC, pursuant to that bill, prohibits California utilities from entering into long-term commitments with any base load facilities that exceed the Emission Performance Standard (EPS) of 0.5 metric tonnes CO\textsubscript{2} per megawatt-hour23 (1,100 pounds CO\textsubscript{2}/MWh). Specifically, the SB 1368 EPS applies to base load power from new power plants, new investments in existing power plants, and new or renewed contracts with terms of five years or more, including contracts with power plants located outside of

\begin{footnotesize}
\begin{enumerate}
\item21 A compliance period is the time frame during which the compliance obligation is calculated. The years 2013 and 2014 are known as the first compliance period and the years 2015 to 2017 are known as the second compliance period. The third compliance period is from 2018 to 2020. At the end of each compliance period each facility will be required to turn in compliance instruments, including allowances and a limited number of ARB offset credits equivalent to their total GHG emissions throughout the compliance period. (http://www.arb.ca.gov/cc/capandtrade/guidance/chapter1.pdf)
\item22 Public Utilities Code § 8340 et seq.
\item23 The Emission Performance Standard only applies to carbon dioxide and does not include emissions of other greenhouse gases converted to carbon dioxide equivalent.
\end{enumerate}
\end{footnotesize}
California. If a project, instate or out of state, plans to sell base load electricity to California utilities, those utilities will have to demonstrate that the project meets the EPS. Base load units are defined as units that are expected to operate at a capacity factor higher than 60 percent. Compliance with the EPS is determined by dividing the annual average carbon dioxide emissions by the annual average net electricity production in MWh. This determination is based on capacity factors, heat rates, and corresponding emissions rates that reflect the expected operations of the power plant and not on full load heat rates [Chapter 11, Article 1 §2903(a)]. At the January 12, 2012, Business Meeting, the Energy Commission opened an Order Instituting Rulemaking (12-OIR-1) to consider revisions to the EPS.

ESEC is required to participate in California’s GHG cap-and-trade program. This cap-and-trade program is part of a broad effort by the State of California to reduce GHG emissions as required by AB 32, which is being implemented by ARB. As currently implemented, market participants such as ESEC are required to report their GHG emissions and to obtain GHG emissions allowances (and offsets) for those reported emissions by purchasing allowances from the capped market and offsets from outside the AB 32 program. As new participants enter the market and as the market cap is ratcheted down over time, GHG emission allowance and offset prices will increase encouraging innovation by market participants to reduce their GHG emissions. Thus, ESEC, as a GHG cap-and-trade participant, would be consistent with California’s landmark AB 32 Program, which is a statewide program coordinated with a region wide WCI program to reduce California’s GHG emissions to 1990 levels by 2020.

On January 8, 2014, the U.S. EPA proposed New Source Performance Standard (NSPS) for GHG emissions for new electric power plants (Federal Register, Volume 79, No. 5). This new requirement would limit large natural gas-fired stationary combustion turbines to no more than 1,000 lbs CO₂ per MWh and small natural gas-fired stationary combustion turbines to no more than 1,100 lbs CO₂ per MWh. Large natural gas-fired stationary combustion turbines are those with heat input ratings greater than 850 MMBtu/h (approximately 100 MWe) and small natural gas-fired stationary combustion turbines are those with heat input ratings less than 850 MMBtu/h. According to U.S. EPA, the proposed NSPS limits apply to an electric generating unit if it supplies more than one-third of its potential electric output and more than 219,000 MWh net electric output to the grid per year. The proposed GE 7FA combined cycle generating system is expected to be able to comply with these requirements if they are determined to apply.

The facility owner has requested an operational limit, or capacity factor, for the Trent 60 turbines of about 55 percent (based on 4,800 hours of operation per year divided by 8,760 hours per year) and a gross electric output of 278,400 MWh (or a net electric output of 264,000 MWh) per turbine. The Trent 60 turbines would be subject to the proposed NSPS for GHG if they would actually operate with more than 33 percent (one-third) capacity factor and supply more than 219,000 MWh net electric output to the grid per turbine per year. Unless further modifications are made, the proposed NSPS for GHG are applicable as of the date of publication in the Federal Register, January 8,

While staff does not expect a simple cycle combustion turbine being installed as a peaking unit to operate more than 3 to 5 percent capacity factor on average, if it is determined that this requirement would apply to the Trent 60 turbines (Units 11 and 12), staff may have to propose a condition of certification to limit the operation so that the capacity factor of each Trent 60 turbine is below 33 percent and the net electric output is less than 219,000 MWh for each Trent 60 turbine so that they would be exempt from the proposed federal NSPS limit, since their emissions would exceed the expected NSPS limit.

ELECTRICITY PROJECT GREENHOUSE GAS EMISSIONS

While electricity use can be as simple as turning on a switch to operate a light or fan, the system to deliver the adequate and reliable electricity supply is complex and variable. But it operates as an integrated whole to reliably and effectively meet demand, such that the dispatch of a new source of generation unavoidably curtails or displaces one or more less efficient or less competitive existing sources. Within the system, generation resources provide electricity, or energy, generating capacity, and ancillary services to stabilize the system and facilitate electricity delivery, or movement, over the grid. *Capacity* is the instantaneous output of a resource, in megawatts. *Energy* is the capacity output over a unit of time, for example an hour or year, generally reported as megawatt-hours or gigawatt-hours (GWh). Ancillary services include regulation, spinning reserve, non-spinning reserve, voltage support, and black start capability. Individual generation resources can be built and operated to provide only one specific service. Alternatively, a resource may be able to provide one or all of these services, depending on its design and constantly changing system needs and operations.

GHG EMISSIONS FROM PROPOSED FACILITY MODIFICATIONS

Construction of the Proposed Facility Modifications

Construction of industrial facilities such as power plants requires coordination of numerous equipment and personnel. The concentrated on-site activities result in short-term, unavoidable increases in vehicle and equipment emissions that include greenhouse gases. The decommissioning/demolition of the Units 3 and 4 and construction of the new units would involve 26 months of activity (not including start-up or commissioning). The project owner provided a GHG emission estimate for the entirety of the construction phase (including decommissioning/demolition of the Units 3 and 4). The GHG emissions estimate, presented below in Greenhouse Gas Table 2, includes the total emissions for the 26 months of decommissioning/demolition and construction activity in terms of CO₂-equivalent.

25 See CEC 2009b, page 95.
Greenhouse Gas Table 2

Estimated Potential Construction Greenhouse Gas Emissions (26 months)

<table>
<thead>
<tr>
<th>Construction Source</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-Road Equipment</td>
<td>3,854</td>
<td>0.9</td>
<td>0.0</td>
<td>3,873</td>
</tr>
<tr>
<td>On-Site Vehicles</td>
<td>71</td>
<td>0.0</td>
<td>0.0</td>
<td>71</td>
</tr>
<tr>
<td>Worker Travel</td>
<td>1,876</td>
<td>0.1</td>
<td>0.0</td>
<td>1,878</td>
</tr>
<tr>
<td>Truck Emissions</td>
<td>71</td>
<td>0.0</td>
<td>0.0</td>
<td>71</td>
</tr>
<tr>
<td>Hauling Emissions</td>
<td>73</td>
<td>0.0</td>
<td>0.0</td>
<td>73</td>
</tr>
<tr>
<td>Construction Total</td>
<td>5,945</td>
<td>1.0</td>
<td>0.0</td>
<td>5,966</td>
</tr>
</tbody>
</table>

Source: Table 3.1D-4R (LL 2014a)

Operations of the Proposed Facility Modifications

ESEC proposes to replace existing boiler Units 3 and 4 with one combined-cycle train and two simple-cycle gas turbines. The air-cooled, GE 7FA Fast Start combined-cycle train would consist of a gas turbine generator (Unit 9), a heat recovery steam generator (HRSG), and a steam turbine generator (Unit 10). The GE 7FA combined cycle train would be supported by a small (36 MMBtu/hr) auxiliary boiler that would be incorporated into the operation of the combined-cycle train. The simple cycle turbines (Units 11 and 12) would consist of two air-cooled Trent 60 advanced aeroderivative gas turbines (NRG 2013a). The primary sources of GHG would be the natural gas fired combustion turbines and the auxiliary boiler. The employee and delivery traffic GHG emissions from off-site activities are negligible in comparison with the gas turbine GHG emissions.

Greenhouse Gas Table 3

shows what the proposed project modifications, as permitted, could potentially emit in greenhouse gases on an annual basis. All emissions are converted to CO₂-equivalent and totaled. Electricity generation GHG emissions are generally dominated by CO₂ emissions from the carbon-based fuels; other sources of GHG are typically small and also are more likely to be easily controlled or reused/recycled, but are nevertheless documented here as some of the compounds have very high relative global warming potentials.
Greenhouse Gas Table 3
Estimated Potential Greenhouse Gas (GHG) Emissions

<table>
<thead>
<tr>
<th>Emissions Source</th>
<th>Operational GHG Emissions (MTCO2E/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>973,621</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>386</td>
</tr>
<tr>
<td>Nitrous Oxide (N₂O)</td>
<td>569</td>
</tr>
<tr>
<td>Sulfur Hexafluoride (SF₆) Leakage</td>
<td>77</td>
</tr>
<tr>
<td>Total Project GHG Emissions (MTCO2E/yr)</td>
<td>974,654</td>
</tr>
<tr>
<td>Estimated Annual Energy Output (MWh/yr)</td>
<td>2,379,104</td>
</tr>
<tr>
<td>Estimated Annualized GHG Performance (MTCO2/MWh)</td>
<td>0.409</td>
</tr>
<tr>
<td>Estimated Annualized GHG Performance (MTCO2E/MWh)</td>
<td>0.410</td>
</tr>
</tbody>
</table>

Source: Table 3.1A-20R (LL 2013e)
Notes:
a One metric tonne (MT) equals 1.1 short tons or 2,204.6 pounds or 1,000 kilograms.
b Annualized basis uses the facility owner’s assumed maximum permitted operating basis.

The proposed project modifications would be permitted, on an annual basis, to emit approximately 973,621 metric tonnes of CO₂ per year if operated at its maximum permitted level. Based on a conservative estimate of total operating hours including startups and shutdowns, the capacity factor of the proposed facility modifications would be 60.5 percent, which would be above the trigger for the SB1368 Emission Performance Standard of 60 percent capacity factor. However, the facility owner expects the actual full load capacity factor would be lower than 60 percent because a) the turbines do not produce 100 percent of their capacity during startups and shutdowns; and b) the turbines would not always operate at full load (LL 2013e).

Nevertheless, the proposed new units at ESEC would emit approximately 0.409 MTCO₂/MWh, which would meet the Emission Performance Standard of 0.500 MTCO₂/MWh.

Net greenhouse gas emissions would be lower because Greenhouse Gas Table 3 does not include a credit for shutting down the existing boilers.

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

Staff assesses the cumulative effects of GHG emissions caused by both construction and operation. Construction impacts result from the emissions occurring during the decommissioning/demolition of the Units 3 and 4 and the construction of the proposed new units. The operation impacts result from the emissions of the proposed new units during operation. Staff is continuing to monitor development of AB 32 Scoping Plan implementation efforts and general trends and developments affecting GHG regulation in the construction and electricity sectors.
CONSTRUCTION IMPACTS
Staff believes that the small GHG emission increases from construction (including decommissioning/demolition) activities would not be significant for several reasons. First, the period of construction will be short-term and the emissions intermittent during that period, not ongoing during the life of the project. Additionally, control measures that staff recommends to address criteria pollutant emissions, such as limiting idling times and requiring, as appropriate, equipment that meets the latest criteria pollutant emissions standards, would further minimize greenhouse gas emissions to the extent feasible. The use of newer equipment will increase efficiency and reduce GHG emissions and be compatible with low-carbon fuel (e.g., bio-diesel and ethanol) mandates that will likely be part of future ARB regulations to reduce GHG from construction vehicles and equipment.

DIRECT/INDIRECT OPERATION IMPACTS AND MITIGATION
Operational impacts of the proposed project modifications are described in detail in a later section titled “Project Impacts on Electricity System” since the evaluation of these effects must be done by considering the project’s role(s) in the integrated electricity system. In summary, these effects include reducing the operation and greenhouse gas emissions from the older, existing power plants; potentially displacing local electricity generation; the penetration of renewable resources; and accelerating generation retirements and replacements, including facilities currently using once-through cooling.

The facility owner conducted the top-down GHG BACT analysis and determined the use of highly efficient turbine technologies, combined with good combustion operation and maintenance to maintain optimum efficiency to be BACT for GHG. The ESEC has concluded that the BACT for GHG emissions is an emission rate of 903 pounds CO₂/MWh of gross energy output, and a total annual CO₂ equivalent emissions limit of 974,654 metric tons per year26 for the proposed new units (LL 2013e).

CUMUMATIVE IMPACTS
Cumulative impacts are defined as “two or more individual effects which, when considered together, are considerable or . . . compound or increase other environmental impacts” (CEQA Guidelines § 15355). “A cumulative impact consists of an impact that is created as a result of a combination of the project evaluated in the EIR together with other projects causing related impacts” (CEQA Guidelines § 15130[a][1]). Such impacts may be relatively minor and incremental, yet still be significant because of the existing environmental background, particularly when one considers other closely related past, present, and reasonably foreseeable future projects.

This entire GHG assessment is a cumulative impact assessment. The project alone would not be sufficient to change global climate, but would emit greenhouse gases and therefore has been analyzed as a potential cumulative impact in the context of existing GHG regulatory requirements and GHG energy policies.

26 Values are subject to change in the FDOC and FSA.
COMPLIANCE WITH LORS

ESEC is required to participate in California’s GHG cap-and-trade program, which became active in January 2012, with enforcement beginning in January 2013. This cap-and-trade program is part of a broad effort by the State of California to reduce GHG emissions as required by AB 32, which is being implemented by ARB. As currently implemented, market participants such as ESEC are required to report their GHG emissions and to obtain GHG emissions allowances (and offsets) for those reported emissions by purchasing allowances from the capped market and offsets from outside the AB 32 program. ESEC, as a GHG cap-and-trade participant, would be consistent with California’s landmark AB 32 Program, which is a statewide program coordinated with a region wide WCI program to reduce California’s GHG emissions to 1990 levels by 2020. ARB staff continues to develop and implement regulations to refine key elements of the GHG reduction measures to improve their linkage with other GHG reduction programs. The project may have to provide additional reports and GHG reductions, depending on the future regulations expected from ARB. Similarly, the proposed facility modifications would be subject to federal mandatory reporting of GHG emissions.

Reporting of GHG emissions would enable the project to demonstrate consistency with the policies described above and the regulations that ARB adopts and to provide the information to demonstrate compliance with any future AB 32 requirements that could be enacted in the next few years.

Since the facility owner has proposed that facility modifications have less than a 60 percent annual full load capacity factor, the proposed facility modifications are not subject to the requirements of SB 1368 and the current Emission Performance Standard. However, the project’s GHG emission performance has been shown to be below the SB 1368 EPS.

District Rule 1714 establishes preconstruction review requirements for GHGs. ESEC is an existing PSD major source because of its NOx and CO emissions. The new power system will have more than 75,000 tons per year CO2E emissions, as calculated in Appendix E of the PDOC. Therefore, the proposed new units are subject to the GHG PSD analysis.

The district performed a PSD BACT analysis for GHGs and concluded thermal efficiency is the only technically and economically feasible alternative for CO2/GHG emissions control for the ESEC facility modifications. The current design of the facility meets the BACT requirement for GHG emission reductions. The applicable BACT limit for the GE 7FA combined cycle generating system is set at 45 percent load, to be 967 lb/netMWh. This limit ensures compliance with the California’s SB1368 Emissions Performance Standard (EPS) limit of 1,100 lb/netMWh, and compliance with the proposed federal New Source Performance Standard (NSPS) of 1,000 lb/grossMWh for new combustion turbines with a heat input rating greater than 850 MMBtu/h (approximately 100 megawatts electrical [MWe]). The applicable BACT limit for the Trent 60 simple cycle generating system is set at 55 percent load, to be 1,503 lb/netMWh.
The PDOC states that the simple cycle generating systems would be exempt from the proposed NSPS for GHG emissions. However, according to U.S. EPA (Federal Register, Volume 79, No. 5, dated January 8, 2014), the proposed NSPS limit apply to an electric generating unit if it supplies more than one-third of its potential electric output and more than 219,000 MWh net electric output to the grid per year. The facility owner has requested an operational limit, or capacity factor, for the Trent 60 turbines of about 55 percent (based on 4,800 hours of operation per year divided by 8,760 hours per year) and a gross electric output of 278,400 MWh (or a net electric output of 264,000 MWh) per turbine. The Trent 60 turbines would be subject to the proposed NSPS for GHG if they would actually operate with more than 33 percent (one-third) capacity factor and supply more than 219,000 MWh net electric output to the grid per turbine per year. Unless further modifications are made, the proposed NSPS for GHG are applicable as of the date of publication in the Federal Register, January 8, 2014. While staff does not expect a simple cycle combustion turbine being installed as a peaking unit to operate more that 3 to 5 percent capacity factor on average, if it is determined that this requirement would apply to the Trent 60 turbines (Units 11 and 12), staff may have to propose a condition of certification to limit the operation so that the capacity factor of each Trent 60 turbine is below 33 percent and the net electric output is less than 219,000 MWh for each Trent 60 turbine so that they would be exempt from the proposed federal NSPS limit, since their emissions would exceed the expected NSPS limit. The proposed federal NSPS limit applicable to the Trent 60 turbines, if it applies, is 1,100 lb/grossMWh for new combustion turbines with a heat input rating less than or equal to 850 MMBtu/h (approximately 100 MWe).

The PDOC states that modeling analysis, monitoring for GHGs, impact analysis from GHGs in the nearby Class I areas, and offsets are not required for GHG PSD analysis.

CALIFORNIA ELECTRICITY AND GREENHOUSE GASES – David Vidaver

California’s commitments to dramatically reduce greenhouse gas (GHG) emissions over the next four decades include moving to a high-renewable/low GHG electricity system. However, natural gas-fired power plants--and the GHG emissions associated with their output--will still be integral to the reliable operation of the electricity system at the outset of this period. In the long-run, zero- and low carbon resources, including demand-side and storage resources, may provide a majority, if not all of the balancing services needed to integrate variable renewable resources. However, the technologies that are needed to do so are not expected to be available in sufficient quantities by the early- to mid-2020s to obviate the need for dispatchable, flexible natural gas-fired electricity generation. Furthermore, the 2017–2020 retirements of natural gas-fired generation resources in the Los Angeles and San Diego regions that use once through cooling (OTC) technologies and the closure of the San Onofre Nuclear Generating Station

27 Variable and intermittent are often used interchangeably, but variable more accurately reflects the integration issues of renewable into the California grid. Winds can slow across a wind farm or cloud cover can shade portions of a solar field, temporarily reducing unit or facility output, but not shut down the unit or facility.
(SONGS) will require the development of natural gas-fired generation as part of the set of resources that will maintain local reliability.

The amount of new natural gas-fired capacity needed to provide reliable service to the customers of the state’s investor-owned utilities, direct access providers and community choice aggregators over a ten-year planning horizon is determined in the California Public Utilities Commission’s (CPUC’s) Long-term Procurement Planning (LTPP) proceeding. The resulting portfolio of demand- and supply-side resources satisfies the state’s loading order, which mandates development of cost-effective preferred resources (zero- and low-GHG emitting resources, such as energy efficiency, demand response, and renewable generation) in support of the state’s climate change policies before authorizing the development/financing of conventional fossil resources.28

THE ROLE OF NATURAL GAS-FIRED GENERATION IN A LOW-GHG ENVIRONMENT

The need for natural gas-fired generation to reliably operate the electricity system is well established. On October 8, 2008, the Energy Commission adopted an Order Instituting Informational Proceeding (08-GHG OII-1) to solicit comments on how to assess the greenhouse gas impacts of proposed new power plants in accordance with the California Environmental Quality Act (CEQA).29 A report prepared as a response to the GHG OII (CEC 2009a) defines the roles that natural gas-fired power plants fulfill in an evolving high-renewables, low-GHG system (CEC 2009b, pp 93 and 94). Such new facilities serve to:

1. Provide variable generation and grid operations support;
2. Meet extreme load and system emergency requirements;
3. Meet local capacity requirements; and,
4. Provide general energy support.

Variable Generation and Grid Operations Support

California’s renewable portfolio standard (RPS) requires that the state’s energy service providers meet 33 percent of retail sales with renewable energy by 2020; meeting GHG emission reduction targets for 2050 will likely require a far higher percentage. Much of this energy will come from variable wind and solar resources to be developed in California, or on an “as generated” basis from neighboring states.

The California Independent System Operator (California ISO) has identified an increased need for regulation services, “load-following” generation, and multi-hour ramping as a result of the increase in these variable (“intermittent energy”) renewable

28 The loading order is set forth in California’s Energy Action Plans. Energy Action Plan I was adopted by the state’s energy agencies in April/May 2003 and Energy Action Plan II in September 2005, An update to these plans was issued in February 2008.

29 This need for gas-fired generation to reliably operate the system was reaffirmed in the CPUC decision authorizing Southern California Edison to procure new gas-fired generation in the Los Angeles Basin. D.13-02-015, See Decision Authorizing Long-Term Procurement for Local Capacity Requirements, February 13, 2013, p. 2.
resources, whose output changes over the course of the day, often in a sudden and unpredictable fashion. Dispatchable capacity must provide “regulation,” small changes in output over a 5-minute period at California ISO direction, requiring that the generator be equipped with automated generation control (AGC). “Load following” requires larger changes in output by the generation portfolio over a 5-minute to one-hour period. Multi-hour ramping needs require that units be dispatched, at California ISO direction if necessary, over time periods of one to nine hours and wider ranges of output in aggregate, requiring dispatchable generation that can start and ramp up and down quickly and be capable of operating at relatively low load levels if the amount of dispatchable capacity and associated energy needed from these resources is to be minimized.

Natural gas-fired power plants are currently the only type of new facility that can provide these “ancillary” services in the quantities needed now and in the near future. While dispatchable hydroelectric plants can also provide them, the potential for adding hydroelectric resources to the system is limited. Nuclear, coal and geothermal facilities are generally more economic if operated at or near their design point (i.e., base loaded) and therefore, not the preferred technology for providing ancillary services. While demand-side resources and storage may ultimately provide significant quantities of these ancillary services, only pumped hydro storage facilities are currently capable of doing so on a large scale.

Historically, a large share of California’s load-following and ramping needs have been provided by the natural gas-fired steam turbines built on the Pacific coast and in the San Francisco Bay Delta during the 1960s and 1970s. While these units were modified to operate successfully as load followers, they are not as efficient or economic as newer technologies. Several of these have retired as a result of the State Water Resource Control Board’s (SWRCB’s) policy on the use of OTC technologies; others are expected to retire by 2020. This represents a loss of capacity capable of operating at a very wide range of output and thus a loss of capacity able to provide large quantities of ancillary services.

Local Capacity Requirements

The California ISO has identified numerous local capacity areas (LCA) and sub-areas in which threshold amounts of capacity are required to ensure reliability. Transmission constraints prevent the import of sufficient energy into these areas under high load conditions to ensure reliable service without requiring specified amounts of capacity be generating or available to the California ISO for immediate dispatch.

30 Issues can arise from: thermal fatigue due to cycling; difficulties starting and stopping solid or geothermal fuel supplies; significant inefficiencies at low loads or standby points used to avoid full shutdowns; and, significant capital outlays that make it necessary to operate the units as much as possible.

31 In D.13-02-015, the CPUC provides the assumptions regarding demand response and storage that were used in estimating the residual need for gas-fired generation capacity to meet the estimated 2021 local capacity requirement (LCR) for the Los Angeles Basin local capacity area (LCA).
Reliable service requires that the California ISO be able to maintain service under 1-in-10-year load conditions given the sequential failure of two major components (a large power plant and a major transmission line, for example); this requirement is imposed by the North American Electric Reliability Council (NERC). The amount of capacity needed in each of these areas (the local capacity requirement, or “LCR”) is determined annually by the California ISO; the LCR study process culminates in an annual Local Capacity Technical Analysis. The need for natural-gas fired capacity in LCAs stems in part from their predominantly urban nature and coastal location (i.e., fewer transmission lines into the coastal region as none are available from the west or ocean-side of the basin). The LCRs of the Greater Bay Area, Los Angeles Basin, San Diego and Big Creek-Ventura LRAs are too large to be met solely with non-natural gas fired generation; the renewable development scenarios compiled by the CPUC for use in the 2012 LTPP proceeding – and those being considered in the 2014 proceeding – indicate that only a share of the new capacity needed in the large LCAs can be expected to come from new renewable resources. This share is not sufficient to eliminate the need for new natural-gas fired generation in the Los Angeles Basin LCA, as evidenced by the procurement authorization issued in that proceeding.

Extreme Load and System Emergency Requirements

Sufficient capacity must exist to meet demand under very high load conditions or when generator outages reduce capacity surpluses to levels low enough to threaten reliability. Historically, generation capacity and demand response programs equal to 115 percent to 117 percent of forecasted annual peak demand have been deemed sufficient to meet reliability requirements.

General Energy Support

The loading order indicates the resources that the state intends to rely on to meet energy needs while reducing GHG emissions. While energy efficiency, demand response programs, renewable generation, and combined heat and power are preferred resources that are to be developed before natural gas-fired generation, they are not sufficient to meet the state’s future energy demand and maintain the electric system’s reliability. In addition, a significant share of the state’s still-operating generation fleet is expected to shut down to comply with the SWRCB’s OTC policy. Energy from natural gas-fired generation is needed in increasing amounts when one or more units at Diablo Canyon are out (for refueling, for example) or during dry years, in which hydroelectric production is reduced.

QUANTIFYING THE NEED FOR NATURAL GAS-FIRED GENERATION

Prior to the deregulation of the California electricity system during the 1990’s, the Energy Commission’s power plant siting process considered the need for power plant development. SB 110 (Chapter 581, Statutes of 1999) eliminated the requirement that projects licensed by the Energy Commission be in conformance with an integrated assessment of need that was conducted by the Energy Commission until that time.

The need for new generation capacity to ensure reliable service in the investor-owned utility (IOU) service territories is now determined in the CPUC’s biennial LTPP
This proceeding is the forum in which the state’s major IOUs are authorized to finance the development of new “least-cost, best-fit” generation (on behalf of either IOU customers or all ratepayers not served by publicly-owned utilities) needed to reliably meet electricity demand. This need, specified in terms of: (a) the MW of capacity needed; (b) the desired or required operating characteristics of the resource(s) to be financed; and (c) the location of proposed additions if required for local reliability, is a function of planning assumptions that reflect the state’s commitment to dramatically reduce GHG emissions from the electricity sector. The MWs of capacity needed are driven by:

- Peak demand growth due to economic and demographic factors;
- Reductions in peak demand due to committed and uncommitted energy efficiency and demand response programs;
- Reserve margins (dependable capacity in excess of peak demand) needed to ensure system reliability, normally assumed to be 15 to 17 percent of peak demand, but also including any additional dispatchable capacity needed to ensure reliability given variation of renewable resources (e.g., wind or solar generation);
- Capacity to be provided by fossil-fired resources being developed by California-based investor-owned utilities pursuant to authorization by the CPUC in previous LTPP proceedings;
- Capacity to be provided by new renewable resources built/contracted with to meet the state’s RPS; and,
- Capacity to be lost due to retirement, e.g., capacity expected to cease operation as a result of the SWRCB policy regarding the use of OTC.

The planning assumptions adopted for use in the LTPP proceeding, and thus determinant of the amount of new capacity authorized, consider both the state’s “loading order” for resource development, as well as the expected development of specific types of preferred resources, including energy efficiency, demand response, and renewable generation. In other words, in authorizing the procurement/financing of dispatchable, natural gas-fired capacity by an IOU, the CPUC assumes that cost-effective amounts of preferred resources will have been procured.

The authorization for Southern California Edison to procure natural gas-fired generation to meet local reliability needs in the Los Angeles Basin was granted in D.13-02-015 (February 13, 2013) in the CPUC’s 2012 LTPP proceeding (R.12-03-014). The decision requires that Southern California Edison procure at least 1,000 MW and not more than 1,200 MW of new conventional natural gas-fired resources in order to replace in-basin capacity utilizing OTC expected to retire by the end of 2020. The decision did not consider any need for additional capacity as a result of the retirement of San Onofre.

32 The need for new generation capacity to ensure reliable service by publicly-owned utilities (POU) is determined by the governing authorities of the individual utilities.

33 Both the amount of natural gas-fired capacity conditionally authorized by the CPUC and the amount that will ultimately be approved are dependent upon the amount of preferred resources that are assumed by the CPUC to be developed and a showing by the IOU that all cost-effective preferred resources available have been procured. See D.13-02-015, pp. 78 – 80
The CPUC does not require Energy Commission certification for a generation project to participate in a utility request for offers (RFOs), nor does the Energy Commission require a PPA for a project to be considered for certification. Requiring the sequencing of these processes would not only lengthen the time needed to bring projects on line and thus threaten system reliability, it would reduce the number of projects that could compete in utility RFOs. This could lead to non-competitive solicitations, unnecessarily raising ratepayer costs.

Energy Commission certification of fossil generation without a long-term PPA does not result in the development of more fossil generation than that needed to reliably operate the system. It is not expected that developers of new capacity, such as the developer of the proposed modified ESEC facility, would bring a project to completion without a long-term PPA with a utility that would guaranteed recovery of the investment of several hundred million dollars. Only one so-called “merchant plant” has been developed since the energy crisis (2000 – 2001) without a PPA, and the conditions that led to that merchant plant are specific to that one facility. This merchant plant, in turn, provides capacity and ancillary services that obviates the need for energy and capacity from other, new gas-fired generation and contributes to reduction in GHG emissions. However, if the new ESEC units were to be built and come on line without CPUC approval of a PPA, they would still: (a) displace energy from higher GHG-emission facilities, and (b) not “crowd out” renewable generation and demand-side programs (i.e., requirements/targets for the procurement of preferred resources will be unaffected).

ENERGY DISPLACEMENT AND CHANGES IN GHG EMISSIONS

Any assessment of the impact of a new power plant on system-wide GHG emissions must begin with the understanding that electricity generation and demand must be in balance at all times; the energy provided by any new generation resource simultaneously displaces exactly the same amount of energy from an existing resource or resources. The GHG emissions produced by the units added as a result of the ESEC amendment request are thus not incremental, but are partially or totally offset by reductions in GHG emissions from those generation resources that are displaced, depending on the relative GHG emission rates.

At renewable penetration levels of less than 33 percent, new natural gas-fired generation such as the modified ESEC facility displaces less efficient natural gas-fired generation in a very straightforward fashion. It is reasonable to assume that the new ESEC units would be dispatched (called upon to generate electricity) whenever they are

34 Over time, the development of demand-side and storage technologies that can cost-effectively substitute for generation as providers of regulation, load-following, and multi-hour ramping services may obviate the need for gas-fired generation, but this is not expected to occur soon enough to eliminate the need for gas-fired generation to replace retiring OTC units and San Onofre.

35 At very low gas prices relative to coal prices, i.e., when electricity from natural gas is cheaper than that from coal, new gas-fired generation will displace coal-fired generation. In markets such as California, where GHG emissions allowance costs are a component of the market price, coal-fired generation is displaced even sooner due to its higher carbon content.
a cheaper source of energy than an alternative - i.e., that they will displace a more expensive resource, if not the most expensive resource that would otherwise be called upon to operate. The costs of dispatching a power plant are largely the costs of fuel, plus variable operations and maintenance (O&M) costs, with the former representing the lion’s share of such costs (90 percent or more). It follows that the new ESEC units would be dispatched when they burn less fuel per MWh than the resource(s) they displace, i.e., when they produce fewer GHG emissions. There are exceptions in theory, but not in practice.³⁶

Holding the portfolio of generation resources constant, energy from new natural gas-fired plants displaces energy from existing natural gas-fired plants. In the longer-term, the development and operation of the new ESEC units would reduce the use of less efficient generation resources, and ultimately, to their retirement. By reducing revenue streams accruing to other resources (for the provision of both energy and capacity-related services, whether through markets or under a bilateral contract), the new ESEC units render these other facilities less profitable and riskier to operate. This follows from the fixed demand for energy and ancillary services; the developers of the new ESEC units cannot stimulate demand for energy and other products they provide, but merely serve to provide a share of the energy that is needed to meet demand and the capacity needed to reliably operate the system. In doing so, the new ESEC units both discourage the use of, and allow for the retirement of less-efficient generation.

The long-run impact of the natural gas fired fleet turnover as described here can be seen from historical changes in resources that are providing electricity in California as presented below in Figure GHG-1 (data includes combined cycles and boilers only). In 2001, approximately 74,000 GWh (62.5 percent of natural gas-fired generation) in California was from pre-1980 natural gas fired steam turbines, combusting an average of 11,268 Btu per kWh (not shown in the figure). By 2010, this share had fallen to approximately 6,000 GWh (5.4 percent); 64.1 percent of natural-gas fired generation was from new combined cycles with an average heat rate of 7,201 Btu per kWh (CEC 2011, also not shown in the figure).³⁷ The net change over this period was a 22 percent reduction in GHG emissions (also not shown in the figure) despite a 3.5 percent increase in generation. The post-2000 development of new combined cycle generation has allowed for the retirement of aging natural gas fired steam turbines along the California Coast and in the San Francisco Bay Delta. Those that remain in operation

³⁶ If a plant’s variable O&M costs are so low as to offset the costs associated with its greater fuel combustion, a less efficient (higher GHG emission) plant may be dispatched first. There is no indication that the new ESEC units’ variable O&M costs are unusually low and that they would be dispatched before a more efficient facility. If a natural gas-fired plant’s per-mmBtu fuel costs are very low, it may be less efficient (higher GHG emission) but still be dispatched first. Natural gas costs in California, however, are higher than elsewhere in the WECC and thus this scenario is unlikely to occur.

³⁷ The remaining 30 percent of natural-gas-fired generation is largely cogeneration; slightly more than one percent is from peaking units. For a detailed discussion of the evolution of natural gas-fired generation in California since 2000, see Thermal Efficiency of Gas-Fired Generation in California: 2012 Update (CEC-200-2013-002; May 2013)
have seen a dramatic reduction in their capacity factors38 and are used primarily as a source of dispatchable capacity.

The dispatch of the new ESEC units would generally not result in the displacement of energy from renewable resources or large hydroelectric generation. Most renewable resources have must-take contracts with utilities, which must purchase all the energy produced by these renewable generators. Rare exceptions occur due to transmission congestion or seasonal surpluses. Even in those instances where this is not the case (e.g., where renewable generation is participating in a spot market for energy) the variable costs associated with renewable generation are far lower than those associated with the modified ESEC facility (e.g., fuel costs for wind, solar, other renewable generation technologies, and large hydroelectric facilities are zero or minimal); these resources can bid into spot markets for energy at prices far below the new ESEC units and other natural gas-fired generators. Nor would the new ESEC units displace energy from operating (zero-GHG emission) nuclear generation facilities, as these resources have far lower variable operating costs as well.

\textbf{Figure GHG-1 Annual California Output (GWh), Selected Natural Gas-Fired Generation Technologies, 2001 – 2010}

The relationship between a natural gas-fired plant’s heat rate and its dispatch in the real world is in fact more complicated than that described above. While natural gas-fired plants differ in their thermal efficiency – the amount of fuel combusted, and thus GHG emissions per unit of electricity generated – very efficient natural gas plants are not necessarily dispatched before less efficient ones. While this would seem to contradict the assertion that output from a new plant will always displace a higher emitting one, a

38 A unit’s capacity factor is its output expressed as a share of potential output, the amount it would generate if it were operated continuously at 100 percent.
less efficient (e.g., at full output) plant may actually combust less fuel during a duty cycle than a plant with a lower heat rate, and thus produce fewer GHG emissions. Consider a 30-MW peaking plant with a heat rate of 10,000 Btu/kWh when operated at full output whose electrical outputs can be moved from 0 to 50 MW and back again in a matter of minutes. Use of this plant to meet contingency needs (e.g., demand on a hot afternoon) may result in less incremental fuel combustion than a 100 MW plant with a lower heat rate at full output if the latter requires several hours and combusts large amounts of fuel to start up, must be kept on overnight or for several hours in order to be available the next day and/or cannot operate at 30 MW (without a marked degradation in efficiency, and thus increases in GHG emissions).

While the modified ESEC facility is less thermally efficient than some of the newer combined cycles built in California in the past ten years, its flexibility can be expected to result in fewer total GHG emissions over the course of a duty cycle. The new units at ESEC are proposed as a combined cycle and two peaking turbines. Thus, it would be able to start up more rapidly, in various MWs of capacity configurations and modes of operation (simple cycle and combined cycle) and to shut down more frequently. Consequently, it would be able to operate fewer hours to provide the same services and since it would be able to rapidly move over a range of 25 to 114 MW (the simple cycle Trent 60s) or up to 448 MW (the two simple cycle turbines plus the combined cycle unit), it would be able to operate at lower levels of output when desirable.

Flexible natural gas-fired generation capable of operating in the manner described above also serves to reduce GHG emissions by allowing for the integration of greater amounts of variable renewable energy into the electricity system. The figure below depicts the estimated operating profile of the generating resources of the high-solar electricity system that California will increasingly have over the next 3 – 15 years and beyond. While the state’s Renewable Portfolio Standard is 33% of retail sales for 2020, the value for 2030 may be much higher. Much of the additional renewable energy will come from solar resources even if there is limited development of utility-scale solar generation, as the residential and commercial sectors take advantage of falling distributed solar costs and new residential construction post-2020 is required to be zero-net energy, i.e., include solar panels.

The large “belly” (2 in the chart) represents solar generation on a typical non-summer day; this gets larger over time as more solar is added to the system. The gray area represents necessary thermal generation, increasingly natural gas over time as California portfolios are divested of coal pursuant to the state’s Emissions Performance Standard. Note that imports are reduced to zero at mid-day, and hydro generation is limited to run-of-river (from hydro-generation facilities that do not have water storage, and from water that must be allowed to flow due to recreational needs, flood control, habitat preservation, etc.). A share of mid-day generation must also be thermal/natural gas as: a threshold amount of thermal capacity needs to be idling (or at least readily available, not unlike a hybrid car) at mid-day at minimum output to protect against sudden component failures (major power plants and transmission lines); and, a large amount of gas-fired generation will be needed 4-8 hours later and thus must be on line and generating at minimum output at mid-day.
The combined cycles built during 2001 – 2010, as presently configured, cannot start up quickly and, when operating, generally must be at 50 percent load or higher to remain in compliance with air permits. This can present problems during the morning and through mid-day (1 and 2 on the chart) as solar generation comes on line, requiring rapid turndown or shut-off of thermal resources. If the combined cycles on line generating cannot turndown fast enough or to low enough levels, this could result in overgeneration, as shown in the figure.

Assuming the combined cycles are compatible with the rapid shifts in thermal generation during the morning shoulder, then they must be on at 50 percent load or higher (i.e., engaged and driving slowly, more so than just idling) at mid-day to ramp up as needed in the early evening ramp up to cover increasing demand (4 on the chart) and diminishing solar generation (3 on the chart). The flexible combined cycles becoming commercially available can ramp down to 20 - 30 percent load and, more importantly, are designed to shut off up to twice a day and start up again quickly. The resulting mid-day thermal wedge is much smaller (only 20 - 30 percent of the thermal capacity needed for reliability, as opposed to as much as 50 percent of the thermal energy needed at the evening peak). This allows for greater variable energy to be absorbed by the system, reducing the potential need for solar curtailment, and thus the costs/risks associated with its development.

THE ROLE OF THE ESEC FACILITY ADDITIONS IN LOCAL GENERATION DISPLACEMENT

As new generation capacity in the California ISO-defined Los Angeles Basin local capacity area (LCA) and its Western Los Angeles sub-area (LCA), the proposed modified ESEC facility would provide local reliability services. The California ISO has determined in their 2014 Local Capacity Technical Analysis that the Los Angeles Basin...
and its Western sub-area need 10,430 MW and 4,175 MW of local capacity, respectively.39 The modified ESEC facility would contribute up to 995 MW of local capacity to these areas; in D.13-02-01540 the CPUC has established the need for local capacity in excess of this amount to replace retiring OTC capacity in the Los Angeles Basin LCA.

As stated above, local reliability requires generation by resources located within an LCA; the LCR reflects the amount of capacity that must be generating, synchronous to the grid or available within a few minutes under 1-in-10 load conditions.41 At lower levels of demand, a share of local capacity must be generating, synchronous to the grid or available on a moment’s notice as long as reliability cannot be maintained solely with imported energy in the event of major component failures.

The number of hours per year that the new ESEC units would be required to operate in support of local reliability needs and the amount of energy that would be generated as a result are not known; California ISO operating procedures which result in the dispatch of specific generating units for local reliability purposes are confidential. When called upon to generate for such purposes, however, it is reasonable to expect that the new ESEC units would be the least-cost and thus lowest-emitting natural gas-fired resources able to do so. They would thus displace a less-efficient resource, reducing GHG emissions resulting from relying on the latter. The heat rate of the combined cycle portion of the modified ESEC facility (Unit 9 and Unit 10) is below the heat rate of the units utilizing OTC that currently provide a share of the LCA’s local reliability needs; these existing units are boilers that also require several hours to start up, requiring that they be left on at minimum load overnight when needed for local reliability. The heat rates of the proposed new Trent 60 simple cycle turbines (Units 11 and 12) are less than those of the existing peaking facilities in the LCA (see \textit{Greenhouse Gas Table 5} below). The new ESEC units would be a much lower-cost and lower-GHG provider of local reliability services as they could remain off-line until needed and then provide energy more efficiently (i.e., at a lower heat rate).

\textbf{AVENAL PRECEDENT DECISION}

The Energy Commission established a precedent decision in the Final Commission Decision for the Avenal Energy Project (CEC 2009b), finding as a conclusion of law that any new natural gas-fired power plant certified by the Energy Commission “must:"

- not increase the overall system heat rate for natural gas plants;

40 It is expected that the Energy Commission will receive AFCs from applicants expecting to provide additional local capacity well in excess of that authorized by D.13-02-015, as well as any additional amount authorized by forthcoming decisions in the 2014 LTPP proceeding. Approving AFCs for projects whose capacity in aggregate is in excess of that authorized by the CPUC facilitates competitive solicitations for new capacity and does not present a significant risk of the development of capacity in excess of the amount authorized;.

41 1-in-10 load conditions refer to a level of demand that is expected to be observed on only one day in ten years.
• not interfere with generation from existing renewables or with the integration of new renewable generation; and
• take into account the two preceding factors, reduce system-wide GHG emissions\(^{42}\)

The average heat rate for the Western Electricity Coordinating Council (WECC) is presented in **Greenhouse Gas Table 4**.

Greenhouse Gas Table 4
Weighted Average Heat Rate for Operating Natural Gas-Fired Plants\(^1\) in the WECC 2010-2012

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Heat Rate (mmBtu/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>7,784</td>
</tr>
<tr>
<td>2011</td>
<td>7,995</td>
</tr>
<tr>
<td>2012</td>
<td>7,918</td>
</tr>
</tbody>
</table>

\(^1\) Excludes cogeneration facilities

Source: Ventyx, Velocity Suite (compiled from EPA hourly Continuous Emission Monitoring Survey data

The operation of the units added as a result of the ESPFM request would result in a reduction in the system heat rate for natural gas plants in the WECC due to their displacing energy from less-efficient natural gas-fired generation as discussed above. Unit 9 has a heat rate well below the system average shown in **Greenhouse Gas Table 4**. Even though the average heat rate of Units 11 and 12 is greater than the systemwide heat rate for natural gas plants in the WECC, capacity from these units would displace that from older generation units with even higher heat rates. **Greenhouse Gas Table 5** presents the 2012 average heat rates for peaking units/facilities in the Los Angeles Basin LCA with capacities from 28 to 65 MW:

Greenhouse Gas Table 5
Average Heat Rate (Btu/KWh), Selected Peaking Units/Facilities, Los Angeles Basin LCA, 2012

<table>
<thead>
<tr>
<th>Unit/Facility</th>
<th>Heat Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaheim</td>
<td>9,453</td>
</tr>
<tr>
<td>Barre</td>
<td>10,594</td>
</tr>
<tr>
<td>Broadway</td>
<td>11,869</td>
</tr>
<tr>
<td>Canyon</td>
<td>10,358</td>
</tr>
<tr>
<td>Center</td>
<td>10,528</td>
</tr>
<tr>
<td>Century</td>
<td>14,557</td>
</tr>
<tr>
<td>Drews</td>
<td>22,549</td>
</tr>
<tr>
<td>Glenarm</td>
<td>11,735 - 12,492</td>
</tr>
<tr>
<td>Grapeland</td>
<td>10,658</td>
</tr>
<tr>
<td>Mira Loma</td>
<td>10,594</td>
</tr>
<tr>
<td>Riverside</td>
<td>9,247 - 9,747</td>
</tr>
<tr>
<td>Springs</td>
<td>12,729</td>
</tr>
</tbody>
</table>

Source: Generator Quarterly Fuel and Energy filings with the Energy Commission

These values are well above the average heat rate (8,895 Btu/KWh) of Units 11 and 12. As a result, the units added as a result of the ESEC amendment would likely not increase the overall system heat rate for natural-gas plants.

As noted above, the units added as a result of the ESEC amendment request would not interfere with generation from existing renewable facilities nor with the integration of new renewable generation. The flexible nature of the new ESEC units will in fact serve to facilitate the integration of additional intermittent renewable resources.

The units will reduce system-wide GHG emissions as discussed above; their development is consistent with the goals and policies of AB 32 and thus is consistent with the Avenal precedent decision.

PROPOSED CONDITIONS OF CERTIFICATION – Wenjun Qian

No Conditions of Certification related to greenhouse gas emissions are proposed. The facility owner would participate in California’s GHG cap-and-trade program, and is required to report GHG emissions and to obtain GHG emissions allowances (and offsets) for those reported emissions, by purchasing allowances from the capped market and offsets from outside the AB 32 program. Similarly, the proposed facility modifications would be subject to federal mandatory reporting of GHG emissions. The facility owner may have to provide additional reports and GHG reductions, depending on the future regulations formulated by the U.S. EPA or the ARB.

REFERENCES

ACRONYMS

<table>
<thead>
<tr>
<th>AB</th>
<th>Assembly Bill</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARB</td>
<td>California Air Resources Board</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CalEPA</td>
<td>California Environmental Protection Agency</td>
</tr>
<tr>
<td>California ISO</td>
<td>California Independent System Operator</td>
</tr>
<tr>
<td>CCCC</td>
<td>California Climate Change Center</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>CH4</td>
<td>Methane</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>CO2</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>CO2E</td>
<td>Carbon Dioxide Equivalent</td>
</tr>
<tr>
<td>CPUC</td>
<td>California Public Utilities Commission</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Report</td>
</tr>
<tr>
<td>EPS</td>
<td>Emission Performance Standard</td>
</tr>
<tr>
<td>ESEC</td>
<td>El Segundo Energy Center</td>
</tr>
<tr>
<td>GCC</td>
<td>Global Climate Change</td>
</tr>
<tr>
<td>GHG</td>
<td>Green House Gas</td>
</tr>
<tr>
<td>GWh</td>
<td>Gigawatt-hour</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>HFC</td>
<td>Hydrofluorocarbons</td>
</tr>
<tr>
<td>IEPR</td>
<td>Integrated Energy Policy Report</td>
</tr>
<tr>
<td>IGCC</td>
<td>Integrated Gasification Combined Cycle</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LADWP</td>
<td>Los Angeles Department of Water and Power</td>
</tr>
<tr>
<td>LRAs</td>
<td>Local Reliability Areas</td>
</tr>
<tr>
<td>MT</td>
<td>Metric tones</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatts</td>
</tr>
<tr>
<td>MWe</td>
<td>Megawatts electrical</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawatt-hour</td>
</tr>
<tr>
<td>N2O</td>
<td>Nitrous Oxide</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen Dioxide</td>
</tr>
<tr>
<td>NO₃</td>
<td>Nitrates</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Oxides of Nitrogen or Nitrogen Oxides</td>
</tr>
<tr>
<td>OII</td>
<td>Order Initiating an Informational</td>
</tr>
<tr>
<td>OTC</td>
<td>Once-Through Cooling</td>
</tr>
<tr>
<td>PFC</td>
<td>Perfluorocarbons</td>
</tr>
<tr>
<td>POU</td>
<td>Publicly Owner Utility</td>
</tr>
<tr>
<td>PSA</td>
<td>Preliminary Staff Assessment (this document)</td>
</tr>
<tr>
<td>PSD</td>
<td>Prevention of Significant Deterioration</td>
</tr>
<tr>
<td>QFER</td>
<td>Quarterly Fuel and Energy Report</td>
</tr>
<tr>
<td>RPS</td>
<td>Renewables Portfolio Standard</td>
</tr>
<tr>
<td>SB</td>
<td>Senate Bill</td>
</tr>
<tr>
<td>SCE</td>
<td>Southern California Edison</td>
</tr>
<tr>
<td>SF₆</td>
<td>Sulfur hexafluoride</td>
</tr>
<tr>
<td>SWRCB</td>
<td>State Water Resource Control Board</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>WCI</td>
<td>Western Climate Initiative</td>
</tr>
<tr>
<td>WECC</td>
<td>Western Electricity Coordinating Council</td>
</tr>
</tbody>
</table>
SUMMARY OF CONCLUSIONS

The proposed El Segundo Power Facility Modification (ESPFM) project is a natural-gas-fired electrical generating facility that would replace the existing once-through-cooled boiler units (Units 3 and 4) of the El Segundo Generating Station (ESGS). The new facility would be constructed within the 33-acre site of the El Segundo Energy Center (ESEC) power plant, an operating power plant in El Segundo, California. This change would eliminate the use of ocean water for once-through cooling at the existing facility. The proposed power plant site and offsite laydown and parking areas are industrial sites and vegetation is limited to weedy species and landscaping. Rare plants and special-status wildlife are not expected to occur onsite; however, nearby beaches and other natural areas support special-status birds including the Belding’s savannah sparrow (*Passerculus sandwichensis beldingi*; state-listed endangered), the western snowy plover (*Charadrius alexandrinus nivosus*; federally listed threatened), California least tern (*Sterna antillarum browni*; federally and state-listed endangered), California brown pelican (*Pelecanus occidentalis californicus*, state fully protected), El Segundo blue butterfly (*Euphilotes battoides allyni*, federally listed endangered), and the monarch butterfly (*Danaus plexippus*).

Given the proximity of the proposed project to the biological resources mentioned above, construction and operation of the proposed project would result in various direct and indirect effects. Staff concludes that with implementation of proposed conditions of certification, the project would comply with all biological resources-related laws, ordinances, regulations and standards (LORS) and direct, indirect, and cumulative impacts would be avoided, minimized, or mitigated to less than significant levels (refer to **Biological Resources Table 3** for a summary of the proposed project’s impacts, applicable conditions of certification and determination of significance).

INTRODUCTION

This section of the Preliminary Staff Assessment (PSA) provides the California Energy Commission (Energy Commission) staff's analysis of potential impacts to biological resources from the decommissioning and demolition of ESGS Units 3 and 4, and the construction and operation of the proposed ESPFM project.

This analysis addresses potential impacts to special-status species, wetlands and other waters of the United States (U.S.), and areas of critical biological concern. Information contained in this document includes a detailed description of the existing biotic environment, an analysis of potential impacts to biological resources and, where necessary, specifies mitigation measures (conditions of certification) to reduce impacts to less than significant levels. Additionally, this analysis assesses the project’s compliance with applicable LORS.
This analysis is based, in part, on information provided in El Segundo Energy Center L.L.C’s Petition to Amend (NRG 2012a), responses to staff data requests (LL 2013e; LL 2013o; LL 2013v), staff’s observations during a site visit of the proposed ESEC ESPFM on January 15, 2013; discussion at the data response workshop on October 1, 2013; and ongoing communications with the California Department of Fish and Wildlife (CDFW), and the U.S. Fish and Wildlife Service (USFWS).

COMPLIANCE WITH LAWS, ORDINANCES, REGULATIONS, AND STANDARDS

The project owner must comply with the LORS listed in **Biological Resources Table 1** during project construction, demolition and operation. There are no new or changed biological resource LORS since the original project was certified that would affect the ESEC project. However, the following LORS that applied to the previously approved El Segundo Generating Station Power Redevelopment Project (ESPRP) and the previously amended projects that do not apply to the proposed ESPFM amendment, have been deleted: Clean Water Act (Title 33, United States Code, sections 1251 through 1376, and Code of Federal Regulations, part 30, section 330.5(a)(26)), Fish and Wildlife Coordination Act, Marine Mammal Protection Act, and the Magnuson-Stevens Fishery Conservation and Management Act (16 U.S.C. 1801 et seq.)

Biological Resources Table 1
Laws, Ordinances, Regulations, and Standards

<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td></td>
</tr>
<tr>
<td>Endangered Species Act (Title 16, United States Code, section 1531 et seq., and Title 50, Code of Federal Regulations, part 17.1 et seq.)</td>
<td>Designates and provides for protection of threatened and endangered plant and animal species, and their critical habitat. Take of federally listed species as defined in the Act is prohibited without incidental take authorization, which may be obtained through Section 7 consultation (between federal agencies) or Section 10 Habitat Conservation Plan. The administering agencies are the USFWS and National Marine Fisheries Service.</td>
</tr>
<tr>
<td>Migratory Bird Treaty Act (Title 16, United States Code, sections 703 through 711)</td>
<td>Makes it unlawful to take or possess any migratory nongame bird (or any part of such migratory nongame bird including nests with viable eggs). The administering agency is the USFWS.</td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>California Endangered Species Act of 1984 (Fish and Game Code, sections 2050 through 2098)</td>
<td>Protects California’s rare, threatened, and endangered species. The administering agency is CDFW.</td>
</tr>
<tr>
<td>Applicable Law</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>California Code of Regulations (Title 14, sections 670.2 and 670.5)</td>
<td>Lists the plants and animals of California that are declared rare, threatened, or endangered. The administering agency is CDFW.</td>
</tr>
<tr>
<td>Fully Protected Species (Fish and Game Code sections 3511, 4700, 5050, and 5515)</td>
<td>Designates certain species as fully protected and prohibits the take of such species or their habitat unless for scientific purposes (see also Title 14, California Code of Regulations, section 670.7). The administering agency is CDFW.</td>
</tr>
<tr>
<td>Nest or Eggs (Fish and Game Code section 3503)</td>
<td>Protects California’s birds by making it unlawful to take, possess, or needlessly destroy the nest or eggs of any bird. The administering agency is CDFW.</td>
</tr>
<tr>
<td>Birds of Prey (Fish and Game Code section 3503.5)</td>
<td>Unlawful to take, possess, or destroy any birds in the orders Falconiformes and Strigiformes or to take, possess, or destroy the nest or eggs of any such bird except as otherwise provided by code or regulation.</td>
</tr>
<tr>
<td>Migratory Birds (Fish and Game Code section 3513)</td>
<td>Protects California’s migratory birds by making it unlawful to take or possess any migratory nongame bird as designated in the Migratory Bird Treaty Act or any part of such migratory nongame birds. The administering agency is CDFW.</td>
</tr>
<tr>
<td>Significant Natural Areas (Fish and Game Code section 1930 and following)</td>
<td>Designates certain areas such as refuges, natural sloughs, riparian areas, and vernal pools as significant wildlife habitat.</td>
</tr>
<tr>
<td>California Native Plant Protection Act of 1977 (Fish and Game Code section 1900 and following)</td>
<td>Designates state rare, threatened, and endangered plants.</td>
</tr>
<tr>
<td>California Coastal Act (Public Resources Code, sections 30000 et seq.)</td>
<td>The California Coastal Act of 1976 establishes a comprehensive scheme to govern land use planning along the entire California coast. The Coastal Act sets forth general policies (§30200 et seq.) which govern the California Coastal Commission’s review of permit applications and local plans. Specific to energy facilities, the Coastal Act requires that the Coastal Commission designate specific locations within the coastal zone where the establishment of a thermal power plant subject to the Warren-Alquist Act could prevent the achievement of the objectives of the Coastal Act (30413(b)). Section 30231 of California Coastal Act requires actions that minimize adverse impacts to biological productivity of coastal waters. The administering agency is the California Coastal Commission.</td>
</tr>
</tbody>
</table>
Applicable Law

<table>
<thead>
<tr>
<th>Local</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Segundo General Plan/Conservation Element</td>
<td>The Conservation Element of the General Plan directs the City of El Segundo to evaluate the compatibility of proposed development projects with the conservation, development, and utilization of natural resources. The El Segundo General Plan includes policies that support the following goals in the Conservation Element: beach preservation, maintenance of a safe and sufficient water supply, protection of groundwater and coastal waters from contamination, protection of the El Segundo blue butterfly, a federally-listed Endangered species, and improvement of the urban landscape. The administering agency is the City of El Segundo Planning and Development Department.</td>
</tr>
</tbody>
</table>

SETTING

PROJECT OVERVIEW

The proposed ESPFM project is a natural-gas-fired, air-cooled, 449-megawatt (MW) electrical generating facility that would replace the two once-through-cooled natural gas-fired utility boiler units (Units 3 and 4) of the ESGS. The ESPFM would be constructed on the 33-acre site of the ESEC and require demolition and removal of the existing units. The ESPFM would consist of one new combined cycle generator (Unit 9), one steam turbine generator (Unit 10) and two simple-cycle gas turbines (Units 11 and 12). This change would include the installation of an air-cooled condenser and eliminate the need for the existing once-through ocean water cooling process. Equipment and facilities to be constructed and shared by the power blocks include natural gas compressors, water treatment facilities, emergency services, an administration building, maintenance shop, and warehouse. Construction of the new ESPFM and demolition of the existing units would occur over three years.

The ESPFM would reuse existing onsite potable and reclaimed water, natural gas, stormwater, process wastewater, and sanitary pipelines and electrical transmission facilities. No offsite linear developments are proposed as part of the project. The ESPFM is proposed as a zero-liquid-discharge facility where only stormwater and sanitary effluent would leave the site.

No process wastewater would be discharged from the facility via the existing retention basin or either outfall structure. Process wastewater would be recycled when possible, wastewater would be disposed of offsite as necessary if the water cannot be recycled and processed in a manner to meet water quality objectives. Removal and remediation of existing ESEC retention basins would occur as part of the project. During ESPFM operation, stormwater would be collected in yard drains that would route stormwater to an oil/water separator prior to discharge. Sanitary wastewater would be directed to the city of Manhattan Beach Municipal Sanitary Sewer via existing inlets in accordance with the city Public Works Department’s discharge requirements. Electricity would be
transmitted to users via the existing transmission and distribution network to the adjoining Southern California Edison (SCE) switchyard that is physically within the fenced boundary of the facility. No new towers would need to be constructed or replaced inside or outside of the site boundaries.

ESPFM construction would require both onsite and offsite laydown and construction parking areas. The preferred offsite laydown and parking area located at 777 W. 190th Street in the City of Gardena, is approximately 12 acres, of which 10 acres are usable. Construction laydown and parking areas would also be established within the ESEC site boundary, as well as at offsite laydown and parking areas identified in the Energy Commission’s Final Decision for El Segundo Generating Station Power Redevelopment Project (ESPRP) (CEC 2005a).

REGIONAL SETTING

The regional setting of the proposed ESPFM project encompasses the area within 10 miles of the existing ESEC site and 10 miles of the offsite laydown areas. The proposed ESPFM lies within the Los Angeles Plain subsection of the Southern California Coast Section (USDA 1997), which is characterized by flat floodplains and terraces and very gently sloped alluvial fans with small areas of marine terraces. Land use proximate to the proposed project area primarily includes urban development, industrial areas, including the Chevron Refinery, Los Angeles International Airport (LAX) parks and open space, and wetland and El Segundo blue butterfly recovery units.

The proposed ESPFM would be located on the property of the existing ESEC at 301 Vista Del Mar. This site is approximately 2.5 miles southwest of the LAX and west of the San Diego Freeway (I-405), on the eastern shore of Santa Monica Bay. The site is bordered by Vista Del Mar and the Chevron Refinery to the east, 45th Street in the City of Manhattan Beach on the south, Santa Monica Bay on the west and the Chevron Marine Terminal on the north. The site is located on a gently sloping coastal terrace. The preferred offsite laydown area, located at 777 W. 190th Street in the City of Gardena, is less than ten miles southeast of the ESEC and is used for commercial truck, RV and automobile storage. The laydown site is paved, lighted, and enclosed with a perimeter fence and has an approximately 5,500 square foot industrial building on the property (ESPRP 2007a). It has approximately 10 usable acres and surveys conducted in 2007 identified the site developed with any vegetation consisting of primarily non-native plants in landscaped areas and along fenced property boundaries.

Extensive urban and industrial development throughout the region has replaced most of the natural communities which are restricted to scattered open space preserves and other protected areas. Only small, isolated patches of natural vegetation and associated wildlife remain as a result of heavy industrial development of the area, including a few small areas of ornamental plantings (i.e. palm trees) immediately to the east of the existing ESGS boundary. Other areas of vegetation within the ESGS site include several hillsides covered in ice plant (Carpobrotus chilensis) and landscape plantings on the east and west side of the site.
Significant Ecological Areas and Other Protected Areas

Several important ecological preserves, wetland preservation sites, and designated open spaces occur in the region. These protected areas represent some of the best remaining habitat in the region and provide important habitat for migratory birds along the Pacific Flyway as well as habitat for several special-status plants and animals, including critical habitat for the western snowy plover and USFWS Recovery Units for the El Segundo blue butterfly. Following is a brief description of each of these areas:

LAX Airport/El Segundo Dunes

The El Segundo Dunes preserve is the largest remaining coastal dune area in Southern California, supporting 43 acres of original native dunes habitat located within the 203-acre El Segundo Blue Butterfly Habitat Restoration Area of the preserve (LAWA 2013). Vegetation communities within the preserve include southern foredune, southern dune scrub, and valley needlegrass grassland (LAWA 2013). Also known as the Airport Dunes, the restoration area is home to more than 1,000 species of plants and animals. An estimated 83,00 to 87,000 butterflies were present in the preserve in 2012 (LAWA 2013).

Habitat restoration at LAX continues and includes the removal of acacia, ice plant and other invasive plants (LAWA 2013). Crews also perform regular trash and debris removal, weeding, and other vegetation management activities. LAX has experienced an increase in butterfly numbers of about 65-130 times (depending on the year) since the start of restoration. Other special status species known to occur include coast horned lizard (*Phrynosoma coronatum blainvillii*). The LAX Airport/El Segundo Dunes is located approximately two miles north of the ESEC site.

Ballona Creek Wetlands

Currently covering an area of 600 acres, the Ballona Wetlands once occupied over 2,000 acres of coastal wetland in Los Angeles County. Vegetation communities with the wetland preserve include estuarine and brackish marshes, freshwater marsh and riparian habitats, coastal sage scrub, and seasonal wetlands. The wetlands supports special status species such as least tern, Belding's savannah sparrow, and least bittern. An individual El Segundo blue butterfly was identified in the Ballona Wetlands in 1985 however, assuming an El Segundo blue butterfly population existed there at one time, it is now apparently extinct (USFWS 2008). Although this site is not currently occupied by the El Segundo blue butterfly management by the conservation group Friends of Ballona Wetlands has produced an increase in seacliff buckwheat (also known as coast buckwheat) (*Eriogonum parviflorum*) on the Ballona Wetlands Dune over the past decade (USFWS 2008). The Ballona Creek Wetlands is located approximately four miles north of the ESEC site.

Chevron El Segundo Blue Butterfly Preserve

The Chevron El Segundo Blue Butterfly Preserve is one of three locations of occupied habitat for the El Segundo blue butterfly. This 1.6-acres of remnant sand dune (Chevron Preserve) is owned by the Chevron Corporation at its refinery location in the City of El Segundo. The Chevron Preserve is the only currently known occupied site within the El Segundo Recovery unit. Although there is no formal management strategy for this site,
Chevron is implementing management actions for the El Segundo blue butterfly (USFWS 2008). Recent management activities include extensive planting of seacliff buckwheat. The Chevron El Segundo Blue Butterfly Preserve is located within ½ mile of the ESEC site.

Malaga Cove

Malaga Cove is located just north of the Palos Verdes Peninsula and is a known occupied site of the federally endangered El Segundo blue butterfly in the Torrance Recovery Unit. The population of El Segundo blue butterfly in Malaga Cove is one of only three existing populations of this species and represents the southern end of its historical range (USFWS 2008). This El Segundo blue butterfly population was discovered on an eroded and iceplant dominated site in Malaga Cove in 1983. Private lands at the base of the bluffs supports seacliff buckwheat (*Eriogonum parviflorum*) the host plant of the butterfly. Malaga Cove is located approximately seven miles south of the ESEC site.

Dockweiler State Beach

Dockweiler State Beach (SB) is located at the western terminus of Imperial Highway in Playa del Rey. It is under the jurisdiction of California Department of Parks and Recreation and operated by the Los Angeles County Department of Beaches and Harbors. Dockweiler SB is comprised of nearly 288 acres of sandy beach and bluffs and more than 2 miles of ocean frontage along the shoreline of Santa Monica Bay. It contains a wide variety of land uses including public facilities, recreation amenities and natural resources including a 4.04 acre Least Tern Bird Sanctuary (California State Parks 1992). Dockweiler SB is composed of over 90 percent sandy fill material which has been imported since the 1930s. Little native vegetation is found at Dockweiler SB and only approximately 35 acres along the Vista Del Mar bluffs support plant and animal life. Vegetation is located on the bluffs and includes non-native iceplant and coastal sage scrub (California State Parks 1992). In 2013, the Los Angeles Conversation Corps was awarded a grant to restore native habitat at Dockweiler State Beach by removing iceplant, however this work has not yet been initiated. No rare or endangered plants have been identified at this site. Shorebirds as well as gulls, pelicans, loons, and terns are found inhabiting the beach. The federal and state listed California least tern and the formerly listed and state fully protected California brown pelican have been known to occur at Dockweiler SB. The 4.04 acre least tern nesting area provides foraging, nesting and roosting habitat for California least tern in a fenced sand dune area which is located approximately 4 miles north of the ESEC site. Santa Monica Bay provides habitat for marine mammals such as California gray whale, California sea lion, and Pacific bottlenose dolphin as well as benthic species and fishes. Dockweiler State Beach is located immediately adjacent to the bike path outside the west perimeter of the ESEC site (California State Parks 1992).

Critical Habitat

Critical habitat is a formal designation under the Endangered Species Act. In accordance with section 3(5)(A)(i) of the Act and the regulations at Title 50, Code of Federal Regulations, section 424.12, in determining which areas occupied by the species at the time of listing to designate as critical habitat, factors considered are those
physical and biological features essential to the conservation of the species that may require special management considerations or protection. Critical habitat for the federally listed western snowy plover occurs in the regional vicinity of the proposed ESEC.

Western Snowy Plover

The final rule for USFWS-designated critical habitat for western snowy plover was published on June 19, 2012 (USFWS 2012a), and includes Dockweiler North and South, Dockweiler North (Subunit CA 45B) begins immediately adjacent to the northwest corner of the existing ESEC site and encompasses 65 acres, and Dockweiler South (Subunit CA 45C) which is located approximately 2.5 miles north and encompasses 34 acres. These subunits annually support a significant wintering flock of western snowy plovers in a location with high quality breeding habitat; however, a breeding site has not been spotted on Los Angeles County beaches since 1949. The beach habitats for western snowy plover within the designated critical habitat are generally characterized by large, flat, and open spaces. Additional critical habitat is located approximately 4 miles south near Hermosa Beach.

Existing Vegetation and Wildlife

The project owner's biologist conducted two site visits to assess presence of biological resources within the proposed project area in January and February 2013. Energy Commission biological resources staff visited the site in January 2014. Botanical and wildlife surveys were previously conducted in May 2000 within the project area for the El Segundo Power Redevelopment Project (00-AFC-14), including the construction laydown, linear facilities, and areas within the project buffer, and again in November and December 2007 within the project area for the 2007 ESEC Petition to Amend including the proposed offsite laydown area at 777 W. 190th Street and on the ESEC property where entrance road improvements were proposed.

The following description of existing biological resources presents the results of biological surveys of the proposed project as well as observations from staff's site visits.

Vegetation

The proposed ESEC site and offsite laydown areas are industrial. The majority of the project area is paved or graveled and any unpaved areas are subject to regular weed control. Landscape trees and shrubs have been planted along the perimeter fencing typical of the ornamental planting mix used by various industries in the area (ESPLLC 2000a) but no natural habitats or wetlands are present. Species observed on site are primarily nonnative and include iceplant, evergreen trees, and ornamental shrubs. Species observed at the preferred offsite laydown area in 2007 were found almost exclusively along the perimeter, including myoporum (*Myoporum parviflorum*) ground cover and a variety of ornamental trees including eucalyptus, willow and peppers along the hillside (Shaw Environmental 2007). Native seed mix was used in the drainage areas along the southwest edge of the ESEC site including sand verbena (*Abronia maritime*), beach bur-sage (*Ambrosia chamissonis*), and beach evening primrose (*Camissonia cheiranthifolia*).
Within one mile of the proposed ESEC site and offsite laydown area the following vegetation communities and land cover types are present.

- **Industrial and landfill.** This land cover type represents the largest land cover type in the survey area and includes SCE’s El Segundo 230-kV substation on the southeast side of the ESEC site. The Los Angeles Department of Water & Power’s Scattergood Generating Station is located less than a 1/4 mile north and the City of Los Angeles’ Hyperion Wastewater Treatment Plant is located 1/2 mile north. The Chevron El Segundo refinery is located across Vista Del Mar from ESEC.

- **Urban.** Urban development represents the second largest land cover type in the survey area. It includes residential, commercial, light industrial, public schools, and other municipal facilities. The City of Manhattan Beach is immediately to the south.

- **Parks and open space.** Parks within one mile of the project area include Dockweiller State Beach and Manhattan Beach Sand Dune Park. Open spaces include the green belt along the Chevron El Segundo refinery and the Chevron El Segundo Blue Butterfly Preserve.

In addition, the following significant natural communities as identified by the CDFW’s California Natural Diversity Database (CNDDDB) are present within 10 miles of the project area.

Southern Coastal Salt Marsh

Southern coastal salt marsh occurs in areas subject to regular tidal flooding by salt water such as sheltered inland bays, estuaries, and lagoons. The distribution of plant species within the salt marsh is often in distinct zones based on the frequency and duration of tidal flooding. Typically California cordgrass (*Spartina folosia*) occurs at the lowest elevations adjacent to open water that are subject to regular, prolonged tidal inundation. The mid-elevation areas of the marsh area typically characterized by pickleweed (*Salicornia virginica*) and are generally subject to cyclical inundation during high tides and drying during low tides. The upper marsh zone is generally subject to flooding for short durations and only during higher high tides. It supports a more diverse mixture of plant species including pickleweed, saltgrass (*Distichlis spicata*), alkali heath (*Frankenia salina*), alkali weed (*Cressa truxilensis*), California seablite (*Suaeda californica*), and marsh jaumea (*Jaumea carinosa*). In the vicinity of the ESEC site, the southern coastal salt marsh habitat is found at the Ballona Wetland Ecological Reserve.

Southern Foredunes

Southern foredunes are similar to active sand dunes but are subject to less wind, have more stable sand, and greater availability of groundwater; therefore, the area supports the establishment of plant species that further stabilize the dunes. Native plant species commonly found in this habitat include beach morning glory (*Calystegia soldanella*), silver bur ragweed (*Ambrosia chamissonis*), and common eucrypta (*Eucrypta alba*). A small area of southern foredune habitat is found at the LAX Airport/El Segundo Dunes.

Southern Dune Scrub

Southern dune scrub is characterized as a dense coastal scrub community of scattered shrubs, subshrubs, and herbs that are typically less than one meter tall and often
associated with a high percentage of cover. This habitat type is drier, warmer, and experiences less onshore wind when compared to central and northern dune scrub habitats. Native plants commonly found in this habitat include beach saltbush (*Atriplex leucophylla*), California croton (*Croton californicus*), California ephedra (*Ephedra californica*), mock heather (*Ericameria ericoides*), dune lupine (*Lupinus chamissonis*), desert thorn (*Lycium brevipes*), prickly pear, lemonade berry, and jojoba (*Simmondsia chinensis*). This sensitive habitat type is found at the LAX Airport/El Segundo Dunes and Chevron El Segundo Blue Butterfly Preserve.

Common Wildlife

Due to the frequency and intensity of disturbance from operation of the existing ESEC, the proposed ESPFM site does not provide habitat capable of supporting a diverse assemblage of wildlife. Species observed within the proposed project site include American crow (*Corvus brachyrhynchos*), rock pigeon (*Columba livia*), house sparrow (*Passer domesticus*), and yellow rumped warbler (*Setophaga coronate*). Other birds protected under the Migratory Bird Treaty Act (MBTA) and CDFW codes, but without other special-status listing, such as killdeer (*Charadrius vociferous*), pigeons (*Columba* sp.), doves (*Zenaida* sp.), house finches, and sparrows (*Passer* sp.), may nest in open areas and in unused structures on the ESEC site.

The adjacent beach and marine areas provides habitat for common wildlife species. Species observed in this habitat include various species of gulls, terns, loons, and shorebirds and also rock pigeon (*Columba livia*).

Special-Status Species

Special-status species are plant and wildlife species that have been afforded special recognition by federal, state, or local resource agencies or organizations. Listed and special-status species are of relatively limited distribution and typically require unique habitat conditions. Special-status species are defined as meeting one or more of the following criteria:

- Federally or state-listed, proposed, or candidate for listing, as rare, threatened or endangered under the Endangered Species Act or California Endangered Species Act;
- Protected under other state or federal regulations (e.g., Migratory Bird Treaty Act);
- Identified as a California Species of Special Concern by CDFW;
- California Fully Protected Species;
- A plant species considered by the California Native Plant Society and CDFW to be “rare, threatened, or endangered in California” (California Rare Plant Rank [CRPR] 1A, 1B, and 2) as well as CRPR 3 and 4 species;
- A plant listed as rare under the California Native Plant Protection Act;
- Considered a locally significant species, that is, a species that is not rare from a statewide perspective but is rare or uncommon in a local context such as within a
county or region or is so designated in local or regional plans, policies, or ordinances; or

- Any other species receiving consideration during environmental review under the California Environmental Quality Act (CEQA).

The project site is industrial brownfield sites with an operating power plant and the offsite laydown areas are within industrial areas and most are existing parking and storage areas, and vegetation is limited to a few weedy species that occur in hillsides and asphalt cracks and other areas, as well as landscaping. Rare plants and most special-status wildlife are not expected to occur onsite at either location; however, nearby wildlife preserves, parks, and other natural areas support special-status species that have the potential to be affected by construction and operation of the proposed project. **Biological Resources Table 2** identifies the nearest occurrences of special-status species reported in the California Natural Diversity Database (CDFW 2013) and California Native Plant Society’s (CNPS 2013) Inventory of Rare and Endangered Plants, but the majority of the species would not be likely to occur on site.

Biological Resources Table 2

Special-status Species Known to Occur or Potentially Occurring in the ESEC Area and the Regional Vicinity

<table>
<thead>
<tr>
<th>Common Name (Scientific Name)</th>
<th>Status Fed/ State/ CRPR/G-Rank/S-Rank</th>
<th>Potential for Occurrence in Project Impact Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aphanisma (Aphanisma blitoides)</td>
<td>FE/SE/1B.1/ G1/ S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest historic CNDDB occurrence record is over 9 miles from the ESEC and 12 miles from the W 190th Street laydown area and is presumed extirpated. Currently known from only two locations in state.</td>
</tr>
<tr>
<td>marsh sandwort (Arenaria paludicola)</td>
<td>FE/SE/1B.1/ G1/ S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest historic CNDDB occurrence record is over 9 miles from the ESEC and 12 miles from the W 190th Street laydown area and is presumed extirpated. Currently known from only two locations in state.</td>
</tr>
<tr>
<td>Braunton’s milk-vetch (Astragalus brauntonii)</td>
<td>FE/SE/1B.1/ G2/S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is over 10 miles from the proposed ESEC site and the W 190th Street laydown area.</td>
</tr>
<tr>
<td>Ventura Marsh milk-vetch</td>
<td>FE/SE/1B.1/</td>
<td>Low. No suitable habitat occurs within the</td>
</tr>
<tr>
<td>Common Name (Scientific Name)</td>
<td>Status Fed/ State/ CRPR/G-Rank</td>
<td>Potential for Occurrence in Project Impact Area</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>(Astragalus pycnostachyus var lanosissimus)</td>
<td>G2T1/S1</td>
<td>proposed project site or offsite laydown areas. The nearest CNDDB occurrence records are historic locations which are over 5 miles from both the ESEC site and the W 190th Street laydown area however all records are considered extirpated.</td>
</tr>
<tr>
<td>coastal dunes milk-vetch Astragalus tener var. titi</td>
<td>FE/SE/1B.1/ G2T1/S1</td>
<td>Low. No suitable habitat occurs within the proposed project site or offsite laydown areas. CNDDB occurrence records are mapped in the general vicinity of Santa Monica and in the general vicinity of Hyde Park in Inglewood. Both of the nearest CNDDB records to the proposed ESEC site are historical and likely extirpated.</td>
</tr>
<tr>
<td>South Coast saltscale (Atriplex pacifica)</td>
<td>/_/1B.2/ G3G4/S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is from Redondo Beach and is approximately 6 miles from the proposed ESEC site and the W 190th Street laydown area.</td>
</tr>
<tr>
<td>Parish’s brittlescale (Atriplex parishii)</td>
<td>/_/1B.1/ G1G2/S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. CNDDB occurrence records are near Long Beach, near Santa Monica and near Redondo Beach. The nearest CNDDB record is within 6 miles from the proposed ESEC site and the W 190th Street laydown area.</td>
</tr>
<tr>
<td>Davidson’s saltscale (Atriplex serenana var. davidsonii)</td>
<td>/_/1B.2/ G5T2?/ S2?</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. CNDDB occurrence records are from near Los Angeles, Cienega, and San Pedro and are all historical and likely extirpated. The nearest CNDDB record is 9 miles from the proposed ESEC site and the nearest CNDDB record from the W 190th Street laydown area is over 11 miles away.</td>
</tr>
<tr>
<td>Santa Barbara morning-glory (Calystegia sepium ssp. binghamiae)</td>
<td>/_/1B.1/ G5T1/S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence records are historic locations which are over 9 miles from both the ESEC site and the W 190th Street laydown area and all records are considered extirpated.</td>
</tr>
<tr>
<td>Common Name (Scientific Name)</td>
<td>Status Fed/ State/ CRPR/G-Rank/S-Rank</td>
<td>Potential for Occurrence in Project Impact Area</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>southern tarplant (Centromadia parryi ssp. australis)</td>
<td>/__/1B.1/ G3T2/S2</td>
<td>Not Likely to Occur. Though multiple records exist in the regional area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat. The nearest CNDDB occurrence records are approximately 5 miles north of the ESEC site and the nearest CNDDB occurrence record from the W 190th Street laydown area is less than a mile east along both sides of the Dominguez Channel.</td>
</tr>
<tr>
<td>Orcutt’s pincushion (Chaenactis glabriuscula var. orcuttiana)</td>
<td>/__/1B.1/ G5T1/S1</td>
<td>Low. Though records exist in the regional area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat and prior disturbance at site. The nearest CNDDB occurrence record is within 1 mile of the ESEC site and approximately 7 miles from the W 190th Street laydown area.</td>
</tr>
<tr>
<td>coastal goosefoot (Chenopodium littoreum)</td>
<td>/__/1B.2/ G2/S2</td>
<td>Low. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is a historic record approximately 4 miles north of the ESEC site and presumed extirpated.</td>
</tr>
<tr>
<td>salt marsh bird’s-beak (Chloropyron maritimum ssp. maritimum) (formerly Cordylanthus maritimus ssp. maritimus)</td>
<td>FE/SE/1B.2/ G4T1/S1</td>
<td>Low. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record are historic locations which are over 8 miles from both the ESEC site and the W 190th Street laydown area however all records are considered extirpated.</td>
</tr>
<tr>
<td>San Fernando Valley spineflower (Chorizanthe parryi var. fernandina)</td>
<td>FC/SE/1B.1/ G2T1/S1</td>
<td>Low. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is a historic location approximately 4 miles from the ESEC site and 12 miles from the W 190th Street laydown area near the Ballona Creek Wetland however this record is considered likely extirpated.</td>
</tr>
<tr>
<td>beach spectaclepod (Dithyrea maritima)</td>
<td>/ST/1B.1/ G2/S2.1</td>
<td>Low. Though historical records exist in the El Segundo area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat and prior disturbance at site. This species is presumed possibly extirpated.</td>
</tr>
<tr>
<td>Common Name (Scientific Name)</td>
<td>Status Fed/ State/ CRPR/G-Rank/S-Rank</td>
<td>Potential for Occurrence in Project Impact Area</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>extirpated from historical locations however habitat may remain at the LAX El Segundo Dunes Preserve.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles sunflower (Helianthus nuttallii ssp. parishii)</td>
<td>/ / 1A/ G5TH /SH</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. Last seen in 1937 and presumed extirpated from California. The nearest historical record is approximately 9 miles from the ESEC site and 10 miles from the W 190th Street laydown area and presumed extirpated.</td>
</tr>
<tr>
<td>Coulter's goldfields (Lasthenia glabrata ssp. coulteri)</td>
<td>/ / 1B.1/ G4T3/S2.1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. Though historical CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown area are unlikely to support this species given lack of native habitat and history of disturbance at site. This species is presumed extirpated from historical locations near the offsite laydown area.</td>
</tr>
<tr>
<td>mud nama (Nama stenocarpum)</td>
<td>/ / 2B.2/ G4G5/S1S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. Nearest CNDDB occurrence records are a historic and located over 10 miles from the ESEC site. One of these records is approximately 5 miles from the W 190th Street laydown area located near Harbor Regional Park.</td>
</tr>
<tr>
<td>Gambel’s water cress (Nasturtium gambelii)</td>
<td>FE/ST/1B.1/ G1/S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. Nearest CNDDB occurrence record is from the Los Angeles area and is a historic record that is presumed extirpated.</td>
</tr>
<tr>
<td>spreading navarretia (Navarretia fossalis)</td>
<td>FT/ / 1B.1/ G1/S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is a historic record from the Los Angeles area that is presumed extirpated.</td>
</tr>
<tr>
<td>prostrate vernal pool navarretia (Navarretia prostrata)</td>
<td>/ / 1B.1/ G2/S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. Several historical CNDDB occurrence records exist within 3 miles of the ESEC site and...</td>
</tr>
<tr>
<td>Common Name (Scientific Name)</td>
<td>Status Fed/ State/ CRPR/G-Rank/S-Rank</td>
<td>Potential for Occurrence in Project Impact Area</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Coast woolly-heads (Nemacaulis denudata var. denudata)</td>
<td>//1B.2/ G3G4T3?/ S2.2</td>
<td>Low. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is over 10 miles from both the ESEC site and the W 190th Street laydown area.</td>
</tr>
<tr>
<td>California Orcutt grass (Orcuttia californica)</td>
<td>FE/SE/1B.1/G1/ S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. Species was documented approximately 5 miles northwest of the offsite laydown area, but this CNDDB occurrence records is presumed extirpated.</td>
</tr>
<tr>
<td>Lyon's pentachaeta (Pentachaeta lyonii)</td>
<td>FE/SE/1B.1/G2/ S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is located over 10 miles from the ESEC and approximately 5 miles from the W 190th Street laydown area.</td>
</tr>
<tr>
<td>Brand's phacelia (Phacelia stellaris)</td>
<td>FC/__/1B.1/ G1/S1</td>
<td>Low. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is approximately 3 miles north of the project area and approximately 6 miles east of the offsite laydown area.</td>
</tr>
<tr>
<td>Ballona cinquefoil (Potentilla multijuga)</td>
<td>//1A/ GX/SX</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. Last seen in 1890 and presumed extirpated from California, recent surveys have not detected this species.</td>
</tr>
<tr>
<td>Salt spring checkerbloom, (Sidalcea neomexicana)</td>
<td>//2B.2/ G4?/S2S3</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is approximately 6 miles north of the ESEC site and approximately 15 miles north of the W 190th Street laydown area.</td>
</tr>
<tr>
<td>Estuary seablite (Suaeda esteroa)</td>
<td>//1B.2/ G3/S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence records occur approximately 15 miles from the ESEC site and approximately 9 miles from the W 190th Street laydown area.</td>
</tr>
<tr>
<td>Common Name (Scientific Name)</td>
<td>Status Fed/ State/ CRPR/G-Rank/S-Rank</td>
<td>Potential for Occurrence in Project Impact Area</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>San Bernardino aster (Symphyotrichum defoliatum)</td>
<td>/ / / 1B.2 / G2 / S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. Although there are several historical CNDDB occurrence records located between 9 and 20 miles of the ESEC site and of the W 190th Street laydown area all are presumed extirpated.</td>
</tr>
<tr>
<td>San Bernardino aster (Symphyotrichum defoliatum)</td>
<td>/ / / /</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. Although there are several historical CNDDB occurrence records located between 9 and 20 miles of the ESEC site and of the W 190th Street laydown area all are presumed extirpated.</td>
</tr>
<tr>
<td>WILDLIFE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mojave tui chub (Gila bicolor mohavensis)</td>
<td>FE / SE / FP / G4T1 / S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the HBEP site or offsite laydown areas. This species was formerly found in deep pools and slough-like areas of the Mojave River, but now only occurs in highly modified refuge sites in San Bernardino County.</td>
</tr>
<tr>
<td>Invertebrates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belkin’s dune tabanid fly (Brennania belkini)</td>
<td>/ / / G1G2 / S1S2</td>
<td>Low. Though CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat and prior disturbance at site. The nearest CNDDB occurrence record is located less than a mile from the ESEC site at Manhattan Beach.</td>
</tr>
<tr>
<td>Bucsk’s gallmoth (Carolella busckana)</td>
<td>/ / / G1G3 / SH</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. Although there is a historical CNDDB occurrence record located within 2 miles of the ESEC site it is presumed extirpated.</td>
</tr>
<tr>
<td>sandy beach tiger beetle (Cicindela hirticollis gravida)</td>
<td>/ / SA / G5T2 / S1</td>
<td>Low. Though CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat and prior disturbance at site. The nearest CNDDB occurrence record is located less than a mile from the ESEC site at Dockweiler State Beach. Species inhabits areas adjacent to non-brackish water along the California coast.</td>
</tr>
<tr>
<td>senile tiger beetle (Cicindela senilis frosti)</td>
<td>/ / / G4T1 / S1</td>
<td>Low. Though CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown areas are unlikely to support this</td>
</tr>
<tr>
<td>Common Name (Scientific Name)</td>
<td>Status Fed/ State/ CRPR/G-Rank/S-Rank</td>
<td>Potential for Occurrence in Project Impact Area</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Globose dune beetle (Coelus globosus)</td>
<td>/ / / / G1/S1</td>
<td>Low. Although CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat and prior disturbance at site. The nearest CNDDB occurrence record is within 2 miles of the ESEC site at the LAX El Segundo Dunes Preserve.</td>
</tr>
<tr>
<td>Monarch butterfly (Danaus lexippus)</td>
<td>/SA/ / G5/S3</td>
<td>Moderate. Although not recorded on site, could roost in landscape trees throughout the ESEC. The nearest CNDDB occurrence record for a roosting site is less than one mile from the pESEC site however this site is presumed extirpated. Nearest active roost site is located within 4 miles from the ESEC site. Roosts in wind-protected tree groves along the California coast in winter.</td>
</tr>
<tr>
<td>Henne’s eucosman moth (Eucosma hennei)</td>
<td>/ / / / G1/S1</td>
<td>Low. Although CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat and prior disturbance at site. The nearest CNDDB occurrence record is within 2 miles of the ESEC site at the LAX El Segundo Dunes Preserve.</td>
</tr>
<tr>
<td>El Segundo blue butterfly (Euphilotes battoides allyni)</td>
<td>FE/ / / G5T1/S1</td>
<td>Moderate. Although CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat and prior disturbance at site. However, hosts plants for the species, sealeaf buckwheat, were detected as part of surveys for the ESEC. These plants are located outside the ESEC site at Dockweiler SB and could potentially support the species. The nearest CNDDB occurrence records are located within 1 mile from the ESEC site at the Chevron El Segundo Blue Butterfly Preserve and within 2 miles at the LAX El Segundo Dunes Preserve.</td>
</tr>
<tr>
<td>Common Name (Scientific Name)</td>
<td>Status Fed/ State/ CRPR/G-Rank/S-Rank</td>
<td>Potential for Occurrence in Project Impact Area</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Palos Verde blue butterfly (Glaucopsyche lygdamus palosverdesensis)</td>
<td>FE/// G5T1/S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The ESEC site and W 190th Street laydown area are not within the known range of the species which is endemic to the Palos Verdes Peninsula. The nearest CNDDB occurrence records are located over 7 miles from the ESEC site and W 190th Street laydown area.</td>
</tr>
<tr>
<td>Lange’s El Segundo dune weevil (Onychobaris langei)</td>
<td>//__/ G1/S1</td>
<td>Low. Although CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat and prior disturbance at site. The nearest CNDDB occurrence record is within 2 miles of the ESEC site at the LAX El Segundo Dunes Preserve.</td>
</tr>
<tr>
<td>wandering skipper (Panoquina errans)</td>
<td>//__/ G4G5/S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is located over 9 miles from the ESEC site and of the W 190th Street laydown area.</td>
</tr>
<tr>
<td>El Segundo flower loving fly (Rhaphiomidas terminatus terminatus)</td>
<td>//__/ G1T1/S1</td>
<td>Low. Although CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat and prior disturbance at site. The nearest CNDDB occurrence record is located over 7 miles from the ESEC site and the W 190th Street laydown area.</td>
</tr>
<tr>
<td>Gertsch’s socalchemmis spider (Socalchemmis gertschi)</td>
<td>//__/ G1/S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the proposed project site or offsite laydown areas. The nearest CNDDB occurrence record is located over 3 miles from the ESEC site and 11 miles from the W 190th Street laydown area.</td>
</tr>
<tr>
<td>Dorothy’s El Segundo dune weevil (Trigonoscuta dorothea)</td>
<td>//__/ G1T1/S1</td>
<td>Low. Although CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown areas are unlikely to support this species given lack of native habitat and prior disturbance at site. The nearest CNDDB occurrence records are located within 3 miles from the ESEC site at the LAX El Segundo Dunes Preserve and at the Ballona Wetlands.</td>
</tr>
</tbody>
</table>
Common Name (Scientific Name) | Status Fed/ State/ CRPR/G-Rank/S-Rank | Potential for Occurrence in Project Impact Area
--- | --- | ---
| mimic tyronia (Tryonia imitator) | / / / / G2G3/S2S3 | Not Likely to Occur. No aquatic habitat occurs at the ESEC site or offsite laydown areas. The nearest CNDD occurrence record located approximately 4 miles from the ESEC site and over 11 miles from the W 190th Street laydown area is possibly extirpated.

Reptiles and Amphibians

<table>
<thead>
<tr>
<th>Common Name (Scientific Name)</th>
<th>Status Fed/ State/ CRPR/G-Rank/S-Rank</th>
<th>Potential for Occurrence in Project Impact Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>silvery legless lizard (Anniella pulchra pulchra)</td>
<td>/CSC/ / G3G4T2T3Q/S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the ESEC project site or offsite laydown areas. The nearest CNDD occurrence record is located over 9 miles from the ESEC site and 4 miles from the W 190th Street laydown area.</td>
</tr>
<tr>
<td>western pond turtle (Emys marmorata)</td>
<td>/CSC/ / G3G4/S3</td>
<td>Not Likely to Occur. No aquatic habitat occurs at the ESEC site or offsite laydown areas. The nearest CNDD occurrence record located over 4 miles from the ESEC site is possibly extirpated.</td>
</tr>
<tr>
<td>coast horned lizard (Phrynosoma blainvillii)</td>
<td>/CSC/ / G4G5/S3S4</td>
<td>Low. No suitable habitat occurs within the ESEC site or offsite laydown areas. The species inhabits open areas of sandy soil and low vegetation in valleys, foothills and semiarid mountains from sea level to 8,000 ft. Nearest CNDD occurrences are all extirpated by development.</td>
</tr>
<tr>
<td>two-striped garter snake (Thamnophis hammondii)</td>
<td>/CSC/ / G3/S2</td>
<td>Not Likely to Occur. No aquatic habitat occurs at the ESEC site or offsite laydown areas. The nearest CNDD occurrence record located over 11 miles from the ESEC site.</td>
</tr>
</tbody>
</table>

Birds

<table>
<thead>
<tr>
<th>Common Name (Scientific Name)</th>
<th>Status Fed/ State/ CRPR/G-Rank/S-Rank</th>
<th>Potential for Occurrence in Project Impact Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>tricolored blackbird (Agelaius tricolor)</td>
<td>BCC/CSC/ / G5T2T4/S2S3</td>
<td>Low. No suitable habitat occurs within the ESEC site or offsite laydown areas. The species is known to occur in the regional vicinity of the ESEC site in marsh habitats, including the Madrona Marsh and Harbor Lake. The nearest CNDD occurrence approximately 7 miles from the ESEC site and 4 miles from the W 190th Street laydown area.</td>
</tr>
<tr>
<td>Burrowing owl (Athene cunicularia)</td>
<td>BCC/CSC/ / G4/S2</td>
<td>Low. No suitable habitat occurs within the ESEC site or offsite laydown areas. The species is known to occur in the regional vicinity of the ESEC site, including the Ballona Wetlands.</td>
</tr>
<tr>
<td>Common Name (Scientific Name)</td>
<td>Status Fed/ State/ CRPR/G-Rank/S-Rank</td>
<td>Potential for Occurrence in Project Impact Area</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Swainson’s hawk (Buteo swainsoni)</td>
<td>FT/CSC/__/G4T3/S2</td>
<td>ecological Reserve. The nearest CNDDB occurrence approximately 4 miles from the ESEC site.</td>
</tr>
<tr>
<td>Western snowy plover (Charadrius alexandrinus nivosus)</td>
<td>High. This species has been reported less than one mile from the proposed ESEC site at Dockweiler State Beach (SB) which annually supports a significant wintering flock. There is designated critical habitat immediately adjacent to the northwest corner of the ESEC site as well as approximately 3 miles north of the site. This species has not successfully bred at Dockweiler SB since the 1940s due to increased human activity. Requires sandy, gravelly, or friable soils for nesting.</td>
<td></td>
</tr>
<tr>
<td>southwestern willow flycatcher (Empidonax traillii extimus)</td>
<td>FE/SE/__/G4T3/S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the ESEC site or offsite laydown areas. The nearest CNDDB occurrence over 10 miles from the ESEC site and 5 miles from the W 190th Street laydown area.</td>
</tr>
<tr>
<td>California black rail (Laterallus jamaicensis coturniculus)</td>
<td>Low. No suitable habitat occurs within the ESEC site or offsite laydown areas. Though historical CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown area are unlikely to support this species given lack of native habitat and history of disturbance at site. The nearest CNDDB occurrence approximately 2 miles from the ESEC site.</td>
<td></td>
</tr>
<tr>
<td>Belding’s savannah sparrow (Passerculus sandwichensis beldingi)</td>
<td>Low. No suitable habitat occurs within the ESEC site or offsite laydown areas. The species is known in several of the wetland preserves in the regional vicinity of the proposed project site, including the Ballona Wetlands Ecological Reserve. The nearest CNDDB occurrence approximately 4 miles from the ESEC site.</td>
<td></td>
</tr>
<tr>
<td>California brown pelican (Pelecanus occidentalis californicus)</td>
<td>High. No suitable habitat occurs within the ESEC site or offsite laydown areas. This species has recorded known roost over 3 miles from the ESEC site near Marina Del Rey. Observed offshore and flying over the ESEC site during</td>
<td></td>
</tr>
<tr>
<td>Common Name (Scientific Name)</td>
<td>Status Fed/ State/ CRPR/G-Rank/S-Rank</td>
<td>Potential for Occurrence in Project Impact Area</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Coastal California gnatcatcher (Polioptila californica californica)</td>
<td>FT/CSC/__/ / G3T2/S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the ESEC site or offsite laydown areas. The species is known from coastal sage scrub in regional vicinity of the ESEC project site, including along the Palos Verdes Peninsula. The nearest CNDDB occurrence approximately 5 miles from the ESEC site.</td>
</tr>
<tr>
<td>bank swallow (Riparia riparia)</td>
<td>/ST/ / G5/S2S3</td>
<td>Low. No suitable habitat occurs within the ESEC site or offsite laydown areas. Nearest CNDDB occurrences are all extirpated by development.</td>
</tr>
<tr>
<td>California least tern (Sternula antillarum browni)</td>
<td>FE/SE/FP/ G4T2T3Q/ S2S3</td>
<td>Moderate. No suitable habitat occurs within the ESEC site or offsite laydown areas. This species is known to breed in regional area at tidal salt/mud flats over 3 miles from the ESEC site in the Ballona Wetlands Ecological Reserve. Historically nested in beach habitat but increased human disturbance has made these habitats unsuitable for breeding.</td>
</tr>
<tr>
<td>Pallid bat (Antrozous pallidus)</td>
<td>/CSC// / G5/S3</td>
<td>Not Likely to Occur. No suitable habitat occurs within the ESEC site or offsite laydown areas. The nearest CNDDB occurrence record is historic and from 1930s, over 7 miles from the ESEC site. Common roost sites for this species are rock crevices, old buildings, bridges, caves, mines, and hollow trees.</td>
</tr>
<tr>
<td>Western mastiff bat (Eumops perotis californicus)</td>
<td>/CSC// / G5T4/S3?</td>
<td>Not Likely to Occur. No suitable habitat occurs within the ESEC site or offsite laydown areas. This species is present only where there are significant rock features offering suitable roosting habitat or may roost in buildings with appropriately proportioned cracks.</td>
</tr>
<tr>
<td>silver haired bat (Lasionycteris noctivagans)</td>
<td>//__/ / G5/S3S4/ WBWG-M</td>
<td>Not Likely to Occur. No suitable habitat occurs within the ESEC site or offsite laydown areas. The nearest CNDDB occurrence record is 8 miles from the ESEC site. This species roosts in hollow trees, snags, buildings, rock crevices, caves, and under bark.</td>
</tr>
<tr>
<td>Common Name (Scientific Name)</td>
<td>Fed/ State/ CRPR/G-Rank/S-Rank</td>
<td>Potential for Occurrence in Project Impact Area</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>hoary bat (Lasiurus cinereus)</td>
<td>G5/S4?/WBWG-M</td>
<td>Low. No suitable habitat occurs within the ESEC site or offsite laydown areas. The nearest CNDDB occurrence records are historic and from 1930-1950s, over 7 miles from the ESEC site. This species winters along the coast and in southern California, and generally roosts in dense foliage of medium to large trees.</td>
</tr>
<tr>
<td>South Coast marsh vole (Microtus californicus stephensi)</td>
<td>G5T1T2/S1S2</td>
<td>Not Likely to Occur. No suitable habitat occurs within the HBEP site or offsite laydown areas. The nearest CNDDB occurrence record is located over 3 miles from the ESEC site in the Ballona Wetlands Ecological Reserve. It occurs in tidal marshes in Los Angeles, Orange, and Southern Ventura counties.</td>
</tr>
<tr>
<td>pocketed free-tailed bat (Nyctinomops femorosaccus)</td>
<td>G4/S2S3/ WBWG-M</td>
<td>Not Likely to Occur. No suitable habitat occurs within the ESEC site or offsite laydown areas. The nearest CNDDB occurrence record is over 7 miles from the ESEC site. This species is colonial and roosts primarily in crevices of rugged cliffs, high rocky outcrops and slopes.</td>
</tr>
<tr>
<td>Pacific pocket mouse (Perognathus longimembris pacificus)</td>
<td>G5T1/S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the HBEP site or offsite laydown areas. Though historical CNDDB occurrence records exist in the El Segundo area, the ESEC site and offsite laydown area are unlikely to support this species given lack of native habitat and history of disturbance at site. Presumed extirpated in the local area. Suitable habitats for this species contain fine-grain sandy substrates on the coastal strand, coastal dunes, river alluvium and coastal sage scrub.</td>
</tr>
<tr>
<td>Southern California saltmarsh shrew (Sorex ornatus salicornicus)</td>
<td>G5T1? /S1</td>
<td>Not Likely to Occur. No suitable habitat occurs within the ESEC site or offsite laydown areas. The nearest CNDDB occurrence record is presumed extirpated and located over 3 miles from the ESEC site in the Ballona Wetlands Ecological Reserve. Occurs in coastal marshes and requires dense vegetation and woody debris for cover.</td>
</tr>
</tbody>
</table>

Sources: CDFW 2013a; CNPS 2013
Biological Resources Table 2 – Notes

STATUS CODES:

State
CSC: California Species of Special Concern. Species of concern to CDFW because of declining population levels, limited ranges, and/or continuing threats have made them vulnerable to extinction.
SE: State listed as endangered
SR: State listed as rare
ST: State listed as threatened
SFP: Fully protected
WL: Watch List: includes species formerly on California Species of Special Concern List (Remsen 1978) but which did not meet the criteria for the current list of special concern bird species (Shuford and Gardali 2008).
SA: Special Animal. Species is tracked in the CNDDDB (due to rarity, limited distribution in California, declining throughout the range, etc.) but holds no other special status at the state or federal level.

Federal
FE: Federally listed endangered: species in danger of extinction throughout a significant portion of its range
FT: Federally listed, threatened: species likely to become endangered within the foreseeable future
BCC: Fish and Wildlife Service: Birds of Conservation Concern: Identifies migratory and non-migratory bird species (beyond those already designated as federally threatened or endangered) that represent highest conservation priorities
D: Delisted taxon that is considered recovered

California Native Plant Society (CNPS)
List 1B: Rare, threatened, or endangered in California and elsewhere
List 2: Rare, threatened, or endangered in California but more common elsewhere
List 3 = Plants which need more information
List 4 = Limited distribution – a watch list
0.1: Seriously threatened in California (high degree/immediacy of threat)
0.2: Fairly threatened in California (moderate degree/immediacy of threat)
0.3: Not very threatened in California (low degree/immediacy of threats or no current threats known)

Global Rank/State Rank
Global rank (G-rank) is a reflection of the overall condition of an element throughout its global range. Subspecies are denoted by a G-Rank; multiple rankings indicate a range of values
G1 = Less than 6 viable element occurrences (EOs) OR less than 1,000 individuals
G2 = 6-20 EOs OR 1,000-3,000 individuals
G3 = 21-100 EOs OR 3,000-10,000 individuals
G4 = Apparently secure; this rank is clearly lower than G3 but factors exist to cause some concern; i.e., there is some threat, or somewhat narrow habitat.
G5 = Population or stand demonstrably secure to ineradicable due to being commonly found in the world.

State rank (S-rank) is assigned much the same way as the global rank, except state ranks in California often also contain a threat designation attached to the S-rank. An H-rank indicates that all sites are historical
S1 = Less than 6 element occurrences (EOs) OR less than 1,000 individuals
S1.1 = very threatened
S1.2 = threatened
S1.3 = no current threats known
S2 = 6-20 EOs OR 1,000-3,000 individuals
S3 = 21-100 EOs OR 3,000-10,000 individuals
S4 = Apparently secure in California; this rank is clearly lower than S3 but factors exist to cause some concern, i.e., there is some threat or somewhat narrow habitat. No threat rank.
S5 = Demonstrably secure or ineradicable in California. No threat rank.
SH = All California occurrences historical (i.e., no records in > 20 years).

Potential Occurrence:
High – Suitable habitat is present within or near the proposed site; occurrence records exist for species in proximity to the site; species expected to occur on or near site
Moderate – Low quality habitat is present within or near the proposed site; species was not identified during reconnaissance surveys of the site; species may occur on or near site
Low – Marginal habitat is present on or adjacent to site; no recent records within 10 miles of the site
Not Likely to Occur – No recent records within 10 miles, no suitable habitat occurs on or near site

Special-Status Plant Species
The ESEC site and offsite laydown areas are entirely developed with no natural habitats present. The vegetation observed during the January and February 2013 site visits by the project owner and Energy Commission staff site visits was limited to landscaping trees and shrubs and forbs, ice plant, and a few scattered weedy plants. As the potential for special-status plants to occur at the ESEC site and offsite laydown area is
low, rare plant surveys were not conducted for the amendment. However, special-status plant surveys were conducted in 2000 and 2007 and no species were detected. Special status plants have been documented in the regional vicinity of the proposed project however most populations are considered extirpated. It is unlikely that special-status plants would colonize the project site or the offsite laydown area, but even in the event that would occur on unpaved or landscaped areas, vegetation and weed management practices at both sites would preclude persistence.

Special-Status Wildlife

The project owner conducted general reconnaissance surveys of the project site in January and February 2013. No protocol or focused surveys were performed as the potential for special-status wildlife species to occur within the proposed project site and offsite laydown and parking areas is low. The following accounts focus on species with a moderate or high potential to occur on or near the site, and that could be affected by project construction and operation.

Birds

The project region supports a wide range of both resident and migratory bird species. The area is located within the Pacific Flyway, a very broad corridor stretching along the Pacific Coast from Mexico north to Alaska and into Siberia, Russia. Birds utilizing the area surrounding the project site and the regional vicinity include resident breeding birds, migratory birds that breed in the region but winter elsewhere, birds that forage and rest in the area during migration between breeding and wintering grounds, and species that winter in the project region. Nesting habitat on site is limited to landscaped areas including trees, and birds that nest on the ground on gravely substrates such as killdeer could also nest on site. Small mammals and reptiles as well as landscape plants provide foraging opportunities for birds on site. Native birds, regardless of any additional conservation status at the local, state, or federal level, are afforded protection by the federal Migratory Bird Treaty Act (MBTA) and California Fish and Game Code.

California Brown Pelican

The California brown pelican (*Pelecanus occidentalis*) is a California state “fully protected species” pursuant to Fish and Game Code section 3511(b)(2). It is a large water bird with a dark brownish body, a long pouchied bill, and long broad wings. This species was formerly state and federally listed as endangered, but was de-listed in 2007 due to recovery of the population (Burkett et al. 2007). Brown pelicans feed on a variety of fish species which they catch by diving from the air into the water. This species nests in colonies usually on offshore islands and other isolated areas lacking mammalian predators and human disturbances.

California brown pelicans are considered common in the regional vicinity of the ESGS site and have been observed foraging offshore of the ESEC site near the rock groin terminus (LL 2013v). It has also been documented at a major day and night roost site approximately 3 miles from the ESEC site near Marina Del Rey (CDFW 2013).

The coastal habitat adjacent to the site provides foraging habitat for the species in the immediate vicinity of the site; however, there is no natural habitat on the ESEC site and
the potential for occurrence on site is low. Additionally, it is not expected to breed in adjacent habitat due to lack of typical breeding habitat.

California Least Tern

The California least tern (*Sternula antillarum browni*) is federally and state-listed as endangered. The California least tern nests along the west coast of North America, from Baja California, Mexico, north to the San Francisco Bay area (USFWS 1980). This subspecies was listed as endangered by federal and state agencies due to a population decline resulting from loss of habitat (Cogswell 1977). It has long narrow wings and a broad forked tail. The body is white with pale gray and black-tipped wings. The head is black capped with a white streak across the forehead and the bill is yellow with a black tip. This subspecies forages for fish in open water habitats including near shore ocean waters, tidal channels, and estuaries. It breeds in open sandy areas, dirt, and dry mud near suitable foraging habitat. The species establishes nesting colonies on sandy soils with little vegetation along the ocean, lagoons, and bays. Their nests are shallow depressions lined with shells or other debris (Massey 1974). Least terns are generally present at nesting areas between mid-April and late September (Massey 1974; Cogswell 1977; Patton 2002), often with two waves of nesting during this time period (Massey and Atwood 1981).

In the project region, California least terns nest at Ballona Wetlands Ecological Reserve and Venice Beach (CDFW 2013). It forages at Marina Del Rey, Ballona Creek, Ballona Lagoon and canals in the area. Historically, California least tern nested along the entire strand of Dockweiler State Beach. Currently, there is a managed California least tern colony at the north end of Dockweiler State Beach near Venice Beach in Marina Del Rey (CDFW 2013). There is no suitable nesting habitat for the California least tern at the ESEC site and it has very limited potential to occur on the site. However, the species would likely use the neighboring coastal areas for foraging.

Western Snowy Plover

The western snowy plover (*Charadrius alexandrinus nivosus*) is a federally listed threatened species and a California Species of Concern. This small shorebird is about 6 inches long, it has a thin dark bill and is pale brown to gray above with a white or buff colored underside with darker patches on its shoulders and head. It typically forages for small invertebrates in wet or dry beach sand, in salt marshes, and within low foredune vegetation. The Pacific coast breeding population of the western snowy plover currently extends along coastal beaches from the southern portion of Washington State to southern Baja California, Mexico. This population breeds primarily above the high-tide line on coastal beaches, sand spits, dune-backed beaches, sparsely vegetated dunes, beaches at creek and river mouths, and salt pans at lagoons and estuaries. Less common nesting habitats include bluff-backed beaches, dredged material disposal sites, salt pond levees, dry salt ponds, and river bars. The snowy plover winters mainly in coastal areas from southern Washington to Central America. In winter, snowy plovers are found on many of the beaches used for nesting as well as on beaches where they do not nest, in man-made salt ponds, and on estuarine sand and mud flats. There have been no documented cases of a western snowy plover nesting within Los Angeles County since 1949 when they were recorded nesting at Manhattan Beach. The nearest active nesting site is at Bolsa Chica in Orange County located over 25 miles south of
the ESEC site (CDFW 2013). The breeding season for the western snowy plover normally extends from March 1 through September 15, however the first nest at Bolsa Chica in 2009 occurred on February 23 and courting behavior has been observed as early as late January (Knapp and Peterson 2009).

Poor reproductive success resulting from human disturbance, predation, and inclement weather, combined with permanent or long-term loss of nesting habitat to urban development has led to the decline in active nesting colonies as well as an overall decline in the breeding and wintering population of the western snowy plover along the Pacific coast of the United States. In southern California, extensive recreational beach use by humans has precluded the western snowy plover from breeding in several historically used beach strand areas (USFWS 2007).

The final rule for USFWS revised designated critical habitat for western snowy plover was published on June 19, 2012 (USFWS 2012), and includes the Dockweiler North, (subunit CA 45B) and Dockweiler South (subunit CA 45C). The subunits CA 45B and 45C at Dockweiler State Beach were occupied at the time of listing and are currently occupied (USFWS 2012). The subunits, in conjunction with Hermosa Beach (subunit 45D) annually support a significant wintering flock of western snowy plover in a location with high-quality breeding habitat. This location contains the physical or biological features essential to the conservation of the species, including a wide sandy beach with occasional surfcast wrack supporting small invertebrates.

There is no suitable nesting habitat for the western snowy plover at the ESEC site and it has very limited potential to occur on the site. Historically, the western snowy plover bred along Santa Monica Bay from Hermosa Beach to Santa Monica. At least one pair of snowy plover remained at Dockweiler State Beach through the nesting season in 2008 (CDFW 2008). The species has been reported immediately adjacent to the ESEC site utilizing the beaches in the vicinity of the site for foraging and loafing during the winter.

Invertebrates

Monarch Butterfly

The monarch butterfly (Danaus plexippus) is a NatureServe Global Rank 5 (G5) and State Rank 3 (S3). NatureServe provides information about the status of a taxon, both throughout its entire range and within California. The G5 rank for species is defined as “Secure” and is considered common; widespread and abundant. However, the S3 rank monarch butterfly in California is defined as “Vulnerable” and is vulnerable in the jurisdiction due to a restricted range, relatively few populations or occurrences, recent and widespread declines, or other factors making it vulnerable to extirpation for species. This butterfly is found from southern Canada south through all of the United States, Central America, and most of South America. It is also present in Australia, Hawaii, and other Pacific Islands (BMNA 2013). It overwinters in central Mexico and along the coastal California. The host plant for the caterpillar stage includes several species of milkweeds including common milkweed (Asclepias syriaca), swamp milkweed (A. incarnata), and showy milkweed (A. speciosa); and milkweed vine in the tropics. Adults utilize a variety of species for nectar feeding including milkweeds as well as other
species early in the season before milkweeds bloom and in the fall. This distinctive species is orange and black with white spot and the male and female are sexually dimorphic (i.e., sexes of a given species differ in coloration). It is between 3 3/8 and 4 7/8 inches.

Historically, monarch butterfly utilized native California trees as roost sites including western sycamore (Platanus racemosa), Torrey pine (Pinus torreyana), Monterey pine (Pinus radiata), and Monterey cypress (Cupressus macrocarpa). However, in the 1920s the widespread introduction of non-native eucalyptus trees occurred and these trees became the favored roosting trees for monarchs due to the protection the trees provided from rain, wind, and chilling temperatures. The monarch has been experiencing steady declines in recent years and population monitoring at overwintering sites in California and Mexico have documented significant declines in the number of monarchs returning to those sites (Xerces 2014). Reasons for decline include loss of overwintering sites in Mexico due to deforestation and in California due to development, degradation of overwintering habitat in California due to aging trees, loss of breeding habitat due to the ongoing decline of native milkweeds (Asclepias spp.), their larval host plants, and disease, parasitism, and predation. Management needs include development of conservation and management plans for all wintering sites, migration corridors, and principal breeding areas.

There is marginal overwintering habitat for the monarch butterfly at the ESEC site which may utilize Torrey pine, such as those planted along the western boundary of the site, as a roost tree. However, it has very limited potential to occur on the site as monarch butterflies commonly display site fidelity to overwintering sites and many of these locations are used year after year. To date monarch butterfly have not been reported roosting on the ESEC site. The species has been previously reported to have a roost site less than one mile from the ESEC site however this site is presumed extirpated. The nearest active roost site is located within 4 miles from the ESEC site (CDFW 2013).

El Segundo Blue Butterfly

The El Segundo blue butterfly (Euphilotes battoides allynii) is a federally listed endangered species. This butterfly is endemic to coastal sand dunes and is known only from the El Segundo sand dunes and the northwestern Palos Verdes peninsula in southwestern Los Angeles County, California. The El Segundo dunes once encompassed 4.5 square miles between Westchester and the Palos Verdes Peninsula while suitable habitat on the Palos Verdes peninsula likely included about 20 acres. The adults have a wingspan of 0.75 to 1.25 inches and the males and females are sexually dimorphic. The males wings are a brilliant blue color with an orange border on the rear of the upper hindwings while the females have dull brown colored wings with an orange border on the upper distal surface of the hindwings. The life cycle includes one, or rarely two, generations, of adults per year (USFWS 2008). The El Segundo blue butterfly is dependent on seacliff buckwheat (Eriogonum parviflorum) for survival of as each of its four life stages (egg, larva, pupa, and adult) depend on this plant (USFWS 2008). The adult’s flight period lasts from 4 days to two weeks beginning in mid June and lasts until early September. It feeds on seacliff buckwheat pollen and nectar, and mate and lay eggs on seacliff buckwheat flowers. During the caterpillar (larval) stage, individuals remain concealed within flower heads and feed primarily on seacliff buckwheat seeds.
During the pupal (cocoon) stage, which lasts for one or more year, individuals fall to the ground and remain buried either underground or in the leaf litter at the base of the seaciff buckwheat until they emerge as adult butterflies.

At the time of the 5-year review by the USFWS in 2008, the range of the species was estimated to be have been reduced by 86 percent (USFWS 2008). This is a slight improvement since the time of listing in 1976 and due to it now also being known to occur in the Torrance recovery unit, specifically on beach bluffs between Malaga Cove and Redondo Beach (USFWS 2008). The reasons for decline and current threats to this species include urban development and invasion by exotic species which have resulted in a significant loss and modification of the species’ habitat (USFWS 1998). Other threats include off-road vehicles and overcollecting (USFWS 1998). While critical habitat has not been established for this species the USFWS Recovery Plan recommended the protection of four Recovery Units (RUs) that include adequate habitat and area to prevent the extinction of the butterfly. The El Segundo blue butterfly is extant at seven sites within three disjunct locations: two sites at the Airport Dunes location; the Chevron Preserve, and four sites near or north of Malaga Cove. These seven sites are included in the four RUs: Ballona Recovery Unit, Airport Dunes Recovery Unit, El Segundo Recovery Unit, and the Torrance Recovery Unit. All known populations are under threat, by habitat destruction, inadequacy of existing regulatory mechanisms, habitat modification, overutilization, predation, and extinction vulnerability due to small population sizes and isolation. In addition, habitat fragmentation produces edge effects that facilitate the introduction of invasive, nonnative weeds, primarily iceplant, that can out-compete and supplant the El Segundo blue butterfly’s host plant, seaciff buckwheat.

The El Segundo blue butterfly has recently been discovered at newly occupied sites within its known range. In addition, long-term survey data from the LAX Dunes shows population numbers of El Segundo blue butterfly appear to have fluctuated greatly over time and generally trend up or down based on rainfall. These fluctuations are typical of insect populations which are dependent on their host plant. However, survey methods have not been consistent over time which makes it impossible to assess long-term trends in population (USFWS 2008). Restoration activities, including removal of invasive iceplant and other non-native species and the planting of native plants, including the host plant for the species, at Torrance Beach and Ballona Wetlands Ecological Preserve have seen a return of blue butterfly to these sites through natural recolonization. In 2013, approximately 199 butterfly were observed during surveys at the Ballona Wetlands Ecological Preserve when the site had previously been considered unoccupied during the USFWS 5-year review for the species (Psomas 2013). There is also funding in place to restore native dune habitat at Dockweiler State Beach by removing iceplant and planting native plants. However, the intensity of long-term protection and management activities at locations such as LAX Dunes and the Chevron Preserve and other potentially restored areas have been variable over time and no permanent conservation easements exist at any of these occupied sites (pers. com. Eric Porter). In addition, much of the remaining lands that could potentially be restored are under private ownership. Therefore, while the number of sites the butterfly is known to occur is increasing there is no regulatory program in place to require such activities long-term.
The ESEC site is located within the El Segundo Recovery Unit, however the ESEC site is not identified as occupied, restored, or potential restored habitat for the El Segundo blue butterfly. Potential restored habitat, defined as habitat that if restored could potentially support the species, is located immediately adjacent to the south boundary of the plant as well as north of the plant. The host plant for the blue butterfly, seacliff buckwheat (*Eriogonum parvifolium*), also known as dune or coast buckwheat, was detected immediately west of the ESEC site during surveys for the prior ESEC amendment (NRG 2014c) in 2011. Two patches of dune buckwheat are present adjacent to the bike path (NRG 2014c). El Segundo blue butterfly larvae could occur on or around these plants however this species has not been detected previously near the ESEC site. The nearest occupied habitat is located within 1 mile from the ESEC site at the Chevron El Segundo Blue Butterfly Preserve and habitat is also located within 2 miles at the LAX Airport/El Segundo Dunes Preserve.

Jurisdictional Wetlands and Waters

The project area is actively maintained to facilitate operation of existing power generation and therefore does not support wetlands of other waters potentially under the jurisdiction of USACE, CDFW, and/or the California Coastal Commission (CCC). Wetlands and other waters potentially under the jurisdiction of USACE, CDFW, and/or CCC are located adjacent to the ESEC site and the preferred offsite laydown area, This includes Dockweiler State Beach and adjacent Santa Monica Bay. These areas were identified as an estuarine and marine wetland and identified by the National Wetland Inventory (NWI) as M2USP, an intertidal marine system with an unconsolidated shore that is irregularly flooded (USFWS 2014). and as an intertidal marine system with an unconsolidated shore that is regularly flooded, (M2USN) and also estuarine and marine deepwater identified by the NWI as a subtidal marine system with an unconsolidated bottom (M1UBL). The preferred offsite laydown area is located less than 100 feet from the banks of the Dominguez Channel, a riverine habitat identified by the NWI as R2UBHr, a lower perennial, riverine system with an unconsolidated bottom and with an artificial substrate.

IMPACT ASSESSMENT

METHOD AND THRESHOLDS FOR DETERMINING SIGNIFICANCE

A significant impact is defined under CEQA as “a substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project” (Cal Code Regs. tit. 14, [hereinafter CEQA Guidelines] section 15382). In this analysis, the following impacts to biological resources are considered significant if the project would result in:

- a substantial adverse effect to wildlife species that are federally-listed or state-listed or proposed to be listed; a substantial adverse effect to wildlife species of special concern to CDFW, candidates for state listing, or animals fully protected in California;
- a substantial adverse effect to plant species considered by CDFW, USFWS, or CNPS to be rare, threatened, or endangered in California or with strict habitat
requirements and narrow distributions; a substantial impact to a sensitive natural community (i.e., a community that is especially diverse; regionally uncommon; or of special concern to local, state, and federal agencies);

- substantial adverse effects on habitats that serve as breeding, foraging, nesting, or migrating grounds and are limited in availability or that serve as core habitats for regional plant and wildlife populations;
- interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites;
- substantial adverse effect on important riparian habitats or wetlands and any other “Waters of the U.S.” or state jurisdictional waters; or
- conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan.

DIRECT AND INDIRECT IMPACTS AND MITIGATION

The CEQA Guidelines define direct impacts as those impacts that result from the project and occur at the same time and place. Indirect impacts are caused by the project, but can occur later in time or farther removed in distance and are still reasonably foreseeable and related to the operation of the project. Direct or indirect impacts on biological resources could be permanent or temporary in nature. All impacts that result in the irreversible removal of biological resources are considered permanent. Any impact considered to have reversible effects on biological resources can be viewed as temporary.

This section evaluates the potential direct, indirect, permanent, and temporary impacts to biological resources from proposed ESEC construction and associated demolition activities, operation, maintenance, and decommissioning, and provides mitigation, as necessary, to reduce impacts to less than significant levels.

General Biological Resources Conditions of Certification

The demolition of existing Units 3 and 4 and construction and operation of new Units 9 through 12 would result in similar impacts to biological resources as the demolition of Units 1 and 2 and the construction and operation of the existing Units 5 through 8. The existing Conditions of Certification are recommended by staff as being adequate to avoid or minimize potentially adverse impacts to biological resources, including retaining the requirement that a Designated Biologist be employed to ensure impact avoidance and minimization measures described below and protection of sensitive biological resources described above are implemented. The selection criteria and minimum qualifications of the Designated Biologist are described in the existing Condition of Certification BIO-6 (Designated Biologist). The duties and authority of the Designated Biologist are described in the existing Condition of Certification BIO-7 (Designated Biologist Duties) and BIO-8 (Designated Biologist and Biological Monitor Authority). The Designated Biologist would be responsible, in part, for developing and implementing the Worker Environmental Awareness Program (WEAP) (see Condition of Certification BIO-10), which is a mechanism for training the on-site project construction
and maintenance personnel and as well as project site visitors on the how to protect sensitive biological resources and the consequences of non-compliance.

The existing Condition of Certification BIO-9 (Biological Resources Mitigation Implementation and Monitoring Plan (BRMIMP)) provides for the preparation of the BRMIMP, which consolidates all project resource mitigation, monitoring, and compliance measures, as well as other information necessary to ensure compliance with, and effectiveness of, all impact avoidance, minimization, and mitigation measures. Minor modifications to Conditions of Certification BIO-6, BIO-7, BIO-8, BIO-9, BIO-10 have been proposed by staff to address that the El Segundo Power Facility Modification (ESPFM) project would not include the beach delivery system that was proposed but not implemented as part of the previous ESEC amendment and also to align the existing conditions of certification with current standard language included in the general biological resources conditions of certification. Staff has also proposed modifying Condition of Certification BIO-8 and adding Condition of Certification BIO-15 (Biological Monitor Selection) to allow for approval and use of biological monitors to act on behalf of a Designated Biologist, as determined necessary by the approved Designated Biologist.

CONSTRUCTION AND DEMOLITION IMPACTS AND MITIGATION

Construction and Demolition Impacts to Native Vegetation

Construction and demolition impacts to vegetation could occur through the direct removal or crushing of plants by equipment or vehicles. As these impacts are generally localized and are primarily temporary, they are not usually considered significant unless the habitat type is regionally unique or is known to support special-status species.

The proposed project area is developed as industrial with disturbed habitat and ornamental landscaping. Regionally unique habitat or habitat capable of supporting special-status species is not present within the proposed project area. Construction and demolition activities would require the removal of weedy vegetation such as iceplant. Significant impacts to native vegetation would not occur and no mitigation is proposed.

Construction and Demolition Impacts to Common Wildlife

Direct loss of small mammals, reptiles, and other less mobile species could occur during construction of the proposed project and demolition of existing facilities. This would result primarily from the use of vehicles and equipment at the ESEC site, which could collapse underground burrows or drive over animals. Additionally, construction and demolition activities and increased human presence may temporarily disrupt breeding or foraging activities of some common wildlife species.

The proposed project area provides marginally suitable nesting habitat for a variety of common bird species. Birds could nest in the ornamental plantings along the western perimeter of the ESEC site. Additionally, some bird species adapted to disturbed environments could nest in equipment or other available substrate in the areas within the ESEC site. Many adult birds would flush from equipment during project construction. However, birds nesting on ornamental trees, other landscaping, or equipment and
facilities would be vulnerable to impacts during project construction. Nests, nestlings, and eggs of native birds are protected by the Migratory Bird Treaty Act (MBTA) and Fish and Game Code Sections 3503 and 3513. If initial demolition and site grading or vegetation removal in landscaped areas were to occur during nesting season, then it could destroy bird nests, including eggs or nestling birds.

Staff recommends conducting a preconstruction active nest survey within and around the perimeter of the ESEC site, and, if determined necessary, monitoring active nests during demolition and construction activities if it is determined that active nests will be disturbed by ESEC activities. Staff’s proposed Condition of Certification BIO-17 (Pre-Construction Nest Surveys and Impact Avoidance and Minimization Measures for Breeding Birds), provides detail on survey timing and recommendations to avoid disturbance to active nests and ensure compliance with the MBTA. With implementation of Condition of Certification BIO-17, significant impacts to nesting birds would not result from proposed project construction activities.

Wildlife could become entrapped in open trenches during construction, especially if trenches remain open during inactive construction periods. Staff recommends Condition of Certification BIO-16 (Impact Avoidance and Minimization Measures), which would require exclusion measures for open trenches (e.g., fencing or covering), inspection of trenches prior to resuming construction activities each day, and installation of escape ramps so that animals that fall in the trench could escape. Implementation of this measure would mitigate adverse impacts to wildlife from entrapment. In addition, Best Management Practices related to use of non-toxic soil bonding and weighting agents, proper maintenance of vehicles and equipment to limit hazardous spills, proper disposal of trash and food-related waste, restrictions on firearms and weapons on site, and pesticide management to address potential impacts to wildlife and plants are included in BIO-16.

An analysis of impacts to wildlife from noise and lighting is presented under “General Construction and Demolition Impacts”, below.

Construction and Demolition Impacts to Special-Status Plant Species

Special-status plants recorded historically within one mile of the proposed ESPFM site include Orcutt’s pincushion (CRPR 1B.1), beach spectaclepod (ST, CRPR 1B.1), and Coulter’s goldfields (CRPR 1B.1). These occurrences are all presumed or considered likely extirpated. Special-status plants recorded within one mile of the preferred offsite laydown area include southern tarplant (CRPR 1B.1), Coulter’s goldfields, and San Bernardino aster (CRPR 1B.2). Populations of Coulter’s goldfields and San Bernadino aster are consider likely extirpated while the southern tarplant occurrence is considered extant but threatened by channel maintenance, (see Biological Resources Table 2).

The existing conditions in the proposed project area and preferred offsite laydown area are not likely to support any special-status plants, and none have been recorded at the sites. The proposed ESEC site is within an existing operating power generating plant, and the preferred offsite laydown area and other laydown and parking areas are located within existing industrial sites or parking areas and are entirely developed brownfield sites with no natural habitat. Rare plants do not occur in the areas immediately adjacent
to the ESEC site but do occur near the preferred offsite laydown area; however, their introduction into the project site or the offsite laydown area would be unlikely and limited to landscaped or unpaved areas. Ongoing maintenance of landscaped areas, including weed eradication, would prevent any rare plants that were introduced onto the site from persisting. Therefore, direct impacts to special-status plants from construction would not occur and no mitigation is proposed.

Construction and Demolition Impacts to Special-Status Wildlife

Wildlife habitat in the project area has been significantly fragmented by urban development. The ESEC site, the preferred offsite laydown area in the city of Gardena, and the offsite parking areas near the ESEC site are located in developed areas; therefore, there would be no direct impacts resulting from disruption of wildlife movement, or habitat loss or fragmentation. The potential for the monarch butterfly to potentially roost in landscaping trees on the ESEC site is low and not recorded previously at the site. Therefore, impacts to monarch butterflies are less than significant and mitigation is not proposed.

Although most special-status wildlife species are not expected to occur at the project site or offsite parking and laydown areas, several may forage, roost, or breed in nearby beaches, dunes, and marine areas including the snowy plover, California brown pelican, California least tern, and the El Segundo blue butterfly. Indirect impacts could occur to special-status wildlife in the beaches adjacent to and near the ESEC site during construction and demolition. These include disturbance from noise, and lighting, as well as degradation of habitat from invasive weeds, stormwater runoff, or groundwater contamination and potential impacts from increased risk of predation. These impacts are discussed under “General Construction and Demolition Impacts”, below.

Construction and Demolition Impacts to Jurisdictional Wetlands and Waters

The proposed ESPFM project would not result in direct loss or fill of any jurisdictional wetlands or waters, as there are none present within the project area.

The proposed ESPFM site and the preferred offsite laydown area are adjacent to potentially jurisdictional wetlands. Indirect impacts to local surface waters, may result if construction contaminants, sediment, or untreated stormwater effluent from the proposed project area enter these sensitive areas. The project owner has committed to implementing Best Management Practices (BMPs) to control site runoff during construction activities in accordance with the project’s Stormwater Pollution Prevention Plan (SWPPP); this is included as a requirement of Condition of Certification SOIL&WATER-1. In addition, groundwater dewatering may be necessary during demolition (ESPLLC 2000a). In order to avoid significant impacts to onsite and offsite water resources or sensitive environmental receptors from pumping of contaminated groundwater staff proposed Condition of Certification SOIL&WATER-5. See the Soil and Water Resources section for a complete analysis of groundwater dewatering.

With implementation of these measures, indirect impacts to water quality and adjacent marine habitats would be less than significant.
General Construction and Demolition Impacts

Noise

Noise from demolition and construction activities could discourage sensitive wildlife from foraging and nesting near the proposed project area. Many bird species rely on vocalizations during the breeding season to attract a mate within their territory, and noise from construction could adversely affect nesting behavior and other activities.

Studies have shown that noise levels over 60 dBA can affect the behavior of certain bird species and could interfere with acoustic communication (e.g., Dooling and Popper 2007). Noise may affect birds in several ways, including reducing reproductive success; raising the level of stress hormones; interfering with sleep; cause permanent injury to the auditory system; and interfering with acoustic communication by masking important sounds, such as an approaching predator (Halfwerk et al 2011; Dooling 2006; Kight and Swaddle 2011). Many bird species rely on vocalizations during the breeding season to attract a mate within their territory. Francis et al. (2009) showed that noise alone reduced nesting species richness and led to a different composition of avian communities. Although some birds are able to shift their vocalizations to reduce the masking effects of noise, when shifts did not occur or were insignificant, masking could impair signaling and listening capabilities necessary for successful communication and survival (Barber et al. 2010).

Special-status species that may be affected by demolition and construction noise are those that potentially occur at the adjacent Dockweiler State Beach. This beach supports a variety of special-status birds including the western snowy plover (federally listed threatened), California least tern (federally and state-listed endangered), and California brown pelican (state fully protected). Other bird species observed foraging in the marine areas adjacent to the ESEC include sanderlings (*Calidris alba*) and black bellied plovers (*Pluvialis squatarola*).

There is USFWS designated critical habitat for western snowy plover, specifically Critical Habitat Subunit 45C, located approximately 800 feet northwest of the proposed location for the power blocks for the ESPFM (Units 9, 10, 11 and 12). California brown pelican and California least tern both forage in shallow coastal waters such as those located offshore of Dockweiler State Beach located approximately 500 feet from the proposed location for the power blocks for Units 9, 10, 11 and 12. Other protected areas are further than one mile from the project area and are not considered further in this noise impact analysis.

Ambient noise levels measured by the project owner were approximately 65 A-weighted decibels (dBA) at the northwest corner of the ESEC site adjacent to Units 5, 6, 7, and 8 and along the western ESEC site. This location is closest to Critical Habitat Subunit 45C for snowy plover and along the boundary adjacent to Dockweiler State Beach and the bike path (NRG 2014a). This demonstrates that ambient noise levels along the western boundary of the ESEC site and closet to sensitive biological receptors are already above 60 dBA. Ambient noise sources include surf and wind as well as noise resulting from human activities such as the operation of the existing ESEC facility, operational
noise from other industrial sites located adjacent to the ESEC site, roadway traffic, air traffic from LAX, and recreational activities.

The average construction and demolition noise level at 375 feet from the noise source is estimated to be 71 dBA and 59 dBA at 1,500 feet based on EPA estimates of typical construction equipment and operation noises (EPA 1971). The demolition noise would likely attenuate to approximately 64.5 dBA and therefore not be audible above ambient noise level which is approximately 65 dBA near western snowy plover critical habitat, approximately 800 feet from the center of the construction zone. However, construction and demolition noise may be audible above the ambient level up to the intertidal zone at Dockweiler State Beach where birds are known to forage without additional measures. For the ESPFM, steam blows are the loudest proposed construction activity. High pressure steam blows, if un-silenced, can typically produce noise levels as high as 129 dBA at a distance of 50 feet; see the Noise and Vibration section for a complete analysis of steam blows. Use of a quieter steam blow process, referred to as “low-pressure steam blow” results in noise levels that reach about 86 dBA at 50 feet. Steam blows for ESPFM would be performed in compliance with the existing Condition of Certification NOISE-4 which requires low-pressure steam blows. This noise source would not be audible above ambient near western snowy plover critical habitat as it would likely attenuate to approximately 61 dBA. It would attenuate to approximately 67 dBA at the intertidal zone at Dockweiler State Beach and may be audible where birds are known to forage; however steam blows would be intermittent and temporary.

Demolition and construction noise would occur over three years in close proximity to Dockweiler State Beach. As described above, average levels of demolition and construction noise would continuously be above 60 dBA along the western boundary of the ESEC site at Dockweiler State Beach; however ambient noise levels are currently 65 dBA at the western boundary of the ESEC site. It is expected that birds present in these areas have acclimated to elevated noise. Average construction and demolition could further increase noise levels to 71 dBA in these areas and would potentially result in the effects described above. In compliance with City of El Segundo noise control ordinances, Condition of Certification NOISE-6 restricts noise due to construction to 65 dBA at the ESEC site boundary except for short duration increases up to 85 dBA. Since ambient noise levels at the northwestern boundary of the ESEC site near snowy plover critical habitat are already at 65 dBA, the project owner will typically be restricted to no net increase in noise at this sensitive biological receptor. However, when noisy construction such as steam blows occurs, noise levels would be much higher and noise impacts to avian behavior could occur if located close to the noise source. Steam blows would be an intermittent noise that would be particularly startling and disruptive to wildlife. Resultant noise impacts to wildlife would be significant without mitigation. While noise levels from both demolition and construction as well as intermittent noise such steam blows would also likely attenuate and not be audible above ambient within western snowy plover critical habitat located approximately 800 feet from the powerblocks for the ESPFM the project owner should ensure this is the case. In addition, noise levels could be above ambient during steam blows along the intertidal zone at Dockweiler State Beach without implementation of additional measures.
To mitigate noise impacts to wildlife, construction and demolition noise must be reduced to ambient levels, or no more than 60 dBA in areas where the ambient noise levels are below 60 dBA, at the following noise-sensitive receptor: Pacific Coast Western Snowy Plover Critical Habitat Subunit CA 45C at Dockweiler State Beach. To achieve this, the project owner could implement a combination of the following noise-reduction measures:

- temporary and permanent noise barriers, such as sound walls;
- reduction of speed limits;
- prohibition of “jake-breaking;”
- replacement and updating of noisy equipment;
- moveable task noise barriers;
- queuing trucks to distribute idling noise;
- locating vehicle access points and loading and shipping facilities away from noise-sensitive receptors;
- reducing the number of noisy construction activities occurring simultaneously;
- placing noisy stationary construction equipment in acoustically engineered enclosures and/or relocating them away from noise-sensitive receptors; and/or
- reorienting and/or relocating construction equipment to minimize noise at noise-sensitive receptors, pursuant to Condition of Certification NOISE-6.

These are typical industry standard measures would be implemented as part of the requirements of NOISE-6 (Compliance with Noise Standards) that recommends the project design and implementation shall include appropriate noise mitigation measures. In addition, NOISE-8 (Construction/Demolition Schedule) would require that noise restrictions be implemented during any nighttime construction. In order to minimize noise impacts to breeding birds potentially nesting in ornamental trees surrounding the ESEC site, staff recommends Condition of Certification BIO-17. Condition BIO-17 would require a qualified biologist to monitor any bird nest locations exposed to excessive construction noise until the biologist determines that nestlings have fledged. Activities that might disturb nesting activities (e.g., excessive noise above ambient or 60 dBA in areas where the ambient noise levels are below 60 dBA), would be prohibited within the buffer zone until such a determination is made. Buffer zones could range from 250 feet to 500 feet based on the particular sensitivity of a species to disturbance and the location of the nest. Buffers smaller than 250 feet may be acceptable depending on the species. With implementation of BIO-17, impacts to nesting birds from proposed project construction noise would be less than significant. For a complete analysis of construction noise impacts, refer to the Noise and Vibration section of this PSA.

Lighting

ESPFM demolition and construction activities would typically occur during daylight hours, Monday through Saturday; however, during some construction periods and during the start-up phase of the project, construction activities would continue 24 hours a day and seven days a week. Bright lighting at night could disturb the nesting, foraging,
or mating activities of wildlife in the adjacent beaches and make wildlife more visible to predators. Night lighting could be disorienting to migratory birds and, if placed on tall structures, may increase the likelihood of collision. Although existing operations at the ESEC site and traffic on the Vista Del Mar provide an elevated ambient level of lighting to which local species have acclimated, potentially significant impacts to sensitive wildlife from increased night lighting could occur.

If night construction were required, the project owner expects that requirements from the 2010 Commission Decision for the 2007 dry-cooling amendment would be applicable as included in VIS-8 including requirements to use task-specific lighting to the extent practicable, shield and direct lighting onsite, and use switched lighting where possible (NRG 2012). These measures are included in Condition of Certification VIS-8 (refer to the Visual Resources section of the Petition to Amend (PTA) (NRG 2012). With implementation of these measures, impacts to wildlife from construction night lighting would be less than significant.

Stormwater Runoff

There are no creeks, drainages, wetlands, or other aquatic resources on the project site, offsite laydown area, or offsite parking areas. However, beaches and marine habitat adjacent to the proposed ESEC site could be impacted from stormwater runoff during construction and demolition if appropriate measures are not taken to prevent water from draining off site. Toxic materials washed from the site into adjacent beaches or marine areas can injure or kill wildlife and vegetation, and degrade habitat. During construction and demolition, the existing stormwater collection system would collect process stormwater from the project site and route it to the oil/water separator before discharge to the Pacific Ocean via an existing NPDES permitted outfall.

Staff is recommending Condition of Certification SOIL&WATER-1, in which the project owner would be required to develop and implement a site-specific construction SWPPP. With implementation of these measures and the project owner’s commitment to the impact minimization measures listed above, project impacts to biological resources from stormwater runoff would be less than significant.

Dust Suppression

Due to the long industrial history of the ESEC site, implementation of the ESPFM project would not require much additional soil disturbance for the new facilities. However, some small losses in topsoil are expected during construction and operation from wind and water erosion. During construction dust suppression would require application of potable water to control wind-borne transport of dust. Application of potable water for dust control could result in the ponding of water on site which may attract crows, ravens, and gulls and other avian species to the site for the water scavenging opportunities. Crows, ravens, and gulls are all known predators of California least tern and western snowy plover chicks, both federally listed species which potentially nest in the vicinity at Dockweiler State Beach. Impacts to California least tern and western snowy plover from dust abatement could be potentially significant without mitigation. Condition of Certification BIO-16 proposes using the minimal amount of water needed for dust abatement, food-related waste management, and worker
environmental awareness training. With implementation of Bio-17, impacts to nesting birds would be less than significant.

OPERATION IMPACTS AND MITIGATION

Noise

The proposed ESPFM is on an industrial site and is near other industrial land uses and Vista Del Mar. However, it is also located adjacent to sensitive biological resources including beaches and marine areas with the potential to support threatened and endangered birds. The existing El Segundo EnergyCenter, urban development, and roadways in the area are existing sources of noise.

Excessive noise masks auditory cues from other birds, including potential mates, and approaching predators. Chronic exposure to excessive noise has been demonstrated to negatively affect foraging behavior, reproductive success, population density, and community structure (Habib et al. 2007; Bayne et al. 2008; Barber et al. 2010).

Based on the project owner’s Post-Construction Operation Sound Level Study for Condition of Certification NOISE-6 for the existing ESEC site, ambient noise levels adjacent to the project site are estimated to currently be approximately 65 dBA. The proposed Condition of Certification NOISE-6 for the ESPFM requires implementation of plant noise mitigation based on the results of noise measurements at short term monitoring stations (ST) ST-1 or ST-12. The short term monitoring station ST-1 is located at the northwest corner of the existing ESEC site adjacent to the western snowy plover Critical Habitat Unit 45C and the bike path. If noise measurements for the ESPFM indicate that the ambient noise level has increased by more than 5 decibels due to facility operation, as compared with the baseline noise measurements in 2000, which was determined to be approximately 60.4 dBA, the project owner will implement mitigation measures to reduce the noise at those locations to comply with the Municipal Code of the City of El Segundo. Therefore, noise at ST-1 may not increase to more than 65.4 dBA and it would likely attenuate to less than 60 dBA at Critical Habitat Unit 45C. Because the operational noise level for the ESPFM is required to be similar to ambient noise level for the ESEC site, operational noise impacts to western snowy plover and other wildlife at Dockweiler State Beach would not occur as these species are likely acclimated to the current ambient noise level. With implementation of this Condition of Certification NOISE-6 (Compliance with Noise Standards), this impact would be less than significant. Refer to the NOISE section of PSA for the full text of this condition.

Lighting

The existing El Segundo Energy Center (ESEC), other industrials sites located near the proposed ESPFM and vehicles traveling on Vista Del Mar provide an elevated ambient level of light to which local wildlife have adapted. However, excessively bright lighting at night could disturb the nesting, foraging, or mating activities of wildlife at the adjacent beaches and make wildlife more visible to predators. Also, night lighting could be disorienting to migratory birds and, if placed on tall structures, may increase the likelihood of collision, as discussed below.
To minimize backscatter of light to the sky and ensure that lighting does not obtrude beyond the project site, staff recommends Condition of Certification VIS-6 (refer to the Visual Resources section of PSA for the full text of this condition). VIS-6 also would require that all lighting be of minimum necessary brightness consistent with worker safety and wherever feasible and safe be kept off when not in use, including administration office interior lighting. In addition, staff has proposed BIO-16 which requires that FAA visibility lighting would employ only strobed, strobe-like or blinking incandescent lights, preferably with all lights illuminating simultaneously. This type of lighting is less attractive to night-migrating birds and would minimize collisions with project features. With implementation of Conditions of Certification VIS-6 (Compliance with Noise Standards) and BIO-16 (General Impact Avoidance and Minimization Measures), impacts from operation lighting would be less than significant.

Avian Collision and Electrocution

The adjacent beaches and marine areas provide habitat for resident and migratory birds because of foraging and breeding opportunities and proximity to the Pacific Ocean. This concentration of birds creates the potential for direct impacts through collision or electrocution with proposed ESEC facilities and appurtenant structures including exhaust stacks. No new transmission lines and transmission support structures are proposed for the ESPFM.

Birds can collide with transmission lines, exhaust stacks, and other structures associated with the proposed project, causing injury or mortality. Bird collisions with power lines and structures generally occur when a power line or other structure transects a daily flight path used by a concentration of birds and these birds are traveling at reduced altitudes and encounter tall structures in their path (Brown 1993). Collision rates generally increase in low light conditions, during inclement weather, during strong winds, and during panic flushes when birds are startled by a disturbance or are fleeing danger. Collisions are more probable near wetlands, within valleys that are bisected by power lines, and within narrow passes where power lines run perpendicular to flight paths (APLIC 2012).

Although collision may occur, it is not likely that bird mortality due to collision with ESEC facilities would significantly reduce the population numbers of any bird species or that the reduction in numbers within any population would impair its function within the local ecosystem. The proposed ESPFM exhaust stacks would be much shorter than 350 feet (the height above which is considered dangerous to migrating birds), and shorter than the existing built environment (e.g., Units 5 through 8 and Units 3 and 4 (to be demolished) exhaust stacks). The reduction in height of the exhaust stacks would result in a lower risk of bird collision with this project feature compared with existing conditions. See the Visual Resources section for a complete discussion of stack heights.

The ESEC amended project would connect to the regional electrical grid using the existing SCE 230-kV switchyard located on a parcel owned by SCE within the existing El Segundo Generating Station site. No new offsite or onsite transmission lines are
proposed. Therefore no new direct and indirect impacts to birds from collision with structures are expected to occur from the ESPFM.

Stormwater Runoff

Stormwater runoff from open areas on the proposed ESEC site during operation would be collected in yard drains that will route stormwater to an oil/water separator prior to discharge into the Pacific Ocean via Outfall 002. Stormwater discharge would require coverage under this site’s existing discharge permit, NPDES CA0001147 Order No. 00-08. For more information on water quality impacts, please see the Soil and Water Resources section of the PSA.

There are no creeks, drainages, wetlands, or other aquatic resources on site. Adjacent beaches and associated marine habitat could be impacted from stormwater runoff if appropriate measures are not taken to prevent water from draining off site. Toxic materials washed from the site into adjacent sensitive areas can injure or kill wildlife and vegetation, and degrade habitat. Staff’s proposed Condition of Certification SOIL&WATER-3 which would require the project owner to continue coverage under NPDES CA0001147 Order No. 00-084 through project operation, would reduce project impacts from stormwater to less than significant. In addition, staff’s proposed Condition of Certification BIO-16 (Impact Avoidance and Minimization Measures) would require BMPs from the project SWPPP to be implemented during all phases of the proposed project to control stormwater runoff. BMPs include installation of silt fencing, berms, and hay bales to control runoff from the project area. Sediment barriers such as straw bales or silt fences would be installed to slow runoff and trap sediment where necessary. Only certified weed free materials will be used for erosion control. With implementation of these measures and BMPs and associated monitoring activities included in NPDES CA0001147 Order No. 00-084, impacts to water quality and associated impact to biological resources from operation of the proposed ESEC would be less than significant.

Air Emissions – Nitrogen Deposition

Nitrogen deposition is the input of nitrogen oxide (NO\textsubscript{x}) and ammonia (NH\textsubscript{3}) derived pollutants, primarily nitric acid (HNO\textsubscript{3}), from the atmosphere to the biosphere. Nitrogen deposition sources are primarily vehicle and industrial emissions, including power plants. Appended to the end of this section is Biological Resources – Appendix 1 Nitrogen Deposition Analysis, which Air Quality staff has provided to give a better understanding of the nitrogen deposition analysis and modeling used for the proposed ESEC. Based on the information provided in this document, biological resources staff have determined it appropriate to conduct a qualitative analysis of potential nitrogen deposition impacts to biological resources. The reasons for the qualitative approach are based on the information provided in the Biological Resources – Appendix 1 which discusses the conservative assumptions used to model nitrogen deposition (AERMOD), the use of baseline data which is out of date due to evidence of decreasing nitrogen emissions inventory, and South Coast Air Quality Management District implemented RECLAIM Trading Credits.
Mechanisms by which nitrogen deposition can lead to impacts on sensitive species include direct toxicity, changes in species composition among native plants, and enhancement of invasive species (Fenn et al. 2003; Weiss 2006). The increased dominance and growth of invasive annual grasses is especially prevalent in low-biomass vegetation communities that are naturally nitrogen-limited; such vegetation communities that occur in the project vicinity include intertidal salt marshes, intertidal wetlands, freshwater marsh/wetlands, coastal dunes, and coastal dune scrub (Weiss 2006).

Designated critical habitat for western snowy plover and USFWS designated recovery units for the El Segundo blue butterfly occur in the vicinity of the ESPFM (see Biological Resources Figure 1 for the location of designated critical habitat). In addition, USFWS has identified areas within the USFWS recovery units for El Segundo blue butterfly as either occupied, potentially restored, and restored. Biological Resources Figure 2 shows these areas in the project vicinity. Protected areas and preserves also occur in the region, including the Ballona Creek Wetlands Preserve and a California least tern breeding colony. These protected areas support state and federally listed species including the Belding’s savannah sparrow (state-listed endangered) and California least tern (federally and state-listed endangered). Biological Resources Figure 1 shows protected and preserved areas in the project vicinity.

Nitrogen deposition, primarily from industrial and vehicle emissions, artificially fertilizes the soil and creates better conditions for non-native species to persist and to ultimately displace the native species, resulting in type conversion (conversion of one habitat type to another). Excessive nitrogen deposition is strongly correlated with the growth of non-native vegetation (Huenneke et al. 1990; Inouye and Tilman 1995; Weiss 1999; Bowman and Steltzer 1998; Brooks 2003) and field studies have found that nitrogen fertilization in sites with elevated nitrogen deposition will enhance grass invasion (Rillig et al. 1998; Brooks 2003). Several recent studies have attempted to quantify the critical load or rate at which nitrogen deposition begins to result in adverse effects to nitrogen-sensitive ecosystems. Studies in the United Kingdom suggest that the critical load ranges from 10 to 20 kilograms of nitrogen per hectare per year (kg/ha/yr) for mobile and fixed sand dune ecosystems (Jones et al. 2004; Plassmann et al. 2009). Fenn et. al. (2003) counter that estimated nitrogen deposition thresholds for ecological effects for other geographic regions are frequently not applicable to the western United States. Research conducted in the South San Francisco Bay area on grasslands in nutrient-poor serpentinic soils indicates that intensified annual grass invasions can occur in areas with nitrogen deposition levels of 11 to 20 kg/ha/yr, with relatively limited invasions at levels of 4 to 5 kg/ha/yr (Weiss 2006). Critical loads in habitats affected by ESEC emissions range from 10 to more than 400 kg/ha/yr (Pardo et al. 2011; Bobbink et al. 2002).

An Energy Commission Public Interest Energy Research study modeled total nitrogen deposition throughout California (Tonneson et. al. 2007); results showed that in 2002 most of California experienced elevated rates of annual nitrogen deposition, especially near urban areas. In 2002, baseline nitrogen deposition rates in protected areas in the region ranged from 1.65 to over 15 kilograms of nitrogen per hectare per year (kg/ha/yr.
Baseline nitrogen deposition rates in critical habitat and recovery units in the region were estimated to be as follows (GIS data from Tonneson et. al. 2007).

- Western snowy plover critical habitat: 6.19 to 23.35 kg/ha/yr
- El Segundo blue butterfly recovery units: 2.21 to 23.35 kg/ha/yr

However, a more recent review of the nitrogen emission inventory for California and the South Coast Air Basin by Air Quality staff has determined that emissions from both mobile and stationary sources has decreased more than 50 percent from 2002 to 2014 for oxides of nitrogen and ammonia combined and these trends are continuing downward (see Biological Resources – Appendix 1).

In response to data requests 57 through 60, the project owner declined to conduct modeling of nitrogen deposition impacts for the ESPFM but provided Air Quality staff with the necessary files to conduct an independent analysis of potential nitrogen impacts using American Meteorological Society/Environmental Protection Agency Regulatory Model known as AERMOD (Refer to Biological Resources – Appendix 1). Staff modeled the baseline predicted ESEC nitrogen deposition for the previously approved facility (the remaining portion of unit 3, unit 4, and units 5 through 8) using AERMOD. Staff found the nitrogen deposition impacts from the ESPFM units in addition to the ESEC units would be lower than those from the units remaining after the 2010 Commission Decision (based on the remaining megawatts to be replaced, more details are discussed in the Air Quality section). Air Quality staff determined that while AERMOD is the best available model compared to other available models such as CALPUFF, it is a conservative model that overestimates the predicted ESPFM nitrogen deposition impacts. Staff has provided additional analysis regarding the conservative nature of AERMOD impact analysis as well as other assumptions which further overestimate impacts in the nitrogen deposition analysis in Biological Resources – Appendix 1.

Staff considered protected areas and designated critical habitat within the 6-mile radius to be potentially sensitive to nitrogen deposition from the ESPFM. It has been staff’s past experience that by the time the plume has traveled this distance, in-plume concentrations become indistinguishable from background concentrations. However, as discussed in Biological Resources - Appendix 1, it is unlikely that there would be sufficient time within the 6 mile radius for the emitted nitrogen (oxides of nitrogen (NOx) and ammonia (NH₃)) to convert to atmospherically derived nitrogen (ADN) (nitrogen coming from air and it is readily deposable to ground).

In determining whether a sensitive habitat occurs within 6-miles of the ESPFM project and whether there would be significant impacts to these habitats from the ESPFM, staff relied on critical load ranges for habitats likely to be impacted by potential nitrogen impacts. Where a range for critical load was reported, the lowest value of the range was used as a conservative approach. Staff examined the GIS-data of baseline nitrogen deposition from the Energy Commission’s 2007 study (Tonneson et. al. 2007); see Biological Resources Figures 3. Since the nitrogen deposition plume extends 6 miles east of the project, it encompasses several different baseline levels of nitrogen.
deposition as illustrated in Biological Resources Figures 3. The ESEC’s nitrogen deposition levels also vary across listed species habitat areas. As discussed above, a recent review of available data the nitrogen emissions inventory and background (baseline) nitrogen deposition level has likely decreased since 2002 by more than 50 percent (Refer to Biological Resources – Appendix 1 for additional details). In order to determine if critical load was exceeded, total predicted nitrogen deposition was calculated by adding the background data, based on Tonneson et. al. 2007 to the predicted ESEC nitrogen deposition for the future scenario, the proposed ESPFM (Units 9 through 12), and for the existing ESEC project (Units 5 through 8).

Based on a review of the baseline information and the results of modeling conducted by Air Quality staff, vegetation-specific critical loads for nitrogen deposition would not be exceeded in any locations with salt marsh habitat in the ESEC and ESPFM project vicinity, where the critical load ranges from 63 to 400 kg/ha/yr. This includes protected areas for the state and federally listed Belding’s savannah sparrow. In addition, the critical load for coastal dunes would not be exceeded within most areas of critical habitat for western snowy plovers in the ESEC and ESPFM project vicinity. The critical load for coastal dunes ranges from 10 to 20 kg/ha/yr. Where the critical load for coastal dunes is exceeded within the area near Marin del Rey where a California least tern colony is established and would not be exceeded most of the critical habitat areas for western snowy plover within the ESPFM vicinity it was determined that there would be no significant impacts as, these areas are not subject to weed invasions due to the ongoing anthropomorphic use and regular maintenance of the beaches (pers com. Christine Medak). Therefore, nitrogen deposition impacts to western snowy plover habitat will not be discussed further.

Vegetation-specific critical loads for nitrogen deposition were exceeded in limited areas of occupied and potential restored habitat for El Segundo blue butterfly south and east of the ESEC project region based on the 2002 data; however, there has been a decreasing nitrogen emission inventory trend (an overall reduction of over 50 percent from 2002 to 2014), refer to (Refer to Biological Resources – Appendix 1 for additional details). Because of these downward trends staff assumes that while vegetation-specific critical loads for nitrogen deposition in these areas may have previously been exceeded these areas are currently likely to be within the lower range of critical load for coastal dunes and most areas may be lower than critical load. In addition, as discussed further in Biological Resources – Appendix 1, implementation of the Regional Clean Air Incentives Market or RECLAIM by the South Coast Air Quality Management District (SCAQMD) requires ESEC and other similar projects to purchase RECLAIM Trading Credits (RTCs) to offset their annual NOx emission increase in a 1-to-1 offset ratio. As a result, any new stationary source like ESPFM would not result in a net increase in NOx emissions basin wide. Therefore baseline nitrogen from NOx would not change due to NOx emissions from ESPFM.

Although non-native plant invasions have impacted the coastal dune habitat in the region, the invasions are primarily due to past anthropomorphic disturbance. Native species including beach sand verbena (Abronia umbellata) and secliff buckwheat were common on the local beaches and dunes in the range of El Segundo blue butterfly until iceplant (Carpobrotus edulis) was planted extensively, including historical planting of
non-native iceplant for erosion control by both Caltrans and the California Conservation Corps. Non-native iceplant reproduces both vegetatively and by seed and flowers almost year round throughout its range and seed production is high, with hundreds of seeds produced in each fruit (Cal-IPC 2013). It is highly invasive where introduced and likely would be established regardless of any additional nitrogen deposition as it is established throughout much of the coastal dunes within El Segundo blue butterfly’s range. In addition, nitrogen deposition impacts are primarily associated with invasive exotic annual grasses impacts on annual forbs (Weiss 2006). The host plant for the El Segundo blue butterfly, the seacliff buckwheat, is a perennial shrub and once established would likely not be crowded out by any non-native grasses that may also be present due to its height and robust growth form. Non-native grasses will likely decline as the native shrubs become established (UWG 2004). The primary concern regarding native plants, including seacliff buckwheat, in recently restored areas such as the Beach Bluffs Restoration in the Torrance Recovery Unit, is competition from non-native perennials including iceplant and Bermuda grass (UWG 2004).

Based on the numerous factors discussed above, including the conservative nature of the nitrogen deposition modeling, reductions in background nitrogen emissions and the continuing decreasing trend in nitrogen emissions inventory, reductions in emissions for the future operating scenario of the ESEC site, use of RECLAIM offsets, and the limited area within El Segundo blue butterfly’s available habitat where the low end of the critical load may be slightly exceeded, and nature of current threats to the El Segundo blue butterfly, it is anticipated that nitrogen deposition effects on the El Segundo blue butterfly and its habitat within the plume are negligible. Since operation of the proposed project would not result in significant indirect impacts to state or federally-listed species from nitrogen deposition, no new conditions of certification are proposed. It is staff’s opinion that take of listed species would not result, but the ultimate determination of federal ESA compliance will be made by the United States Environmental Protection Agency (USEPA) in coordination with USFWS upon initiation of ESA consultation and issuance a Biological Opinion, if required.

Although the federal endangered El Segundo blue butterfly (Euphilotes battoides allyni) would not be impacted by the ESPFM, it could benefit from vegetation restoration efforts planned by the ESPFM and required as part of VIS-2. Visual Resources Condition of Certification VIS-2 requires that a preference be given to native, non-invasive and drought tolerant species in the landscaping plan. As part of the ESEC amendment in 2007, Condition of Certification BIO-9 required removal of iceplant and planting of seacliff buckwheat within the ESEC site. Eradication of iceplant infestation from the numerous areas within the ESEC site by restoring and planting native species, including seacliff buckwheat (Erigonum parviflorum) would benefit the El Segundo blue butterfly. This includes areas along the existing access road that is planned to be rerouted and near the guard station. As previously discussed the butterfly is known to occur approximately 1/2 mile from the ESEC site at the Chevron El Segundo Blue Butterfly Preserve. Since the butterfly is known to disperse to sites that are restored with its native host plant, such as at Torrance Beach and Ballona Creek Wetlands Preserve, it is possible butterflies inhabiting the Chevron El Segundo Blue Butterfly Preserve could take advantage of this new food source and expand their distribution. Staff also recommends including Biological Resources Condition of Certification BIO-9, which
requires implementation of iceplant eradication and native plant restoration at the ESEC site. Iceplant removal and management of future infestations would enhance the success of the native planting and restore habitat for the El Segundo blue butterfly.

CUMULATIVE EFFECTS

Cumulative impacts are those that result from the incremental impacts of a proposed action considered with other past, present, and reasonably foreseeable future actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over time.

A project may result in a significant adverse cumulative impact if its effects are cumulatively considerable. The cumulative scenario for direct and indirect biological resources includes past, present, and reasonably foreseeable future projects with the potentially to contribute to potentially significant impacts within a one-mile radius of the ESEC, and the protected areas and USFWS recovery units contained therein. Beyond one-mile it is unlikely that local biological resources would be impacted by noise and other project-related impacts. In addition, beyond the marine and beach areas and a few scattered preserves much of the area outside of one-mile from the ESEC is developed. Based on a review of the cumulative list of projects within one mile of the ESEC site, there is currently one project near the ESEC site that may impact local biological resources, especially those in and near the Dockweiler State Beach. The Scattergood Unit 3 is Repowering Project is currently underway to construct four new power generating units at the existing Generating Station located less than one mile from ESEC site and located on Vista Del Mar across from Dockweiler State Beach and western snowy plover critical habitat.

As with the El Segundo Power Facility Modification (ESPFM) project, the Scattergood Unit 3 is Repowering Project will not be likely to have direct impacts, such as impacts from construction noise and other related activities, to special-status species or other biological resources, as special-status species are unlikely to occur on the industrial brownfield site. Additionally, construction of the proposed project and the Scattergood project is not likely to overlap, as the Scattergood Unit 3 is Repowering Project is expected to be complete in December 2015 and the ESPFM will not commence demolition until the first half of 2016 therefore cumulative indirect impacts to sensitive biological resources and special-status species would not likely occur. Once operational, the ESEC would not result in a substantial change from baseline conditions for biological resources. Therefore, the ESEC would not contribute considerably to cumulative impacts to biological resources.

Nitrogen Deposition

The cumulative scenario for nitrogen deposition impacts to biological resources includes past, present, and reasonably foreseeable future projects with emissions that contribute to nitrogen deposition in a six-mile radius of the ESEC, and the protected areas and USFWS recovery units contained therein. These projects include the Scattergood Generating Station, the Redondo Beach Energy Project, and the LAX Central Utility Plant Replacement.
The emissions from the proposed ESEC project would not be the only source of nitrogen deposition in protected areas and critical habitat in the region. There are existing industrial stationary sources as well as mobile sources (i.e., transportation) in the area that collectively contribute to elevated local and regional nitrogen deposition. Natural habitats in the project vicinity support populations of the federally listed El Segundo blue butterfly, and the area contains USFWS-designated recovery units for this species. Additional listed species in the region include snowy plover, California least tern, and Belding’s savannah sparrow. A potential threat to these species includes nonnative weed invasion and the resultant cascading effects (e.g., competition, vegetation type conversion). As described above, nonnative weed invasion may be facilitated by nitrogen deposition, which is a result of the cumulative emissions of many sources within the region. Cumulative nitrogen deposition is within the range of the critical load for coastal dunes in western snowy plover critical habitat and recovery units for El Segundo blue butterfly. However, for the reasons discussed under indirect impacts, ESEC would not contribute cumulatively to impacts from nitrogen deposition in these areas.

The cumulative nitrogen deposition scenario includes baseline (background) nitrogen deposition levels plus modeled levels from applicable regional sources. As discussed under indirect impacts above, impacts to snowy plover and California least tern from nitrogen deposition would not occur as habitats in the ESEC project vicinity are not subject to weed invasions. In addition, impacts to Belding’s savannah sparrow from nitrogen deposition would not occur as habitat for this species in the ESEC project vicinity is well below the critical load. It is anticipated that nitrogen deposition effects on the Recovery Units for El Segundo blue butterfly within the ESEC plume are negligible. Therefore, cumulative impacts to El Segundo blue butterfly and recovery units from ESEC nitrogen deposition may occur but the incremental effects of the project are not cumulatively considerable. Since operation of the proposed project would not result in cumulatively considerable impacts to federally-listed species from ESEC nitrogen deposition, no new conditions of certification are proposed. It is staff’s opinion that take of listed species would not result, but the ultimate determination of federal ESA compliance will be made by the United States Environmental Protection Agency (USEPA) in coordination with USFWS upon initiation of ESA consultation and issuance a Biological Opinion, if required.

FACILITY CLOSURE

When the ESEC is closed in the future, whether planned or unexpected, it must be done so that closure activities protect the environment and public health and safety. A closure plan would be prepared by the project owner prior to any planned closure. To address unanticipated facility closure, an "on-site contingency plan" would be developed by the project owner and approved by the Energy Commission compliance project manager (CPM). Facility closure requirements are discussed in more detail in the General Conditions section of PSA. Facility closure mitigation measures would also be included in the Biological Resources Mitigation Implementation and Monitoring Plan (BRMIMP) prepared by the project owner and described in staff’s proposed Condition of Certification BIO-9.
Upon decommissioning and permanent facility closure, reclamation would be necessary to prevent adverse effects such as contamination from hazardous substances, erosion, dust, invasion and spread of weeds, and hazards to wildlife from abandoned project infrastructure. Staff concludes that these potential effects of facility closure and decommissioning would be a significant impact absent mitigation. Decommissioning activities are likely to cause similar indirect impacts to adjacent sensitive biological resources as described above for the construction and demolition phases of the proposed project.

To ensure that public health and safety and the environment are protected during decommissioning, the project owner committed to developing a decommissioning plan that would be submitted to the Energy Commission for approval prior to decommissioning (NRG 2012a). If possible, unused chemicals would be sold back to the suppliers or other purchasers or users. All equipment containing chemicals would be drained and shut down to ensure public health and safety and to protect the environment. All nonhazardous wastes would be collected and disposed of in appropriate landfills or waste collection facilities. All hazardous wastes would be disposed of according to all applicable LORS.

As described above, decommissioning and site closure would likely result in similar types of impacts to biological resources as construction and demolition. It is anticipated that conditions of certification similar to BIO-6 through BIO-10 and BIO-15 through BIO-17 would minimize or avoid these impacts to biological resources, and impacts to biological resources would be less than significant.

COMPLIANCE WITH LORS

The proposed project must comply with LORS that address state and federally listed species, as well as other sensitive biological resources. Applicable LORS are described in Biological Resources Table 1.

The proposed project would comply with all LORS pertaining to biological resources. Compliance with federal Migratory Bird Treaty Act as well as multiple state LORS, related to native birds including the California Endangered Species Act and Fish and Game Code 3511, 4700, 5050, 5515, 3503, 3503.5, and 3513 would be achieved through implementation of Conditions of Certification NOISE-4, NOISE-6, VIS-6, VIS-7, VIS-8, BIO-16, and BIO-17. The proposed project would not impact any rare, threatened, or endangered plants or significant natural areas so compliance with Fish and Game Code 1930 and following as well as 1900 and following would be achieved. It is staff’s opinion that take of listed species would not result, but the ultimate determination of federal ESA compliance will be made by the United States Environmental Protection Agency (USEPA) in coordination with USFWS upon initiation of ESA consultation and issuance a Biological Opinion, if required. The project owner would be in compliance with the El Segundo General Plan Conservation Element as the project would not result in any significant impacts to El Segundo blue butterfly and would with vegetation restoration activities proposed as part of VIS-2 and BIO-9.
The proposed project would not result in loss or fill of wetlands or waters of the U.S or state, as there are none present on site. Indirect impacts resulting from degradation of adjacent coastal waters from construction runoff or operational discharges would be less than significant with implementation of Conditions of Certification SOIL&WATER-1, SOIL&WATER-3, SOIL&WATER-5. These conditions would ensure compliance with the federal Clean Water Act, California Fish and Game Code 1600 et seq., California Coastal Act, and the Porter Cologne Water Quality Act by requiring control of runoff from the project area and operational discharges to be treated in accordance with NPDES permit requirements. With implementation of these conditions of certification the proposed project would also be in compliance with the California Coastal Act.

NOTEWORTHY PUBLIC BENEFITS

The ESEC would not use ocean water for cooling, as is currently in use for the El Segundo Generating Station, Units 3 and 4. Therefore, the ESEC would eliminate the potential for entrainment of aquatic species. In addition, the ESEC would eliminate ocean discharge of industrial and sanitary wastewater. The elimination in outfall discharge into the Pacific Ocean and the elimination of impingement and entrainment of marine organisms is a noteworthy environmental public benefit.

PUBLIC AND AGENCY COMMENTS

During a workshop held on October 1, 2013 an intervener voiced concerns regarding potential noise and vibration related impacts from the El Segundo Power Facility Modification (ESPFM) project on marine wildlife. Staff reviewed the ESPFM amendment project description and determined there are no in-water or other construction-related noises that would likely disturb marine mammals (whales, pinnipeds, or dolphins). Construction activities will be performed onshore, and there will be no pile-driving or underwater noise-making activities therefore the proposed amended project would not result in impacts to marine mammals.

CONCLUSIONS

The project site and offsite laydown area are industrial brownfield sites with operating power plants, and vegetation is limited to weedy species and landscaping. Rare plants and special-status wildlife are not expected to occur onsite; however, nearby beaches and other natural areas support special-status birds including the western snowy plover (federally listed threatened), California least tern (federally and state-listed endangered), and California brown pelican (state fully protected). Given the proximity of the proposed project to the aforementioned biological resources, construction and operation would result in the direct and indirect effects presented in Biological Resources Table 3.
Biological Resources Table 3
Summary of Impacts to Biological Resources from the ESEC

<table>
<thead>
<tr>
<th>Impact</th>
<th>Condition of Certification</th>
<th>Significance Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTRUCTION IMPACTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native vegetation: removal of native vegetation</td>
<td>None</td>
<td>Less than significant</td>
</tr>
</tbody>
</table>
| Common wildlife: disturbance and injury or mortality to common wildlife, including nesting birds | • BIO-16 avoids wildlife pitfalls
• BIO-17 requires pre-construction nest surveys and impact avoidance | Less than significant with implementation of conditions of certification |
| Special-status wildlife: disturbance from noise and lighting, stormwater runoff, or groundwater contamination | • BIO-16 controls invasive weeds;
• BIO-17 requires pre-construction nest surveys and impact avoidance and measures to limit impacts from noise;
• SOIL&WATER-1 requires preparation of a SWPPP to control runoff and prevent contamination;
• VIS-8 minimizes offsite lighting | Less than significant with implementation of conditions of certification |
| Jurisdictional wetlands and waters: degradation from runoff of sediment or toxic substances from the project site | • SOIL&WATER-1 requires preparation of a SWPPP to control runoff and prevent contamination;
• SOIL&WATER-3 requires compliance with NPDES permit for discharge of waste and stormwater discharge to the Pacific Ocean
• SOIL&WATER-5 requires permit to discharge contaminated groundwater and compliance with permit conditions; | Less than significant with implementation of condition of certification |
| Noise: disturbance resulting in mortality or decreased productivity of special-status birds | • NOISE-4 requires low pressure steams blows
• NOISE-6 requires noise | Less than significant with condition of certification |
<table>
<thead>
<tr>
<th>Impact</th>
<th>Condition of Certification</th>
<th>Significance Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting: disturbance resulting in altered behavior or increased predation</td>
<td>• VIS-8 minimizes offsite lighting</td>
<td>Less than significant with condition of certification</td>
</tr>
<tr>
<td>Stormwater runoff: degradation of adjacent habitat</td>
<td>• BIO-16 minimizes runoff; • SOIL&WATER-1 requires preparation of a SWPPP to control runoff</td>
<td>Less than significant with conditions of certification</td>
</tr>
</tbody>
</table>

OPERATION IMPACTS

<table>
<thead>
<tr>
<th>Impact</th>
<th>Condition of Certification</th>
<th>Significance Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise: disturbance resulting in mortality or decreased productivity of special-status birds and rehabilitating wildlife</td>
<td>• NOISE-6 requires noise mitigation measures to limit increase in noise levels</td>
<td>At beaches and marine areas: less than significant with implementation of condition of certification</td>
</tr>
<tr>
<td>Lighting: disturbance resulting in altered behavior or increased predation</td>
<td>• VIS-6 and VIS-7 minimizes offsite lighting</td>
<td>Less than significant with implementation of condition of certification</td>
</tr>
<tr>
<td>Stormwater runoff: degradation of adjacent habitat</td>
<td>• BIO-16 minimizes runoff; • SOIL&WATER-4 requires compliance with NPDES permit requirements for discharge</td>
<td>Less than significant with implementation of condition of certification</td>
</tr>
<tr>
<td>Nitrogen deposition: degradation of habitat by enhancing invasive weeds</td>
<td>None</td>
<td>Less than significant</td>
</tr>
</tbody>
</table>

OVERALL CONCLUSION

Staff concludes that with implementation of proposed conditions of certification, compliance with LORS would be achieved and all direct, indirect, and cumulative impacts would be avoided, minimized, or mitigated to less than significant levels.
PROPOSED CONDITIONS OF CERTIFICATION

Following are the existing conditions of certification applicable to El Segundo Power Facility Modification (ESPFM) project. For completeness staff shows the conditions of certification that were deleted at the time of the 2007 amendment. Based on project changes, new conditions of certification are added and existing conditions of certification have been modified. Staff has proposed modifications to the conditions of certification as shown below and also has incorporated edits recommended by the project owner. Staff had deleted BIO-11 and BIO-13 as these conditions of certification no longer apply to the project as no permits from US Army Corps of Engineers Section 404 Permit or Los Angeles Regional Water Quality Control Board Section 401 State Clean Water Act Permit would be required for the ESPFM amendment. The added text is identified as bold and underlined, and the deleted text is identified as strikethrough.

BIO-1 Deleted at the time of the 2007 Amendment
BIO-2 Deleted at the time of the 2007 Amendment
BIO-3 Deleted at the time of the 2007 Amendment
BIO-4 Deleted at the time of the 2007 Amendment
BIO-5 Deleted at the time of the 2007 Amendment

DESIGNATED BIOLOGIST

BIO-6 The project owner shall submit the resume, including contact information, of the proposed Designated Biologist to the CPM for approval.

The Designated Biologist must meet the following minimum qualifications:

1. Bachelor’s Degree in biological sciences, zoology, botany, ecology, or a closely related field;
2. Three years of experience in field biology or current certification of a of a nationally recognized biological society, such as The Ecological society of America or The Wildlife Society; and
3. At least one year of field experience with biological resources found in or near the project area.

In lieu of the above requirements, the resume shall demonstrate to the satisfaction of the CPM, in consultation with CDFW and USFWS, that the proposed Designated Biologist or alternate has the appropriate training and background to effectively implement the conditions of certification.

Verification: The project owner shall submit the specified information at least 60 days prior to the start of any site mobilization related to the beach front or the beach delivery.
system. These site and related facility activities shall not commence until an approved Designated Biologist is available to be on site.

The Designated Biologist must meet the following minimum qualifications:

- Bachelor's Degree in biological sciences, zoology, botany, ecology, or a closely related field;
- Three years of experience in field biology or current certification of a nationally recognized biological society, such as The Ecological society of America or The Wildlife Society; and
- At least one year of field experience with biological resources found in or near the project area.

If a Designated Biologist needs to be replaced, then the specified information of the proposed replacement must be submitted to the CPM at least ten working days prior to the termination or release of the preceding Designated Biologist. In an emergency, the project owner shall immediately notify the CPM to discuss the qualifications and approval of a short-term replacement while a permanent Designated Biologist is proposed to the CPM for consideration.

DESIGNATED BIOLOGIST DUTIES

BIO-7 The Designated Biologist shall perform the following during any beach front or beach delivery system site mobilization, ground disturbance, grading, construction, operation, and closure activities:

1. Advise the project owner's Construction/Operation Manager, supervising construction and operations engineer on the implementation of the biological resources Conditions of Certification;

2. Be available to supervise or conduct mitigation, monitoring, and other biological resources compliance efforts, particularly in areas requiring avoidance or containing sensitive biological resources, such as special status species or their habitat;

3. Clearly mark sensitive biological resource areas and inspect these areas at appropriate intervals for compliance with regulatory terms and conditions;

4. **Inspect, or direct the site personnel how to inspect, active construction areas where animals may have become trapped prior to construction commencing each day. At the end of the day, inspect or direct the site personnel how to inspect the installation of structures that prevent entrapment or allow escape during periods of construction inactivity. Periodically inspect areas with high vehicle activity (e.g., parking lots) for animals in harm’s way:**

5. Notify the project owner and the CPM of any non-compliance with any biological resources Condition of Certification; and
6. Respond directly to inquiries of the CPM regarding biological resource issues; and

7. Maintain written records of the tasks specified above. Summaries of these records shall be submitted in the Monthly Compliance Report during project construction.

Verification: The Designated Biologist shall submit in the Monthly Compliance Report to the CPM copies of all written reports and summaries that document biological resources activities, maintain written records of the tasks described above, and summaries of these records shall be submitted in the Monthly Compliance Reports.

If actions may affect biological resources during operation a Designated Biologist shall be available for monitoring and reporting. As necessary during project operation, the Designated Biologist shall submit record summaries in the Annual Compliance Report.

DESIGNATED BIOLOGIST AND BIOLOGICAL MONITOR AUTHORITY

BIO-8 The project owner's Construction/Operation Manager shall act on the advice of the Designated Biologist and Biological Monitor(s) to ensure conformance with the biological resources Conditions of Certification.

If required by the Designated Biologist and Biological Monitor(s), the project owner's Construction/Operation Manager shall halt all site mobilization, ground disturbance, grading, construction, and operation activities in areas specified by the Designated Biologist.

The Designated Biologist shall:

1. Require a halt to all activities in any area when determined that there would be adverse impact to biological resources if the activities continued;

2. Inform the project owner and the Construction/Operation Manager when to resume activities; and

3. Notify the CPM if there is a halt of any activities due to conflicts with biological resources, and advise the CPM of any corrective actions that have been taken, or will be instituted, as a result of the halt.

If the Designated Biologist is unavailable for direct consultation, the Biological Monitor shall act on behalf of the Designated Biologist.

Verification: The project owner shall ensure that the Designated Biologist must notify the CPM immediately (and no later than the following morning of the incident, or Monday morning in the case of a weekend) of any non-compliance or a halt of any site mobilization, ground disturbance, grading, construction, and operation activities. The project owner shall notify the CPM of the circumstances and actions being taken to resolve the problem.
Whenever corrective action is taken by the project owner, a determination of success or failure will be made by the CPM within five working days after receipt of notice that corrective action is completed, or the project owner will be notified by the CPM that coordination with other agencies will require additional time before a determination can be made.

BIOLOGICAL RESOURCES MITIGATION IMPLEMENTATION AND MONITORING PLAN (BRMIMP)

BIO-9 The project owner shall submit to the CPM for review and approval, and CDFW and USFWS for review and comment, a copy of the final Biological Resources Mitigation Implementation and Monitoring Plan (BRMIMP) and, once approved, shall implement the measures identified in the plan. The BRMIMP shall apply to beach delivery only.

The BRMIMP shall include:

1. All new Biological Resource conditions of certification included in the Energy Commission’s Final Commission Decision as amended;
2. All biological resources mitigation, monitoring, and compliance measures proposed and agreed to by the project owner;
3. All required mitigation measures for each sensitive biological resource;
4. A list and a map of locations of all sensitive biological resources to be impacted, avoided, or mitigated by project construction and operation;
5. A list of all terms and conditions set forth by the USACE permits and necessary state LARWQCB certifications, should these become necessary throughout the life of the project;
6. Detailed descriptions of all measures that will be implemented to avoid and/or minimize impacts to sensitive species and reduce habitat disturbance;
7. All locations, on a map of suitable scale, of areas requiring temporary protection and avoidance during construction and demolition;
8. Duration for each type of monitoring and a description of monitoring methodologies and frequency;
9. Performance standards to be used to help decide if/when proposed mitigation and conditions is are or is are not successful;
10. All performance standards and remedial measures to be implemented if performance standards are not met;
11. A discussion of biological resource-related facility closure measures including a description of funding mechanism(s);
12. A process for proposing plan modifications to the CPM and appropriate agencies for review and approval;
13. A copy of any State or USFWS Biological Opinion or NMFS consultation, and incorporation of all terms and conditions into the final BRMIMP, should a biological opinion become necessary any time throughout the life of the project;

14. Protocols for dealing with wildlife that gain access the barges, beach delivery ramp, and other project features whereby their well being could be at risk; and

15. Vegetation restoration that provides for planting seacliff buckwheat (*Eriogonum parviflorum*), eradication of ice plant (*Caprobrotes chilensis*), and is coordinated with Visual Resources landscaping requirements.

16. Aerial photographs, at an approved scale, of all areas to be disturbed during project construction activities; include one set prior to any site or related facilities mobilization disturbance and one set subsequent to completion of project construction.

17. A requirement to submit any sightings of any special-status species that are observed on or in proximity to the project site, or during project surveys, to the California Natural Diversity Database (CNDDB) per CDFW requirements.

Verification: At least 30 days prior to start of any site mobilization activities related to the beach front or the beach delivery system, the project owner shall provide the CPM with the final version of the BRMIMP for this project, and the CPM will determine the plans acceptability, in consultation with the CDFW and USFWS.

If there are any permits that have not yet been received when the BRMIMP is first submitted, these permits shall be submitted to the CPM, the CDFW, and USFWS within 5 days of their receipt, and the BRMIMP shall be revised or supplemented to reflect the permit condition within 10 days of their receipt by the project owner. Ten days prior to site (and related facilities) mobilization, the revised BRMIMP shall be resubmitted to the CPM.

The project owner shall notify the CPM five (5) working days before implementing any CPM approved modifications to the BRMIMP.

Implementation of BRMIMP measures shall be reported in the monthly compliance reports by the designated biologist (i.e., survey results, construction activities that were monitored, species observed, vegetation restoration etc). Within 30 days after completion of project construction, the project owner shall provide to the CPM for review and approval, a written construction closure report identifying which items of the BRMIMP have been completed, a summary of all modifications to mitigation measures made during the project’s demolition, site mobilization, ground disturbance, grading, and construction phases, and which mitigation and monitoring plan items are still outstanding.
WORKER ENVIRONMENTAL AWARENESS PROGRAM (WEAP)

BIO-10 The project owner shall develop and implement a CPM approved Worker Environmental Awareness Program (WEAP) in which each of its employees, as well as employees of contractors and subcontractors who work on the project site or related facilities during demolition, construction, and operation, are informed about sensitive biological resources associated with the project. The training may be presented on electronic media in the form of a video recording.

The Worker Environmental Awareness Program (WEAP) must:

1. Be developed by or in consultation with the Designated Biologist and consist of an on-site or training center presentation in which supporting written material may be made available to all participants;
2. Discuss the locations and types of sensitive biological resources on the project site and adjacent areas;
3. Present the reasons for protecting these resources;
4. Present the meaning of various temporary and/or permanent habitat protection measures; and
5. Identify whom to contact if there are further comments and questions about the material discussed in the program.

The specific program can be administered by a competent individual(s) acceptable to the Designated Biologist. Each participant in the on-site Worker Environmental Awareness Program shall sign a statement declaring that the individual understands and shall abide by the guidelines set forth in the program materials. The person administering the program shall also sign each statement.

Verification: No less than 30 days prior to the start of any site mobilization activities related to the beach front or the beach delivery system, the project owner shall provide copies of the Worker Environmental Awareness Program and all supporting written materials prepared by the Designated Biologist and the name and qualifications of the person(s) administering the program to the CPM for approval. The project owner shall state in the Monthly Compliance Report the number of persons who have completed the training in the prior month and keep record of all persons who have completed the training to date. The signed statements for the construction phase shall be kept on file by the project owner and made available for examination by the CPM for a period of at least six months after the start of commercial operation. During project operation, signed statements for active project operational personnel shall be kept on file for the duration of their employment and for six months after their termination.

U. S. ARMY CORPS OF ENGINEERS PERMIT

BIO-11 The project owner shall acquire any USACE permit required and incorporate its terms and conditions into the Biological Resources Mitigation Implementation and Monitoring Plan (BRMIMP).
Verification: No less than 30 days prior to the start of any site mobilization activities related to the beach front or the beach delivery system, the project owner shall submit to the CPM a copy of the USACE permit required to construct any project related features. Permit terms and conditions will be incorporated into the BRMIMP.

USFWS BIOLOGICAL OPINION

BIO-12 If formal or informal consultation between the USFWS and USEPA occurs, the project owner shall incorporate into the Biological Resources Mitigation Implementation and Monitoring Plan (BRMIMP) any resulting biological resources recommendations.

Verification: No less than 30 days prior to the start of any site mobilization activities related to the beach front or the beach delivery system, the project owner must provide the CPM with a copy of the any USFWS recommendations. All terms and conditions resulting from the consultation will be incorporated into the BRMIMP.

LOS ANGELES REGIONAL WATER QUALITY CONTROL BOARD CERTIFICATION

BIO-13 The project owner will acquire and implement the terms and conditions of a Los Angeles Regional Water Quality Control Board Section 401 State Clean Water Act certification pertaining to the project.

Verification: No less than 30 days prior to the start of any site mobilization activities related to the beach front or the beach delivery system, the project owner will provide the CPM with a copy of the final Regional Water Quality Control Board certification. The terms and conditions of the certification will be incorporated into the project’s Biological Resources Mitigation Implementation and Monitoring Plan.

FACILITY CLOSURE

BIO-14 The project owner will incorporate into the planned permanent or unexpected permanent closure plan measures that address the local biological resources. The biological resource facility closure measures will also be incorporated into the project Biological Resources Mitigation Implementation and Monitoring Plan.

Verification: At least 12 months (or a mutually agreed upon time) prior to the commencement of closure activities, the project owner shall address all biological resource-related issues associated with facility closure in a Biological Resources Element. The Biological Resources Element will be incorporated into the Facility Closure Plan, and include a complete discussion of the local biological resources and proposed facility closure mitigation measures.

BIOLOGICAL MONITOR SELECTION

BIO-15 The project owner’s CPM-approved Designated Biologist shall submit the resume, at least three references, and contact information of the proposed Biological Monitors to the CPM for approval. The resume shall demonstrate, to the satisfaction of the CPM, the appropriate education and experience to accomplish the assigned biological resource tasks.
Verification: The project owner shall submit the specified information to the CPM for approval at least 30 days prior to the start of any project-related site disturbance activities. The Designated Biologist shall submit a written statement to CPM confirming that individual Biological Monitor(s) have been trained including the date when training was completed. If additional biological monitors are needed during construction, the specified information shall be submitted to the CPM for approval at least 10 days prior to their first day of monitoring activities.

GENERAL IMPACT AVOIDANCE AND MINIMIZATION MEASURES

BIO-16 The project owner shall implement the following measures during site mobilization, construction, operation, and closure to manage their project site and related facilities in a manner to avoid or minimize impacts to biological resources:

1. **At the end of each work day,** the Designated Biologist, Biological Monitor, and/or site personnel shall ensure that all potential wildlife pitfalls (trenches, bores, and other excavations) have been backfilled. If site personnel are inspecting trenches, bores, and other excavations and wildlife is trapped, they will immediately notify the Designated Biologist and/or Biological Monitor. If backfilling is not feasible, all trenches, bores, and other excavations shall be sloped at a 3:1 ratio at the ends to provide wildlife escape ramps, or covered completely to prevent wildlife access. Should wildlife become trapped, the Designated Biologist or Biological Monitor shall remove and relocate the individual to a safe location. Any wildlife encountered during the course of construction shall be allowed to leave the construction area unharmed.

2. **Soil bonding and weighting agents used on unpaved surfaces shall be non-toxic to wildlife and plants.**

3. **Facility lighting shall be designed, installed, and maintained to prevent side casting of light towards the project boundaries. Lighting shall be shielded, directional, and at the lowest intensity required for safety. Lighting shall be directed away from biologically sensitive areas (e.g., Dockweiler State Beach). FAA visibility lighting shall employ only strobed, strobe-like or blinking incandescent lights, preferably with all lights illuminating simultaneously. Minimum intensity, maximum “off-phased” duel strobes are preferred, and no steady burning lights (e.g., L-810s) shall be used.**

4. **Water applied to dirt roads and construction areas (trenches or spoil piles) for dust abatement shall use the minimal amount needed to meet safety and air quality standards in an effort to prevent the formation of puddles, which could attract California least tern and western snowy plover predators to construction sites. During construction, site personnel shall patrol these areas to ensure water does not puddle and attract crows and other wildlife to the site, and**
shall take appropriate action to reduce water application rates where necessary.

5. Report all inadvertent deaths of special-status species to the appropriate project representative, including road kill. Species name, physical characteristics of the animal (sex, age class, length, weight), and other pertinent information shall be noted and reported in the monthly compliance reports. For special-status species, the Designated Biologist or Biological Monitor shall contact CDFW and USFWS within 1 working day of receipt of the carcass for guidance on disposal or storage of the carcass. Injured animals shall be reported to CDFW and/or USFWS and the CPM, and the project owner shall follow instructions that are provided by CDFW or USFWS. During construction, injured or dead animals detected by personnel in the project area shall be reported immediately to a Biological Monitor or Designated Biologist, who shall remove the carcass or injured animal promptly. During operations, the Project Environmental Compliance Monitor shall be notified.

6. All vehicles and equipment shall be maintained in proper working condition to minimize the potential for fugitive emissions of motor oil, antifreeze, hydraulic fluid, grease, or other hazardous materials. The Designated Biologist shall be informed of any hazardous spills immediately as directed in the project Hazardous Materials Plan. Hazardous spills shall be immediately cleaned up and the contaminated soil would be properly disposed of at a licensed facility. Servicing of construction equipment shall take place only at a designated area. Service/maintenance vehicles shall carry a bucket and pads to absorb leaks or spills.

7. During construction all trash and food-related waste shall be placed in self-closing containers and removed weekly or more frequently from the site. Workers shall not feed wildlife, or bring pets to the project site.

8. Except for law enforcement personnel, no workers or visitors to the site shall bring firearms or weapons.

9. Standard best management practices (BMPs) from the project Stormwater Pollution Prevention Plan shall be implemented during all phases of the project (construction, demolition, operation, and decommissioning) where stormwater run-off from the site could enter adjacent beaches or channels. All disturbed soils within the project site shall be stabilized to reduce erosion potential, both during and following construction.

10. The project owner shall implement the following measures during construction and operation to prevent the spread and propagation of nonnative, invasive weeds:
Use only weed-free straw, hay bales, and seed for erosion control and sediment barrier installations. Invasive non-native species shall not be used in landscaping plans and erosion control. Monitor and rapidly implement control measures to ensure early detection and eradication of weed invasions.

During construction and operation, the project owner shall conduct pesticide management in accordance with standard BMPs. The BMPs shall include non-point source pollution control measures. The project owner shall use a licensed herbicide applicator and obtain recommendations for herbicide use from a licensed Pest Control Advisor. Herbicide applications must follow EPA label instructions. Minimize use of rodenticides and herbicides in the project area and prohibit the use of chemicals and pesticides known to cause harm to non-target plants and wildlife. The project owner shall only use pesticides for which a “no effect” determination has been issued by the EPA’s Endangered Species Protection Program for any species likely to occur within the project area or adjacent wetlands. If rodent control must be conducted, zinc phosphide or an equivalent product shall be used.

Verification: All mitigation measures and their implementation methods shall be included in the BRMIMP and implemented. Implementation of the measures would be reported in the monthly compliance reports by the Designated Biologist. Within 30 days after completion of project construction, the project owner shall provide to the CPM, for review and approval, a written construction termination report identifying how measures have been completed.

PRE-CONSTRUCTION NEST SURVEYS AND IMPACT AVOIDANCE AND MINIMIZATION MEASURES FOR BREEDING BIRDS

Pre-construction nest surveys shall be conducted if construction activities will occur from February 1 through August 31. The Designated Biologist or Biological Monitor shall perform surveys in accordance with the following guidelines:

1. Surveys shall cover all potential nesting habitat and substrate within and directly around the perimeter of the project site and areas surrounding the project site that are exposed to construction and demolition noise levels above ambient or 60 dBA in areas where ambient levels are below 60 dBA.

2. At least two pre-construction surveys shall be conducted, separated by a minimum 10-day interval. Pre-construction surveys shall be conducted no more than 14 days prior to initiation of construction activity. One survey needs to be conducted within the 3-day period preceding initiation of construction activity. Additional follow-up surveys may be required if periods of construction inactivity exceed three weeks in any given area, an interval during which birds may establish a nesting territory and initiate egg laying and incubation.
3. If active nests are detected during the survey, a no-disturbance buffer zone (protected area surrounding the nest) shall be established around each nest. The size of each buffer zone shall be determined by the Designated Biologist in consultation with the CPM (in coordination with CDFW and USFWS). Nest locations shall be mapped using GPS.

4. If active nests are detected during the survey, the Designated Biologist or Biological Monitor shall monitor all nests with buffers at least once per week, to determine whether birds are being disturbed. If signs of disturbance or distress are observed, the Designated Biologist or Biological Monitor shall immediately implement adaptive measures to reduce disturbance. These measures could include, but are not limited to, increasing buffer size, halting disruptive construction activities in the vicinity of the nest until fledging is confirmed, or placement of visual screens or sound dampening structures between the nest and construction activity.

5. If active nests are detected during the survey, the Designated Biologist shall monitor the nest until he or she determines that nestlings have fledged and dispersed or the nest is no longer active. Activities that might, in the opinion of the Designated Biologist, disturb nesting activities (e.g., exposure to exhaust), shall be prohibited within the buffer zone until such a determination is made.

 a. Sound levels above ambient levels or 60 dBA (Lmax) in areas where pre-construction noise levels are below 60 dBA are prohibited within the buffer zone, unless otherwise agreed to by the CPM in consultation with USFWS and CDFW.

Verification: Prior to the start of any pre-construction site mobilization, the project owner shall provide the CPM a letter-report describing the findings of the preconstruction nest surveys, including the time, date, and duration of the survey; identity and qualifications of the surveyor(s); and a list of species observed. If active nests are detected during the survey, the report shall include a map or aerial photo identifying the location of the nest and shall depict the boundaries of the proposed no disturbance buffer zone around the nest. Additionally, a monitoring plan shall be submitted that describes the project owner's proposal for documenting that the breeding bird(s) identified were not impacted, consistent with (4) and (5), above; this shall include reporting Leq and Lmax noise levels in the vicinity of the nest if it is in an area expected to exceed ambient levels or 60 dBA (Lmax) in areas where pre-construction noise levels are below 60 dBA. The survey report and monitoring plan shall be submitted to the CPM for review and approval. Additional copies shall be provided to the CDFW and USFWS for review and comment. Approval of the plan is required before construction may commence. All impact avoidance and minimization measures related to nesting birds shall be included in the BRMIMP and implemented. Implementation of the measures shall be reported in the monthly compliance reports by the Designated Biologist.
REFERENCES

California State Parks 1992. State of California Department of Parks and Recreation in coordination with County of Los Angeles Department of Beaches and Harbors.

CDFW (California Department of Fish and Wildlife) 2013. California Natural Diversity Database (CNDDB) Rarefind 4 Search (Government Version) of the Anaheim, Laguna Beach, Long Beach, Los Alamitos, Newport Beach, Orange, Seal Beach, and Tustin 7.5 minute USGS quadrangles. Accessed 01/09/13 and 09/16/13.

LAWA 2013. Facilities Management Group Environmental Services Division. LAX Dunes Preserve and the El Segundo Blue Butterfly Available at <http://www.lawa.org/uploadedFiles/LAWA >

NRG 2014c NRG / El Segundo Energy Center LLC/ G. Piantka (TN 201763) Email from NRG Energy in Response to CEC Staff Questions. Submitted to CEC on 2/20/2014

BIOLOGICAL RESOURCES - FIGURE 1
El Segundo Power Plant Project - El Segundo Preserved and Protected Lands

Project Boundary
Preserved Land
- Ballona Creek Wetlands Preserve
- California Least Tern Breeding Colony
- El Segundo Blue Butterfly Chevron Preserve
- El Segundo Dunes and LAX Airport
- Western Snowy Plover Critical Habitat

Other Features
- City
- Major Road
- Railroad

BIOLOGICAL RESOURCES - FIGURE 3

El Segundo Power Plant Project - Nitrogen Deposition Potential Impact Areas

SUMMARY OF CONCLUSIONS

Staff’s analysis of the proposed amendment to the El Segundo Energy Center (ESEC) license called the El Segundo Power Facility Modification (ESPFM), with regard to prehistoric and historic archaeological resources, is presently inconclusive. Insufficient data are available to staff at this time to present a reliable analysis of potential impacts on archaeological resources. Upon receipt or acquisition of these data in the form of a literature search (requested in Data Request 78, dated August 12, 2013), staff will complete its archaeological impact analysis and present it in the Final Staff Assessment of the proposed amendment.

As a result of ethnographic research, staff concludes that there are no ethnographic resources that will be impacted by the proposed project. The ethnographic background information provided in this assessment provides an ethnological context for the other cultural resources disciplines that inform this cultural resources section.

As a result of the built-environment research and investigation completed to date, staff makes a preliminary conclusion that no historic built environment resources would be impacted by the proposed project. However, results of a literature search as requested in Data Request 78, dated August 12, 2013, and analysis of those records may change that conclusion for the Final Staff Assessment.

INTRODUCTION

This cultural resources assessment identifies the potential impacts of the proposed ESPFM, a proposed amendment to the ESEC license, on cultural resources. Cultural resources are defined under state law as buildings, sites, structures, objects, areas, places, records, manuscripts, and historic districts (14 Cal. Code Regs., §§4852a, 5064.5(a)(3); Pub. Resources Code, §§5020.1(h, j), 5024.1[e][2, 4]). Three broad classes of cultural resources are considered in this assessment: prehistoric, ethnographic, and historic.

Prehistoric archaeological resources are those materials relating to prehistoric human occupation and use of an area. These resources may include sites and deposits, structures, artifacts, rock art, trails, and other traces of Native American human behavior. In California, the prehistoric period began over 12,000 years ago and extended through the eighteenth century until 1769, when the first Europeans settled in California.

Ethnographic resources are those materials important to the heritage of a particular ethnic or cultural group, such as Native Americans or African, European, or Asian
immigrants. They may include traditional resource collecting areas, ceremonial sites, topographic features, value-imbued landscapes, cemeteries, shrines, or ethnic neighborhoods and structures. Ethnographic resources are variations of natural resources and standard cultural resource types. They are subsistence and ceremonial locales and sites, structures, objects, and rural and urban landscapes assigned cultural significance by traditional users. The decision to call resources "ethnographic" depends on whether associated peoples perceive them as traditionally meaningful to their identity as a group and the survival of their lifeways.²

Historic-period resources are those materials, archaeological and architectural, usually associated with Euro-American exploration and settlement of an area and the beginning of a written historical record. They may include archaeological deposits, sites, structures, traveled ways, artifacts, or other evidence of human activity. Under federal and state requirements, historical cultural resources must be 50 or more years old to be considered of potential historic importance; the Office of Historic Preservation (OHP 1995), however, encourages the consideration of resources 45 years or older at the time of analysis, owing to the sometimes lengthy planning and environmental review processes, during which time a more recent resource could reach the 50-year mark. A resource less than 50 years of age may be historically important if the resource is of exceptional importance.

For the proposed ESPFM, staff provides an overview of the environmental setting and history of the project area, an inventory of the cultural resources identified in the project vicinity, and an analysis of the potential impacts from the proposed amendment using criteria from the California Environmental Quality Act (CEQA). The primary concern is to ensure that all potential impacts are identified and that conditions are set forth that ensure that impacts are mitigated below the level of significance.

If cultural resources are identified, staff determines whether there may be a project-related impact to them. If the cultural resources cannot be avoided, staff determines whether any of the impacted resources are eligible for the California Register of Historical Resources (CRHR). If impacted resources are eligible for the CRHR, staff recommends mitigation measures that ensure that impacts to the identified cultural resources are reduced to a less-than-significant level.

LAWS, ORDINANCES, REGULATIONS, AND STANDARDS (LORS)

Projects proposed before the Energy Commission are reviewed to ensure that the proposed facilities would comply with all applicable laws, ordinances, regulations, and standards (Pub. Resources Code, §25525; 20 Cal. Code Regs., §§1702[n], 1744[b]). See Cultural Resources Table 1 for a summary of the LORS applicable to the project.

² A “lifeway,” as used herein, refers to any unique body of behavioral norms, customs, and traditions that structure the way a particular people carry out their daily lives.
<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>Pub. Resources Code, §§5097.98(b) and (e)</td>
<td>Requires a landowner on whose property Native American human remains are found to limit further development activity in the vicinity until s/he confers with the Native American Heritage Commission (NAHC)-identified Most Likely Descendents (MLDs) to consider treatment options. In the absence of MLDs or of a treatment acceptable to all parties, the landowner is required to reinter the remains elsewhere on the property in a location not subject to further disturbance.</td>
</tr>
<tr>
<td>Pub. Resources Code, §5097.99</td>
<td>§5097.99 prohibits the acquisition, possession, sale, or dissection with malice or wantonness of Native American remains or artifacts taken from a Native American grave or cairn.</td>
</tr>
<tr>
<td>Health and Safety Code, §7050.5</td>
<td>This code makes it a misdemeanor to disturb or remove human remains found outside a cemetery. It also requires a project owner to halt construction if human remains are discovered and to contact the county coroner.</td>
</tr>
<tr>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>City of El Segundo Local Coastal Program (LCP)</td>
<td>The issues identification report of the LCP states that development impacts on archaeological and paleontological resources shall be mitigated. (El Segundo 1980.)</td>
</tr>
<tr>
<td>City of Gardena General Plan</td>
<td>The Community Resources Element of the Conservation Plan Policy CN 5.3 requires that the City of Gardena protect and preserve cultural resources of the Gabrieleno Native American Tribe found or uncovered during construction (Gardena 2006:CN-4).</td>
</tr>
<tr>
<td>City of Manhattan Beach</td>
<td>None.</td>
</tr>
</tbody>
</table>
| County of Los Angeles | The Marina del Rey Land Use Plan of the County’s LCP contains five policies and actions relevant to the proposed facility:
- Proposed projects shall be reviewed for potential cultural impacts through the County environmental review process. Appropriate environmental documentation and reasonable mitigation measures shall be required as determined by the Department of Regional Planning and the State’s Office of Historic Preservation (OHP). These mitigation measures shall be incorporated into any development approved pursuant to the certified local coastal program.
- As defined by §30116(d) of the Coastal Act, any cultural resource found in the portion of the LCP study area planned for development shall be located and maintained at the Los Angeles County Museum of Natural History, or other appropriate location as otherwise provided by state law.
- To ensure proper surface and site recordation, the OHP shall be notified, along with Regional Planning, if any resource is discovered during any phase of development construction. A professional archaeologist shall be retained to monitor any earth-moving operations in the study area. A halt-work condition shall be in place in the event of cultural resource discovery during |
<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• As part of the application for any coastal development permit involving disturbance of native soils or vegetation, including but not limited to excavation, pile driving or grading, the applicant shall provide evidence that they have notified the OHP and NAHC of the location of the proposed grading, the proposed extent of the grading and dates on which the work is expected to take place.</td>
<td></td>
</tr>
<tr>
<td>• Archaeological recovery programs shall require coastal development permits consistent with the provisions of the certified local coastal program. (County of Los Angeles 2012:7-1–7-3.)</td>
<td></td>
</tr>
</tbody>
</table>

SETTING

Information provided regarding the setting of the proposed ESPFM places it in its geographical and geological contexts and specifies the technical description of the amendment. Additionally, the archaeological, ethnographic, and historical, backgrounds provide the contexts for the evaluation of the historical significance of any identified cultural resources within the project area of analysis (PAA).

REGIONAL SETTING

The proposed ESPFM would be located at the ESEC in the City of El Segundo, Los Angeles County. The proposed facility modifications and the following construction parking and laydown areas would be located in El Segundo: Hyperion, Chevron Marine Terminal, and Kramer. Four other construction parking and laydown areas would be located in other jurisdictions: 190th Street in the City of Gardena, Dockweiler State Beach and Marina del Rey Boat Launch within the County of Los Angeles, and LAX-Pershing at Los Angeles International Airport, City of Los Angeles. (ESEC 2013a:Figure 2-10.) These proposed project components are all located in the Los Angeles Plain or Basin. The Los Angeles Basin is situated at the northwestern end of the Peninsular Ranges geomorphic province. This geomorphic unit is located west of the San Andreas Fault and contains as boundary ranges the San Jacinto, Santa Rosa, and Laguna mountains; the Santa Ana Range is a prominent relief feature closer to the coast. The Los Angeles Basin receives the bulk of its runoff and sediment from the Santa Ana Range and Santa Monica Mountains through the San Gabriel, Los Angeles, and Santa Ana rivers. (Schoenherr 1992:10.) The Los Angeles Basin is an alluvial plain that is generally underlain by deep sediments dating to the Holocene Epoch.\(^3\)

PROJECT, SITE, AND VICINITY DESCRIPTION

The proposed project site, three off-site construction parking and laydown areas, and 10-inch water line are located in the urban, beachside City of El Segundo. The project site is surrounded on the north and east by industrial properties, the west by Dockweiler State Beach and the Pacific Ocean, and the south by a residential neighborhood in the

\(^3\) The Holocene Epoch is a unit of time used in geology and archaeology to designate the period between the current day and 11,700 B.P. (Cohen et al. 2013). The term “B.P.” (Before Present) is an international dating convention that refers to the year 1950 as the present.
City of Manhattan Beach. The other off-site construction laydown areas are located in Gardena, Manhattan Beach and Los Angeles in mixed use environments of residential and commercial components.

Environmental Setting

Identifying the kinds and distribution of resources necessary to sustain human life in an environment, and the changes in that environment over time is central to understanding whether and how an area was used during prehistory and history. During the time that humans have lived in California, the region in which the proposed ESPFM is located has undergone several climatic shifts. These shifts have resulted in variable availability of vital resources, and that variability has influenced the scope and scale of human use of the project vicinity. Consequently, it is important to consider the historical character of local climate change, or the paleoclimate, and the effects of the paleoclimate on the physical development of the area and its ecology.

Overview

The proposed project site is situated at elevations ranging from 18 to 90 feet above sea level (asl) on Santa Monica Bay. The proposed offsite construction parking and laydown areas would be located in densely settled areas in Gardena, Manhattan Beach, and Los Angeles. Current land uses in the project vicinity include residential, electrical generation, oil extraction and refinement, other industrial, wildlife habitat preserves, parklands and open space, landfill, and beaches. (ESEC 2013a:2-2.)

Paleoclimate and Ecology

The paleoclimate and ecology of the project vicinity is complex, belied by the fact that former climatic and ecological conditions in the area generally conform to the long-standing, three-part paleoclimatic framework for arid western United States. In this framework, the Holocene began with a moderately cool and moist period known as the Anathermal (ca. 10,000–7500 B.P.). Subsequently, the California climate appears to have warmed and dried during the Altithermal (ca. 7500–4000 B.P.). During the Medithermal (ca. 4000 B.P.–present), moisture and temperature conditions resembled those of today. (Moratto et al. 1978:148.) The wet winter/dry summer climate of southern California is thought to have persisted through much of these three climatic periods and may be about 160,000 years old (Masters and Aiello 2007:40). Locally, however, climate and ecology changed considerably over the last 12,000–10,000 years.

Paleobotanical studies suggest that a warming trend commenced during the terminal Pleistocene Epoch and continued into the Early Holocene. The amount of conifer pollen decreased and was accompanied by a simultaneous increase in the quantity of oak, chaparral, and herb pollen around 14,000–10,000 B.P. The rate of increase appears to have been rapid. (West et al. 2007:25.)

The nineteenth-century climate on the southern California coast was a little different than today’s climate. Northwesterly winds dominated then as today, although southeasterly winds were more frequent and intense, likened to hurricanes. The turn of
the twentieth century heralded reduced influence of southeasterly winds and the Little Ice Age ended with five El Niño events in a 20-year period. (Engstrom 2006:850–851.)

Staff will present additional paleoclimatic and ecological data in the Final Staff Assessment (FSA)—and their implications for cultural resources in the project vicinity—subsequent to receipt of updated records search results for the project vicinity. These data are necessary to put project vicinity cultural resources into their local contexts. Additionally, staff’s FSA will include discussions of Geology and Soils, Geomorphology, and Native Plants and Animals in the Project Vicinity. Although these subjects are touched upon in the Petition to Amend (PTA), other discipline discussions (such as biological resources), and documents related to earlier ESEC proceedings before the Energy Commission, these discussions are now up to 13 years out of date or do not take into account cultural resource concerns.

Prehistoric Setting

Staff will present an updated prehistoric setting in the FSA subsequent to receipt of updated records search results for the project vicinity. These data are necessary to put project vicinity cultural resources into their local contexts. Over the 13 years that elapsed since the original cultural resources analysis for the ESEC, archaeologists have obtained much additional knowledge of the project vicinity’s prehistory, shedding additional light on the characteristics of local archaeological resources and their potential significance.

Ethnographic Setting

Gabrielino Tongva

The Gabrielino people and representative tribes are most directly related to the project vicinity. There are at least four subgroups of the Gabrielino: those of the Los Angeles Basin, those of the northern mountainous area including the inland San Fernando Valley, those of Santa Catalina and San Clemente islands, and those of San Nicolas Island. Some anthropologists question earlier linguists’ assertions that the Gabrielino were a Cupan (a language of the Uto-Aztecan stock of the Takic language family) speaking group. A close reading of Alfred Kroeber’s Gabrielino summary suggests that the Gabrielino of Santa Catalina and San Clemente islands may have set the trends of the larger culture that thrived on the mainland (Kroeber 1976:620–623). Kroeber has suggested six linguistic subgroups based upon language dialect differences (Bean and Smith 1978:538; Kroeber 1976:620). The Gabrielino language has recently been identified as a stand-alone Takic language distinct from Cupan (Mithun 1999:539, 543–544; Sutton 2010:Table 2).

The name ‘Gabrielino’ is derived from the Spanish missionaries who established Catholic missions in the Los Angeles Basin in the late 1700s. Two missions were established in the soon-to-be-renamed tribe’s territory: San Gabriel Arcangel and San

4 El Niño events are complex cycles of droughts associated with changes in sea level, wind, and temperature (Ilahiane and Altschul 2002:35).

5 Uto-Aztecan is now considered a language family, with Takic as a linguistic branch within the Uto-Aztecan language family (Mithun 1999:539–540; Sutton 2010:4).
Fernando Rey de España, respectively named after Archangel Gabriel and Saint Ferdinand, King of Spain. Hence those indigenous Californians closest to Mission San Gabriel became known of as “Gabrielinos” and those closest to San Fernando Rey de España became known of as “Fernandenos”. Prior to the Spanish period it has been suggested that the Los Angeles Basin Gabrielino referred to themselves as Kumi vit and the San Fernando Valley natives as Pasekarum. The San Fernando Valley used the same names to refer to the same groups of people (Bean and Smith 1978:548). However, a word that is combined with the suffix ‘vit’ refers to a specific place or village and therefore would not be suitable in reference to a group of people occupying at least 50, if not 100 villages (Johnston 1962:10).

The word ‘Tobikhar’ seems to have been used in self-description by those Gabrielinos in the 1800s that moved to the mission and the name translates as “settlers” and appears to reference the fact that some Gabrielinos left their traditional villages, whether willfully or under duress, and settled near the missions (Hodge 1971:480). The words Kizh or Kij also appear in the literature but likely refer to people of a specific house and therefore would not be a name suitable for referencing a nation of people; the word Kizh was mistakenly used by a German linguist to refer to the Gabrielino language. However, one Gabrielino group existent today, takes the word ‘Kizh’ to mean “houses” and refers to all people living in the Gabrielino style willow constructed house. The word ‘Tongva’ was provided to the anthropologist C. Hart Merriam in 1902 by one Gabrielino speaker (Heizer 1968:105). Loosely translated as “people of the earth”, ‘Tongva’ has gained popularity since the 1990s and is often used in conjunction with the word ‘Gabrielino’ (McCawley 1996:10), although at least one Gabrielino group rejects the word Tongva’ as a group identifier.

It is not known what the island groups called themselves or what they called their linguistic relatives on the mainland. A narrative provided by Emma Hardacre suggests that the Indians of the islands and particularly San Nicolas Island were killed or intermarried by “Kodiaks” brought by American fur traders to harvest the island’s otter population. The remaining Island Gabrielinos were removed in 1835 with the exception of one woman who returned to the island in search of a lost infant. The woman did not find the lost infant but continued to live in isolation on the island. She was later discovered in 1853 and was removed to the mainland where the remaining Gabrielino speakers could not understand her dialect. (Hardacre 1971:272–284) Kroeber corroborates the “Lone Woman of San Nicolas” story (Kroeber 1976:633–635). Recently, archaeologists have re-discovered the cave that the lone woman occupied during her 18 years of isolation (Schwartz and Vellanoweth 2013:391).

Some earlier references to the island dwellers and their immediate mainland coastal neighbors or relatives refer to the entire maritime-adapted culture as the “Canaliño Culture” (Johnston 1962:96; Moriarty 1969:16; Romer 1959:241). However, the usage, stemming from the earliest Spanish maritime explorations, appears to include both the cluster of southern island dwellers that tend to be affiliated with Gabrielino and the cluster of northern island dwellers that tend to be affiliated with Chumash. Santa

6 McCawley (1996:9–10) suggests that the word Tongva originally named either the Gabrielinos living near Tejon or a separate Gabrielino village called Tonjwe.
Catalina Island is named *Pimu* or *Pipimar*, and the Gabrielinos from *Pipimar* were called *Pepimaros* (translated as “people of Pipimar”) (Kroeber 1976:634, McCawley 1996:10). Despite not having a common name for the dwellers of the island, the ethnographers repeatedly credit the island cultures (and particularly the Santa Catalina Island dwellers), as the originators of the culture, including the Chinigchinix religious tradition that took hold with the mainland Gabrielino, and from the Gabrielino spread to the Luiseño, Juaneño, and Diegueño/Kumeyaay cultures to the south and east (Kroeber 1976:621–622; Moriarty 1969:2).

Today, the names Gabrielino, Tongva, or Gabrielino Tongva seem to be the most preferred references of all sub-groups. The name Gabrielino Tongva will be used for the purposes of this analysis except when referring to specific tribal entities that have various self-selected names.

Traditional Territory of the Gabrielino Tongva

The Gabrielino Tongva is considered to be the group with perhaps the greatest wealth and population, and controlled of one of the richest territories in all of prehistoric, indigenous Southern California. Their territory consists of ocean islands and waters, coast line, riverine basins, and mountains that provided a diversity of resources. (Bean and Smith 1978:538.) Their territory is located at the western terminus of one of the most established and extensive trade networks of North America.

The territorial boundaries, while imprecise, are defined here in a counterclockwise direction and starting in the southwestern area of the territory at the mouth of Aliso Creek. The boundary follows Aliso Creek up into the Santa Ana Mountains and crosses the Santa Ana Mountains near Trabuco Peak. Descending the eastern slopes of the Santa Ana Mountains the boundary runs towards the Santa Ana River and follows the river course up to where the San Andreas fault and Santa Ana River intersect. The boundary follows the fault in a northwestern direction. The territory includes most if not all of the San Gabriel Mountains. The boundary curves back toward the ocean, following generally the area defined by Soledad Canyon. The territory includes all of San Fernando Valley, the eastern slopes of Simi Hills, and then crosses the Santa Monica Mountains where the boundary line comes down to the coast at approximately the present town of Malibu. The territory includes the ocean islands of San Nicolas, San Clemente, Santa Barbara, and Santa Catalina, and the ocean waters surrounding the islands and between the islands and the mainland. (Bean and Smith 1978:Figure 1; Heizer 1968:End Papers map; Hodge 1971:480 (Vol 1); Johnston 1962:Map; Kroeber 1976:620–621, Plate 57; McCawley 1996:3, 22–25; McCawley 2002:41; Moriarty 1969:5) The territory includes the Verdugo Mountains of which the central and highest peak was named Tongva Peak in 2006 (Chambers 2001:1–2).

The ESEC is located in the coastal portion of the Gabrielino Tongva’s mainland territory and approximately 5 miles south of where Ballona Creek empties into the Pacific Ocean. The coastline is characterized as bluff. The coastal geology in this area is such that the coastline has been subject to both uplift and erosion. The mouths of creeks and rivers have also meandered over an extensive stretch of this coastline, making

7 C. Hart Merriam (1968) suggests that the boundary is rather to the north along the Santa Ana River.
predictions of ethnographic resource locations difficult. Various historians and anthropologists provide maps of Gabrielino Tongva ethnographic village and camp locations (Heizer 1968:Map; Johnston 1962:Map; Kroeber 1976:Plate 57). A “Tongva Village” map also provides similar village and camp locations8 (The Gabrielino/Tongva Tribe n.d.a). All of the maps and accompanying texts previously mentioned locate occupation sites that cluster about the mouth of Ballona Creek several miles to the north of the ESEC, and about the Redondo Beach area, several miles to the south of ESEC. The stretch of coastline from Ballona Creek to the mouth of the San Gabriel River is considered to have supported the mainland Gabrielino Tongva villages most strongly affiliated with the Gabrielino Tongva villages of the islands (Heizer 1968:111; Kroeber 1976:629, 630; McCawley 1996:66–68, 72, 113, 114, 157).

Gabrielino Tongva Affiliations and Relations with Other Indigenous Groups

The Gabrielino Tongva maintained solid trade relations with all groups that surrounded them: the Chumash, Tataviam, Serrano, Cahuilla, Luiseño, and Juaneño. Through these intermediaries the Gabrielino Tongva were known as far north as the southern Central Valley homelands of the Yokuts and to the east among the Yuman tribes of the Colorado River. Some of the best steatite (soapstone) found in California was traded from Santa Catalina Island as far east as present-day central Arizona. In addition, shellfish of the Gabrielino Tongva coast provided superior source material for shell disc money. Marine mammals were in abundance along the islands and mainland shores and off-shore rookeries. In long distance exchange Gabrielino Tongva received deer hides, obsidian and white clay pottery. A more local Los Angeles Basin trading network would have facilitated the exchange of the resources that result from the rich and local environment that constituted Gabrielino Tongva and neighboring territories. There is some suggestion that local Gabrielino Tongva trading occurred, obviously between the islands and the coast and also between the coast and the inland villages. There is further suggestion that some animosity existed between coastal and inland Gabrielino Tongva villages.

The Gabrielino were the western end of one of the most extensive indigenous trade networks in the Southwest. The extensive trail system guided people and goods between the Southern California Coast and Central Arizona (Davis 1961:2). The regional indigenous trail network was of keen interest to the missionaries, who were intent on finding overland routes that allowed for transportation links to the established missions of New Mexico (Kessel 2002:253–287).

The literature suggests that the Gabrielino Tongva were the center of the Jimson weed/datura/toloache cult (also referred to as the Chingichngish9 religion) and that the neighboring Luiseño, Juaneño, and Chumash fashioned their similar ceremonies following the Gabrielino Tongva lead (Bean and Smith 1978:548; Kroeber 1976:626–627; Moriarty 1969:2;).

8 http://gabrielenoindians.org/Site/Gabrielino_Tribal_Council.html

9 There are six variant spellings of the name of this religious tradition. Bean and Smith (1978:548) clarify that the linguistic source is Luiseño and there is no known Gabrielino word for the religious tradition, although it is considered to have originated with the Gabrielino and diffused to neighboring tribes.
Sources of Ethnographic Data

The earliest ethnographic sources of information can be found in the records of the Spanish explorers and later missionary records. Of the various documents related to Spanish exploration and subsequent colonization, Father Boscana’s manuscript on the religious beliefs of the Gabrielino Tongva and neighboring tribes has provided invaluable information. The earliest attempt at a Gabrielino Tongva comprehensive ethnography can be attributed to Hugo Reid, a Scotsman, settler, naturalized Mexican citizen, and spouse of a Gabrielino woman, Victoria Reid. Reid documented place names and locations of Gabrielino villages and relied extensively on his wife and her relatives and contacts for his information. Reid’s notes and letters have been published by Robert Heizer (Heizer 1968). Englehardt contains some ethnographic information in his writings on the California missions in general (Englehardt 1908–1915) and specifically the two missions located within Gabrielino Tongva territory (Englehardt 1927a, 1927b). C. Hart Merriam conducted seminal ethnographic research with one Gabrielino woman that produced valuable ethno-linguistic information, although it is not clear where the Merriam notes for the Gabrielino interviews are stored or published. Alfred Kroeber wrote the authoritative treatment of the Gabrielino included in the Handbook of the Indians of California (Kroeber 1976). John P. Harrington conducted ethnographic and linguistic studies that included ethnographic inquiry into the Chingichngish cult (Harrington 1933) and he produced a Gabrielino cultural element distribution list (Harrington 1942). Bernice Johnston produced a summary Gabrielino ethnohistory (Johnston 1962). Lowell Bean and Charles Smith co-wrote the Gabrielino section for the encyclopedic Handbook of North American Indians, Volume 8: California (Bean and Smith 1978). More recently William McCawley produced a Gabrielino ethnohistory (McCawley 1996) which was followed by a publication, co-written by Claudia Jurmain that is, in part, an ethnography of contemporary Gabrielino Tongva people (Jurmain and McCawley 2009).

Gabrielino Tongva Economy, Resources and Material Culture

As stated earlier, the Gabrielino Tongva territory consists of diverse landforms and resources. The territory includes ocean islands, the ocean, coastline beaches, estuaries, salt marshes, rivers, riverine basins or piedmonts, foothills and mountains. Gabrielino Tongva were proficient at gathering acorns, sage, yucca, cacti, and a variety of plants and animals, and birds associated with the coastal salt marshes and estuaries. Sea fish such as tuna and dolphins were taken from the ocean and deer were harvested from the piedmont and mountains. Salt was gathered for daily consumption and for trade inland. The coastline extending between Ballona Creek and the Palos Verdes headlands is sheltered and featured primary villages affiliated with secondary subsistence sites located inland (Bean and Smith 1978:539). The closest known coastal village sites in proximity to the project area are located approximately 8 miles to the south, near present day City of Redondo Beach and seven miles north near present-day Playa del Rey (McCawley 1996:61–63).

Steatite was traded inland in raw and finished form, and was used to manufacture animal effigies, pipes, cooking utensils, arrow straighteners, and palettes (a type of armor plate). Asphaltum was used to line watertight vessels, including baskets and canoes, and was used to attach rare minerals, shells, and beds to ceremonial dress.
Bedrock and portable mortars were in abundant use. The Gabrielino were uniquely known for specific ownership and transportation of personal mortars. Other common utensils were metates, mullers (pestles), mealing brushes, wooden stirrers, shell spoons, and wooden bowls. Deer scapulae (shoulder blades) were fashioned into saws. Bone, shell, wood and flints were fashioned into needles, awls, fishhooks, scrapers, flakers, wedges, projectile points, cane knives, and flint drills. Shell disc bead money was manufactured and used as local currency and was recognized as legitimate currency as far east as the Colorado River. Business transactions and obligations and payments on debt were tracked by knotting cordage. Ceremonial rattles were fashioned from gourds. Pottery does not show up in the various archaeological excavations of the area until the late mission period. Baskets were woven from rushes, grass, and various bushes. Various basket types included mortar hoppers, flat baskets, carrying and serving baskets, storage baskets and ceremonial baskets for grave offerings. Weapons for war or hunting consisted of war clubs, self- and sinew-backed bows, tipped and untipped cane arrows, throwing clubs, and slings. Plank canoes, fashioned from wooden planks that were tied together with cordage and caulked with asphaltum are a technological feat shared with the Chumash to the north and the Luiseño to the south. Marsh and estuary bodies of water were traveled by use of rush rafts. (Bean and Smith 1978:542; Heizer 1968:43–45; Kroeber 1978:628–632; McCawley 1996:111–142.)

Men and children went without clothing in the temperate climate. Women wore aprons of deerskin or the inner bark of willow or cottonwood trees. Capes used during cold or rainy seasons were made of deerskin, rabbit fur or bird skins woven together with milkweed or yucca fiber. Otter skins were also used and also traded inland. Ritual costumes were constructed of bird plumage, shells, and beads. Body paint was used during ceremonial events. (Bean and Smith 1978:541–542; Heizer 1968:23–24; McCawley 1996:11–13.)

Houses were domed, circular and covered with tule, fern or carrizo reed mats. A large house could hold up to three or four families (50 people), and was perhaps 60 feet in diameter; homes were as small as 12 feet in diameter. Willow post (and along the coast and on the islands sometimes whale rib bones) were inserted a pace apart around the circumference of the house. A smoke hole was left at the top of the dome and was covered with a tule mat. Houses along the coast had doors that opened toward the sea. The house entryway was also covered with mats. A trench was dug inside the door to catch any run-off that might make its way through the matted doorway. The floor was dirt, sprinkled with water and compacted. A hearth was fashioned with cobbles in the center of the house. The interior of the house was covered with more mats and rugs fashioned out of animal skin and fur made the house a very comfortable dwelling place. Houses in the interior and at higher elevations were semi-subterranean (2 feet deep) in order to conserve heat. Adjacent to houses were wind screens fashioned from posts buried in the ground and from which matting was suspended. These wind screens provided for open air kitchens that were used during fair weather. During inclement weather, cooking occurred around the indoor hearth. Large granary baskets also were placed adjacent to the main dwelling. The granary baskets, sometimes coated with asphaltum, sat upon posted platforms. Common sweathouses were small semi-circular, semi-subterranean earth covered buildings reserved for adult male use. Sweathouses were sometimes built into banks of washes. The sweathouses were heated by direct
fires and were placed near the door as the sweathouse was not fashioned with a smoke hole. The sweathouse was positioned in an area that provided nearby access to a water hole for bathing. A larger ceremonial sweathouse probably was also built similarly to the common sweathouse, but somewhat larger inside (12 feet diameter), and featured a smoke hole at the top that also functioned as an entrance to the structure via a ladder. Menstrual huts were also constructed and frequented by women. It is not clear whether the menstrual hut was also used for birthing (Heizer 1968:29). Ceremonial open-aired enclosures placed near chiefs’ houses and the center of villages, were made of willow posts and willow wicker. The interiors were decorated with feathers and painted posts. The ceremonial enclosures were used for the Chingichngish (toloache) cult: an effigy of the god Chingichngish, and ceremonial sand paintings featuring depictions of the sun and moon and utilized for divination events were placed within the enclosure. Only the most revered of the village male leadership, male initiates, and female singers were permitted to enter. During funeral ceremonies the grieving family members were allowed to enter the sacred enclosure. Some villages featured a second ceremonial enclosure that was not consecrated and that was used for practicing the initiation of the younger generation into the religion. Villages also featured leveled fields surrounded by posted fences for sporting events. Larger villages were thought to have populations of as many as 1500 people. Cemeteries were located outside of but immediately adjacent to villages. Gravesites were marked by baskets or sandstone slabs decorated with etched figures commemorating the deceased. (Bean and Smith 1978:542; Kroeber 1976:628; McCawley 1996:27–30.)

Gabrielino Tongva Political Organizations and Religious Practices

Because of the missionary conversion process, coupled with a high rate of disease to which Gabrielino Tongva people were not immune, loss of traditional knowledge and a high rate of deaths left the Gabrielino Tongva cultural traditions very fragmented by the time that anthropologists arrived to document what remained of the traditional culture. Therefore, less is known about traditional Gabrielino political organization and religious practice than is the case with many other California Indians.

The Gabrielino seemed to have adhered to a moiety kinship structure likely of the “Dakota” system with Iroquois cousin terminology, similar to their neighboring Juaneño and Luiseño neighbors. Crosscutting the kinship system were three social classes. Social classes tend to appear in societies that have evolved in environments that provide an abundance and diversity of resources. Gabrielino Tongva society had an elite class of hereditary chiefs and the very wealthy. There was a middle or common class that were modestly wealthy and that were from fairly reputable lineages. There was a lower class consisting of everyone else: the poor, disreputable, or those of ill fate. Marriage or wealth accumulations were the prime avenues for social movement within the class system. There were also social organizations and guilds that cross cut village social structure and could include members from neighboring tribes. (Bean and Smith 1978:543, 545; McCawley 1996:10.)

Villages were comprised of non-localized segmentary lineages. One or two lineages might have dominated a particular village for a period of time but dominance was not permanent or guaranteed. Regardless of moiety or class affiliation, political autonomy occurred most effectively at the village or “tribelet” level, with the dominant lineage’s
leader assuming the village chief position. The leadership was manifest in the possession of the village sacred bundle and the possession of a chiefly name. Leadership tended to be passed through male descent, unless the other village lineage leads could agree that the either there was no one available and eligible in the controlling lineage, or there was no one of the dominant lineage that was competent to lead. Leadership at times could be passed to daughters. Village chiefs could combine and preside over more than one village and this could be done by alliance agreement or by having multiple wives, each in a different village. Larger villages could segment with some of the lineage forming a hamlet that still held allegiance to the parent village. A large and wealthy village could have multiple radiating hamlets or camps. Over time these smaller villages could rise to dominance and overshadow the parent village. A leader’s responsibility was to protect the sacred bundle, collect taxes from the village houses, settle disputes, make decisions of war, negotiate peace treaties, and to generally live an exemplary life. The village leader could be assisted by an announcer, a tax collector/treasurer, general assistants and messenger/runners. However villages also had shamans who from time to time could trump the authority base of the village leader. (Bean and Smith 1978:544; McCawley 1996:89.)

Shamans gained their power and knowledge directly from the supernatural when conversing with spirits during Jimson weed-induced, altered mental states. Shamans could cure or cause calamity and illness, divine, and knew, collected and dispensed various herbal and animal remedies, including the making of poisons for weapons. Gabrielino Tongva practiced cremation of their deceased, including the burning of the deceased’s personal belongings. Shamans were responsible for conducting the yearly mourning ceremonies for grieving families of the deceased. While village leaders or chiefs protected the sacred bundle, shamans were responsible for the spiritual protection of the sacred bundle. The shamans from Santa Catalina Island were considered to have been the most powerful and were accorded due respect and it was also thought that the Chingichngish religion was brought to the mainland by the religious leaders of the island (Johnston 1962:97). (Bean and Smith 1978:544.)

Gabrielino Tongva religious beliefs and practices are not well understood or documented but it appears that the Gabrielino Tongva, and perhaps the Gabrielino Tongva of Santa Catalina Island specifically, developed the toloache cult which involved ritual consumption of Jimson weed. This cult spread to tribal nations throughout Southern California and the southern Central Valley. The Jimson weed cult was most closely associated with the creator deity Chingichnich, who is attributed with fixing the world for humans. There is a pantheon of deities that surround Chingichnich. Participants, perhaps inducted into the cult during adolescence, gained insight into the nature of the world and the tribal and individual role and place in the universe; and that insight provided success in hunting, warring, or other activities of importance to the survival of the village over time. The Gabrielino Tongva religion provided the society with a strict moral, political, economic, and legal code. (Kroeber 1976:626; McCawley 1996:143–169; Moriarty 1969.)

Gabrielino Tongva Burial Knowledge and Practice

Burial beliefs and practices stem from the instructions of Chingichnich before he departed this world. There was a concept of an afterlife, place of heaven, and
something similar to the Catholic concept of purgatory. Upon death of the person, characterized as the breath leaving the body, it was understood that the heart of the person did not die, but through proper ritual was transported to heaven or purgatory. Heaven was thought to exist to the west, beyond San Clemente Island. In this “distant mountain in the sea” a benevolent god presided and all was good. For those who had imperfectly practiced Chingichnich’s instruction, purgatory was a place to the east “in the hills” where one’s heart would reside indefinitely until the god determined that proper penance had been performed. For the leaders of villages, the path to heaven was automatically assured so long as ritual consumption of a small portion of the deceased was conducted. After death, a wake would occur for a few days while general mourning commenced. The body was wrapped in a blanket, mat, net, or seaweed. After the wake, the body of the deceased was carried in procession to the village burial area where the burial commenced. Mainland Gabrielino Tongva tended to conduct cremations while the island Gabrielino Tongva adhered to flexed burial practice. The hands were placed across the breast, and the entire body bound. That portion of the coastal mainland, from Ballona Creek to San Gabriel River, where island Gabrielino Tongva had the strongest relations, tended to also practice flexed burial internment. For those villages adhering to cremation of the deceased, the cremains were either interred or disposed of to the east of the village. Grave offerings were buried with deceased or, in the case of cremation, burned with the corpse. Some burials feature dog burials placed above the corpse. Gabrielino Tongva saw the worlds of the living and the dead to be parallel places; therefore the items buried or burned with the deceased were intended to accompany the person to the afterworld where their statuses were recognized by the items that accompanied them. To loot a grave today is perceived by traditionally minded Gabrielino Tongva to be a robbery of the deads’ status in another world. After the funeral ceremony, the living mourned for a year. Every fall, after the harvest ceremonies, an annual mourning ceremony was conducted for all of those who had passed in the past year. (Bean and Smith 1978:545–546; Heizer 1968:30–31; McCawley 1996:155–158.)

Contemporary Tribal Entities with Ethnographic Affiliations
There are various Gabrielino Tongva tribes, nations, and other organizations. Names are very similar and it is difficult at first glance to differentiate among the groups. The Native American Heritage Commission list provides additional tribal names that represent Gabrielino Tongva people and culture. Tribal entities are listed below.

Gabrielino Band of Mission Indians – Kizh (Kitc) Nation
The Tribe does not affiliate with the name “Tongva” and instead prefers the name ‘Kizh’ (Kitz). They suggest that ‘Kizh’ refers to houses made of willow, tule, and brush and refers to all the people that lived in such houses, ostensibly all “Gabrielinos”. The tribal council of seven seeks federal recognition and is an advocate for the protection of cultural resources.

Gabrielino/Tongva San Gabriel Mission
No information available.

Gabrieleno/Tongva San Gabriel Band of Mission Indians
No information Available
Gabrielino Tongva Nation
No information produced by or directly representative of the Tongva Nation discovered online.

Gabrielino-Tongva Tribe
The Gabrielino–Tongva Tribe, historically part of the San Gabriel Band of Mission Indians, has offices in Los Angeles. The tribe seeks federal recognition status, but has yet to receive recognition. They are guided by a council of four that collectively show expertise in business. The Tribe has been involved in efforts to establish a casino resort in the Los Angeles area, and is assisted in this endeavor by outside legal counsel. (Gabrielino-Tongva Tribe 2014a, 2014b.) The Tribe has requested that project ground-disturbing activities are monitored by tribal people.

Gabrielino/Tongva Indians of the California Tribal Council
Also referred to as the Gabrielino/Tongva Tribe of the Los Angeles Basin, their website covers the process and documentation of the tribe’s elections (The Gabrielino/Tongva Tribe n.d.b).

Tongva Ancestral Territorial Tribal Nation
No information on this tribe was discovered online.

Ti’at Society/Intertribal Council of Pimu
No information concerning this tribe was discovered online.

Historic Setting

Spanish Period (1769–1821)
By the middle of the sixteenth century, Spain had emerged as the premier naval and military power in Western Europe, with colonies in North and South America and a trading network throughout the Pacific. On September 28, 1542 Juan Rodriguez Cabrillo arrived in San Diego aboard the San Salvador and claimed the land in the name of Spain (San Diego History Center 2012). In November 1602, Sebastian Vizcaino arrived in San Diego, surveying the coastline and getting as far north as Oregon (San Diego History Center 2012). In the late 1770s, Antonio Maria de Bucareli, the Viceroy of New Spain, “legitimized Spain’s claim to Alta California by making it the new Provincia de California [Province of California] with a provisional capitol at the Presidio at Monterey” (Steiner 1999:6). Bucareli’s plan was to use the missions to colonize the new province. While the Spanish explored the coast of present-day California in the mid-sixteenth century, it was not until the incursion of Russian and British explorers into what are now Alaska, British Colombia, Washington, and Oregon in the 1750s that the Spanish made serious attempts to colonize Alta California (Steiner 1999:4–6). It was Bucareli who ordered Juan Bautista de Anza to lead an exploration to establish an overland route from Sonora (present day Arizona) as well as from Mexico in order to facilitate the colonization of California and provide a stable supply route. Over 150 years would pass before the Spanish would attempt permanent settlement.

The Spanish colonization of California was achieved through a program of military-civilian-religious conquests. Soldiers secured areas for settlement by suppressing
Indian and foreign resistance and establishing fortified structures called presidios. Civilians established pueblos (e.g., towns) and Spanish priests led the religious conquest by establishing missions and converting the Indians. The Spanish ultimately built 21 missions in California. Local Native American tribes were the dominant source of labor at the missions.

In 1822, Mexico achieved independence from Spain, and California became an outpost of the Mexican Republic.

Mexican Period (1821–1846)

By the 1840s, there was a steady migration of American settlers into California. Unable to stop the incursion, the Mexican government granted citizenship to all who would pledge to follow Mexican law. Many of these foreigners received land grants on which they established grazing and commercial operations. One example of this is the New Helvetia Rancho granted to John Sutter in 1839 in what is now the City of Sacramento.

War broke out between the United States and Mexico in May 1846, with some decisive battles occurring in California. The American victory over Mexico was formalized in February 1848 with the signing of the Treaty of Guadalupe Hidalgo, and Mexico ceded all its land holdings above the Gila and Rio Grande rivers to the United States. California was admitted as the thirty-first state in the Union on September 9, 1850.

American Period

In 1848, the discovery of gold at Sutter’s Mill in northern California, east of Sacramento, kick started the California Gold Rush. In 1850, California was granted statehood and its first 27 counties were established.

City of El Segundo

The following discussion draws from the Energy Commission staff’s FSA for the El Segundo Energy Center (CEC 2002).

The City of El Segundo began as a “melon patch” and in 1911 was surveyed by representatives of the Standard Oil Company. The community was called “El Segundo” because it was the second Standard Oil Refinery location in Southern California. The City of El Segundo was incorporated in 1917 and developed into an industrial center when the farming activities gave way to commercial development, eventually including an airfield and other commercial ventures (ESPR 2001:4).

El Segundo is located within the lands of the historic Rancho El Sausal Redondo, a 25,000-acre Mexican Period land grant originally granted to Ygnacia Abila in 1837 (ESPR 2001:4). The rancho remained in Abila’s family for 10 years following his death (d. 1868) and, in 1868, the property was sold to Robert Burnett. Daniel Freeman, who leased the rancho from Burnett, eventually purchased the property in 1882. Freeman was successful in raising grains, citrus, and other “truck” crops, including melons. Freeman sold the majority of the rancho by 1886, including the lands currently occupied by the City of El Segundo.
The arrival of the Standard Oil refinery in 1911 had a profound effect on the development of early El Segundo. The company almost immediately became the primary employer of the community, resulting in a reference to the “Standard Oil Payroll Town” (ESPR 2001:5). Residential housing was constructed shortly after the founding of the refinery and privately owned businesses were established throughout the area. Services were established along Richmond Street, El Segundo’s first business district. At the time of incorporation, El Segundo had a population of 1,000.

The El Segundo Land and Improvement Company began surveying, grading, and development in 1911, installing curbs, sidewalks, and subdividing 1,470 acres. By 1912, many of the lots had sold, but only nine had been developed. The residential housing boom in El Segundo began with incorporation in 1917. C. D. Goldthwaite, a Los Angeles Contractor, proposed to build “… whole blocks of stock houses from shelf-worn plans …” without proliferating a “cookie cutter” design (ESPR 2001:6).

From the onset, the commercial enterprises of El Segundo concentrated on Richmond Street, rather than the adjacent Main Street. Numerous small, wood framed commercial buildings on Richmond on two blocks between Ballona (later El Segundo Boulevard) and the Pacific Electric tracks (Grand). Most of these structures were destroyed in a fire (ca. 1917), resulting in a redevelopment using bricks rather than wood. City Hall was constructed at Richmond and Franklin (1918) with an annex in 1926. This building was destroyed in the 1933 Long Beach Earthquake. By 1921, eleven buildings were reconstructed on Richmond Street. Other streets were developed in the 1920s and early 1930s, resulting on a commercial core for the city. The three major streets within this core were Richmond Street, Main Street, and Grand (ESPR 2001:7–8).

The 1930s brought the beginnings of the Los Angeles Airport (originally Mines Field) and the aerospace industry to El Segundo—including Douglas Aircraft (1928), Northrup (1932) and North American Aviation (1935). Hughes Aircraft arrived in the 1950s, supplementing the post-World War II military presence in the area (ESPR 2001:10).

Steam Generation Plants in the United States

In 1879, the Brush Plant in San Francisco was the first central generating station on the west coast to produce and distribute electricity on demand to customers. Prior to Thomas Edison’s invention of the incandescent electric light bulb in 1879, only the electric arc system was available, which turned out to be unsafe for indoor use. Edison is also known for improving the generation and distribution systems for electricity, which truly opened up the consumer market. This “central station” concept was to become the cornerstone of the electric utility industry. (Myers 1983:11.)

Hydroelectric power was the dominant form of electric generation in California in 1920. By 1940, it grew to 89 percent of the market in California. However, by 1960, steam generating plants became the primary source of electricity in California as hydroelectric generation had fallen to 27 percent. (JRP 2013:4–5.)

Southern California Edison Company

The Southern California Edison Company (SCE) acknowledges three early predecessors; Holt and Knupp, the Santa Barbara Electric Light Company, and one
individual entrepreneur. Holt and Knupp, later known as the Visalia Electric Light and Gas Company, were responsible for lighting the streets of Visalia in 1886 as part of their Visalia Iron and Agricultural Works. (Myers 1983:13–14.) The Santa Barbara Electric Light Company was founded by General Samuel W. Backus 1886 and on March 15, 1887 the company began providing power to homes, businesses, and hotels that had subscribed to the service as well as street lighting downtown (Myers 1983:17). The third predecessor of the SCE began when Charles R. Lloyd leased the power privileges at the Riverside Water Company’s irrigation canal; near Highgrove the canal dropped 50 feet at one point and Lloyd planned to use this fall to generate electricity (Myers 1983:19). Eventually Lloyd would incorporate his venture as the San Bernardino Electric Company (Myers 1983:20). Shortly after the steam powered systems in Visalia and Santa Barbara and the hydro powered system in Highgrove went online several other electric utilities began service and by the 1890s electric service was fairly wide-spread (Myers 1983:21–22). Initially power plants used direct current dynamos, which were limiting because the electricity could only travel about 3 miles, restricting the area that could be served. The introduction of alternative current dynamos extended this distance considerably and Almanrian William Decker’s (San Antonio Light and Power engineer in the early 1890s) invention of the oil-filled transformer that allowed the step-up, step-down transformation of current allowed distribution over long distances (Myers 1983:22, 24, 26). In a matter of months in 1892 and 1893, electric technology and the electric utility industry were revolutionized by two hydroelectric power plants in Southern California; the San Antonio plant proved the commercial feasibility of long-distance distribution, and the Mill Creek plant is where the three-phase alternating current technology first appeared (Myers 1983:31). The Mill Creek plant continues to operate today. In 1894 the Los Angeles Edison Electric Company was formed to obtain a license from General Electric, Thomas Edison’s company, to use the Edison name and patents in the Los Angeles area. In 1897, it merged with the West Side Lighting Company under the name the Edison Electric Company of Los Angeles (Myers 1983:37). As technology and the customer based allowed the company grew. In 1901, John Barnes Miller became president; he was responsible for negotiating a number of mergers with the goal of creating a regional system (Myers 1983:40).

After World War II, steam-generated electricity underwent a significant expansion. Beginning in 1948, with the construction of Redondo Beach Steam Station, and over the ensuing several decades, ten new multiple unit oil and gas-fired power plants came on line at coastal and inland sites in Southern California. Seven of these were Edison projects and three were Calelectric (California Electric Power Company) projects. (Myers 1983:208–209.) Calelectric’s system was merged into Edison’s on January 1, 1964 (Myers 1983:205).

Post-War Electric Power Generation in the United States and California
“The pent-up demand for electricity and electrical appliances after World War II sent utility companies scurrying for capacity. Usage jumped 14% between 1946 and 1947, but power firms could not get enough equipment to meet demand as labor troubles at manufacturers and reconversion to a peace-time economy stalled deliveries. But as the immediate post-war constraints alleviated themselves, the growth rate slowed to about 8% per year nationally from between 1947 and 1973. At this rate, utilities doubled the amount of electricity sold every nine-to-ten years.” (Hirsh 2002.)
As noted in the previous subsection (“Southern California Edison Company”), SCE expanded and built many plants in the post-war years to accommodate the demand for electricity. The following plants were built in rapid-fire succession in Southern California: Etiwanda (1951), Redondo Beach Plant No. 2 (1952), El Segundo (1955), and Alamitos (1955). New units were added to all of these plants in the ensuing years into the mid-sixties. (JRP 2013:9.)

These new units constructed in the fifties and sixties were very similar to each other in design (JRP 2013:9). They evidenced that a transition had been made from indoor steam generating plants, with the components housed in architectural shells, to largely outdoor facilities generally lacking architectural merit or pretense. This is particularly evident at ESEC, Etiwanda, Alamitos and Huntington Beach. This is less evident at Redondo, where the original 1948 Plant 1, housed in an architectural shell in a defined style (Art Moderne) based on pre-WW2 standards, transitions to the later Plants 2 and 3 with less architectural embellishment and more open construction.

El Segundo Energy Center

The original facilities at ESEC were comprised of two units, Units 1 & 2, built in 1953-1956. Units 3 & 4 were added in 1963 and 1964. All units were converted to natural gas in the 1970s. SCE sold the units to the NRG in 1998, about the same time that SCE sold most of its other gas-fired steam plants. Units 1 and 2 were removed and replaced with Units 5, 6 and 7, nearing completion in 2014 (AES 2013a; ESP 2000:1-2; JRP 2013:10–12.)

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

METHODS AND THRESHOLDS FOR DETERMINING SIGNIFICANCE

Regulatory Context

California Environmental Quality Act (CEQA)

Various laws apply to the evaluation and treatment of cultural resources. CEQA requires the Energy Commission to evaluate resources by determining whether they meet several sets of specified criteria. These evaluations then influence the analysis of potential impacts to the resources and the mitigation that may be required to ameliorate any such impacts.

CEQA and the State CEQA Guidelines define significant cultural resources under two regulatory definitions: historical resources and unique archaeological resources. A historical resource is defined as a “resource listed in, or determined to be eligible by the State Historical Resources Commission, for listing in the CRHR”, or “a resource listed in a local register of historical resources or identified as significant in a historical resource survey meeting the requirements of Section 5024.1(g) of the Public Resources Code,” or “any object, building, structure, site, area, place, record, or manuscript which a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or
cultural annals of California, provided the agency’s determination is supported by substantial evidence in light of the whole record.” (14 Cal. Code Regs., §15064.5[a].) Historical resources that are automatically listed in the CRHR include California historical resources listed in or formally determined eligible for the National Register of Historic Places (NRHP) and California Registered Historical Landmarks from No. 770 onward (Pub. Resources Code, §5024.1[d]).

Under CEQA, a resource is generally considered to be historically significant if it meets the criteria for listing in the CRHR. These criteria are essentially the same as the eligibility criteria for the NRHP. In addition to being at least 50 years old, a resource must meet at least one (and may meet more than one) of the following four criteria (Pub. Resources Code, §5024.1):

- Criterion 1, is associated with events that have made a significant contribution to the broad patterns of our history;
- Criterion 2, is associated with the lives of persons significant in our past;
- Criterion 3, embodies the distinctive characteristics of a type, period, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
- Criterion 4, has yielded, or may be likely to yield, information important to history or prehistory.

In addition, historical resources must also possess integrity of location, design, setting, materials, workmanship, feeling, and association (14 Cal. Code Regs., §4852[c]).

Even if a resource is not listed or determined to be eligible for listing in the CRHR, CEQA allows the lead agency to make a determination as to whether the resource is a historical resource as defined in Public Resources Code, sections 5020.1(j) or 5024.1.

In addition to historical resources, archaeological artifacts, objects, or sites can meet CEQA’s definition of a unique archaeological resource, even if it does not qualify as a historical resource (14 Cal. Code Regs., §15064.5[c][3]). Archaeological artifacts, objects, or sites are considered unique archaeological resources if “it can be clearly demonstrated that, without merely adding to the current body of knowledge, there is a high probability that it meets any of the following criteria:

1. Contains information needed to answer important scientific research questions and that there is a demonstrable public interest in that information.
2. Has a special and particular quality such as being the oldest of its type or the best available example of its type.
3. Is directly associated with a scientifically recognized important prehistoric or historic event or person.” (Pub. Resources Code, §21083.2[g].)

10 The Office of Historic Preservation (OHP 1995:2) endorses recording and evaluating resources over 45 years of age to accommodate a five-year lag in the planning process.
To determine whether a proposed project may have a significant effect on the [cultural resources] environment, staff analyzes the proposed project’s potential to cause a substantial adverse change in the significance of historical or unique archaeological resources. The significance of an impact depends on:

- The cultural resource affected;
- The nature of the resource’s historical significance;
- How the resource’s historical significance is manifested physically and perceptually;
- Appraisals of those aspects of the resource’s integrity that figure importantly in the manifestation of the resource’s historical significance; and
- How much the impact will change those integrity appraisals.

At Title 14, California Code of Regulations, section 15064.5(b), the State CEQA Guidelines define a substantial adverse change as “physical demolition, destruction, relocation or alteration of the resource or its immediate surroundings such that the significance of an historical resource would be materially impaired.”

National Register of Historic Places

Staff’s analysis in this section of the PSA focuses on assessing whether the proposed amendment would result in impacts on historical resources or unique archaeological resources under CEQA. However, the project owner previously evaluated the ESEC for significance under the NRHP criteria, and its recent reevaluation of the resource also applied these criteria (see “Historic Built Environment Survey” below). Therefore, staff provides a discussion of the NRHP criteria immediately below.

The National Historic Preservation Act (NHPA) of 1966 authorized the creation of the NRHP, which contains the federal government’s list of buildings, structures, objects, site, and districts that it considers significant in American history, architecture, engineering, archaeology, and culture (16 U.S.C., §470[a][1][A]). Properties eligible for inclusion in the NRHP must meet one or more of the significance criteria defined below.

- **Criterion A:** Properties associated with events that have made a significant contribution to the broad patterns of American history.
- **Criterion B:** Properties associated with person significant in the American past.
- **Criterion C:** Properties that embody distinctive characteristics of a type, period, or method of construction, or are the work of a master, or possess high artistic values, or represents a significant and distinguishable entity whose components may lack individual distinction.
- **Properties that yield or may yield information important in prehistory or history. (36 C.F.R., §60.4.)**

In addition to meeting one of the criteria listed above, a property must retain historical integrity. The NRHP assesses seven aspects of historical integrity:
• Location: The place where the historic property was constructed or the place where the historic event occurred.
• Design: The combination of elements that create the form, plan, space, structure, and style of a property.
• Materials: The physical elements that were combined or deposited during a particular period of time and in a particular pattern or configuration to form a historic property.
• Workmanship: The physical evidence of the crafts of a particular culture of people during any given period in history or prehistory.
• Setting: The physical environment of a historic property.
• Feeling: A property’s expression of the aesthetic or historic sense of a particular period of time.
• Association: The direct link between an important historic event or person and a historic property. (36 C.F.R., §60.4.)

It is unnecessary for a property to retain all seven aspects of integrity, but a property must retain those essential aspects that convey its significance. When the integrity of a property is being evaluated, the property should also be compared with similar properties. Such comparisons may be important for determining the physical features that are essential for conveying the historical significance of a property. (Little et al. 2000:35–36.)

Certain property types are usually excluded from consideration of listing in the NRHP but may be included if they meet special requirements in addition to the regular criteria as follows (Andrus 2002; Sherfy and Luce 1998):

• Consideration A: Religious Properties
• Consideration B: Moved Properties
• Consideration C: Birthplaces and Graves
• Consideration D: Cemeteries
• Consideration E: Reconstructed Properties
• Consideration F: Commemorative Properties
• Consideration G: Properties that have Achieved Significance within the Last Fifty Years.

Historical Resources Inventory

The development of the inventory of historical resources in and near the proposed ESPFM is the requisite first step in the assessment of whether the project might, under Public Resources Code, section 21084.1, cause a substantial adverse change in the significance of a historical resource, and might, therefore, have a significant effect on the environment. The effort to develop the inventory has involved conducting a sequence of investigatory phases that includes background research, consulting with local Native American communities, field visits, interpreting the results of the inventory effort, as a whole, and evaluating whether found cultural resources are historically
significant. This section discusses the methods and the results of each inventory phase, develops the historical resources inventory for the analysis of the proposed project, and interprets the inventory to assess how well it represents the cultural resources of the PAA.

PROJECT AREA OF ANALYSIS

The PAA is a concept that staff uses to define the geographic area in which the proposed project has the potential to affect cultural resources. The effects that a project may have on cultural resources may be immediate, further removed in time, or cumulative. They may be physical, visual, auditory, or olfactory in character. The geographic area that would encompass consideration of all such effects may or may not be one uninterrupted expanse. It may include the project area, which would be the site of the proposed plant (project site), the routes of requisite transmission lines and water and natural gas pipelines, and other offsite ancillary facilities, in addition to one or several discontiguous areas where the project could be argued to potentially affect cultural resources.

Staff defines the PAA as comprising (a) the proposed project site, (b) the 10-inch-diameter water line, and (c) the construction parking and laydown areas. Additionally, staff will define a historic built environment, or historic architectural PAA, once the project owner provides staff with the records search results. The PAA for the built environment for projects in urban areas typically includes the project and properties of historic age within a one-parcel boundary. These typically require new surveys and evaluation to determine eligibility for listing as historical resources on the CRHR. Linears are normally evaluated by way of a reconnaissance survey along the proposed routes (20 Cal. Code Regs., §1704[b][2], Appendix B[g][2][C]).

No excavation is required or proposed within the architectural study area (outside the proposed project site). Demolition and excavation are proposed within the project site, however, to variable depths. Although the depths of excavation for some components of the proposed project are unknown, the project owner expects demolition and construction-related excavation to reach as deep as 21 feet below the current ground surface. The depths of excavation are shown in Cultural Resource Table 2 and define the vertical limits of the PAA.

For ethnographic resources, the area of analysis takes into account sacred sites, traditional cultural properties (places), and larger areas such as ethnographic landscapes that may be far-ranging, including views that contribute to the historical significance of such historical resources. The NAHC assists project cultural resources consultants and staff in identifying these resources, and consultation with Native Americans and other ethnic or community groups may contribute to defining the area of analysis. For the proposed ESEC, staff identifies the ethnographic resources PAA as coterminous with the archaeological PAA.
Cultural Resources Table 2

Depth of Excavation by Project Component

<table>
<thead>
<tr>
<th>Project Component</th>
<th>Maximum Depth of Excavation</th>
<th>Depth of Previous Excavation</th>
<th>Depth of Fill</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking lot</td>
<td>1.5 feet</td>
<td>Up to 21 feet</td>
<td>Up to 21 feet thick</td>
<td>ESEC 2013b:Figure CR-1</td>
</tr>
<tr>
<td>Access road</td>
<td>3.5 feet</td>
<td>Unknown</td>
<td>Unknown</td>
<td>ESEC 2013b:Figure CR-1</td>
</tr>
<tr>
<td>Operations and maintenance building</td>
<td>≥ 15 feet</td>
<td>Unknown</td>
<td>Up to 21 feet</td>
<td>ESEC 2013b:Figure CR-1</td>
</tr>
<tr>
<td>Natural gas compression station/Fuel gas compressor building</td>
<td>Unknown</td>
<td>4–10 feet</td>
<td>4–10 feet</td>
<td>ESEC 2013a:2-7, Figure 1-2b; ESEC 2013b:Figure CR-1</td>
</tr>
<tr>
<td>10-inch reclaim water pipeline</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>ESEC 2013a:2-11</td>
</tr>
<tr>
<td>Forwarding pump</td>
<td>3 feet</td>
<td>Unknown</td>
<td>Unknown</td>
<td>ESEC 2013a:2-11; ESEC 2013c:53–54</td>
</tr>
<tr>
<td>Demolish and remove Units 3 and 4</td>
<td>5–20 feet</td>
<td>8.00–14.75 feet</td>
<td>Unknown</td>
<td>ESEC 2013b:Figure CR-1; Project Description</td>
</tr>
<tr>
<td>Construct new units</td>
<td>Up to 21 feet</td>
<td>8.00–14.75 feet</td>
<td>8.00–14.75 feet</td>
<td>ESEC 2013b:Figure CR-1; Project Description</td>
</tr>
<tr>
<td>Remove and remediate ESEC retention basins</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>ESEC 2013a:1-1</td>
</tr>
<tr>
<td>Once-through-cooling plug</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Project Description</td>
</tr>
</tbody>
</table>

Note: The Project Description in this PSA states that the once-through-cooling plug would be designed and constructed similar to those for the Discharge 001 tunnels for Units 1 and 2 as part of the 2007 dry cooling amendment.

Background Research

The background research for staff’s analysis typically employs information that the project owner and staff gathered from literature and record searches, and information that staff obtained as a result of consultation with local Native American communities and the City of El Segundo. In the present case, the project owner is in the process of conducting an updated records search for the proposed amendment. Until the results of the records search are provided to staff, it is unable to characterize previous cultural
resources in the PAA studies in and adjacent to the project site, as well as known cultural resources in the PAA. The background information is necessary to formulate the initial cultural resources inventory for the present analysis, to identify information gaps, and to inform the design and the interpretation of the field research that will serve to complete the inventory. Staff will present this information in the FSA.

A partial assessment of previous cultural resource studies and known cultural resources is provided in the following subsections, based on previous analyses on the proposed project site. This partial assessment draws from staff assessments of the removal of Units 1 and 2, and additional improvements to the power facility, conducted in 2002 and 2010 (CEC 2000, 2010).

Literature Review and Records Search

The literature review and records search portion of the background research attempts to gather and interpret documentary evidence of the known cultural resources in the project area of analysis.

Records Search

Recent information about previous cultural resources studies and known cultural resources in the project vicinity—combined with an understanding of local-area prehistory, ethnography, and history—is essential to analyze the potential impacts of a proposed project on cultural resources. The State of California’s authoritative repository of previous cultural resource studies and known cultural resources is the California Historical Resources Information System (CHRIS). The CHRIS divides its records among several regional information centers; the South Central Coastal Information Center (SCCIC) houses the cultural resources records for Los Angeles, Orange, and Ventura counties.

The Introduction to this section of the PSA establishes that resources as young as 45 years old at the time of analysis receive consideration as cultural resources under CEQA and the Energy Commission’s project siting review. Each passing year admits more cultural resources into the 45–50-year benchmark for potential significance (especially common with historic built environment) and possibly witnesses additional cultural resource studies. In addition, previous studies and cultural resources record forms also provide much of the local context for prehistoric, ethnographic, and historic resources—information that is often lacking in summary data sources and regional, published sources. Therefore, it is imperative that the project owner provides staff with the results of a records search not older than 1 year. The Energy Commission’s power plant siting regulations describe the information needed in the records search results:

> The results of a literature search to identify cultural resources within an area not less than a 1-mile radius around the project site and not less than one-quarter (0.25) mile on each side of the linear facilities. Identify any cultural resources listed pursuant to ordinance by a city or county, or recognized by any local historical or archaeological society or museum.

11 Local-area prehistory, ethnography, and history is defined as within no more than a 5-mile radius of the project location (20 Calif. Code Regs., §1704[b][2], Appendix B[g][2][A]).
Literature searches to identify the above cultural resources must be completed by, or under the direction of, individuals who meet the Secretary of the Interior’s Professional Standards for the technical area addressed.

Copies of California Department of Parks and Recreation (DPR) 523 forms (Title 14 CCR §4853) shall be provided for all cultural resources (ethnographic, architectural, historical, and archaeological) identified in the literature search as being 45 years or older or of exceptional importance as defined in the National Register Bulletin Guidelines (36 CFR 60.4(g)).

A copy of the USGS [U.S. Geological Survey] 7.5’ quadrangle map of the literature search area delineating the areas of all past surveys and noting the California Historical Resources Information System (CHRIS) identifying number shall be provided.

Copies also shall be provided of all technical reports whose survey coverage is wholly or partly within .25 mile of the area surveyed for the project under Section (g)(2)(C), or which report on any archaeological excavations or architectural surveys within the literature search area. (20 Calif. Code Regs., §1704, Appendix B[g][2][B].)

At present, staff does not have a recent, adequately documented records search for the proposed amendment to the ESEC decision. The project owner did not conduct a records search in support of the PTA (ESEC 2013a:Section 3.3). Previous records searches conducted in support of activities at the ESEC were conducted too long ago to be relied upon for the present analysis: October 9, November 1, and November 8, 2000; and March 2007 (CEC 2002:4.3-8; Wesson et al. 2000:18; White et al. 2008:3). Staff does not possess copies of these records searches, nor figures depicting the complete records search results, because the project owner has not provided these materials.

The out-of-date records searches referenced above indicate that 20 cultural resource studies had been conducted in the original PAA or within the 0.50-mile buffer searched around the project site and 0.25-mile buffer searched around temporary staging areas and off-site linear facilities (CEC 2002:4.3-8; Wesson et al. 2000:18, Table J-1; White et al. 2008:3). From Wesson et al. (2000:Table J-1), staff can determine that seven of the 20 previous studies were conducted in some portion of the 2000 PAA and may cover portions of the current PAA (Briuer 1976; Bucknam 1974; D’Altroy 1975; Leonard 1975; Peak & Associates 1992; Raschke and Bissell 1995; Woodward 1987), seven were conducted within the records search buffers (Altschul 1990; Altschul et al. 1992; Dillon et al. 1988; Leonard 1974; Neuenschwander 1989; Peak 1990; Woodward-Clyde Consultants 1993), and six studies’ locations are unknown (Anonymous n.d.; Gervais 1978; Levine 1969; Myra L. Frank 1987; Wlodarski 1986, 1987).

The previous records searches did not identify cultural resources in the original project area. Four archaeological resources (CA-LAN-47, CA-LAN-1698, CA-LAN-2345, and CA-LAN-2386/H) were identified within 0.25 mile of the original project area (Wesson et al. 2000:19–20); these four resources are not located within the current PAA.

The importance of obtaining an updated records search is further underscored by two factors: 1) construction associated with the proposed amendment has the potential to
intersect soils or sediments containing buried cultural resources, and 2) subsurface historic archaeological materials have been identified during construction monitoring at the project site (see end of this paragraph). Regarding the potential to encounter buried cultural resources in the PAA, Cultural Resources Table 2 shows that the depth of excavation associated with some components of the proposed amendment are unknown, or that the depth of fill in areas proposed for excavation is unknown. With the project information presently available to staff, the staff sees that construction-related excavation could encounter soils and sediments that have not been disturbed by construction and that might contain cultural resources. Demonstrable potential to encounter buried cultural resources while excavating is evidenced by three discoveries of historic archaeological materials during construction at the project site: a Pepsi bottle manufactured in 1957, two soda bottles made between 1951–1958, and a glass ink bottle dating between 1922 and the 1940s. (Seipel 2012a, 2012b, 2012c). The applicant has informed staff that the final cultural resources report for archaeological monitoring of construction will describe additional artifactual finds.

In light of the foregoing information, staff submitted to the project owner Data Request 78 on August 12, 2013, summarized as follows.

Staff found that previous records searches on the project site are insufficient for staff’s analytical purposes, for two reasons. First, the records searches conducted for the project site were conducted seven and 13 years ago (Wesson et al. 2000:18, Figure J-2, Attachment B; White and White 2007:5). Additional cultural resources studies might have been conducted in the project vicinity and new cultural resources identified as a consequence. Second, since 2007, Energy Commission siting regulations have required project owners to conduct records searches for a minimum of 1 mile—rather than the 0.5-mile buffer from the proposed project site and a minimum of 0.25 mile from proposed linear facilities. (20 Cal. Code Regs., Appendix B (following Art. 6), §(g)(2)(B); see also § 1704, subd. (b)(2)). Accordingly, staff requested the project owner in Data Request 78 to conduct a records search at the SCCIC and provide staff with the search results, following the requirements at Title 20, California Code of Regulations, Appendix B (CEC 2013b:25).

The project owner responded to Data Request 78 on September 12, 2013. The project owner stated that the records search requirements have been met as part of the ESEC 2000 Application for Certification (AFC) and the subsequent records search completed in 2007 because the project site was previously disturbed and therefore there is no potential for impacts to cultural resources. (ESEC 2013b:51.)

Staff held a publicly noticed data request workshop in Sacramento on October 1, 2013. At the workshop, staff, the project owner, and the project owner’s representatives discussed staff’s rationale for requesting an updated records search for the proposed amendment. By the conclusion of the meeting, the project owner committed to conducting the records search. At the project owner’s request, staff emailed the project owner a summary of Data Request 78’s requirements on November 19, 2013. The email indicated that the project owner’s records search response to Data Request 78 must contain 1) a copy of records search map(s) at a scale of 1:24,000 or 7.5-minute, 2) copies of previous cultural resource studies and recorded cultural resources according
to criteria in Appendix B of the Energy Commission’s Siting Regulations, and 3) a summary of the records search results (CEC 2013c).

The project owner provided a revised response to Data Request 78 on January 20, 2014. The project owner’s response states that a records search was conducted on December 5, 2013 at the SCCIC. The records search covered the ESEC site and a 1-mile radius surrounding it. The project owner indicates that two cultural resource studies have been conducted on the project site since 2007 and six additional cultural resource studies have been conducted in a 1-mile radius. No new cultural resources were identified as a result of the records search. The project owner explicitly stated that they did not provide staff with a copy of the records search map “because no additional resources were located by this search.” The project owner’s data response identifies the two new, previous studies conducted on the project site as cultural resources assessments for the installation of new cell tower antennae. The project owner does not describe the other six new studies. The project owner identifies the studies solely by author, year of publication, and SCCIC study number; no further information on the studies is provided (ESEC 2014:2, Table DR78-1.)

Staff finds that the project owner’s response to Data Request 78 is inadequate for staff’s analytical needs. The project owner failed to provide staff with maps depicting the location of previous cultural resources studies and known cultural resources. This omission alone has severe implications for staff’s analysis, especially considering that staff does not possess the results of the 2000 and 2007 records searches, and therefore has no comprehensive mapping of previous studies or resources in the project vicinity. Additionally, the omission of records search maps leaves it unclear whether the December 5, 2013 records search also included any offsite staging or laydown areas that would be used for the proposed amendment. The project owner’s failure to provide copies of Department of Parks and Recreation (DPR) 523 forms for previously recorded cultural resources and specific types of cultural resources reports (as described in staff’s data request, email correspondence, and Appendix B of the Energy Commission’s siting regulations) leaves staff without information about local-area cultural resources—a significant analytical gap. Staff does not assess the existing cultural resources setting or analyze the effects that a proposed project might have on cultural resources in the abstract. The distribution of different types of cultural resources, the landforms on which they were found, the circumstances under which they were discerned, and the methods and survey coverage of previous studies are essential to a meaningful impact analysis, and all require the analyst (staff, in this case) to possess accurate locations for previous studies and known resources, as well as specific information about these phenomena. Staff respectfully requests that the project owner:

- Confirm that the 2013 records search encompassed all project components, including any offsite staging/laydown areas.
 - If not, contract a cultural resources consultant to conduct a records search for areas not already searched.
- Provide copies of DPR 523 forms for all cultural resources (ethnographic, architectural, historical, and archaeological) identified in the literature search as
being 45 years or older or of exceptional importance as defined in the NRHP (36 CFR 60.4(g)).

- Provide a copy of the USGS 7.5-minute quadrangle map of the literature search area delineating the areas of all past surveys and noting the CHRIS identifying number.

- Provide copies of all technical reports whose survey coverage is wholly or partly within 0.25 mile of the area surveyed for the project under Title 20, California Code of Regulations, Section 1704 (b)(2), Appendix B(g)(2)(C), or which report on any archaeological excavations or architectural surveys within the literature search area.

Additional Literature Review

Staff reviewed literature relating to project-area ethnographic and historic built environment resources; staff has not conducted research into local-area archaeological resources, pending the receipt of records search results from the project owner. Staff reviewed some records on the CRHR for CRHR or NRHP-eligible or listed historic built environment properties within an approximate 1-mile radius of the ESEC.

The purpose of this research was to obtain a visual understanding of the natural and cultural development of the land in and around the PAA and identify locations of potential historic built environment and ethnographic resources.

Native American Consultation

Methods

Native American Heritage Commission

The Governor's Executive Order B-10-11, executed on September 19, 2011, directs state agencies to engage in meaningful consultation with California Indian Tribes on matters that may affect tribal communities. The California Resources Agency has adopted a Final Tribal Consultation Policy on November 20, 2012. The recently adopted policy extols informed decision making by collaboratively working with tribes to seek positive, achievable, and durable outcomes. The Energy Commission Siting Regulations require applicants to contact the NAHC for information on Native American sacred sites and a list of Native Americans interested in the project vicinity. The applicant is then required to notify the Native Americans on the NAHC’s list about the project and include a copy of all correspondence with the NAHC and Native Americans and any written responses received, as well as a written summary of any oral responses in the AFC (20 Calif. Code Regs., §1704[b][2], Appendix B[g][2][D]).

The NAHC is the primary California government agency responsible for identifying and cataloging Native American cultural resources, providing protection to Native American human burials and skeletal remains from vandalism and inadvertent destruction, and preventing irreparable damage to designated sacred sites and interference with the expression of Native American religion in California. It also provides a legal means by which Native American descendents can make known their concerns regarding the need for sensitive treatment and disposition of Native American burials, skeletal remains, and items associated with Native American burials.
The NAHC maintains two databases to assist cultural resources specialists in identifying cultural resources of concern to California Native Americans, referred to by staff as Native American ethnographic resources. The NAHC’s Sacred Lands database has records for areas, places, sites and objects that Native Americans consider sacred or otherwise important, such as cemeteries and gathering places for traditional foods and materials. Their Contacts database has the names and contact information for individuals, representing a group or themselves, who have expressed an interest in being contacted about development projects in specified areas.

Results

Results of Inquiries Made to NAHC and NAHC-listed Native American Entities

Staff requested information on the presence of sacred lands in the vicinity of the proposed project, as well as a list of Native Americans to whom inquiries should be sent to identify both additional cultural resources and any concerns the Native Americans may have about the proposed project.

Staff contacted the NAHC on September 11, 2013, and requested a search of the Sacred Lands File and a Native American contacts list. The NAHC responded on September 19, 2013, with a list of Native Americans interested in consulting on development projects in the project area. A check of the NAHC sacred lands files resulted in negative findings within the project site. Staff sent letters to all of the NAHC-listed tribes on September 30, 2013, inviting them to comment on the proposed project and offered to hold face-to-face consultation meetings if any tribal entities so requested. Follow-up phone calls were made by staff on October 2, 2013. Subsequent email and phone conversations also occurred on October 7 and 8, 2013. Staff received several comments from tribal entities that tribal monitors should be required during project ground disturbing activities.

Consultation with Others

Staff consulted with the City of El Segundo with regards to the history of the area and locally listed historical resources.

Cultural Resources Distribution Models

One critical use of the information drawn together during the background research for a cultural resources analysis is to inform the design and the interpretation of the field research that will complete the cultural resources inventory for the analysis. A further role of background research is to help develop predictive or anticipatory models of the distribution of cultural resources across the PAA. Such models of the types of archaeological, ethnographic, and built-environment resources, and the patterns of their distribution across and beneath the surface of the landforms of the PAA, provide the means to tailor more appropriate research designs for the field investigations that will complete a cultural resources inventory, and help gauge the degree to which the results of those investigations may reflect the actual population of archaeological, ethnographic, and built-environment resources in the PAA. Such models also provide important contexts for the ultimate interpretation of the results of those investigations.
Models of the distribution of prehistoric archaeological sites, of ethnographic resources, and of historical archaeological sites and built-environment resources are developed here and draw on information above in the “Environmental Setting,” “Prehistoric Setting,” “Ethnographic Setting,” and “Historic Setting” subsections, in addition to the above information in the “Background Research” subsection. Staff formulated data requests during the discovery phase of the present certification process on the basis these models to ensure the collection of enough information to factually support the conclusions of this analysis. The discussions in the “Interpretation of Results” subsection below also employ the models.

Model of Ethnographic Resources

Ethnography fulfills a supporting role for other anthropological disciplines as well as contributions on its own merits. Ethnography provides a supporting role to the discipline of archaeology by providing a cultural and historic context for understanding the people that are associated with the material remains of the past. By understanding the cultural milieu in which archaeological sites and artifacts were manufactured, utilized, or cherished, this additional information can provide greater understanding for identification efforts, making significance determinations per the NHPA or CEQA; eligibility determinations for the NRHP or the CRHR; and for assessing if and how artifacts are subject to other cultural resources laws, such as the Native American Graves Protection and Repatriation Act.

In addition, ethnography has merits of its own by providing information concerning ethnographic resources that tend to encompass physical places, areas, or elements or attributes of a place or area. Ethnographic resources have overlap and affinity to historic preservation property types referred to as cultural landscapes, traditional cultural properties, sacred sites, heritage resources, historic properties, or historical resources that are areas or places, and specific historic property or historical resource types of sites, objects, buildings, structures, districts, areas or places. There is notable overlap in terminology when referring to ethnographic resources. Studies that focus on specific ethnographic resource types may also take on names such as ethnogeography, ethnobotany, ethnozoology, ethnosemantics, ethnomusicology, etc. In general, the ethnographic endeavor attempts to minimize human conflict by facilitating an iterative cross-cultural understanding and, by extension, self-awareness.

While several definitions of ethnographic resources can be found in historic preservation literature, the National Park Service (NPS) provides the most succinct and commonly used definition (NPS 2007:Chapter10):

> Ethnographic resources are variations of natural resources and standard cultural resource types. They are subsistence and ceremonial locales and sites, structures, objects, and rural and urban landscapes assigned cultural significance by traditional users. The decision to call resources “ethnographic” depends on whether associated peoples perceive them as traditionally meaningful to their identity as a group and the survival of their life ways.
Ethnographic Methods

Ethnographic methods, when applied to projects of limited size and scope involve four steps.\(^\text{12}\)

Step 1 involves reviewing the project description and mapped project location and, based upon the geographic and environmental setting, formulate preliminary guiding questions that may be asked of people with cultural affiliation to the project area.

Step 2 involves contacting, informally discussing with, (or formally interviewing) people whom might have a cultural relationship or affiliation to a given area.

As Step 2 is being conducted, a parallel Step 3 involves archival “search, retrieve, and assess” process that should be undertaken to provide supporting or conflicting information to what is being discovered through the discussion process. In addition to archive, book store, and other informational repositories (e.g., the internet), the people themselves or other ethnographers with previous experiences with the same people, may provide source materials. Findings in Step 3 may require a repetition of Step 2.

Step 4 involves field visit(s) that are intended to help the ethnographer triangulate between what people currently say, what people have written in the past, and what is actually or perceived to be in the project vicinity as a potential ethnographic resource.

Preliminary Guiding Questions

Based upon the project description and project location maps two preliminary Guiding Questions were developed.

- Research specific Gabrielino Tongva procurement and usage of resources found in Southern California coastal environments and specifically the area near El Segundo.
- Research the history of Gabrielino Tongva settlements in the coastal area near the project area and specifically research the Island Gabrielino Tongva affiliations with mainland settlement in the coastal area at and immediately north and south of the project area.

As documented previously in this cultural resources section (Native American Consultation), staff made effort to make preliminary contact with Gabrielinos and affiliated with the project area. One meeting was held with a representative of the Gabrielino Tongva Nation who expressed a need to have Native American monitors present during ground disturbing activities.

Because staff did not identify ethnographic resources in the PAA, and because tribal responses were minimal, staff did not conduct ethnographic interviews with tribal people.

\(^{12}\) See Pelto (2013:Chapter 16) for an overview of applied ethnographic methods for conducting focused inquiry conducted in limited timeframes.
Archival Research
Staff made efforts to seek, obtain, and assess culturally relevant information from various archival sources. Information specifically sought related to the relation between Island and mainland Gabrieleno Tongva. The Bowers Museum, located in Santa Ana, California, was visited to view Gabrieleno Tongva cultural material on display. The California History Room of the California State Library, located in Sacramento, was also used for retrieving ethnographic information beyond what was provided in the Smithsonian's Handbook of North American Indians, Volume 8, California, “Gabrieleno” chapter.

Field Visit
Ethnographic staff visited the project area (see “Staff Site Visit” below).

Ethnographic Method Constraints
Constraints on the ethnographic methods described above were non-existent.

Cultural Resources Inventory Fieldwork
The field efforts to identify cultural resources in the PAA consist of the project owner’s historic built-environment survey, and a staff field visit to the proposed project site. These efforts resulted in the identification of one historic built-environment resource, the El Segundo Energy Center (previously known as the El Segundo Generating Station). On the basis of the background research, consultation, and the results of the current field effort, the total cultural resources inventory for the PAA consists of one built-environment resource. Note that the cultural resources inventory of the PAA is incomplete at this juncture because the project owner has not provided staff with the records search documentation, as described previously in this section of the PSA.

This section discusses the methods and the results of each field inventory phase and interprets the resultant inventory relative to the cultural resources distribution models above to assess how well the inventory represents the archaeology of the project vicinity. Descriptions of each cultural resource in the inventory, evaluations of the eligibility of each resource for inclusion in the CRHR, assessments of project impacts on each known historical resource, consideration of and potential impacts on archaeological resources that may lie buried on the project site, and proposed mitigation measures for significant impacts may be found in the “California Register of Historical Resources Eligibility” and “Identification and Assessment of Direct Impacts on Built- Environment Resources and Proposed Mitigation” subsections below.

Staff Site Visits
Staff archaeologist, Gabriel Roark, and staff ethnographer Thomas Gates conducted a site visit of the ESEC on October 8, 2013. Staff met with on-site environmental compliance manager Scott Seipel; the Cultural Resources Specialist for then-ongoing construction at the ESEC, Robert S. White; and project manager Robert Mason of CH2M Hill, consultant to the project owner. Mr. Seipel provided a tour of the ESEC, and in tandem with Mr. White, provided information about the depth of previous excavations and other disturbance within the bounds of the ESEC. This information is summarized in Cultural Resources Table 2. In addition, Mr. White, who observed most or all construction-related excavation in the most recent phases of work at the ESEC, stated
that it is difficult to visually distinguish imported fill from native, undisturbed sand (Robert White, personal communication, 2013).

Built environment staff Melissa Mourkas visited the project site, met with on-site environmental compliance manager Scott Seipel, and completed a visual reconnaissance survey of the adjacent parcels, and the laydown and parking areas on February 14, 2014.

Results of Ethnographic Resources Investigations

Staff research and site visit leads staff to suggests that any ethnographic resources that may be in the project vicinity are likely to not be in the project site, because the project site is predominately located on an ocean side bluff and areas just above the present day surf line. However, the coastline in this area is dynamic and shifts and there is always the possibility of inadvertent discoveries in such dynamic beach and ocean side bluff environments.

As a result of ethnographic research, staff concludes that there are no known ethnographic resources that will be impacted by the proposed project.

Historic Built Environment Survey

Methods

The project owner commissioned a historic built environment survey of the project site in response to staff Data Request 82 (see CEC 2013b:26). JRP Historical Consulting conducted the historic built-environment survey on November 25, 2013. Fieldwork methods appear to have consisted of photographic documentation, visual inspection, field notes, and conversations with on-site environmental compliance manager Scott Seipel. (JRP 2013:2.)

The El Segundo Energy Center has been evaluated and recorded (JRP 2013) in accordance with the CEQA Guidelines and the implementing regulations of Section 106 of the NHPA (14 Calif. Code Regs., §§15064.5 (a)(2)–(3); 36 C.F.R., §800). A discussion of the resource follows.

Results

The inventory of cultural resources in a PAA is the collective result of archival and literature research, discussions with local governments and public interest groups, and field investigations conducted both by staff and the project owner.

El Segundo Energy Center

The petitioner provided an updated evaluation of the El Segundo Energy Center’s (ESEC’s) built environment features in response to staff’s Data Request 82 (JRP 2013; LL 2013). The conclusion was reached that ESEC does not appear to meet the criteria for listing in either the NRHP or the CRHR and thus does not qualify as an historical resource for the purposes of CEQA. The resources that were evaluated are listed below in Cultural Resources Table 2.
This updated evaluation was required as the original evaluation, prepared in October 2000, did not address the ESEC structures that have now become historic in age. At the time, the ESEC property was evaluated under NRHP Criterion Consideration G, which allows for evaluation of properties less than 50 years old for “exceptional importance”. It was concluded in 2000 that the ESEC was “not exceptionally significant within the context of the development of SCE or as a steam power plant from the post-war era” (JRP 2013:i). The evaluation completed in 2000 primarily focused on Plants 1 and 2 and found them ineligible for listing on the NRHP and CRHR (JRP 2000:15–19). Units 1 and 2 have been demolished and new facilities built to replace them.

ESEC (historically known as El Segundo Generating Station, or ESGS) Units 3 and 4 are the primary focus of the investigation, as they date to 1964–1965, placing them within the historic age period of 45 years or older (under NRHP guidelines). As of 2014, the plants are now 50 years old. Ancillary structures are also included in the evaluation (see Cultural Resources Table 2 above).

The evaluation concludes that ESEC is “not significant within the context of electric power generation, steam power plants or the history of SCE (Criterion 1/A)”. The plant is one of many built at that time and is very similar in design and “does not stand out as particularly important within the SCE system” (JRP 2013:24).

The evaluation concludes that to be eligible under Criterion B/2, ESEC would need to be associated with a significant person and this does not appear to be the case. Built as an outdoor, steam generating power plant similar in design to many others built at that time, ESEC does not appear to have any unique characteristics that would make it eligible under Criterion 3/C. It does not appear to provide the opportunity to be a potential source of important information in history under Criterion D/4. (JRP 2013:24.)

Staff concurs with the conclusion above that the ESEC is not eligible for listing on the NRHP or the CRHR for the reasons given in the evaluation. This concurrence is
preliminary and subject to change if additional information comes to light upon receipt of the literature search records, or other new information. The FSA will contain the final conclusions on the assumption that the information requested in the literature search is received and with sufficient time for staff to review.

Interpretation of Results

At the time of this writing, staff is unable to interpret the results of the historical resources inventory because staff has not received the information necessary to conduct the inventory and analysis. Staff is working with the project owner to obtain this information and is obtaining additional data of its own volition; the FSA will present staff’s interpretation of the results.

DIRECT/INDIRECT IMPACTS AND MITIGATION

In the abstract, direct impacts to cultural resources are those associated with project development, construction, and operation. Construction usually entails surface and subsurface disturbance of the ground, and direct impacts to archaeological resources may result from the immediate disturbance of the deposits, whether from vegetation removal, vehicle travel over the surface, earth-moving activities, excavation, or demolition of overlying structures. Construction can have direct impacts on historic standing structures when those structures must be removed to make way for new structures or when the vibrations of construction impair the stability of historic structures nearby. New structures can have direct impacts on historic structures when the new structures are stylistically incompatible with their neighbors and the setting, and when the new structures produce something harmful to the materials or structural integrity of the historic structures, such as emissions or vibrations.

Generally speaking, indirect impacts to archaeological resources are those which may result from increased erosion due to site clearance and preparation, or from inadvertent damage or outright vandalism to exposed resource components due to improved accessibility. Similarly, historic structures can suffer indirect impacts when project construction creates improved accessibility and vandalism or greater weather exposure becomes possible.

Ground disturbance accompanying construction at a proposed plant site has the potential to directly impact archaeological resources, unidentified at this time. The potential direct, physical impacts of the proposed construction on unknown archaeological resources are commensurate with the extent of ground disturbance entailed in the particular mode of construction. This varies with each component of the proposed project. Placing the proposed plant into this particular setting could have a direct impact on the integrity of association, setting, and feeling of nearby standing historic structures.

Staff has not received the data necessary to analyze the potential impacts of the proposed amendment on cultural resources. The FSA will contain staff’s analysis of potential impacts associated with construction, operation and maintenance, indirect consequences, facility closure, and cumulative effects, as might apply to cultural resources.
COMPLIANCE WITH LORS

Lacking the information necessary to analyze the potential impacts of the proposed amendment, staff is unable to determine whether the proposed amendment complies with the laws, ordinances, regulations, and standards summarized in Cultural Resources Table 1, as pertains to cultural resources.

CONCLUSIONS AND RECOMMENDATIONS

Staff cannot presently assess the proposed amendment’s potential effects on cultural resources. The most fundamental body of information—current CHRIS records search results—about local-area cultural resources is not yet available to staff, hindering staff from forming reliable conclusions about archaeological resource potential in particular. Although the information available to staff concerning ethnographic and historic built-environment resources is substantially more complete, and staff offers a preliminary conclusion that the proposed amendment would not result in a substantial adverse change to these classes of cultural resource, additional data from the records search would have potential to alter this preliminary conclusion.

Staff concurs with the conclusions provided by the petitioner that the ESEC is not eligible for listing on the NRHP or the CRHR for the reasons given in the evaluation (JRP 2013; LL 2013). This concurrence is preliminary and subject to change if additional information comes to light upon receipt of the literature search records or new information. The FSA will contain the final conclusions on the assumption that the information requested in the literature search is received and with sufficient time for staff to review.

Based upon this preliminary conclusion, there will be no impacts to historic built environment resources. Therefore, no mitigation is proposed at this time. The FSA will contain the final discussion of impacts and suggested mitigation, if any, for built environment historic resources.

The following subsection of the PSA, “Conditions of Certification from the Current License”, presents the suite of mitigation measures that staff will modify once it has the information needed to analyze the cultural resource impacts of the proposed amendment. CUL-1 and CUL-2 are administrative conditions that set out who the people are who will implement the balance of the conditions, what the qualifications and roles of those people will be, and the information that the project owner will supply them to help them fulfill those roles. CUL-3 requires the project owner to provide a specific plan (Cultural Resources Mitigation and Monitoring Plan, or CRMMP) to guide construction monitoring and the evaluation and treatment of inadvertently discovered archaeological resources or human remains, in light of what is known about regional prehistoric, ethnography, and history. CUL-5 provides for training of project owner staff and the construction management/implementation team regarding basic cultural resource identification and compliance with these proposed conditions and the provisions of the CRMMP. CUL-6 defines the scope of monitoring by qualified archaeologists and Native Americans, required to implement the CRMMP and other
proposed Conditions. **CUL-7** defines the protocols, responsibilities, and timeframes involved in responding to inadvertent archaeological or human remains discoveries. **CUL-8** describes the manner in which the project owner and the Compliance Project Manager (CPM) are to conduct cultural resources inventory and analysis in the event that the water pipeline proposed under the original ESEC proceeding was realigned to a different route. **CUL-4** requires that the project owner prepare a final report of all cultural resources activities undertaken during construction of the proposed project and the Energy Commission’s responsibility as lead agency to review this document to verify accuracy and complete implementation of the cultural resources mitigation and monitoring program.

CONDITIONS OF CERTIFICATION FROM THE CURRENT LICENSE

DESIGNATED CULTURAL RESOURCES SPECIALIST

CUL-1 Prior to the start of ground disturbance, the project owner shall submit the resume of the proposed Cultural Resources Specialist (CRS), and one alternate CRS, if an alternate is proposed, to the Compliance Project Manager (CPM) for review and approval. The CRS will be responsible for implementation of all cultural resources conditions of certification and may obtain qualified cultural resource monitors (CRMs) to monitor as necessary on the project.

The resume for the CRS and alternate, shall include information that demonstrates that the minimum qualifications specified in the U.S. Secretary of Interior Guidelines, as published at 36 C.F.R., part 61 are met. In addition, the CRS shall have the following qualifications:

a. The technical specialty of the CRS shall be appropriate to the needs of the project and shall include, a background in anthropology, archaeology, history, architectural history or a related field;

b. At least three years of archaeological or historic, as appropriate, resource mitigation and field experience in California; and

c. The resume shall include the names and phone numbers of contacts familiar with the work of the CRS on referenced projects and demonstrate that the CRS has the appropriate education and experience to accomplish the cultural resource tasks that must be addressed during ground disturbance, grading, construction and operation. In lieu of the above requirements, the resume shall demonstrate to the satisfaction of the CPM, that the proposed CRS or alternate has the appropriate training and background to effectively implement the conditions of certification.

CRMs shall meet the following qualifications:

a. A BS or BA degree in anthropology, archaeology, historic archaeology or a related field and one year experience monitoring in California; or
b. An AS or AA in anthropology, archaeology, historic archaeology or a related field and four years experience monitoring in California; or

c. Enrollment in upper division classes pursuing a degree in the fields of anthropology, archaeology, historic archaeology or a related field and two years of monitoring experience in California.

The project owner shall ensure that the CRS completes any monitoring, mitigation and curation activities necessary; fulfills all the requirements of these conditions of certification; ensures that the CRS obtains technical specialists, and CRMs, if needed; and that the CRS evaluates any cultural resources that are newly discovered or that may be affected in an unanticipated manner for eligibility to the California Register of Historic Resources (CRHR).

Verification: The project owner shall submit the resume for the CRS at least 45 days prior to the start of ground disturbance. At least 10 days prior to a termination or release of the CRS, the project owner shall submit the resume of the proposed replacement CRS. At least 20 days prior to ground disturbance, the CRS shall submit written notification identifying anticipated CRMs for the project stating they meet the minimum qualifications required by this condition. If additional CRMs are needed later, the CRS shall submit written notice one week prior to any new CRMs beginning work.

PROJECT MAPS SHOWING GROUND DISTURBANCE

CUL-2: Prior to the start of ground disturbance, the project owner shall provide the CRS and the CPM with maps and drawings showing the footprint of the power plant and all linear facilities. Maps will include the appropriate USGS quadrangles and a map at an appropriate scale (e.g., 1:2000 or 1” = 200’) for plotting individual artifacts. If the CRS requests enlargements or strip maps for linear facility routes, the project owner shall provide copies to the CRS and CPM. If the footprint of the power plant or linear facilities changes, the project owner shall provide maps and drawings reflecting these changes, to the CRS and the CPM for approval. Maps shall identify all areas of the project where ground disturbance is anticipated. If construction of the project will proceed in phases, maps and drawings, not previously submitted, shall be submitted prior to the start of each phase. Written notification identifying the proposed schedule of each project phase shall be provided to the CRS and CPM. At a minimum, the CRS shall consult weekly with the project construction manager to confirm area(s) to be worked during the next week, until ground disturbance is completed. The project owner shall notify the CRS and CPM of any changes to the scheduling of the construction phases.

Verification: The project owner shall submit the subject maps and drawings at least 40 days prior to the start of ground disturbance. If there are changes to any project related footprint, revised maps and drawings shall be provided at least 15 days prior to start of ground disturbance for those changes. If project construction is phased, the project owner shall submit the subject maps and drawings 15 days prior to each phase.
A current schedule of anticipated project activity shall be provided to the CRS on a weekly basis during ground disturbance and also provided in each Monthly Compliance Report (MCR).

The project owner shall provide written notice of any changes to scheduling of construction phases within 5 days of identifying the changes. A copy of the current schedule of anticipated project activities shall be submitted in each MCR.

CULTURAL RESOURCES MONITORING AND MITIGATION PLAN

CUL-3 Prior to the start of ground disturbance, the project owner shall submit the Cultural Resources Monitoring and Mitigation Plan (CRMMP), as prepared by the CRS, to the CPM for approval. The CRMMP shall identify general and specific measures to minimize potential impacts to sensitive cultural resources. Copies of the CRMMP shall reside with the CRS, alternate CRS, each monitor, and the project owner’s on-site manager. No ground disturbance shall occur prior to CPM approval of the CRMMP, unless specifically approved by the CPM. The CRMMP shall include, but not be limited to, the following elements and measures.

1. The following statement shall be added to the Introduction: Any discussion, summary, or paraphrasing of the conditions in this CRMMP is intended as general guidance and as an aid to the user in understanding the conditions and their implementation. If there appears to be a discrepancy between the conditions and the way in which they have been summarized described, or interpreted in the CRMMP, the conditions, as written in the Final Decision, supersede any interpretation of the Conditions in the CRMMP. The cultural resources conditions of certification are attached as an appendix to this CRMMP.

2. A proposed general research design that includes a discussion of research questions and testable hypotheses applicable to the project area. A refined research design will be prepared for any resource where data recovery is required.

3. Specification of the implementation sequence and the estimated time frames needed to accomplish all project-related tasks during ground disturbance, construction, and post-construction analysis phases of the project.

4. Identification of the person(s) expected to perform each of the tasks, their responsibilities; and the reporting relationships between project construction management and the mitigation and monitoring team.

5. A discussion of the inclusion of Native American observers or monitors, the procedures to be used to select them, and their role and responsibilities.

6. A discussion of all avoidance measures such as flagging or fencing, to prohibit or otherwise restrict access to sensitive resource areas that are to be avoided during construction and/or operation, and identification of areas where these measures are to be implemented. The discussion shall address how these measures will be implemented prior to the start of
construction and how long they will be needed to protect the resources from project-related effects.

7. A discussion of the requirement that all cultural resources encountered will be recorded on a DPR Form 523 and mapped (may include photos). In addition, all archaeological materials collected as a result of the archaeological investigations (survey, testing, data recovery) shall be curated in accordance with The State Historical Resources Commission’s “Guidelines for the Curation of Archaeological Collections,” into a retrievable storage collection in a public repository or museum. The public repository or museum must meet the standards and requirements for the curation of cultural resources set forth at Title 36, Code of Federal Regulations, part 79.

8. A discussion of any requirements, specifications, or funding needed for curation of the materials to be delivered for curation and how requirements, specifications and funding will be met. The name and phone number of the contact person at the institution. Include a statement in the discussion of requirements that the project owner will pay all curation fees and that any agreements concerning curation will be retained and available for audit for the life of the project.

9. A discussion of the availability and the designated specialist’s access to equipment and supplies necessary for site mapping, photographing, and recovering any cultural resource materials encountered during construction.

Verification: The project owner shall submit the subject CRMMP at least 30 days prior to the start of ground disturbance. Per ARMR Guidelines the author’s name shall appear on the title page of the CRMMP. Ground disturbance activities may not commence until the CRMMP is approved. At least 30 days prior to ground disturbance, a letter shall be provided to the CPM indicating that the project owner will pay curation fees for any materials collected as a result of the archaeological investigations (survey, testing, data recovery).

CULTURAL RESOURCES REPORT

CUL-4 The project owner shall submit the Cultural Resources Report (CRR) to the CPM for approval. The CRR shall report on all field activities including dates, times and locations, findings, samplings and analysis. All survey reports, DPR 523 forms and additional research reports not previously submitted to the California Historic Resource Information System (CHRIS) shall be included as an appendix to the CRR.

Verification: The project owner shall submit the subject CRR within 90 days after completion of ground disturbance (including landscaping). Within 10 days after CPM approval, the project owner shall provide documentation to the CPM that copies of the
CRR have been provided to the curating institution (if archaeological materials were collected), the State Historic Preservation Officer (SHPO) and the CHRIS.

WORKER ENVIRONMENTAL AWARENESS PROGRAM

CUL-5 Worker Environmental Awareness Program (WEAP) shall be provided, on a weekly basis, to all new employees starting prior to and for the duration of, ground disturbance. The training may be presented in the form of a video.

The training shall include:

1. A discussion of applicable laws and penalties under the law;
2. Samples or visuals of artifacts that might be found in the project vicinity;
3. Information that the CRS, alternate CRS, and CRMs have the authority to halt construction to the degree necessary, as determined by the CRS, in the event of a discovery or unanticipated impact to a cultural resource;
4. Instruction that employees are to halt work on their own in the vicinity of a potential cultural resources find, and shall contact their supervisor and the CRS or CRM; redirection of work will be determined by the construction supervisor and the CRS;
5. An informational brochure that identifies reporting procedures in the event of a discovery;
6. An acknowledgement form signed by each worker indicating that they have received the training; and
7. A sticker that shall be placed on hard hats indicating that environmental training has been completed.

Verification: The project owner shall provide in the Monthly Compliance Report the WEAP Certification of Completion form of persons who have completed the training in the prior month and a running total of all persons who have completed training to date.

CULTURAL RESOURCES MONITORING

CUL-6 The CRS, alternate CRS, or monitors shall monitor ground disturbance full time in the vicinity of the project site, linear facilities and ground disturbance at laydown areas or other ancillary areas to ensure there are no impacts to undiscovered resources and to ensure that known resources are not impacted in an unanticipated manner. In the event that the CRS determines that full-time monitoring is not necessary in certain locations, a letter or e-mail providing a detailed justification for the decision to reduce the level of monitoring shall be provided to the CPM for review and approval prior to any reduction in monitoring. CRMs shall keep a daily log of any monitoring or cultural resource activities and the CRS shall prepare a weekly summary report on the progress or status of cultural resources-related activities. The CRS may informally discuss cultural resource monitoring and mitigation activities with Energy Commission technical staff.
The CRS shall notify the project owner and the CPM, by telephone or e-mail, of any incidents of non-compliance with any cultural resources conditions of certification within 24 hours of becoming aware of the situation. The CRS shall also recommend corrective action to resolve the problem or achieve compliance with the conditions of certification.

Cultural resources monitoring activities are the responsibility of the CRS. Any interference with monitoring activities, removal of a monitor from duties assigned by the CRS or direction to a monitor to relocate monitoring activities by anyone other than the CRS shall be considered non-compliance with these conditions of certification.

A Native American monitor shall be obtained to monitor ground disturbance in areas where Native American artifacts may be discovered. Informational lists of concerned Native Americans and Guidelines for monitoring shall be obtained from the Native American Heritage Commission. Preference in selecting a monitor shall be given to Native Americans with traditional ties to the area that will be monitored.

Verification:

1. During the ground disturbance phases of the project, if the CRS wishes to reduce the level of monitoring occurring at the project, a letter identifying the area(s) where the CRS recommends the reduction and justifying the reductions in monitoring shall be submitted to the CPM for review and approval.

2. During the ground disturbance phases of the project, the project owner shall include in the MCR to the CPM copies of the weekly summary reports prepared by the CRS regarding project-related cultural resources monitoring. Copies of daily logs shall be retained on-site and made available for audit by the CPM.

3. Within 24 hours of recognition of a non-compliance issue, the CRS shall notify the CPM by telephone of the problem and of steps being taken to resolve the problem. The telephone call shall be followed by an e-mail or fax detailing the non-compliance issue and the measures necessary to achieve resolution of the issue. Daily logs shall include forms detailing any instances of non-compliance with conditions of certification. In the event of a non-compliance issue, a report written no sooner than two weeks after resolution of the issue that describes the issue, resolution of the issue and the effectiveness or the resolution measures, shall be provided in the next MCR.

4. One week prior to ground disturbance in areas where there is a potential to discover Native American artifacts, the project owner shall send notification to the CPM identifying the person(s) retained to conduct Native American monitoring. If efforts to obtain the services of a qualified Native American monitor are unsuccessful, the project owner shall immediately inform the CPM who will initiate a resolution process.

DESIGNATED CULTURAL RESOURCE SPECIALIST AUTHORITY

CUL-7 The CRS, alternate CRS and the CRMs shall have the authority to halt construction if previously unknown cultural resource sites or materials are
encountered, or if known resources may be impacted in a previously unanticipated manner. Redirection of ground disturbance shall be accomplished under the direction of the construction supervisor. If such resources are found or impacts can be anticipated, the halting or redirection of construction shall remain in effect until all of the following have occurred:

1. the CRS has notified the project owner, and the CPM has been notified within 24 hours of the find description and the work stoppage;

2. The CRS, the project owner, and the CPM have conferred and determined what, if any, data recovery or other mitigation is needed;

3. Any necessary data recovery and mitigation has been completed.

Verification: At least 30 days prior to the start of ground disturbance, the project owner shall provide the CPM with a letter confirming that the CRS, alternate CRS and CRMs have the authority to halt construction activities in the vicinity of a cultural resource find, and that the CRS or project owner will notify the CPM immediately (no later than the following morning of the incident or Monday morning in the case of a weekend) of any halt of construction activities, including the circumstance and proposed mitigation measures. The project owner shall provide the CRS with a copy of the letter granting the authority to halt.

WATER PIPELINE REALIGNMENT

CUL-8 The route for the water lines shall extend down Grand Avenue to Eucalyptus St. to El Segundo Blvd, which is within the water pipeline study area, bordered by El Segundo Blvd., Loma Vista St., Grand Ave. and Eucalyptus St. (Project owner has conducted a cultural resources assessment in the pipeline study area and within the area defined as the proposed project). If the water lines and associated pipelines are to be located anywhere but in an area originally defined as part of the proposed project, a cultural resource assessment shall be conducted prior to any ground disturbance. The cultural resource assessment shall consist of a records search and a pedestrian survey. This approach gives equal emphasis to prehistoric and historic resources and an evaluation of significance. A Native American monitor from a group with historic ties to the affected area shall be retained as part of the cultural resources team during any surveys or subsurface investigation.

Verification: Forty days prior to the start of any ground disturbance or project site preparation at the newly identified location of the waterlines and associated pipelines, the project owner shall submit the following for approval by the CPM: (1) the results of the records search and the results of the survey; (2) an evaluation, including site records, of all cultural resources within or adjacent to the project Area of Potential Effects; and (3) the information shall also include the name and tribal affiliation of the Native American monitor.
CULTURAL RESOURCES ACRONYM GLOSSARY

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC</td>
<td>Application for Certification</td>
</tr>
<tr>
<td>ARMR</td>
<td>Archaeological Resource Management Report</td>
</tr>
<tr>
<td>asl</td>
<td>above sea level</td>
</tr>
<tr>
<td>B.P.</td>
<td>before present (1950)</td>
</tr>
<tr>
<td>CA</td>
<td>California</td>
</tr>
<tr>
<td>Calif. Code Regs.</td>
<td>California Code of Regulations</td>
</tr>
<tr>
<td>CEC</td>
<td>California Energy Commission</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>C.F.R.</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CHRIS</td>
<td>California Historical Resources Information System</td>
</tr>
<tr>
<td>Conditions</td>
<td>Conditions of Certification</td>
</tr>
<tr>
<td>CPM</td>
<td>Compliance Project Manager</td>
</tr>
<tr>
<td>CRHR</td>
<td>California Register of Historical Resources</td>
</tr>
<tr>
<td>CRM</td>
<td>Cultural Resources Monitor</td>
</tr>
<tr>
<td>CRMMP</td>
<td>Cultural Resources Monitoring and Mitigation Plan</td>
</tr>
<tr>
<td>CRR</td>
<td>Cultural Resource Report</td>
</tr>
<tr>
<td>CRS</td>
<td>Cultural Resources Specialist</td>
</tr>
<tr>
<td>DPR 523</td>
<td>Department of Parks and Recreation cultural resources recordation form</td>
</tr>
<tr>
<td>ESEC</td>
<td>El Segundo Energy Center</td>
</tr>
<tr>
<td>ESGS</td>
<td>El Segundo Generating Station</td>
</tr>
<tr>
<td>ESP</td>
<td>El Segundo Power II</td>
</tr>
<tr>
<td>ESPFM</td>
<td>El Segundo Power Facility Modification</td>
</tr>
<tr>
<td>ESPR</td>
<td>El Segundo Power Redevelopment Project</td>
</tr>
<tr>
<td>FSA</td>
<td>Final Staff Assessment</td>
</tr>
<tr>
<td>HB</td>
<td>City of Huntington Beach</td>
</tr>
</tbody>
</table>
REFERENCES

The tn: 00000 in a reference below indicates the transaction number under which the item is catalogued in the Energy Commission's Docket Unit. The transaction number allows for quicker location and retrieval of individual items docketed for a case or used.
for ease of reference and retrieval of exhibits cited in briefs and used at Evidentiary Hearings.

Anonymous n.d.—Author unknown. *Proposal for Archaeological Investigations in the Area of Hammock Street and Port Drive (VII-L.A.-90, 405); Lincoln Boulevard to Slauson Avenue*. On file, South Central Coastal Information Center, California Historical Resources Information System, Fullerton. Study LA-3898.

ESEC 2013a—El Segundo Energy Center, with CH2M Hill. *El Segundo Energy Center Petition to Amend (00-AFC-14C).* April. On file, Dockets Unit, California Energy Commission, Sacramento. 00-AFC-14C.

HB 1996—City of Huntington Beach. *The City of Huntington Beach General Plan, Community Development Chapter, Historic and Cultural Resources Element*. The City of Huntington Beach, CA.

On file, South Central Coastal Information Center, California Historical Resources Information System, Fullerton. Study LA-1975.

Raschke and Bissell 1995—R. Raschke and R. Bissell. *Paleontological and Archaeological Resources Reconnaissance of the Los Angeles International Airport (LAX) Property, Los Angeles County.* Prepared for Planning Consultants Research, Santa Monica, CA. On file, South Central Coastal Information Center, California Historical Resources Information System, Fullerton.

Schwartz and Vellanoweth 2013—Steven J. Schwartz and René L. Vellanoweth. Lone Woman’s Cave Found on San Nicolas Island. *California Archaeology* 5:391–393.

White et al. 2008—Laura S. White, Robert S. White, and David M. Van Horn. El Segundo Power Redevelopment Project, Cultural Resources Monitoring and

Woodward 1987—Jim Woodward. Archaeological Survey of Manhattan State Beach, Los Angeles County, CA. Prepared for Department of Beaches and Harbors, County of Los Angeles, Marina del Rey, CA. On file, South Central Coastal Information Center, California Historical Resources Information System, Fullerton. Study LA-1625.

SUMMARY OF CONCLUSIONS

California Energy Commission (Energy Commission) staff (staff) evaluated El Segundo Energy Center, LLC (ESEC LLC) proposed modified project also called El Segundo Power Facility Modification (ESPFM) (amendment dated April 23, 2013; NRG 2013a) in terms of hazardous materials use. In the period since the original licensing of this project in 2000, a Petition to Amend (PTA) was filed in 2005, a staff assessment to that Petition was filed in 2005, a Decision was filed in 2005 (CEC 2005a), a second Petition to Amend was filed in 2007, a staff assessment to that Petition was published in 2008, a PTA Supplement to expand the scope of the June 2007 PTA was filed in 2010, and a Decision adopted in 2010 (CEC 2010a). Another PTA was filed in 2012, requesting to modify the ammonia injection rates, eliminate a venturi scrubber, eliminate the ammonia supply pipeline from Chevron, and change the project name to the El Segundo Energy Center (ESEC). These changes were approved by the Energy Commission on August 9, 2012. Because of the substantial and numerous modifications made to this power plant over the past 10 years, the changes to hazardous materials use, locations, and laws, ordinances, regulations, and standards (LORS), and errors in the April 2013 PTA regarding hazardous materials use and storage, staff decided to conduct what is essentially a de novo analysis of hazardous materials use proposed for the modified project.

Additionally, as per LORS requirements, the project owner would be required to update their Risk Management Plan (RMP) for the storage and use of aqueous ammonia and prepare a Spill Prevention, Control, and Countermeasures Plan (SPCC Plan) and Safety Management Plan (SMP). To ensure the adequacy of these plans, existing Condition of Certification HAZ-2 is proposed to be amended to include all three plans and that they are submitted for concurrent review by the City of El Segundo Fire Department (CESFD) Environmental Safety Division and Energy Commission staff.

This Preliminary Staff Assessment (PSA) indicates that with the implementation of staff’s proposed mitigation measures, hazardous materials use at the modified project site would not present a potential for significant impact to the public. Staff proposes six (6) new or revised existing Conditions of Certification to address the safe handling of hazardous materials and site security. With adoption of the proposed conditions of certification, the ESPFM project will comply with all applicable LORS and will not result in any unmitigated significant adverse impacts.

INTRODUCTION

On April 23, 2013, ESEC LLC filed a petition with the Energy Commission requesting to replace utility boiler Units 3 and 4 with one new combined cycle (consisting of a combustion turbine generator (Unit 9), and a one steam turbine generator (Unit 10)) and two simple-cycle combustion turbines (Units 11 and 12) for the ESEC project totaling 449 megawatts (MW) (NRG 2013a). The current amendment proposes the demolition of
the existing steam boiler Units 3 and 4, to be replaced with combined cycle Units 9 and 10, with dry cooling technology, and simple cycle Units 11 and 12.

The proposed project is located within the existing 33-acre site ESEC power plant. The site is located at the southernmost city limit of the city of El Segundo on the coast of the Pacific Ocean, between Dockweiler State Beach and the city of Manhattan Beach, in Los Angeles County. See Project Description Figures 1 and 2.

The purpose of this hazardous materials management analysis is to determine if the ESPFM has the potential to cause significant impacts to the public as a result of the use, handling, storage, or transportation of hazardous materials at the proposed site. If significant adverse impacts to the public are identified, staff must also evaluate the potential for facility design alternatives and additional mitigation measures to reduce those impacts to the extent feasible.

This analysis does not address the potential exposure of workers to hazardous materials used at the proposed facility. Employers must inform employees of hazards associated with their work and provide them with special protective equipment and training to reduce the potential for health impacts associated with the handling of hazardous materials. The Worker Safety and Fire Protection section of this document describes applicable requirements for the protection of workers from these risks.

In this analysis, staff examines plausible potential loss of containment incidents (spills) for the hazardous materials to be used at the proposed facility. The worst case plausible event, regardless of cause, is considered and analyzed to see whether the risk to local populations would be significant. Hazardous material handling and usage procedures are designed to reduce the likelihood of a spill, to reduce its potential size, and to prevent or reduce the potential for impacts of accidental releases off-site. These measures also address the potential for spills to mix with runoff water and be carried offsite. Generally, staff seeks to confirm that the project owner has proposed secondary containment basins for containing liquids, and that volatile chemicals would have restricted movement into the atmosphere after containment.

Various hazardous materials including mineral and lubricating oils, water treatment chemicals, welding gasses, aqueous ammonia (via pipeline), and natural gas will be transported to, stored at, and used at the proposed ESPFM project site. This document addresses all potential impacts associated with the transportation, storage, use, and handling of hazardous materials.

METHODOLOGY AND THRESHOLDS FOR DETERMINING ENVIRONMENTAL CONSEQUENCES

Staff reviewed and assessed the potential for the transportation (including via tanker truck, regular truck, and pipeline), handling, and use of hazardous materials to impact the surrounding community. All chemicals were evaluated. Staff’s analysis addresses the potential impacts on all members of the population including the young, the elderly, and people with existing medical conditions that may make them more sensitive to the
adverse effects of hazardous materials. To accomplish this goal, staff utilizes exposure criteria (both acute and chronic) that are protective of the public.

In order to assess the potential for released hazardous materials to travel off site and affect the public, staff analyzed several aspects of the proposed use of these materials at the facility. Staff recognizes that some hazardous materials must be used at power plants. Therefore, staff conducted its analysis by examining the choice and amount of chemicals to be used, the manner in which the project owner will use the chemicals, the manner by which they will be transported to the facility and transferred to facility storage tanks, and the way the project owner plans to store the materials on site.

Staff reviewed the project owner’s proposed engineering and administrative controls concerning hazardous materials usage. Engineering controls are the physical or mechanical systems, such as storage tanks or automatic shut-off valves, that can prevent the spill of hazardous material from occurring, or which can either limit the spill to a small amount or confine it to a small area. Administrative controls are procedures that will serve to prevent accidents and reduce the potential for impact if they do occur. Both engineering and administrative controls can act to prevent or minimize the need for emergency response actions.

Staff reviewed and evaluated the project owner’s proposed use of hazardous materials as described by the project owner in its Petition to Amend (NRG 2013a). Staff’s assessment followed the five steps listed below:

- Step 1: Staff reviewed the chemicals and the amounts proposed for on-site use as listed in Table 2-14 of the Petition to Amend (NRG 2013a) and determined the need and appropriateness of their use.

- Step 2: Those chemicals proposed for use in small amounts or whose physical state is such that there is virtually no chance that a spill would migrate off site and impact the public were removed from further assessment.

- Step 3: Measures proposed by the project owner to prevent spills were reviewed and evaluated. These included engineering controls such as automatic shut-off valves and different-sized transfer-hose couplings and administrative controls such as worker training and safety management programs.

- Step 4: Measures proposed by the project owner to respond to accidents were reviewed and evaluated. These measures also included engineering controls such as catchment basins and methods to keep vapors from spreading and administrative controls such as training emergency response crews.

- Step 5: Staff analyzed the theoretical impacts on the public of a worst-case spill of hazardous materials, as reduced by the mitigation measures proposed by the project owner. When mitigation methods proposed by the project owner are sufficient, no further mitigation is recommended. If the proposed mitigation is not sufficient to reduce the potential for adverse impacts to an insignificant level, staff will propose additional prevention and response controls until the potential for
causing harm to the public is reduced to an insignificant level. It is only at this point that staff can recommend that the facility be allowed to use hazardous materials.

LAWS, ORDINANCES, REGULATIONS, AND STANDARDS (LORS)

The following federal, state, and local laws and policies apply to the protection of public health and hazardous materials management. Staff’s analysis examines the project’s compliance with these requirements.

Hazardous Materials Management Table 1

Laws, Ordinances, Regulations, and Standards (LORS)

<table>
<thead>
<tr>
<th>Applicable LORS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td></td>
</tr>
<tr>
<td>The Superfund Amendments and Reauthorization Act of 1986 (42 USC §9601 et seq.)</td>
<td>Contains the Emergency Planning and Community Right To Know Act (EPCRA; also known as SARA Title III). This act requires a project that stores specified chemicals greater than designated amounts to inform local communities and first responders with information about the hazards posed so that community response plans can be developed. The requirements of both SARA Title III and the CAA are reflected in the California Health and Safety Code, section 25531, et seq.</td>
</tr>
<tr>
<td>The Clean Air Act (CAA) of 1990 (42 USC 7401 et seq. as amended) risk management plans (42 USC §112(r)</td>
<td>Requires a facility that stores specified chemicals greater than designated amounts to prepare a Risk Management Plan (RMP) that characterizes the hazards posed by the chemicals stored, design and maintain a safe facility, includes an Off-site Consequence Analysis (OCA) and identify steps taken to minimize the consequences of accidental releases, submit that plan to the U.S. EPA and the local authority, and update the plan when new chemicals or processes are added or every 5 years.</td>
</tr>
<tr>
<td>Executive Order 13650 Improving Chemical Safety and Security Aug 1, 2013</td>
<td>This Order directs the federal government to improve the safety and reduce risks to workers and communities posed by facilities that use and store hazardous chemicals. A multi-federal agency Working Group will work with states to identify means by which this can be accomplished and</td>
</tr>
<tr>
<td>49 CFR 172.800</td>
<td>The U.S. Department of Transportation (DOT) requirement that suppliers of hazardous materials prepare and implement security plans.</td>
</tr>
<tr>
<td>49 CFR Part 1572, Subparts A and B</td>
<td>Requires suppliers of hazardous materials to ensure that all their hazardous materials drivers are in compliance with personnel background security checks.</td>
</tr>
<tr>
<td>The Clean Water Act (CWA) (40 CFR 112)</td>
<td>Aims to prevent the discharge or threat of discharge of oil into navigable waters or adjoining shorelines. Requires a written Spill Prevention, Control, and Countermeasures (SPCC) plan to be prepared for facilities that store oil that could leak into navigable waters.</td>
</tr>
<tr>
<td>Federal Register (6 CFR Part 27) interim final rule</td>
<td>A regulation of the U.S. Department of Homeland Security that requires facilities that use or store certain hazardous materials to submit information to the department so that a vulnerability assessment can be conducted to determine what certain specified security measures shall be implemented.</td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>Title 8, California Code of Regulations, section 5189</td>
<td>Requires facility owners to develop and implement effective safety management plans that ensure that large quantities of hazardous materials are handled safely. While such requirements primarily provide for the protection of workers, they also indirectly improve public safety and are coordinated with the RMP process.</td>
</tr>
<tr>
<td>California Health and Safety Code, section 41700</td>
<td>Requires that "No person shall discharge from any source whatsoever such quantities of air contaminants or other material which causes injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public,"</td>
</tr>
<tr>
<td>Applicable LORS</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>California Safe Drinking Water and Toxic Enforcement Act (Proposition 65)</td>
<td>Prevents certain chemicals that cause cancer and reproductive toxicity from being discharged into sources of drinking water.</td>
</tr>
<tr>
<td>Hazardous Material Business Plan, Cal HSC Sections 25500 to 25541</td>
<td>Requires the submittal of a chemical inventory and planning and reporting for management of hazardous materials.</td>
</tr>
<tr>
<td>California Accidental Release Program (CalARP) 19 CCR Sections 2735 to 2785</td>
<td>This is the California equivalent to the Federal RMP program and similarly requires a facility that stores specified chemicals greater than designated amounts (which are different from the federal program) to prepare a RMP that characterizes the hazards posed by the chemicals stored, design and maintain a safe facility, includes an Off-site Consequence Analysis (OCA) and identify steps taken to minimize the consequences of accidental releases, submit that plan to the U.S. EPA and the local authority (CUPA), and update the plan when new chemicals or processes are added or every 5 years.</td>
</tr>
<tr>
<td>Hazardous Substance Information and Training Act, 8 CCR Section 339; Section 3200 et seq., 5139 et seq., and 5160 et seq.</td>
<td>Requires listing and implementation of specified control measures for management of hazardous substances.</td>
</tr>
<tr>
<td>California HSC Sections 25270 through 25270.13</td>
<td>Requires the preparation of a Spill Prevention, Control, and Countermeasures (SPCC) Plan if 10,000 gallons or more of petroleum is stored on-site. The above regulations would also require the immediate reporting of a spill or release of 42 gallons or more to the California Office of Emergency Services and the Certified Unified Program Authority (CUPA).</td>
</tr>
<tr>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>City of El Segundo Fire Department, Environmental Safety Division, Municipal Code Title 5 Chapter 5</td>
<td>The City of El Segundo Fire Department (CESFD), Environmental Safety Division is the CUPA (Certified Unified Program Authority) and therefore regulates RMPs (Article A) and Underground Storage Tanks (Article B) which govern hazardous materials release response plans, inventories, and storage tanks.</td>
</tr>
</tbody>
</table>

The Certified Unified Program Authority (CUPA) with the responsibility to review the Hazardous Materials Business Plan (HMBP) and RMP is the El Segundo Fire Department, Environmental Safety Division. Construction and design of buildings and vessels storing hazardous materials will meet the appropriate seismic requirements of the 2013 California Building Code and the 2013 California Fire Code.
PROPOSED MODIFIED PROJECT

ESEC LLC, a wholly owned subsidiary of NRG Energy, Inc. (NRG), proposes to make substantial changes to the ESEC. Primary changes include the demolition and replacement of two once-through-cooled natural gas-fired utility boiler units (Units 3 and 4), with one new combined cycle generator (Unit 9 combustion turbine and Unit 10 steam turbine generator) and two simple-cycle gas turbines (Units 11 and 12). This change will eliminate the use of ocean water for once-through cooling at the facility. The proposed changes would also upgrade and improve the ESEC’s existing and approved site infrastructure, provide fast start and dispatch flexibility capabilities to support Southern California grid load balancing and renewable energy integration, and implement improvements to coastal access. See Project Description Figures 3, 4, 5, 6 and 7.

Specific changes proposed through this PTA include:

- Shutdown and demolition of Units 3 and 4;
- Removal and remediation of existing ESEC retention basins;
- Construction of a new, combined administration, maintenance, and operations support building;
- Modifications to existing site access; and
- Improvements to beach access.

The following new major equipment would be installed:

- Unit 9 - One fast start combustion turbine in a combined-cycle configuration, rated at 222 MW net, incorporating a General Electric natural gas combustion turbine generator designed to achieve 75 percent of base load output in 10 minutes;

- As part of the combined cycle, one two-pressure, duct-fired heat recovery steam generator (HRSG) designed for rapid startup with conventional selective catalytic reduction system (SCR)/carbon monoxide (CO) catalysts;

- As part of the combined cycle, Unit 10 - One single-case, non-reheat axial exhaust admission condensing steam turbine generator (STG) rated at 112 MW and designed for non-traditional elevated condensing pressure to minimize cooling system size;

- One Heller dry cooling tower system;

- Units 11 and 12 - Two Rolls Royce Trent 60 generators, rated at a nominal 55 MW/unit net, consisting of advanced aeroderivative simple-cycle gas turbines; and

- One Cleaver Brooks auxiliary boiler consisting of a direct contact spray condenser and a mechanically-induced-draft dry-cooling tower.
SETTING AND EXISTING CONDITIONS

Several factors associated with the area in which a project is to be located affect the potential for an accidental release of a hazardous material that could cause public health impacts. These include:

- local meteorology;
- terrain characteristics; and,
- location of population centers and sensitive receptors relative to the project.

METEOROLOGICAL CONDITIONS

Meteorological conditions, including wind speed, wind direction, and air temperature, affect both the extent to which accidentally released hazardous materials would be dispersed into the air and the direction in which they would be transported. This affects the potential magnitude and extent of public exposure to such materials, as well as their associated health risks. When wind speeds are low and the atmosphere stable, dispersion is severely reduced, but can lead to increased localized public exposure.

Recorded wind speeds and ambient air temperatures are described in Appendix C of the Petition to Amend (NRG 2013a).

TERRAIN CHARACTERISTICS

The location of elevated terrain is often an important factor in assessing potential exposure. An emission plume resulting from an accidental release may impact high elevations before impacting lower elevations. The topography of the site is mostly flat with elevated terrain beginning to the east and south directly on the other side of the facility fence line (NRG 2013a).

LOCATION OF EXPOSED POPULATIONS AND SENSITIVE RECEPTORS

The general population includes many sensitive subgroups that may be at greater risk from exposure to emitted pollutants. These sensitive subgroups include the very young, the elderly, and those with existing illnesses. In addition, the location of the population in the area surrounding a project site may have a major bearing on health risk. There are sensitive receptors within a 3-mile radius of the project site. The nearest sensitive receptor is the El Segundo High School located about 1.1 miles north by north east of the project site and El Segundo Middle School is located one and one-third miles to the northeast. There are many residences just beyond the facility fence line to the south and within less than ½ mile of the project site north by northeast of the project fence line.

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

SMALL QUANTITY HAZARDOUS MATERIALS

In conducting the analysis, staff determined in Steps 1 and 2 that some hazardous materials, although present at the proposed facility, pose a minimal potential for off-site
impacts since they will be stored in a solid form or in smaller quantities, have low mobility, or have low levels of toxicity. These hazardous materials, which were eliminated from further consideration, are briefly discussed below.

During the construction phase of the project, hazardous materials proposed for use include the same type and amount as in the approved ESPFM project. These include paint, solvents, gasoline, diesel fuel, motor oil, lubricants, and welding gases (Table 2-14, NRG 2013a). No acutely toxic hazardous materials will be used on site during construction for construction, and none of these materials pose significant potential for off-site impacts as a result of the quantities on site, their relative toxicity, their physical state, and/or their environmental mobility. Any impact of spills or other releases of these materials will be limited to the site because of the small quantities involved, their infrequent use (and therefore reduced chances of release), and/or the temporary containment berms used by contractors. Petroleum hydrocarbon-based motor fuels, mineral oil, lube oil, and diesel fuel are all very low volatility and represent limited off-site hazards even in larger quantities.

During operations, hazardous chemicals such as cleaning agents, water treatment chemicals, welding gasses, oils, and other various chemicals (see Hazardous Materials Appendix B for a list of chemicals proposed to be used and stored at ESEC during operations) would be used and stored in relatively small amounts and represent limited off-site hazards because of their small quantities, low volatility, and/or low toxicity. Some hazardous materials, such as Chel Clean 665 Chelating Agent (an aqueous solution of EDTA – Ethylenediaminetetraacetic acid), although present in large amounts (in this case a maximum of 89,000 lbs. stored in a poly tank), the use and handling of EDTA is widespread in the power generation industry and poses no risk of an off-site consequence. On-site workers will be adequately protected from the irritative effects of the chemical and thus no further evaluation was deemed necessary. The same holds true for other large quantity hazardous materials that pose no risk of off-site consequences should a spill occur including 40,500 gal of lubricating oil stored in an above-ground tank and 88,000 gal of Mineral Oil stored in transformers on the site. (Note that these two petroleum hydrocarbons pose a risk of spill and fire and spills are addressed by the SPCC Plan while fire protection is addressed in the section on Worker Safety and Fire Protection.)

The modified project will be limited to using, storing, and transporting only those hazardous materials listed in Appendix B of this section as per staff’s proposed Condition of Certification HAZ-1.

After removing from consideration those chemicals that pose no risk of off-site impact in Steps 1 and 2, staff continued with Steps 3, 4, and 5 to review the remaining hazardous materials: natural gas and aqueous ammonia.

LARGE QUANTITY HAZARDOUS MATERIALS

Natural Gas

Natural gas poses a fire and/or possible explosion risk because of its flammability. Natural gas is composed of mostly methane, but also contains ethane, propane,
nitrogen, butane, isobutene, and isopentane. It is colorless, odorless, tasteless, and lighter than air. Natural gas can cause asphyxiation when methane is 90 percent in concentration. Methane is flammable when mixed in air at concentrations of 5-14 percent, which is also the detonation range. Natural gas, therefore, poses a risk of fire and/or possible explosion if a release occurs under certain specific conditions. However, it should be noted that, due to its tendency to disperse rapidly, natural gas is less likely to cause explosions than many other fuel gases such as propane or liquefied petroleum gas, but can explode under certain confined conditions (as demonstrated by the natural gas detonation in Belgium in July 2004 and in San Bruno, California in September 2010).

While natural gas will be used in significant quantities, it will not be stored on site. It will continue to be delivered by the Southern California Gas Company (SoCal Gas) via an existing pipeline. The use of existing ESEC natural gas supply pipelines removes the need to modify the SoCal Gas system into or on the site.

The risk of a fire and/or explosion on site can be reduced to insignificant levels through adherence to applicable codes and the development and implementation of effective safety management practices. The National Fire Protection Association (NFPA) code 85A requires both the use of double-block and bleed valves for gas shut off and automated combustion controls. These measures will significantly reduce the likelihood of an explosion in gas-fired equipment. Additionally, start-up procedures would require air purging of the gas turbines prior to start up, thereby precluding the presence of an explosive mixture. The SMP proposed by the project owner would address the handling and use of natural gas, and would significantly reduce the potential for equipment failure because of either improper maintenance or human error.

Staff concludes that existing LORS are sufficient to ensure minimal risks of pipeline failure off-site or on-site.

On June 28, 2010, the United States Chemical Safety and Hazard Board (CSB) issued Urgent Recommendations to the United States Occupational Safety and Health Administration (OSHA), the NFPA, the American Society of Mechanical Engineers (ASME), and major gas turbine manufacturers to make changes to their respective regulations, codes, and guidance to require the use of inherently safer alternatives to natural gas blows for the purposes of pipe cleaning. Recommendations were also made to the fifty states to enact legislation applicable to power plants that prohibits flammable gas blows for the purposes of pipe cleaning. In accordance with those recommendations, staff proposes new Condition of Certification HAZ-4 which prohibits the use of flammable gas blow for pipe cleaning at the facility either during construction or after the start of operations. All fuel gas pipe purging activities shall vent any gases to a safe location outdoors, away from workers and sources of ignition. Fuel gas pipe cleaning and purging shall adhere to the provisions of NFPA 56, the Standard for Fire and Explosion Prevention During Cleaning and Purging of Flammable Gas Piping Systems, with special emphasis on sections 4.3.1 (written procedures for pipe cleaning and purging) and 6.111 (prohibition on the use of flammable gas for cleaning or purging at any time).
Aqueous Ammonia

Aqueous ammonia will be used to control the emission of oxides of nitrogen (NOx) from the combustion of natural gas at the ESEC and control of pH. Aqueous ammonia (29 percent) will be stored in one 20,000 gal double walled underground storage tank (UST). Two other aqueous ammonia (19 percent) totes will be used at two locations on-site for pH control. The accidental release of aqueous ammonia without proper mitigation can result in significant down-wind concentrations of ammonia gas.

Aqueous ammonia (29 percent) will be delivered via tanker to fill the existing 20,000 gallon double-walled UST while aqueous ammonia (19 percent) will be delivered by truck to fill the respective totes at Unit 5-8 for ESEC and Units 9 and 10 for GE Fast-start combustion turbine. The 20,000 gallon UST is located near the entrance to the facility and is approximately five (5) feet below grade, with the bottom of the tank located about 20 feet below grade. The UST area is enclosed by a fenced area located near the entrance of the plant. The top of the UST is capped with concrete; a small driveway leads to the UST area from the plant entrance road and is used for offloading aqueous ammonia during deliveries and accessing for routine inspections/maintenance. No berm/curbed area encompass the top of the UST at the tanker off-loading point. A release during filling would migrate off the pad onto gravel and soil at the perimeter of the pad. The tanker truck connects via a flexible hose to the inlet and to vapor ports and this hose line from the tanker can immediately be manually shut off if a problem or spill occurs. El Segundo Generating Station has been under the oversight of the CUPA (El Segundo Fire Department) for inspections and RMP reviews and updates since this system has been in service, pre licensing of the El Segundo Power Redevelopment Project.

The two ammonia totes (350 gallon capacity each, made of stainless steel and having secondary containment to control spills) storing 19 percent ammonia were installed to provide pH control to Units 6 and 8 boiler feed. These stainless steel totes were recently manufactured and installed at the site and are currently being commissioned as of the date of this PSA. These totes replace smaller temporary totes that have supported ESEC during its initial operating months. In the near future, another 350 gallon tote with secondary containment will be installed to support pH control for the GE Fast-Start combined cycle unit.

The use of aqueous ammonia can result in the formation and release of toxic gases in the event of a spill even without interaction with other chemicals. This is a result of its moderate vapor pressure and the volume of aqueous ammonia that will be used and stored on site. However, the use of aqueous ammonia poses far less risk than the use of the far more hazardous anhydrous ammonia (ammonia gas that is not diluted with water).

To assess the potential impacts associated with an accidental release of aqueous ammonia, staff uses four bench mark exposure levels of ammonia gas occurring offsite. These include:

- the lowest concentration posing a risk of lethality of 2,000 ppm;
• the immediately dangerous to life and health level of 300 ppm;
• the emergency response planning guideline level 2 of 150 ppm; and,
• the level considered by the Energy Commission staff to be without serious adverse effects on the public for a one-time exposure of 75 ppm (considered by staff to be a level of significance – see Appendix A).

If the potential exposure associated with a potential release exceeds 75 ppm at any public receptor, staff assumes that the potential release poses a risk of significant impact. Staff would then assess the probability of occurrence of the release and/or the nature of the potentially exposed population in determining whether the likelihood and extent of potential exposure are sufficient to support a finding of potentially significant impact and if so, will propose mitigation to reduce the impact to a level of less than significant.

At this site, several factors influence staff’s review and proposed mitigation including the fact that the nearest off-site public receptors are the beach immediately to the west, homes located immediately across the street to the south of the facility fence line (and therefore very near the aqueous ammonia tank location), and traffic on Vista Del Mar Blvd located immediately to the east of the facility fence line and also that the tank storing 29 percent aqueous ammonia is double-walled and below ground (which provides significant mitigation).

A RMP is required by the Cal-ARP Program for the storage and use of large quantities of aqueous ammonia. The current RMP was prepared in January 2013 and assessed a worst-case release scenario of 277 gallons of 29.4 percent ammonia occurring at the lowest point in the aboveground pipeline (i.e., the bottom of the site access road) where it is most likely to result in the greatest volume release and an alternative release scenario of a catastrophic rupture of the Units 3 & 4 Pipeline with two UST supply pumps operating at full capacity [7 gallons per minute (gpm)] and that goes undetected for 15 minutes before the Control Room shuts off the pumps (a highly unlikely scenario) thus resulting in a spill of 435 gal aqueous ammonia.

Using the RMP*Comp model, a most conservative model that, although allowed by law to be used, staff finds to be very unrealistic and not at all useful for determining the potential for significant risks under California Environmental Quality Act (CEQA), the project owner found that ammonia could reach offsite at significant airborne concentrations (200 ppm or greater) of up to 0.2 miles, an area that would include the beach and Vista Del Mar Blvd. but not the homes to the south. The RMP did not assess the level considered by the Energy Commission staff to be without serious adverse effects on the public for a one-time exposure, 75 ppm but staff requested the petitioner to perform such an analysis.

The project owner conducted an Offsite Consequence Analysis (OCA) using the EPA-approved ALOHA air dispersion model. Staff reviewed the input variables and reviewed two maps showing the extent of the 75 ppm contour developed for the same two accidental release scenarios included in the January 2013 RMP described above. The results show that similar to the 200 ppm contours, an airborne concentration of 75 ppm
would reach off-site onto the beach area, Vista Del Mar Blvd., the Chevron Refinery property, and would also reach the homes located in a portion of the El Porto residential neighborhood of the City of Manhattan Beach to the south of the power plant.

Staff has considered the potential impact of an ammonia release on motorists driving on Vista Del Mar Blvd. and the public using the beach to the west. Staff believes that since the wind direction is almost always from the west to the east and thus away from the beach, and that motorists driving on Vista Del mar Blvd. would experience only a fleeting very short-term exposure to ammonia, and that any spill would be rapidly controlled, the impact of an aqueous ammonia spill on drivers or beach-goers, although noticeable by smell, would be less than significant.

However, in reviewing the potential impact on nearby residents, staff decided to conduct its own OCA using Aloha. First staff attempted to duplicate the results found by the project owner. Staff was able to do this and thus verify that impacts could reach into the El Porto residential neighborhood to the south. Staff however, disagrees that two of the input variables – air temperature and atmospheric stability class --- used by the project owner were indeed “worst case” meteorological conditions. The project owner assumed a maximum high air temperature of 110° F and stability class C. Although staff was able to confirm that the maximum high temperature recorded for El Segundo was indeed 110° F, staff disagrees that stability class C is an appropriate “worst case” variant. Staff instead conducted a second air dispersion model using a lower air temperature of 70° F and stability class F, a condition that could readily occur in the late evening or early morning in the El Segundo area. The results show that a release of 29.4 percent aqueous ammonia could potentially cause an airborne concentration of 75 ppm far into the nearby El Porto residential area.

Accordingly, staff proposes mitigation to reduce this potential impact on the off-site public to a less than significant level. Staff proposes three options in proposed new Condition of Certification HAZ-6 for the project owner to implement. Implementing any one of these options would prevent a spill of 29.4 percent aqueous ammonia from having any significant impact to off-site public. These options include engineering controls to prevent spills or limit the extent of spills of aqueous ammonia grate and that drains to a subsurface sump.

Additionally, staff is proposing that the project owner prepare and implement a Spill Capture Plan that includes procedures and methods to cover, contain, and remove any spilled 29.4 percent aqueous ammonia from the ground, trench, sump, or portable spill container within a time-frame of not less than 30 minutes. It is proposed that the project owner provide the design drawings and Spill Capture Plan to the CPM for review and approval within 30 days of a Decision to approve the amendment and that the plan be implemented within sixty (60) days after receiving approval from the CPM.

The ESEC LLC would be required to update their plan and develop and implement an SMP for the delivery of liquid and gaseous materials if staff’s proposed revision of existing Condition of Certification HAZ-2 is adopted.
MITIGATION
Staff believes that this project’s use of hazardous materials poses a less than significant risk, but only if mitigation measures are used. The potential for accidents resulting in the release of hazardous materials is greatly reduced by the implementation of a Safety Management Program that includes both engineering and administrative controls. Elements of facility controls and the SMP are summarized below.

Engineering Controls
Engineering controls help to prevent accidents and releases (spills) from moving off site and affecting communities by incorporating engineering safety design criteria in the design of the project. The engineered safety features proposed by the project owner for use at the ESEC project include:

• Storage of small quantity hazardous materials in original, properly labeled containers ("totes");

• construction of secondary containment areas surrounding each of the bulk hazardous materials storage areas or totes or the placement of temporary portable containment structures during delivery designed to contain accidental releases that might happen during storage or delivery plus the volume of rainfall associated with a 25-year, 24-hour storm;

• physical separation of stored chemicals in isolated containment areas in order to prevent accidental mixing of incompatible materials, which could result in the evolution and release of toxic gases or fumes; and,

• installation of a fire protection system for hazardous materials storage areas.

Administrative Controls
Administrative controls also help prevent accidents and releases (spills) from moving off site and affecting neighboring communities by establishing worker training programs, process safety management programs, and complying with all applicable health and safety laws, ordinances, and standards.

A worker health and safety program will be prepared by the project owner and include (but not be limited to) the following elements (see the Worker Safety and Fire Protection section for specific regulatory requirements):

• worker training regarding chemical hazards, health and safety issues, and hazard communication;

• procedures to ensure the proper use of personal protective equipment;

• safety operating procedures for the operation and maintenance of systems utilizing hazardous materials;

• fire safety and prevention; and,
• emergency response actions including facility evacuation, hazardous material spill clean-up, and fire prevention including the preparation of a SMP for the delivery of liquid and gaseous materials (required by proposed new Condition of Certification HAZ-3) and a SPCC Plan (required by proposed revised Condition of Certification HAZ-2).

At the facility, the project owner will be required to designate an individual with the responsibility and authority to ensure a safe and healthful work place. The project health and safety official will oversee the health and safety program and have the authority to halt any action or modify any work practice to protect the workers, facility, and the surrounding community in the event of a violation of the health and safety program.

Staff’s proposed revision to existing Condition of Certification HAZ-1 would ensure that no hazardous material would be used at the facility except as listed in Appendix B to this Preliminary Staff Assessment. Condition of Certification HAZ-1 also requires changes to the allowed list of hazardous materials and their maximum amounts to be approved by the Energy Commission Compliance Project Manager (CPM). Only those that are needed and appropriate would be allowed to be used. If staff feels that a safer alternative chemical can be used, staff would recommend or require its use, depending upon the impacts posed.

Additional administrative controls are required by revised Condition of Certification HAZ-2 (preparation of a HMBP, a RMP, and a SPCC Plan) and proposed new Condition of Certification HAZ-3 (development of a SMP).

On-Site Spill Response

In order to address the issue of spill response, the facility will prepare and implement an emergency response plan that includes information on hazardous materials contingency and emergency response procedures, spill containment and prevention systems, personnel training, spill notification, on-site spill containment, and prevention equipment and capabilities, as well as other elements. Emergency procedures will be established which include evacuation, spill cleanup, hazard prevention, and emergency response.

The presence of oil in a quantity greater than 1,320 gallons will invoke a requirement to prepare a SPCC Plan. The quantity of oil on the site far exceeds this threshold. In addition, pursuant to California HSC Sections 25270 through 25270.13, the ESEC LLC would be required to prepare a SPCC because it will store 10,000 gallons or more of petroleum on-site. The above regulations would also require the immediate reporting of a spill or release of 42 gallons or more to the California Office of Emergency Services and the CUPA (CESFD). An SPCC Plan would be required by Condition of Certification HAZ-2.

TRANSPORTATION OF HAZARDOUS MATERIALS

Various containerized and bulk hazardous materials would be transported to the facility via the truck. While many types of hazardous materials will be transported to the site, staff believes that transport of aqueous ammonia poses the predominant risk associated with hazardous materials transport. It should be noted that previous modeling of spills involving much larger quantities of aqueous ammonia than will be used, stored and
transported to the proposed ESEC (~5,000 gals of 29.4 percent aqueous ammonia delivered via tanker at a time approximately one to two times per week for the UST and ~3000 gals of 19 percent aqueous ammonia via a supply truck once every 3 – 6 months for the totes for pH control) has demonstrated that significant airborne concentrations would occur only at short distances from a spill.

Staff believes it is appropriate to rely upon the extensive regulatory program that applies to the shipment of hazardous materials on California highways to ensure safe handling in general transportation (see Federal Hazardous Materials Transportation Law 49 USC §5101 et seq, DOT regulations 49 CFR subpart H, §172–700, and California Department of Motor Vehicles (DMV) regulations on hazardous cargo). These regulations also address the issue of driver competence.

Based on the environmental mobility, toxicity, the quantities at the site, and the use of an UST and totes, staff concludes that the risk associated with the transportation of hazardous materials to the proposed modified project is less than significant. The risk of a spill while transferring aqueous ammonia from the tanker truck to the UST remains the greatest risk and therefore staff is also proposing in newly proposed HAZ-6 that the project owner provide and utilize a portable spill catchment basin whenever a tanker is off-loading 29.4 percent aqueous ammonia into the underground storage tank so as to capture any spills from the tanker or the transfer hose.

SEISMIC ISSUES

It is possible that an earthquake could cause the failure of hazardous materials storage tanks. An earthquake could also cause failure of the secondary containment system (berms and dikes), as well as the failure of electrically controlled valves and pumps. The failure of all of these preventive control measures might then result in leaks of chemicals or of natural gas that may cause fires or impact the environment.

Information obtained after the January 1994 Northridge earthquake showed that some damage was caused both to several large storage tanks and to smaller tanks associated with the water treatment system of a cogeneration facility. The tanks with the greatest damage, including seam leakage, were older tanks, while the newer tanks only sustained displacements and failures of attached lines. Staff reviewed the impacts of the February 2001, Nisqually earthquake near Olympia, Washington, a state with similar seismic design codes as California. No hazardous materials storage tanks failed as a result of that earthquake. Staff has also reviewed the impacts of the recent earthquakes in Haiti (January 12, 2010; magnitude 7.0) and Chile (February 27, 2010; magnitude 8.8). The building standards in Haiti are extremely lax while those in Chile are as stringent and modern as California seismic building codes. Yet, the preliminary reports show a lack of impact on hazardous materials storage and pipelines infrastructure in both countries. For Haiti, this most likely reflects a lack of industrial storage tanks and gas pipelines; for Chile, this most likely reflects the use of strong safety codes.

Staff also conducted an analysis of the codes and standards which should be followed when designing and building storage tanks and containment areas to withstand a large earthquake. Staff notes that the previously approved project (ESEC) would have been
designed and constructed to the standards of the 2010 California Building Code for Seismic Risk Zone 4 (CEC 2005a) and the modified project (ESPFM) must also meet these seismic design criteria (although the designation of seismic zones has since been discontinued).

Therefore, on the basis of what occurred in Northridge (with older tanks) and the lack of failures during the Nisqually earthquake (with newer tanks) and in the 2010 Chilean earthquake (with rigorous seismic building codes), and given that the construction of ESPFM would comply with stringent California Building Codes, staff determines that tank failures during seismic events are not probable and do not represent a significant risk to the public.

SITE SECURITY

The North American Electric Reliability Corporation (NERC) published Security Guidelines for the Electricity Sector in 2002 (NERC 2002) as well as issued a Critical Infrastructure Protection standard for cyber security (NERC 2009), and the U.S. Department of Energy published a draft Vulnerability Assessment Methodology for Electric Power Infrastructure in 2002 (DOE 2002). The energy generation sector is one of 14 areas of critical Infrastructure listed by the U.S. Department of Homeland Security (DHS). On April 9, 2007, the U.S Department of Homeland Security published, in the Federal Register (6 CFR Part 27), an Interim Final Rule (Chemical Facility Anti-Terrorism Standards or CFATS) requiring facilities that use or store certain hazardous materials to conduct vulnerability assessments and implement certain specified security measures. This rule was implemented with the publication of Appendix A, the list of chemicals on November 2, 2007, and the ESPFM is not proposing to use any material on the list in an amount which would trigger the need for compliance with the CFATS regulation.

However, even though the CFATS regulation does not apply, staff believes that all power plants under the jurisdiction of the Energy Commission should implement a minimum level of security consistent with the guidelines listed here. And although security already exists at this site because it is an operating power plant, staff proposes that the security be reviewed and updated.

In order to ensure that this facility (or a shipment of hazardous material) is not the target of unauthorized access, staff’s proposed Condition of Certification HAZ-5 would require the preparation and implementation of a formal written security plan. This plan would require the implementation of site security measures that are consistent with both the above-referenced documents and Energy Commission guidelines.

The goal of these conditions of certification is to provide the minimum level of security for power plants needed to protect California’s electrical infrastructure from malicious mischief, vandalism, or domestic/foreign terrorist attacks. The level of security needed for this power plant is dependent upon the threat imposed, the likelihood of an adversarial attack, the likelihood of success in causing a catastrophic event, and the severity of consequences of that event.
In order to determine the level of security, staff used an internal vulnerability assessment decision matrix modeled after the U.S. Department of Justice Chemical Vulnerability Assessment Methodology (July 2002), the NERC 2002 guidelines, the U.S. Department of Energy VAM-CF model, and U.S. Department of Homeland Security regulations published in the Federal Register (Interim Final Rule 6 CFR Part 27). Staff concluded that the ESPFM would fall into the “low vulnerability” category, so staff proposes that certain security measures be implemented but does not propose that the project owner conduct its own vulnerability assessment.

These security measures include perimeter fencing, breach detectors, guards, alarms, site access procedures for employees and vendors, site personnel background checks, and law enforcement contact in the event of a security breach.

Site access for vendors would be strictly controlled. Consistent with current state and federal regulations governing the transport of hazardous materials, hazardous materials vendors would have to maintain their transport vehicle fleets and employ only drivers who are properly licensed and trained. The project owner would be required, through its contractual language with vendors, to ensure that vendors, if required by law, supplying hazardous materials strictly adhere to the U.S. Department Of Transportation requirements that hazardous materials vendors prepare and implement security plans per 49 CFR 172.802 and ensure that all hazardous materials drivers are in compliance with personnel background security checks per 49 CFR Part 1572, Subparts A and B. The CPM may authorize modifications to these measures, or may require additional measures in response to additional guidance provided by the U.S. Department of Homeland Security, the U.S. Department of Energy, or NERC, after consultation with appropriate law enforcement agencies and the project owner.

NONOPERATION AND CLOSURE IMPACTS AND MITIGATION

Non-operation and closure of the proposed ESPFM would follow COM-14 (Non-Operation) and COM-15 (Facility Closure Planning) in the Compliance Conditions and Compliance Monitoring Plan section of this document. The facility closure plan is designed to minimize public health and environmental impacts. The Facility Closure Plan would be consistent with all applicable LORS and would include monitoring of hazardous materials storage vessels, safe cessation of processes which use hazardous materials, disposal of hazardous materials and hazardous wastes, and documentation of practices and inventory (Solar Millennium 2009a, Section 5.6.3.4). Staff expects that impacts from non-operation and closure process would represent a fraction of the impacts associated with the construction or operation of the proposed ESPFM. Therefore based on staff’s analysis for the construction and operation phases of this project, staff concludes that hazardous materials-related impacts from closure and decommissioning of the ESPFM would be insignificant.

CUMULATIVE IMPACT ANALYSIS

Staff analyzed the potential for the existence of cumulative impacts. A significant cumulative hazardous materials impact is defined as the simultaneous uncontrolled release of hazardous materials from multiple locations in a form (gas or liquid) that
could cause a significant impact where the release of one hazardous material alone would not cause a significant impact.

The Executive Summary provides detailed information on the potential cumulative projects in the project area (see Executive Summary Attachment A Table 1 El Segundo Energy Center –Cumulative Impacts). Staff reviewed 30 projects that were deemed completed, planned, or foreseeable. Staff notes that all of these projects or developments in the area or region that store or use hazardous materials already have or will need proper chemical storage tanks, secondary containment, and emergency response plans to address spills and accidental releases. Plan reviews and emergency response services provided by the local fire authority, be it the CESFD or that of another jurisdiction such as the nearby Manhattan Beach Fire Department, will also be conducted and provided.

All of the projects listed in Executive Summary Attachment A Table 1 El Segundo Energy Center –Cumulative Impacts are defined within a geographic area that has been identified by staff as covering an area large enough to provide a reasonable basis for evaluating cumulative impacts for all resource elements or environmental parameters (see Cumulative Impacts- Figure 1 located in Attachment A of the Executive Summary). Most of these projects have, are, or will be required to undergo their own independent environmental review under the CEQA. Even if the cumulative projects described in the Executive Summary have not yet completed the required environmental processes, they were considered in the cumulative impacts analyses in this section.

Staff believes that while cumulative impacts are theoretically possible, they are not probable because of the many safeguards implemented to both prevent and control an accidental release. The chances of one accidental release occurring are remote. The chance of two or more occurring simultaneously, with resulting airborne plumes mingling to create a significant impact, are even more remote. Staff believes the risk to the public is insignificant.

Staff therefore believes that while cumulative impacts are theoretically possible, they are not probable because of the many safeguards implemented to both prevent and control the industrial environment, spills, and releases of hazardous materials.

To summarize, the project owner will develop and implement a hazardous materials handling program for the ESPFM independent of any other projects considered for potential cumulative impacts. Staff believes that the facility, as proposed by the project owner and with the additional mitigation measures proposed by staff, poses a minimal risk of accidental release that could result in off-site impacts. It is unlikely that an accidental release that has very low probability of occurrence would independently occur at this site and another facility at the same time. Therefore, staff concludes that the facility would not contribute to a significant hazardous materials-related cumulative impact.
COMPLIANCE WITH LORS

Staff concludes that demolition activities and the construction and operation of the modified ESEC project would be in compliance with all applicable LORS regarding long-term and short-term project impacts in the area of hazardous materials management.

NOTEWORTHY PUBLIC BENEFITS

The construction and operation of the natural-gas power plant proposed would require, in general, smaller quantities of hazardous materials and materials that are less dangerous to the public than the previously-licensed natural-gas fired power plant currently operating on the site. (One example is the discontinued use of aqueous hydrazine as an oxygen scavenger.) Building this modified power plant will supply required energy in California more efficiently using modern fast-start technology while at the same time reduce the risks of fire and hazardous materials spills.

CONCLUSIONS

Staff's evaluation of the proposed modified project (with proposed additions and revisions to the mitigation measures) indicates that hazardous material use, storage, and transportation would not pose a significant impact on the public. Staff’s analysis also shows that there would be no significant cumulative impact. With adoption of the proposed conditions of certification, the ESPFM would comply with all applicable LORS. Another proposed Condition of Certification addresses the issue of infrastructure security.

Staff at this time recommends that two existing Conditions of Certification, HAZ-1 and HAZ-2 be retained but revised to reflect current nomenclature, current Energy Commission practice, and to clarify certain requirements for hazardous materials plans. Condition of Certification HAZ-1 ensures that no hazardous material would be used at the facility except as listed in Appendix B of this section, unless there is prior approval by the CPM. Condition of Certification HAZ-2 ensures that local emergency response services are notified of the amounts and locations of hazardous materials at the facility and that a Hazardous Materials Business Plan (HMBP), RMP, and SPCC Plan are developed and implemented. Staff also recommends the deletion of existing Condition HAZ-3 because the requirements contained therein have been incorporated into HAZ-2. Staff instead proposes a new Condition of Certification HAZ-3 that would require the development of a SMP that addresses the delivery of all liquid hazardous materials during the demolition, construction, commissioning, and operation of the project thus further reducing the risk of any accidental release not specifically addressed by the proposed spill prevention mitigation measures, and also preventing the mixing of incompatible materials that could result in the generation of toxic vapors. New Condition of Certification HAZ-4 addresses the use of natural gas and prohibits its use to clear pipes and is mandated or strongly recommended by the United States Chemical Safety and Hazard Board (CSB), OSHA, NFPA, and the American Society of Mechanical Engineers (ASME). Site security, which already exists because it is an operating power plant, will nevertheless be required to be reviewed and updated in proposed new Condition of Certification HAZ-5. It is recommended that these security measures be
implemented not later than sixty days after the Petition is approved. And finally, staff proposes new condition **HAZ-6** which would require that engineering controls be implemented to ensure that in the event of a spill of 29.4 percent aqueous ammonia, no significant airborne concentration would migrate off-site to impact residents living to the south of the power plant.

(Revisions are in strikeout for deleted text and new text is shown in **bold underline**)

PROPOSED CONDITIONS OF CERTIFICATION

HAZ-1 The project owner shall obtain the advance approval of the CPM if the facility intends to store, handle, use or move (or combination of these activities) a material, in quantities that exceed those specified in Title 40, CFR Part 355, Subpart J section 355.50. **The project owner shall not use any hazardous material not listed in Appendix B below, or in greater quantities or strengths than those identified by chemical name in Appendix B, below, unless approved in advance by the Compliance Project Manager (CPM).**

Verification: The project owner shall provide to the CPM, in the Annual Compliance Report, a list of those all hazardous materials designated as regulated substances as set forth in Title 40, CFR Part 355, Subpart J section 355.50, contained at the facility. The list shall also include maximum quantities of these substances at the facility. Copies of the list should shall also be provided to the City of El Segundo Fire Department (CESFD) and the City of Manhattan Beach Fire Department (CMBFD). The project owner shall provide to the CPM, in the Annual Compliance Report, a list of hazardous materials contained at the facility.

HAZ-2 The project owner shall update its existing Business Plan, **concurrently** provide an updated revised Hazardous Materials Business Plan (HMBP), a Revised Risk Management Plan (RMP), and a revised Spill Prevention, Control, and Countermeasure Plan (SPCC) to the CESFD and the CPM for review. After receiving comments from the CESFD and the CPM, the project owner shall include in the final documents all recommendations that ensure LORS compliance. Copies of the final HMBP and SPCC Plan shall then be provided to the CESFD for information and to the CPM for approval. The project owner shall also pay the usual and customary fee for the CESFD review of those plans, and the usual and customary fee for any necessary and required inspections regarding same.

Verification: At least 45 30 days prior to the start-up of the new ESEC Units 9, 10, 11, and 12, the project owner shall undertake a hazardous materials floor plan exercise for each shift at the plant with the CESFD and provide a copy of the revised Business Plan, commented on by the CESFD, to the CPM. A copy of the revised Plan shall also be provided to the CMBFD. Final Hazardous Materials Business Plan, Risk Management Plan, and Spill Prevention, Control, and Countermeasures Plan to the CPM for approval.
The project owner shall also provide proof that the plans were submitted to the CESFD for review and that the usual and customary fees for those reviews have been paid.

HAZ-3 The project owner shall revise the existing CalARP Program Risk Management Plan (RMP). Similarly, the project owner shall also revise its existing RMP pursuant to the USEPA RMP Program. Both RMPs shall be expanded to include discussions to prevent and control the accidental release of ammonia from the pipeline. Those discussions shall elaborate on the various safety devices selected for the pipeline including double sleeve construction, provisions for backup safety devices, protective shut-in actions, emergency support systems, monitoring programs and personnel training, as a minimum. The shut-in actions shall include responses to pipeline overpressures and also leaks. Backup safety devices to be considered for the pipeline shall include sprinklers, sprays, deluge systems or equivalent systems. Special emphasis shall be placed on the deployment of such devices in the vicinity of the overpass at Vista Del Mar Boulevard in order to eliminate any vulnerabilities at that location.

Verification: At least 45 days prior to start-up of Units 5, 6, and 7, the project owner shall furnish a final copy of each updated RMP to the CPM, CESFD and CMBFD. An initial draft of the CalARP RMP shall be provided to the CPM and the CESFD for review and comments. The final CalARP RMP shall be approved by the CPM. Similarly, an initial draft of the USEPA RMP shall be provided to the CPM and the CESFD for review and comments, at the time it is submitted to the USEPA for review. The final copy of the USEPA RMP shall reflect recommendations of the CPM and the CESFD.

HAZ-3 The project owner shall develop and implement a Safety Management Plan for the delivery and handling of liquid and gaseous hazardous materials. The plan shall include procedures, protective equipment requirements, training, and a checklist. It shall also include a section describing all measures to be implemented to prevent mixing of incompatible hazardous materials. This plan shall be applicable during construction, commissioning, and operation of the power plant.

Verification: At least 30 days prior to the delivery of any liquid or gaseous hazardous material to the facility for use at new Units 9, 10, 11, and 12, the project owner shall provide a Safety Management Plan as described above to the CPM for review and approval.

HAZ-4 The project owner shall not allow any fuel gas pipe cleaning activities on site at any power Unit, either before placing the pipe into service or at any time during the lifetime of the facility, that involve “flammable gas blows” where natural (or flammable) gas is used to blow out debris from piping and then vented to atmosphere. Instead, an inherently safer method involving a non-flammable gas (e.g. air, nitrogen, steam) or mechanical pigging shall be used as per NFPA 56. A written procedure shall be developed and implemented as per NFPA 56, section 4.3.1
Verification: At least 30 days before any fuel gas pipe cleaning activities begin at any Unit, the project owner shall submit a copy of the Fuel Gas Pipe Cleaning Work Plan (as described in NFPA 56, section 4.3.1) which shall indicate the method of cleaning to be used, what gas will be used, the source of pressurization, and whether a mechanical PIG will be used, to the CBO for information and to the CPM for review and approval.

HAZ-5 The project owner shall prepare a new or revise an existing site-specific Security Plan that will apply to all phases of activity on the site and that shall be made available to the CPM for review and approval. The project owner shall implement site security measures that address physical site security and hazardous materials storage. The level of security to be implemented shall not be less than that described below (as per NERC 2002).

The Security Plan shall include the following:

1. Permanent full perimeter fence or wall, at least eight feet high; and topped with barbed wire or the equivalent;

2. Main entrance security gate, either hand operated or motorized;

3. Evacuation procedures;

4. Protocol for contacting law enforcement and the CPM in the event of suspicious activity or emergency;

5. Written standard procedures for employees, contractors, and vendors when encountering suspicious objects or packages on site or off site;

6. A. A statement (refer to sample, ATTACHMENT A), signed by the project owner certifying that background investigations have been conducted on all project personnel. Background investigations shall be restricted to determine the accuracy of employee identity and employment history and shall be conducted in accordance with state and federal laws regarding security and privacy;

 B. A statement(s) (refer to sample, ATTACHMENT B), signed by the contractor or authorized representative(s) for any permanent contractors or other technical contractors (as determined by the CPM after consultation with the project owner), that are present at any time on the site to repair, maintain, investigate, or conduct any other technical duties involving critical components (as determined by the CPM after consultation with the project owner) certifying that background investigations have been conducted on contractors who visit the project site. Background investigations shall be restricted to determine the accuracy of employee identity and employment history
and shall be conducted in accordance with state and federal laws regarding security and privacy.

7. **Site access controls for employees, contractors, vendors, and visitors:**

8. **A statement(s), (refer to sample, ATTACHMENT C), signed by the owner(s) or authorized representative(s) of hazardous materials transport vendor(s), certifying that they have prepared and implemented security plans in compliance with 49 CFR 172.802 and that they have conducted employee background investigations in accordance with 49 CFR Part 1572, subparts A and B:**

9. **Closed circuit TV (CCTV) monitoring system, recordable, and viewable in the power plant control room and the security station located at the main entrance, and with cameras able to pan, tilt, and zoom, have low-light capability, and are able to view the outside entrance to the control room, the front gate, and key areas of the power block areas; and**

10. **Additional measures to ensure adequate perimeter security consisting of either:**

 A. **security guard(s) present 24 hours per day, 7 days per week and conducting both routine and random patrols; and**

 B. **perimeter breach detectors; or**

 C. **CCTV able to view 100 percent of the perimeter fence.**

The project owner shall fully implement the security plans and obtain CPM approval of any substantive modifications to those security plans. The CPM may authorize modifications to these measures, or may require additional measures, such as protective barriers for critical power plant components (e.g. transformers, gas lines, compressors, etc.) or cyber security depending upon circumstances unique to the facility or in response to industry-related standards, security concerns, or additional guidance provided by the U.S. Department of Homeland Security, the U.S. Department of Energy, or the North American Electrical Reliability Council, after consultation with both appropriate law enforcement agencies and the project owner.

Verification: No later than sixty (60) days after the Petition to Amend is approved, the project owner shall notify the CPM that a site-specific Security Plan is available for review and approval. In the annual compliance report, the project owner shall include a statement that all current project employee and appropriate contractor background investigations have been performed, and that updated certification statements have been appended to the operations security plan. In the annual compliance report, the project owner shall include a statement that the
HAZARDOUS MATERIALS MANAGEMENT 4.4-24 March 2014

operations security plan includes all current hazardous materials transport vendor certifications for security plans and employee background investigations.

HAZ-6 The project owner shall:

1. Design and install one of the following options for the control of spills of 29.4 percent aqueous ammonia during transfer via pipeline from the underground storage tank to the ammonia skids at each skid location:
 a. install double-walled piping
 b. bury the piping in the ground
 c. place the piping in a lined trench that is covered with a grate and that drains to a subsurface sump

2. Provide and utilize a portable spill catchment basin whenever a tanker is off-loading 29.4 percent aqueous ammonia into the underground storage tank so as to capture any spills from the tanker or the transfer hose.

3. Prepare and implement a Spill Capture Plan that includes procedures and methods to cover, contain, and remove any spilled 29.4 percent aqueous ammonia from the ground, trench, sump, or portable spill container within a time-frame of not less than 30 minutes.

Verification: Within thirty (30) days of the Commission Decision to approve the amendment, the project owner shall provide the design drawings and Spill Capture Plan to the CPM for review and approval. Within sixty (60) days after receiving approval from the CPM, the project owner shall provide proof that the mitigation described has been implemented.
SAMPLE CERTIFICATION (Attachment A)

Affidavit of Compliance for Project Owners

I, __

(Name of person signing affidavit)(Title)

do hereby certify that background investigations to ascertain the accuracy of the identity and employment history of all employees of

__

(Company name)

for employment at

__

(Project name and location)

have been conducted as required by the California Energy Commission Decision for the above-named project.

(Signature of officer or agent)

Dated this ___________________ day of ___________________, 20 _______.

THIS AFFIDAVIT OF COMPLIANCE SHALL BE APPENDED TO THE PROJECT SECURITY PLAN AND SHALL BE RETAINED AT ALL TIMES AT THE PROJECT SITE FOR REVIEW BY THE CALIFORNIA ENERGY COMMISSION COMPLIANCE PROJECT MANAGER.
SAMPLE CERTIFICATION (Attachment B)
Affidavit of Compliance for Contractors

I, __

(Name of person signing affidavit)(Title)

do hereby certify that background investigations to ascertain the accuracy of the identity
and employment history of all employees of

__

(Company name)

for contract work at

__

(Project name and location)

have been conducted as required by the California Energy Commission Decision for the
above-named project.

__

(Signature of officer or agent)

Dated this ___________________ day of ___________________, 20 _______.

THIS AFFIDAVIT OF COMPLIANCE SHALL BE APPENDED TO THE PROJECT
SECURITY PLAN AND SHALL BE RETAINED AT ALL TIMES AT THE PROJECT SITE
FOR REVIEW BY THE CALIFORNIA ENERGY COMMISSION COMPLIANCE
PROJECT MANAGER.
SAMPLE CERTIFICATION (Attachment C)
Affidavit of Compliance for Hazardous Materials Transport Vendors

I,
__
(Name of person signing affidavit)(Title)
do hereby certify that the below-named company has prepared and implemented
security plans in conformity with 49 CFR 172.802 and has conducted employee
background investigations in conformity with 49 CFR 172, subparts A and B,
__
(Company name)
for hazardous materials delivery to
__
(Project name and location)
as required by the California Energy Commission Decision for the above-named project.
__
(Signature of officer or agent)
Dated this ___________________ day of ___________________, 20 _______.

THIS AFFIDAVIT OF COMPLIANCE SHALL BE APPENDED TO THE PROJECT
SECURITY PLAN AND SHALL BE RETAINED AT ALL TIMES AT THE PROJECT SITE
FOR REVIEW BY THE CALIFORNIA ENERGY COMMISSION COMPLIANCE
PROJECT MANAGER.
REFERENCES

HAZARDOUS MATERIALS Appendix A Table-1

Acute Ammonia Exposure Guidelines

| Guideline | Responsibl
Authority | Applicable Exposed Group | Allowable Exposure Level | Allowable* Duration of Exposures | Potential Toxicity at Guideline Level/Intended Purpose of Guideline |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLH^{2}</td>
<td>NIOSH</td>
<td>Workplace standard used to identify appropriate respiratory protection.</td>
<td>300 ppm</td>
<td>30 minutes</td>
<td>Exposure above this level requires the use of "highly reliable" respiratory protection and poses the risk of death, serious irreversible injury, or impairment of the ability to escape.</td>
</tr>
<tr>
<td>IDLH/10^{1}</td>
<td>EPA, NIOSH</td>
<td>Work place standard adjusted for general population factor of 10 for variation in sensitivity</td>
<td>30 ppm</td>
<td>30 minutes</td>
<td>Protects nearly all segments of general population from irreversible effects.</td>
</tr>
<tr>
<td>STEL^{2}</td>
<td>NIOSH</td>
<td>Adult healthy male workers</td>
<td>35 ppm</td>
<td>15 minutes, 4 times per 8-hour day</td>
<td>No toxicity, including avoidance of irritation.</td>
</tr>
<tr>
<td>EEGL^{3}</td>
<td>NRC</td>
<td>Adult healthy workers, military personnel</td>
<td>100 ppm</td>
<td>Generally less than 60 minutes</td>
<td>Significant irritation, but no impact on personnel in performance of emergency work; no irreversible health effects in healthy adults. Emergency conditions one-time exposure.</td>
</tr>
<tr>
<td>STPEL^{4}</td>
<td>NRC</td>
<td>Most members of general population</td>
<td>50 ppm, 75 ppm, 100 ppm</td>
<td>60 minutes, 30 minutes, 10 minutes</td>
<td>Significant irritation, but protects nearly all segments of general population from irreversible acute or late effects. One-time accidental exposure.</td>
</tr>
<tr>
<td>TWA^{2}</td>
<td>NIOSH</td>
<td>Adult healthy male workers</td>
<td>25 ppm</td>
<td>8 hours</td>
<td>No toxicity or irritation on continuous exposure for repeated 8-hour work shifts.</td>
</tr>
<tr>
<td>ERPG-2^{5}</td>
<td>AIHA</td>
<td>Applicable only to emergency response planning for the general population (evacuation) (not intended as exposure criteria) (see preface attached)</td>
<td>200 ppm</td>
<td>60 minutes</td>
<td>Exposures above this level entail** unacceptable risk of irreversible effects in healthy adult members of the general population (no safety margin).</td>
</tr>
</tbody>
</table>

* The (NRC 1979), (WHO 1986), and (Henderson and Haggard 1943) all conclude that available data confirm the direct relationship to increases in effect with both increased exposure and increased exposure duration.
** The (NRC 1979) describes a study involving young animals, which suggests greater sensitivity to acute exposure in young animals. The WHO (1986) warned that the young, elderly, asthmatics, those with bronchitis, and those that exercise should also be considered at increased risk based on their demonstrated greater susceptibility to other non-specific irritants.
REFERENCES FOR HAZARDOUS MATERIALS APPENDIX A, TABLE 1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental and Industrial Hygienists</td>
</tr>
<tr>
<td>AIHA</td>
<td>American Industrial Hygienists Association</td>
</tr>
<tr>
<td>EEGL</td>
<td>Emergency Exposure Guidance Level</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>ERPG</td>
<td>Emergency Response Planning Guidelines</td>
</tr>
<tr>
<td>IDLH</td>
<td>Immediately Dangerous to Life and Health Level</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute of Occupational Safety and Health</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>STEL</td>
<td>Short Term Exposure Limit</td>
</tr>
<tr>
<td>STPEL</td>
<td>Short Term Public Emergency Limit</td>
</tr>
<tr>
<td>TLV</td>
<td>Threshold Limit Value</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
HAZARDOUS MATERIALS
APPENDIX B

Hazardous Materials Proposed for Use at the ESEC
(Including Locations on the Site)
APPENDIX B

Hazardous Materials and Wastes Usage and Storage during Construction and Operations*

<table>
<thead>
<tr>
<th>Material</th>
<th>Purpose and Location</th>
<th>Usage/Day</th>
<th>Maximum Stored</th>
<th>Storage Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A300- low hazard corrosion inhibitor</td>
<td>South of Unit 4 boiler</td>
<td>75 gal.</td>
<td>100 gal.</td>
<td>Steel drum, tote bin</td>
</tr>
<tr>
<td>Acetylene (C2H2) 99.80%</td>
<td>Southwest of warehouse</td>
<td>3,530 cu ft</td>
<td>10,950 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Ammonium Bicarbonate</td>
<td>South of Unit 4 boiler</td>
<td>400 lb.</td>
<td>600 lb.</td>
<td>Bag</td>
</tr>
<tr>
<td>Ammonium bifluoride NH4HF2</td>
<td>Chemical cleaning of HRSG</td>
<td>As needed</td>
<td>Temporary only</td>
<td>Portable vessel</td>
</tr>
<tr>
<td>Aqua ammonia (19%)</td>
<td>West of Unit 5 and 7</td>
<td>10 gal.</td>
<td>700 gal.</td>
<td>Steel tote (2)</td>
</tr>
<tr>
<td>Aqueous ammonia (29%) NH4(OH)</td>
<td>NOx emissions control. Top of hill and other locations</td>
<td>1500 gal.</td>
<td>20,000 gal.</td>
<td>Underground tank</td>
</tr>
<tr>
<td>Argon</td>
<td>Warehouse, south side and other locations</td>
<td>850 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Asbestos Containing Debris</td>
<td>Hazardous waste storage area and accumulation areas</td>
<td>2,000 lb.</td>
<td>15,000 lb.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Bleach</td>
<td>North of Units 3, 4; southwest of Units 5 and 7</td>
<td>1,500 gal.</td>
<td>2,600 gal.</td>
<td>Aboveground tank</td>
</tr>
<tr>
<td>Calgon C-9 Corrosion Inhibitor</td>
<td>Chemical storage room, chemical feed areas</td>
<td>250 lb.</td>
<td>600 lb.</td>
<td>Plastic/Nonmetallic Drum</td>
</tr>
<tr>
<td>Calgon H-510 Microbiocide</td>
<td>Chemical storage room, chemical feed areas</td>
<td>250 lb.</td>
<td>600 lb.</td>
<td>Plastic/Nonmetallic Drum</td>
</tr>
<tr>
<td>Cardox – carbon dioxide</td>
<td>Unit 7 2nd level west side</td>
<td>3 tons</td>
<td>5 tons</td>
<td>Tank inside building</td>
</tr>
<tr>
<td>ChelClean 665 Chelating Agent</td>
<td>South of Unit 4 boiler</td>
<td>50,000 lb.</td>
<td>89,000 lb.</td>
<td>Poly tank</td>
</tr>
<tr>
<td>Citric acid</td>
<td>Chemical cleaning of HRSG, feedwater systems</td>
<td>As needed</td>
<td>Temporary only</td>
<td>Portable vessel</td>
</tr>
<tr>
<td>CuSol Solvent Waste</td>
<td>South of Unit 4</td>
<td>100,000 gal.</td>
<td>180,000 gal.</td>
<td>Tank wagon</td>
</tr>
<tr>
<td>Dielectric Solvent</td>
<td>Unit 7 Aux. bay southwest corner; Unit 4 Aux. bay south end</td>
<td>110 gal.</td>
<td>330 gal.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Diesel fuel</td>
<td>Warehouse, southwest side</td>
<td>110 gal.</td>
<td>165 gal.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Di-, tri-sodium phosphate solution</td>
<td>Boiler water pH/scale control</td>
<td>5 lb.</td>
<td>800 gal.</td>
<td>Portable vessel</td>
</tr>
<tr>
<td>EDTA chelant</td>
<td>Chemical cleaning of HRSG, feedwater systems</td>
<td>As needed</td>
<td>Temporary only</td>
<td>Portable vessel</td>
</tr>
<tr>
<td>Elimin-ox - Oxygen scavenger</td>
<td>Feedwater oxygen control. Under Unit 3 boiler and Unit 5 chemical area</td>
<td>500 gal.</td>
<td>800 gal.</td>
<td>Tote bin</td>
</tr>
<tr>
<td>EPA Protocol Mix (1.0% O2)</td>
<td>Warehouse, southwest side</td>
<td>282 cu ft</td>
<td>564 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>EPA Protocol Mix (Nitric Oxide/Nitrogen[12.75ppm])</td>
<td>Warehouse, southwest side</td>
<td>564 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>EPA Protocol Mix (17% O2)</td>
<td>Warehouse, southwest side</td>
<td>564 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Flammable Gas Mixture#1</td>
<td>Warehouse, south side</td>
<td>846 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Flammable Gas Mixture#2</td>
<td>Warehouse, southwest side</td>
<td>846 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Flammable Gas Mixture#3</td>
<td>Warehouse, south side</td>
<td>846 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Flammable Gas Mixture#4</td>
<td>Warehouse, southwest side</td>
<td>846 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
</tbody>
</table>
APPENDIX B

Hazardous Materials and Wastes Usage and Storage during Construction and Operations*

<table>
<thead>
<tr>
<th>Material</th>
<th>Purpose and Location</th>
<th>Usage/Day</th>
<th>Maximum Stored</th>
<th>Storage Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammable Gas Mixture#5 (72% Methane)</td>
<td>Warehouse, south side</td>
<td>846 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Helium</td>
<td>Warehouse southwest side</td>
<td>282 cu ft</td>
<td>846 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Hydrochloric acid HCl</td>
<td>Chemical cleaning of HRSG</td>
<td>As needed</td>
<td>Temporary only</td>
<td>Portable vessel</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Unit 3 northwest side, ground level</td>
<td>30,000 cu ft</td>
<td>40,000 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Generator cooling.</td>
<td>8,000 cu ft</td>
<td>70,000 cu ft</td>
<td>Tank, carbon steel</td>
</tr>
<tr>
<td>Lubricating Oil</td>
<td>Unit 5 ground floor; southwest Unit 7, Unit 3 & 4 ground floor.</td>
<td>27,800 gal</td>
<td>40,500 gal</td>
<td>Aboveground tank, steel drum.</td>
</tr>
<tr>
<td>Mineral Spirits</td>
<td>Paint shack</td>
<td>20 gallons</td>
<td>50 gallons</td>
<td>Can</td>
</tr>
<tr>
<td>Mineral Oil</td>
<td>Transformers at Units 1, 2, 3, and 4</td>
<td>87,800 gal</td>
<td>88,000 gal</td>
<td>Transformers</td>
</tr>
<tr>
<td>Nalco 350-corrosion inhibitor</td>
<td>Under Unit 3 boiler and Unit 5 chemical area</td>
<td>500 gal.</td>
<td>800 gal.</td>
<td>Tote bin</td>
</tr>
<tr>
<td>Nalco 356-corrosion inhibitor</td>
<td>Under Unit 3 boiler and Unit 5 chemical area</td>
<td>500 gal.</td>
<td>800 gal.</td>
<td>Tote bin</td>
</tr>
<tr>
<td>Nalco BT 3000</td>
<td>Boiler water treatment. Under Unit 3 boiler and Unit 5 chemical area</td>
<td>500 gal.</td>
<td>800 gal.</td>
<td>Tote bin</td>
</tr>
<tr>
<td>Nalco EG 5010</td>
<td>Boiler alkalinity control. Under Unit 3 boiler and Unit 5 chemical area</td>
<td>500 gal.</td>
<td>800 gal.</td>
<td>Tote bin</td>
</tr>
<tr>
<td>Neutralizing amine solution</td>
<td>Feedwater pH control</td>
<td>5 lb.</td>
<td>800 gal</td>
<td>Portable vessel</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Unit 3 north side</td>
<td>106,000 cu ft</td>
<td>141,265 cu ft</td>
<td>Aboveground tank, cylinder</td>
</tr>
<tr>
<td>Non-RCRA Hazardous Waste Silicone Grease and Debris</td>
<td>Hazardous waste storage area and accumulation area</td>
<td>55 lb.</td>
<td>110 lb.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Oil Contaminated Soil/Solids</td>
<td>Hazardous waste storage area and accumulation area</td>
<td>220 lb.</td>
<td>1,100 lb.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Oxides of Nitrogen Mix (Nitric Acid 34 PPM)</td>
<td>Warehouse, southwest side</td>
<td>564 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Oxides of Nitrogen Mix(Nitric Oxide 59.50 PPM)</td>
<td>Warehouse, southwest side</td>
<td>564 cu ft</td>
<td>1,128 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Oxides of Nitrogen Mix(Nitric Oxide 125 PPM)</td>
<td>Warehouse, southwest side</td>
<td>846 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Oxidizer</td>
<td>South of Unit 4 boiler</td>
<td>30,000 cu ft</td>
<td>45,000 cu ft</td>
<td>Cylinder trailer</td>
</tr>
<tr>
<td>Oxygen scavenger solution</td>
<td>Feedwater oxygen control</td>
<td>2.5 lb.</td>
<td>800 gal.</td>
<td>Portable vessel</td>
</tr>
<tr>
<td>Oxygen Mix (8.5% O2)</td>
<td>Warehouse, southwest side</td>
<td>564 cu ft</td>
<td>1,410 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Oxygen – gaseous oxygen</td>
<td>Warehouse, south side</td>
<td>1,128 cu ft</td>
<td>3,666 cu ft</td>
<td>Cylinder</td>
</tr>
<tr>
<td>Paint</td>
<td>Paint shack</td>
<td>25 gallons</td>
<td>100 gallons</td>
<td>Can</td>
</tr>
<tr>
<td>Propane</td>
<td>Warehouse, southwest side</td>
<td>200 gal.</td>
<td>400 gal.</td>
<td>Cylinder</td>
</tr>
</tbody>
</table>
APPENDIX B

Hazardous Materials and Wastes Usage and Storage during Construction and Operations*

<table>
<thead>
<tr>
<th>Material</th>
<th>Purpose and Location</th>
<th>Usage/Day</th>
<th>Maximum Stored</th>
<th>Storage Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selig Formula 229 Degreaser</td>
<td>Unit 7 Aux. bay southwest corner; Unit 4 Aux. bay south end.</td>
<td>110 gal.</td>
<td>110 gal.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Sodium Hypochlorite 12.5% wt NaOCl</td>
<td>Southwest of Units 5&7, North of Units 3&4</td>
<td>1500 gal.</td>
<td>2,600 gal.</td>
<td>Aboveground storage tank</td>
</tr>
<tr>
<td>Sodium nitrite NaN2</td>
<td>Chemical cleaning of HRSG</td>
<td>As needed</td>
<td>Temporary only</td>
<td>Portable vessel</td>
</tr>
<tr>
<td>Sulfuric acid for station Batteries</td>
<td>Electrical/ctrl bldg. Combustion turbine/miscellaneous</td>
<td>As needed</td>
<td>Battery</td>
<td>Battery</td>
</tr>
<tr>
<td>Sulfur hexafluoride</td>
<td>Circuit Breakers</td>
<td>As needed</td>
<td>Compressed gas cylinder</td>
<td></td>
</tr>
<tr>
<td>Waste Hydrazine and Debris</td>
<td>Hazardous waste storage area and accumulation area</td>
<td>55 lb.</td>
<td>110 lb.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Waste Lubricating Oil</td>
<td>Hazardous waste storage area and accumulation area</td>
<td>220 lb.</td>
<td>550 lb.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Waste Mineral Oil for Transformers</td>
<td>Hazardous waste storage area and accumulation area</td>
<td>110 lb.</td>
<td>330 lb.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Waste Oil & Solvent</td>
<td>Hazardous waste storage area and accumulation area</td>
<td>450 lb.</td>
<td>1350 lb.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Waste Paint & Thinner</td>
<td>Hazardous waste storage area and accumulation area</td>
<td>55 lb.</td>
<td>110 lb.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Waste Paint Chips and Debris (with Benzene & Lead)</td>
<td>Near Paint shack and hazardous waste storage area</td>
<td>110 gal.</td>
<td>165 gal.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Waste Paint Solids/Sludge</td>
<td>Hazardous waste storage area and accumulation area</td>
<td>55 gal.</td>
<td>165 gal.</td>
<td>Steel drum</td>
</tr>
<tr>
<td>Waste Solvent and Debris</td>
<td>Hazardous waste storage area and accumulation area</td>
<td>55 lb.</td>
<td>110 lb.</td>
<td>Steel drum</td>
</tr>
</tbody>
</table>

*REFERENCE: NRG. 2000 BUSINESS PLAN UPDATE, NOVEMBER. INFORMATION BASED ON TABLE 5.15-2 FROM 00-AFC-14 AND TABLE 2-14 AND PETITION TO AMEND, PAGES 2.17 – 2.20 (NRG 2013A)
SUMMARY OF CONCLUSIONS

Energy Commission staff (staff) has reviewed the Petition to Amend (PTA) the Commission Decision for the El Segundo Energy Center (ESEC) in accordance with the requirements of the California Environmental Quality Act (CEQA). Staff’s analysis considers the changes between the approved project and the modified project.

The project owner, El Segundo Energy Center, LLC (ESEC LLC) filed a PTA to the Commission Decision in April 2013. Staff’s analysis concludes that the construction and operation of the proposed modification, referred to as the El Segundo Power Facility Modification (ESPFM) would not cause significant direct, indirect, or cumulatively adverse land use impacts and would be consistent with the applicable laws, ordinances, regulations, and standards (LORS) pertaining to land use.

INTRODUCTION

In this section, staff discusses if the ESPFM would result in substantial adverse impacts under CEQA, and if the project would be inconsistent with applicable LORS pertaining to land use.

LAWS, ORDINANCES, REGULATION, AND STANDARDS (LORS)

Staff’s analysis shows that the proposed project would be consistent with the land use planning LORS analyzed in the 2005 Commission Decision as well as new local land use LORS identified in LAND USE Table 1 in bold.

Staff did not find any new state or federal land use LORS applicable to the proposed project that were not reviewed for the issuance of the license by the Energy Commission in 2005 (CEC 2005).

The city of El Segundo adopted a comprehensive general plan in 1992 (City of El Segundo Municipal Code, Title 15 Zoning Regulations, 2013). The circulation element was last updated and re-adopted in 2004. The housing element was updated and re-adopted in July 2009. The city also adopted updates to the municipal code on October 15, 2013; which included requirements related to Building Regulations and Residential Code, neither of which is applicable to the proposed amendment.
<table>
<thead>
<tr>
<th>Applicable LORS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td>The Federal Aviation Regulations (FAR) provide regulations and requirements for insuring the safe, efficient, and secure use of the Nation’s airspace, by military as well as civil aviation, for promoting safety in air commerce, for encouraging and developing civil aeronautics, including new aviation technology, and for supporting the requirements of national defense. These regulations are designed to promote the safety of airport operations within the vicinity of an airport by defining a clear zone above which structures are seldom permitted to penetrate.</td>
</tr>
<tr>
<td>Federal Aviation Regulations (Code of Federal Regulations, Part 77)</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>Subdivision Map Act (Public Resources Code, section §66410-66499.58)</td>
<td>This section of the California Public Resources Code provides procedures and requirements regulating land division (subdivisions) and parcel legality. Regulation and control of the design and improvement of subdivisions have been vested in the legislative bodies of local agencies.</td>
</tr>
<tr>
<td>Warren-Alquist Act, Public Resources Code, section 25500</td>
<td>In accordance with the provisions of this division, the commission shall have the exclusive power to certify all sites and related facilities in the state, whether a new site and related facility or a change or addition to an existing facility. No construction of any facility or modification of any existing facility shall be commenced without first obtaining certification for any such site and related facility by the commission.</td>
</tr>
<tr>
<td>Public Resources Code, section 25529</td>
<td>When a facility is proposed to be located in the coastal zone or any other area with recreational, scenic, or historic value, the commission shall require that an area be established for public use. Lands within such area shall be acquired and maintained by the applicant and shall be available for public access and use.</td>
</tr>
<tr>
<td>Public Resources Code, section 30101</td>
<td>Section 30101 defines a “Coastal-dependent development or use” as the following: “Coastal-dependent development or use” means any development or use which requires a site on, or adjacent to, the sea to be able to function at all." In accordance with the California Coastal Act, the city of El Segundo Local Coastal Program, and the city of El Segundo’s Council Resolution No. 3005, the primary industrial land uses in the Coastal Zone are to be coastal dependent uses as defined by the Coastal Act.</td>
</tr>
<tr>
<td>Public Resources Code, section 30211</td>
<td>Section 30211 of the Coastal Act requires that new development not interfere with the public’s right of access to the shoreline, where the access has been previously acquired by a federal, state, or local government authorization.</td>
</tr>
<tr>
<td>Public Resources Code, section 30260</td>
<td>Section of 30260 encourages the use of existing coastal-dependent industrial sites within the Coastal Zone instead of using undeveloped areas of the Coastal Zone.</td>
</tr>
<tr>
<td>Ungranted State Tidelands and Submerged Lands Leasing Public Resources Code, section 6701-6706</td>
<td>The California State Lands Commission (SLC) has exclusive jurisdiction over all ungranted tidelands and submerged lands owned by the State (Pub. Resources Code, sections 6216 and 6301). The State Lands Act of 1938, resulted in the California State Legislature vesting in the State Lands Commission the authority to administer, sell, lease or dispose of the public</td>
</tr>
<tr>
<td>Applicable LORS</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Lands owned by the state or under its control, including not only school lands but tidelands, submerged lands, swamp and overflowed lands and beds of navigable rivers and lakes. The commission is also authorized to provide for the extraction of minerals and oil and gas from state owned and controlled lands. Any person who uses or occupies any lands owned or controlled by the state under the jurisdiction of the State Lands Commission is required to obtain a lease, permit or other agreement and provide payment for rent.</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>City of El Segundo General Plan, December 1, 1992. (Heavy Industrial)</td>
<td>Permits heavy manufacturing uses such as construction yards, factories, generating stations, extraction of raw materials, and refining. All uses must conform to the policies of the Hazardous Materials Element. The maximum allowed floor area ratio (FAR) is 0.6.</td>
</tr>
<tr>
<td>City of El Segundo Municipal Code Title 15, February 6, 1996. (Amended October 15, 2013); Chapter 2: General Provisions; and 15-2-3: Exceptions to Building Height</td>
<td>These sections address structure heights.</td>
</tr>
<tr>
<td>City of El Segundo Municipal Code Title 15, February 6, 1996. (Amended October 15, 2013) M-2 (Heavy Industrial) 15-6B-3: Permitted Accessory Uses; 15-6B-7: Site Development Standards; and 15-15-6: Required Parking Spaces</td>
<td>This zone is intended to provide areas suitable for the development of heavy manufacturing, assembling, or processing activities having unusual or potentially deleterious operational characteristics, that would be detrimental if allowed to operate in other zones within the city. The zone district includes as a permitted use: heavy manufacturing, construction yards, factories, generating stations, and the extraction of raw materials and refining. These sections address permitted uses, development standards, and parking requirements.</td>
</tr>
<tr>
<td>City of El Segundo Local Coastal Program, July 1980 includes Coastal Zone Specific Plan (certified by California Coastal Commission on February 4, 1982)</td>
<td>Identifies land uses and standards by which development will be evaluated within the Coastal Zone. The plan identifies uses and provides standards adopted by the city of El Segundo for the “Power Plant” and “Shoreline Area” land use designations that are in conformance and satisfy the polices and requirements for coastal land use contained in the California Coastal Act 1976 and certified by the California Coastal Commission.</td>
</tr>
<tr>
<td>City of Manhattan Beach General Plan December 2, 2003</td>
<td>The city of Manhattan Beach General Plan was adopted in December 2, 2003. The Land Use Element describes the city’s policies for the project area that are designed to permit and protect the multi-family uses that exist in the area, as well as commercial uses to the south.</td>
</tr>
<tr>
<td>City of Manhattan Beach Municipal Code Title 15, June 1941. (Amended February 12, 2012)</td>
<td>The city of Manhattan Beach Municipal Code’s Zoning Regulations provide detailed regulations that are applicable to land uses proposed in the City. The Zoning Ordinance was adopted in June 1941 and last amended on June 6, 2000.</td>
</tr>
<tr>
<td>City of Manhattan Beach Local Coastal Program, certified by California Coastal Commission on May 24, 1994 (Amended December 22, 2011)</td>
<td>Identifies land uses and standards by which development will be evaluated within the Coastal Zone. The plan identifies uses and provides standards under the jurisdiction of Manhattan Beach</td>
</tr>
</tbody>
</table>
Applicable LORS

<table>
<thead>
<tr>
<th>LORS Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Los Angeles General Plan Land Use Element 2004</td>
<td>The Westchester/Playa Del Rey Community Plan provides the Land Use Element for the Playa Del Rey area of the city of Los Angeles. This document was adopted in 1974 and was last amended in 2004.</td>
</tr>
<tr>
<td>City of Los Angeles Municipal Code M2 (light Industrial)</td>
<td>This zone is intended to provide for the open storage of materials and equipment, including used materials and equipment unless conducted in accordance with the limitations specified in subsection A.4 (b) of section 12.19. The phrase "used materials and equipment" includes vehicles, boats, or airplanes which are inoperable, wrecked, damaged or unlicensed (i.e.; not currently licensed by the Department of Motor Vehicles) (LAMC 1974).</td>
</tr>
</tbody>
</table>

SETTING

The proposed ESPFM is located within the existing 33-acre ESEC power plant site. The address is 301 Vista Del Mar, El Segundo, approximately two miles south of the Los Angeles International Airport. It is located less than a 1/4 mile south of the Los Angeles Department of Water & Power’s Scattergood Generating Station and 1/2 mile south of the city of Los Angeles’ Hyperion Wastewater Treatment Plant. The Chevron El Segundo refinery is located across Vista Del Mar from ESEC site. The city of Manhattan Beach is immediately to the south. See Project Description Figures 1 and 2.

PROPOSED MODIFIED PROJECT

ESEC LLC filed a PTA to the Commission Decision in April 2013. The PTA proposes to replace utility boiler Units 3 and 4 with one new combined cycle generator (Unit 9), one steam turbine generator (Unit 10) and two simple-cycle gas turbines (Units 11 and 12) for the ESPFM project totaling 449 megawatts (MW). The current amendment proposes the demolition of Units 3 and 4, to be replaced with Units 9, 10, 11, and 12 and dry cooling technology. The petition also includes the removal of the existing once-through cooling processes at ESEC and construction of a combined administration, maintenance, and operations support building. Additional onsite parking and vehicle circulation would be provided to accompany the construction of an administration, maintenance, and operations support building.

There are no modifications to the existing conditions of certification for the ESPFM other than deletion of Conditions of Certification LAND-12 Beach Restoration, LAND-13 California State Lands Commission Lease, and LAND-14 Emergency Service Vehicle and Equipment Passage. These conditions of certification were implemented as part of an approved 2010 amendment that proposed to deliver equipment to the ESEC facility via a beach delivery system (CEC 2010a). Subsequently, the project owner has decided not to pursue this form of delivery and the conditions of certification are not necessary. Staff supports the project owner’s request to delete Conditions of Certification LAND-12, LAND-13, and LAND-14. All other remaining conditions of certifications would remain in effect for the ESPFM.

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

Energy Commission staff has analyzed the information provided in the Application for Certification (AFC) and the PTA, as well as information from other sources, to determine
consistency of the modified ESPFM project with applicable land use LORS and the ESPFM’s potential to have significant adverse land use-related impacts.

METHODOLOGY AND THRESHOLDS FOR DETERMINING SIGNIFICANCE

Significance criteria used in this document are based on Appendix G of the CEQA Guidelines and performance standards or thresholds identified by Energy Commission staff, as well as applicable LORS utilized by other governmental regulatory agencies.

An impact may be considered significant if the proposed project results in:

- Conversion of Farmland or Forest Land;
 - Conversion of Prime Farmland, Unique Farmland, or Farmland of Statewide or Local Importance (Farmland) as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use.\(^1\)
 - Conflict with existing zoning for agricultural use, or a Williamson Act contract.
 - Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Pub. Resources Code §12220 (g)), timberland (as defined by Pub. Resources Code §4526), or timberland zoned Timberland Production (as defined by Gov. Code §51104 subd. (g)).
 - The loss of forest land or conversion of forest land to non-forest use.
 - Other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use or conversion of forest land to non-forest use.\(^2\)

- physical disruption or division of an established community;

- conflict with any applicable habitat conservation plan, natural community conservation plan, or biological opinion;

- conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction, or that would normally have jurisdiction, over the project adopted for the purpose of avoiding or mitigating environmental effects. This includes, but is not limited to, a general plan, redevelopment plan, or zoning ordinance; or

\(^1\) FMMP defines “land committed to non-agricultural use” as land that is permanently committed by local elected officials to non-agricultural development by virtue of decisions which cannot be reversed simply by a majority vote of a city council or county board of supervisors.

\(^2\) A non-agricultural use in this context refers to land where agriculture (the production of food and fiber) does not constitute a substantial commercial use.
incremental impacts that, although individually limited, are cumulatively considerable when viewed in connection with other project-related effects or the effects of past projects, other current projects, and probable future projects.³

In general, a power plant and its related facilities may also be incompatible with existing or planned land uses, resulting in potentially significant impacts, if they create unmitigated noise, dust, or a public health or safety hazard or nuisance; result in adverse traffic or visual impacts; or preclude, interfere with, or unduly restrict existing or future uses.

DIRECT/INDIRECT IMPACTS AND MITIGATION

The ESPFM would be constructed within the boundaries of an existing power plant site. The current amendment proposes the demolition of Units 3 and 4, to be replaced with Units 9, 10, 11, and 12 and dry cooling technology. The petition also includes the removal of the existing once-through cooling processes at ESEC and construction of a combined administration, maintenance, and operations support building, modifications to the existing site access, and improvements to beach access.

This section discusses the applicable potential project impacts and associated methods and thresholds of significance referenced above.

Agriculture and Forest

A. Would the project convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to nonagricultural use?

The ESPFM would not create a loss or conversion of Farmland and would not result in a significant adverse impact under this CEQA criterion. According to the Farmland Mapping and Monitoring Program (FMMP) of the California Department of Conservation (DOC), there is no existing agricultural land within a five mile radius of the ESPFM site or city of El Segundo. The ESPFM area and vicinity are characterized by heavy industrial and urban development.

B. Would the project conflict with existing zoning for agricultural use, or a Williamson Act contract?

The ESPFM would not conflict with existing county zoning for agricultural use or a Williamson Act contract, or result in the conversion of farmland to a non-agricultural use. The ESPFM site is located on land zoned M-2 (Heavy Industrial) by the city of El

³ Cumulative impacts refer to two or more individual effects which, when considered together, are considerable or which compound or increase other environmental impacts. The individual effects may be changes resulting from a single project or a number of separate projects and can result from individually minor, but collectively significant actions taking place over a period of time (Cal Code Regs., tit. 14, §15355, 40 C.F.R., §1508.7)
Segundo (City of El Segundo 2013). The ESPFM would not conflict with this CEQA criterion and would not result in a significant impact.

C. Would the project conflict with existing zoning for, or cause rezoning of, forest land (as defined in Pub. Resources Code § 12220(g)), timberland (as defined by Pub. Resources Code § 4526), or timberland zoned Timberland Production (as defined by Gov. Code § 51104(g))?

The ESPFM would not conflict with zoning for, or cause rezoning of forest land, timberland or timberland zoned Timberland Production. The ESPFM area and vicinity are characterized by heavy industrial and urban development.

D. Would the project result in the loss of forest land or conversion of forest land to non-forest use?

The ESPFM would not result in the loss of forest land or conversion of forest land to non-forest use.4 The ESPFM area and vicinity are characterized by heavy industrial and urban development. The ESPFM would not create a loss or conversion of forest land and would not result in a significant adverse impact under this CEQA criterion.

E. Would the project involve other changes in the existing environment which, due to their location or nature, could result in conversion of farmland, to nonagricultural use or conversion of forest land to non-forest use?

The ESPFM would not result in the conversion of farmland, to nonagricultural use or conversion of forest land to non-forest use. The ESPFM area and vicinity are characterized by heavy industrial and urban development. The ESPFM would not conflict with this CEQA criterion and would not result in a significant impact.

Physical Disruption or Division Of An Established Community

The ESPFM would not physically divide an established community. The ESPFM site is an existing power plant site surrounded by a mix of existing heavy industrial uses and residential homes. The ESPFM would not create a significant impact under this CEQA criterion.

Conflict with Any Applicable Habitat Conservation Plan Or Natural Community Conservation Plan

The ESPFM is not located within any Habitat Conservation Plan or Natural Community Conservation Plan and there would be no conflicts as a result of the proposed project.

4 In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state’s inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board (CCR2010).
Conflict with Any Applicable Land Use Plan, Policy or Regulation

California Coastal Act

The 33-acre ESEC property is within the Coastal Zone. The city of El Segundo adopted its Local Coastal Program (LCP) on July 1, 1980 (City of El Segundo Resolution No. 3005). The Coastal Commission certified the LCP on February 4, 1982. The El Segundo LCP incorporated several policies of the California Coastal Act, specifically Chapter 3: Coastal Resources Planning and Management Policies.

This chapter includes Public Resources Code, section 30264 which pertains to thermal electric generating plants. The proposed modernization would be located entirely within the ESEC 33-acre property. Consequently, the ESPFM is consistent with a portion of the Coastal Act’s section 30260 that prefers onsite expansion of existing power plants to development of new power plants in currently undeveloped areas of the Coastal Zone.

City of El Segundo General Plan and Zoning Regulations

The ESEC site is zoned M-2 (Heavy Industrial) including a Heavy Industrial general plan land use designation. Both are intended to provide areas suitable for the development of heavy manufacturing, assembling, or processing activities having unusual or potentially deleterious operational characteristics, that would be detrimental if allowed to operate in other zones within the city. Both the zone district and general plan land use designation include as a permitted use: ancillary structures to permitted uses, heavy manufacturing, construction yards, factories, generating stations, and the extraction of raw materials and refining. As identified in the city of El Segundo municipal code section 15-6B-3: Permitted Accessory, the proposed administration, maintenance, and operations support building would be an ancillary structure to the permitted uses at the facility.

The petition includes the construction of a 30,000 sq. ft. administration, maintenance, and operations support building and additional parking area modifications within the current ESEC footprint. As identified in municipal code section 15-6B-7, the applicable development standards within the M-2 zone district for ESPFM are presented as follows:

Minimum Lot Area: The 33-acre ESPFM site would meet the minimum lot area standard of 20,000 square feet required by the city of El Segundo zoning ordinance.

Minimum Lot Width: The ESPFM site exceeds the minimum lot width of 100 feet required by the M-2 zone district and therefore, and would be consistent with the city of El Segundo zoning ordinance.

Minimum Setbacks: The minimum required setback for a front yard shall be twenty five feet minimum. A side yard setback shall be fifteen feet minimum, unless if the side yard adjoins a dedicated street, then no less than twenty five feet shall be provided; or if the side yard abuts properties with a different zone classification, then the setback required by the zone with the largest setback requirements shall apply. A rear yard setback shall be ten feet minimum, unless the rear yard adjoins an alley, dedicated street, or public right of way, or if the primary access is through the rear yard, then no less than twenty
five feet shall be provided. If the rear yard abuts property with a different zone classification, then the setback required by the zone with the largest setback requirement shall apply.

Each side of the proposed administration, maintenance and operations support building would be located in excess of 50 feet from any property line or road right of way on the ESEC property. Therefore the project would be consistent with the minimum setback required by the city of El Segundo M-2 zone district.

Maximum Height of Structures: The maximum allowable height in the city of El Segundo M-2 zone district is 200 feet. However, Chapter 2: General Provisions Section 15-2-3: Exceptions to building height, allows certain structures like smokestacks to be erected above the 200-foot height limit.

The administration, maintenance and operations support building would be approximately 40 feet tall and therefore consistent with the M-2 zone district maximum height requirement.

The ESEC will continue using the existing exhaust stacks for Units 5 & 6, which is one combined cycle exhaust stack at 210 feet AGL. Units 7 & 8 will also continue to be in-service and use one combined cycle exhaust stack at 210 feet AGL. The ESPFM proposes to construct an exhaust stack for Units 9 & 10, which would be one combined cycle exhaust stack at 210 feet AGL. Also, Units 11 &12 would use two simple cycle exhaust stacks at 150 feet AGL. Both the existing and proposed exhaust stacks would be consistent with the height requirements for the M-2 zone district while incorporating the provisions allowed under Section 15-2-3: Exceptions to building height.

Maximum Floor Area Ratio (FAR): The FAR is determined by dividing the gross floor area of all buildings on a lot by the area of that lot. The maximum allowable FAR in the M-2 zone district is 0.6. Energy Commission staff analyzed the FAR of the ESPFM including all existing and proposed structures by calculating the total square footage of existing structures using GIS and the total square footage of the proposed administration building, a total FAR of approximately 0.27 was determined. Therefore, the ESPFM would comply with the 0.6 FAR required by the city of El Segundo zoning ordinance.

On-site Parking: Municipal Code section 5-15-6: Required Parking Spaces requires 1 space for each 500 square feet for the first 50,000 square feet and 1 space for each 1,000 square feet for the area in excess of 50,000 square feet. The proposed administration, maintenance and operations support building would include an additional parking area providing 28 new standard parking spaces and the addition of 2 new handicapped spaces that would be compliant with the requirements of the Americans with Disabilities Act (ADA), Title 3 California Code of Regulations, and Title 24, California Access Code. The 28 standard parking spaces and 2 handicapped spaces would be in addition to the existing 88 onsite parking spaces. The proposed administration, maintenance and operations support building would be roughly 30,000 sq. ft. and would require a total of 60 parking spaces if the proposed structure were to be occupied solely as office space. The project owner did not indicate how many square
feet of the proposed building would be dedicated to office space, so staff analyzed the proposed administration, maintenance and operations support building as if the entire building would be occupied solely as office space. The existing as well as proposed parking spaces at the ESEC facility would exceed the total number of required onsite parking spaces and the ESPFM would be consistent with the onsite parking requirements.

Construction Impacts and Mitigation

Construction Laydown and Worker Parking Area

The ESPFM proposes to use the same construction laydown area located at 777 West 190th Street in the city of Los Angeles that was used in the 2010 ESEC Petition to Amend decision. There is an existing 5,500 square foot building on the site. The laydown area is approximately 10 miles from the ESPFM site, west of the junction of U.S. Interstate 405 and U.S. Interstate 110. The laydown area will be used for additional worker parking and also to park machinery and store equipment to be used for the ESPFM.

The site is 12.1 acres with approximately 10 usable acres. A large portion of the property is asphalt surfaced and currently used for vehicle parking. The site would provide night lighting and perimeter fencing. Vehicle access to the laydown area would be from West 190th Street. The surrounding land uses adjacent to the laydown site consist of heavy and light industrial, and highway service related commercial.

The 10-acre property is in the city of Los Angeles “M-2” (Light Industrial) Zone (City of Los Angeles, Title 12 Zoning Regulations, 2013). Automobile parking space and loading space is permitted within this zone. The M-2 Zone (section 12.19) of the city of Los Angeles municipal code provides for the open storage of materials and equipment, including used materials and equipment unless conducted in accordance with the limitations specified in subsection A.4 (b) of section 12.19. The phrase “used materials and equipment” includes vehicles, boats, or airplanes which are inoperable, wrecked, damaged or unlicensed (i.e.; not currently licensed by the Department of Motor Vehicles) (LAMC 1974). The proposed use of the off-site laydown area would be consistent with the provisions required by the city of Los Angeles General Plan and municipal code.

Land Use Compatibility

In general, a power plant and its related facilities may also be incompatible with existing or planned land uses, resulting in potentially significant impacts, if they create unmitigated noise, dust, or a public health or safety hazard or nuisance; result in adverse traffic or visual impacts; or preclude, interfere with, or unduly restrict existing or future uses. With the exception of Hazardous Materials, staff has conferred with other project staff to determine that the ESPFM with implementation of conditions of certification would be compatible with surrounding land uses because it would not create significant unmitigated impacts to noise, public health and safety, traffic, or visual resources. Staff will determine land use compatibility with Hazardous Materials in the Final Staff Assessment (FSA).
CUMULATIVE IMPACTS

Under CEQA Guidelines, “a cumulative impact consists of an impact which is created as a result of the combination of the project evaluated in the EIR [environmental impact report] together with other projects causing related impacts” (Cal. Code Regs., tit. 14, §15130, Subd. (a)(1)). Cumulative impacts of the project must be discussed if the incremental effect of a project, combined with the effects of other projects is “cumulatively considerable” (Cal. Code Regs., tit. 14, §15130, Subd. (a)). Such incremental effects are to be viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects” (Cal. Code Regs., tit. 14, §15164, Subd. (b)(1)). Together, these projects comprise the cumulative scenario which forms the basis of the cumulative impact analysis.

The discussion of cumulative impacts shall reflect the severity of impacts and their likelihood of occurrence, “…but the discussion need not provide as great detail as is provided for the effects attributable to the project alone. The discussion of cumulative impacts shall be guided by standards of practicality and reasonableness, and should focus on the cumulative impact to which the identified other projects contribute rather than the attributes of other projects which do not contribute to the cumulative impact” (Cal. Code Regs., tit. 14, §15130, Subd. (b)).

Geographic Scope of Analysis

The geographic scope for the analysis of cumulative impacts related to land use includes existing urban landscape within the western Los Angeles County region. The cumulative land use analysis shown in LAND USE Table 2 considers past, present and foreseeable projects within proximity (approximately 3 miles) of the proposed ESPFM.

The ESEC is located at the southernmost city limit of El Segundo on the coast of the Pacific Ocean between Dockweiler State Beach and the city of Manhattan Beach. The site is bordered by the Chevron refinery to the east, 45th Street in the city of Manhattan Beach on the south, the Pacific Ocean to the west, and the Chevron Marine Terminal to the north.

Energy Commission staff used a CEQANet database search for projects in Los Angeles County and cities within the county. Staff also contacted planning staff with Los Angeles County, El Segundo, and the cities adjacent to El Segundo (Marina Del Ray, Hermosa Beach, Los Angeles, Manhattan Beach, Torrance, and Redondo Beach) to develop a list of large residential development, industrial, and commercial projects. Staff considers the following projects in LAND USE Table 2 part of the cumulative setting for land use issues. The table provides a list of projects considered part of the land use cumulative analysis, including the label ID that correlates with CUMULATIVE IMPACTS Figure 1 in the Executive Summary section of this document. The table shows the name of the project, a brief description, location, and distance from the ESPFM.
LAND USE Table 2
ESPFM List of Cumulative Projects

<table>
<thead>
<tr>
<th>Label ID</th>
<th>Status</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Location</th>
<th>Distance (Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Completed/Past</td>
<td>El Segundo</td>
<td>Redevelopment of power plant Units 1 and 2.</td>
<td>301 Vista Del Mar, El Segundo</td>
<td>0.19</td>
</tr>
<tr>
<td>2</td>
<td>Completed/Past</td>
<td>Chevron Coke Drum Project</td>
<td>Removal of six existing coke drums and installation of six new coke drums with the same capacity and location in the Delayed Coker Unit.</td>
<td>324 West El Segundo Blvd., El Segundo</td>
<td>0.49</td>
</tr>
<tr>
<td>3</td>
<td>Planned/Present</td>
<td>EA-974</td>
<td>Central Reliability Center, central tool room. New: 101,000 sq. ft.; existing to remain: 13,000 sq. ft.; new total is 114,000 sq. ft.</td>
<td>324 West El Segundo Blvd., El Segundo</td>
<td>0.58</td>
</tr>
<tr>
<td>4</td>
<td>Foreseeable</td>
<td>Scattergood Generating Station</td>
<td>The Los Angeles Dept. of Water and Power would construct four power-generating units at the Scattergood Generating Station. Some structures would be demolished and two full size units on the lower level and two smaller units on the middle level of the plant would be constructed. The project work force will utilize on-site parking.</td>
<td>12700 Vista Del Mar, Los Angeles</td>
<td>0.72</td>
</tr>
<tr>
<td>5</td>
<td>Planned/Present</td>
<td>EA-1020</td>
<td>New 5,127 sq. ft. office/research and development building</td>
<td>138 Eucalyptus Dr., El Segundo</td>
<td>0.85</td>
</tr>
<tr>
<td>6</td>
<td>Planned/Present</td>
<td>EA-961</td>
<td>386 sq. ft. office and 3019 sq. ft. warehouse</td>
<td>130 Arena St., El Segundo</td>
<td>0.90</td>
</tr>
<tr>
<td>7</td>
<td>Planned/Present</td>
<td>EA-1004</td>
<td>Two new creative office and research and development buildings. 1,297 sq. ft. office, 7,803 sq. ft. research and development, 1,194 sq. ft. warehouse, total 10,294 sq. ft.</td>
<td>134 Penn St., El Segundo</td>
<td>1.00</td>
</tr>
<tr>
<td>8</td>
<td>Planned/Present</td>
<td>EA-1003</td>
<td>Two new creative office and research and development buildings. 1,297 sq. ft. office, 7,803 sq. ft. research and development, 1,194 sq. ft. warehouse, total 10,294 sq. ft.</td>
<td>130 Penn St., El Segundo</td>
<td>1.01</td>
</tr>
<tr>
<td>9</td>
<td>Planned/Present</td>
<td>EA-781</td>
<td>7-Unit Residential Condominium, 14,313 sq. ft.</td>
<td>301,303,305 Palm Ave., El Segundo</td>
<td>1.20</td>
</tr>
<tr>
<td>10</td>
<td>Foreseeable</td>
<td>EA-1038</td>
<td>4-unit condominium (6,963 sq. ft.), 2 stories, semi-subterranean parking.</td>
<td>711 Main St. El Segundo</td>
<td>1.25</td>
</tr>
<tr>
<td>11</td>
<td>Planned/Present</td>
<td>EA-1014</td>
<td>2-lot subdivision for two 6-unit multi-family residential condos (12 total units)</td>
<td>115 East Walnut Ave., El Segundo</td>
<td>1.52</td>
</tr>
<tr>
<td>12</td>
<td>Planned/Present</td>
<td>EA-959</td>
<td>Two office buildings; 30,660 sq. ft.</td>
<td>222 Kansas St. El Segundo</td>
<td>1.54</td>
</tr>
<tr>
<td>13</td>
<td>Foreseeable</td>
<td>EA-993, The Point</td>
<td>119,275 sq. ft. total. Shopping center (71,343 sq. ft.), restaurant (25,627 sq. ft.), and office (27,338 sq. ft.).</td>
<td>820-850 S. Sepulveda Blvd., El Segundo</td>
<td>1.60</td>
</tr>
<tr>
<td>14</td>
<td>Foreseeable</td>
<td>Civic Center/Metlox</td>
<td>Demolition and reconstruction of the existing police and fire department facilities to include a two-level (one level below grade), approx. 57,000 sq. ft. combined</td>
<td>Site boundaries: 15th St. on north,</td>
<td>1.67</td>
</tr>
<tr>
<td>Label ID</td>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Distance (Miles)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>15</td>
<td>Planned</td>
<td>EA-890, El Segundo Unified School District</td>
<td>304 Senior housing/assisted living facility up to 175,000 sq. ft.</td>
<td>Valley Dr. on east, Manhattan Beach Blvd. on south, and Highland Ave. and Morningside Dr. on west; Manhattan Beach</td>
<td>1.72</td>
</tr>
<tr>
<td>16</td>
<td>Planned</td>
<td>EA-958</td>
<td>9 residential condo units</td>
<td>1700 E Mariposa Ave., El Segundo</td>
<td>1.79</td>
</tr>
<tr>
<td>17</td>
<td>Foreseeable</td>
<td>Manhattan Village Shopping Center Enhancement Project</td>
<td>A net increase of approx. 123,672 sq. ft. restaurant and retail (approx. 194,644 sq. ft. new area and demolition of approx. 70,972 sq. ft. existing retail, restaurant, and cinema) to be developed within three components. The shopping center would include a total of approx. 696,509 sq. ft. An "equivalency program" is proposed that provides for the exchange between land uses based on P.M. peak traffic equivalency factors. A maximum of 133,389 sq. ft. net new area (approx. 204,361 sq. ft. new area and demolition of approx. 70,972 sq. ft. existing retail, restaurant, and cinema) would be developed for a total of up to 706,226 sq. ft. Approx. 544 parking spaces would be provided in surface parking areas and within multiple parking structures.</td>
<td>3200-3600 North Sepulveda Blvd., Manhattan Beach</td>
<td>1.81</td>
</tr>
<tr>
<td>18</td>
<td>Planned</td>
<td>EA-912</td>
<td>New 3,714 sq. ft. restaurant with drive through; parking and landscaping redesign; outdoor dining</td>
<td>600 - 630 North Sepulveda Blvd., El Segundo</td>
<td>1.93</td>
</tr>
<tr>
<td>19</td>
<td>Planned</td>
<td>Cambria Suites, EA-844</td>
<td>152 room hotel – 71,000 sq. ft.</td>
<td>199 Continental Blvd., El Segundo</td>
<td>1.99</td>
</tr>
<tr>
<td>20</td>
<td>Foreseeable</td>
<td>EA-905, Raytheon Campus Specific Plan</td>
<td>Approx. 2.1 million (2,142,457) square-foot Office Park Expansion (office, retail, warehouse, light industrial).</td>
<td>2100 El Segundo Boulevard, El Segundo</td>
<td>2.00</td>
</tr>
<tr>
<td>21</td>
<td>Foreseeable</td>
<td>EA-986, Mattel</td>
<td>R&D and office, 14 stories, 300,000 sq. ft., 810-space parking structure-8-stories</td>
<td>455 Continental Blvd. and 19055 E. Grand Ave., El Segundo</td>
<td>2.00</td>
</tr>
<tr>
<td>22</td>
<td>Planned/Present</td>
<td>EA-981</td>
<td>Office, 194,119 sq. ft.</td>
<td>1700 East Imperial Ave., El Segundo</td>
<td>2.07</td>
</tr>
<tr>
<td>Label ID</td>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Distance (Miles)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>23</td>
<td>Foreseeable</td>
<td>EA-997, Hotel</td>
<td>5-story, 190 room hotel, 107,090 sq. ft.</td>
<td>888 North Sepulveda, El Segundo</td>
<td>2.13</td>
</tr>
<tr>
<td>24</td>
<td>Planned/ Present</td>
<td>EA-996</td>
<td>2800 sq. ft. convenience store</td>
<td>2161 E. El Segundo Blvd. El Segundo</td>
<td>2.13</td>
</tr>
<tr>
<td>25</td>
<td>Planned/ Present</td>
<td>Central Utility Plant Replacement</td>
<td>Replace the 50-year old existing Central Utility Plant (CUP) with a more modern and energy efficient facility</td>
<td>LAX, Los Angeles</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>Planned/ Present</td>
<td>New Tom Bradley International Terminal</td>
<td>18 new gates to the west side of the Tom Bradley International Terminal, great hall for dining and retail shopping.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned/ Present</td>
<td>LAX Curbside Appeal Project</td>
<td>Phase 1: New Canopy, landscaping, light band, and new light poles in front of Tom Bradley International Terminal; Phase 2: Light band, light poles, and canopies in front of the terminal in the LAX Central Terminal Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned/ Present</td>
<td>Runway Status Lights</td>
<td>With completion of the installation of the prototype runway status lights in 2009, the full system will be installed. Runway status lights use a series of red lights embedded in the pavement to warn pilots if it is unsafe to cross or enter a runway, or to take off.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Planned/ Present</td>
<td>EA-971</td>
<td>Data Center, addition of 75,435 sq. ft., demo of 11,769 sq. ft. out of existing for new total sq. ft. of 180,422.</td>
<td>444 N Nash St., El Segundo</td>
<td>2.33</td>
</tr>
<tr>
<td>27</td>
<td>Foreseeable</td>
<td>West Aircraft Maintenance Area</td>
<td>Replace existing facilities and consolidate maintenance operations; paved area for aircraft parking, maintenance hangars, 300-space employee parking lot, storage, equipment related facilities, and ground run-up enclosure.</td>
<td>LAX, Los Angeles</td>
<td>2.35</td>
</tr>
<tr>
<td></td>
<td>Foreseeable</td>
<td>Midfield Satellite Concourse North</td>
<td>Phase 1 of the MSC Program (northern portion of the MSC facility and associated improvements). Project components include a concourse for up to 11 gates and assoc. facilities; improvements to taxiways and taxilanes; ramp tower or FAA supplemental airport traffic control tower; and utilities to support the North MSC facility.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreseeable</td>
<td>LAX Runway 7L/25R Runway Safety Area (RSA) Project & Associated Improvements</td>
<td>1) Extend Runway 7L/25R pavement; grade and compact the RSA; construct blast pad west of Runway 7L extension; several taxiways modifications as necessary; relocate existing Localizer Antenna and shelter to the west; replace existing Approach Lighting System (ALS) towers with in-pavement lights; and modify existing Runway and Taxiway lighting and markings in newly constructed pavements; 2) Reconstruct pavement of eastern portions of Runway 7L/25R and Taxiway B including connecting taxiways and installation of in-pavement approach lights; 3) Reconstruct pavement of aircraft parking apron west of Air Freight Building No. 8, including new markings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label ID</td>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Distance (Miles)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Foreseeable</td>
<td>LAX Runway 6L-24R Safety Area & Associated Improvements</td>
<td>Improve Runway 6L-24R and service roads to bring runway into compliance with applicable FAA design criteria.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Planned/Present</td>
<td>Wiseburn High School</td>
<td>New high school, 180,000 to 240,000 sq. ft.</td>
<td>201 North Douglas, El Segundo</td>
<td>2.37</td>
</tr>
<tr>
<td>29</td>
<td>Foreseeable</td>
<td>EA-1021</td>
<td>625,205 sq. ft. total; 611,545 sq. ft. office, 12,660 sq. ft. retail</td>
<td>710 North Nash St., El Segundo</td>
<td>2.38</td>
</tr>
<tr>
<td>30</td>
<td>Foreseeable</td>
<td>EA-1040</td>
<td>28,406 sq. ft. office, 33,475 sq. ft. light industrial, total 61,881 sq. ft.</td>
<td>400 Duley Rd. El Segundo</td>
<td>2.45</td>
</tr>
<tr>
<td>31</td>
<td>Planned/Present</td>
<td>EA-784</td>
<td>Data Center, 332,137 sq. ft.</td>
<td>445 N Douglas Street, El Segundo</td>
<td>2.45</td>
</tr>
<tr>
<td>32</td>
<td>Planned/Present</td>
<td>EA-1001</td>
<td>2355 Utah: Convert existing 42,548 sq. ft. to all office, add 1687 sq. ft. 2383 Utah: Convert existing 152,506 sq. ft. to all office, add 6850 sq. ft.</td>
<td>2355 Utah and 2383 Utah Ave., El Segundo</td>
<td>2.53</td>
</tr>
</tbody>
</table>
Cumulative Impacts Conclusion

The potential for the ESPFM to cause significant cumulative impacts has been considered using the Appendix G of the CEQA Guidelines. The projects shown in LAND USE Table 2 were cumulatively considered with the ESPFM.

Staff has concluded that the ESPFM has no direct or indirect land use impacts and would not contribute to cumulative land use impacts. Therefore, the project’s impacts when combined with the land use impacts of the other projects within the geographic scope identified in the cumulative analysis would not be cumulatively considerable.

Staff concludes the following for cumulative impacts.

- The ESPFM would have no direct or indirect impacts on farmland and would not contribute to cumulative impacts on this resource.
- The ESPFM would not conflict with existing zoning for agricultural use. The ESPFM would not contribute to cumulative impacts on agricultural uses.
- The ESPFM would not conflict with existing zoning for or cause rezoning of forest land or timberland and would not contribute to cumulative impacts on these resources.
- The ESPFM would not result in the loss or conversion of forest land and would not contribute to cumulative impacts on this resource.
- The ESPFM would not involve changes in the environment that would result in the conversion of farmland or forest land and would not contribute to cumulative impacts on these resources.
- The existing ESEC site is not within an approved U.S. Fish and Wildlife Service habitat conservation plan under section 10 of the Endangered Species Act, or within an approved California Department of Fish and Wildlife natural community conservation plan under section 2800 of the Natural Communities Conservation Act and would not contribute to cumulative impacts under this criterion.
- The ESPFM would not result in incremental land use impacts that are cumulatively considerable when viewed in connection with other project-related effects or the effects of past projects, other current projects, and probable future projects.

COMPLIANCE WITH LORS

Staff’s independent analysis of the ESPFM concludes that the project would comply with all applicable land use LORS. LAND USE Table 3 summarizes the ESPFM project conformance with applicable LORS.
LAND USE Table 3
LORS Applicable to the Land Use Analysis

<table>
<thead>
<tr>
<th>Applicable LORS</th>
<th>Description</th>
<th>Consistency</th>
<th>Basis for Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal Aviation Regulations (Code of Federal Regulations, Part 77)</td>
<td>These regulations are designed to promote the safety of airport operations within the vicinity of an airport by defining a clear zone above which structures are seldom permitted to penetrate.</td>
<td>Yes</td>
<td>Condition of Certification LAND-3 from the original license would ensure on-going compliance with the FAA Advisory Circular 70/7460-1K and require compliance for the existing exhaust stacks (Units 5 & 6 (one combined cycle stack at 210 feet AGL) and Units 7 & 8 (one combined cycle stack at 210 feet AGL)) and the proposed exhaust stacks (Units 9 & 10 (one combined cycle stack at 210 feet AGL) and Units 11 & 12 (two simple cycle stacks at 150 feet AGL)).</td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subdivision Map Act (Public Resources Code § 66410-66499.58)</td>
<td>Governs the creation, recognition, consolidation or reconfiguration, adjustment and elimination of parcels on land within California.</td>
<td>Yes</td>
<td>The ESPFM would not cause a re-evaluation of the Subdivision Map Act</td>
</tr>
<tr>
<td>Warren-Alquist Act, Public Resources Code § 25500 et seq. California Coastal Act, Public Resources Code, section 25529</td>
<td>Establishes a comprehensive approach to govern land use planning along the entire California coast. Establishes a comprehensive approach to public access along the entire California coast.</td>
<td>Yes</td>
<td>The ESPFM would be developed within an existing electrical generating facility and would not result in a change in land use that adversely affects coastal resources or public access.</td>
</tr>
<tr>
<td>California Coastal Act Public Resources Code, section 30000 Public Resources Code, section 30101 Public Resources Code, section 30211 Public Resources Code, section 30260</td>
<td>The California Coastal Act establishes a comprehensive scheme to govern land use planning along the entire California coast Defines “Coastal-dependent development or use” means any development or use which requires a site on, or adjacent to, the sea to be able to function at all.” Requires that new development not interfere with the public’s right of access to the shoreline. Encourages the use of existing coastal-dependent industrial sites within the Coastal Zone instead of using undeveloped areas of the Coastal Zone.</td>
<td>Yes</td>
<td>The ESPFM would be developed within an existing electrical generating facility and would not result in a change in land use that adversely affects coastal resources or public access. No coastal access would be denied to the public as a result of the ESPFM and no new access would be required.</td>
</tr>
<tr>
<td>Applicable LORS</td>
<td>Description</td>
<td>Consistency Determination</td>
<td>Basis for Consistency</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Ungranted State Tidelands and Submerged Lands Leasing (Pub. Resources Code § 6701-6706)</td>
<td>The California State Lands Commission (SLC) has exclusive jurisdiction over all ungranted tidelands and submerged lands owned by the State</td>
<td>Yes</td>
<td>The ESPFM proposes to remove the once through ocean water cooling system from the facility, which would eliminate requirements associated with submerged lands.</td>
</tr>
<tr>
<td>Local</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City of Segundo General Plan, December 1, 1992.</td>
<td>The general plan designates the proposed general distribution and general location and extent of the uses of the land for housing, business, industry, open space, including agriculture, natural resources, recreation, and enjoyment of scenic beauty, education, public buildings and grounds, solid and liquid waste disposal facilities, and other categories of public and private uses of land.</td>
<td>Yes</td>
<td>The ESPFM would be developed within an existing electrical generating facility consistent with the city of El Segundo Heavy Industrial Land Use Designation and would not require additional review.</td>
</tr>
<tr>
<td>Heavy Industrial Land Use Designation</td>
<td>Permits heavy manufacturing uses such as construction yards, factories, generating stations, extraction of raw materials, and refining. All uses must conform to the policies of the Hazardous Materials Element. The maximum allowed floor area ratio (FAR) is 0.6.</td>
<td>Yes</td>
<td>The ESPFM would have a maximum FAR of approximately 0.27</td>
</tr>
<tr>
<td>City of El Segundo Municipal Code Title 15, February 6, 1996 (Amended October 15, 2013) Chapter 2: General Provisions 15-2-3: Exceptions to Building Height</td>
<td>Smokestacks and other similar structures may be erected above the height limits prescribed in this title.</td>
<td>Yes</td>
<td>Two of the proposed HRSGS would be 210 AGL, which exceeds the 200 foot height limitation for the city of El Segundo M-2 Industrial zone district. However 15-2-3 would allow the 210 foot HRSGS as they are similar in nature to a smoke stack.</td>
</tr>
<tr>
<td>City of El Segundo Municipal Code Title 15, February 6, 1996 (Amended October 15, 2013) M-2 (Heavy Industrial) 15-6B-3: Permitted Accessory Uses</td>
<td>The zoning code is intended to provide areas suitable for the development of heavy manufacturing, assembling, or processing activities having unusual or potentially deleterious operational characteristics, that would be detrimental if allowed to operate in other zones within the city A. Any use customarily incidental to a permitted use.</td>
<td>Yes</td>
<td>The ESPFM would be developed within an existing electrical generating facility consistent with the El Segundo M-2 (Heavy Industrial) zone district. The zone district includes as a permitted use: heavy manufacturing, construction yards, factories, generating stations and the extraction of raw materials and refining and would not require additional review The construction of an administration, maintenance,</td>
</tr>
<tr>
<td>Applicable LORS</td>
<td>Description</td>
<td>Consistency Determination</td>
<td>Basis for Consistency</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>
| 15-6B-7: SITE DEVELOPMENT STANDARDS | C. General office and laboratory uses.
E. Other similar uses approved by the director of community, economic and development services, as provided by chapter 22 of this title. (Ord. 1212, 11-16-1993; amd. Ord. 1257, 6-18-1996; Ord. 1315, 1-18-2000) | and operations support building would be allowed as customarily incidental to the permitted use of the site as an energy facility. | With the exception of the HRSGS exceeding 200 feet allowed under 15-2-3 of the El Segundo Zoning Code, the ESPFM has been designed to meet all of the required development standards of the M-2 Industrial zone district. |
| 15-15-6: REQUIRED PARKING SPACES | A. General Provisions:
1. Operations and uses conducted on the premises, which are or may be in violation of this code, state laws, or environmental regulations by reason of noise, odor, dust, mud, light, smoke, vibrations or other similar causes, shall conform to all city, state and federal regulations which are designed to protect the health, safety and welfare of the citizens of this city and the employees of the proposed use.
2. Prior to approval of any development project, all criteria of the transportation demand management (TDM) and trip reduction criteria, as provided for in chapter 16 of this title shall be met.
3 Other provisions as required in chapter 2 of this title.
B. Lot Area: A minimum of twenty thousand (20,000) square feet.
C. Height: Buildings and structures shall not exceed a height of two hundred feet (200').
1 space for each 500 square feet for the first 50,000 square feet; 1 space for each 1,000 square feet for the area in excess of 50,000 square feet | The proposed administration maintenance and operations support building would include an additional parking area with the addition of 28 standard parking spaces and 2 handicapped spaces in addition to the existing onsite parking facilities, which exceed the required number of |
<table>
<thead>
<tr>
<th>Applicable LORS</th>
<th>Description</th>
<th>Consistency Determination</th>
<th>Basis for Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of El Segundo Local Coastal Program, July 1980 includes Coastal Zone Specific Plan (certified by California Coastal Commission on February 4, 1982)</td>
<td>Develop a land use plan for the Coastal Zone that protects and enhances coastal resources, promotes public access and balances development with facility needs.</td>
<td>Yes</td>
<td>The ESPFM would be developed within an existing electrical generating facility and would not result in a change in land use that adversely affects coastal resources. The existing conditions of certification would ensure that adverse impacts associated with the project are mitigated or minimized to the greatest extent feasible.</td>
</tr>
<tr>
<td>City of Manhattan Beach General Plan December 2, 2003</td>
<td>The city of Manhattan Beach General Plan does not provide any policies relevant to construction of a sewer line within the public right-of-way. An encroachment permit is required from the city’s Public Works Department for the sewer line connection</td>
<td>Yes</td>
<td>The ESPFM would be developed within an existing electrical generating facility and would not require the construction of any off-site sewer lines. Therefore the proposed amendment would not trigger additional review of City of Manhattan Beach General Plan.</td>
</tr>
<tr>
<td>City of Manhattan Beach Municipal Code February 21, 2012.</td>
<td>The city of Manhattan Beach Zoning Ordinance does not provide any regulations relevant to construction of a sewer line within the public right-of-way.</td>
<td>Yes</td>
<td>The ESPFM would be developed within an existing electrical generating facility and would not require the construction of any additional off-site sewer lines within the right of way as part of the proposed amendment and would not trigger additional review of City of Manhattan Beach Municipal Code.</td>
</tr>
<tr>
<td>City of Manhattan Beach Local Coastal Program, certified by California Coastal Commission on May 24, 1994 (Amended December 22, 2011)</td>
<td>Develop a land use plan for the Coastal Zone that protects and enhances coastal resources, promotes public access and balances development with the natural ecosystem.</td>
<td>Yes</td>
<td>The ESPFM would be developed within an existing electrical generating facility and would not result in an expansion into the city of Manhattan Beach. The existing conditions of certification would ensure that adverse impacts associated with the project are mitigated or minimized to the greatest extent feasible.</td>
</tr>
<tr>
<td>City of Los Angeles General Plan Land Use Element 2004</td>
<td>The Westchester/Playa Del Rey Community Plan provides the Land Use Element for the Playa Del Rey area of the city of Los Angeles. This document was adopted in 1974 and was last amended in 2001. However, the document does not provide policies applicable for the applicant’s proposed installation of water.</td>
<td>Yes</td>
<td>The ESPFM would be developed within an existing electrical generating facility and does not require the construction of any off-site water pipelines.</td>
</tr>
<tr>
<td>Applicable LORS</td>
<td>Description</td>
<td>Consistency Determination</td>
<td>Basis for Consistency</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Los Angeles Municipal Code M2 (light Industrial)</td>
<td>The Purpose of the Los Angeles Municipal Code is to allow uses that are consistent with surrounding developments within a geographic area.</td>
<td>Yes</td>
<td>The temporary offsite construction laydown and worker parking area would be consistent with the city's zoning regulations, and is an allowable use within the M2 zone district.</td>
</tr>
</tbody>
</table>

NOTEWORTHY PUBLIC BENEFITS

Staff has not identified any noteworthy public benefits related to land use.

RESPONSE TO AGENCY AND PUBLIC COMMENTS

Staff has not received any agency or public comments related to land use for the ESPFM.

CONCLUSIONS

The land use analysis focused on two main issues; (1) would the project cause significant land use planning impact(s) under the California Environmental Quality Act (CEQA) and Guidelines, and (2) would the project comply with applicable state and local LORS pertaining to land use.

Staff has concluded that the proposed ESPFM would be consistent with all LORS that were identified in the 2005 Commissions Decision including additional LORS as a result of the proposed amendment for the construction of a new operations, maintenance and operations building.

The construction of the ESPFM project with the effective implementation of staff’s recommended conditions of certification would not cause a direct, indirect or cumulative adverse land use planning impact under CEQA, and would ensure conformance with the applicable LORS pertaining to land use.

CONDITIONS OF CERTIFICATION

Staff recommends the following deletions to the licensed project’s land use conditions of certification as these conditions do not apply to the proposed amendment (Note: Strikethrough is used to indicate deleted language).

LAND-1 The project owner shall ensure that the project and its associated facilities are in compliance with the affected local jurisdiction’s applicable adopted county or municipal code requirements for the project site’s development (e.g., setbacks, zone district requirements, design criteria, height, sign requirements, etc.).
The project owner shall submit to the applicable city/county planning department for review and comment, a development plan showing site dimensions, design and exterior elevation(s) and other item(s) that may be required by the local jurisdiction’s planning department to conduct a ministerial review of the project and its associated facilities in accordance with the jurisdiction’s site development requirements. The city/county planning department shall have 60 calendar days to review the plan(s) and provide written comments to the project owner. The project owner shall provide a copy of the city/county planning department’s written comments and a copy of the development plan to the CPM.

Verification: At least 90 calendar days prior to the site mobilization on the power plant project site and its associated facilities, the project owner shall submit the proposed development plan to the affected jurisdiction for review and comment. The project owner shall provide any comment letters received from the local jurisdiction along with the proposed development plan to the CPM for review and approval.

LAND-2 The project owner shall identify the secured lay down/staging area(s) for the project prior to site mobilization. The project owner shall provide a plot plan and location map showing the lay down/staging area(s) to the affected local jurisdiction(s) planning department(s) (i.e. County of Los Angeles, the City of El Segundo, City of Manhattan Beach, etc.) and to the Executive Director of the California Coastal Commission if located within the State designated Coastal Zone for review and comment. The local jurisdiction(s) and the Executive Director (if applicable) shall have 60 calendar days to review the lay down/staging area(s) and provide written comments to the project owner. The project owner shall provide a copy of the local jurisdiction’s and the Executive Director’s (if applicable) written comments and a copy of the secure lay down/staging area(s) to the CPM for review and approval.

Verification: The project owner shall provide a copy of the lay down/staging area(s) to the affected local jurisdiction and the Executive Director of the California Coastal Commission (if applicable) for written comment. At least 30 days prior to the start of site mobilization, the project owner shall provide any plan(s), map(s) showing the secured lay down and staging area(s) along with any comment letters from the local jurisdiction.

LAND-3 The project owner shall provide appropriate evidence of compliance with Federal Aviation Administration (FAA) regulations regarding the marking and/or lighting of the project’s new exhaust stacks.

Verification: Pursuant to the schedule contained in Condition of Certification TRANS-6, the project owner shall submit copies of the FAA Form 7460-1 with copies of the FAA response to Form 7460-1 to the CPM.

LAND-4 The project owner shall either bore the proposed sewer line under 45th Street in the City of Manhattan Beach or use conventional excavation techniques using steel cover plates to allow traffic to have access to the Strand parking lot at all times. The time period necessary to complete the 45th Street sewer
excavation/trenching and connection shall be kept to a minimum. The Applicant shall obtain the required encroachment permit(s) from the local government of jurisdiction(s). The sewer line shall be constructed during the off-peak season of September to May.

Verification: The project owner shall submit to the City of Manhattan Beach Public Works Department an encroachment permit application for their review and approval and to the CPM for final approval. The permit application shall include a description of the method that would be used to complete any excavations in 45th Street. The application shall include the proposed time to begin and complete the sewer line connection. Also, the permit application shall illustrate how the construction crew and traffic control will ensure that access to the parking lot is not disrupted. The project owner shall monitor the construction of the sewer line in the 45th Street right-of-way at all times and promptly notify the City of Manhattan Beach Public Works Department and CPM of any difficulties experienced. Prior to any ground disturbance within the 45th Street public right-of-way a copy of the City of Manhattan Beach approved/issued encroachment permit shall be submitted to the CPM. The CPM or City of Manhattan Beach designated representative may conduct random site visits to verify compliance, and the CPM may temporarily stop construction to ensure access is maintained.

LAND–5 The project owner shall provide written notification to the CPM when any plans for use of the abandoned fuel tank farm area (Parcel 2) are developed and indicate whether the project owner believes such plans are subject to the Energy Commission’s permitting authority in accordance to the Warren-Alquist Act. The written notification shall include a description of the development and an analysis of which agency has proper jurisdiction over the development according to the enacted laws, ordinances and standards in effect at the time such development is to be proposed.

Verification: The project owner shall provide written notification to the planning departments of the City of El Segundo and the City of Manhattan Beach and to the Executive Director of the California Coastal Commission who shall have 30 calendar days to provide written comments to the CPM to review.

At least 60 days prior to submitting any applications to any other agency for development of the abandoned fuel tank farm area (Parcel 2); the project owner shall provide a copy of the written notification to the CPM. The project owner shall also provide copies of the written notification sent to the Cities of El Segundo, Manhattan Beach and to the Executive Director of the California Coastal Commission to the CPM.

LAND–6 The abandoned fuel storage tanks on Parcel 2 shall be removed prior to the start of commercial operation of the new generating units. Any site remediation and/or soil restoration activities required by appropriate authorities shall be completed following tank removal. Following site remediation, the tank farm area shall be paved and landscaped in accordance with the landscape plan submitted and approved pursuant to condition of certification, VIS–2. The tank farm uses will be restricted to parking in the designated parking areas and approved uses in the paved area south of the designated parking area.
Approved uses include temporary equipment staging and overflow parking during maintenance evolutions. The paved area shall not be used for permanent storage of vehicles, equipment or materials.

Verification: The project owner shall submit a detailed schedule for the removal of the fuel storage tanks, site remediation and/or soil restoration to the CPM for review and approval prior to the start of construction.

LAND-7 The project owner shall provide copies of final grading and drainage plans to the planning departments of the Cities of El Segundo and Manhattan Beach.

Verification: Pursuant to the schedule contained in Condition of Certification **CIVIL-1** the project owner shall also submit copies of the proposed drainage structures and grading plan to the City of El Segundo planning department and the City of Manhattan Beach planning department concurrent with their submittal to the Chief Building Official (CBO) and CPM.

LAND-8 The project owner shall maintain lease rights for the tideland and submerged land owned by the State of California leased via the California State Lands Commission. Project owner shall provide copies to the CPM of all new or amended leases and all relevant correspondence between the project owner and the State Lands Commission regarding lease terms.

Verification: The project owner shall provide the CPM with a copy of submitted lease applications filed with the State Lands Commission and other relevant correspondence. The project owner shall submit to the CPM a copy of all new or amended lease agreements with the California State Lands Commission.

LAND–9 The project owner shall provide copies of the final perimeter landscape plan(s) to the CPM. The landscape plans shall identify the area to be designated for public use, subject to restrictions for security and public safety as determined by the CPM. The project owner shall install public park-type benches within the public use area along the west property line of the ESGS property.

Verification: The public park-type benches shall be installed pursuant to the schedule contained in Condition of Certification **VIS-2**. Within 14 days after completion of the public use area, the project owner shall contact the CPM to request a final inspection.

BIKEWAY CLOSURE OR WIDTH REDUCTION

LAND-10 The project owner shall not prohibit public access and use of the Los Angeles County maintained Class 1 bicycle trail known as the “Marvin Braude Bikeway” (bikeway) during beach delivery activities except as stipulated below for the project:

1. Prior to the start of pre-construction activity involving the bikeway, the project owner shall contact the Los Angeles County Department of Public Works and provide for its review a schedule for bike trail closure and trail use interruption, the detour route, the location of delineators or barricades
to channelize individuals past the work site, and the placement of public signage (e.g., construction warning signs).

2. Prior to the first closure of the bikeway to perform necessary project preconstruction or construction activity, the project owner shall:

 a. Provide the final schedule and timing of bike trail closures to the Department of Public Works Construction Division and Bikeway Coordinator, and CPM,

 b. Provide a detour plan to the Department of Public Works Construction Division, Bikeway Coordinator and CPM showing a safe bicycle route around the project site for bicyclists.

 c. Provide the Department of Public Works Construction Division and Bikeway Coordinator 30-calendar days to review and provide written comments to the project owner on a. and b. above.

 d. Provide to the CPM a copy of the transmittal letter submitted to the Department of Public Works Construction Division and Bikeway Coordinator requesting their review of the items identified in a. and b. above.

 e. Provide to the CPM a copy of the Department of Public Works Construction Division and Bikeway Coordinator written comments on the items identified in a. and b. above for approval.

 f. Notify the Bikeway Coordinator within 24-hours after any reopening of the bikeway.

3. If the bikeway’s existing width must be reduced in size to perform necessary project construction activity, the project owner shall provide the following: Eight (8) feet of bicycle trail width shall be maintained around the project site to the greatest extent possible. The project owner shall post construction signs warning “CONSTRUCTION AHEAD” and “BIKEWAY NARROWS” in advance of the project site on all approaches along with delineators and barricades for channelization. If a minimum of eight feet of paved bicycle trail cannot be provided, construction signs warning “CONSTRUCTION AHEAD” and “WALK BIKE” shall be posted in advance of the project site on all approaches. Where bicyclists are instructed to walk their bikes, flagmen shall be present at all approaches. Delineators or barricades shall also be placed to channelize pedestrians past the work site. Vertical clearance to obstructions across the clear width of the bicycle trail shall be a minimum of 8 feet.

4. Required public signage shall be posted at least 14-calendar days prior to the start of pre-construction activity involving the bikeway. The Department of Public Works Construction Division and Bikeway Coordinator, and the CPM shall be notified that signage has been installed within 24-hours after posting.
5. To the extent feasible, the project owner shall make the bicycle trail open to the public on weekends and holidays. The bicycle trail shall be completely free of obstructions including barricades, swept clean, and have a minimum of eight-feet of vertical clearance with a two-foot wide shoulder. If a two-foot wide shoulder cannot be maintained, the project owner shall provide warning signage.

6. Within 48-hours after receiving a bicycle related trail complaint specific to the project’s bikeway pre-construction and construction activities, the project owner shall provide the CPM with a complaint resolution form report as specified in the Compliance General Conditions and a written explanation of the resolution to the complaint.

Verification: At least 30 days prior to start of pre-construction activity involving the bikeway, the project owner is to contact the Los Angeles County Department of Public Works Construction Division and Bikeway Coordinator.

The project owner is to provide to the CPM a copy of the transmittal letter submitted to the Department of Public Works Construction Division and the Bikeway Coordinator requesting their review.

The project owner is to provide to the CPM a copy of the written comments provided by the Department of Public Works Construction Division and the Bikeway Coordinator on the scheduled for bike trail closure and trail use interruption, the detour route, the installation of public signage and notification.

The project owner is to notify the Construction Division, Bikeway Coordinator, and the CPM within 24-hours after posting signage along the bicycle trail. The project owner is to notify the Bikeway Coordinator within 24-hours after any reopening from a scheduled closure of the bicycle trail.

Within 48-hours after receiving a bicycle related trail complaint, the project owner is to provide the CPM with a complaint resolution form report and resolution explanation.

BIKEWAY RESTORATION

LAND-11 The project owner shall complete restoration or repair of bicycle trail pavement (including striping) to the bikeway’s preconstruction condition consistent with the schedule established for the completion of the seawall pursuant to Condition of Certification VIS-3 found in the visual resources section of the Commission Decision dated February 2, 2005. The project owner shall contact the Los Angeles County Department of Public Works Construction Division and the CPM for a site inspection after the project owner has restored/repaired the bicycle trail to its preconstruction condition. If upon completion of the site inspection by the Los Angeles County Department of Public Works Construction Division and the CPM, the CPM notifies the project owner that additional restoration/repair is needed within 30 days of receiving the notification the project owner shall complete the specified work.
Verification: The project owner is to notify the Los Angeles County Department of Public Works Construction Division and the CPM upon completion of the restoration/repair of the bicycle trail that it is ready for inspection.

BEACH RESTORATION

LAND-12 The project owner shall remove all evidence of the project’s beach delivery area structures and equipment (e.g., beach ramp, safety/security fencing, dozers, etc.), and restore the beach surface area to its original condition or better condition, including the replacement of any sand, vegetation, or paving that was removed to permit the project’s beach delivery phase where project development does not preclude it.

The project owner shall record in video format the beach delivery lay-down area prior to pre-construction activity and after the restoration completed. The project owner shall submit copies of both the pre- and post-video recordings to the CPM.

The project owner shall complete surface restoration of the beach area within 60 calendar days after the start of commercial operation. The project owner shall notify the CPM within seven days after completion of surface restoration that the beach area is ready for inspection. If the CPM notifies the project owner that additional surface restoration is needed after the site inspection, within 30 days of receiving that notification the project owner shall complete the specified work.

Verification: At least 15 days prior to the start of pre-construction activity on the beach, the project owner is to video the beach delivery laydown area and provide a copy of it to the CPM.

The project owner is to notify the CPM within seven days after completion of the beach restoration that it is ready for inspection and provide the CPM with a video/DVD showing the restored beach area.

CALIFORNIA STATE LANDS COMMISSION LEASE

LAND-13 Prior to the start of the project’s pre-construction activity on the beach, the project owner shall provide the CPM a copy of their executed lease or equivalent land use document with the California State Lands Commission permitting barge anchorage, and the storage and transfer of oversized power plant equipment (e.g., steam turbine generators, heat recovery steam generators, air-cooled condensers) to the project site.

Verification: At least 15 days prior to the start of pre-construction activity on the beach, the project owner is to provide the CPM a copy of their executed lease or equivalent land use document with the California State Lands Commission.
EMERGENCY SERVICE VEHICLE AND EQUIPMENT PASSAGE

LAND-14 The project owner shall allow the Los Angeles County Department of Beaches and Harbors, Facilities and Property Management Division, and the Los Angeles County Fire Department, Lifeguard Division, heavy equipment and emergency services vehicle passage through the project’s beach delivery area, and the Marvin Braude Bikeway to respond to beach related emergencies (e.g.; oil spills, sewage spillage fouling the shoreline, beach erosion, high tides, mammal rescue), and to conduct lifesaving operations and paramedic services.

Prior to the start of pre-construction activity on the beach, if the project owner cannot provide heavy equipment/emergency services vehicle passage, the project owner may submit to the CPM for approval an alternative option that provides for the movement of heavy equipment and emergency services vehicles that has been reviewed by the Chief of Facilities and Property Management Division for the Los Angeles County Department of Beaches and Harbors and the Chief Lifeguard of the Los Angeles County Fire Department.

If the CPM determines that the heavy equipment/emergency services vehicle passage or the alternative option requires a revision, the project owner shall revise the heavy equipment/emergency services vehicle passage or alternative option and submit it to the CPM for approval.

The heavy equipment/emergency services vehicle passage or alternative option shall remain in effect until the beach ramp and fencing prohibiting passage of heavy equipment and emergency service vehicles through the project’s beach delivery area are cleared from the beach.

Verification: At least 30 calendar days prior to the start of the project’s pre-construction activity on the beach, the project owner is to contact the Chief of Facilities and Property Management Division for the Los Angeles County Department of Beaches and Harbors, and the Chief Lifeguard of the Los Angeles County Fire Department to formalize the heavy equipment/emergency services vehicles passage or alternative option.

At least 10 days prior to the start of pre-construction activity on the beach, the project owner is to provide to the CPM a map showing the agreed upon heavy equipment/emergency services vehicle passage or alternative option.

REFERENCES

ES 2013a- City of El Segundo General Plan 1992,

ES 2013b- City of El Segundo Municipal Code, Title 15 Zoning Regulations,

LA 2013a- City of Los Angeles, Title 12 Zoning Regulations,
http://cityplanning.lacity.org/, 2013

SUMMARY OF CONCLUSIONS

The demolition and removal of Units 3 and 4 and the installation and operation of new Units 9 through 12 would result in similar grading, excavation, foundation, and underground infrastructure activities as were required for the demolition of Units 1 and 2 and the construction of Units 5 through 7 under the original California Energy Commission (Energy Commission) Decision (Decision) (CEC 2005a). Thus, the El Segundo Power Facility Modification (ESPFM) demolition, construction, and operations, would be conducted in accordance with the existing Conditions of Certification NOISE-1 through NOISE-10 established by the 2005 Decision.

If built and operated in conformance with the existing conditions of certification, provided below, staff believes that the ESPFM Petition to Amend (PTA) would comply with all applicable noise and vibration laws, ordinances, regulations and standards (LORS). This PTA does not alter the assumptions and conclusions in the original Decision and no additional or revised LORS requirements have been identified since the original Decision. Staff concludes that the project would produce no significant direct or cumulative adverse noise impacts under the California Environmental Quality Act (CEQA) guidelines on people within the project area, including minority populations, directly, indirectly, or cumulatively.

INTRODUCTION

The construction and operation of any power plant creates noise or unwanted sound. The character and loudness of this noise, the times of day or night that it is produced, and the proximity of the facility to sensitive receptors all combine to determine whether the facility would meet applicable noise control laws and ordinances and whether it would cause significant adverse environmental impacts. In some cases, vibration may be produced as a result of power plant construction practices such as blasting or pile driving. The ground-borne energy of vibration has the potential to cause structural damage and annoyance.

On April 23, 2013, El Segundo Energy Center, L.L.C. (ESEC LLC) filed the ESPFM PTA with the Energy Commission, requesting to replace utility boiler Units 3 and 4 at the El Segundo Energy Center (ESEC) with one new combined cycle train consisting of one natural gas turbine generator (Unit 9), one heat recovery steam generator (HRSG) and one steam turbine generator (Unit 10), and two new simple-cycle gas turbines (Units 11 and 12), totaling 449 megawatts (MW gross). The PTA proposes the demolition of Units 3 and 4, to be replaced with Units 9, 10, 11, and 12, and the replacement of a once-through seawater cooling system with dry-cooling technology.

The purpose of this analysis is to identify and examine the likely noise and vibration impacts from the construction and operation of the ESPFM project as the result of this PTA. Staff recommends procedures to ensure that the resulting noise and vibration
impacts would be adequately mitigated to comply with applicable LORS and to lessen the impacts to less than significant. For an explanation of technical terms used in this section, please refer to Noise Appendix A, immediately following.

LAWS, ORDINANCES, REGULATIONS, AND STANDARDS

Noise Table 1 - Laws, Ordinances, Regulations and Standards

<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal:</td>
<td></td>
</tr>
<tr>
<td>U.S. Environmental Protection Agency (USEPA)</td>
<td>Assists state and local government entities in development of state and local LORS for noise.</td>
</tr>
<tr>
<td>State:</td>
<td></td>
</tr>
<tr>
<td>Local:</td>
<td></td>
</tr>
<tr>
<td>City of El Segundo Municipal Code, Noise Control Ordinance, Chapter 9.06</td>
<td>Prohibits the creation of noise within the city which causes the existing noise level when measured at the receptor to exceed 5 dBA above the ambient noise level (for residential properties) or 8 dBA above the ambient noise level (for industrial properties). Increases to the noise standards may be permitted as shown below</td>
</tr>
<tr>
<td>City of Manhattan Beach Municipal Code, Noise Control Ordinance, Chapter 5.48</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permitted Increase, dBA</th>
<th>Duration of Increase *</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30 (minutes)</td>
</tr>
<tr>
<td>5</td>
<td>15 (minutes)</td>
</tr>
<tr>
<td>10</td>
<td>5 (minutes)</td>
</tr>
<tr>
<td>15</td>
<td>1 (minute)</td>
</tr>
<tr>
<td>20</td>
<td>Less than 1(minute)</td>
</tr>
</tbody>
</table>

* Cumulative minutes during any one hour

Noise level standards at residential properties are shown below:

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Allowable Noise Level, dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{50} (30 minutes/hour)</td>
<td>50</td>
</tr>
<tr>
<td>L_{25} (15 minutes/hour)</td>
<td>55</td>
</tr>
<tr>
<td>L_{5} (5 minutes/hour)</td>
<td>60</td>
</tr>
<tr>
<td>L_{2} (1 minute/hour)</td>
<td>65</td>
</tr>
<tr>
<td>L_{0} (maximum)</td>
<td>70</td>
</tr>
<tr>
<td>L_{eq} (equivalent)</td>
<td>55</td>
</tr>
</tbody>
</table>

In addition, Section 5.48.060 of this code restricts...
Applicable Law Description

<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>construction to: 7:30 a.m. and 6:00 p.m. Monday through Friday, and 9:00 a.m. and 6:00 p.m. Saturdays.</td>
</tr>
</tbody>
</table>

FEDERAL

Under the Occupational Safety and Health Act of 1970 (OSHA) (29 U.S.C. § 651 et seq.), the Department of Labor, Occupational Safety and Health Administration, (OSHA) adopted regulations (29 C.F.R. § 1910.95) designed to protect workers against the effects of occupational noise exposure. These regulations list permissible noise exposure levels as a function of the amount of time during which the worker is exposed (see **Noise Appendix A, Table A4**, immediately following this section). The regulations further specify a hearing protection program that involves monitoring the noise to which workers are exposed, assuring that workers are made aware of overexposure to noise, and periodically testing the workers’ hearing to detect any degradation.

Guidelines are available from the U.S. Environmental Protection Agency (USEPA) to assist state and local government entities in developing state and local LORS for noise. Because there are existing local LORS that apply to this project, the USEPA guidelines are not applicable.

There are no federal laws governing off-site (community) noise.

The Federal Transit Administration (FTA) has published guidelines for assessing the impacts of ground-borne vibration associated with construction of rail projects, which have been applied by other jurisdictions to other types of projects. The FTA-recommended vibration standards are expressed in terms of the “vibration level,” which is calculated from the peak particle velocity measured from ground-borne vibration. The FTA measure of the threshold of perception is 65 vibrational decibels (VdB), which correlates to a peak particle velocity of about 0.002 inches per second (in/sec). The FTA measure of the threshold of architectural damage for conventional sensitive structures is 100 VdB, which correlates to a peak particle velocity of about 0.2 in/sec.

STATE

California Government Code Section 65302(f) encourages each local governmental entity to perform noise studies and implement a noise element as part of its general plan. In addition, the California Office of Planning and Research has published guidelines for preparing noise elements, which include recommendations for evaluating the compatibility of various land uses as a function of community noise exposure.

The State of California, Office of Noise Control, prepared the Model Community Noise Control Ordinance, which provides guidance for acceptable noise levels in the absence of local noise standards. This model also defines a simple tone, or “pure tone,” as one-third octave band sound pressure levels that can be used to determine whether a noise source contains annoying tonal components. The Model Community Noise Control Ordinance...
Ordinance further recommends that when a pure tone is present the applicable noise standard should be lowered (made more stringent) by five A-weighted decibels (dBA).

The California Occupational Safety and Health Administration (Cal-OSHA) has promulgated occupational noise exposure regulations (California Code of Regulations, Title 8, §§ 5095-5099) that set employee noise exposure limits. These standards are equivalent to federal OSHA standards (see Noise Appendix A, Table A4).

LOCAL

El Segundo Municipal Code

The City of El Segundo has adopted a noise control ordinance as part of the City Municipal Code, Chapter 9.06. The noise ordinance prohibits the creation of noise within the city which causes the noise level when measured at the receptor to exceed 5 dBA above the ambient noise level (for residential properties) or 8 dBA above the ambient noise level (for industrial properties). If the receptor property is located on a boundary between two different noise zones, the lower noise level standard applicable to the quieter zone shall apply.

Increases to the noise standards may be permitted as shown by Noise Table 2.

<table>
<thead>
<tr>
<th>Permitted Increase, dBA</th>
<th>Duration of Increase (minutes)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Less than 1</td>
</tr>
</tbody>
</table>

* Cumulative minutes during any one hour

The City noise standard is therefore based upon the ambient L_{50}, or median, noise level. The above noise standards are applied at any point on the receptor property.

Noise due to construction is exempted from the noise standards during the hours of 7:00 a.m. and 6:00 p.m., Monday through Saturday, provided that the noise level does not exceed 65 dBA plus the limits shown by Noise Table 2 as measured on the residential receptor’s property line, and provided that any vibration created does not endanger the public health, welfare and safety.

The El Segundo Municipal Code prohibits creation of vibration which is perceptible without use of instruments to any reasonable person of normal sensitivity at any point on any affected property.

Since these El Segundo Municipal Code sections regulate noise produced in the city limits, these standards are the primary local noise regulations affecting this project.
Manhattan Beach Municipal Code

The City of Manhattan Beach has adopted a noise control ordinance as part of the City Municipal Code, Chapter 5.48. The noise ordinance prohibits the creation of noise within the city which causes the noise level when measured at any residential property to exceed the noise standards shown by

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Allowable Noise Level, dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>L<sub>50</sub> (30 minutes/hour)</td>
<td>50</td>
</tr>
<tr>
<td>L<sub>25</sub> (15 minutes/hour)</td>
<td>55</td>
</tr>
<tr>
<td>L<sub>8</sub> (5 minutes/hour)</td>
<td>60</td>
</tr>
<tr>
<td>L<sub>2</sub> (1 minute/hour)</td>
<td>65</td>
</tr>
<tr>
<td>L<sub>0</sub> (maximum)</td>
<td>70</td>
</tr>
<tr>
<td>L<sub>eq</sub> (equivalent)</td>
<td>55</td>
</tr>
</tbody>
</table>

If the measurement location is on a boundary between two different land uses, the noise level limit for the more restrictive land use classification, plus 5 dBA, applies. For any source of noise that emits a pure tone or contains impulsive noise, the noise standards are reduced by 5 dBA. If the ambient noise level exceeds any of the levels stated above, the ambient noise level becomes the noise standard.

Section 5.48.060 of the Manhattan Beach Municipal Code states that: “All construction activity shall be prohibited, except between the hours:

- 7:30 a.m. and 6:00 p.m. Mondays through Friday
- 9:00 a.m. and 6:00 p.m. Saturdays”

It has been stipulated that the Manhattan Beach Municipal Code noise standards will apply to the project. The City of Manhattan Beach has interpreted its ordinance, in this case, to require that the project not result in an increase of more than 2 dBA at the most affected residences, which are the homes adjacent to the south project boundary.

The major differences between the noise standards of the cities of El Segundo and Manhattan Beach are:

- The El Segundo Municipal Code allows operational noise to exceed the ambient noise level by up to 5 dBA. The Manhattan Beach Municipal Code does not allow operational noise (when it is higher than the stated noise standard) to exceed the ambient noise level at all. However, the City of Manhattan Beach has interpreted its ordinance to allow operational noise to exceed the ambient L₅₀ level by no more than 2 dBA. Consequently, the original Decision has required the project to meet this 2 dBA requirement (CEC 2005, p. 134, Condition of Certification NOISE-6).
• The El Segundo Municipal Code exempts construction noise between the hours of 7:00 a.m. to 6:00 p.m. The Manhattan Beach Municipal Code exempts construction noise between the hours of 7:30 a.m. to 6:00 p.m.

• Outside of the hours stated above, the El Segundo Municipal Code allows construction, so long as the resulting noise level does not exceed the noise standard. The Manhattan Beach Municipal Code prohibits construction outside of the hours stated above.

• The El Segundo Municipal Code establishes a limit for construction noise of 65 dBA L_{50} at the nearest residential property.

Section 10.60.120 of the Manhattan Beach Municipal Code relates to vibration, and applies to all use classifications in all zoning districts. This section states that “No use activity, or process shall produce vibrations that are perceptible without instruments by a reasonable person at the property lines of a site.”

SETTING

PROJECT BACKGROUND

The proposed PTA is for decommissioning, demolishing, and replacing the existing Units 3 and 4 steam boiler plants with approximately 449 MW gross / 435 MW net of new natural-gas-fired electrical generating capacity, consisting of one combined cycle train and two simple cycle gas turbines. The PTA proposes the demolition of Units 3 and 4, to be replaced with Units 9, 10, 11, and 12, and the replacement of a once-through seawater cooling system with dry-cooling technology.

The equipment that has the greatest potential to generate significant noise levels during plant operation includes the gas and steam turbines, heat recovery steam generators (HRSGs), pumps, motors, main transformers, and fin fan air coolers.

EXISTING LAND USE

Power Plant Site

This site is located within the City of El Segundo, Los Angeles County, bordered on the west by the Pacific Ocean and on the east by Vista Del Mar Boulevard. The beachfront is property of the State of California, administered by the City of Manhattan Beach. The beachfront includes a bike path which is regularly used by pedestrians, joggers, skaters and bicyclists. The south property boundary is 45th Street, and residences are located on the south side of that street. These residences are in the City of Manhattan Beach. The ESPFM would be located within the existing ESEC site, where the current Units 3 and 4 are located. Land uses in the project vicinity include recreational, residential, commercial, school and business uses.

Noise from the existing plant has little effect on the background acoustical environment at residences in the near vicinity. The closest noise sensitive receptors are homes located at the north end of The Strand, which is immediately south of the plant boundary.
along 45th Street. The dominant background noise source there is the ocean surf. On the west side of the plant, the plant noise is dominant immediately adjacent to the property boundary, decreasing in effect as the observer moves toward the ocean surf. Traffic on Vista Del Mar Boulevard contributes to the daytime noise environment east of the plant site. North of the project site, and on the hillside east of the plant, the plant noise is audible and dominant.

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

METHODS AND THRESHOLDS FOR DETERMINING SIGNIFICANCE

California Environmental Quality Act (CEQA)

The CEQA requires that significant environmental impacts be identified and either eliminated or mitigated to the extent feasible. Section XI of Appendix G of CEQA’s guidelines (California Code of Regulations, Title 14, Appendix G) describes some characteristics that could signify a potentially significant impact. Specifically, a significant effect from noise may exist if a project would result in:

1. Exposure of persons to, or generation of, noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;

2. Exposure of persons to or generation of excessive ground borne vibration or ground borne noise levels;

3. Substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project; or

4. Substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project.

The Energy Commission staff, in applying Item 3 above to the analysis of this and other projects, has concluded that a potential for a significant noise impact exists where the noise of the project plus the background exceeds the background by more than 5 dBA at the nearest sensitive receptor, including those receptors that represent the area’s minority population.

Staff has concluded that an increase in background noise levels up to and including 5 dBA in a residential setting is insignificant; an increase of more than 10 dBA, however, is clearly significant. An increase of between 5 and 10 dBA should be considered adverse, but could be either significant or insignificant, depending upon the circumstances of a particular case.

Factors to be considered in determining the CEQA significance of an adverse impact as defined above include:

1. the resulting noise level;

2. the duration and frequency of the noise;
3. the number of people affected; and
4. the land use designation of the affected receptor sites.

Noise due to construction activities is usually considered to be less than significant in terms of CEQA compliance if:

- the construction activity is temporary; and
- the use of heavy equipment and noisy\(^1\) activities is limited to daytime hours.

Staff uses the above method and threshold to protect the most sensitive populations, including the area’s minority population. For purposes of evaluating impacts on residential uses, the project noise is compared with measured nighttime ambient noise levels, when residents are trying to sleep.

Ambient Noise Monitoring

In order to predict the likely noise effects of the project on adjacent sensitive receptors, the project owner commissioned ambient noise surveys of the area. The surveys were conducted at various hourly time intervals in July, August, and November 2000, and were supplemented in April 2001. The noise surveys were conducted using Bruel & Kjaer and Metrosonics sound level meters meeting the requirements of the American National Standards Institute (ANSI) for Type 1 and Type 2 sound level measurement systems. The measurements were performed at heights of approximately five feet above ground level to simulate the average height of the human ear (ESPR 2000a, AFC § 5.12.1.2).

Because of the importance of defining the ambient noise levels in implementing the LORS, the project owner conducted additional noise measurements and an extensive, detailed, noise modeling exercise, and submitted a report to the Energy Commission concerning that analysis in December 2001. This analysis included a series of noise measurements performed to describe the contributions of surf noise to ambient noise levels. In addition, the analysis assessed the factors affecting surf noise levels. The report included a new noise modeling exercise using a sophisticated noise model (Cadna/A) which accounted for variations in site topography, atmospheric effects, surf noise, and the presence or absence of the storage tanks.

The December 2001 noise analysis produced the following important conclusions:

- During the quietest periods of the night, surf noise apparently constitutes the ambient noise environment in the vicinity of the residences adjacent to the south project boundary.
- Surf noise levels are lowest when wave heights are lowest, typically in late summer months.

Furthermore, the December 2001 noise analysis showed that it is possible to reliably measure surf noise on the project site exclusive of other influences. This offered the

\(^1\) Noise that draws a complaint.
opportunity to provide preconstruction baseline noise measurements against which to compare noise levels measured after the original project was implemented. For example, it was feasible to conduct concurrent noise measurements at a reference location on the project site (to describe surf noise levels only), and at the nearest potentially affected residence, to establish a relationship between surf noise levels and ambient noise levels at the residence. This preconstruction noise survey was completed in 2003 in accordance with Condition of Certification NOISE-6 and the results established the existing ambient baseline at residences adjacent to the south project boundary. These baseline levels remain unchanged and are to be used for the compliance of this PTA with the applicable noise LORS.

The most noise-sensitive receptors identified in the original Decision remain the project’s most noise-sensitive receptors. These receptors are identified as ST-2 and ST-3 in the Decision (as described in the AFC, Section 5.12, Figure 5.12-3, as amended May 4, 2001, shown below as Noise Figure 1).
DIRECT IMPACTS AND MITIGATION

Noise impacts associated with the project can be created by construction activities and normal operation of the project.

Construction Impacts and Mitigation

Construction noise is usually a temporary phenomenon (typical power plant construction lasts 1-2 years). Construction and startup of the ESPFM from site mobilization to commercial operation is expected to take a minimum of 20 months (NRG 2013a, § 2.8). The demolition and removal of Units 3 and 4 and the installation and operation of new Units 9 through 12 would result in similar grading, excavation, foundation, and underground infrastructure activities as were required for the demolition of Units 1 and 2 and the construction of Units 5 through 7 under the original Decision (CEC 2005a). Construction of the ESPFM is expected to be typical of similar projects in terms of equipment used and types of activities. Construction and demolition of an industrial facility such as a power plant is typically noisier than permissible under usual noise ordinances. In order to allow the construction of new facilities, construction noise during certain hours is commonly exempt from enforcement by local ordinances.

The project owner commits to performing noisy construction work during the times specified in the City of Manhattan Beach Municipal Code and in compliance with the noise level limit of 65 dBA L_{50} for construction and demolition activities as required by the City of El Segundo Municipal Code (NRG 2013a, §§ 3.7.3, 3.7.7). The existing Condition of Certification NOISE-8 would ensure that these requirements are met. Therefore, the noise impacts of the ESPFM construction and demolition activities would comply with the noise LORS.

Based upon the potential noise impacts of construction and demolition noise, staff maintains the existing Conditions of Certification, NOISE-1 and NOISE-2, to monitor and mitigate potential construction and demolition noise impacts as the result of the ESPFM.

Because construction activities are limited to daytime hours and certain noise levels by the proposed Conditions of Certification, and are of limited duration, potential construction noise impacts to receptors in the project area are considered to be less than significant.

This PTA does not alter the assumptions and conclusions in the original Decision and no additional or revised LORS requirements have been identified since the original Decision.

Linear Facilities

The ESPFM includes no new linear facilities. Therefore, no significant noise effects are expected.

Vibration

The construction equipment for pile driving may produce vibration that could be perceived off site. In compliance with the El Segundo Municipal Code, noise due to
construction is exempted from the noise standards during the hours of 7:00 a.m. and 6:00 p.m., Monday through Saturday, provided that any vibration created does not endanger the public health, welfare and safety. To ensure that vibration would be performed in this manner, staff maintains the existing Condition of Certification NOISE-9. NOISE-9 requires construction equipment to not exceed a vibration threshold of 0.003 in/sec. As explained above (see LAWS, ORDINANCES, REGULATIONS, AND STANDARDS), the FTA measure of the threshold of architectural damage for conventional sensitive structures is 0.2 in/sec. As clearly seen here, compliance with NOISE-9 would ensure no vibration-related structural damage would occur. Note that in general, today’s modern power plant equipment are very unlikely to cause structural damage offsite.

Worker Effects

The project owner acknowledges the need to protect construction workers from noise hazards. Similar to the original proceedings, the project owner recognizes those applicable LORS that would protect construction workers, and commits to complying with them (NRG 2013a, §§ 3.7.3, 3.7.7). To ensure that construction workers are, in fact, adequately protected, staff maintains the existing Condition of Certification NOISE-3.

Steam Blows

Typically, the loudest noise encountered during construction, inherent in building any project incorporating a steam turbine, is created by the steam blows. After erection and assembly of the feed water and steam systems, the piping and tubing that comprise the steam path have accumulated dirt, rust, scale, and construction debris such as weld spatter, dropped welding rods, and the like. If the plant were started up without thoroughly cleaning out these systems, all this debris would find its way into the steam turbine, quickly destroying the machine.

In order to prevent this, before the steam system is connected to the turbine, the steam line is temporarily routed to the atmosphere. Traditionally, high pressure steam is then raised in the boiler or a temporary boiler and allowed to escape to the atmosphere through the steam piping. This flushing action, referred to as a “high pressure steam blow”, is quite effective at cleaning out the steam system. A series of short steam blows, lasting two or three minutes each, are performed several times daily over a period of two or three weeks. At the end of this procedure, the steam lines are connected to the steam turbine, which is then ready for operation. Alternatively, high pressure compressed air can be substituted for steam.

High pressure steam blows, if un-silenced, can typically produce noise levels as high as 129 dBA at a distance of 50 feet; this creates the potential to cause annoyance at the project’s noise-sensitive receptors. Therefore, staff believes that steam blow noise should be mitigated to the maximum feasible extent. A quieter steam blow process, referred to as “low-pressure steam blow” has become popular. This method utilizes lower pressure steam over a continuous period of about 36 hours. Resulting noise levels reach about 86 dBA at 50 feet. Alternative low-pressure steam blow technology currently exists, and is economically feasible, as demonstrated by its use for other recently approved power plant projects. Similar to the original Decision, steam blows for
ESPFM would be performed in compliance with the existing Condition of Certification NOISE-4 which requires low-pressure steam blows and Condition of Certification NOISE-5 which makes neighbors aware of scheduled steam blows.

Operation Impacts and Mitigation

The operation of new Units 9 through 12 would result in similar noise levels as the existing Units 5 through 7 under the original Decision (CEC 2005a). Similar to the original project, there would not be a substantial increase in noise levels due to operation of the new units at the nearest residences, which are at the south project boundary in Manhattan Beach. Staff maintains the existing Conditions of Certification related to plant operation. Specifically, these conditions include: NOISE-1 (property owner notification of start of project), NOISE-2 (documentation and resolution of noise complaints), NOISE-6 (compliance with noise standards), NOISE-7 (occupational noise survey), and NOISE-9 (operational vibration monitoring). The operation of the power plant includes notification of outside workers using a loudspeaker system. The existing conditions of certification include NOISE-10 which restricts the use of the loudspeaker system to only testing and emergencies. Staff maintains this condition of certification. See below for additional analysis.

Compliance with LORS

Attaining compliance with the LORS (the El Segundo and Manhattan Beach Municipal Codes) would be consistent with the established Energy Commission policy of limiting increases in noise exposure to no more than 5 dBA, to prevent a significant increase in background noise levels.

During its operating life, the ESPFM would represent essentially a steady, continuous noise source day and night. Occasional short-term increases in noise levels would occur as steam relief valves open to vent pressure, or during startup or shutdown as the plant transitions to and from steady-state operation. At other times, such as when the plant is shut down for lack of dispatch or for maintenance, noise levels would decrease.

The primary noise sources anticipated from the facility include the steam turbine generator, gas turbine generators, HRSGs, transformers, boiler feed pumps, circulating water pumps, fin fan coolers and gas compressors. The noise emitted by power plants during normal operations is generally broadband, steady state in nature.

Condition of Certification NOISE-6 in the original Decision limits increases in ambient noise levels due to power plant noise at the nearest residential receptors (dwellings in Manhattan Beach, immediately south of the project boundary) to 2 dBA (represented by ST-2 and ST-3). NOISE-6 also requires that noise due to the plant operations would not exceed the standards of the El Segundo and Manhattan Beach Municipal Codes.

As explained above, the most noise-sensitive receptors identified in the original Decision remain the project’s most noise-sensitive receptors. These receptors are identified by monitoring locations ST-2 and ST-3 in the Decision (as described in the AFC, Section 5.12, Figure 5.12-3, as amended May 4, 2001, shown above as Noise
Figure 1). NOISE-6 requires a post-construction noise monitoring at these locations to ensure project compliance with the LORS.

The ESPFM PTA does not alter the assumptions and conclusions in the original Decision and no additional or revised LORS requirements have been identified since the original Decision. With implementation of these conditions of certification, noise due to project operation would comply with the applicable LORS.

CEQA Impacts

Power plant noise is unique. A power plant under base load may operate as essentially, a steady, continuous, broadband noise source. Under load following duty, the power plant noise may be intermittent and start-up at random times. This would be more noticeable at nighttime when background noises are particularly low. Where power plant noise is audible, it tends to define the background noise level. For this reason, staff typically compares projected power plant noise to existing ambient background noise levels at affected sensitive receptors. If this comparison identifies a significant adverse impact, then feasible mitigation must be applied to the project to either reduce or remove that impact. The noise impacts resulting from implementation of this PTA would be similar to those currently existing in the project area.

Staff regards an increase of up to 5 dBA in the existing ambient background noise as a less-than-significant impact. A permanent/long-term increase of above 5 dBA at night, when people are trying to sleep, is significant at residential receptors (see **METHODS AND THRESHOLDS FOR DETERMINING SIGNIFICANCE** above). The City of Manhattan Beach requires that the project not result in an increase of more than 2 dBA at the most affected residences, which are the homes adjacent to the south project boundary; the existing Condition of Certification NOISE-6 would ensure this. NOISE-6 requires that following construction and startup of the project, the project owner monitor actual noise levels at the sensitive receptors to verify that any increase in noise levels is limited to no more than 2 dBA. Should project noise be too great, the project owner would be required to make any necessary changes in order to achieve compliance. Attaining compliance with this requirement would be consistent with the established Energy Commission policy of limiting increases in noise exposure to no more than 5 dBA, to prevent a significant increase in background noise levels.

Staff believes that no significant noise impacts are likely to occur due to the operation of the project, as mitigated.

Tonal and Intermittent Noises

One possible source of annoyance would be strong tonal noises. Tonal noises are individual sounds (such as pure tones) that, while not louder than permissible levels, stand out in sound quality. The project owner has stated that no strong tonal noises would be generated during the operation of the project.

Emergency pressure safety valves, also called “steam relief valves”, would likely be installed on the HRSG. Staff does not have an estimate of the noise levels associated with the steam system vents at the nearest receptors. Emergency pressure safety valve discharges are typically not silenced, and produce noise only under emergency
conditions. Given the distance from the steam relief valves to the nearest residential areas, their noise effects are expected to be insignificant.

To ensure that no strong tonal noises are present and that intermittent noises are mitigated, staff maintains the existing Condition of Certification NOISE-6, which requires the project owner to mitigate pure tones and the noise from steam relief valves.

Linear Facilities
The ESPFM includes no new linear facilities. Therefore, no significant noise effects are expected.

Vibration
Vibration from an operating power plant could be transmitted through two primary means: ground (ground-borne vibration), and air (airborne vibration).

The operating components of a combined cycle power plant consist of high-speed gas turbines, heat recovery steam generator, steam turbines, compressors, and various pumps. All of these pieces of equipment must be carefully balanced in order to operate; permanent vibration sensors are attached to the turbines and generators. Gas turbine generator facilities using the General Electric 7FA and Rolls Royce 60 systems have not resulted in ground-borne or airborne vibration impacts.

Airborne vibration (low frequency noise) can rattle windows and objects on shelves, and can rattle the walls of lightweight structures. The ESPFM’s chief source of airborne vibration would be the gas turbines’ exhaust. In this power plant, however, the exhaust must pass through the selective catalytic reduction (SCR) modules and the stack silencers before it reaches the atmosphere. The SCRs act as efficient mufflers. The combination of SCR units and stack silencers makes it highly unlikely that the ESPFM would cause perceptible airborne vibration effects.

However, to ensure that project operation would not cause perceptible vibration, staff maintains Condition of Certification NOISE-9, which requires that operational vibration be monitored and any related complaints be resolved.

Worker Effects
The project owner recognizes the need to protect plant operating and maintenance personnel from noise hazards, and has committed to comply with applicable LORS (NRG 2013a, §§ 3.7.3, 3.7.7). Signs would be posted in areas of the plant with noise levels exceeding 85 dBA (the level that OSHA recognizes as a threat to workers’ hearing), and hearing protection would be required. The project owner would implement a comprehensive hearing conservation program. To ensure that workers are, in fact, adequately protected, staff maintains the existing Condition of Certification NOISE-7, which requires an occupational noise survey, and if necessary, identify mitigation measures that would be employed to comply with the applicable California and federal regulations.
CUMULATIVE IMPACTS AND MITIGATION

Section 15130 of the CEQA guidelines (California Code of Regulations, Title 14) requires a discussion of cumulative environmental impacts. Cumulative impacts are two or more individual impacts (from existing and/or reasonably foreseeable projects) that, when considered together, compound or increase other environmental impacts. CEQA guidelines require that this discussion reflect the severity of the impacts and the likelihood of their occurrence, but do not need to provide as much detail as the discussion of impacts solely attributable to the project.

The proposed ESPFM would not result in any significant cumulative noise impacts beyond those addressed in the original Decision (CEC 2005a). The project owner states that as part of preparation of this PTA, the relevant planning agencies were contacted and confirmed that there are no planned actions that would interfere with maintaining conformance of the ESEC with noise regulations and, therefore, there would be no cumulative impacts (NRG 2013a, § 3.7.5). The project owner has pledged to continue to work closely with the cities of El Segundo, Manhattan Beach, and Los Angeles, and Los Angeles County to monitor and anticipate any future community organized events such as charity walks, bike rides, or clean-ups to minimize potential noise impacts to bike path users from construction or operation of the project (NRG 2013a, § 3.7.5).

FACILITY CLOSURE

All operational noise from the project would cease when the ESPFM project closes, and no further adverse noise impact from its operation would be possible. The remaining potential temporary noise source would be the dismantling of the project structures and equipment, as well as any site restoration work that may be performed. Since this noise would be similar to that caused by the original construction, it could be similarly treated - that is, noisy work could be performed during daytime hours with machinery and equipment that are properly insulated and/or equipped with mufflers. Any noise LORS in existence at that time would apply. Unless modified, applicable conditions of certification included in the original Decision would also apply.

CONCLUSIONS

The demolition and removal of Units 3 and 4 and the installation and operation of new Units 9 through 12 would result in similar grading, excavation, foundation, and underground infrastructure activities as were required for the demolition of Units 1 and 2 and the construction of Units 5 through 7 under the original Decision (CEC 2005a). Thus, the ESPFM demolition, construction, and operations would be conducted in accordance with the existing Conditions of Certification NOISE-1 through NOISE-10 established by this Decision.

If built and operated in conformance with the existing conditions of certification, provided below, staff believes that this PTA would comply with all applicable noise and vibration LORS. This PTA does not alter the assumptions and conclusions in the original Decision and no additional or revised LORS requirements have been identified since the original Decision. Staff concludes that the project would produce no significant direct
or cumulative adverse noise impacts under CEQA guidelines on people within the project area, including the minority populations, directly, indirectly, or cumulatively.

PROPOSED CONDITIONS OF CERTIFICATION

Following are the existing conditions of certification applicable to the ESPFM with two revisions. Specifically, new Units 9-12 have been added to the compliance requirements of operational noise in Condition of Certification NOISE-6, and the title of Condition of Certification NOISE-10 has been revised to appropriately define the purpose of this condition of certification. The added text is identified as **bold and underlined**, and the deleted text is identified as *strikethrough*.

NOISE-1: Property Owner Notification: At least 15 days prior to site mobilization, the project owner shall notify all residents, property owners, and business owners within one-half mile of the site, and the City of Manhattan Beach, the City of El Segundo, and L.A. County Lifeguard Headquarters, by mail and/or other effective means, of the commencement of project construction. At the same time, the project owner shall establish and disseminate a 24-hour "hotline" telephone number for use by the public to report any undesirable noise conditions associated with the construction of the project. This telephone number shall also be posted at the project site during construction in a manner visible to passersby. This telephone number shall be maintained until the project has been operational for at least one year. The telephone shall be located in an area that is likely to be staffed, and, if the telephone is not staffed 24 hours per day, the project owner shall include an automatic answering feature, with date and time stamp recording, to answer calls when the phone is unattended.

Verification: The project owner shall transmit to the Compliance Project Manager (CPM) in the first Monthly Construction Report following site mobilization, a statement, signed by the project manager, attesting that the above notification has been performed, and describing the method of that notification. This statement shall also attest that the telephone number has been established and posted at the site.

NOISE-2: Documentation of Noise Complaints: Throughout the construction and operation of the project, the project owner shall document, investigate, evaluate, and attempt to resolve all project-related noise complaints as soon as possible.

- The project owner shall establish and disseminate a 24-hour "hotline" telephone number for use by the public to report any undesirable noise conditions associated with the project. The telephone shall be located in an area that is likely to be staffed, and, if the telephone is not staffed 24 hours per day, the project owner shall include an automatic answering feature, with date and time stamp recording, to answer calls when the phone is unattended.

- The project owner shall designate a noise monitoring officer for each construction shift, and for the daytime shift after the plant is placed into
service. The noise monitoring officer shall be trained in the use of a sound level meter, and shall be empowered to halt any construction activities causing or likely to cause a violation of the Conditions of Certification herein. The noise monitoring officer shall carry at all times an operable portable electronic device (such as telephone or pager) to receive any incoming "hotline" call.

- The noise monitoring officer shall log each noise complaint on a CPM-approved complaint form and shall attempt to resolve the complaint.
- For construction noise complaints received outside of the construction hours and days allowed as described by Condition of Certification NOISE-8, the noise monitoring officer shall take immediate steps to determine whether power plant construction is causing the noise and, if so, to reduce the noise level of that activity or take other appropriate action to remedy the complaint as quickly as possible (not to exceed one hour) in order to comply with the Conditions of Certification.
- For construction noise complaints, the noise monitoring officer shall contact the complainant within the hour, if requested by the complainant, with information on the status and resolution of the complaint.
- In the event of construction noise complaints for two consecutive periods outside of which construction is specifically allowed by NOISE-8, either from a single affected residence, from multiple residences, or businesses, the project owner shall monitor noise levels at the receptor(s) for no less than the following two consecutive periods.
- The noise monitoring officer, as appropriate, shall measure site fence-line noise levels, and/or measure noise levels at the complainant's property line, to assure compliance.
- The project owner shall attempt to contact the person(s) making a plant operations noise complaint within 24 hours, and shall conduct an investigation to determine the source of noise related to the complaint.
- If the noise is related to plant operations, the project owner shall take all feasible measures to reduce the noise at its source as soon as possible.
- If the noise complaint is not resolved to the satisfaction of the complainant, including the time frame for resolution, the noise monitoring officer shall provide the CPM's telephone number.
- Within 24 hours of receiving a noise complaint, the project owner shall file a copy of the Noise Complaint Resolution Form, or similar instrument approved by the CPM, with the City of El Segundo and City of Manhattan Beach, and with the CPM, documenting the complaint. If mitigation is required to resolve a complaint, and the complaint is not resolved within a 3-day period, the project owner shall submit a progress report and a proposed mitigation schedule, subject to the approval of the CPM, to the CPM and the affected City within 5 days of receiving the complaint.
- Following resolution of the noise complaint, the project owner shall submit an updated Noise Complaint Resolution Form and a report to the CPM and the affected City documenting the complaint and the actions taken.
The report shall include: a complaint summary, including final results of noise reduction efforts; and if obtainable, a signed statement by the complainant stating that the noise problem is resolved to the complainant’s satisfaction.

Verification: The project owner shall provide to the CPM, in the applicable Monthly and/or Annual Compliance Report, a listing of noise complaints received in that time period, and the status of resolution of each complaint, including all those which have not yet been resolved.

NOISE-3: Noise Control Program: Prior to site mobilization, the project owner shall submit to the CPM for review and approval a noise control program. The noise control program shall be used to reduce employee exposure to high noise levels during construction and also to comply with applicable OSHA and Cal-OSHA standards.

Verification: At least 30 days prior to site mobilization, the project owner shall submit to the CPM the above referenced program for review and approval. The project owner shall make the program available to OSHA upon request.

NOISE-4: Use of Low-Pressure Steam Blows: A low-pressure continuous steam blow or other equivalent low-pressure process shall be employed. Prior to site mobilization, the project owner shall submit a description of this process, with expected noise levels and projected hours of execution, to the CPM, who shall review the proposal with the objective of ensuring that the resulting noise level does not exceed the nighttime ambient hourly L50 value determined in **NOISE-6** plus 5 decibels at the nearest residential property line. Project owner shall strive to avoid nighttime steam blows. If nighttime low pressure steam blows are unavoidable, these low pressure steam blows shall not exceed nighttime ambient hourly L50 value determined in **NOISE-6** plus 2 decibels at the nearest residential property line during the hours 6:00 p.m. to 7:30 a.m. Copies of the process description and predicted noise levels shall be provided to the Cities of Manhattan Beach and El Segundo.

Verification: At least 15 days prior to any low-pressure continuous steam blow, the project owner shall submit to the CPM drawings or other information describing the steam blow process, including the noise levels expected and the projected time schedule for execution of the process.

NOISE-5: Steam Blow Notification: At least 15 days prior to the first steam blow(s), the project owner shall notify the Cities of El Segundo and Manhattan Beach, L.A. County Lifeguard Headquarters, and all residents, property owners and business owners within one mile of the site of the planned steam blow activity, and shall make the notification available to other area residents in an appropriate manner. The notification may be in the form of letters to the area residences, telephone calls, fliers and/or other effective means. The notification shall include a description of the purpose and nature of the steam blow(s), the proposed schedule, the expected noise levels and potential hazards associated with them, the “hotline” phone number where people
register complaints, and the explanation that it is a one-time operation and not a part of normal plant operations.

Verification: Within 5 days of notifying these entities, the project owner shall send a letter to the CPM confirming that there has been appropriate notification to the residents, property owners, Cities and businesses of the planned steam blow activities, including a description of the method(s) of that notification.

NOISE-6: Compliance with Noise Standards: The project design and implementation shall include appropriate noise mitigation measures adequate to ensure that the project will not cause resultant noise levels to exceed the ambient median noise level (L_{50}) at residential receivers by 2 decibels or more, and that the noise due to plant operations will otherwise comply with the noise standards of the El Segundo and Manhattan Beach Municipal Codes.

No new pure tone components may be introduced. No single piece of equipment shall be allowed to stand out as a source of noise. Steam relief valves shall be adequately muffled.

A. Determine the ambient noise level (L_{50}) at Residential Receivers. Prior to site mobilization, the project owner shall prepare and submit to the City of El Segundo and City of Manhattan Beach for review and comment, and to the CPM for review and approval, a pre-construction noise survey plan. This plan will indicate the survey procedure and methodology for establishing the ambient noise level at nearby residential receivers. At a minimum, the plan will include the following:

- The project owner will conduct a 30-day continuous community noise survey at a residential receptor (on 45th Street in Manhattan Beach), selected by the CPM in cooperation with the City of Manhattan Beach. This pre-construction survey shall be conducted during the period of June 1 to September 30. Hourly L_{eq}, L_{50} and L_{90} values shall be measured.
- Existing ESGS Units 3 and 4 shall be operating normally during the course of the survey, and the levels of plant operation will be documented during the survey. The plan will establish a range of acceptable (“normal”) operating conditions suitable for the purposes of these studies.
- A simultaneous control measurement will be conducted within the project boundary. The site shall be selected to ensure that the dominant noise source will be the surf, requiring a clear line of sight to the surf. A location near the southwest project site corner is preferred to minimize the potential for noise from the existing power plant to influence the surf noise measurements. Wave height and other surf conditions, and any unusual environmental conditions occurring during the survey period shall be documented.
- For each of the days of noise data collected at each receptor, the arithmetic average median noise level (L_{50}) shall be computed for the
quietest consecutive 4-hour period. The resultant average median noise levels shall then be averaged arithmetically to calculate the relationship between surf noise levels and ambient noise levels along the northern side of the El Porto Community.

- If the initial 30-day measurement data, in the judgment of the CPM in consultation with the City of Manhattan Beach, fail to demonstrate a consistent relationship of surf and ambient noise levels, the measurement will be repeated until a consistent relationship can be established.

Following approval of the Survey Plan and prior to site mobilization, the project owner shall implement the survey and present the results in a pre-construction noise survey report to the Cities of El Segundo and Manhattan Beach and to the CPM. The Report will include a discussion of the ambient noise level taking into consideration all relevant factors, such as plant operating conditions, surf and wind conditions.

B. Conduct post-construction survey: As soon as feasible, within the time frame described below and after Units 5, 6, 7, and 8, 9, 10, 11, and 12 first achieve a sustained output of 80 percent or greater of rated capacity, the project owner shall conduct short-term survey noise measurements at monitoring sites ST-1, ST-2, ST-3 and ST-12 in the Decision (as described in the AFC, Section 5.12, Figure 5.12-3, as amended May 4, 2001). “In addition, the Applicant shall conduct a 30-day community noise survey at the same receptor locations used for the 30-day noise measurement cited in Section A above.”

The post-construction community noise survey shall be conducted between June 1 and September 30, using the methods described in Item A. above. The post-construction survey shall also include measurement of one-third octave band sound pressure levels at each of the above locations to ensure that no new pure-tone noise components have been introduced. If environmental conditions prevent completion of the post-construction community noise survey in a timely manner, then the survey shall be completed as soon as conditions allow.

Following the post-construction survey, the project owner shall present the results in a post-construction noise survey report to the Cities of El Segundo and Manhattan Beach and to the CPM. The Report will include a discussion of the relationships between surf and ambient noise levels.

C. Implement tank removal noise mitigation if required. Mitigation measures shall be implemented to reduce noise levels to a level of compliance if the results from the post-construction noise survey at the residential receptor location indicate that the ambient median noise level \(L_{50} \) has increased by 2 decibels or more due to facility operation, as determined by the relationship between surf and ambient noise levels obtained from the pre-
construction survey. The project owner shall present the proposed mitigation measures to the Cities of El Segundo and Manhattan Beach and to the CPM.

D. Implement pure tone mitigation if required. If a facility-related pure tone is found to be present at any of the above monitoring sites, mitigation measures shall be implemented to eliminate the pure tone. For the purpose of this condition, the State of California’s Model Community Noise Control Ordinance defines a pure tone. The project owner shall present the proposed mitigation measures to the Cities of El Segundo and Manhattan Beach and to the CPM.

E. Implement plant noise mitigation if required. If the results of noise measurements at ST-1, or ST-12 indicate that the ambient noise level has increased by more than 5 decibels due to facility operation, as compared with the baseline noise measurements conducted on July 20 and 21, 2000, the owner will implement mitigation measures to reduce the noise at those locations to comply with the Municipal Code of the City of El Segundo. The project owner shall present the proposed mitigation measures to the Cities of El Segundo and Manhattan Beach and to the CPM.

Verification: The pre-construction noise survey plan was completed in 2003, in accordance with the following requirements:

Pre-construction survey and determination of ambient noise level:

a) At least 60 days prior to site mobilization, the project owner shall provide the pre-construction noise monitoring survey plan to the CPM for review and approval.

b) Within 30 days of completion of the survey, the project owner shall provide to the CPM for review and approval the results of the pre-construction noise survey.

Post-construction survey: Within 45 days after completing the post-construction surveys, the project owner shall submit a summary report of the survey to the CPM. Included in the report will be a description of any additional mitigation measures necessary to achieve compliance with the above listed noise limits, and a schedule, subject to CPM approval, for implementing these measures.

Mitigation Implementation: If mitigation is required, then upon completion of installation of these measures, the project owner shall submit to the CPM a summary report of a new noise survey, performed as described in paragraph B and showing compliance with this condition.

NOISE-7: Occupational Noise Survey: Within 30 days of the project first achieving a sustained output of 80 percent or greater of rated capacity, the project owner shall conduct an occupational noise survey to identify the noise hazardous areas in the facility. The survey shall be conducted by a qualified person in accordance with the provisions of Title 8, California Code of Regulations,
sections 5095-5099 (Article 105) and Title 29, Code of Federal Regulations, section 1910.95. The survey results shall be used to determine the magnitude of employee noise exposure. The project owner shall prepare a report of the survey results and, if necessary, identify proposed mitigation measures that will be employed to comply with the applicable California and federal regulations.

Verification: Within 30 days after completing the survey, the project owner shall submit the noise survey report, including proposed mitigation measures, to the CPM for review and approval. The project owner shall make the report available to OSHA and Cal-OSHA upon request.

NOISE-8: Construction/Demolition Schedule: Heavy equipment operation and noisy construction or demolition work shall be restricted beginning at site mobilization as described below.

No pure tones are allowed outside of the hours of 7:30 A.M. to 6:00 P.M. Monday-Friday, and 9:00 A.M. to 6:00 P.M. Saturday. Haul trucks and other engine-powered equipment shall be equipped with adequate mufflers. Haul trucks shall be operated in accordance with posted speed limits. Truck engine exhaust brake use shall be limited to emergencies.

Noise levels at any residential property line due to tank farm construction or demolition shall be limited to the average daytime hourly ambient L₅₀ value plus 5 dBA, or 65 dBA L₅₀, whichever is lower for continuous noise. For intermittent noise (up to 30 minutes in one hour) the maximum noise levels shall be ambient L₅₀ plus 10 dBA). Haul trucks and other engine-powered equipment shall be equipped with adequate mufflers. Haul trucks shall be operated in accordance with posted speed limits. Truck engine exhaust brake use shall be limited to emergencies.

The use of the tank farm area is divided into four phases. For each phase the following restrictions shall be observed. Construction activity outside the hours described will not be allowed in the area south of the southern tank, which shall be termed the nighttime exclusion area, shown below:
Phase I: Prepare the tank farm for use during demolition and construction: cutting openings into the sides of the tanks, use of grader, backhoe and small trucks, a few truck trips to remove material, some welding, installation of landscaping and irrigation. All demolition and construction will occur during daytime hours of 7:30 AM to 6:00 PM Monday - Friday and 9:00 AM to 6:00 PM on Saturdays. No demolition or construction shall occur on Sundays or holidays.

Phase II: Demolition period: Entering and exiting the site, hauling material. Construction activities shall avoid the southerly end of the tank farm. All construction activities will be restricted to 7:30 AM to 6:00 PM. During the hours 5:00PM to 9:00AM, the nighttime exclusion area may be accessed by passenger vehicles or pedestrians to inspect tanks. Except as further restricted above, all demolition and construction shall occur between 7:30 AM to 6:00 PM Monday - Friday and 9:00 AM to 6:00 PM on Saturdays. No demolition or construction shall occur on Sundays or holidays.

Phase III: Construction period: Haul material into and out of the area; remove the north tank. Daytime activities will be shielded from 45th street residents by the use of the south tank as a dome and as a shield. All demolition and construction shall occur between 7:30 AM to 6:00 PM Monday - Friday and between 9:00 AM to 6:00 PM on Saturdays. No demolition or construction shall occur on Sundays or holidays.

Phase IV: Operations period: Remove the south tank, and limit the traffic on the tank farm area. During daytime only, metal cutting will be allowed from 9:00 AM to 5:00 PM Monday through Friday, except holidays. During daytime only, trucks may be used to remove tank material and to remove soil.
Bulldozers, graders etc. may be used during daytime hours only to move, excavate and replace soil. All demolition and construction shall only occur between 7:30 AM and 6:00 PM Monday-Friday. No demolition or construction shall occur on Saturdays, Sundays or holidays.

Other Areas of the Project Site: The noise standards for construction and demolition occurring at the rest of the project site (with the exception of the tank farm area) shall be:

- 65 dBA hourly L_{50} at any residential receptor during the hours of 7:30 A.M. to 6:00 P.M. Monday-Friday, and 9:00 A.M. to 6:00 P.M. Saturday.
- The ambient hourly L_{50} value plus 2 dBA at any residential receptor at any other time.

Ambient noise levels shall be determined from the pre-construction survey conducted pursuant to NOISE-6.

Verification: The project owner shall transmit to the CPM in the first Monthly Construction Report a statement acknowledging that the above restrictions will be observed throughout the construction of the project.

NOISE-9: Operational Noise Vibration Monitoring: The project design and implementation shall ensure that site mobilization, demolition, construction, or operation of the power plant will not cause vibration at any sensitive receptor to exceed a peak particle velocity of 0.003 in/sec, or to cause vibration which is perceptible without use of instruments to any reasonable person of normal sensitivity.

The noise monitoring officer designated pursuant to Condition of Certification NOISE-1 shall log each construction vibration complaint on a CPM-approved complaint form and attempt to resolve the complaint. For construction vibration complaints received outside of the construction hours or days allowed as described by Condition of Certification NOISE-8, the noise monitoring officer shall take immediate steps to determine whether power plant construction is causing the vibration and, if so, to reduce the vibration level of that activity as quickly as possible (not to exceed one hour) in order to comply with the Conditions of Certification. The noise monitoring officer, as appropriate, shall measure site fence-line vibration levels to assure compliance. If the vibration complaint is not resolved to the satisfaction of the complainant, including a time frame for resolution, the noise monitoring officer shall provide the CPM’s telephone number.

In the event of construction-related vibration complaints either from a single affected residence, from multiple residences, or businesses, the project owner shall monitor vibration at the receptor(s) for no less than the following two days of construction.
Within 24 hours of receiving a complaint for vibration, the project owner shall file a copy of the Noise Complaint Resolution Form, or similar instrument approved by the CPM, with the City of El Segundo and/or City of Manhattan Beach, and with the CPM. If mitigation is required to resolve a complaint, and the complaint is not resolved within a 3-day period, the project owner shall submit a progress report and a proposed mitigation schedule, subject to the approval of the CPM, to the CPM and the affected City within 5 days of receiving the complaint. The project owner shall submit an updated Noise Complaint Resolution Form to the CPM and the affected City when the mitigation is finally implemented.

Verification: The project owner shall provide, in the applicable Monthly and/or Annual Compliance Report, a listing of vibration complaints received in that time period, and the status of resolution of each complaint, including all those which have not yet been resolved.

NOISE-10: Emergency Loudspeaker Restrictions Testing: The loudspeaker system shall be used only for testing and emergencies.

Verification: The project owner shall transmit to the CPM in the first Monthly Construction Report a statement acknowledging that the above restrictions will be observed throughout the construction and operation of the project.
EXHIBIT 1 - NOISE COMPLAINT RESOLUTION FORM

El Segundo Energy Center
(00-AFC-14C)

NOISE COMPLAINT LOG NUMBER

Complainant's name and address:

Phone number: ______________________

Date complaint received: ______________________

Time complaint received: ______________________

Nature of noise complaint:

Definition of problem after investigation by plant personnel:

Date complainant first contacted: ______________________

Initial noise levels at 3 feet from noise source:

<table>
<thead>
<tr>
<th>Source</th>
<th>dB(A)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initial noise levels at complainant's property:

<table>
<thead>
<tr>
<th>Source</th>
<th>dB(A)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final noise levels at 3 feet from noise source:

<table>
<thead>
<tr>
<th>Source</th>
<th>dB(A)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final noise levels at complainant's property:

<table>
<thead>
<tr>
<th>Source</th>
<th>dB(A)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description of corrective measures taken:

Complainant's signature: ______________________ Date: ____________

Approximate installed cost of corrective measures: $ ______

Date installation completed: ____________

Date first letter sent to complainant: ____________ (copy attached)

Date final letter sent to complainant: ____________ (copy attached)

This information is certified to be correct:

Plant Manager's Signature: ______________________

(Attach additional pages and supporting documentation, as required).
REFERENCES

ESPR 2000a – Application for Certification, submitted to the California Energy Commission on December 18, 2000

NOISE APPENDIX A
FUNDAMENTAL CONCEPTS OF COMMUNITY NOISE

To describe noise environments and to assess impacts on noise sensitive areas, a frequency weighting measure, which simulates human perception, is customarily used. It has been found that A-weighting of sound intensities best reflects the human ear’s reduced sensitivity to low frequencies and correlates well with human perceptions of the annoying aspects of noise. The A-weighted decibel scale (dBA) is cited in most noise criteria. Decibels are logarithmic units that conveniently compare the wide range of sound intensities to which the human ear is sensitive. NOISE Table A1 provides a description of technical terms related to noise.

Noise environments and consequences of human activities are usually well represented by an equivalent A-weighted sound level over a given time period (L_{eq}), or by average day and night A-weighted sound levels with a nighttime weighting of 10 dBA (L_{dn}). Noise levels are generally considered low when ambient levels are below 45 dBA, moderate in the 45 to 60 dBA range, and high above 60 dBA. Outdoor day-night sound levels vary over 50 dBA depending on the specific type of land use. Typical L_{dn} values might be 35 dBA for a wilderness area, 50 dBA for a small town or wooded residential area, 65 to 75 dBA for a major metropolis downtown (e.g., San Francisco), and 80 to 85 dBA near a freeway or airport. Although people often accept the higher levels associated with very noisy urban residential and residential-commercial zones, they nevertheless are considered to be levels of noise adverse to public health.

Various environments can be characterized by noise levels that are generally considered acceptable or unacceptable. Lower levels are expected in rural or suburban areas than what would be expected for commercial or industrial zones. Nighttime ambient levels in urban environments are about seven decibels lower than the corresponding average daytime levels. The day-to-night difference in rural areas away from roads and other human activity can be considerably less. Areas with full-time human occupation that are subject to nighttime noise, which does not decrease relative to daytime levels, are often considered objectionable. Noise levels above 45 dBA at night can result in the onset of sleep interference effects. At 70 dBA, sleep interference effects become considerable (Effects of Noise on People, U.S. Environmental Protection Agency, December 31, 1971).

In order to help the reader understand the concept of noise in decibels (dBA), NOISE Table A2 has been provided to illustrate common noises and their associated sound levels, in dBA.
NOISE Table A1
Definition of Some Technical Terms Related to Noise

<table>
<thead>
<tr>
<th>Terms</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decibel, dB</td>
<td>A unit describing the amplitude of sound, equal to 20 times the logarithm to the base 10 of the ratio of the pressure of the sound measured to the reference pressure, which is 20 micropascals (20 micronewtons per square meter).</td>
</tr>
<tr>
<td>Frequency, Hz</td>
<td>The number of complete pressure fluctuations per second above and below atmospheric pressure.</td>
</tr>
<tr>
<td>A-Weighted Sound Level, dBA</td>
<td>The sound pressure level in decibels as measured on a Sound Level Meter using the A-weighting filter network. The A-weighting filter de-emphasizes the very low and very high frequency components of the sound in a manner similar to the frequency response of the human ear and correlates well with subjective reactions to noise. All sound levels in this testimony are A-weighted.</td>
</tr>
<tr>
<td>L_{10}, L_{50}, & L_{90}</td>
<td>The A-weighted noise levels that are exceeded 10 percent, 50 percent, and 90 percent of the time, respectively, during the measurement period. L_{90} is generally taken as the background noise level.</td>
</tr>
<tr>
<td>Equivalent Noise Level, L_{eq}</td>
<td>The energy average A-weighted noise level during the Noise Level measurement period.</td>
</tr>
<tr>
<td>Community Noise Equivalent Level, CNEL</td>
<td>The average A-weighted noise level during a 24-hour day, obtained after addition of 4.8 decibels to levels in the evening from 7 p.m. to 10 p.m., and after addition of 10 decibels to sound levels in the night between 10 p.m. and 7 a.m.</td>
</tr>
<tr>
<td>Day-Night Level, L_{dn} or DNL</td>
<td>The Average A-weighted noise level during a 24-hour day, obtained after addition of 10 decibels to levels measured in the night between 10 p.m. and 7 a.m.</td>
</tr>
<tr>
<td>Ambient Noise Level</td>
<td>The composite of noise from all sources, near and far. The normal or existing level of environmental noise at a given location (often used for an existing or pre-project noise condition for comparison study).</td>
</tr>
<tr>
<td>Intrusive Noise</td>
<td>That noise that intrudes over and above the existing ambient noise at a given location. The relative intrusiveness of a sound depends upon its amplitude, duration, frequency, and time of occurrence and tonal or informational content as well as the prevailing ambient noise level.</td>
</tr>
<tr>
<td>Pure Tone</td>
<td>A pure tone is defined by the Model Community Noise Control Ordinance as existing if the one-third octave band sound pressure level in the band with the tone exceeds the arithmetic average of the two contiguous bands by 5 decibels (dB) for center frequencies of 500 Hz and above, or by 8 dB for center frequencies between 160 Hz and 400 Hz, or by 15 dB for center frequencies less than or equal to 125 Hz.</td>
</tr>
</tbody>
</table>

NOISE Table A2

Typical Environmental and Industry Sound Levels

<table>
<thead>
<tr>
<th>Noise Source (at distance)</th>
<th>A-Weighted Sound Level in Decibels (dBA)</th>
<th>Noise Environment</th>
<th>Subjective Impression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Defense Siren (100’)</td>
<td>140-130</td>
<td></td>
<td>Pain Threshold</td>
</tr>
<tr>
<td>Jet Takeoff (200’)</td>
<td>120</td>
<td></td>
<td>Very Loud</td>
</tr>
<tr>
<td>Very Loud Music</td>
<td>110</td>
<td>Rock Music Concert</td>
<td>Very Loud</td>
</tr>
<tr>
<td>Pile Driver (50’)</td>
<td>100</td>
<td></td>
<td>Loud - Very Loud</td>
</tr>
<tr>
<td>Ambulance Siren (100’)</td>
<td>90</td>
<td>Boiler Room</td>
<td>Loud - Very Loud</td>
</tr>
<tr>
<td>Freight Cars (50’)</td>
<td>85</td>
<td>Printing Press</td>
<td>Loud</td>
</tr>
<tr>
<td>Pneumatic Drill (50’)</td>
<td>80</td>
<td>Kitchen with Garbage Disposal Running</td>
<td>Loud</td>
</tr>
<tr>
<td>Freeway (100’)</td>
<td>70</td>
<td></td>
<td>Moderately Loud</td>
</tr>
<tr>
<td>Vacuum Cleaner (100’)</td>
<td>60</td>
<td>Data Processing Center Department Store/Office</td>
<td>Moderately Loud - Quiet</td>
</tr>
<tr>
<td>Light Traffic (100’)</td>
<td>50</td>
<td>Private Business Office</td>
<td>Moderately Loud - Quiet</td>
</tr>
<tr>
<td>Large Transformer (200’)</td>
<td>40</td>
<td></td>
<td>Quiet</td>
</tr>
<tr>
<td>Soft Whisper (5’)</td>
<td>30</td>
<td>Quiet Bedroom</td>
<td>Quiet</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Recording Studio</td>
<td>Very Quiet</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>Threshold of Hearing</td>
</tr>
</tbody>
</table>

Subjective Response to Noise

The adverse effects of noise on people can be classified into three general categories:

- Subjective effects of annoyance, nuisance, dissatisfaction.
- Interference with activities such as speech, sleep, and learning.
- Physiological effects such as anxiety or hearing loss.

The sound levels associated with environmental noise, in almost every case, produce effects only in the first two categories. Workers in industrial plants can experience noise effects in the last category. There is no completely satisfactory way to measure the subjective effects of noise, or of the corresponding reactions of annoyance and dissatisfaction, primarily because of the wide variation in individual tolerance of noise.

One way to determine a person's subjective reaction to a new noise is to compare the level of the existing (background) noise, to which one has become accustomed, with the level of the new noise. In general, the more the level or the tonal variations of a new
noise exceed the previously existing ambient noise level or tonal quality, the less acceptable the new noise will be, as judged by the exposed individual. With regard to increases in A-weighted noise levels, knowledge of the following relationships can be helpful in understanding the significance of human exposure to noise.

1. Except under special conditions, a change in sound level of one dB cannot be perceived.

2. Outside of the laboratory, a three dB change is considered a barely noticeable difference.

3. A change in level of at least five dB is required before any noticeable change in community response would be expected.

Combination of Sound Levels

People perceive both the level and frequency of sound in a non-linear way. A doubling of sound energy (for instance, from two identical automobiles passing simultaneously) creates a three dB increase (i.e., the resultant sound level is the sound level from a single passing automobile plus three dB). The rules for decibel addition used in community noise prediction are:

<table>
<thead>
<tr>
<th>When two decibel values differ by:</th>
<th>Add the following amount to the larger value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 1 dB</td>
<td>3 dB</td>
</tr>
<tr>
<td>2 to 3 dB</td>
<td>2 dB</td>
</tr>
<tr>
<td>4 to 9 dB</td>
<td>1 dB</td>
</tr>
<tr>
<td>10 dB or more</td>
<td>0</td>
</tr>
</tbody>
</table>

Figures in this table are accurate to ± 1 dB.

Source: *Architectural Acoustics*, M. David Egan, 1988

Sound and Distance

Doubling the distance from a noise source reduces the sound pressure level by six dB.

Increasing the distance from a noise source 10 times reduces the sound pressure level by 20 dB.

Worker Protection

OSHA noise regulations are designed to protect workers against the effects of noise exposure, and list permissible noise level exposure as a function of the amount of time to which the worker is exposed:
<table>
<thead>
<tr>
<th>Duration of Noise (Hrs/day)</th>
<th>A-Weighted Noise Level (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>90</td>
</tr>
<tr>
<td>6.0</td>
<td>92</td>
</tr>
<tr>
<td>4.0</td>
<td>95</td>
</tr>
<tr>
<td>3.0</td>
<td>97</td>
</tr>
<tr>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td>1.5</td>
<td>102</td>
</tr>
<tr>
<td>1.0</td>
<td>105</td>
</tr>
<tr>
<td>0.5</td>
<td>110</td>
</tr>
<tr>
<td>0.25</td>
<td>115</td>
</tr>
</tbody>
</table>

Source: 29 C.F.R. § 1910.
SUMMARY OF CONCLUSIONS

The project owner, El Segundo Energy Center LLC (ESEC, LLC) proposes to modify the existing El Segundo Energy Center (ESEC) by replacing its utility boiler Units 3 and 4 with one combined-cycle generator (Unit 9), one new steam turbine generator (Unit 10), and two new simple-cycle gas turbines (Units 11 and 12). This would add 449 gross megawatts (MW) to the existing 573 MW-generating capacity for a total of 1,022 gross MW. The amended project to be known as El Segundo Power Facility Modification (ESPFM), would also replace the existing once-through seawater cooling system with dry-cooling technology. Staff has established that the toxic emission increment from the additional 449 MW would not lead to significant cancer and non-cancer impacts in the project area. Since the related cancer and non-cancer risk estimates are below staff’s significance levels and reflect the efficiency of the applicant’s proposed emission controls, staff does not recommend additional mitigation measures as with the permitted ESEC.

INTRODUCTION

As discussed in the Project Description section of the Petition to Amend (Pages 2-1 through 2-39), the proposed plant modification is a project in which the existing El Segundo Energy Center (ESEC) would have its utility Boiler Units 3 and 4 replaced with one combined-cycle generator (Unit 9), one new steam turbine generator (Unit 10), and two new simple-cycle gas turbines (Units 11 and 12). This would add 449 gross megawatts (MW) to the generating capacity of the existing 573 MW for a total of 1,022 gross MW. The resulting project would be cooled with dry-cooling technology instead of the present once-through seawater cooling. The background levels of the pollutants of main concern in this analysis include those from the existing ESEC and the other area sources as analyzed during the ESEC permitting process. The ESPFM-related impacts would derive from facility operations, the background levels, and emissions from the proposed demolition and removal of Units 3 and 4.

The purpose of this public health analysis is to assess ESPFM-related construction and operation emissions to establish whether or not the associated increase in power generation would lead to pollutant increases at levels posing a significant health risk to area residents. If such a risk were to be established, staff would recommend mitigation as appropriate. The issue of possible worker impacts is addressed in the Worker Safety and Fire Protection section of this Preliminary Staff Assessment (PSA) while the health and safety significance of exposure to the project-related electric and magnetic fields (EMF) is addressed in the Transmission Line Safety and Nuisance section.

Since this project modification is proposed for a site with past and on-going industrial activities, the applicant assessed the possibility of on-site chemical contamination at levels that could pose a human health or ecological hazard in the post-modification
period. This assessment was intended during the ESEC permitting process to determine whether specific remediation would be necessary before construction or project-related demolitions. The requirements for preventing such impacts were presented in the Waste Management section.

The air pollutants of primary concern in this analysis are those for which no air quality standards have been established. These are known as non-criteria pollutants, which are further classified as toxic air pollutants, or air toxics when emitted into the air, or as toxic soil contaminants when in the soil. These pollutants exist as volatile or semi-volatile organic compounds (VOCs), or as toxic metals. Those for which ambient air quality standards have been established are known as criteria pollutants and are emitted in much larger amounts from common sources. A project’s ability to comply with these air quality standards is assessed in the Air Quality section by comparing operational-phase ambient concentrations with the applicable air quality standards. When any project is proposed for an area in violation of any of these standards, mitigation might be necessary to prevent significant additions to the existing levels. Since ESPFM is proposed for an area with existing violations of specific air quality standards as noted during the ESEC permitting process and discussed in the Air Quality section, such mitigation has been recommended in that section.

LAWS ORDINANCES, REGULATIONS AND STANDARDS (LORS)

There are no changes from the original analysis presented for the existing ESEC.

SETTING

The proposed project is located within the existing 33-acre ESEC site whose setting was presented in staff’s SA during the related permitting process. There are no changes to this original analysis with regard to climate, topography, population distribution and methods for assessing the potential cancer and non-cancer impacts of the toxic pollutants of concern. However, the setting is described more fully in the Air Quality section to adequately reflect the necessity for staff’s recommended Conditions for Certification.

IMPACTS

For the assessed toxic project pollutants, the potential for cancer is considered particularly important because of the present assumption by most scientists that there is no “safe” exposure to a carcinogen, meaning that every carcinogenic exposure poses a theoretical risk of cancer. This non-threshold concept (as applied to carcinogenic effects) differs from present assumptions about non-cancer effects, which are assumed to result only after exposure above levels that overwhelm the body’s ability to protect against such impacts. The procedure for such impact assessment is known as a health risk assessment, which consists of the steps presented during the ESEC permitting process. Since cancer is currently considered possible from every carcinogenic exposure, staff considers the risk of cancer manifestation as more sensitive than the
risk of non-cancer effects for assessing the environmental acceptability of a source of both carcinogens and non-carcinogens.

Compliance with any Air Quality Management District-mandated emission control technologies is reflected by the incremental cancer and non-cancer risk estimates calculated for toxic pollutants. These risk estimates are calculated the same way for the proposed and other gas-fired power plant projects. Therefore, they can be used, despite underlying scientific uncertainties, to compare similar projects for compliance with the requirements for use of the best emission control technologies as currently identified by the California Air Resources Board (ARB). This accounts for the prominence of theoretical cancer risk estimates in the environmental risk assessment process.

PROJECT SPECIFIC IMPACTS

The health impacts of primary concern in this analysis can be assessed separately as construction-phase impacts and operational-phase impacts.

Construction Phase Impacts

Construction-phase impacts are impacts from site contamination and emissions from construction activities. The applicant’s site contamination assessment for the permitted ESEC (as discussed in Public Health Section of Staff’s FSA for ESEC) identified soil contamination from past industrial activities within and outside the site. The assessment also established the site’s underground water to be contaminated from off-site sources, the most important of which is the nearby Chevron Refinery. As also discussed in the ESEC FSA, related ground water monitoring and mitigation are continuing in compliance with specific requirements of the Los Angeles Regional Water Quality Control Board. The procedure for the safe clean up and removal of any discovered contamination is discussed in the Waste Management section of this staff PSA with respect to the demolition and construction phases for ESPFM. Implementing conditions for certification are also recommended in that section. Staff expects compliance to protect against significant health impacts on construction workers or the general public.

The other possibility of impacts on construction workers would derive from exposure to the toxic tailpipe emissions from the vehicles and equipment to be used. The applicant has identified these construction-phase vehicles and equipment along with expected emission rates for the relatively short (20-month) construction period of specific concern (ESEC 2013 p 3-112 and Appendix3.1D). The applicant also modeled and presented the concentrations of the criteria pollutants and diesel emissions of potential health significance in this regard (ESEC 2013, pages 3-23, 3-24, 3-112, and Appendix 3.1D). Staff is in agreement with the applicant’s impact assessment approach as more fully presented in the Air Quality section along with the applicant’s mitigation plan and staff’s recommended Conditions of Certification. These staff-recommended mitigation measures are specified in the Air Quality section.

Direct Operational Impacts

As noted in a report by the South Coast Air Quality Management D District (SCAQMD) (SCAQMD 2000, page 6), one characteristic that distinguishes the air toxics of primary concern in this analysis from the criteria pollutants (some of which are subject to further
reactions with oxidative pollutants in the course of dispersion in the atmosphere), is that their impacts tend to be highest in close proximity to their sources and quickly drop off with distance from such sources. This was noted in the ESEC permitting process and means that the proposed project’s toxic air emission levels would be highest immediately around it and decrease rapidly as one moves into the surrounding area.

The applicant’s estimates of ESPFM’s potential contributions to the area’s risk of cancer and non-cancer effects were obtained from a health risk assessment conducted according to procedures specified in the 1993 California Air Pollution Control Officer’s Association (CAPCOA) guidelines (ESEC 2013, pages 3-113 through 3-115, and Appendix 3.1C). The results from this assessment were provided to staff along with documentation of the assumptions used (ESEC 2013, pages 3-113 and Appendix 3.1C). Such documentation was provided with respect to the following:

- Pollutants considered;
- Emission levels assumed for the pollutants involved;
- Dispersion modeling used to estimate potential exposure levels;
- Exposure pathways considered;
- The cancer risk estimation process;
- Hazard index calculation; and
- Characterization of project-related risk estimates.

The applicant’s analysis did not include the age-specific exposure refinement approach currently recommended by the California Office of Health Hazard Assessment (OEHHA) for toxic exposures. Staff has established that there is no significant difference between exposure levels as obtained using the original assessment approach and the current OEHHA-recommended approach at the emission levels being considered. Staff concurs with the applicant’s findings with the original exposure assessment approach with regard to the numerical public health risk estimates expressed in terms of the hazard index for each non-carcinogenic pollutant, or cancer risks for estimated levels of the carcinogenic pollutants. These analyses are conducted in all cases to estimate the maximum potential for acute and chronic effects on body systems such as the liver, central nervous system, the immune system, kidneys, the reproductive system, the skin and the respiratory system.

The following toxic air pollutants were considered with respect to non-cancer effects: acetaldehyde, acrolein, ammonia, benzene, 1, 3 butadiene, ethylbenzene, formaldehyde, naphthalene, polycyclic aromatic hydrocarbons (PAHs), propylene oxide, toluene, and xylenes. The toxic air pollutants that were considered with regard to a possible cancer risk are: acetaldehyde, benzene, 1, 3 butadiene, chrysene, formaldehyde, PAHs and propylene oxide.

STAFF’S SIGNIFICANCE CRITERIA

Various state and federal agencies such as the California Environmental Protection Agency (EPA) Federal EPA, and the Federal Food and Drug Administration (FDA) specify different cancer risk levels as levels of health significance with regard to specific sources. For example, a risk of 10 in a million is primarily considered under the Air...
Toxics “Hot Spots” Assembly Bill 2588, 1987 (Health and Safety Code Sections 44360 et seq.) and the Proposition 65 programs as significant, and therefore, used as a threshold for public notification in cases of air toxics emissions from existing sources. The SCAQMD considers a risk of 25 in a million as the significance criterion in this regard. For new or modified sources with best available toxics control technology (TBACT), the District’s significance criterion is 10 in a million. For those without such controls the District's criterion is 1 in a million.

For the proposed and similar projects, the Energy Commission staff considers a potential cancer risk of 1 in a million as the de minimis level, which is the level below which the related exposure is considered negligible (meaning that project operation would be unlikely to result in any material increase in cancer cases). For estimates that reflect a risk above this level, any recommended action would depend on the magnitude of the estimate in question. However, specific mitigation would be recommended only when the possible risk is specified as more than 10 in a million. This regulatory approach is intended in the current state of knowledge to limit the rate of addition to the already high (1 in 3, or 330,000 in a million) background cancer risk of the average individual.

While the carcinogenic property of several environmental pollutants is well established, the causes of most human cancers remain largely unknown. What has become clearer to scientists is that environmental pollution is responsible for only a small fraction of human cancers. This fraction, according to the SCAQMD (SCAQMD 2000, page 2), represents only about two percent of cancer cases. The present risk-based regulatory approach is, in practice, intended to avoid all avoidable human carcinogenic exposure, especially when such exposures are not within the individual's control, as would be true of the emissions from ESPFM and other sources.

For non-carcinogenic pollutants, staff considers significant health impacts to be unlikely when the total hazard index is 1.0 or less. If more than 1.0, staff would regard the related emissions as potentially significant from an environmental health perspective. It would not automatically call for specific mitigation whose recommendation would depend on magnitude of the index value involved.

The applicant’s estimates for the proposed ESPFM was presented by the applicant on Table 3.8-2 (ESEC 2013 page 3-115) and verified by staff for accuracy. For the proposed ESPFM, a maximum incremental cancer risk of 0.17 in 1 million was calculated for the maximally exposed individual. This number is below staff’s significance criterion of 1 in a million, suggesting a lack of a material cancer risk to any individual within the project area. The maximum chronic hazard index of 0.0029 was calculated for the maximally exposed individual and is well below staff’s significance criterion of 1 in one million, meaning that the project’s emissions would be unlikely to significantly add to the area’s health status related to chronic non-cancer effects. A maximum acute hazard index of 0.005 was calculated for the same individual. This is significantly below staff’s criterion of 1.0, suggesting a lack of significant modification-related impacts of an acute nature.
CUMULATIVE IMPACTS

When toxic pollutants are emitted from multiple sources within a given area, the cumulative, or additive, impacts of such emissions could, in concept, lead to significant health impacts within the population, even when such pollutants are emitted at insignificant levels from the individual sources involved. Analyses of such emissions have shown, however, that the peak impacts of such toxic pollutants are normally localized within relatively short distances from the source. Toxic pollutant levels beyond the point of maximum impact quickly fall to ambient background levels. This modification project is proposed for a site already committed to power generation and related industrial and commercial activities. Given the low cancer and non-cancer risks to be associated with the proposed project, even with the expected increase in annual usage, staff does not expect its operations to contribute significantly to any area toxic exposure of a cumulative nature.

To assess the total contribution from all on-site units (Units 5 through 12) during ESPFM operation, the applicant calculated the total cancer risk increment as 0.25 in a million, which below staff's significance level. The related acute index value is 0.01 while the chronic index is 0.0057. Both index values are well below staff's significance levels suggesting that total facility emissions would not contribute significantly to total area cancer and non-cancer health risk. Since these risk estimates reflect the effectiveness of the proposed and existing emission controls, staff does not recommend further mitigation measures as with the permitted ESEC.

ENVIRONMENTAL JUSTICE

Staff established from the 1990 census data that the minority population within the project’s six-mile impact area falls within a range between 44.9 percent and 57.6 percent, pointing to a relatively high percentage of minorities in this impact zone. Only 10.67 percent of the population in this six-mile zone lives below the poverty threshold, meaning that there would be no human differential pollutant exposures on the basis of economic status. Since staff has established that no significant health impacts would result anywhere in the project area from the emission of the pollutants considered in this Public Health analysis, the issue of environmental justice would not arise in spite of potential exposures in the identified areas of relatively high minority populations. Issues of environmental justice are of potential concern only in cases of exposures of potential health significance.

CONCLUSIONS AND RECOMMENDATIONS

Staff has determined that the construction and operation of the proposed ESPFM would be unlikely to significantly affect the health of area residents. The cancer and non-cancer risks from the project’s electricity generation would be at levels reflecting controls using the technology established as most effective for this and similar facilities.

Since the operation of the proposed ESPFM would allow for more efficient power generation without significant health impacts, staff recommends approval with respect to the toxic pollutants considered in this analysis. The conditions for ensuring compliance...
with all applicable air quality standards are specified in the **Air Quality** section for the area’s problem criteria pollutants. No Public Health Conditions of Certification are recommended as with the permitted ESEC.

REFERENCES

SUMMARY OF CONCLUSIONS

Energy Commission staff (staff) concludes that construction and operation of the El Segundo Power Facility Modification (ESPFM) would not cause significant direct, indirect, or cumulative socioeconomic impacts on the project area’s population, housing, schools, law enforcement, or parks and recreation. Staff also concludes that the project would not induce a substantial population growth or displacement of population, or induce substantial increases in demand for housing, parks, or law enforcement services.

Staff concludes the minority population in the six-mile project buffer constitutes an environmental justice population as defined by *Environmental Justice: Guidance Under the National Environmental Policy Act*, and would trigger further scrutiny for purposes of an environment justice analysis. Because the project would have no significant adverse socioeconomic impacts, the project would have no socioeconomic impact on the environmental justice population as identified in SOCIOECONOMICS Figure 1.

Staff is proposing changes to Condition of Certification SOCIO-1 and a new condition, SOCIO-3, that would ensure project compliance with state and local laws, ordinances, regulations, and standards (LORS). **Bold underline** is used to indicate new language in the “Proposed Conditions of Certification” subsection and strike-through is used to indicate deleted language.

INTRODUCTION

Staff’s socioeconomics impact analysis evaluates the project’s induced changes on existing population, employment patterns, and community services. Staff discusses the estimated impacts of the construction and operation of the ESPFM on local communities, community resources, and law enforcement services, and provides a discussion of the estimated beneficial economic impacts of the construction and operation of the proposed project.

LAWS, ORDINANCES, REGULATIONS, AND STANDARDS (LORS)

The applicable socioeconomic LORS have changed since staff’s analysis was conducted in the original 2002 El Segundo Power Redevelopment proceeding and the 2007 Dry Cooling Amendment. The new LORS are the California Education Code related to schools (school district fees) and subsections of the El Segundo Municipal Code regarding utility users tax (electricity, gas, and water), and development impact fees (police, fire, libraries, and parks). **SOCIOECONOMICS Table 1** contains the new LORS (shown in **bold**) and other applicable LORS to the proposed project.
SOCIOECONOMICS Table 1
Laws, Ordinances, Regulations, and Standards (LORS)

<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>California Education Code, Section 17620</td>
<td>The governing board of any school district is authorized to levy a fee, charge, dedication, or other requirement for the purpose of funding the construction or reconstruction of school facilities.</td>
</tr>
<tr>
<td>California Government Code, Sections 65996-65997</td>
<td>Except for a fee, charge, dedication, or other requirement authorized under Section 17620 of the Education Code, state and local public agencies may not impose fees, charges, or other financial requirements to offset the cost for school facilities.</td>
</tr>
<tr>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>El Segundo Municipal Code</td>
<td></td>
</tr>
<tr>
<td>Title 3 Revenue and Finance, Chapter 7 Utility Users Tax</td>
<td></td>
</tr>
<tr>
<td>Subsection 3-7-3: Electricity Users Tax</td>
<td>Tax imposed upon every commercial or industrial utility user in the city using electrical energy in the city.</td>
</tr>
<tr>
<td>Subsection 3-7-5: Gas Users Tax</td>
<td>Tax imposed upon every commercial or industrial utility user in the city other than a gas corporation, using gas delivered through mains or pipes.</td>
</tr>
<tr>
<td>Subsection 3-7-6: Water Users Tax</td>
<td>Tax imposed upon every commercial or industrial utility user in the city using water delivered though mains or pipes.</td>
</tr>
<tr>
<td>Title 15 Zoning Regulations, Chapter 27A Development Impact Fees</td>
<td>Imposes fees on applicants seeking to construct development projects for impacts on the city’s public services and public facilities (police, fire, library, parks & recreation/open spaces, general facilities, community centers, and road project construction).</td>
</tr>
</tbody>
</table>

SETTING

The proposed ESPFM is located in the city of El Segundo, Los Angeles County, within the boundaries of the existing El Segundo Energy Center (ESEC) industrial site. The existing power plant is located at 301 Vista Del Mar Boulevard at the southern-most city limit of El Segundo between Dockweiler Beach and the city of Manhattan Beach. The ESEC is bordered by Vista Del Mar and the Chevron refinery to the east, 45th Street in the city of Manhattan Beach on the south, Santa Monica Bay on the west, and the Chevron Marine Terminal on the north (NRG 2013a). The existing power plant has five generating units (Units 5-8). The project owner’s 2013 petition to amend (PTA) the ESEC proposes to demolish Units 3 and 4, and construct Units 9 through 12 and a new administration/maintenance/operations support building, among other things (NRG 2013a).

For the purposes of assessing project impacts, staff defines the “local workforce” during project construction as workers residing within a two-hour commute of the project. This includes Los Angeles-Long Beach-Glendale Metropolitan Division (Los Angeles County), Santa Ana-Anaheim-Irvine Metropolitan Statistical Area (MSA) (Orange County), and Riverside-San Bernardino-Ontario MSA (Riverside and San Bernardino counties). The “local workforce” during project operation is defined as workers residing within a one-hour commute of the project.
Staff defines the study area related to project impacts on population and housing as the city of El Segundo and nearby cities to the project site. The study area for environmental justice impacts is within a six-mile buffer of the project site. The city of El Segundo is the study area for police services and parks. The study area for impacts to schools is the El Segundo Unified School District. The study area for indirect and induced economic impacts is defined as Los Angeles County and the study area for cumulative impacts is nearby cities to the ESEC and Los Angeles County.

USING THE 2010 US CENSUS AND US CENSUS BUREAU’S AMERICAN COMMUNITY SURVEY IN STAFF ASSESSMENTS

After the 2000 census, the detailed social, economic, and housing information previously collected on the decennial census long-form became the American Community Survey (ACS) [US Census 2013]. The U.S. Census Bureau's ACS is a nationwide, continuous survey that will continue to collect long-form-type information throughout the decade. Decennial census data is a 100 percent count collected once every ten years and represents information from a single reference point (April 1st). The main function of the decennial census is to provide counts of people for the purpose of congressional apportionment and legislative redistricting. ACS estimates are collected from a sample of the population based on information compiled continually and aggregated into one, three, and five-year estimates (“period estimates”) released every year. The primary purpose of the ACS is to measure the changing social and economic characteristics of the U.S. population. As a result, the ACS does not provide official counts of the population in between censuses. Instead, the Census Bureau's Population Estimates Program will continue to be the official source for annual population totals, by age, race, Hispanic origin, and sex.

ACS collects data at every geography level from the largest level (nation) to the smallest level available (block group (BG)). Census Bureau staff recommends the use of data no smaller than the Census tract level. Data from the five-year estimates is used for our analysis as it provides the greatest detail at the smallest geographic level. Because ACS estimates come from a sample population, a certain level of variability is associated with these estimates. This variability is expressed as a margin of error (MOE). The MOE is used to calculate the coefficient of variation (CV). CVs are a standardized indicator of the reliability of an estimate. While not a set rule, the US

1 Census Block Group - A statistical subdivision of a census tract. A BG consists of all tabulation blocks whose numbers begin with the same digit in a census tract; for example, for Census 2000, BG 3 within a census tract includes all blocks numbered between 3000 and 3999. The block group is the lowest-level geographic entity for which the Census Bureau tabulates sample data from the decennial census.

2 Census Tract - A small, relatively permanent statistical subdivision of a county or statistically equivalent entity, delineated for data presentation purposes by a local group of census data users or the geographic staff of a regional census center in accordance with Census Bureau guidelines. Census tracts are designed to be relatively homogeneous units with respect to population characteristics, economic status, and living conditions at the time they are established. Census tracts generally contain between 1,000 and 8,000 people, with an optimum size of 4,000 people. Census tract boundaries are delineated with the intention of being stable over many decades, so they generally follow relatively permanent visible features.
Census Bureau considers the use of estimates with a CV more than 15 percent a cause for caution when interpreting patterns in the data (US Census 2009). In situations where CVs for estimates are high, the reliability of an estimate improves by using estimates for a larger geographic area (e.g. city or community versus census tract) or combining estimates across geographic areas.

PROJECT-SPECIFIC DEMOGRAPHIC SCREENING

Staff’s demographic screening is based on information contained in two documents: Environmental Justice: Guidance Under the National Environmental Policy Act (Council on Environmental Quality [CEQ] 1997) and Final Guidance for Incorporating Environmental Justice Concerns in EPA’s Compliance Analyses (US Environmental Protection Agency [EPA] 1998). The intention is to identify potentially sensitive populations, which could be disproportionately impacted by the proposed action. Due to the changes in the data collection methods used by the U.S. Census Bureau, the screening process relies on 2010 U.S. Census data to determine the number of minority populations and data from the 2008-2012 ACS to evaluate the presence of individuals and households living below the federal poverty level.

Staff’s demographic screening is designed to identify the presence of minority or below-poverty-level populations, or both, within a six-mile buffer of the proposed project site. The six-mile buffer is based on air quality modeling, which shows that project-related impacts from pollutants decrease to less than significant within six miles of the emission site. Staff uses the six-mile buffer to determine the area of potential project impacts and to obtain data to gain a better understanding of the demographic makeup of the communities potentially impacted by the project. When Socioeconomics staff identifies the presence of an environmental justice population, staff from the thirteen affected technical areas evaluates the project for potential disproportionate impacts on the environmental justice population.3 When staff’s screening analysis does not identify an environmental justice population in the six-mile buffer, no further scrutiny is required for purposes of an environmental justice analysis.

MINORITY POPULATIONS

According to Environmental Justice: Guidance Under the National Environmental Policy Act, minority individuals are defined as members of the following groups: American Indian or Alaskan Native; Asian or Pacific Islander; Black, not of Hispanic origin; or Hispanic. An environmental justice population is identified when the minority population of the potentially affected area is greater than fifty percent or is meaningfully greater than the minority population in the general population or other appropriate unit of geographical analysis.

SOCIOECONOMICS Figure 1 shows the total population within the six-mile buffer of the project site was 564,776 persons with a minority population of 358,228 persons, or 63.4 percent of the total population (US Census 2010a). The population in the six-mile buffer lives primarily within the cities of El Segundo, Manhattan Beach Redondo Beach, Hermosa Beach, Lawndale, Hawthorne, and Inglewood, and to a much lesser extent, in the cities of Torrance, Gardenia, and Los Angeles. SOCIOECONOMICS Figure 2 shows the jurisdictions of the cities in and around the six-mile buffer. The minority population in the six-mile buffer is comparable to the minority populations in the combined Census County Divisions (CCD’s) that encompass the project buffer (South Bay Cities and Inglewood), nearby cities, and Los Angeles County (SOCIOECONOMICS Table 2).

SOCIOECONOMICS Table 2

<table>
<thead>
<tr>
<th>Area</th>
<th>Total Population</th>
<th>Not Hispanic or Latino: White alone</th>
<th>Minority</th>
<th>Percent Minority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six-Mile Buffer of Project Site</td>
<td>564,776</td>
<td>206,548</td>
<td>358,228</td>
<td>63.4</td>
</tr>
<tr>
<td>(SOCIOECONOMICS Figure 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gardena</td>
<td>58,829</td>
<td>14,498</td>
<td>44,331</td>
<td>75.36</td>
</tr>
<tr>
<td>Torrance</td>
<td>84,293</td>
<td>27,678</td>
<td>56,615</td>
<td>67.16</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>3,792,621</td>
<td>1,086,908</td>
<td>2,705,713</td>
<td>71.34</td>
</tr>
<tr>
<td>Comparison Geographies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Area CCDs*- Total</td>
<td>507,737</td>
<td>127,590</td>
<td>380,147</td>
<td>74.87</td>
</tr>
<tr>
<td>--South Bay Cities</td>
<td>138,043</td>
<td>98,699</td>
<td>39,344</td>
<td>28.50</td>
</tr>
<tr>
<td>--Inglewood</td>
<td>369,694</td>
<td>28,891</td>
<td>340,803</td>
<td>92.19</td>
</tr>
<tr>
<td>Los Angeles County</td>
<td>9,818,605</td>
<td>2,728,321</td>
<td>7,090,284</td>
<td>72.21</td>
</tr>
</tbody>
</table>

Note: Bold - minority population 50 percent or greater. *CCD – Census County Division. Source: US Census 2010a.

Staff concludes that the minority population in the six-mile project buffer is greater than fifty percent and constitutes an environmental justice population as defined by Environmental Justice: Guidance Under the National Environmental Policy Act, and would trigger further scrutiny for purposes of an environmental justice analysis.

BELOW-POVERTY-LEVEL-POPULATIONS

The official poverty thresholds do not vary by geography (e.g. state, county, etc.), but are updated annually to allow for changes in the cost of living. The population for whom poverty status is determined does not include institutionalized people, people in military quarters, people in college dormitories, and unrelated individuals under 15 years old.

Staff identified the below-poverty-level population in the project area using CCD data from the 2008-2012 ACS Five-Year Estimates from the U.S. Census (US Census 2012). The CEQ and US EPA guidance documents identify a fifty percent threshold to determine whether minority populations are considered environmental justice populations but do not provide a discrete threshold for below-poverty-level populations. To better understand the presence of poverty in the area, staff compares the below-

4 Staff determined that the data at the CCD level is the lowest level available that retains reasonable accuracy. The data represents a period estimate, meaning the numbers represent an area’s characteristics for the specified time period.
poverty-level populations in the six-mile buffer to other appropriate geographies. As shown in SOCIOECONOMICS Table 3, staff used data for the cities in and around the six-mile buffer and Los Angeles County as geographies to compare levels of poverty in populations near the project.

SOCIOECONOMICS Table 3

Poverty Data within the Project Area

<table>
<thead>
<tr>
<th>Area</th>
<th>Total</th>
<th>Income in the past 12 months below poverty level</th>
<th>Percent below poverty level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate*</td>
<td>MOE</td>
<td>CV</td>
</tr>
<tr>
<td>Census County Divisions Used to Determine Poverty Status- Total</td>
<td>503,702</td>
<td>±2,203</td>
<td>0.26</td>
</tr>
<tr>
<td>--South Bay Cities</td>
<td>137,943</td>
<td>±156</td>
<td>0.07</td>
</tr>
<tr>
<td>--Inglewood</td>
<td>365,759</td>
<td>±2,197</td>
<td>0.36</td>
</tr>
<tr>
<td>Comparison Geographies**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culver City</td>
<td>38,660</td>
<td>±165</td>
<td>0.26</td>
</tr>
<tr>
<td>Gardena</td>
<td>58,262</td>
<td>±205</td>
<td>0.21</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>3,735,119</td>
<td>±1,949</td>
<td>0.03</td>
</tr>
<tr>
<td>Torrance</td>
<td>144,206</td>
<td>±467</td>
<td>0.20</td>
</tr>
<tr>
<td>Los Angeles County</td>
<td>9,684,503</td>
<td>±2,610</td>
<td>0.02</td>
</tr>
</tbody>
</table>

As displayed above in SOCIOECONOMICS Table 3, 15.8 percent or 79,776 of the population within the six-mile buffer live below the federal poverty level. When reviewing the poverty data for the comparison geographies in SOCIOECONOMICS Table 3, the Inglewood CCD and the city of Los Angeles stand out with 20 to 21 percent of the population living below the poverty level. In comparison, the poverty levels in the remaining geographies are in the mid-teens or less. Therefore, the 15.8 percent below-poverty-level population within the six-mile buffer of the project site is comparable to the below-poverty-level population in the comparison geographies.

METHOD AND THRESHOLD FOR DETERMINING SIGNIFICANCE

The California Environmental Quality Act (CEQA) requires a list of criteria to determine the significance of identified impacts. A significant impact is defined by CEQA as “a substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project” (State CEQA Guidelines Section 15382).

Thresholds serve as the benchmark for determining if a project will result in a significant adverse impact when evaluated against existing conditions (e.g., "baseline" conditions). State CEQA Guideline Section 15064(e) specifies that: "economic and social changes resulting from the project shall not be treated as significant effects on the environment. Section 15064(e) states that where "a physical change is caused by economic or social effects of a project, the physical change may be regarded as a significant effect in the same manner as any other physical change resulting from the project. Alternatively, economic and social effects of a physical change may be used to determine that the physical change is a significant effect on the environment. If the physical change causes
adverse economic or social effects on people, those adverse effects may be used as a factor in determining whether the physical change is significant.”

Staff has used Appendix G of the State CEQA Guidelines for this analysis, which specifies that a project could have a significant effect on population, housing, and law enforcement services, schools and parks if it would:

- Induce substantial population growth in an area, either directly or indirectly;
- Displace substantial numbers of people and/or existing housing, necessitating the construction of replacement housing elsewhere; or
- Adversely impact acceptable levels of service for police protection, schools, and parks and recreation.

Staff’s assessment of impacts on population, housing, police protection, schools, and parks and recreation are based on professional judgments, input from local and state agencies, and the industry-accepted two-hour commute range for construction workers and one-hour commute range for operational workers.

DIRECT/INDIRECT IMPACTS AND MITIGATION

INDUCE SUBSTANTIAL POPULATION GROWTH

For the purpose of this analysis, staff defines “induce substantial population growth” as workers moving into the project area because of project construction and operation, thereby encouraging construction of new homes or extension of roads or other infrastructure. To determine whether the project would induce population growth, staff analyzes the availability of the local workforce and the population within the region. Staff defines “local workforce” for project construction as those workers residing within a two-hour commute of the project site. This area includes the Los Angeles-Long Beach-Glendale Metropolitan Division (Los Angeles County), Santa Ana-Anaheim-Irvine (MSA⁵) (Orange County), and Riverside-San Bernardino-Ontario MSA (Riverside and San Bernardino Counties). Workers residing in these MSAs with greater than a two-hour commute would be considered non-local and would likely seek lodging during construction closer to the project site. Staff defines “local workforce” for project operation as workers residing within a one-hour commute of the project.

SOCIOECONOMICS Table 4 shows the historical and projected populations for the cities within the six-mile buffer plus Los Angeles County for reference. The cities of Hawthorne, Lawndale and the city and county of Los Angeles have the highest projected population growth in the ESEC general area. The city of El Segundo is projected to grow about two percent between 2010 and 2035, compared with a much larger growth of 15.6 percent for Los Angeles County.

⁵ An MSA contains a core urban area population of 50,000 or more, consists of one or more counties, and includes the counties containing the core urban area, as well as any adjacent counties that have a high degree of social and economic integration (as measured by commuting to work) with the urban core.
SOCIOECONOMICS Table 4

Historical and Projected Populations

<table>
<thead>
<tr>
<th>Area</th>
<th>2000<sup>1</sup></th>
<th>2010<sup>2</sup></th>
<th>2020<sup>3</sup></th>
<th>2035<sup>3</sup></th>
<th>2040<sup>4</sup></th>
<th>2050<sup>4</sup></th>
<th>Projected Population Change 2010-2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cities within the Project Study Area Total<sup>*</sup></td>
<td>360,115</td>
<td>364,778</td>
<td>377,800</td>
<td>392,900</td>
<td>-</td>
<td>-</td>
<td>28,122, 7.71</td>
</tr>
<tr>
<td>-- El Segundo</td>
<td>16,033</td>
<td>16,654</td>
<td>16,900</td>
<td>17,000</td>
<td>-</td>
<td>-</td>
<td>346, 2.07</td>
</tr>
<tr>
<td>-- Inglewood</td>
<td>112,580</td>
<td>109,673</td>
<td>111,900</td>
<td>113,500</td>
<td>-</td>
<td>-</td>
<td>3,827, 3.48</td>
</tr>
<tr>
<td>-- Hawthorne</td>
<td>84,112</td>
<td>84,293</td>
<td>89,600</td>
<td>96,300</td>
<td>-</td>
<td>-</td>
<td>12,007, 14.24</td>
</tr>
<tr>
<td>-- Hermosa Beach</td>
<td>18,566</td>
<td>19,506</td>
<td>19,600</td>
<td>19,700</td>
<td>-</td>
<td>-</td>
<td>194, 0.99</td>
</tr>
<tr>
<td>-- Lawndale</td>
<td>31,711</td>
<td>32,769</td>
<td>34,600</td>
<td>37,400</td>
<td>-</td>
<td>-</td>
<td>4,631, 14.13</td>
</tr>
<tr>
<td>-- Manhattan Beach</td>
<td>33,852</td>
<td>35,135</td>
<td>35,500</td>
<td>36,000</td>
<td>-</td>
<td>-</td>
<td>865, 2.46</td>
</tr>
<tr>
<td>-- Redondo Beach</td>
<td>63,261</td>
<td>66,748</td>
<td>69,700</td>
<td>73,000</td>
<td>-</td>
<td>-</td>
<td>6,252, 9.37</td>
</tr>
<tr>
<td>-- Los Angeles</td>
<td>3,694,820</td>
<td>3,792,621</td>
<td>3,991,700</td>
<td>4,320,600</td>
<td>-</td>
<td>-</td>
<td>527,797, 13.92</td>
</tr>
<tr>
<td>Los Angeles County</td>
<td>9,519,338</td>
<td>9,818,605</td>
<td>10,404,000<sup>3</sup></td>
<td>11,353,000<sup>3</sup></td>
<td>11,243,022</td>
<td>11,434,565</td>
<td>1,534,395** 15.63</td>
</tr>
</tbody>
</table>

Note:[*]The city of Los Angeles is not included in project study area total as the majority of the city is outside of the project study area (a small portion is inside the project study area). **Calculated using the highest 2035 population projection. – Data not available. **Sources:**¹US Census 2000, ²US Census 2010a, ³SCAG 2012, ⁴CA DOF 2013.
SOCIOECONOMICS Table 5 shows the total labor by skill for the Los Angeles-Long Beach-Glendale Metropolitan Division, Santa Ana-Anaheim-Irvine, and Riverside-San Bernardino-Ontario MSA’s would be more than adequate to provide construction labor for the ESPFM. SOCIOECONOMICS Table 6 shows the project labor needs compared with the total labor supply in the study area as identified in SOCIOECONOMICS Table 5.

The project owner identified the primary trades required for the project demolition/construction as boilermakers, carpenters, electricians, ironworkers, laborers, millwrights, operators, and pipefitters (LL 2013n). If approved, the ESEC owner would remove existing Units 3 and 4 to make way for the Units 9 through 12. Demolition activities are estimated to take six months and would begin in late 2015. Construction of the proposed ESPMF is anticipated to commence by mid-2016 and conclude in 2018, to meet a projected on-line date of summer 2018 (NRG 2013a). The project owner would employ an average of 330 workers and the workforce would peak during months 17 through 23 with 500 workers (LL 2013n).

In addition to the ESPFM workforce identified in SOCIOECONOMICS Table 6, the project owner will require 22 to 42 contractor staff per month during the 24-month demolition/construction phase. This would involve construction managers, administrators, engineering supervisors, health and safety engineers, operating engineers, and construction material inspectors (LL 2013n). The project owner assumed that because of the size of the local construction workforce the majority of construction workers would come from Los Angeles County (NRG 2013a). Based on previous power plant siting cases, staff believes the majority (90 percent) of construction workers would commute daily to the project site and a small workforce, about ten percent, would come from outside the local two-hour commute area. Given the peak construction workforce of 500 workers, approximately 50 would come from outside the local area.

Energy Commission staff contacted the local building and construction trades council (Los Angeles/Orange Counties Building and Construction Trades Council [LAOCBCTC]) for more information about the local construction workforce in Los Angeles County. BCTC staff Ron Miller explained that information from their local unions shows there are more than sufficient union members available within a commuting distance of the ESEC. In addition, LAOCBCTC staff indicated the recession has caused huge unemployment in their trades with 15 to 40 percent unemployment in their local unions (LAOCBCTC 2013).

Fifty workers are now employed at the ESEC and this number would not change when the new project becomes operational (NRG 2013b). Staff concludes the project’s construction and operation workforces would not directly or indirectly induce a substantial population growth in the project area, and therefore, the project would have a less than significant impact on the existing workforce.
SOCIOECONOMICS Table 5
Total Labor by Skill in the Study Area:
Los Angeles-Long Beach-Glendale Metropolitan Division, Santa Ana-Anaheim-Irvine MSA,
and Riverside-San Bernardino-Ontario MSA

<table>
<thead>
<tr>
<th>Craft</th>
<th>Los Angeles-Long Beach-Glendale Metropolitan Division (Los Angeles County)</th>
<th>Santa Ana-Anaheim-Irvine MSA (Orange County)</th>
<th>Riverside-San Bernardino-Ontario MSA (Riverside & San Bernardino Counties)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpenter</td>
<td>15,530</td>
<td>17,960</td>
<td>2,430 15.6</td>
</tr>
<tr>
<td>Laborer</td>
<td>23,160</td>
<td>27,810</td>
<td>4,650 20.1</td>
</tr>
<tr>
<td>Teamster</td>
<td>16,510 ¹</td>
<td>20,280</td>
<td>3,770 22.8</td>
</tr>
<tr>
<td>Electrician</td>
<td>10,310</td>
<td>11,360</td>
<td>1,050 10.2</td>
</tr>
<tr>
<td>Ironworker</td>
<td>1,130</td>
<td>1,270</td>
<td>140 12.4</td>
</tr>
<tr>
<td>Millwright</td>
<td>300</td>
<td>270</td>
<td>-30 -10.0</td>
</tr>
<tr>
<td>Boilermaker</td>
<td>240</td>
<td>280</td>
<td>40 16.7</td>
</tr>
<tr>
<td>Plumber</td>
<td>8,180 ²</td>
<td>9,230</td>
<td>1,050 12.8</td>
</tr>
<tr>
<td>Pipefitter</td>
<td>8,180 ²</td>
<td>9,230</td>
<td>1,050 12.8</td>
</tr>
<tr>
<td>Insulation Worker</td>
<td>93,060 ³</td>
<td>108,580</td>
<td>15,520 16.7</td>
</tr>
<tr>
<td>Operating Engineer</td>
<td>3,310 ⁶</td>
<td>4,030</td>
<td>720 21.8</td>
</tr>
<tr>
<td>Oiler/ Mechanic</td>
<td>34,450 ⁷</td>
<td>39,640</td>
<td>5,190 15.1</td>
</tr>
<tr>
<td>Cement Finisher</td>
<td>2,420</td>
<td>3,020</td>
<td>600 24.8</td>
</tr>
<tr>
<td>Masons</td>
<td>2,420</td>
<td>3,020</td>
<td>600 24.8</td>
</tr>
<tr>
<td>Roofers</td>
<td>93,060 ³</td>
<td>108,580</td>
<td>15,520 0.0</td>
</tr>
<tr>
<td>Sheet Metal Worker</td>
<td>2,230</td>
<td>2,320</td>
<td>90 4.0</td>
</tr>
<tr>
<td>Sprinkler Fitters</td>
<td>8,180 ²</td>
<td>9,230</td>
<td>1,050 12.8</td>
</tr>
<tr>
<td>Painters</td>
<td>9,360</td>
<td>10,740</td>
<td>1,380 14.7</td>
</tr>
<tr>
<td>Sheetrockers</td>
<td>3,690 ⁷</td>
<td>4,680</td>
<td>990 26.8</td>
</tr>
<tr>
<td>Surveyors</td>
<td>590</td>
<td>660</td>
<td>70 11.9</td>
</tr>
<tr>
<td>Plasterers</td>
<td>1,370</td>
<td>1,540</td>
<td>170 12.4</td>
</tr>
<tr>
<td>Totals</td>
<td>337,680</td>
<td>393,730</td>
<td>56,050 16.5</td>
</tr>
</tbody>
</table>

Notes: ¹ Industrial Truck and Tractor Operators; ² Industrial Machinery Mechanics and Maintenance and Repair W, General and Maintenance Workers, Machinery; ³ Construction Trade Workers; ⁴ Plumbers, Pipefitters, and Steamfitters; ⁵ Operating engineers and other construction equipment; ⁶ Insulation Workers, mechanical; ⁷ Drywall and Ceiling Tile Installers. Source: EDD 2012a.

SOCIOECONOMICS 4.8-10 March 2014
SOCIOECONOMICS Table 6

Total Labor by Skill in the Study Area MSAs/MD versus Project Labor Needs

<table>
<thead>
<tr>
<th>Craft</th>
<th>Total Workforce (2010)</th>
<th>Total Projected Workforce (2020)</th>
<th>Growth from 2010</th>
<th>ESEC Construction Workforce Needs - Peak Month</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number</td>
<td>Percent</td>
</tr>
<tr>
<td>Carpenter</td>
<td>38,080</td>
<td>40,730</td>
<td>2,650</td>
<td>7.0</td>
</tr>
<tr>
<td>Laborer</td>
<td>46,930</td>
<td>53,890</td>
<td>6,960</td>
<td>14.8</td>
</tr>
<tr>
<td>Teamster</td>
<td>27,860</td>
<td>33,820</td>
<td>5,960</td>
<td>21.4</td>
</tr>
<tr>
<td>Electrician</td>
<td>19,190</td>
<td>21,030</td>
<td>1,840</td>
<td>9.6</td>
</tr>
<tr>
<td>Ironworker</td>
<td>2,210</td>
<td>2,330</td>
<td>120</td>
<td>5.4</td>
</tr>
<tr>
<td>Millwright</td>
<td>13,240</td>
<td>14,800</td>
<td>1,560</td>
<td>11.8</td>
</tr>
<tr>
<td>Boilermaker</td>
<td>112,480</td>
<td>118,980</td>
<td>6,500</td>
<td>5.8</td>
</tr>
<tr>
<td>Plumber</td>
<td>15,110</td>
<td>16,800</td>
<td>1,690</td>
<td>11.2</td>
</tr>
<tr>
<td>Pipefitter</td>
<td>15,110</td>
<td>16,800</td>
<td>1,690</td>
<td>11.2</td>
</tr>
<tr>
<td>Insulation Worker</td>
<td>145,960</td>
<td>165,890</td>
<td>19,930</td>
<td>13.7</td>
</tr>
<tr>
<td>Operating Engineer</td>
<td>8,220</td>
<td>9,750</td>
<td>1,530</td>
<td>18.6</td>
</tr>
<tr>
<td>Oiler/ Mechanic</td>
<td>58,510</td>
<td>67,060</td>
<td>8,550</td>
<td>14.6</td>
</tr>
<tr>
<td>Cement Finisher</td>
<td>6,600</td>
<td>7,520</td>
<td>920</td>
<td>13.9</td>
</tr>
<tr>
<td>Masons</td>
<td>6,600</td>
<td>7,520</td>
<td>920</td>
<td>13.9</td>
</tr>
<tr>
<td>Roofers</td>
<td>154,350</td>
<td>171,550</td>
<td>17,200</td>
<td>11.1</td>
</tr>
<tr>
<td>Sheet Metal Worker</td>
<td>4,620</td>
<td>4,860</td>
<td>240</td>
<td>5.2</td>
</tr>
<tr>
<td>Sprinkler Fitters</td>
<td>15,110</td>
<td>16,800</td>
<td>1,690</td>
<td>11.2</td>
</tr>
<tr>
<td>Painters</td>
<td>20,110</td>
<td>21,860</td>
<td>1,750</td>
<td>8.7</td>
</tr>
<tr>
<td>Sheetrockers</td>
<td>9,770</td>
<td>11,100</td>
<td>1,330</td>
<td>13.6</td>
</tr>
<tr>
<td>Plasterers</td>
<td>2,990</td>
<td>2,373</td>
<td>-617</td>
<td>-20.6</td>
</tr>
<tr>
<td>Surveyors</td>
<td>2,180</td>
<td>1,930</td>
<td>-250</td>
<td>-11.5</td>
</tr>
<tr>
<td>I & C-Control Room</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: The number in parentheses in the last column is the maximum number of craft workers during the construction period.

Source: Socioeconomics Table 5, LL 2013n
Housing Supply

SOCIOECONOMICS Table 7 presents housing supply data for the project area. As of April 1, 2010, there were 159,050 housing units within a six-mile buffer of the project site with a vacancy of 8,031 units, representing a 5.05 percent vacancy rate. Five percent vacancy is an industry-accepted minimum benchmark for a sufficient amount of housing available for occupancy (Virginia Tech 2006). The housing counts in the project area indicate a sufficient amount of available housing units within a six-mile buffer of the project site.

SOCIOECONOMICS Table 7
Housing Supply in the Project Area Update

<table>
<thead>
<tr>
<th>Subject</th>
<th>Cities in a Six Mile Buffer of Project Site*</th>
<th>Los Angeles County</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent</td>
</tr>
<tr>
<td>OCCUPANCY STATUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total housing units</td>
<td>159,050</td>
<td>100.00</td>
</tr>
<tr>
<td>--Occupied housing units</td>
<td>151,019</td>
<td>94.9</td>
</tr>
<tr>
<td>--Vacant housing units</td>
<td>8,031</td>
<td>5.05</td>
</tr>
<tr>
<td>VACANCY STATUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacant housing units</td>
<td>8,031</td>
<td>100.00</td>
</tr>
<tr>
<td>For rent</td>
<td>4,412</td>
<td>54.9</td>
</tr>
<tr>
<td>For sale only</td>
<td>720</td>
<td>8.9</td>
</tr>
<tr>
<td>For seasonal, recreational, or occasional use</td>
<td>1,068</td>
<td>13.2</td>
</tr>
<tr>
<td>Other**</td>
<td>1,831</td>
<td>22.8</td>
</tr>
</tbody>
</table>

Notes: *Cities include El Segundo, Hawthorne, Culver City, Hermosa Beach, Lawndale, Manhattan Beach, Redondo Beach, and Inglewood. ** Other includes rented, not occupied; sold, not occupied; migratory workers, and other vacant.

Source: US Census 2010b

Los Angeles County has a large supply of lodging options with about 60 hotels and tens of thousands of rooms available in the Beach Cities/Los Angeles International Airport area alone (Discover Los Angeles 2013). In El Segundo, there are 10 hotels/motels with 2,023 rooms (ES 2013a). Given the large supply of lodging choices in El Segundo and Los Angeles County and the estimated number of non-local project construction workers (50 workers or 10 percent of the peak construction workforce), staff expects no new housing would be required as a result of the ESPFM.

The project would not require any additional employees during project operation. Staff concludes the project’s construction and operation workforce would not have a significant impact on the housing supply in the project area.

Displace Substantial Numbers of Existing Housing and People

The ESPFM would be constructed on the site of the existing ESEC and would replace some of the existing power plant structures, thus the project would not directly displace existing housing or people. The project would not induce substantial population growth or create the need for replacement housing to be constructed elsewhere, as previously
discussed. Staff concludes the project would have no impact on area housing as the project would not displace any people or necessitate the construction of replacement housing elsewhere.

Result in Substantial Physical Impacts to Government Facilities

As discussed under the subject headings below, the ESPFM would not cause significant impacts to service ratios, response times, or other performance objectives relating to law enforcement, schools, or parks and recreation.

Law Enforcement

The ESEC site is located within the jurisdiction of the city of El Segundo Police Department (ESPD). Staff contacted ESPD to discuss the proposed project, inquire about their ability to provide law enforcement services to the project, and solicit comments or concerns they might have about the project (CEC 2013b). Sergeant Rex Fowler responded by noting their single station serves as headquarters and is located at 348 Main Street; approximately one mile east of the ESEC site. ESPD's staff includes 14 officers (including detectives and motor officers), three sergeants, three lieutenants, and eight civilians. Current staffing is responsible for maintaining an even flow of traffic and safety for the public during specific construction events. Specialized equipment assets would be requested from surrounding agencies and Los Angeles County as needed for the project (ESPD 2013a).

Sergeant Fowler also noted the project would have a minimal impact on law enforcement services for onsite crime and would not affect the current response time of under two minutes to the project site for priority calls, and under five minutes for non-priority calls (ESPD 2013a, ESPD 2013b). Project-related construction traffic would affect the morning and afternoon commute, which must be considered when determining partial/complete road closures (ESPD 2013a). See the **Traffic and Transportation** section of this document for additional information.

In response to Sergeant Fowler's recommendation for extra security staffing at the ESEC site, staff provided him with an example of two **Hazardous Materials Management** Conditions of Certification that address construction and operation site security plans (CEC 2014a). Energy Commission staff typically apply these conditions of certification to projects like the ESPFM. Staff wanted to determine if with the addition of these conditions, Sergeant Fowler's concerns about the need for extra security staffing would be satisfied, or would there be something else he would recommend for the project. He advised staff that these would be very good. A new **Hazardous Materials Management** Condition of Certification, HAZ-5, would require the project owner to prepare a new or revise an existing site-specific Security Plan that would apply to all phases of activity on the site. Further discussion regarding ESEC site security is included in the **Hazardous Materials Management** section of this document.

The California Highway Patrol (CHP) is the primary law enforcement agency for state highways and roads. The city of El Segundo is bordered by segments of State Route (SR)-405 and SR-105 freeways, and the Pacific Coast Highway (SR-1) bisects the city. The CHP is the primary law enforcement agency for the freeways and both CHP and
ESP-D serve the segments of the two freeways and Pacific Coast Highway within the city of El Segundo. CHP services include law enforcement, traffic control, accident investigation and the management of hazardous material spill incidents. The nearest CHP office is located in Torrance (CHP 2013). The Hazardous Materials Management section of this document discusses response times for hazardous material spill incidents.

Based on communication with local law enforcement that would serve the project area, staff concludes the project would not result in law enforcement response times being affected so that they exceed adopted response time goals. The project would not necessitate alterations to the police station or the construction of a new police station to maintain acceptable response times for law enforcement services; therefore, no associated physical impact would result. Staff concludes that for the above reasons, the project would have a less than significant impact on police services.

Education

The ESEC site is located within the El Segundo Unified School District (ESUSD). ESUSD provides kindergarten through twelfth grade education at two elementary schools and one middle school and also provides 9th through 12th grade education at one high school and one continuation school, with a combined enrollment of 3,415 students for the 2012/2013 school year (CDE 2013). SOCIOECONOMICS Table 8 also presents the average pupil-to-teacher ratio and average classroom size for the ESUSD during the 2012/2013 and 2011/2012 school years. Correlating data for Los Angeles County is provided for reference.

SOCIOECONOMICS Table 8
Current School District Data

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>Enrollment</th>
<th>Pupil-to-Teacher Ratio</th>
<th>Average Class Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Segundo Unified School District</td>
<td>2012/2013</td>
<td>3,415</td>
<td>24.1</td>
<td>29.3</td>
</tr>
<tr>
<td></td>
<td>2011/2012</td>
<td>3,294</td>
<td>24.9</td>
<td>29.7</td>
</tr>
<tr>
<td>Los Angeles County</td>
<td>2012/2013</td>
<td>1,564,205</td>
<td>22.1</td>
<td>22.6</td>
</tr>
<tr>
<td></td>
<td>2011/2012</td>
<td>1,578,215</td>
<td>22.2</td>
<td>23.0</td>
</tr>
</tbody>
</table>

Source: CDE 2013.

Based on the available pupil-to-teacher ratio and the average class size for ESUSD compared with the corresponding data for Los Angeles County, the ESUSD appeared more crowded than Los Angeles County in both the 2012/2013 and 2011/2012 school years. Staff contacted ESUSD staff and was advised that the district has capacity for new students (ESUSD 2013b).

During construction, staff expects the majority of the labor force would be hired locally with approximately ten percent of the workforce coming from outside the local area. Based on a peak employment of 500 workers during months 17 through 23, approximately 50 new workers could temporarily relocate closer to the project site. Staff’s research and communication with building and construction trades’ councils has shown that construction workers do not move their families with them when working on a project. Therefore, staff does not expect a significant impact to schools from construction of the ESPFM.
ESPFM would employ 14 workers from the existing ESEC workforce (LL 2013t). As no additional operations employees would be hired, no workers are anticipated to relocate closer to the project site and therefore no children would permanently relocate within the ESUSD.

Parks and Recreation

El Segundo has 15 parks and 7 recreational facilities offering such amenities as playground equipment, tennis and basketball courts, roller hockey, racquetball, lawn bowling, and picnic facilities. Additional amenities include an exercise course, sports fields (e.g. softball), swimming pools, bike and walking trails, dog exercise parks, resting/viewing benches, and memorial trees stands. The closest parks to the project site are Candy Cane Park and Holly Valley Park, which are about 0.5 miles north of the ESEC. Recreational facilities include the George E. Gordon Clubhouse, Joslyn Center, Urho Saari Swim Center, El Segundo Teen Center, El Segundo Youth Skate Park, and Camp Eucalyptus (ES 2013b).

Staff’s analysis shows there would not be a large number of workers moving into the project area during project construction and no workers would move into the project area during operation. Therefore, there would be little, if any increase in the usage of or demand for parks or recreational facilities. Staff concludes the project would not result in significant physical impacts associated with the provision of new or physically altered government facilities in order to maintain performance objectives with respect to parks. The project would not increase the use of city parks or recreational facilities to the extent that substantial physical deterioration of the facility would occur or be accelerated. The project would not necessitate the construction of new parks in the area, nor does the project propose any park facilities. Staff concludes the project would have a less than significant impact on El Segundo parks and recreational facilities.

CUMULATIVE IMPACTS AND MITIGATION

A project may result in significant adverse cumulative impacts when its effects are cumulatively considerable; that is, when the incremental effects of an individual project are significant when viewed in connection with the effects of past projects, other current projects, and probable future projects [Public Resources Code Section 21083); California Code of Regulations, Title 14, Sections 15064(h); 15065 (c); 15130; and 15355]. Mitigation requires taking feasible measures to avoid or substantially reduce the impacts.

In a socioeconomic analysis, cumulative impacts could occur when more than one project in the same area has an overlapping construction schedule, thus creating a demand for workers that cannot be met locally, or when a project’s demand for public services does not match a local jurisdiction’s ability to provide such services. An influx of non-local workers and their dependents can strain housing, schools, parks and recreation, and law enforcement services.
Because of the large and mobile labor supply in the Los Angeles area, staff conducted a CEQANet6 database search for projects in Los Angeles County and nearby cities within the county that would likely employ a similar workforce to the ESPFM as part of the project’s cumulative impact analysis for socioeconomics. Staff contacted planning staff with the cities of Los Angeles, El Segundo, Manhattan Beach, Redondo Beach, Hermosa Beach, and Torrance to develop a list of large residential, industrial, and commercial projects that could have construction schedules overlapping with the ESEC. The project owner anticipates that if the ESPFM is approved, the project’s 24-month demolition/construction would begin in late 2015 and conclude in 2018.

The projects in \textbf{SOCIOECONOMICS Table 9} represent the projects considered for socioeconomic cumulative impacts.

6 The CEQANet database lists CEQA documents that have been submitted to the State Clearinghouse for state agency review.
SOCIOECONOMICS Table 9

Cumulative Projects

<table>
<thead>
<tr>
<th>Status</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Location</th>
<th>Est./Actual Construction Start Date & Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned/ Present</td>
<td>EA-781</td>
<td>7-Unit Residential Condominium, 14,313 sq. ft.</td>
<td>El Segundo</td>
<td>Unknown</td>
</tr>
<tr>
<td>Planned/Present</td>
<td>EA-890, El Segundo Unified School District</td>
<td>304 Senior housing/assisted living facility up to 175,000 sq. ft.</td>
<td>El Segundo</td>
<td>Unknown</td>
</tr>
<tr>
<td>Planned/Present</td>
<td>Cambria Suites, EA-844</td>
<td>152 room hotel – 71,000 sq. ft.</td>
<td>El Segundo</td>
<td>Unknown</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>EA-986, Mattel</td>
<td>R&D and office, 14 stories, 300,000 sq. ft., 810-space parking structure-8-stories</td>
<td>El Segundo</td>
<td>Unknown</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>EA-997, Hotel</td>
<td>5-story, 190 room hotel, 107,090 sq. ft.</td>
<td>El Segundo</td>
<td>Unknown, 1 to 2 year construction period.</td>
</tr>
<tr>
<td>Planned/ Present</td>
<td>Elevator, Escalator, and Moving Walkway Modernization</td>
<td>Refurbish 212 outdated systems with new, modern units throughout the airport; new escalators, elevators, and walkways</td>
<td>Los Angeles</td>
<td>May 2009 to July 2016</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>West Aircraft Maintenance Area</td>
<td>Replace existing facilities and consolidate maintenance operations; paved area for aircraft parking, maintenance hangars, 300-space employee parking lot, storage, equipment related facilities, and ground run-up enclosure.</td>
<td>Los Angeles</td>
<td>Construction over an 8 to 10 year period.</td>
</tr>
<tr>
<td>Planned/ Present</td>
<td>Wiseburn High School</td>
<td>New high school, 180,000 to 240,000 sq. ft.</td>
<td>El Segundo</td>
<td>Mid-2015, 22 month construction period.</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>E&B Oil Development Project</td>
<td>Proposed onshore drilling and production site using directional drilling of 30 wells to access the oil and gas reserves in the tidelands (granted by the State of California to the City) and in an onshore area known as the uplands. Both of these areas are located within the Torrance Oil Field beneath the City. Relocate the city maintenance yard to another site and installation of offsite underground pipelines for the transport of the processed crude oil and gas from the project site to purchasers. 30 oil wells, four water injection wells, and supporting production equipment.</td>
<td>Hermosa Beach</td>
<td>Unknown</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>Redondo Beach Energy Project</td>
<td>Natural gas fired air-cooled 496-megawatt electrical generating facility. Project would require demolition of existing power plant and construction of project.</td>
<td>Redondo Beach Generating Station site, Redondo Beach</td>
<td>Demo/Construction est. first quarter 2016 to fourth quarter 2020- a 60-month demo/construction period.</td>
</tr>
<tr>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Est./Actual Construction Start Date & Duration</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Planned/ Present</td>
<td>Crenshaw/ LAX Transit Corridor Project</td>
<td>An 8.5-mile light-rail line between existing Metro Exposition Line at Crenshaw & Exposition Blvds. to Metro Green Line's Aviation/LAX Station. Includes eight stations, a maintenance facility, park-ride lots, traction power substations and acquisition of rail vehicles and maintenance equipment.</td>
<td>Crenshaw Corridor, Inglewood, Westchester, and LAX area</td>
<td>Heavy construction set to begin spring 2014. Completion is expected by 2019.</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>ENV-2012-1501-MND</td>
<td>Demolition of 22 single and multi-family residential units and approx. 2,000 sq. ft. of commercial floor area. Construction of new 5-story mixed-use residential building with 122 residential units (11 units for very low-income households), and total of 93,885 sq. ft. floor area and 122 parking spaces. The building will include 3,500 sq. ft. commercial floor area and 7 additional parking spaces for commercial use.</td>
<td>Los Angeles</td>
<td>est. 1-1.5- year construction period</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>Phillips 66 Los Angeles Refinery –Carson Plant Crude Oil Storage Capacity Project</td>
<td>Installation of one new 615,000-barrel crude oil storage tank with geodesic dome, increasing the annual permit throughput limit of two existing 320,000 crude oil storage tanks. Project includes two new feed/transfer and one 14,000 bbl water draw surge tank with associated pumps and pipelines. Also included is the installation of Tie-lines to the Pier “T” crude oil delivery pipeline from Berth 121 and construction of one new electrical power station.</td>
<td>Carson</td>
<td>Unknown construction start, 18-month construction period</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>Jordan High School Major Renovation Project</td>
<td>Project includes demolition of approximately 10 permanent buildings and 32 portable buildings, renovation of approximately 213,000 sq. ft. of existing building space, and construction of approximately 240,000 sq. ft. of new building space, to replace the classrooms that were demolished. At full buildout, the project site would consist of approximately 453,000 sq. ft. of total building space. The number of classrooms would decrease from 131 to 129 with a total maximum student capacity of 3,870. Capacity would decrease with the proposed project and there would be no change to enrollment. All phases of the proposed project would be contained within the existing boundaries of the school site.</td>
<td>Long Beach</td>
<td>Implementation of campus master plan in approximately six phases starting in January 2014 ending in 2028 (dependent on funding).</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>Palladium Residences</td>
<td>Continued operation as an entertainment and event venue, with repairs and interior restorations. Two additional buildings up to 28 stories and approximately 350 feet in height under one of two options: Option 1- Residential Option: up to 731 residential units in two buildings; Option 2- Residential/Hotel Option: up to 598 residential units and up to 250 hotel rooms and ancillary hotel uses including banquet, meeting and related retail space in the two buildings. Both Options include ground-floor retail and restaurant space; recreational and open space facilities, and up to 1,900 parking spaces</td>
<td>Los Angeles</td>
<td>construction start 2015 or later</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>8150 Sunset Blvd Mixed-Use Project</td>
<td>Demolition of existing uses and development of a two- to 16-story mixed-use commercial/residential building, including approx. 111,310 sq. ft. commercial retail and restaurant within three lower levels (one subterranean) and one rooftop level, with 249 apartment units (28 affordable housing units) within twelve upper levels representing 222,560 gross sq. ft. residential space. Parking provided in a seven-level (three subterranean and semi-subterranean) parking structure. Total development would include up to 333,870 sq. ft. commercial and residential space.</td>
<td>Los Angeles</td>
<td>Construction begins in 2015 with completion and occupancy estimated in 2017.</td>
</tr>
<tr>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Est./Actual Construction Start Date & Duration</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------</td>
<td>---</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Planned/Present</td>
<td>ENV-2012-1111-MND / 11965-11979 1/4 W. Montana Avenue</td>
<td>Demolition of 32 dwelling units within two existing apartment buildings and the construction of a new 5-story, 56-ft. high, 49-unit residential condominium project (incl. 13 affordable dwelling units). Request two density bonus incentives: an 11-ft. increase in building height to 56-ft. in lieu of 45-ft. and the increase in, 89,350 sq. ft. floor area and 98 parking spaces.</td>
<td>Los Angeles</td>
<td>12-14 months minimum construction period</td>
</tr>
<tr>
<td>Foreseeable</td>
<td>I-405 Improvement Project</td>
<td>Either add one general purpose (GP) lane, or two GP lanes, or one GP lane and a tolled express lane in each direction of I-405 to be managed with the existing HOV lanes as a tolled express facility between SR-73 and Interstate 605. Improvements primarily in the Orange County for approx. 16 miles between 0.2-mile south of Bristol Street and 1.4 miles north of I-605, as well as portions of SR-22, SR-73, and I-605.</td>
<td>Los Angeles and Orange counties.</td>
<td>2015 to 2019</td>
</tr>
<tr>
<td>Planned/Present</td>
<td>Purple Line Extension</td>
<td>9-mile extension of the Metro Purple Line subway west from the current terminus at Wilshire/Western, plus seven new stations.</td>
<td>Miracle Mile, Beverly Hills, Century City and Westwood</td>
<td>Sect. 1 construction est. 2014-2023; Sect. 2 construction est. 2019-2026; Sect. 3 construction est. 2027-2035.</td>
</tr>
</tbody>
</table>
ESPFM would employ an average of 330 workers per month during the 24-month demolition/construction period. Construction workforce would peak during months 17 through 23 with 500 workers onsite. Approximately ten percent of the construction workforce is expected to be non-local and would likely relocate closer to the project site. Once operational, the ESPFM would permanently employ 14 workers drawn from the existing ESEC staff. No additional staff would be required. **SOCIOECONOMICS Table 10** presents the total labor force for the crafts specifically needed for the construction of ESPFM displayed earlier in **SOCIOECONOMICS Table 5**. As shown in **SOCIOECONOMICS Table 10**, the labor force within the Los Angeles-Long Beach-Glendale Metropolitan Division and the surrounding MSAs are more than sufficient to accommodate the labor needs for construction of the ESPFM including other future planned projects identified in **SOCIOECONOMICS Table 9** (Los Angeles County and nearby cities).

SOCIOECONOMICS Table 10

<table>
<thead>
<tr>
<th>Total Labor for Selected MSAs/MD</th>
<th>Total Workforce for 2010</th>
<th>Total Projected Workforce for 2020</th>
<th>Growth from 2010</th>
<th>Percent Growth from 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles-Long Beach-Glendale Metropolitan Division</td>
<td>337,680</td>
<td>393,730</td>
<td>56,770</td>
<td>16.6</td>
</tr>
<tr>
<td>Riverside-San Bernardino-Ontario MSA</td>
<td>174,490</td>
<td>196,050</td>
<td>21,560</td>
<td>12.3</td>
</tr>
<tr>
<td>Santa Ana-Anaheim-Irvine MSA (Orange County)</td>
<td>207,700</td>
<td>218,360</td>
<td>10,660</td>
<td>5.1</td>
</tr>
<tr>
<td>TOTALS</td>
<td>719,870</td>
<td>808,140</td>
<td>88,990</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Note: Total workforce includes only the crafts specifically needed for the ESPFM. See **SOCIOECONOMICS Table 5** which shows the total labor by skill in the study area (MSAs/MD). **Source:** EDD 2012

There is a large supply of lodging choices in EL Segundo and Los Angeles County and there is sufficient housing supply. In addition, projects identified in **SOCIOECONOMICS Table 9** such as residential condominiums/apartments and a senior housing/assistance living facility would increase the existing housing supply. Staff does not anticipate the project’s limited and temporary increase in the project area population would create a significant reduction in the housing supply. There would be no increase in operational workers and no new children would be added to the ESUSD. Staff’s proposed Condition of Certification **SOCIO-3** would ensure the applicable school fee is paid by the project owner (see the “LORS Compliance” subsection below for more information). The increased usage of city parks or recreational facilities as a result of the project would be minimal. The project would not result in law enforcement response times being affected so that they exceed adopted response time goals and would not increase the demand for law enforcement services. Staff’s proposed changes to Condition of Certification **SOCIO-1** would ensure that development impact fees would be paid by the project owner (see the “LORS Compliance” subsection below for more information).

Staff concludes the proposed ESPFM would not result in any significant direct, indirect, or cumulative impacts on population, housing, schools, law enforcement, or parks and recreation. **SOCIOECONOMICS Table 10** shows there is a more than sufficient
workforce available for the ESPFM project plus other future planned projects displayed in SOCIOECONOMICS Table 9. Therefore, staff does not expect the construction or operation of the ESPFM to contribute to any significant cumulative socioeconomic impacts.

LORS COMPLIANCE

SCHOOL IMPACT FEES

The statutory school fees, as authorized under Section 17620 of the Education Code, are collected and distributed by the ESUSD. The rate for new commercial or industrial development is $0.47 per square foot of covered and enclosed, non-residential space (ESUSD 2013a). The applicable fees are calculated prior to the issuance of building permits during plan review. Based on the preliminary project design, the approximately 30,000 square foot administration/maintenance/operations support building would be considered chargeable covered and enclosed space. Based on this preliminary estimate, a $14,100 school impact fee would be assessed for the ESUSD. Staff is proposing Condition of Certification SOCIO-3 to ensure the payment of this fee to the school district. ESPFM would comply with Section 17620 of the Education Code through the one-time payment of a statutory school impact fee to the ESUSD. Staff concludes the project would have a less than significant impact on schools.

UTILITY USERS TAX

Chapter 7- Utility Users Tax (Title 3) of the El Segundo City Code applies to the ESEC because the project uses electricity generated by the local grid and gas and water delivered through mains and pipes within the city of El Segundo. More specifically, Subsection 3-7-3 imposes a tax on any commercial or industrial user that uses electrical energy in the city. Staff understands that the ESEC uses electricity provided by the local grid during operations or for station load when the plant is not operating (see the Transmission System Engineering section of this document for more information). The electricity users tax is three percent of the Southern California Edison charges used to generate the electricity. The tax is collected every month and would continue to be levied when the ESPFM becomes operational.

Subsection 3-7-5 (Gas Users Tax) imposes a tax on any commercial or industrial user of gas in the city of El Segundo delivered through mains or pipes. The tax is based on daily gas consumption multiplied by the Southern California Gas Company (SoCal) daily gas price. A three percent tax is applied to the total monthly gas cost. The tax revenue for the ESEC has ranged from $335,000 to approximately $1,260,000 over the last several years (ES 2014a). Once the ESPFM becomes operational, the amount of tax revenue would be based on the volume of gas used during the month, the current tax rate, and the SoCal daily gas price. The project owner estimates that about one third of the $2 to $4 million annual gas and utility user tax would be levied for gas consumption (LL 2014c).

Subsection 3-7-6 (Water Users Tax) is a tax imposed on every commercial or industrial utility user in the city of El Segundo using water delivered through mains or pipes. The
tax imposed is at a rate of three percent of the charges made for city water and would be paid by the project owner to the city each month. Staff contacted Mr. Steve Jones, Business Services Manager with the city of El Segundo and was informed that the water users tax is levied on potable water (ES 2014b). The Soil and Water Resources section of this document notes that the ESPFM would use approximately 0.72 acre feet of potable water per year (AFY) on average and a maximum potable water use of 0.84 AFY.

CITY OF EL SEGUNDO DEVELOPMENT IMPACT FEES

Adopted in December 2005, Title 15 (Zoning Regulations) Chapter 27A (Development Impact Fees) in the El Segundo Municipal Code enables the city of El Segundo to impose development impact fees on applicants seeking to construct development projects. These development impact fees apply to all fees imposed by the city to finance public facilities attributable to new development, including police, fire, library, parks and recreation/open space, general facilities, public use facilities (e.g. community centers), and road construction projects. The purpose of the development impact fees is to minimize, to the greatest extent practicable, the impact that new development has on the city’s public services and public facilities (ESMC 2010).

Pursuant to this chapter, the City Council of El Segundo adopted in October 2010, Resolution No. 4687 for the purposes of calculating development impact fees to have developers pay for their fair share of public costs associated with new development while at the same time facilitating growth that is in the public interest. This resolution identifies a calculation of non-residential development fees on a per-square-foot basis. When existing non-residential development on a site is demolished and replaced with new non-residential development, impact fees are required for the net new non-residential building area added to the site (ESCC 2010).

As the ESPFM proposes demolition and construction of new non-residential building area, development impact fees are applicable to the project. The Schedule of Development Impact Fees Table identified in the resolution established development impact fees over a five-year period by land use. As noted earlier, project demolition would start in late 2015 and construction would start in mid 2016. The rate for the development impact fee effective on January 1, 2015 would apply. The Schedule of Development Impact Fees Table identifies fees for a five-year period, with the latest fee schedule effective from January 1, 2105. If an updated rate schedule were adopted and became effective by the time the ESPFM began construction, the updated rates would apply. The Schedule of Development Impact Fees, effective on January 1, 2015, identifies fees for police, fire, and parks for non-residential industrial new building area, only. No other fees are included in the fee schedule.

The impact fee for police would be $0.25 per square foot, the impact fee for fire would be $0.24 per square foot, and the impact fee for parks would be $0.23 per square foot (ESCC 2010). Given the administration building’s 30,000 square foot chargeable covered and enclosed space (net new building area), the police impact fee would be $7,500, fire impact fee would be $7,200, and the parks impact fee would be $6,900.
Staff has proposed changes to Condition of Certification SOCIO-1 to ensure the ESPFM owner pays these one-time fees to the City of El Segundo.

With the implementation of staff’s proposed conditions of certification, the construction and operation of the proposed ESPFM will comply with all applicable Socioeconomics LORS.

NOTEWORTHY PUBLIC BENEFITS

For the purpose of this analysis, staff defines noteworthy public benefits to include changes in local economic activity and tax revenue that would result from project construction and operation. To assess the gross economic value of the proposed project, the project owner developed an input-output model using proprietary cost data similar to the IMPLAN Professional 3.0 software package. The assessment used Los Angeles County as the unit of analysis. Impact estimates reflect two different scenarios representing the demolition/construction phase and the operations phase of the project. For both phases, the project owner estimated the total direct, indirect, and induced economic effects on employment and labor income. Direct economic effects represent the employment, labor income, and spending associated with demolition, construction, and operation of the ESPFM. Indirect economic effects represent expenditures on intermediate goods made by suppliers who provide goods and services to the project. Induced economic effects represent changes in household spending that occur due to the wages, salaries, and proprietor’s income generated through direct and indirect economic activity.

The resulting estimates do not represent a precise forecast, but rather an approximate estimate of the overall economic effect. Input-output models are static models, meaning they rely on inter-industry relationships and household consumption patterns, as they exist at the time of the analysis. This is important given that demolition of existing Units 3 and 4 would not begin until the end of 2015, construction of Units 9 through 12 would not begin until mid-2016, and completion of project construction activities would not occur until the middle of 2018. The model also assumes that prices remain fixed, regardless of changes in demand, and that industry purchaser-supplier relationships operate in fixed proportions. The model does not account for substitution effects, supply constraints, economies of scale, demographic change, or structural adjustments.

SOCIOECONOMICS Tables 11 and 12 display the project owner’s range of estimates of the economic impacts/benefits due to project demolition, construction and operation. The total anticipated capital cost for construction is between $550 million to $650 million. This includes costs associated with demolition of existing Units 3 and 4, as well as construction of Units 9 through 12. During the 24-month demolition and construction period, the project would generate between $112 million to $174 million in labor income.

The project owner anticipates the ESPFM operations workforce (14) would be drawn from the existing ESEC workforce; therefore, no additional workers would be required. Annual Operation and Maintenance (O&M) payroll would be $2 million to $3 million a year with $150,000 to $300,000 thousand for expenditures for locally purchased materials and supplies annually. Approximately $170,000 to $250,000 in indirect and
induced income would be generated annually as well as $15,000 to $22,000 in annual sales tax.

SOCIOECONOMICS Table 11
ESPFM Economic Benefits Associated with Demolition and Construction

<table>
<thead>
<tr>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost (in millions)</td>
<td>$550 to $650</td>
</tr>
<tr>
<td>Total Demolition Payroll (6 months x 100 workers)</td>
<td>$12 million to $24 million</td>
</tr>
<tr>
<td>Total Construction Payroll (excluding demolition)</td>
<td>$100 million to $150 million</td>
</tr>
<tr>
<td>Average Annual Local Construction Payroll</td>
<td>$50 million to $75 million</td>
</tr>
<tr>
<td>Average Monthly Direct Demolition and Construction Employment</td>
<td>300-400; peak 500 construction workers/month</td>
</tr>
<tr>
<td>Indirect Employment</td>
<td>4 to 6 additional people</td>
</tr>
<tr>
<td>Induced Employment</td>
<td>8 to 10 additional people</td>
</tr>
<tr>
<td>Indirect Income</td>
<td>$400,000 to 700,000</td>
</tr>
<tr>
<td>Induced Income</td>
<td>$1.75 million to $2.25 million</td>
</tr>
<tr>
<td>Annual Local Expenditures on Materials and Supplies (excludes demolition)</td>
<td>$2.5 million to $4.5 million</td>
</tr>
<tr>
<td>Total Sales Tax</td>
<td>$15 million to $20 million</td>
</tr>
</tbody>
</table>

Note: This table presents an estimated range of socioeconomic benefits.
Source: LL 2013t, Adapted from Table DR85-1

PROPERTY TAX

The California Board of Equalization (CBOE) has jurisdiction over the valuation of a power-generating facility for tax purposes, if the power plant produces 50 megawatts (MW) or greater. For a power-generating facility producing less than 50 MW, the county has jurisdiction over the valuation (CBOE 2003). The ESPFM would be a 435 MW power generating facility, therefore, CBOE is responsible for assessing property value. The property tax rate is set by the Los Angeles County Auditor-Controller’s office. Property taxes are collected and distributed at the county level. **SOCIOECONOMICS Table 12** shows $5 million to $7 million in annual property taxes resulting from the ESPFM project operation.

SOCIOECONOMICS Table 12
ESPFM Economic Benefits (2013) dollars From Operations and Maintenance (O&M)

<table>
<thead>
<tr>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual O&M payroll</td>
<td>$2 million to $3 million</td>
</tr>
<tr>
<td>Annual O&M employment</td>
<td>14 staff</td>
</tr>
<tr>
<td>Indirect Employment</td>
<td>1 additional person</td>
</tr>
<tr>
<td>Induced Employment</td>
<td>1 additional person</td>
</tr>
<tr>
<td>Indirect Income</td>
<td>$70,000 to $100,000 Annual</td>
</tr>
<tr>
<td>Induced Income</td>
<td>$100,000 to $150,000 Annual</td>
</tr>
<tr>
<td>Expenditures for locally purchased materials and supplies</td>
<td>$150,000 to $300,000 Annual</td>
</tr>
<tr>
<td>Total Annual Sales Tax</td>
<td>$15,000 to $22,000</td>
</tr>
<tr>
<td>Gas and Utility User Tax</td>
<td>$2 million to $4 million Annual</td>
</tr>
<tr>
<td>Total Annual Property Taxes</td>
<td>$5 million to $7 million</td>
</tr>
</tbody>
</table>

Note: This table presents an estimated range of socioeconomic benefits.
Source: LL 2013t, Adapted from Attachment A, Table DR85-1
RESPONSE TO AGENCY AND PUBLIC COMMENTS

Energy Commission staff sent a letter to the El Segundo Police Department (Chief Mitch Tavera) that discussed the proposed project, inquired about the department’s ability to provide law enforcement services to the project, and solicited comments or concerns the department might have about the project. Sergeant Rex Fowler responded with comments that staff addressed in this analysis. Energy Commission staff also contacted the Los Angeles/Orange Counties Building and Construction Trades Council (Ron Miller and Jim Adams) to discuss the proposed project, enquire about how much of project’s workforce would seek lodging closer to the project, and solicit comments or concerns the construction and trades council might have about the project and the associated labor needs. Ron Miller’s comments are included in this analysis.

CONCLUSIONS

Staff concludes the ESPFM would not cause a significant adverse socioeconomic impact as a result of the construction or operation of the proposed project or contribute to any significant cumulative socioeconomic impacts, for the following reasons:

1. The project’s construction and operation workforces would not directly or indirectly induce a substantial population growth in the project area.

2. The project’s construction and operation workforce would not have a significant impact on housing within the project area and would not displace any people or housing, or necessitate construction of replacement housing elsewhere.

3. The project would not result in significant physical impacts associated with the provision of new or physically altered government facilities in order to maintain acceptable service ratios, response times, or other performance objectives with respect to law enforcement service, education, or parks and recreation.

4. As the project would have no significant adverse socioeconomic impacts, the project would have no socioeconomic impact on the environmental justice population within a 6-mile buffer of the project.

PROPOSED CONDITIONS OF CERTIFICATION

Staff is proposing modifications to Condition of Certification SOCIO-1 and a new Condition of Certification, SOCIO-3. These conditions involve development impact and school fees. Bold underline is used to indicate new language. Strikethrough is used to indicate deleted language.

SOCIO-1 Prior to the start of commercial operations, the project owner shall pay the City of El Segundo the following one-time fees:

- Police service mitigation fee based on $0.11 per the gross square foot of building area;
• Fire service mitigation fee based on $0.14 per gross square foot of building area;

• Parks service mitigation fee based on the gross square foot of building area.

• Library service mitigation fee based on $0.03 per gross square foot of building area;

• Traffic mitigation fee for new development, in an amount to be determined by the City of El Segundo Public Works Director upon receipt of a Traffic Mitigation Fee Determination Form.

The gross square foot of building area and the amount of the one-time fees shall be determined by the City of El Segundo based on the Schedule of Development Impact Fees Table at the time the project owner submits the site plans.

Verification: Prior to the start of commercial operation, the project owner shall submit verification to the CPM that payment of any required public service mitigation fees have been submitted to the City of El Segundo. The project owner shall provide proof of payment of the Traffic Mitigation Fee in the next Monthly Compliance Report following payment.

NOTE: The Applicant and the City of El Segundo have reached a side agreement for the Applicant to perform the following analysis and request the Commission's inclusion of the agreement as a Condition of Certification.

SOCIO-2 Prior to any ground disturbance activities, the project owner shall prepare a fiscal impact analysis for the project that includes analysis of the actual revenues and costs associated with the project. The revenue analysis shall include an analysis of the total property tax, franchise tax, utility user tax, sales and use tax, business license fees, building permit fees, and other revenues generated by the facility as identified in the City of El Segundo’s Fiscal Impact Model. The cost analysis shall include a discussion of the cost to City services (i.e., police, fire, public works) for ongoing service to the project. The fiscal impact analysis shall compare the revenue and costs over a minimum period of five years following the start of commercial operations.

Verification: At least 30 days prior to any ground disturbance activities, the project owner shall transmit the analysis to the City of El Segundo for review and comment and to the Energy Commission Compliance Project Manager (CPM) for review and approval.

SOCIO-3 The project owner shall pay the one-time statutory school facility development fee to the El Segundo Unified School District as required by Education Code Section 17620.
Verification: At least 30 days prior to the start of project construction, the project owner shall provide to the El Segundo CPM proof of payment of $14,100 to the El Segundo Unified School District of the statutory development fee.

REFERENCES

LL 2014c – Locke Lord/ G Piantka. E-mail from George Piantka to Craig Hoffman, California Energy Commission on January 10, 2014.

CALIFORNIA ENERGY COMMISSION, SITING, TRANSMISSION AND ENVIRONMENTAL PROTECTION DIVISION

SOURCE: Census 2010 PL 94-171 Data
SOIL AND WATER RESOURCES
Mike Conway, P.G.

SUMMARY OF CONCLUSIONS

Based on the assessment of the proposed El Segundo Energy Center (ESEC), California Energy Commission (Energy Commission) staff concludes that:

- The proposed project would allow the ESEC to eliminate once-through-cooling (OTC) which would result in a 200 million gallon per day (mgd) reduction in intake and waste water volume to the Pacific Ocean. State Water Resources Control Board’s (SWRCB) Resolution No. 2010-0020 and adoption of a Policy for the Use of Coastal and Estuarine Waters for Power Plant Cooling (OTC Plan), requires all coastal power plants that utilize OTC to meet new performance requirements (Best Technology Available [BTA]) through a reduction in intake volume and velocity. The proposed project helps achieve the goals of the OTC Plan through dry-cooling and reduced discharge.

- The proposed project would include use of air cooled condensers for cooling of the steam cycle. This technology significantly reduces the potential for use of water supplies and is encouraged in accordance with the Energy Commission’s water policy. Also in accordance with the Energy Commission’s water policy, the project would use a Zero-Liquid-Discharge system to reuse water and reduce wastewater volume.

- The proposed project would use recycled water exclusively for industrial operation.

- The proposed project’s average potable water use during operation would be 96 acre feet per year (AFY) less than current site water use, which would result in additional supplies for other beneficial uses.

- The proposed site has a long industrial history and would not require much additional soil disturbance for the new facilities. The proposed project would therefore result in minimal losses to soil resources. Though some small losses in topsoil are expected during construction and operation from wind and water erosion, onsite management of stormwater runoff and sediment erosion as proposed by staff in Conditions of Certification SOIL&WATER-1 and SOIL&WATER-3 would adequately minimize soil loss and pollutant discharge from industrial operation.

- Staff proposes Condition of Certification SOIL&WATER-2, which would require the proposed project to comply with the National Pollutant Discharge Elimination System (NPDES) Permit Order No. R4-2009-0068, General NPDES Permit No. CAG674001, if hydrostatic waters are discharged to waters of the US. This condition would ensure that the impacts to waters of the United States from hydrostatic testing would be less than significant.
• Staff proposes Condition of Certification SOIL&WATER-4, which would require the project owner to pay the City of El Segundo all the normal fees associated with connections to their water and sewer systems.

• Groundwater at the site is relatively shallow and potentially contaminated by petroleum products or by-products. Trench and foundation excavations may encounter shallow groundwater and dewatering could be required for stabilization. If the project owner engages in dewatering, staff would require that the project owner comply with Condition of Certification SOIL&WATER-5, which would require the project owner to apply for coverage under a permit that would allow for the discharge of petroleum-contaminated water.

• Staff proposes Condition of Certification SOIL&WATER-6, which would limit the proposed project’s maximum industrial water use to 137 AFY during operation, and potable water use to 23 AFY during construction. In addition, Condition of Certification SOIL&WATER-6 would require use of tertiary treated recycled water for all construction purposes for which it is suited including dust suppression, concrete mixing, hydrostatic testing, and compaction.

• Staff proposes Condition of Certification SOIL&WATER-7, which would require the project owner to install water meters.

• Staff proposes Conditions of Certification SOIL&WATER-8 and SOIL&WATER-9, which would require the project owner to execute both recycled and potable water purchase agreements, respectively.

• The proposed project is located in Zone X and protected from the 1-percent annual chance of flooding (100-year flood).

• The elevation of project site would ensure that the proposed project could be built and operated reliably under the reasonably expected sea level rise over the life of the project. High-end estimates of relative sea-level rise are 61 centimeters (2.0 feet) by 2050 (relative to 2000) (NAS, 2012), which would reduce the site’s separation from the floodplain to three feet above the current (2012) 100-year floodplain (FEMA, 2008).

INTRODUCTION

The California Environmental Quality Act (CEQA) requires that the significant adverse environmental effects of a proposed project be identified and that such effects be eliminated or mitigated to the extent feasible (Pub. Resources Code, § 21002). CEQA defines a “significant effect” on the environment as a “substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project including … water.” (Cal. Code Regs., tit. 14, § 15382).

This section of the Preliminary Staff Assessment (PSA) analyzes the potential effects on soil and water resources by the proposed ESEC. This assessment incorporates
information gathered by the Energy Commission staff and focuses on the potential for ESEC to:

- cause accelerated wind or water erosion and sedimentation;
- exacerbate flood conditions in the vicinity of the project;
- adversely affect surface or groundwater supplies;
- degrade surface or groundwater quality; and,
- comply with all applicable laws, ordinances, regulations and standards (LORS) and state policies.

Where the potential for impacts is identified, staff proposes mitigation measures to reduce the significance of the impact and, as appropriate, recommends Conditions of Certification to ensure that any impacts are less than significant and the project complies with all applicable LORS.

LAWS, ORDINANCES, REGULATION, AND STANDARDS

The following federal, state, and local environmental LORS in **SOIL & WATER Table 1** listed for the ESEC and similar facilities require the best and most appropriate use and management of groundwater resources. Additionally, the requirements of these LORS are specifically intended to protect human health and the environment. Actual project compliance with these LORS is a major component of staff’s determination regarding the significance and acceptability of the ESEC with respect to the use and management groundwater resources.

SOIL & WATER Table 1

Laws, Ordinances, Regulations, and Standards (LORS)

<table>
<thead>
<tr>
<th>Federal LORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Water Act (33 U.S.C. Section 1257 et seq.)</td>
</tr>
<tr>
<td>The Clean Water Act (CWA) (33 USC § 1257 et seq.) requires states to set</td>
</tr>
<tr>
<td>standards to protect water quality, which includes regulation of storm water</td>
</tr>
<tr>
<td>and wastewater discharges during construction and operation of a facility.</td>
</tr>
<tr>
<td>California established its regulations to comply with the CWA under the Porter-</td>
</tr>
<tr>
<td>Cologne Water Quality Control Act.</td>
</tr>
<tr>
<td>Clean Water Act, Section 316(b)</td>
</tr>
<tr>
<td>The State Water Resources Control Board implements the Federal Clean</td>
</tr>
<tr>
<td>Water Act (CWA) (§316(b)) regulations on cooling water intake structures and</td>
</tr>
<tr>
<td>is critical to the implementation of the Statewide Policy on the Use of Coastal</td>
</tr>
<tr>
<td>and Estuarine Waters for Power Plant Cooling (Policy). CWA, Section 316(b)</td>
</tr>
<tr>
<td>states, “Any standard established pursuant to section 301 or section 306 of</td>
</tr>
<tr>
<td>this Act and applicable to a point source shall require that the location,</td>
</tr>
<tr>
<td>design, construction, and capacity of cooling water in-take structures reflect</td>
</tr>
<tr>
<td>the best technology available for minimizing adverse environmental impact.”</td>
</tr>
<tr>
<td>The Policy establishes technology-based standards to implement federal Clean</td>
</tr>
<tr>
<td>Water Act section 316(b) and reduce the harmful effects associated with</td>
</tr>
<tr>
<td>cooling water intake structures on marine and estuarine life. The Policy</td>
</tr>
<tr>
<td>applies to the 19 existing power plants (including two nuclear plants) that</td>
</tr>
<tr>
<td>currently have the ability to withdraw over 15 billion gallons per day from</td>
</tr>
<tr>
<td>the State’s coastal and estuarine waters using a single-pass system, also</td>
</tr>
<tr>
<td>known as once-through cooling (OTC). Closed-cycle wet cooling has been</td>
</tr>
<tr>
<td>selected as Best Technology Available (BTA). Permittees must</td>
</tr>
</tbody>
</table>

March 2014 4.9-3
<table>
<thead>
<tr>
<th>State LORS</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Constitution, Article X, section 2</td>
<td>The California Constitution requires that the water resources of the state be put to beneficial use to the fullest extent possible and states that the waste, unreasonable use or unreasonable method of use of water is prohibited.</td>
</tr>
<tr>
<td>Senate Bill 610 (Water Code Sections 10910-10915)</td>
<td>Signed into law in 2001 amending Sections 10910-10915 of the California Water Code. Requires public water systems to prepare water supply assessments (WSA) for certain defined development projects subject to the California Environmental Quality Act. The lead agencies determine, based on the WSA, whether protected water supplies will be sufficient to meet project demands along with the region’s reasonably foreseeable cumulative demand under average-normal-year, single-dry-year, and multiple-dry-year conditions.</td>
</tr>
<tr>
<td>The Porter-Cologne Water Quality Control Act of 1967, California Water Code Section 13000 et seq.</td>
<td>Requires the State Water Resources Control Board (SWRCB) and the nine Regional Water Quality Control Boards (RWQCBs) to adopt water quality criteria to protect state waters. Those regulations require that the RWQCBs issue waste discharge requirements (WDRs) specifying conditions for protection of water quality as applicable. Section 13000 also states that the state must be prepared to exercise its full power and jurisdiction to protect the quality of the waters of the state from degradation. Although Water Code 13000 et seq. is applicable in its entirety, the following specific sections are included as examples of applicable sections.</td>
</tr>
<tr>
<td>California Water Code Section 13240, 13241, 13242, 13243, & Water Quality Control Plan: Los Angeles Region (Basin Plan)</td>
<td>The Basin Plan establishes water quality objectives that protect the beneficial uses of surface water and groundwater in the region. The Basin Plan describes implementation measures and other controls designed to ensure compliance with statewide plans and policies and provides comprehensive water quality planning.</td>
</tr>
<tr>
<td>California Water Code Section 13260</td>
<td>This section requires filing, with the appropriate RWQCB, a report of waste discharge that could affect the water quality of the state unless the requirement is waived pursuant to Water Code section 13269.</td>
</tr>
<tr>
<td>California Water Code Section 13550</td>
<td>Requires the use of recycled water for industrial purposes when available and when the quality and quantity of the recycled water are suitable for the use, the cost is reasonable, the use is not detrimental to public health, and the use will not impact downstream users or biological resources.</td>
</tr>
<tr>
<td>Water Recycling Act of 1991 (Water Code 13575 et. seq.)</td>
<td>The Water Recycling Act states that retail water suppliers, recycled water producers, and wholesalers should promote the substitution of recycled water for potable and imported water in order to maximize the appropriate cost-effective use of recycled water in California.</td>
</tr>
<tr>
<td>Water Conservation Act of 2009 (Water Code 10608 et. seq)</td>
<td>This 2009 legislative package requires a statewide 20% reduction in urban per capita water use by 2020. It requires that urban water retail suppliers determine baseline water use and set reduction targets according to specified requirements, and requires agricultural water suppliers prepare plans and implement efficient water management practices.</td>
</tr>
<tr>
<td>California Code of Regulations, Title 17</td>
<td>Requires prevention measures for backflow prevention and cross connections of potable and non-potable water lines.</td>
</tr>
<tr>
<td>California Code of Regulations, Title 20, Division 2, Chapter 3, Article 1</td>
<td>The regulations under Quarterly Fuel and Energy Reports (QFER) require power plant owners to periodically submit specific data to the California Energy Commission, including water supply and water discharge information.</td>
</tr>
<tr>
<td>SWRCB Order 2009-0009-DWQ</td>
<td>The SWRCB regulates storm water discharges associated with construction affecting areas greater than or equal to 1 acre to protect state waters. Under Order 2009-0009-DWQ, the SWRCB has issued a National Pollutant Discharge Elimination System (NPDES) General Permit for storm water discharges associated with construction activity. Projects can qualify under this permit if specific criteria are met and an acceptable Storm Water Pollution Prevention Plan (SWPPP) is prepared and implemented after notifying the SWRCB with a Notice of Intent.</td>
</tr>
<tr>
<td>SWRCB Order No. 00-084, NPDES No. CA0001147</td>
<td>This SWRCB permit regulates all operational water discharges from the El Segundo Energy Center site, including once-through cooling water, storm water, and industrial process water.</td>
</tr>
<tr>
<td>Los Angeles Regional Water Quality Control Board, Order No. R4-2007-0021</td>
<td>The Santa Ana Regional Water Quality Control Board issued this order to regulate discharges of “Wastewaters from Investigation and/or Cleanup of Petroleum Fuel Pollution.”</td>
</tr>
<tr>
<td>Los Angeles Regional Water Quality Control Board, Order No. R4-2007-0022</td>
<td>The Santa Ana Regional Water Quality Control Board issued this order to regulate discharges of “Volatile Organic Compounds Contaminated Groundwater.”</td>
</tr>
<tr>
<td>Local LORS</td>
<td></td>
</tr>
<tr>
<td>City of Manhattan Beach Code, Chapter 5.36 – Sewers, Sewage Disposal</td>
<td>Defines local fees for sewer connections and services.</td>
</tr>
<tr>
<td>City of El Segundo Code, Title 11, Chapter 1 – Water Services</td>
<td>Defines local fees for potable water connections and services.</td>
</tr>
<tr>
<td>State Policies and Guidance</td>
<td></td>
</tr>
<tr>
<td>Integrated Energy Policy Report (Public Resources Code, Div. 15, Section 25300 et seq.)</td>
<td>In the 2003 Integrated Energy Policy Report (IEPR), consistent with SWRCB Policy 75-58 and the Warren-Alquist Act, the Energy Commission clearly outlined the state policy with regards to water use by power plants, stating that the Energy Commission would approve the use of fresh water for cooling purposes only where alternative water supply sources and alternative cooling technologies are shown to be “environmentally undesirable” or “economically unsound.” The IEPR policy also requires the use of zero-liquid discharge (ZLD) technologies unless such technologies are shown to be “environmentally undesirable” or “economically unsound.”</td>
</tr>
</tbody>
</table>
This policy supports and promotes the use of recycled water as a means to achieve sustainable local water supplies and reduction of greenhouse gases. This policy encourages the beneficial use of recycled water over disposal of recycled water.

The principal policy of the SWRCB that addresses siting of energy facilities is the Water Quality Control Policy on the Use and Disposal of Inland Waters Used for Power Plant Cooling, adopted by the Board on June 19, 1976, by Resolution 75-58. This policy states that use of fresh inland waters should only be used for cooling if other sources or other methods of cooling would be environmentally undesirable or economically unsound.

SWRCB Resolution 77-1 encourages and promotes recycled water use for non-potable purposes and use of recycled water to supplement existing surface and groundwater supplies.

PROJECT DESCRIPTION

The ESEC would be located in the City of El Segundo, Los Angeles County, California on the northern portion of the existing ESEC site. The site is approximately 33 acres in size.

Originally built in the 1950s, the ESEC was a 1,052-megawatt (MW) power plant consisting of four natural gas-fired utility boiler generating units. In 2000, the project owner applied to the Energy Commission to demolish and replace Units 1 and 2 with combined cycle Units 5, 6, and 7 and continue the use of once-through cooling. The project was certified by the Energy Commission on February 3, 2005. In 2007, the owner petitioned to amend the 2005 Decision to install smaller rapid start combined cycle units using dry cooling technology and designated them Units 5 & 6 and 7 & 8. The Commission approved this petition on June 30, 2010. The project commenced commercial operation August 1, 2013.

Currently proposed modifications, referred to as the El Segundo Power Facility Modification (ESPFM) include the demolition and replacement of two once-through-cooled natural gas-fired utility boiler units, Units 3 and 4, with one new combined cycle (a combustion turbine generator (Unit 9) with a steam turbine generator (Unit 10)) and two simple-cycle gas turbines (Units 11 and 12). This change will eliminate the use of ocean water for once-through cooling at the facility. The proposed changes will also upgrade and improve the ESEC’s existing and approved site infrastructure, provide fast start and dispatch flexibility capabilities to support Southern California grid load balancing and renewable energy integration, and implement improvements to coastal access (NRG 2013a).

The timing for implementation of the ESEC (00-AFC-14C) resulted in the shut-down of Unit 3 on July 22, 2013, and the eventual shutdown of Unit 4 by December 31, 2015, to coincide with the State of California’s once-through-cooling policy for ESEC with a stated compliance obligation of December 31, 2015. Commencement of demolition of Units 3 and 4 is planned for the end of 2015. Construction of the proposed Units 9, 10, 11, and 12 is anticipated to commence by mid-2016, after Units 3 and 4 are removed,
and conclude in 2018, to meet a projected on-line date of summer 2018. The existing
cessation of generation from Units 3 and 4, followed by their demolition, and proposed
Units 9 – 12 construction, operation, and generation, is subject to an approved power
purchase agreement (NRG 2013a).

WATER SUPPLY

Similar to the permitted ESEC project design, water will be supplied from two sources:
potable water from the cities of El Segundo and Manhattan Beach (Metropolitan Water
District of Southern California (MWD); and California State Title 22 recycled water from
West Basin Municipal Water District (West Basin). The ESPFM will use water from the
city for potable use and fire emergencies. The Title 22 recycled water, first-pass reverse
osmosis (RO) product water received from the West Basin will be used as the supply to
the cycle makeup treatment system as well as makeup to the inlet cooling. Title 22
recycled water will be blended with the single-pass RO product water for use in the gas
turbine inlet cooling. The proposed plant design will utilize two air-to-air heat
exchangers (air cooled condensers) for thermal cycle heat rejection. Seawater will no
longer be used for heat rejection.

ESPFM proposes to use potable water for construction activities. Average water use
during construction would be about 5,000 gallons per day (gpd) and around 20,000 gpd
during hydrostatic testing and commissioning. Commissioning is expected to take about
60 days. Average annual potable water use is not expected to exceed 5.6 AFY. Staff
notes that tertiary treated recycled water is available and is a suitable substitute for the
proposed uses of potable water during project construction. Staff believes the project
owner should be required to use recycled water for construction activities and provides
further analysis supporting this recommendation below.

The proposed ESPFM would employ 50 full-time employees. The expected water use
for domestic purposes would be about 0.5 gpm, or about 1 AFY (NRG 2013a).

The City of El Segundo purchases water from West Basin, a member agency of the
MWD. One hundred percent of the drinking water the City of El Segundo distributes is
received from the MWD. MWD treats all of its water at its filtration plants to standards
set by the State of California before delivery to El Segundo. MWD supplies water from
both the Colorado River and from the Sacramento-San Joaquin Delta in northern
California. MWD delivers water to the City of El Segundo after it has been treated in the
Joseph Jensen Filtration Plant, (located in Granada Hills) and/or the F.E. Weymouth
Filtration Plant (located in La Verne).

PROCESS WASTE WATERS

Process wastewaters from the combined cycle Fast system will consist of heat recovery
steam generation (HRSG) and inlet evaporative cooler blowdown. In addition,
wastewater will be generated during off-line water washing of the 7FA.05 and Trent 60
compressors. HRSG and evaporative cooler blowdown streams will be recycled back to
the single-pass RO water storage tank, partly for reprocessing by the mobile
demineralizers and partly for reuse as make-up to the inlet coolers. Off-line water wash effluent will be impounded and disposed of at an appropriately licensed offsite facility. Waste streams will be sampled in accordance with the existing monitoring and reporting program to ensure that the chemistry of the process waste is within the limits of the discharge permits. While process wastewater from the CC Fast and Rolls Royce Trent 60 peaker unit system will be recycled when possible, wastewater will be disposed of offsite as necessary if the water cannot be recycled and processed in a manner to meet the CC Fast and Rolls Royce Trent 60 peaker unit system water quality objectives (NRG 2013a).

No process wastewater will be discharged from the facility via the existing retention basin or either outfall structure. The ESPFM is proposed as a zero-liquid-discharge facility where only stormwater and sanitary effluent will leave the site (NRG 2013a).

SANITARY WASTE WATER
Sanitary wastewater, including eyewash station water and shower water, will be directed to the City of Manhattan Beach Municipal Sanitary Sewer in accordance with the City Public Works Department’s discharge requirements. Expected discharge from the sanitary sewer would be about 750 gallons per day (NRG 2013a).

STORMWATER
Stormwater generated during construction will be discharged under an existing Construction Stormwater National Pollutant Discharge Elimination System discharge permit obtained in compliance with existing Condition of Certification (COC), WATER QUALITY-7 and WATER QUALITY-9. All stormwater will be collected in yard drains that will route stormwater to an oil/water separator prior to discharge into the Pacific Ocean via Outfall 002. During a storm, discharge could be as high as 3,100 gallons per day (NRG 2013a).

SETTING

GROUNDWATER
The ESEC site is located within the Old Dune Aquifer, Gage Aquifer, and Silverado Aquifer systems that primarily consist of sand and gravel. These shallow aquifers are separated by the presence of aquitards, which primarily consist of clay material. However, the Old Dune Sand and Gage Sand Aquifers are not separated at the ESEC site due to the absence of the Manhattan Beach Aquitard in the project area. The El Segundo Aquitard underlies the Old Dune Sand and Gage Sand Aquifers. Studies conducted in 1998 reveal that the El Segundo Aquitard may isolate both of them from the Silverado Aquifer (ESPR 2000a).

The depth of the aquifers is considered shallow, extending to about 100 feet below ground surface. Groundwater elevations at the ESPR site have been found at approximately 12 feet below ground surface under unconfined conditions. The expected groundwater levels are estimated to occur at about 7 feet below the bottom elevations of proposed structures. An approximate 0.3-foot elevation change on the western side
of the site indicates that the water levels are tidally influenced. Measurements taken for
direction of groundwater flow for the Old Dune Sand/Gage Sand Aquifers and within the
sand layers of the El Segundo Aquitard suggest northwest and southeast gradients,
respectively (ESPR 2000a).

Depth to water at the site ranges between 7 to 12 feet below land surface. The
groundwater gradient beneath the site in the Old Dune/Gage aquifer is toward the
northwest at about 0.0015 foot per foot (WC 1997).

SURFACE WATER AND FLOODING

Surface watersheds in California are divided into management areas by the State’s
Regional Water Boards based on political and physiographic boundaries. The ESEC
would be within the area regulated by the Los Angeles Regional Water Quality Control
Board (RWQCB). The site is located within the Los Angeles-San Gabriel hydrologic
area and is part of the Santa Monica Bay-San Pedro Bay subarea. The RWQCB lists
the Santa Monica Bay as impaired (on the 303(d) list) for DDT, debris, polychlorinated
biphenyls (PCBs), and sediment. The project site gets about 12-inches per year of
precipitation (OWP 2013).

The site is located in a Federal Emergency Management Area (FEMA) Zone X, which
indicates the site is at an elevation above the 100-year floodplain. See Soil & Water
Figure 1.

SOILS

The existing ESEC site is at about 20 feet above Mean Lower Low Water (MLLW) level
and is relatively flat. Santa Monica Bay is located west of the site. The power plant and
on-site facilities are located within the Oceano soil mapping association. Very slow
runoff, rapid permeability, and high susceptibility to wind erosion characterize these
soils.

The majority of the site has been previously graded and is covered with asphalt. An
exception is the steep slope between the power units and Vista Del Mar, which is
landscaped with vegetation. The proposed final elevation would be approximately 20
feet MLLW above (ESPR 2000a).

CONTAMINATED SOILS AND GROUNDWATER

A Phase I Environmental Site Assessment (ESA) dated November 2000, identified
"recognized environmental conditions" that may exist on the ESEC site and along the
proposed pipelines. The ESA also determined that "...total petroleum hydrocarbons
(TPH) and volatile organic compounds (VOCs) have been detected in soil and
groundwater beneath ESEC. Quarterly groundwater monitoring is conducted by
Chevron in accordance with the Los Angeles RWQCB requirements stipulated in
Chevron’s Cleanup and Abatement Order 88-055." (ESPR 2000a).

According to the November 2000 Phase I ESA and the AFC, several environmental
conditions have been identified, and include (ESPR 2000a):
- ESEC Site: The soil and groundwater below site contains total petroleum hydrocarbons TPH and VOCs.

- Retention Basins: The groundwater below the retention basins contains TPH, VOCs, and metals.

- Aboveground Storage Tanks (ASTs): The soil and water below the above ground storage tanks contain TPH.

- Transformers: Oil staining was evident in the bedding material below and surrounding the transformers adjacent to Units 1 through 4.

- Hazardous Waste Storage Area: The soil and groundwater near the Hazardous Waste Storage area contains VOCs.

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

This section provides an evaluation of the expected direct, indirect, and cumulative impacts to soil and water resources that could be caused by construction, operation, and maintenance of the ESEC. Staff’s analysis consists of the following steps: establishing “thresholds of significance” used to determine if there is a potentially “significant” impact, gathering data related to construction and operation of the project, screening the data against the thresholds of significance then reaching a conclusion to determine whether or not the project presents a potentially “significant” impact. If staff determines there is a significant impact then staff evaluates the project owner’s proposed mitigation for sufficiency and staff may or may not recommend additional or entirely different mitigation measures that are potentially more effective than those proposed by the project owner. Mitigation is designed to reduce the effects of potentially significant ESEC impacts to a level that is less than significant.

SOIL RESOURCES

Staff evaluated the potential impacts to soil resources including the effects of construction and operation activities that could result in erosion and downstream transportation of soils and the potential for contamination to soils and groundwater. There are extensive regulatory programs in effect that are designed to prevent or minimize these types of impacts. These programs are effective, and, absent unusual circumstances, an applicant’s ability to identify and implement Best Management Practices (BMPs) to prevent erosion or contamination is sufficient to ensure that these impacts would be less than significant. The LORS and policies presented in SOIL & WATER Table 1 were used to determine the significance of ESPFM impacts.

WATER RESOURCES

Staff evaluated the potential of ESEC to cause a significant depletion or degradation of surface water and groundwater resources. Staff considered compliance with the LORS and policies presented in SOIL & WATER Table 1 and whether there would be a significant impact under the CEQA.
To determine if significant impacts to soil or water resources would occur, the following questions were addressed. Where a potentially significant impact was identified, staff or the project owner proposed mitigation to ensure the impacts would be less than significant.

- Would the project violate any water quality standards or waste discharge requirements?
- Would the project substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level?
- Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?
- Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?
- Would the project create or contribute runoff water which would exceed the capacity of existing or planned storm water drainage systems or provide substantial additional sources of polluted runoff?
- Would the project otherwise substantially degrade water quality?
- Would the project place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?
- Would the project place within a 100-year flood hazard area structures which would impede or redirect flood flows?
- Would the project expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?
- Would the project be inundated by seiche or tsunami?
- Would the project result in substantial soil erosion or the loss of topsoil?
- Does the project have impacts that are individually limited, but cumulatively considerable?

DIRECT/INDIRECT IMPACTS AND MITIGATION

A discussion of the direct and indirect ESPFM construction and operations impacts and mitigation is presented below. For each potential impact evaluation, staff describes the potential effect and then analyzes potential impacts by applying threshold criteria for determining significance. If mitigation is warranted, staff provides a summary of the
project owner’s proposed mitigation and a discussion of the adequacy of the proposed mitigation. In the absence of project owner-proposed mitigation, or if mitigation proposed by the project owner is inadequate, staff mitigation measures are recommended.

WATER QUALITY

Construction Water Discharges

Approximately 5.5 acres of land would be disturbed for each power block that gets demolished. Therefore approximately 11 acres of disturbance is expected for the demolition of Units 3 and 4 and the installation of Units 9, 10, 11, and 12. ESPFM construction would also require both onsite and offsite laydown and construction parking areas. The offsite laydown and parking area is approximately 12 acres, of which 10 acres are usable, located at 777 W. 190th Street in the city of Gardena, near the 405 and 110 freeway interchange. The site is less than 10 miles southeast of the proposed project. The site has been used for construction laydown for the ESEC project since 2011 and will return to its prior use for commercial truck, RV, and automobile storage until new construction would commence in 2016. The offsite laydown site is paved, lighted, and enclosed with a perimeter fence and has an approximately 5,500 square foot industrial building on the property (NRG 2013a).

If not managed operations or construction activities at the ESEC would have the potential to contaminate storm water runoff and thereby impact local surface waters, specifically the Santa Monica Bay (Pacific Ocean). Ocean waters in the vicinity are protected from degradation by the Los Angeles RWQCB Basin Plan.

The discharge for the site would be subject to regulation based on Beneficial Uses identified in the Los Angeles RWQCB Basin Plan as Manhattan Beach. The site would be subject to regulations by the RWQCB to protect the following beneficial uses.

- Navigation (NAV)
- Water Contact Recreation (REC1)
- Non-Contact Water Recreation (REC2)
- Commercial and Sportfishing (COMM)
- Wildlife Habitat (WILD)
- Rare, Threatened, or Endangered Species (RARE)
- Spawning, Reproduction, and Development (SPWN)
- Marine Habitat (MAR)
- Shellfish Harvesting (SHELL)

During construction and operation, the existing stormwater collection system would be used to collect and process stormwater from the site. Stormwater that falls within process equipment containment areas would be collected and discharged to the existing process drain system, which consists of oil/water separation treatment prior to discharge at Outfall 002. Stormwater that falls within the plant-wide pavement areas and outside the process equipment containment areas would be routed to Outfall 002 without treatment. The residual oil containing sludge from the oil/water separators would
be collected via vacuum truck and disposed of as hazardous waste. See the Waste Management section for details about disposal locations and quantities.

All stormwater will be collected in yard drains that will route stormwater to an oil/water separator prior to discharge into the Pacific Ocean via Outfall 002. During a storm, discharge could be as high as 3,100 gallons per day (NRG 2013a). Stormwater discharge volume is not expected to differ between the existing and the proposed project.

Stormwater generated during construction will be discharged under an existing Construction Stormwater National Pollutant Discharge Elimination System (NPDES) discharge permit (SWRCB Order No. 2009-0009-DWQ). To ensure compliance with this order, the project owner should be required to comply with Condition of Certification SOIL&WATER-1 which requires a construction Storm Water Pollution Prevention Plan (SWPPP) for the ESEC site and laydown areas. The SWPPP would specify BMPs that would prevent all construction pollutants, including erosion products, from contacting storm water, eliminate or reduce non-storm water discharges to waters of the Pacific Ocean, and require inspection and monitoring of BMPs.

At this time it is unclear if the project owner will perform hydrostatic testing, or if so, where it would be discharged. Hydrostatic testing often involves the use of chemicals that have the potential to impact surface waters. If the proposed project performs hydrostatic testing of pipelines or other industrial equipment and chooses to discharge the effluent to the waters of the United States, an additional permit may be required by the RWQCB. Permit Order No. R4-2009-0068 (General NPDES Permit No. CAG674001) allows for the discharges of low threat hydrostatic test water to surface waters. If necessary, the project owner shall comply with Condition of Certification SOIL&WATER-2, which would require the project owner to obtain permit coverage for hydrostatic discharges under Permit Order NO. R4-2009-0068.

SOIL & WATER Table 2
Wastewater volumes for proposed ESPFM

<table>
<thead>
<tr>
<th>Source</th>
<th>Previously Permitted (gpd)</th>
<th>Proposed (gpd)</th>
<th>Reduction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulating Water (Unit 4)</td>
<td>200,000,000</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Stormwater</td>
<td>3,100</td>
<td>3,100</td>
<td>No</td>
</tr>
<tr>
<td>To Retention Basin</td>
<td>80,000</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Total Effluent to Outfall 002</td>
<td>201,000,000</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Total Effluent to City Sewer</td>
<td>750</td>
<td>750</td>
<td>No</td>
</tr>
</tbody>
</table>

Operations Water Discharge
No process wastewater will be discharged from the facility via the existing retention basin or either outfall structure. The ESPFM is proposed as a zero-liquid-discharge facility where only stormwater and sanitary effluent will leave the site (NRG 2013a). As stated above, all stormwater will be collected in yard drains that will route stormwater to
an oil/water separator prior to discharge into the Pacific Ocean via Outfall 002. During a storm, discharge could be as high as 3,100 gallons per day (NRG 2013a). This stormwater discharge would require coverage under this site's existing discharge permit, NPDES CA0001147 Order No. 00-084, to minimize the discharge of conventional, non-hazardous pollutants from industrial stormwater discharge.

With implementation of BMPs and associated monitoring activities included in NPDES CA0001147 Order No. 00-084, impacts to water quality from operation of the proposed ESEC would be less than significant. Staff proposes Condition of Certification SOIL&WATER-3 which would require the project owner to continue coverage under NPDES CA0001147 Order No. 00-084 through project operation.

Sanitary Wastewater

Sanitary wastewater, including eyewash station water and shower water, will be directed to the City of Manhattan Beach Municipal Sanitary Sewer in accordance with the City Public Works Department's discharge requirements and in accordance with existing COCs from the amended 00-AFC-14 Final Decision. Estimated volumes of the facility’s sanitary wastewater discharge remains unchanged and are shown in SOIL & WATER Table 2 above. The calculation of 750 gpd assumes an average daily flow of 0.52 gallons per minute (gpm) total from all sanitary waste streams. City of Manhattan Beach Code, Chapter 5.36 defines the fees required by the city for these connections. Staff proposes that the project owner comply with this code section and with Condition of Certification SOIL&WATER-4, which would require that the project owner pay the fees normally required by the city for sanitary sewer connections.

Contaminated Groundwater

Groundwater dewatering may be necessary during demolition (ESPR 2000a). Due to the site’s long industrial history, staff is concerned that pumping of contaminated groundwater could result in significant impacts to on and offsite water resources or sensitive environmental receptors. The project owner did not provide information about how, or if, contaminated groundwater would be discharged, or what volumes may be expected.

Staff suggests that the project owner file a Report of Waste Discharge (ROWD) Form 200 with the Los Angeles RWQCB. At this time, the RWQCB would require a characterization of the groundwater to be discharged and identify a discharge or outfall location. If the project owner decides to get coverage under an NPDES permit, that permit would be regulated under exclusive authority of the RWQCB. If the project owner chooses to enroll under a non-NPDES permit, the authority to regulate the discharge would be shared by the Los Angeles RWQCB and the Energy Commission.

If groundwater dewatering is necessary, the project owner shall file a ROWD from the Los Angeles RWQCB. Staff proposes Condition of Certification SOIL&WATER-5, which would require the project owner to apply for coverage under the appropriate discharge permit if the project owner engages in groundwater dewatering at the proposed site.
WATER SUPPLY

Industrial

The proposed project’s use of potable would be significantly less than what is currently permitted. On average, the proposed project would allow for a 96 AFY reduction in fresh water use during operation. Potable water would also be used to fill the fire/service water tanks. These are shown on the process flow diagrams (PTA, Figure 2-8 and 2-9) as requiring “0 gpm.” These tanks are assumed to be filled once and reserved for an emergency. The fire/service water does not add a significant annual potable water demand and is not included in SOIL & WATER Table 3 below.

On average, ESPFM would use about 118 AFY of tertiary treated recycled water provided by West Basin Municipal Water District for industrial operation. Under a maximum use scenario, up to 137 AFY could be required by the project. Up to 21 AFY of the 118 AFY required by the project would go to landscape irrigation under average conditions, and up to 27 AFY of the 137 AFY could go to landscaping under maximum use conditions. Process water will be used for the generator turbine wash, evaporative cooling blowdown makeup, water treatment, and other purposes. The proposed use would be an increase in total recycled water supply above baseline. An increase in recycled water use is preferred by California Water Code Section 13550, which encourages the use of available recycled water supplies.

The above-described modifications to the project’s water uses will also enable it to eliminate once-through-cooling water use. Under the proposed project, no water would be drawn from the Pacific Ocean for cooling. A summary of existing and proposed industrial and construction water needs is included in SOIL & WATER Table 3 below.

SOIL & WATER Table 3
Water supply volumes for proposed ESEC

<table>
<thead>
<tr>
<th>City of El Segundo and Manhattan Beach, Potable Water</th>
<th>Previously Permitted (AFY)</th>
<th>Proposed (AFY)</th>
<th>Difference (AFY)</th>
<th>Reduction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Annual Avg.</td>
<td>97</td>
<td>0.72</td>
<td>-96</td>
<td>Yes</td>
</tr>
<tr>
<td>Operations Annual Max.</td>
<td>104</td>
<td>0.84</td>
<td>-103</td>
<td>Yes</td>
</tr>
<tr>
<td>Construction Annual Avg.</td>
<td>-</td>
<td>5.6</td>
<td>5.6</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>West Basin Municipal Water District, Title 22 Recycled Water</th>
<th>Previously Permitted (AFY)</th>
<th>Proposed (AFY)</th>
<th>Difference (AFY)</th>
<th>Reduction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Annual Avg.</td>
<td>112</td>
<td>118</td>
<td>6</td>
<td>No</td>
</tr>
<tr>
<td>Operations Annual Max.</td>
<td>120</td>
<td>137</td>
<td>17</td>
<td>No</td>
</tr>
</tbody>
</table>

Ocean Water
| Operations | Previously Permitted (AFY) | Proposed (AFY) | Difference (AFY) | Reduction?
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Avg.</td>
<td>200,000</td>
<td>0</td>
<td>-200,000</td>
<td>Yes</td>
</tr>
<tr>
<td>Annual Max.</td>
<td>399,000</td>
<td>0</td>
<td>-399,000</td>
<td>Yes</td>
</tr>
</tbody>
</table>

To ensure that project water use is within the projected volumes analyzed herein, staff proposes Conditions of Certification SOIL&WATER-6 and SOIL&WATER-7, which would require the project owner to abide by an annual use limit of 137 AFY, and meter and report facility water use in compliance reports. If SOIL&WATER-6 and -7 are implemented as proposed, impacts to local water supplies from industrial operation would be beneficial and less than significant.

The proposed project also would require a recycled water contract with the West Basin Municipal Water District (WBMWD) for the long-term supply (30-35 years) of tertiary treated recycled water. Staff proposes Condition of Certification SOIL&WATER-8, which would require the project owner to execute a recycled water agreement with the WBMWD.

Construction

Average daily use of construction water is expected to be about 5,000 gallons, or about 5.6 AFY. During hydrostatic testing, water usage is estimated at 20,000 gallons per day, or 22.4 AFY. The project owner proposes to use potable water for construction. Staff believes that given the availability of recycled water and its current use at the ESEC, the project should be constructed using tertiary treated recycled water. The recycled water supply currently available at the site would be suitable for use in dust suppression, concrete mixing, hydrostatic testing, and compaction. Staff believes it is appropriate to maximize the use of recycled water where potable water supplies can be preserved for other beneficial uses. This use would also be consistent with Energy Commission Water Policy and Section 13550 of the California Water Code. Further analysis of LORS compliance is provided below. If SOIL&WATER-6 and -7 are implemented as proposed, impacts to local water supplies from construction would be less than significant.

Domestic

The proposed project would receive potable water from the City of El Segundo, via a 14-inch pipeline. The pipeline would supply about 0.84 AFY under typical operating conditions and up to 4 AFY during an emergency where recycled water is not available. The proposed annual average use of 0.84 AFY is a significant reduction in potable water use below the baseline. Potable water is currently used for industrial purposes, but is proposed for only potable uses for onsite personnel. As a result, a minimal amount of potable water will be used for sanitary use, drinking, eye wash, and safety showers, as well as fire protection water.

City of El Segundo Code, Title 11, Chapter 1 – Potable Water Connections, defines the fees required by the city. Staff proposes that the project owner comply with this code section and with Condition of Certification SOIL&WATER-4, which would require that
the project owner pay the fees normally required by the city for potable water connections.

The proposed project also would require a potable water contract with the City of El Segundo. Staff proposes Condition of Certification SOIL&WATER-9, which would require the project owner to execute a potable water agreement with the City.

FLOODING

Staff reviewed the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) for the City of El Segundo (06037C1770F). The proposed project is located in Zone X and protected from the 1 percent annual chance of flooding (100-year flood) (FEMA 2008). SOIL & WATER Figure 1 shows the site location relative to the local FIRM designations.

Flood hazard maps were revised for the city of El Segundo on September 28, 2008, which should provide some confidence about the proposed project’s protection from inundation in the near future. FEMA flood maps are however subject to revision.

Projected sea-level rise has the potential to reduce the effectiveness of local flood protection. The local protection from inundation is projected to be reduced up to 30 centimeters (1.0 feet) by 2030 and 61 centimeters (2.0 feet) by 2050 (relative to 2000 levels) (CEC 2009; NAS 2012). A significant rise in local sea water levels would also raise the fluvial base level thereby potentially increasing the rate and extent of flooding.

The proposed final elevation would be approximately 20 feet mean lower low water (MLLW) above (ESPR 2000a). According to the FEMA map, the nearest 100-year flood zone could reach an elevation of 15 feet above sea level. These elevations suggest that the site has about five feet of elevation separation from the 100-year flood zone. The current projections of sea-level rise could reduce the separation between the site and sea level by up to 2.0 feet by 2050. However, if the minimum separation between the site and the surrounding floodplain is reduced from five feet to three feet, there would still be some level of flood protection.

STORM SURGE AND WAVE RUN-UP

Storm surge is usually defined by increased ocean water levels that occur during storms. Much like precipitation events and rainfall runoff events, storm surge events can be assigned recurrence intervals, e.g. 10-year, 100-year, etc. Storms may result in ocean water level increases that create increased threats of local flooding for shoreline property.

Tebaldi et al., in 2012, reported on the history and expected trends of storms at the Los Angeles Harbor (gauge 9410660). The report found that the 100-year return level storms in this area result in about 3 feet of local sea-level rise. Projections for local sea-level rise do not indicate that local sea-level rise has any relative influence on the magnitude of the 100-year storm surge. Therefore the 100-year storm surge in 2050 is expected to be the same as today, about one meter (or three feet).
As was concluded in the “Flooding” section above, a worst-case prediction shows that the site could have as little as three feet of separation from the adjacent flood zone. Ocean storm surges are considered in the FEMA floodplain mapping, which indicates that the site currently has five feet of separation from the coastal flood zone. Therefore staff concludes there will be limited potential impact from storm surge during the life of the facility.

TSUNAMI AND SEICHE
The proposed site is not within the zone identified by California Emergency Management Agency (CEMA) as a tsunami inundation zone (SOIL & WATER Figure 2). A more detailed discussion of hazards posed by tsunami and seiche is included in the Geology & Paleontology section of this document.

CUMULATIVE IMPACTS AND MITIGATION
A project may result in a significant adverse cumulative impact where its effects are cumulatively considerable. "Cumulatively considerable" means that the incremental effects of an individual project are significant when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of reasonably foreseeable future projects (California Code of Regulations, Title 14, section 15130). The construction and operation activities of the various projects could potentially overlap and result in cumulative impacts to the same resource(s).

POTABLE WATER SUPPLY
The proposed project would create a net benefit for local water supplies, when considered cumulatively with any other project. The proposed project could result in an average net reduction of 96 AFY of potable water use. When considered cumulatively this 96 AFY benefit could be reduced by other new users, but would still be considered a net benefit to the local water supply system.

WATER QUALITY
When considered cumulatively with other proposed projects, the ESPFM would result in a net cumulative benefit to the Pacific Ocean water quality. Industrial discharge flows would decrease because of decreased plant water use and elimination of once-through-cooling. The permitted average discharge flows are about 200 mgd and could be eliminated. This would be a 200 mgd reduction in water volume to the ocean and a proportional decrease in pollutant loading. When considered cumulatively this 200 mgd benefit could be reduced by other new users, but would still be considered a net benefit by reducing pollutant loads to the Pacific Ocean.

COMPLIANCE WITH LORS
The Energy Commission’s power plant certification process requires staff to review each of the proposed project’s elements for compliance with LORS and state policies. Staff has reviewed the project elements and concludes that the proposed ESEC project would comply with all applicable LORS addressing protection of water resources, storm
water management, and erosion control, as well as drinking water, use of freshwater, and wastewater discharge requirements, as long as staff’s proposed conditions of certification are adopted and implemented. Summary discussions of project compliance with significant LORS and policies are provided below.

STORMWATER

Clean Water Act
Staff has determined that ESPFM would satisfy the requirements of the National Pollutant Discharge Elimination System (NPDES) permit with the adoption of Conditions of Certification SOIL&WATER-1, -2, and -3. These conditions would ensure that the project owner complies with the appropriate NPDES permits.

Porter-Cologne Water Quality Control Act
Staff has concluded that ESPFM would satisfy the applicable requirements of the Porter-Cologne Water Quality Control Act and adequately protect the beneficial uses of waters of the state through implementation of federal, state, and local requirements for management of storm water discharges and pollution prevention, compliance with local grading and erosion control requirements, and compliance with local onsite wastewater system requirements.

ONCE THROUGH COOLING, 316(B) COMPLIANCE
The proposal to remove existing once-through cooling processes at ESEC is a means to meet the State’s once-through cooling policy, consistent with ESEC’s stated OTC Implementation Plan to retire Units 3 and 4 by December 31, 2015, and replace the generation via Track 1 compliance path. The proposed project would comply with CWA, Section 316(b), if the proposed design is implemented.

The California Energy Commission, under legislative mandate specified in the 2003 Integrated Energy Policy Report, (policy) and State Water Resources Control Board Resolution 75-58, will approve the use of fresh water for cooling purposes by power plants it licenses only where alternative water supply sources and alternative cooling technologies are shown to be environmentally undesirable or economically unsound. The IEPR policy also requires the use of zero-liquid discharge (ZLD) technologies unless such technologies are shown to be “environmentally undesirable” or “economically unsound.”

The ESPFM proposes to use dry cooling technology to reduce the amount of water required for plant operation. The air-cooled condenser would allow for the elimination of wet cooling and significantly reduce the plant’s water needs, by about 96 AFY compared to the baseline. Staff concurs with the project owner that the use of an air cooled condenser is an economically sound practice that provides environmental benefits from significantly reduced water use.
In addition, the Energy Commission’s water policy also seeks to protect water resources from power plant wastewater discharges. To that end, the water policy specifies that the Energy Commission will require zero liquid discharge technologies (for management of power plant wastewaters) unless such technologies are shown to be ‘environmentally undesirable’ or ‘economically unsound. The ESPFM would utilize ZLD technologies and allow for a substantial reduction (200 mgd) in wastewater volume to the Pacific Ocean.

The proposed project would use recycled water for its industrial purposes. The use of recycled water is preferred by state water policy because it conserves fresh water supplies. The proposed project would help to increase the use of local recycled water and save other higher quality water supplies for other beneficial uses.

The proposed project would reduce fresh water use by using recycled water and eliminate a significant portion of process wastewater discharge from the facility. Therefore, staff finds that the proposed water use wastewater management methods would be in compliance with the intent of the water policy.

RECYCLED WATER

California Water Code Section 13550 and 13575 et seq. (Water Recycling Act)

These sections of the California Water Code require that the water resources of the state be put to the highest possible beneficial use and prohibit the use of potable domestic water for non-potable uses if recycled water is available. Within these sections, use of potable domestic water for industrial cooling towers is identified as a waste or unreasonable use of water if suitable recycled water is available.

The proposed project would reduce fresh water use by using recycled water for the generator turbine wash, evaporative cooling blowdown makeup, water treatment, and other purposes. As discussed in the analysis above, recycled water is already available at the site and is of suitable quality for use in project construction activities. Therefore, staff believes that the use of recycled water for construction is feasible and proposes Condition of Certification SOIL&WATER-6 to ensure that project water use would be in conformance with Section 13550.

LOCAL LORS

Staff concludes that with the implementation of Conditions of Certification SOIL&WATER- 4 the ESPFM would satisfy the applicable requirements of all local LORS by paying necessary local connection fees to the city of El Segundo for water supply and the City of Manhattan Beach for sanitary sewer disposal services.

NOTEWORTHY PUBLIC BENEFITS

- The proposed project would reduce the amount of potable water used relative to baseline conditions. The reduction in water use would be about 96 AFY, which would result in additional supplies for other beneficial uses.
The proposed project would result in a 200 mgd reduction in industrial discharge water volume to the Pacific Ocean and a similarly proportional decrease in thermal loading and biological impingement.

The proposed project would result in the elimination of once-through cooling from the existing El Segundo Energy Center. SWRCB’s Resolution No. 2010-0020 and adoption of a Policy for the Use of Coastal and Estuarine Waters for Power Plant Cooling (OTC Plan), requires all coastal power plants that utilize OTC to meet new performance requirements (Best Technology Available [BTA]) through a reduction in intake volume and velocity. The proposed project helps achieve the goals of the OTC Plan through dry-cooling and reduced discharge.

RESPONSE TO AGENCY AND PUBLIC COMMENTS

No agency or public comments were received regarding Soil and Water Resources.

CONCLUSIONS

The proposed project would allow the ESEC to eliminate once-through-cooling (OTC) which would result in a 200 million gallon per day (mgd) reduction in intake and waste water volume to the Pacific Ocean. State Water Resources Control Board’s (SWRCB) Resolution No. 2010-0020 and adoption of a Policy for the Use of Coastal and Estuarine Waters for Power Plant Cooling (OTC Plan), requires all coastal power plants that utilize OTC to meet new performance requirements (Best Technology Available [BTA]) through a reduction in intake volume and velocity. The proposed project helps achieve the goals of the OTC Plan through dry-cooling and reduced discharge.

The proposed project would include use of air cooled condensers for cooling of the steam cycle. This technology significantly reduces the potential for use of water supplies and is encouraged in accordance with the Energy Commission’s water policy. Also in accordance with the Energy Commission’s water policy, the project would use a Zero-Liquid-Discharge system to reuse water and reduce wastewater volume.

The proposed project would use recycled water exclusively for industrial operation.

The proposed project’s average potable water use during operation would be 96 acre feet per year (AFY) less than current site water use, which would result in additional supplies for other beneficial uses.

The proposed site has a long industrial history and would not require much additional soil disturbance for the new facilities. The proposed project would therefore result in minimal losses to soil resources. Though some small losses in topsoil are expected during construction and operation from wind and water erosion, onsite management of stormwater runoff and sediment erosion as proposed by staff in Conditions of Certification SOIL&WATER-1 and SOIL&WATER-3 would adequately minimize soil loss and pollutant discharge from industrial operation.
Staff proposes Condition of Certification SOIL&WATER-2, which would require the proposed project to comply with the National Pollutant Discharge Elimination System (NPDES) Permit Order No. R4-2009-0068, General NPDES Permit No. CAG674001, if hydrostatic waters are discharged to waters of the US. This condition would ensure that the impacts to waters of the United States from hydrostatic testing would be less than significant.

Staff proposes Condition of Certification SOIL&WATER-4, which would require the project owner to pay the City of El Segundo all the normal fees associated with connections to their water and sewer systems.

Groundwater at the site is relatively shallow and potentially contaminated by petroleum products or by-products. Trench and foundation excavations may encounter shallow groundwater and dewatering could be required for stabilization. If the project owner engages in dewatering, staff would require that the project owner comply with Condition of Certification SOIL&WATER-5, which would require the project owner to apply for coverage under a permit that would allow for the discharge of petroleum-contaminated water.

Staff proposes Condition of Certification SOIL&WATER-6, which would limit the proposed project’s maximum industrial water use to 137 AFY during operation, and potable water use to 23 AFY during construction. In addition, Condition of Certification SOIL&WATER-6 would require use of tertiary treated recycled water for all construction purposes for which it is suited including dust suppression, concrete mixing, hydrostatic testing, and compaction.

Staff proposes Condition of Certification SOIL&WATER-7, which would require the project owner to install water meters.

Staff proposes Conditions of Certification SOIL&WATER-8 and SOIL&WATER-9, which would require the project owner to execute both recycled and potable water purchase agreements, respectively.

The proposed project is located in Zone X and protected from the 1-percent annual chance of flooding (100-year flood).

The elevation of the project site would ensure that the proposed project could be built and operated reliably under the reasonably expected sea level rise over the life of the project. High-end estimates of relative sea-level rise are 61 centimeters (2.0 feet) by 2050 (relative to 2000) (NAS, 2012), which would reduce the site’s separation from the floodplain to three feet above the current (2012) 100-year floodplain (FEMA, 2008).

PROPOSED CONDITIONS OF CERTIFICATION

The original staff analysis and 2007 Amendment were split into two sections addressing Water Quality and Water Resource impacts. In this analysis, staff has combined these sections into the Soil and Water Resources analysis presented above. Staff did this to make the analysis more concise and better facilitate compliance with the conditions of certification given changes in the project design for the current amendment. For completeness, staff shows the conditions of certification that were deleted at the time of
the 2007 amendment. Staff also shows Conditions of Certification that were approved with the 2007 Amendment in strikethrough. All of the 2007 conditions are shown in strikethrough because they have been updated and revised to reflect current project design. All new language is in **bold** and *underline*.

WATER QUALITY-1: Deleted at the time of the 2007 Amendment

WATER QUALITY-2: Deleted at the time of the 2007 Amendment

WATER QUALITY-3: Deleted at the time of the 2007 Amendment

WATER QUALITY-4: Deleted at the time of the 2007 Amendment

WATER QUALITY-5: Deleted at the time of the 2007 Amendment

WATER QUALITY-6: Deleted at the time of the 2007 Amendment

NPDES CONSTRUCTION PERMIT REQUIREMENTS

WATER QUALITY-7: The project owner shall comply with the requirements of the State Water Resources Control Board’s (SWRCB) National Pollutant Discharge Elimination System (NPDES) Permit for Storm Water Discharges Associated with Construction Activity (Water Quality Order 99-08-DWQ and any other subsequent orders). The project owner shall develop and implement a Storm Water Pollution Prevention Plan (Construction SWPPP) for the construction of the ESPRP site, laydown areas including El Segundo Beach, and all linear facilities. The Construction SWPPP shall be reviewed and approved by the City of El Segundo (City) and shall be in compliance with the City’s Standard Urban Stormwater Mitigation Plan (SUSMP) per the requirements of the Los Angeles Regional Water Quality Control Board (LARWQCB) NPDES Permit No. CAS0004001 and the City’s Ordinance No. 1348 and Chapter 7 of Title 5 of the municipal code.

Verification: Prior to site mobilization, demolition, and/or construction related ground disturbing activities, including those activities associated with the beach delivery and linear facilities, the project owner shall submit to the CPM a copy of the Construction SWPPP that includes the requirements of the City’s SUSMP and retain a copy on-site. The project owner shall submit copies to the CPM of all correspondence between the project owner and the City, the LARWQCB, and the SWRCB regarding the City’s SUSMP and the Construction SWPPP within 10 days of its receipt or submittal. This information shall include copies of the Notice of Intent and Notice of Termination for the project.

DRAINAGE EROSION AND SEDIMENT CONTROL

WATER QUALITY-8: Drainage, Erosion, and Sediment Control Plan (DESCP): Prior to soil disturbing activities, the project owner shall obtain CPM approval for a site-specific Drainage, Erosion, and Sediment Control Plan (DESCP) that addresses all project elements including those activities related to delivery of equipment from the beach. The DESCAP shall be revised to address specific soil disturbing and soil stabilizing activities associated with pre-construction, construction, and post-construction activities of the ESPRP.
The DESCP shall be consistent with the grading and drainage plan as required by condition of certification CIVIL-1 and may incorporate by reference any Storm Water Pollution Prevention Plan (SWPPP) developed in conjunction with state or municipal NPDES permits. The DESCP shall contain elements A through L below:

A. Vicinity Map – Map(s) at a minimum scale 1”=100’ shall be provided indicating the location of all project elements with depictions of all significant geographic features including swales, storm drains, and sensitive areas.

B. Site Delineation – All areas subject to soil disturbance for the ESPRP (project site, lay down area, all linear facilities, landscaping areas, and any other project elements) shall be delineated showing boundary lines of all construction areas and the location of all existing and proposed structures, pipelines, roads, and drainage facilities.

C. Watercourses and Critical Areas – The DESCP shall show the location of all nearby watercourses including swales, storm drains, and drainage ditches. The DESCP shall indicate the proximity of those features to the ESPRP construction, lay down, and landscape areas and all transmission and pipeline construction corridors.

D. Drainage Map – The DESCP shall provide topographic site map(s) at a minimum scale 1”=100’ showing all existing, interim, and proposed drainage systems and drainage area boundaries. On the map, spot elevations and contours shall be extended off-site for a minimum distance of 100 feet.

E. Drainage Narrative – The DESCP shall include a narrative of the drainage measures to be taken to protect the site and downstream facilities and include the summary pages from the hydrologic analysis prepared by a professional engineer/erosion control specialist. The narrative shall state the watershed size(s) in acres used in the calculation of drainage control measures and text included that justifies their selection. The hydrologic analysis should be used to support the selection of Best Management Practices (BMPs) and structural controls to divert off-site and on-site drainage around or through the ESPRP construction and laydown areas.

F. Clearing and Grading Plans – The DESCP shall provide a delineation of all areas to be cleared of vegetation and areas to be preserved. The plan shall provide elevations, slopes, locations, and extent of all proposed grading as shown by contours, cross sections or other means. The locations of any disposal areas, fills, or other special features will also be shown. Illustrate existing and proposed topography tying in proposed contours with existing topography.

G. Clearing and Grading Narrative – The DESCP shall include a table with the quantities of material excavated or filled for the site and all project elements of the ESPRP (project site, lay down areas, transmission corridors, and pipeline corridors) to include those materials removed from the site due to demolition, whether such excavations or fill is temporary or permanent, and the amount of such material to be imported or exported. The table shall
distinguish whether such excavations or fill is temporary or permanent and the amount of material to be imported or exported.

H. Best Management Practices—The DESCP shall identify on a Water Pollution Control Drawing(s) (WPCD) the location of the site specific BMPs to be employed during each phase of construction (initial grading/demolition, excavation and construction, and final grading/stabilization). Treatment control BMPs used during construction should enable testing of stormwater runoff prior to discharge to the stormwater system. BMPs shall include measures designed to prevent wind and water erosion in areas with existing soil contamination.

I. Best Management Practices Narrative—The DESCP shall show the location (as identified on the WPCD), timing, and maintenance schedule of all erosion and sediment control BMPs to be used prior to grading/demolition, project excavation and construction, and final grading/stabilization (accomplished by the submittal of DESCP revisions). Text with supporting calculation shall be included for each project specific BMP. Separate BMP implementation schedules shall be provided for each project element.

Verification: No later than 90 days prior to the start of grading or excavation activities associated with any project element of the ESPRP, the project owner shall submit a copy of the DESCP to the City of El Segundo (City) for review and comment. No later than 60 days prior to the start of grading or excavation activities associated with any project element of the ESPRP, the project owner shall submit the DESCP and the City’s comments to the CPM for review and approval. The CPM shall consider comments received from the City on the DESCP before issuing approval.

The DESCP shall be revised and a revision submitted to the CPM for project excavation/construction and final grading/stabilization prior to the soil disturbing activities associated with these stages of construction. The DESCP shall be consistent with the grading and drainage plan as required by condition of certification CIVIL-1 and relevant portions of the DESCP shall clearly show approval by the Chief Building Official. The DESCP shall be consistent with the Stormwater Pollution Prevention Plan (SWPPP) developed in accordance with the General Construction Permit (Water Quality Order 99-08-DWQ and any other subsequent orders) and the project’s Standard Urban Stormwater Mitigation Plan developed in accordance with the LARWQCB NPDES Permit No. CAS0004001 and the City’s Ordinance No. 1348 and Chapter 7 of Title 5 of the municipal code.

In the monthly compliance report, the project owner shall provide a narrative describing the effectiveness of the drainage, erosion and sediment control measures; the results of monitoring and maintenance activities, including any BMP inspection reports; and the dates of any dewatering activities.

NPDES INDUSTRIAL PERMIT REQUIREMENTS

WATER QUALITY-9: The project owner shall comply with the requirements of the Individual and/or General NPDES Permit for Storm Water Discharges Associated with Industrial Activity. The project owner shall develop and
implement a Storm Water Pollution Prevention Plan (Industrial SWPPP) for the operation of the ESPRP. The Industrial SWPPP shall be reviewed and approved by the City of El Segundo (City) and shall be in compliance with the City of El Segundo’s (City) Standard Urban Stormwater Mitigation Plan (SUSMP) per the requirements of the Los Angeles Regional Water Quality Control Board (LARWQCB) NPDES Permit No. CAS0004001 and the City’s Ordinance No. 1348 and Chapter 7 of Title 5 of the municipal code.

Verification: The project owner shall submit to the CPM a copy of the Industrial SWPPP that includes the requirements of the City’s SUSMP prior to commercial operation and retain a copy on-site. The project owner shall submit to the CPM copies of all correspondence between the project owner and the City, the LARWQCB, and the SWRCB regarding the City’s SUSMP and the Individual and/or General NPDES Permit for Storm Water Discharges Associated with Industrial Activity within 10 days of its receipt or submittal. The Industrial SWPPP shall include a copy of the Notice of Intent for the project.

WATER QUALITY-10 Ballast Water Management Plan: The project owner shall ensure that each barge operator develops and implements a Ballast Water Management Plan in accordance with CCR Title 2, Division 3, Chapter 1, Article 4.6. The project owner shall ensure that the ballast water holding tanks are certified clean and uncontaminated by the California State Lands Commission prior to taking on local ballast water.

Verification: No later than 90 days prior to grounding of any barge associated with the delivery of ESPRP equipment over El Segundo Beach, the project owner shall provide the State Lands Commission with a copy of the Ballast Water Management Plan that is in compliance with Title 2, Division 3, Chapter 1, Article 4.6 for review and comment. At least 60 days prior to grounding of any barge associated with the delivery of ESPRP equipment over El Segundo Beach, the project owner shall provide the CPM for review and approval, a copy of the Ballast Water Management Plan that has been reviewed by the State Lands Commission.

WATER RES-1: Deleted.

WATER RES-2: Deleted.

WATER RES-3: The project owner shall provide the CPM a copy of the executed and final recycled water purchase agreement (agreement) with West Basin Municipal Water District (WBMWD) for the long-term supply (30—35 years) of tertiary treated recycled water to the ESPRP. The agreement shall specify a minimum delivery rate of 602 gpm. The agreement shall specify all terms and costs for the delivery and use of recycled water by ESPRP. The ESPRP shall not connect to WBMWD’s new 10-inch recycled water pipeline without the final agreement in-place and submitted to the CPM. The project owner shall comply with the requirements of Title 22 and Title 17 of the California Code of Regulations.

Verification: No later than 60 days prior to the delivery of single pass reverse osmosis recycled water from the new 10-inch pipeline, the project owner shall submit two copies
of the final and executed recycled water purchase agreement for the supply and on-site use of recycled water at the ESPRP. The project owner shall submit to the CPM a copy of the cross-connection inspection and approval report from the Los Angeles County Health Department prior to the delivery of recycled water from the new 10-inch recycled water pipeline.

WATER RES-4: The project owner shall use potable water supplied by the City of El Segundo (City) for potable and sanitary purposes only during construction of the ESPRP. Potable water shall not be used for any construction activity that is suitable for non-potable water use. In the event of a recycled water delivery interruption, potable water may be used as an emergency back-up supply for plant operation.

Prior to completion of the 14-inch potable water pipeline, the project owner shall provide the CPM with a copy of an executed and final Potable Water Supply Agreement (agreement) for the long-term supply (30—35 years) of potable water. The agreement shall specify a minimum delivery rate of 602 gpm in order to meet ESPRP’s operation requirements in the event of a recycled water interruption. The project owner shall not use more than 4 AFY of potable water as an emergency back-up source for ESPRP operation.

Verification: No later than 30 days prior to completion of the 14-inch potable water pipeline, the project owner shall submit to the CPM two copies of the executed and final Potable Water Supply Agreement (agreement). The project owner shall submit to the CPM any water quality monitoring reports required by the City in the annual compliance report. The project owner shall notify the CPM of any violations of the agreement terms and conditions, the actions taken or planned to bring the project back into compliance with the agreement, and the date compliance was reestablished.

WATER RES-5: The project owner shall use potable water supplied by the City of El Segundo (City) and recycled water supplied by the West Basin Municipal Water District (WBMWD) during ESPRP operation. Prior to the use of water from any source for ESPRP operation, the project owner shall install and maintain metering devices as part of the potable and recycled water supply and distribution systems. The metering devices shall be in operation for the life of the project. The project owner shall prepare an annual Water Use Summary that includes the monthly range and monthly average of daily potable and recycled water usage in gallons per day on a monthly basis and in acre-feet on an annual basis. For subsequent years, the annual Water Use Summary shall also include the yearly range and yearly average water use, by source, for the project. The annual Water Use Summary shall be submitted to the CPM as part of the annual compliance report.

Verification: At least 60 days prior to ESPRP commercial operation, the project owner shall submit to the CPM evidence that metering devices have been installed and are operational on the potable and recycled water supply and distribution systems. The project owner shall submit a Water Use Summary report to the CPM in the annual compliance report. The report shall disaggregate potable water supplied by the City and recycled water supplied by WBMWD for ESPRP industrial and landscape irrigation use.
The project owner shall provide a report on the servicing, testing and calibration of the metering devices in the annual compliance report.

NPDES CONSTRUCTION PERMIT REQUIREMENTS

SOIL&WATER-1 The project owner shall manage stormwater pollution from ESPFM construction activities by fulfilling the requirements contained in State Water Resources Control Board’s National Pollutant Discharge Elimination System (NPDES) General Permit for Storm Water Discharges Associated with Construction and Land Disturbance Activities (Order No. 2009-0009-DWQ, NPDES No. CAS000002) and all subsequent revisions and amendments. The project owner shall develop and implement a construction Storm Water Pollution Prevention Plan (SWPPP) for the construction of the ESPFM project.

Verification: Thirty (30) days prior to site mobilization of ESPFM construction activities, the project owner shall submit the construction SWPPP to the Chief Building Official (CBO) and Compliance Project Manager (CPM) for review and the SWRCB for review and comment. A copy of the approved construction SWPPP shall be kept accessible onsite at all times. Within 10 days of its mailing or receipt, the project owner shall submit to the CPM any correspondence between the project owner and the Los Angeles Regional Water Quality Control Board about the general NPDES permit for discharge of stormwater associated with construction and land disturbance activities. This information shall include a copy of the notice of intent and the notice of termination submitted by the project owner to the SWRCB.

HYDROSTATIC WATER DISCHARGE PERMIT REQUIREMENTS

SOIL&WATER-2 Prior to initiation of hydrostatic testing water discharge to surface waters, the project owner shall obtain coverage under the National Pollutant Discharge Elimination System permit for discharge to the Pacific Ocean. The project owner shall comply with the requirements of the Permit Order No. R4-2009-0068, General NPDES Permit No. CAG674001 for hydrostatic testing water discharge. The project owner shall provide a copy of all permit documentation sent to the Los Angeles Regional Water Quality Control Board or State Water Resources Control Board to the CPM and notify the CPM in writing of any reported non-compliance.

Verification: Prior to construction mobilization, the project owner shall submit to the CPM documentation that all necessary NPDES permits were obtained from the Los Angeles Regional Water Quality Control Board or State Water Resources Control Board. Thirty (30) days prior to ESPFM operation, the project owner shall submit to the CPM a copy of the relevant plans and permits received. The project owner shall submit to the CPM all copies of any relevant correspondence between the project owner and the Board regarding NPDES permits in the annual compliance report.
NPDES INDUSTRIAL PERMIT REQUIREMENTS

SOIL&WATER-3 Prior to mobilization for construction, the project owner shall obtain coverage under a National Pollutant Discharge Elimination System permit for industrial waste and stormwater discharge to the Pacific Ocean. The project owner shall comply with the requirements of Order No. 00-084, NPDES No. CA0001147. The project owner shall provide a copy of all permit documentation sent to the Los Angeles Regional Water Quality Control Board or State Water Resources Control Board to the CPM and notify the CPM in writing of any reported non-compliance.

Verification: Prior to construction mobilization, the project owner shall submit to the CPM documentation that all necessary NPDES permits were obtained from the Los Angeles Regional Water Quality Control Board or State Water Resources Control Board. Thirty (30) days prior to ESEC operation, the project owner shall submit to the CPM a copy of the Industrial SWPPP. The project owner shall submit to the CPM all copies of any relevant correspondence between the project owner and the Board regarding NPDES permits in the annual compliance report.

WATER AND SEWER CONNECTIONS

SOIL&WATER-4 The project owner shall pay the city of Manhattan Beach and the city of El Segundo all fees normally associated with industrial connections to the city’s sanitary sewer system and water supply system, respectively, as defined in each city’s code. City of Manhattan Beach Code, Chapter 5.36 – Sewers, Sewage Disposal; and City of El Segundo Code, Title 11, Chapter 1 – Potable Water Supply, define the city’s requirements for these connections.

Verification: Prior to the use of the city’s water or sewer system the owner shall provide the CPM documentation indicating that the city has accepted the project’s connections to the water and sewer systems. Fees paid to the city shall be reported in the Annual Compliance Report for the life of the project.

GROUNDWATER DISCHARGE PERMIT REQUIREMENTS

SOIL&WATER-5 Discharge of dewatering water shall comply with the Los Angeles Regional Water Quality Control Board (RWQCB) and State Water Resources Control Board regulatory requirements. The project owner shall submit a Report of Waste Discharge (RWD) to the Compliance Project Manager (CPM) and RWQCB for determination of which regulatory waiver or permit applies to the proposed discharges. The project owner shall pay all necessary fees for filing and review of the RWD and all other related fees. Checks for such fees shall be submitted to the RWQCB and shall be payable to the State Water Resources Control Board. The project owner shall ensure compliance with the provisions of the waiver or permit applicable to the discharge.

Where the regulatory requirements are not applied pursuant to a National Pollutant Discharge Elimination System permit, it is the Commission's
intent that the requirements of the applicable waiver or permit be enforceable by both the Commission and the RWQCB. In furtherance of that objective, the Commission hereby delegates the enforcement of the waiver or permit requirements, and associated monitoring, inspection, and annual fee collection authority, to the RWQCB. Accordingly, the Commission and the RWQCB shall confer with each other and coordinate, as needed, in the enforcement of the requirements.

Verification: Prior to any dewatering water discharge, the project owner shall submit a RWD to the RWQCB to obtain the appropriate waiver or permit. The appropriate waiver or permit must be obtained at least 30 days prior to the discharge.

The project owner shall submit a copy of any correspondence between the project owner and the RWQCB regarding the waiver or permit and all related reports to the CPM within 10 days of correspondence receipt or submittal.

WATER USE AND REPORTING

The water supply for project construction shall be recycled water from West Basin Municipal Water District (WBMWD) and shall not exceed 23 AFY. The water supply for project operation shall be recycled water from WBMWD and shall not exceed 137 AFY. Potable water use during operation shall be supplied by the city of El Segundo and use shall not exceed 4 AFY. In the event of a recycled water delivery interruption, potable water may be used as an emergency back-up supply for plant construction and operation. For purposes of this condition, the term emergency shall mean the inability for the ESPFM to take, or for the WBMWD to deliver, recycled water to the ESPFM in a quantity sufficient to meet demand due to natural disaster or other circumstances beyond the control of the project owner. A monthly summary of water use shall be submitted to the CPM.

Verification: The project owner shall record ESPFM operation water use on a daily basis and shall notify the CPM within 14 days upon forecast to exceed the maximum annual use as described above. Prior to exceeding the maximum use, the owner shall provide a plan to modify operations.

The project owner shall record ESPFM construction water use on a daily basis. The project owner shall notify the CPM within 2 days of when the recycled water supply for construction or operation is interrupted and indicate why recycled water could not be delivered, how much potable water was used, and how long potable water will be used prior to reestablishing the connection to the recycled water supply. The project owner shall develop a plan within 7 days to reestablish use of the recycled water supply. The plan should include discussion of modification of construction practices may be modified and how excess water use may be offset. The plan shall be submitted for CPM review and approval.
The project owner shall submit a water use summary report to the CPM monthly during construction and annually during operations for the life of the project. The annual report shall include calculated monthly range, monthly average, daily maximum within each month and annual use by the project in both gallons per minute and acre-feet. After the first year and for subsequent years, this information shall also include the yearly range and yearly average potable water used by the project.

WATER METER INSTALLATION

SOIL&WATER-7 Prior to the use of water from any source for operation, the project owner shall install and maintain metering devices as part of the potable and recycled water supply and distribution systems. The metering devices shall be in operation for the life of the project. The project owner shall prepare an annual Water Use Summary that includes the monthly range and monthly average of daily potable and recycled water usage in gallons per day on a monthly basis and in acre-feet on an annual basis. For subsequent years, the annual Water Use Summary shall also include the yearly range and yearly average water use, by source, for the project. The annual Water Use Summary shall be submitted to the CPM as part of the annual compliance report.

Verification: At least 60 days prior to commercial operation, the project owner shall submit to the CPM evidence that metering devices have been installed and are operational on the potable and recycled water supply and distribution systems. The project owner shall submit a Water Use Summary report to the CPM in the annual compliance report. The report shall disaggregate potable water supplied by the City and recycled water supplied by WBMWD for ESPFM industrial and landscape irrigation use. The project owner shall provide a report on the servicing, testing and calibration of the metering devices in the annual compliance report.

RECYCLED WATER SUPPLY AGREEMENT

SOIL&WATER-8: The project owner shall provide the CPM a copy of the executed and final recycled water purchase agreement (agreement) with West Basin Municipal Water District (WBMWD) for the long-term supply (30-35 years) of tertiary treated recycled water for the project’s industrial needs. The agreement shall specify a minimum delivery rate of 602-gpm. The agreement shall specify all terms and costs for the delivery and use of recycled water. The project shall not connect to WBMWD’s new 10-inch recycled water pipeline without the final agreement in place and submitted to the CPM. The project owner shall comply with the requirements of Title 22 and Title 17 of the California Code of Regulations.

Verification: No later than 60 days prior to the delivery of single pass reverse osmosis recycled water from the new 10-inch pipeline, the project owner shall submit two copies of the final and executed recycled water purchase agreement.
for the supply and on-site use of recycled water. The project owner shall submit to the CPM a copy of the cross connection inspection and approval report from the Los Angeles County Health Department prior to the delivery of recycled water from the new 10-inch recycled water pipeline.

POTABLE WATER SUPPLY AGREEMENT
SOIL&WATER-9 Prior to completion of the 14-inch potable water pipeline, the project owner shall provide the CPM with a copy of an executed and final Potable Water Supply Agreement (agreement) for the long-term supply (30–35 years) of potable water from the City of El Segundo (City). The agreement shall specify a minimum delivery rate of 602-gpm in order to meet ESPFM’s operation requirements in the event of a recycled water interruption.

Verification: No later than 30 days prior to completion of the 14-inch potable water pipeline, the project owner shall submit to the CPM two copies of the executed and final Potable Water Supply Agreement (agreement). The project owner shall submit to the CPM any water quality monitoring reports required by the City in the annual compliance report. The project owner shall notify the CPM of any violations of the agreement terms and conditions, the actions taken or planned to bring the project back into compliance with the agreement, and the date compliance was reestablished.

REFERENCES

NAS 2012- Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past,

OWP 2013- California State University, Sacramento. Office of Water Programs, Division of Environmental Analysis Water Quality Planning Tool.

Approximate Site Footprint
SUMMARY OF CONCLUSIONS

Energy Commission staff has analyzed the information provided by the petitioner in the Petition to Amend (PTA) and acquired from other sources to determine the potential for the El Segundo Power Facility Modification (ESPFM, the project) to have significant adverse traffic and transportation-related impacts.

Staff concludes that the Conditions of Certification TRANS-1 through TRANS-9 will reduce traffic related impacts related to the project to a less than significant level. Staff also concludes that the project would comply with all applicable traffic laws, ordinances, regulations, and standards.

SOCIOECONOMICS Table 2 in the Socioeconomics section shows that the population within the six-mile buffer constitutes an environmental justice population as defined by Environmental Justice: Guidance Under the National Environmental Policy Act. Traffic and Transportation staff has concluded that upon implementation of the proposed conditions of certification, the project would not have any significant or disproportionate traffic impacts on any population, including an environmental justice population.

INTRODUCTION

In compliance with the California Environmental Quality Act (CEQA) and Energy Commission requirements, this analysis identifies the project’s potential impacts to the surrounding transportation systems and proposed mitigation measures (conditions of certification) that would avoid or lessen these impacts. Staff has assessed the existing conditions of certification approved as part of the original El Segundo Energy Center (ESEC) licensing (00-AFC-14) and their potential for reducing impacts associated with the ESPFM to a less than significant level. Two new conditions of certification are proposed (TRANS-8 and TRANS-9). The analysis also addresses the project’s consistency with applicable federal, state, and local transportation-related laws, ordinances, regulations, and standards (LORS).

PETITIONER-PROPOSED MODIFICATIONS TO APPROVED CONDITIONS OF CERTIFICATION

The petitioner has not proposed any changes to the approved Conditions of Certification TRANS-1 through TRANS-7. A summary of the approved conditions is included in the “Conclusions” subsection below.
STAFF-PROPOSED MODIFICATIONS TO APPROVED CONDITIONS OF CERTIFICATION

Staff has not proposed any modifications to the approved Conditions of Certification TRANS-1 through TRANS-7.

As discussed in the “Operational Impacts and Mitigations” subsection below, the project has the potential to generate thermal plumes which may pose a hazard to aircraft in the project vicinity. Staff is proposing Condition of Certification TRANS-8 requiring notices be included on aviation sectional charts to avoid overflight of the site.

To reduce the potential of aviation hazards during project construction, staff is proposing TRANS-9 which would require the project owner to install obstruction marking and lighting on all construction equipment which may pose an aviation hazard.

SETTING

The ESPFM site is located in the coastal zone of the City of El Segundo in western Los Angeles County. The area is largely built out with a range of residential, commercial and industrial land uses. See the Land Use section for a more thorough discussion of the surrounding land uses. The city of El Segundo roadway system is a predominantly grid network with roadways that connect north to I-105 (Imperial Highway) and east to I-405 (San Diego Freeway). See Traffic and Transportation Figure 1 for a regional map of roadways and surrounding cities.

Construction workforce parking construction laydown areas would be provided on-site and at eight off-site areas. The parking areas are dispersed throughout the city and county of Los Angeles and the City of El Segundo. The proposed parking and laydown areas were previously approved as part of the previously permitted El Segundo Power Redevelopment Project (ESPRP) and are shown in Traffic and Transportation Figure 4. This figure also shows which areas will be used for construction workforce parking and for construction equipment laydown areas.

Construction of the project would require the delivery of large components by way of heavy/oversized trucks from a common rail depot at the Chevron refinery to the project site. The use of heavy/oversized trucks would be subject to the permitting requirements of the jurisdictions listed in the LORS table in TRAFFIC AND TRANSPORTATION Table 1. The roadways that would be affected by the proposed route are listed in TRAFFIC AND TRANSPORTATION Table 2.

Please refer to the Project Description section for a detailed discussion of the existing power generating facilities on-site, project description and a description of the demolition and construction schedule.
LAWS, ORDINANCES, REGULATIONS, AND STANDARDS (LORS)

TRAFFIC AND TRANSPORTATION Table 1 provides a general description of adopted federal, state, and local LORS pertaining to traffic and transportation that apply to the project.

<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td></td>
</tr>
<tr>
<td>Title 49, Code of Federal Regulations, Parts 171-177</td>
<td>Requires proper handling and storage of hazardous materials during transportation.</td>
</tr>
<tr>
<td>Title 14, Code of Federal Regulations, Section 77.13 (2)(i)</td>
<td>This regulation requires notification of the Federal Aviation Administration (FAA) of construction structures with a height greater than 200 feet from grade or greater than an imaginary surface extending outward and upward at a slope of 100 to 1 for a horizontal distance of 20,000 feet from the nearest point of the nearest runway of an airport with at least one runway more than 3,200 feet in length.</td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>California Vehicle Code, Sections 13369, 15275, 15278</td>
<td>Requires licensing of drivers and the classification of license for the operation of particular types of vehicles. A commercial driver’s license is required to operate commercial vehicles. An endorsement issued by the Department of Motor Vehicles (DMV) is required to drive any commercial vehicle identified in Section 15278.</td>
</tr>
<tr>
<td>California Vehicle Code, Sections 31303-31309</td>
<td>Requires transportation of hazardous materials to be on the state or interstate highway that offers the shortest overall transit time possible.</td>
</tr>
<tr>
<td>California Vehicle Code, Sections 31600-31620</td>
<td>Regulates the transportation of explosive materials.</td>
</tr>
<tr>
<td>California Vehicle Code, Sections 32100-32109</td>
<td>Requires shippers of inhalation hazards in bulk packaging to comply with rigorous equipment standards, inspection requirements, and route restrictions.</td>
</tr>
<tr>
<td>California Vehicle Code, Sections 34000-34100</td>
<td>Establishes special requirements for vehicles having a cargo tank and for hazardous waste transport vehicles and containers, as defined in Section 25167.4 of the Health and Safety Code.</td>
</tr>
<tr>
<td>California Vehicle Code, Section 35550-35551</td>
<td>Provides weight guidelines and restrictions vehicles traveling on freeways and highways.</td>
</tr>
<tr>
<td>California Vehicle Code, Section 35780</td>
<td>Requires a single-trip transportation permit to transport oversized or excessive loads over state highways.</td>
</tr>
<tr>
<td>California Streets and Highways Code, Sections 660, 670, 672, 1450, 1460, 1470, 1480 et seq., 1850-1852</td>
<td>Requires encroachment permits for projects involving excavation in state and county highways and city streets.</td>
</tr>
<tr>
<td>California Health and Safety Code, Section 25160</td>
<td>Addresses the safe transport of hazardous materials.</td>
</tr>
<tr>
<td>California Department of Transportation CA Manual of Uniform Traffic Control Devices (MUTCD) Part 6 (Traffic Manual)</td>
<td>Provides traffic control guidance and standards for continuity of function (movement of traffic, pedestrians, bicyclists, transit operations), and access to property/utilities when the normal function of a roadway is suspended.</td>
</tr>
<tr>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>City of El Segundo Circulation Element</td>
<td>The Circulation Element is a required chapter of the General Plan which evaluates the transportation needs of the city and provides a transportation plan to meet those needs.</td>
</tr>
</tbody>
</table>
Applicable Law Description

<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles County Regional Transportation Plan (RTP) Congestion Management Plan (CMP)</td>
<td>A required transportation planning document for urbanized areas with populations of 50,000. The CMP goals are to support regional mobility and air quality objectives by reducing traffic congestion.</td>
</tr>
</tbody>
</table>

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

METHODS AND THRESHOLDS FOR DETERMINING SIGNIFICANCE

Significance criteria used in this document for evaluating environmental impacts are based on the CEQA Guidelines, the CEQA Environmental Checklist for Transportation/Traffic, and applicable LORS used by other governmental agencies. Specifically, staff analyzed whether the proposed project would result in the following:

1. Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume-to-capacity ratio on roads, or congestion at intersections);

2. Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit;

3. Conflict with an applicable congestion management program, including, but not limited to, level of service standards (LOS) and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways;

4. Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment);

5. Result in inadequate emergency access;

6. Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities;

7. Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risk;

8. Produce a thermal plume in an area where flight paths are expected to occur below 1,000 feet from the ground\(^1\); or

9. Have individual environmental effects which, when considered with other impacts from the same project or in conjunction with impacts from other closely related past, present, and reasonably foreseeable future projects, are considerable, compound, or increase other environmental impacts.

1 The FAA recommends that pilots avoid overflight of plume-generating industrial sites below 1,000 feet AGL (FAA 2006).
Critical Roads And Freeways

The City of El Segundo Circulation Element classifies roadways within the city limits as local streets, collector streets, major arterial or secondary arterials. These classifications are based on average daily traffic volumes and roadway design. The regional roadways are shown in Traffic and Transportation Figure 1. The local roadways within the city limits are shown in Traffic and Transportation Figure 2. The purpose of the classification of roadways is to evaluate the existing roadway network within the city and establish roadways for existing and future development to use. The following describes the local and regional roadways that would be used for construction and operational traffic accessing the proposed project site. All project related traffic would utilize adopted truck routes and would avoid all local streets. Below is a list of regional and local facilities that would likely be used as part of the project.

Existing Regional and Local Transportation Facilities

Interstate 405 (I-405) (San Diego Freeway), located about 4 miles east of the project site, is a north-south freeway providing regional access to the coastal communities on the west side of Los Angeles. I-405 has four lanes in each direction, not including the auxiliary lanes. A High Occupancy Vehicle (HOV) lane is provided between Century Boulevard and Vermont Avenue.

Interstate 105 (I-105) (Glenn M. Anderson Freeway), located about 2 miles north of the project site, is an east west freeway extending from Sepulveda Boulevard on the west to the San Gabriel Freeway (I-605) on the east. I-105 provides three mixed flow lanes and one HOV lane in each direction, for a total of eight lanes. The Los Angeles County Metropolitan Transportation Authority (Metro) operates the Metro Green Line commuter rail service, located in the center median of the freeway. The Green Line’s airport station is located at Aviation Boulevard.

Aviation Boulevard is a major arterial, four-lane divided roadway, providing north-south access through the cities of El Segundo and Manhattan Beach.

El Segundo Boulevard is an east-west secondary arterial from Vista Del Mar on the west to Sepulveda Boulevard on the east. It is considered a major arterial east of Sepulveda Boulevard. El Segundo Boulevard is approximately one mile from the project site, and connects traffic from collector streets on the west side of El Segundo to the I-405 and the regional freeway system. The City of El Segundo General Plan identifies El Segundo Boulevard as truck route.

Grand Avenue is an east-west secondary arterial, four-lane undivided roadway from Vista Del Mar on the west to Sepulveda Boulevard. East of Sepulveda Boulevard, Grand Avenue is a six-lane divided roadway.

Imperial Highway is an east-west secondary arterial, four-lane divided roadway from Main Street on the west to Sepulveda Boulevard. East of Sepulveda Boulevard, Imperial Highway is a six-lane divided roadway.
Main Street is a north-south collector road, four-lane undivided roadway from north of Grand Avenue to El Segundo Boulevard.

Rosecrans Avenue is an east-west major arterial, five-lane divided roadway with three westbound lanes and two eastbound lanes from the westerly boundary of the city of Manhattan Beach to Sepulveda Boulevard. East of Sepulveda Boulevard, Rosecrans Avenue is a six-lane divided roadway. Rosecrans Avenue borders the southerly perimeter of the Chevron Refinery.

Sepulveda Boulevard is a north-south eight-lane divided major arterial providing connections to I-405 north of Los Angeles International Airport (LAX) via Howard Hughes Parkway, and to I-105 south of LAX. Sepulveda Boulevard provides access to communities north of LAX (such as Culver City and Westchester) as well as the South Bay communities. Sepulveda Boulevard is designated State Route 1 (SR-1) from Lincoln Boulevard on the north to Pacific Coast Highway on the south.

Vista Del Mar is a north-south secondary arterial, four-lane undivided roadway, and is designated a truck route. Vista Del Mar bounds the easterly perimeter of the project site. Access to the site is via Vista Del Mar at the southerly end of the site.

Truck Route

Project demolition and construction would require truck deliveries and heavy/oversized deliveries for the transportation of equipment and machinery. Truck deliveries would occur in similar number and utilize the previously adopted truck route as part of the licensing of 00-AFC-14. Truck trips would be dispersed throughout the day beginning at 6:00am and continuing until 6:00pm. The maximum number of truck trips per month would be during Month 6 when 29 deliveries per day would be expected.

Heavy/oversized deliveries would arrive via rail at the common shipping depot located at the Chevron Refinery near the project site. These deliveries would occur for five months from Month 5 through 9. The peak deliveries would occur during Month 8 when 19 deliveries are expected to the project site.

A list of the potentially affected roadways for each of the parking lot locations is listed in [TRAFFIC AND TRANSPORTATION Table 2](#) listed below. Table 3.11-1 in the Petition to Amend (PTA) lists the potentially affected roadways based on the locations of off-site parking lots and laydown areas as well as expected travel routes to the project site. This figure is included as [Traffic and Transportation Figure 3](#). Construction workforce will be bused from the off-site parking areas to the project site. Due to the presence of existing military, aeronautical and other large scale industrial activities in the region, local agencies have experience routinely permitting oversize deliveries of comparable size and frequency as those proposed as part of project. The proposed route would follow adopted truck routes in the region and no significant impacts to existing levels of service (LOS) are anticipated. Staff is recommending implementation existing Condition of Certification TRANS-3, which requires the project owner to obtain all necessary transportation permits from affected jurisdictions for the transport of heavy/oversized equipment associated with the project.
Level of Service (LOS)

To quantify the existing baseline traffic conditions, state highways, roadways, and intersections in the study area were analyzed in the Application for Certification (AFC) to determine their operating conditions. Based on the traffic volumes, the turning movement counts, and the existing number of lanes at each intersection, the volume/capacity (V/C) ratios and levels of service (LOS) have been determined for each intersection.

LOS is a qualitative measure describing operational conditions within a traffic stream. It is used to describe and quantify the congestion level on a particular roadway or intersection and generally describes these conditions in terms of such factors as speed or vehicle movement. **TRAFFIC AND TRANSPORTATION Table 3** summarizes roadway LOS for associated V/C ratios.

TRAFFIC AND TRANSPORTATION Table 2

<table>
<thead>
<tr>
<th>Parking Lot</th>
<th>Roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fed Ex Site (2)</td>
<td>Sepulveda Boulevard Aviation Boulevard Nash Street El Segundo Boulevard Mariposa Avenue Grand Avenue</td>
</tr>
<tr>
<td>LAX Pershing Site (3)</td>
<td>Vista Del Mar Pershing Drive Imperial Highway Rosencrans Avenue</td>
</tr>
<tr>
<td>County/ State Beaches (5-8)</td>
<td>Vista Del Mar Imperial Highway Rosencrans Avenue</td>
</tr>
<tr>
<td>W. 190th Street (10)</td>
<td>I-110/ I-405 interchange W. 190th Street Vista Del Mar</td>
</tr>
</tbody>
</table>

Roadways Potentially Affected by Parking and Laydown Areas

TRAFFIC AND TRANSPORTATION Table 3

<table>
<thead>
<tr>
<th>Level of Service</th>
<th>Volume/Capacity (v/c)</th>
<th>Delay per Vehicle (seconds)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≤10</td>
<td>≤ 10</td>
<td>Free flow; insignificant delays</td>
</tr>
<tr>
<td>B</td>
<td>>10 and ≤ 20</td>
<td>>10 and ≤ 20</td>
<td>Stable operation; minimal delays</td>
</tr>
<tr>
<td>C</td>
<td>>20 and ≤ 35</td>
<td>> 20 and ≤ 35</td>
<td>Stable operation; acceptable delays</td>
</tr>
<tr>
<td>D</td>
<td>>35 and ≤ 55</td>
<td>>35 and ≤ 55</td>
<td>Approaching unstable flow; queues develop rapidly but no excessive delays</td>
</tr>
<tr>
<td>E</td>
<td>>55 and ≤ 80</td>
<td>> 55 and ≤ 80</td>
<td>Unstable operation; significant delays</td>
</tr>
<tr>
<td>F</td>
<td>>80</td>
<td>> 80</td>
<td>Forced flow; jammed conditions</td>
</tr>
</tbody>
</table>
Current Roadway Segment Conditions — LOS

Level of service standards for the roadways and intersections in the vicinity of the ESPFM are established by and under the jurisdiction of two different agencies: the Los Angeles County Metro and the City of El Segundo. Staff used these LOS standards to evaluate potential ESPFM-generated traffic impacts. The following is a list of the applicable LOS standards:

- **Los Angeles County Congestion Management Plan (CMP)**
 The CMP, which is under the jurisdiction of Metro, establishes that the lowest acceptable performance standard for CMP intersections is LOS E. One CMP intersection would be potentially affected by the project located at Imperial Highway and El Segundo Boulevard.

- **City of El Segundo Circulation Element**
 The Circulation Element is a required chapter of the city General Plan which evaluates the long-term transportation needs of the city and provides a plan to accommodate those needs. The major Circulation Element Policy C3-1.1 establishes that the minimum acceptable LOS is LOS D. For intersections already operation at LOS E or LOS F, new development should not increase the volume/capacity ratio (V/C) 0.02 or 2 percent of the existing V/C.

OTHER TRANSPORTATION SYSTEMS

Commercial and Passenger Rail

Both commercial and passenger rail lines are located within the city limits of El Segundo. Burlington Northern- Santa Fe (BNSF) and Union Pacific railroads operate spur lines within the project vicinity. BNSF and Union Pacific rail lines may be used for transporting construction materials to the project site.

The Los Angeles County Metropolitan Transit Authority (Metro) operates passenger light rail services countywide. The Metro Green Line runs east-west connecting western beach communities including El Segundo to Los Angeles. Through the city limits, the Green Line runs predominately north south between South Sepulveda Boulevard and South Aviation Boulevard and is nearly entirely built on above grade platforms and overcrossings.

Bus Service

Beach Cities Transit provides local bus service between the Los Angeles International Airport (LAX) through the beach communities of El Segundo, Manhattan Beach, Hermosa Beach, and Redondo Beach. A map showing the location of the nearby public transportation route and rail line is provided in Traffic and Transportation Figure 5.

The City of El Segundo operates a local “Lunchtime Ride” bus service which provides city wide bus service to downtown El Segundo and various business and points of interest within the city.
Bicycle and Pedestrian Facilities
The City of El Segundo provides a comprehensive network of Class I, II, or III (exclusive bike paths or trails, on-street striped lanes, shared ROW) bicycle lanes throughout the city. PCH includes Class II and Class I (off road, paved) bicycle lanes connecting the state and city beaches. Directly to the west of the site along the project site border with the beach is a dedicated bike trail which continues north to Playa del Rey and south to Redondo Beach. The project site abuts Vista del Mar which does not have dedicated or striped bicycle lanes, but does provide pedestrian sidewalks on the east side of the roadway.

Airports/ Helipads
The nearest public airport is LAX, which is approximately 1.5 miles northeast of the project site. There are three private rooftop helipads located in the Pacific Corporate Towers development approximately 1.75 miles west of the project site.

DIRECT/INDIRECT IMPACTS AND MITIGATION
The direct and indirect impacts of the proposed project on traffic and transportation system are discussed in this section and based on an analysis comparing existing conditions with construction and operational conditions. Staff evaluated the project impacts for two separate future scenarios: the peak construction month (when construction activity and employment would be maximized) and the first year of full operation. Roadway segments and intersections were selected for evaluation because they provide the most direct route to the project site and would most likely be affected by project traffic during project construction and operation.

Heavy/ Oversized Loads
As discussed above, the proposed heavy/ oversized load truck trips would occur outside of peak hours during the hours of 10 p.m. to 4 a.m. Oversized or overweight trucks with unlicensed drivers could present significant hazards to the general public and/or damage roadways. To ensure that the petitioner complies with weight, size, and route limitations set by the City of El Segundo, county of Los Angeles and Caltrans, staff recommends existing Condition of Certification TRANS-1 to require the project owner to obtain roadway permits for vehicle sizes and weights, driver licensing, and truck routes. Upon implementation of TRANS-1, the applicant would be required to adhere to all size and weight limitations for construction vehicles, therefore there would be less than significant impacts resulting from heavy/ oversized loads associated with the ESPFM.

Truck Traffic
The number of truck trips associated with the project is estimated to be similar to the number of trips expected as part of the original project licensing 00-AFC-14 and the subsequent amended project. The petitioner estimates a maximum of 29 monthly truck trips during Month 6 of the construction phase. Deliveries would be dispersed during the day from 6:00am to 6:00pm.

Standard sized and licensed trucks could damage roadways, creating significant public hazards; for this reason, staff has recommended existing Condition of Certification
TRANS-7, which requires that the project owner repair and restore all roads damaged during construction activities. Based on the minimal increase in truck traffic associated with the proposed amendment and upon continued implementation of conditions of certification TRANS-1 and TRANS-7, there would be no additional impacts from truck traffic.

Construction Traffic
The ESPFM demolition and construction period is anticipated to last 30 months. The peak construction period would be Months 17 through 23 where 500 works per day are expected (NRG 2013a).

Based on the traffic study prepared as part of the original project AFC and recent traffic studies conducted in the project vicinity, the following affected intersections are currently operating at LOS E or worse:

- Sepulveda Boulevard/ Imperial Highway
- Sepulveda Boulevard/ Grand Avenue
- Sepulveda Boulevard/ El Segundo Boulevard
- Sepulveda Boulevard/ Rosencrans Avenue
- Aviation Boulevard/ El Segundo Boulevard
- Aviation Boulevard/ Rosencrans Boulevard

The petitioner has indicated that the preferred off-site parking area would be located at 777 W. 190th Street in the City of Gardena (NRG 2013a). This site is listed as Parking Area 10 (190th Street) in Traffic and Transportation Figure 4. The site is approximately 12 acres in size and is equipped with perimeter fencing and night lighting. Access from this site to the project site would occur via I-405 and I-110 to Imperial Highway. Imperial Highway terminates at Vista del Mar which provides direct access to the project site. Using this as the preferred construction workforce parking area would minimize the impacts to local roadways and would not increase the vehicle/capacity ratio by 2 percent and would therefore be consistent with the City of El Segundo LORS.

To avoid worsening the LOS at these intersections, staff is recommending existing Condition of Certification TRANS-4, which requires the project owner to implement a parking and staging plan and TRANS-5, which requires a traffic control plan (TCP). The TCP requires the project owner to monitor affected intersections and provide alternate routes and if necessary avoid the existing failing intersections. The applicant would be required to maintain flagpersons along Vista Del Mar to address any temporary lane closures and redirect traffic to reduce potential impacts during project construction. Upon implementation of the parking and staging plan and the TCP, temporary construction traffic would be less than significant.

Linear Facilities
The ESPFM would utilize a site already developed with an electrical generating facility. No new off-site linears would be required that will affect the transportation roadway system in the project area. There would be no traffic impacts associated with the construction of off-site linears as part of the project.
Transportation of Hazardous Materials and Waste

The project would involve hazardous materials deliveries in similar quantity and frequency as the existing ESEC. The project owner would continue to deliver hazardous waste along adopted truck routes and maintain all necessary permits in accordance with TRANS-3. Please refer to the Hazardous Materials Management section for a detailed description of hazardous waste associated with the project and proposed conditions of certification for the ESPFM.

Aviation Impacts

The ESPFM site is approximately 1.5 miles south of the Los Angeles International Airport (LAX). There would be no aviation impacts anticipated as part of the construction of ESPFM. Title 14, Part 77 of the Code of Federal Regulations requires FAA notification for any proposed construction feature that would be 200 feet or taller above ground level or penetrate the 100:1 imaginary horizontal plane from the nearest LAX runway. During project construction, cranes or other tall construction equipment may be used which pose a hazard to aviation in the project area. For project compliance with FAA regulations, staff is proposing Condition of Certification TRANS-9, which would require the project owner to install and maintain obstruction marking and lighting on all equipment that would exceed height thresholds in accordance with FAA standards.

ESPFM Construction Impacts Conclusion

With implementation of the existing and proposed conditions of certification discussed in this analysis, construction of the ESPFM would result in less than significant impacts to the traffic and transportation system in the project vicinity.

Operational Impacts and Mitigation

Workforce Traffic

The ESPFM would not increase the number of workers on-site. Currently there are 50 operational employees at the plant. Following construction of the proposed Units 9, 10, 11 and 12 the facility would continue to employ 50 employees (NRG 2013b). There would be no impact from operational workforce as part of the amendment.

Truck Traffic and Hazardous Materials Delivery

The ESPFM would discontinue the use of once-through-cooling as part of facility operations. The removal of this project component would eliminate the need for on-site chlorine for biological growth control. Also, the more efficient turbines would reduce the number of aqueous ammonia truck trips to the project site. Other hazardous materials deliveries and truck traffic would occur in similar numbers as presently occurring. Continued conformance with adopted Conditions of Certification TRANS-3 and TRANS-6 would ensure deliveries occur along adopted truck routes and the project owner would obtain all necessary permits for the delivery of hazardous materials to the site. No new impacts related to truck traffic and hazardous materials are anticipated. The handling of hazardous substances is also discussed in the Waste Management, Worker Safety and Fire Protection, and Hazardous Materials Management sections.
Parking
The ESPFM would not increase the number of workers needed on-site. All operational workforce parking would be provided on-site. As shown in Figure 2-3a “Grading Plan-Key Plan” included in the PTA, workforce parking would be provided on the graded and paved area where the oil tanks have since been removed. No impacts to parking are anticipated as part of the amendment. For more information about LORS related to parking, see the Land Use section for a discussion of parking requirements.

Emergency Access
Energy Commission staff does not anticipate emergency access issues associated with the proposed amendment. The proposed amendment would not alter the existing primary access from Vista del Mar and would not alter the secondary gated emergency access through the Chevron facility north of the site.

Airport Operations and Hazards
Title 14, Part 77 of the Code of Federal Regulations requires FAA notification for any proposed structure that would be 200 feet or taller above ground level (AGL) or that would extend beyond the 100:1 imaginary slope from the nearest point of the nearest airport runway. The nearest airport is LAX which is approximately 1.5 miles from the site. The petitioner proposes three new 210 foot tall stacks for Units 5 through 10 and two new 150 foot tall stacks for Units 11 and 12. The new stacks would exceed the 100:1 imaginary slope and may pose a hazard to LAX flight activities and small private aircraft in the area. Existing Condition of Certification TRANS-6 requires the project owner to submit the required Form 7460-1, Notice of Proposed Construction or Alteration to the FAA and comply with the appropriate lighting and marking requirements for the new stacks.

Upon compliance with the recommended FAA marking and lighting requirements, there will be no significant impacts to airport operations.

Thermal Plumes
The project would include gas turbines and dry cooling towers which have the potential to generate thermal plumes during worst case conditions. These conditions would be full plant operation during periods of calm or very low wind speeds and cool temperatures. High velocity thermal plumes have the potential to affect aviation safety and the FAA has amended the Aeronautical Information Publication to establish thermal plumes as flight hazards. Aircraft flying through thermal plumes may experience significant air disturbances, such as turbulence and vertical shear. Due to the close proximity with LAX there is a potential for low flying aircraft to be affected by the thermal plumes.

Energy Commission staff uses a 4.3 meters per second (m/s) vertical velocity threshold for determining whether a plume may pose a hazard to aircraft. This velocity generally defines the point at which general aviation aircraft begin to experience more than light turbulence. Exhaust plumes with high vertical velocities may damage aircraft airframes or cause turbulence resulting in loss of aircraft control and maneuverability (FAA 2006).
The plume velocity analysis conducted by staff concludes that the plumes generated by the project would exceed 4.3 m/s between 870 feet and 2,020 feet above ground level (AGL) under worst case conditions. This would generate a potential impact to aircraft if they were to fly over at low altitude. Therefore, staff has proposed Condition of Certification TRANS-8 which would require notification in accordance with FAA requirements to advise pilots of the potential overflight hazard associated with thermal plumes generated by the project and the need to avoid overflight below 2,020 feet AGL. Notification requirements may include issuance of a Notice to Airmen (NOTAM), revision to local sectional charts, and addition of a new remark to the Automated Surface Observing System (ASOS). Upon implementation of TRANS-8 the potential impacts to aviation would be less than significant. Based on the small number of aircraft and helicopters likely to fly over the project and the presence of available flight paths to avoid the thermal plumes, pilots would have the ability to safely avoid the thermal plumes. See Appendix TT-1 for detailed results of staff’s plume velocity analysis for the project.

ESPFM OPERATION IMPACTS CONCLUSION

With continued implementation of the approved conditions of certification and the addition of TRANS-8 as discussed above, impacts to ground and air transportation from the operation of the project would be less than significant.

Cumulative Traffic Impacts

A project may result in a significant adverse cumulative impact when its effects are cumulatively considerable. Cumulatively considerable means that the incremental effects of an individual project are significant when viewed in connection with the effects of (1) past projects; (2) other current projects; and (3) probable future projects (California Code of Regulations, Title 14, Section 15130).

To analyze the cumulative effect of the project with reasonably foreseeable projects, Section 15130(b) of the CEQA Guidelines allows a lead agency to analyze cumulative impacts by either:

(A) A list of past, present, and probable future projects producing related or cumulative impacts, including, if necessary, those projects outside the control of the agency, or

(B) A summary of projections contained in an adopted local, regional or statewide plan, or related planning document, that describes or evaluates conditions contributing to the cumulative effect.

Staff reviewed known past, current, and probable future projects in the vicinity of the proposed project, which staff defined as the City of El Segundo, and the portion of Los Angeles County bounded south by I-105, west by I-405, and north of the City of Manhattan Beach. Trips generated by these projects occur within the transportation network affected by the project and may have cumulative impacts to the level-of-service (LOS) of nearby highways, roadways, and intersections. These roadways are identified
in *Traffic and Transportation Figure 2*. The cumulative projects are listed in *TRAFFIC AND TRANSPORTATION Table 4* below.

The projects listed in the cumulative list below have been taken from a master list compiled by staff. The projects that have been excluded from consideration are either not located within the geographic area identified for the traffic and transportation analysis or do not include construction traffic that would combine with ESPFM-related traffic.

As discussed above, staff has determined that upon implementation of the recommended Conditions of Certification TRANS-1 through TRANS-9, all traffic related direct impacts would be less than significant. All direct impacts with ESPFM have been mitigated and the project's incremental effects would not be cumulatively considerable.
<table>
<thead>
<tr>
<th>Label ID</th>
<th>Status</th>
<th>Project Name</th>
<th>Project Description</th>
<th>Location</th>
<th>Distance (Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Completed/ Past</td>
<td>El Segundo Redevelopment of power plant Units 1 and 2.</td>
<td>301 Vista Del Mar, El Segundo 0.19</td>
<td>162 West El Segundo Blvd., El Segundo 0.49</td>
<td>324 West El Segundo Blvd., El Segundo 0.58</td>
</tr>
<tr>
<td>Label ID</td>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Distance (Miles)</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>15</td>
<td>Planned</td>
<td>EA-890, El Segundo Unified School District</td>
<td>304 Senior housing/assisted living facility up to 175,000 sq. ft.</td>
<td>540 E. Imperial Ave., El Segundo</td>
<td>1.72</td>
</tr>
<tr>
<td>18</td>
<td>Planned</td>
<td>EA-912</td>
<td>New 3,714 sq. ft. restaurant with drive through; parking and landscaping redesign; outdoor dining</td>
<td>600 - 630 North Sepulveda Blvd., El Segundo</td>
<td>1.93</td>
</tr>
<tr>
<td>19</td>
<td>Planned</td>
<td>Cambria Suites, EA-844</td>
<td>152 room hotel – 71,000 sq. ft.</td>
<td>199 Continental Blvd., El Segundo</td>
<td>1.99</td>
</tr>
<tr>
<td>20</td>
<td>Foreseeable</td>
<td>EA-905, Raytheon Campus Specific Plan</td>
<td>Approx. 2.1 million (2,142,457) square-foot Office Park Expansion (office, retail, warehouse, light industrial).</td>
<td>2100 El Segundo Boulevard, El Segundo</td>
<td>2.00</td>
</tr>
<tr>
<td>21</td>
<td>Foreseeable</td>
<td>EA-986, Mattel</td>
<td>R&D and office, 14 stories, 300,000 sq. ft., 810-space parking structure-8-stories</td>
<td>455 Continental Blvd. and 19055 E. Grand Ave., El Segundo</td>
<td>2.00</td>
</tr>
<tr>
<td>22</td>
<td>Planned/Present</td>
<td>EA-981</td>
<td>Office, 194,119 sq. ft.</td>
<td>1700 East Imperial Ave., El Segundo</td>
<td>2.07</td>
</tr>
<tr>
<td>23</td>
<td>Foreseeable</td>
<td>EA-997, Hotel</td>
<td>5-story, 190 room hotel, 107,090 sq. ft.</td>
<td>888 North Sepulveda, El Segundo</td>
<td>2.13</td>
</tr>
<tr>
<td>25</td>
<td>Planned/Present</td>
<td>Central Utility Plant Replacement</td>
<td>Replace the 50-year old existing Central Utility Plant (CUP) with a more modern and energy efficient facility</td>
<td>LAX, Los Angeles</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td>Planned/Present</td>
<td>New Tom Bradley International Terminal</td>
<td>18 new gates to the west side of the Tom Bradley International Terminal, great hall for dining and retail shopping.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned/Present</td>
<td>Elevator, Escalator, and Moving Walkway Modernization</td>
<td>Refurbish 212 outdated systems with new, modern units throughout the airport; new escalators, elevators, and walkways</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned/Present</td>
<td>Terminal 5 Renovation</td>
<td>Completed new in-line baggage screening system, expansion of passenger screening check points, and international passenger processing facilities. Renovate baggage claim areas, ticketing/check-in lobby, boarding gates, and other parts of passenger security screening area. Replace 13 bridges.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label ID</td>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Distance (Miles)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>---</td>
<td>--</td>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Planned/Present</td>
<td>LAX Curbside Appeal Project</td>
<td>Phase 1: New Canopy, landscaping, light band, and new light poles in front of Tom Bradley International Terminal; Phase 2: Light band, light poles, and canopies in front of the terminal in the LAX Central Terminal Area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned/Present</td>
<td>Runway Status Lights</td>
<td>With completion of the installation of the prototype runway status lights in 2009, the full system will be installed. Runway status lights use a series of red lights embedded in the pavement to warn pilots if it is unsafe to cross or enter a runway, or to take off.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Planned/Present</td>
<td>EA-971</td>
<td>Data Center, addition of 75,435 sq. ft., demo of 11,769 sq. ft. out of existing for new total sq. ft. of 180,422.</td>
<td>444 N Nash St., El Segundo</td>
<td>2.33</td>
</tr>
<tr>
<td>27</td>
<td>Foreseeable</td>
<td>West Aircraft Maintenance Area</td>
<td>Replace existing facilities and consolidate maintenance operations; paved area for aircraft parking, maintenance hangars, 300-space employee parking lot, storage, equipment related facilities, and ground run-up enclosure.</td>
<td>LAX, Los Angeles</td>
<td>2.35</td>
</tr>
<tr>
<td></td>
<td>Foreseeable</td>
<td>Midfield Satellite Concourse North</td>
<td>Phase 1 of the MSC Program (northern portion of the MSC facility and associated improvements). Project components include a concourse for up to 11 gates and assoc. facilities; improvements to taxiways and taxilanes; ramp tower or FAA supplemental airport traffic control tower; and utilities to support the North MSC facility.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreseeable</td>
<td>LAX Runway 7L/25R Runway Safety Area (RSA) Project & Associated Improvements</td>
<td>1) Extend Runway 7L/25R pavement; grade and compact the RSA; construct blast pad west of Runway 7L extension; several taxiways modifications as necessary; relocate existing Localizer Antenna and shelter to the west; replace existing Approach Lighting System (ALS) towers with in-pavement lights; and modify existing Runway and Taxiway lighting and markings in newly constructed pavements; 2) Reconstruct pavement of eastern portions of Runway 7L/25R and Taxiway B including connecting taxiways and installation of in-pavement approach lights; 3) Reconstruct pavement of aircraft parking apron west of Air Freight Building No. 8, including new markings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foreseeable</td>
<td>LAX Runway 6L-24R Safety Area & Associated Improvements</td>
<td>Improve Runway 6L-24R and service roads to bring runway into compliance with applicable FAA design criteria.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Planned/Present</td>
<td>Wiseburn High School</td>
<td>New high school, 180,000 to 240,000 sq. ft.</td>
<td>201 North Douglas, El Segundo</td>
<td>2.37</td>
</tr>
<tr>
<td>29</td>
<td>Foreseeable</td>
<td>EA-1021</td>
<td>625,205 sq. ft. total; 611,545 sq. ft. office, 12,660 sq. ft. retail</td>
<td>710 North Nash St., El Segundo</td>
<td>2.38</td>
</tr>
<tr>
<td>30</td>
<td>Foreseeable</td>
<td>EA-1040</td>
<td>28,406 sq. ft. office, 33,475 sq. ft. light industrial, total 61,881 sq. ft.</td>
<td>400 Duley Rd. El Segundo</td>
<td>2.45</td>
</tr>
<tr>
<td>Label ID</td>
<td>Status</td>
<td>Project Name</td>
<td>Project Description</td>
<td>Location</td>
<td>Distance (Miles)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>31</td>
<td>Planned/ Present</td>
<td>EA-784</td>
<td>Data Center, 332,137 sq. ft.</td>
<td>445 N Douglas Street, El Segundo</td>
<td>2.45</td>
</tr>
<tr>
<td>32</td>
<td>Planned/ Present</td>
<td>EA-1001</td>
<td>Creative office. 2355 Utah: Convert existing 42,548 sq. ft. to all office, add 1687 sq. ft. 2383 Utah: Convert existing 152,506 sq. ft. to all office, add 6850 sq. ft.</td>
<td>2355 Utah and 2383 Utah Ave., El Segundo</td>
<td>2.53</td>
</tr>
<tr>
<td>35</td>
<td>Foreseeable</td>
<td>Redondo Beach Energy Project</td>
<td>Natural gas fired air-cooled 496-megawatt electrical generating facility. Project would require demolition of existing power plant and construction of project.</td>
<td>Redondo Beach Generating Station site, Redondo Beach</td>
<td>4.30</td>
</tr>
</tbody>
</table>
COMPLIANCE WITH LORS

TRAFFIC AND TRANSPORTATION Table 5 provides an assessment of the project compliance with applicable laws, ordinances, and regulations (LORS) pertaining to traffic and transportation.

<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title 49, Code of Federal Regulations, Parts 171-177</td>
<td>Requires proper handling and storage of hazardous materials during transportation.</td>
<td>Consistent. The project owner would conform to this law by requiring shippers of hazardous materials to use the required markings on their transportation vehicles. Also, TRANS-3 ensures compliance by requiring the project owner to contract with licensed hazardous material and waste hauler companies.</td>
</tr>
<tr>
<td>Title 14, Code of Federal Regulations, Section 77.13 (2)(i)</td>
<td>This regulation requires the project owner to notify the Federal Aviation Administration (FAA) of construction structures with a height greater than 200 feet from grade or greater than an imaginary surface extending outward and upward at a slope of 100 to 1 from the nearest point of the nearest runway of an airport with at least one runway more than 3,200 feet in length.</td>
<td>Consistent. The project may include structures that would exceed the 100:1 slope threshold of an operating airport. TRANS-6 would require the project owner to submit applications to the FAA and comply with all marking and lighting requirements.</td>
</tr>
<tr>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Vehicle Code, Sections 13369, 15275, 15278</td>
<td>Requires licensing of drivers and the classification of license for the operation of particular types of vehicles. A commercial driver’s license is required to operate commercial vehicles. An endorsement issued by the Department of Motor Vehicles (DMV) is required to drive any commercial vehicle identified in Section 15278.</td>
<td>Consistent. The project owner would require that contractors and employers be properly licensed and endorsed when operating such vehicles. TRANS-1, which requires proper driver licensing, ensures compliance.</td>
</tr>
<tr>
<td>California Vehicle Code, Sections 31303-31309</td>
<td>Requires transportation of hazardous materials to be on the state or interstate route that offers the shortest overall transit time possible.</td>
<td>Consistent. The project owner would require shippers of hazardous materials to use the shortest route possible to and from the project site. The proposed routes are consistent with this requirement. Also, TRANS-3 (see above for explanation) ensures compliance.</td>
</tr>
<tr>
<td>Applicable Law</td>
<td>Description</td>
<td>Consistency</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>California Vehicle Code, Sections 31600-31620</td>
<td>Regulates the transportation of explosive materials.</td>
<td>Consistent. The project would not use explosive materials as defined in Section 12000 of the Health and Safety Code.</td>
</tr>
<tr>
<td>California Vehicle Code, Sections 32100-32109</td>
<td>Requires shippers of inhalation hazards in bulk packaging comply with rigorous equipment standards, inspection requirements, and route restrictions.</td>
<td>Consistent. The project owner would require shippers of inhalation hazards (including ammonia) to comply with all route restrictions, equipment standards, and inspection requirements. Also, TRANS-3 (see above for explanation) requires compliance.</td>
</tr>
<tr>
<td>California Vehicle Code, Sections 34000-34100</td>
<td>Establishes special requirements for vehicles having a cargo tank and for hazardous waste transport vehicles and containers, as defined in Section 25167.4 of the Health and Safety Code.</td>
<td>Consistent. The project owner would require shippers of hazardous materials to maintain their hazardous material transport vehicles in a manner that would enable the vehicles to pass California Highway Patrol inspections. Also, TRANS-3 (see above for explanation) requires compliance.</td>
</tr>
<tr>
<td>California Vehicle Code, Section 35550</td>
<td>Regulates weight guidelines and restrictions upon vehicles traveling on freeways and highways. A single axle load shall not exceed 20,000 pounds, the load on any one wheel or wheels supporting one end of an axle is limited to 10,500 pounds, and the front steering axle load is limited to 12,500 pounds.</td>
<td>Consistent. The project owner would ensure compliance with weight restrictions and would require heavy haulers to obtain necessary permits prior to delivery of any heavy haul load. Also, TRANS-1 (which requires the project owner to comply with limitations on vehicle sizes and weights, driver licensing, and truck routes) requires compliance.</td>
</tr>
<tr>
<td>California Vehicle Code, Section 35551</td>
<td>Defines the maximum overall gross weight as 80,000 pounds and mandates that the gross weight of each set of tandem axles not exceed 34,000 pounds.</td>
<td>Consistent. The project owner would require compliance with weight restrictions and would require heavy haulers to obtain necessary permits prior to delivery of any heavy haul load. Also, TRANS-1 (see above for explanation) requires compliance.</td>
</tr>
<tr>
<td>California Vehicle Code, Section 35780</td>
<td>Requires a single-trip transportation permit to transport oversized or excessive loads over state highways.</td>
<td>Consistent. The project owner would comply with this code by requiring that heavy haulers obtain a Single-Trip Transportation Permit for oversized loads. Also, TRANS-1 (see above for explanation) requires compliance.</td>
</tr>
<tr>
<td>California Streets and Highways Code, Sections 660, 670, 672, 1450, 1460, 1470, 1480 et seq., 1850-1852</td>
<td>Requires encroachment permits for projects involving excavation in state and county highways and city streets.</td>
<td>Consistent. The project owner would comply by acquiring the necessary permits and approval from Caltrans, the</td>
</tr>
<tr>
<td>Applicable Law</td>
<td>Description</td>
<td>Consistency</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>California Health and Safety Code, Section 25160</td>
<td>Addresses the safe transport of hazardous materials</td>
<td>Consistent.</td>
</tr>
<tr>
<td>City of El Segundo and county of Los Angeles with regard to encroachment into public rights-of-way, as required by TRANS-2.</td>
<td>TRANS-2 would require the project owner to comply by requiring that shippers of hazardous wastes are properly licensed by the Department of Toxic Substances Control (DTSC), and that hazardous waste transport vehicles are in compliance with DTSC requirements.</td>
<td>Consistent.</td>
</tr>
<tr>
<td>California Department of Transportation CA MUTCD Part 6 (Traffic Manual)</td>
<td>Provides traffic control guidance and standards for continuity of function (movement of traffic, pedestrians, bicyclists, transit operations), and access to property/utilities when the normal function of a roadway is suspended.</td>
<td>Consistent.</td>
</tr>
<tr>
<td>County of Los Angeles Health and Safety Code, Section 25160</td>
<td>TRANS-3 would require the project owner to comply by requiring that shippers of hazardous wastes are properly licensed by the Department of Toxic Substances Control (DTSC), and that hazardous waste transport vehicles are in compliance with DTSC requirements.</td>
<td>Consistent.</td>
</tr>
<tr>
<td>City of El Segundo General Plan, Chapter III Circulation Element</td>
<td>Policy C3-1.2 Requires development projects to provide associated road improvements necessary to achieve a level of service of “D” at all intersections except for those intersections identified in the General Plan as already operating below LOS D during peak hours. Impacts to already failing intersections are considered significant if development increases the Volume/Capacity (V.C) ratio 0.02 or greater.</td>
<td>Consistent.</td>
</tr>
<tr>
<td>Los Angeles County Code, Title 16- Highways, Chapter 16.22 Moving Permits, 16.22.030 Moving Permit issuance conditions for overweight loads.</td>
<td>Requires an oversize vehicle permit issued by the director of public works for operation of vehicles that exceed weight or measurement requirements of the Vehicle Code within Los Angeles County.</td>
<td>Consistent.</td>
</tr>
<tr>
<td>NOTEWORTHY PUBLIC BENEFITS</td>
<td>Staff has not identified any traffic-related benefits associated with the proposed ESPFM project.</td>
<td></td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>Staff has analyzed the proposed ESPFM’s impacts to the nearby traffic and transportation system. With implementation of the adopted conditions of certification listed below, the ESPFM would comply with all applicable LORS related to traffic and</td>
<td></td>
</tr>
</tbody>
</table>

March 2014 4.10-21 TRAFFIC AND TRANSPORTATION
transportation and would result in less than significant impacts to the traffic and transportation system.

1. Implementation of Condition of Certification TRANS-1 would require the project owner to comply with applicable jurisdictions’ requirements of vehicle size and weights, vehicle licensing, truck routes and other applicable limitations. The project owner would also be required to obtain all necessary transportation permits for roadway use.

2. Implementation of Condition of Certification TRANS-2 would require the project owner to obtain all necessary encroachment permits through Caltrans, the City of El Segundo or other applicable jurisdiction.

3. Implementation of Condition of Certification TRANS-3 would require the project owner to obtain all necessary permits from the California Highway Patrol and Caltrans for the transportation of hazardous materials.

4. Implementation of Condition of Certification TRANS-4 would require the project owner to prepare and implement a parking and staging plan to ensure that all construction related equipment staging and parking occur in designated on-site and off-site parking areas.

5. Implementation of Condition of Certification TRANS-5 would require the project owner to prepare and implement a traffic control plan (TCP) that would ensure sufficient parking during project construction and operation. The TCP would require that the project owner to address timing of equipment deliveries, arrival timing of employees, travel lane closures and maintain adequate emergency access for the duration of project construction and operation.

6. Implementation of Condition of Certification TRANS-6 would require the project owner to implement all necessary obstruction marking and lighting in accordance with FAA requirements.

7. Implementation of Condition of Certification TRANS-7 would require the project owner to restore any road, easement or right-of-way damaged by project construction.

8. Implementation of Condition of Certification TRANS-8 would require the project owner to advise pilots of the potential aviation hazards associated with thermal plumes and to avoid overflight of the facility below 2,020 feet.

9. Implementation of Condition of Certification TRANS-9 would require the project owner to install obstruction marking and lighting on all construction equipment which may pose an aviation hazard during project construction.
PROPOSED CONDITIONS OF CERTIFICATION

TRANS-1 The project owner shall comply with Caltrans and other relevant jurisdictions limitations on vehicle sizes and weights. In addition, the project owner or its contractor shall obtain necessary transportation permits from Caltrans and all relevant jurisdictions for roadway use.

Verification: In the Monthly Compliance Reports, the project owner shall submit copies of any permits received during that reporting period. In addition, the project owner shall retain copies of these permits and supporting documentation in its compliance file for at least six months after the start of commercial operation.

TRANS-2 The project owner or its contractor shall comply with Caltrans and other relevant jurisdictions limitations for encroachment into public rights-of-way and shall obtain necessary encroachment permits from Caltrans and all relevant jurisdictions.

Verification: In Monthly Compliance Reports, the project owner shall submit copies of permits received during the reporting period. In addition, the project owner shall retain copies of these permits and supporting documentation in its compliance file for at least six months after the start of commercial operation.

TRANS-3 The project owner shall ensure that permits and/or licenses are secured from the California Highway Patrol and Caltrans for the transport of hazardous materials.

Verification: The project owner shall include in its Monthly Compliance Reports, copies of all permits/licenses acquired by the project owner and/or subcontractors concerning the transport of hazardous substances.

TRANS-4 During construction of the power plant and all related facilities, the project shall develop a parking and staging plan for all phases of project construction to enforce a policy that all project-related parking occurs on-site or in designated off-site parking areas.

Verification: At least 60 days prior to start of site mobilization, the project owner shall submit the plan to the City of El Segundo and other jurisdiction affected by site selection, such as the City and/or County of Los Angeles for review and comment, and to the CPM for review and approval.

TRANS-5 The project owner shall consult with the Cities of El Segundo, Manhattan Beach and Los Angeles, and prepare and submit to the CPM for approval a construction traffic control plan and implementation program which addresses the following issues:

- Timing of heavy equipment and building materials deliveries;
- Redirecting construction traffic with a flagperson;
- Signing, lighting, and traffic control device placement if required;
- Need for construction work hours and arrival/departure times outside of
peak traffic periods;
• Ensure access for emergency vehicles to the project site;
• Temporary travel lane closure; and
• Access to adjacent residential and commercial property during the construction of all linears.

Verification: At least 30 days prior to site mobilization, the project owner shall provide to the CPM a copy of the referenced documents.

TRANS-6 The HRSG stacks shall have all the lighting and marking required by the Federal Aviation Authority (FAA) so that the stacks do not create a hazard to air navigation.

The project owner shall submit to the FAA Form 7460-1, Notice of Proposed Construction or Alteration and supporting documents on how the project plans to comply with stack lighting and marking requirements imposed by the FAA.

Verification: At least 30 days prior to the start of construction, the project owner shall provide copies of the FAA Form 7460-1 with copies of the FAA response to Form 7460-1, to the CPM and the City of El Segundo Planning Department.

TRANS-7 Following completion of ESPR project construction, the applicant shall repair any damage to the segment of Vista Del Mar and other roadways affected by linear construction activity along with the primary roadways identified in the traffic control plan for construction traffic to the road’s pre-project construction condition.

Prior to start of construction, the project owner shall photograph, videotape or digitally record images of Vista Del Mar and the roadways that will be affected by linear construction and heavy construction traffic. The project owner shall provide the Compliance Project Manager (CPM), and the Cities of El Segundo, Manhattan Beach and Los Angeles with a copy of the images for the roadway segments under their jurisdiction. Prior to start of construction, the project owner shall also notify the Cities of El Segundo, Manhattan Beach and Los Angeles about the schedule for project construction. The purpose of this notification is to postpone any planned roadway resurfacing and/or improvement projects until after the project construction has taken place and to coordinate construction related activities associated with other projects.

Verification: Within 30 days after completion of the redevelopment project, the project owner shall meet with the CPM and the cities of El Segundo, Manhattan Beach, and Los Angeles to determine and receive approval for the actions necessary and schedule to complete the repair of identified sections of public roadways to original or as near original condition as possible. Following completion of any regional road improvements, the project owner shall provide to the CPM a letter from the Cities of El Segundo, Manhattan Beach and Los Angeles if work occurred within their jurisdictional public right of way stating their satisfaction with the road improvements.
TRANS-8 Pilot Notification and Awareness The project owner shall initiate the following actions to ensure pilots are aware of the project location and potential hazards to aviation:

- Submit a letter to the FAA requesting a Notice to Airmen (NOTAM) be issued advising pilots of the location of the ESEC and recommending avoidance of overflight of the project site below 2,020 feet above grade level (AGL). The letter should also request that the NOTAM be maintained in active status until all navigational charts and Airport Facility Directories (AFDs) have been updated.

- Submit a letter to the FAA requesting a power plant depiction symbol be placed at the ESEC site location on the Los Angeles Sectional Chart with a notice to “avoid overflight below 2,020 feet AGL”.

- Request that Southern California TRACON submit aerodrome remarks describing the location of the ESEC and advising against direct overflight below 2,020 feet AGL to the:
 - FAA AeroNav Services, formerly the FAA National Aeronautical Charting Office (Airport/Facility Directory)
 - Jeppesen Sanderson Inc. (JeppGuide Airport Directory, Western Region)
 - Airguide Publications (Flight Guide, Western States)

Verification: Within 30 days following the start of construction, the project owner shall submit draft language for the letters of request to the FAA (including Southern California TRACON) to the CPM for review and approval.

At least 60 days prior to the start of operations, the project owner shall submit the required letters of request to the FAA and request that Southern California TRACON submit aerodrome remarks to the listed agencies. The project owner shall submit copies of these requests to the CPM. A copy of any resulting correspondence shall be submitted to the CPM within 10 days of receipt.

If the project owner does not receive a response from any of the above agencies within 45 days of the request (or by 15 days prior to the start of operations) the project owner shall follow up with a letter to the respective agency/ies to confirm implementation of the request. A copy of any resulting correspondence shall be submitted to the CPM within 10 days of receipt.

The project owner shall contact the CPM within 72 hours if notified that any or all of the requested notices cannot be implemented. Should this occur, the project owner shall appeal such a determination, consistent with any established appeal process and in consultation with the CPM. A final decision from the jurisdictional agency denying the request, as a result of the appeal process, shall release the
project owner from any additional action related to that request and shall be
deemed compliance with that portion of this condition of certification.

TRANS-9 Obstruction Marking and Lighting
The project owner shall install obstruction marking and lighting on any construction equipment and permanent structures that exceed 80 feet in height in accordance with FAA requirements, as expressed in the following documents:

- FAA Advisory Circular 70/7460-1K
- FAA Safety Alert for Operators (SAFO) 09007.

Lighting shall be operational 24 hours a day, 7 days a week for the duration of project construction and operation. Upgrades to the required lighting configurations, types, location, or duration shall be implemented consistent with any changes to FAA obstruction marking and lighting requirements.

Verification: At least 10 days prior to start of operations, the project owner shall provide the CBO and CPM proof in writing of approval by the FAA for all structure marking and lighting.
REFERENCES

INTRODUCTION

The following provides the assessment of the proposed new gas turbines with heat recovery steam generator (HRSG) and auxiliary boiler exhaust stack plume velocities at El Segundo Energy Center (ESEC). Energy Commission staff (staff) completed calculations to determine the worst-case vertical velocities at different heights above the stacks using the project owner’s proposed gas turbines/HRSGs design.

PROJECT DESCRIPTION

The facility owner proposes to replace existing boiler Units 3 and 4 with a GE 7FA combined-cycle gas combustion turbine generator with HRSG and two Rolls Royce Trent 60 simple-cycle gas turbines. Cooling for the combined-cycle unit would be provided by a Heller dry cooling tower system. The combined-cycle unit would also include a small auxiliary boiler rated at 36 MMBtu/hr to reduce start-up duration.

PLUME VELOCITY CALCULATION METHOD

Staff has selected a calculation approach from a technical paper (Best 2003) to estimate the worst-case plume vertical velocities for the proposed new ESEC exhausts. The calculation approach, which is also known as the “Spillane approach”, used by staff is limited to calm wind conditions, which are the worst-case wind conditions. The Spillane approach uses the following equations to determine vertical velocity for single stacks during dead calm wind (i.e. wind speed = 0) conditions:

\[(1) (V^*a)^3 = (V^*a)^3 + 0.12*F_o*[((z-z_v)^2-(6.25D-z_v)^2)]\]
\[(2) (V^*a)_o = \frac{V_{exit}*D/2*(T_a/T_s)^{0.5}}{F_o}\]
\[(3) F_o = g*V_{exit}*D^2*(1-T_a/T_s)/4\]
\[(4) z_v = 6.25D*[1-(T_a/T_s)^{0.5}]\]

Where: \(V = \) vertical velocity (m/s), plume-average velocity
\(a = \) plume top-hat radius (m, increases at a linear rate of \(a = 0.16*(z-z_v)\))
\(F_o = \) initial stack buoyancy flux m^4/s^3
\(z = \) height above ground (m)
\(z_v = \) virtual source height (m)
\(V_{exit} = \) initial stack velocity (m/s)
\(D = \) stack diameter (m)
\(T_a = \) ambient temperature (K)
\(T_s = \) stack temperature (K)
\(g = \) acceleration of gravity (9.8 m/s^2)
Equation (1) is solved for V at any given height above ground that is above the momentum rise stage for single stacks (where \(z > 6.25D \)) and at the end of the plume merged stage for multiple plumes. This solution provides the plume-average velocity for the area of the plume at a given height above ground; the peak plume velocity would be higher than the plume-average velocity predicted by this equation. As can be seen the stack buoyancy flux \((F_o) \) is a prominent part of Equation (1). The calm condition calculation basis clearly represents the worst-case conditions, and the vertical velocity will decrease substantially as wind speed increases.

For multiple stack plumes, where the stacks are equivalent, the multiple stack plume velocity during calm winds was calculated by staff in a simplified fashion as follows:

\[
(5) \quad V_m = V_{sp} \cdot N^{0.25}
\]

Where:
- \(V_m \) = multiple stack combined plume vertical velocity (m/s)
- \(V_{sp} \) = single plume vertical velocity (m/s), calculated using Equation (1)
- \(N \) = number of stacks

Staff notes that this simplified multiple stack plume velocity calculation method predicts somewhat lower velocity values than the full Spillane approach methodology as given in data results presented in the Best paper (Best 2003). However, the simplified multiple stack approach is still conservative given the conservatism of the rest of the calculation.

VERTICAL PLUME VELOCITY ANALYSIS

The calm wind condition vertical plume velocities were calculated for the proposed gas turbines and HRSG. The worst case ambient and exhaust conditions for the gas turbines/HRSG and the only exhaust condition supplied for the dry cooling tower (which is for a high ambient temperature case that may not be the worst case), operating at full load, are provided below in **PLUME VELOCITY Table 1**.

For the gas turbines/HRSG, the conditions modeled are worst case or full load operating conditions under 41°F ambient temperature. Staff also modeled plume velocities using the exhaust parameters at higher ambient temperatures and determined that results for higher ambient temperatures did not exceed the results for the 41°F ambient conditions. For the dry cooling tower, the facility owner only provided one exhaust condition and staff is not certain if lower temperatures would have worse thermal plumes. But staff expects that lower temperature conditions would be only marginally worse assuming that the heat rejection demand for the dry cooling tower does not drop substantially at lower ambient temperatures.
PLUME VELOCITY Table 1
Gas Turbines/HRSG and Dry Cooling Tower Parameters

<table>
<thead>
<tr>
<th>Case</th>
<th>GE turbine/HRSG</th>
<th>Trent turbines</th>
<th>Dry Cooling Tower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-duct fired</td>
<td>Duct Fired</td>
<td></td>
</tr>
<tr>
<td>Ambient Temperature °F</td>
<td>41</td>
<td>83.7</td>
<td></td>
</tr>
<tr>
<td>Stack Height ft (m)</td>
<td>210 (64)</td>
<td>150 (45.72)</td>
<td>67 (20.42)</td>
</tr>
<tr>
<td>Stack Diameter ft (m)</td>
<td>20 (6.096)</td>
<td>11.1 (3.38)</td>
<td>36 (10.97) – each of the 7 cells</td>
</tr>
<tr>
<td>Stack Velocity ft/s (m/s)</td>
<td>66.6 (20.31)</td>
<td>65.5 (20.00)</td>
<td>121.8 (37.12)</td>
</tr>
<tr>
<td>Exhaust Temperature °F (K)</td>
<td>233 (384.8)</td>
<td>219 (377.04)</td>
<td>799 (699.26)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>176 (353.15)</td>
<td></td>
</tr>
</tbody>
</table>

Source: NRG 2013a, LL 2013e, LL 2014b

Using the Spillane calculation approach, the plume average vertical velocity at different heights above ground was determined by staff for calm wind conditions. Staff’s calculated plume average velocity values are provided in PLUME VELOCITY Table 2. The GE turbine/HRSG plume velocities are calculated as single exhaust with and without duct firing. The Trent turbines plume velocities are calculated for a single gas turbine exhaust and the worst case combined gas turbine exhaust (equivalent to two gas turbines using Equation 5 listed above). The separation between the two Trent turbine stacks is only 6.5 meters. It is assumed that plumes from the two stacks will have merged at the height where the plume average velocity drops below 4.3 m/s under worst case conditions. The dry cooling tower was modeled using 7 cells as shown on the site plan. It is assumed that plumes from these 7 cells will have merged under worst case conditions.

As explained in the Transportation and Traffic section a vertical velocity of 4.3 m/s has been determined as the critical velocity of concern to light aircraft. For the GE turbine cases, the heights at which the plume average velocity drops below 4.3 m/s are calculated to be approximately 830 feet with duct firing and 870 feet without duct firing for the 41°F ambient temperature. For the Trent turbines case, single turbine and maximum combined turbines, the heights at which the plume average velocity drops below 4.3 m/s are calculated to be approximately 950 feet and 1,460 feet, respectively for the 41°F operating case. For the dry cooling tower, the height at which the plume average velocity drops below 4.3 m/s is calculated to be approximately 2,020 feet assuming plumes from the 7 cells have merged. It should be noted that the distance of separation between the dry cooling tower and the GE turbine is about 34 meters and the distance of separation between the GE turbine and the Trent turbines is about 48 meters. Additional thermal plume merging between the gas turbines/HRSG and the dry cooling tower could occur and increase the plume heights where vertical velocities of 4.3 m/s are exceeded under worst case conditions. The model used for this analysis is not able to add different kinds of thermal plumes together. However, the approach is still conservative given the conservatism built in the model.

Staff also calculated the plume velocity from the auxiliary boiler and found the plume average velocity drops below 4.3 m/s at 80 feet, which would have less than significant impacts to aviation.
PLUME VELOCITY Table 2
Gas Turbines/HRSG Worst-Case Predicted Plume Velocities

<table>
<thead>
<tr>
<th>Height (ft)</th>
<th>GE turbine/HRSG</th>
<th>Trent turbines</th>
<th>Dry Cooling Tower</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-duct fired 41°F</td>
<td>Duct Fired 41°F</td>
<td>Single Turbine 41°F</td>
</tr>
<tr>
<td>300</td>
<td>13.80</td>
<td>13.57</td>
<td>8.89</td>
</tr>
<tr>
<td>400</td>
<td>7.53</td>
<td>7.40</td>
<td>6.74</td>
</tr>
<tr>
<td>500</td>
<td>6.01</td>
<td>5.88</td>
<td>5.83</td>
</tr>
<tr>
<td>600</td>
<td>5.27</td>
<td>5.16</td>
<td>5.29</td>
</tr>
<tr>
<td>700</td>
<td>4.81</td>
<td>4.70</td>
<td>4.90</td>
</tr>
<tr>
<td>800</td>
<td>4.48</td>
<td>4.38</td>
<td>4.62</td>
</tr>
<tr>
<td>900</td>
<td>4.23</td>
<td>4.13</td>
<td>4.39</td>
</tr>
<tr>
<td>1,000</td>
<td>4.03</td>
<td>3.94</td>
<td>4.20</td>
</tr>
<tr>
<td>1,100</td>
<td>3.86</td>
<td>3.77</td>
<td>4.04</td>
</tr>
<tr>
<td>1,200</td>
<td>3.72</td>
<td>3.63</td>
<td>3.90</td>
</tr>
<tr>
<td>1,300</td>
<td>3.60</td>
<td>3.51</td>
<td>3.78</td>
</tr>
<tr>
<td>1,400</td>
<td>3.49</td>
<td>3.41</td>
<td>3.67</td>
</tr>
<tr>
<td>1,500</td>
<td>3.40</td>
<td>3.32</td>
<td>3.58</td>
</tr>
<tr>
<td>1,600</td>
<td>3.31</td>
<td>3.23</td>
<td>3.49</td>
</tr>
<tr>
<td>1,700</td>
<td>3.23</td>
<td>3.16</td>
<td>3.41</td>
</tr>
<tr>
<td>1,800</td>
<td>3.16</td>
<td>3.09</td>
<td>3.34</td>
</tr>
<tr>
<td>1,900</td>
<td>3.10</td>
<td>3.02</td>
<td>3.27</td>
</tr>
<tr>
<td>2,000</td>
<td>3.04</td>
<td>2.96</td>
<td>3.21</td>
</tr>
<tr>
<td>2,100</td>
<td>2.98</td>
<td>2.91</td>
<td>3.15</td>
</tr>
</tbody>
</table>

Source: Staff calculations.

The values listed above in **PLUME VELOCITY Table 2** are plume average velocities across the area of the plume. The maximum plume velocity, based on a normal Gaussian distribution, is two times the plume average velocities shown in the table.

WIND SPEED AND TEMPERATURE STATISTICS

PLUME VELOCITY Table 3 provides the hourly average wind speed and temperature statistics for the meteorological data at Los Angeles International Airport (LAX) during 2005-2009 provided in the Petition to Amend (NRG 2013a). Calm or very low wind speeds can also occur for shorter periods of time within each of the monitored average hourly conditions. It should be noted that LAX is somewhat sheltered by the El Segundo Dunes and the wind speeds at the ESEC site are likely higher than those measured at LAX, so these data should conservatively represent the ESEC site.
PLUME VELOCITY Table 3

Wind Speed and Temperature Statistics for LAX

<table>
<thead>
<tr>
<th>Wind Speed</th>
<th>Temperature</th>
<th>Temperature and Wind Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1 m/s</td>
<td>22.53%</td>
<td>≤ 1 m/s, ≤ 40°F: 0.08%</td>
</tr>
<tr>
<td>≤ 2 m/s</td>
<td>52.25%</td>
<td>≤ 1 m/s, ≤ 50°F: 5.94%</td>
</tr>
<tr>
<td>≤ 3 m/s</td>
<td>69.13%</td>
<td>≤ 1 m/s, ≤ 60°F: 45.83%</td>
</tr>
</tbody>
</table>

Source: Staff data reduction of LAX meteorological data (NRG 2013a).

Calm conditions/low wind speeds are not frequent in the site area but that they do occur, which is the condition most favorable for the formation of higher velocity thermal plumes from gas turbines, HRSGs, and dry cooling towers.

CONCLUSIONS

The calculated worst case calm wind condition vertical plume average velocities from the proposed new gas turbines/HRSG and dry cooling tower (high temperature case for the dry cooling tower rather than being the known worst case) are predicted to exceed 4.3 m/s at heights as much as approximately 870 feet, 1,460 feet, and 2,020 feet above ground level for the GE turbine/HRSG, Trent turbines, and dry cooling tower, respectively. There is the potential, depending on the heat rejection and exhaust parameters at lower ambient temperatures, that the dry cooling tower vertical plume average velocities would be estimated to exceed 4.3 m/s at elevations somewhat higher than the 2,020 feet estimated for an ambient temperature of 83.7°F for calm wind conditions at lower ambient temperatures. Also, there is the potential for additional thermal plume merging between the gas turbines/HRSG and the dry cooling tower that could increase the plume heights where vertical velocities of 4.3 m/s are exceeded under worst case conditions. Ambient conditions (wind speeds less than 1m/s) conducive to the formation of thermal plume velocities of concern would occur on average approximately 22.5 percent of the time.

REFERENCES

FIGURE 3.11-1
Regional Road Network

El Segundo Power Facility Modification
April 2013 Petition to Amend 00-AFC-14
El Segundo California

SOURCE: AFC Figure 3.11-1

CALIFORNIA ENERGY COMMISSION - SITING, TRANSMISSION AND ENVIRONMENTAL PROTECTION DIVISION

SOURCE: AFC Figure 3.11-1
FIGURE 2-10
Construction Laydown Areas

El Segundo Power Facility Modification

El Segundo, California

North

Approximate scale in feet

Approved Laydown and Parking Areas

PTA Removed Laydown and Parking Area (Approved/Included in Previous PTA)

Laydown and Parking Areas

<table>
<thead>
<tr>
<th>Location</th>
<th>PARKING</th>
<th>LAYDOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kramer</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>FedEx</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LAX-Pershing</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Marina del Rey Boat Launch</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Dockweiler State Beach</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Hyperion</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Grand Avenue</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Chevron Marine Terminal</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Power Plant Site</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>100th Street</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

TRAFFIC AND TRANSPORTATION - FIGURE 4
El Segundo Energy Center - Construction Laydown Areas
El Segundo Energy Center - Other Transportation Systems
SUMMARY OF CONCLUSIONS

The project owner, El Segundo Energy Center, LLC, (ESEC, LLC) proposes to modify the existing El Segundo Energy Center (ESEC) by replacing its utility boiler Units 3 and 4 with one combined-cycle generator (Unit 9), one new steam turbine generator (Unit 10), and two new simple-cycle gas turbines (Units 11 and 12). This would add 449 gross megawatts (MW) to the existing 573-MW generating capacity for a total of 1,022 gross MW. The amended project, to be also known as the El Segundo Power Facility Modification (ESPFM), would also replace the existing once-through seawater cooling system with dry-cooling technology. The generated power would be transmitted to users through the existing 230-kV Southern California Edison (SCE) transmission power grid approved by the California Energy Commission with regard to the safety and nuisance impacts discussed in staff's analysis for the approved ESEC. Three Conditions of Certification were specified in this regard and have been listed at the end of this staff analysis. Since no new transmission towers or lines would need to be constructed or replaced within or outside of the site boundaries, the only changes to line impacts would be those from the additional 449 MW to be introduced into the existing system. The generated power would still be transmitted to the SCE 230-kV power grid through the currently utilized SCE switchyard within the fenced boundaries of ESEC. Staff recommends measurement of these incremental impacts for comparison with existing levels which staff regards as below the levels of health and safety concern.

INTRODUCTION

As presented in the Project Description section, the proposed ESPFM is a modification of the existing ESEC owned by ESEC, LLC. This modification is intended to increase the amount of electric power presently generated while replacing the existing once-through seawater cooling system with dry-cooling technology. This modification would involve replacing the existing utility boiler Units 3 and 4 with one combined-cycle generator (Unit 9), one new steam turbine generator (Unit 10), and two new simple-cycle gas turbines (Units 11 and 12). This would add 449 gross MW to the existing 573 MW for a total of 1,022 gross MW. All the generated power would continue to be transmitted to the SCE 230-kV power grid by way of the presently utilized SCE 230-kV El Segundo Switchyard located adjacent to ESEC. There would be no changes to this existing transmission scheme.

Since the post-modification power would still be transmitted at the existing 230-kV level on the line, the system’s electric fields will remain the same, meaning that all electric field-related impacts will remain the same along the line routes. The only fields that would change are the companion magnetic fields, which alone depend on the current flow and would therefore, increase with the increased power generation.

The purpose of this analysis is to determine whether the use of the existing SCE transmission lines for the increased energy transmission at ESEC would allow for
continued compliance with existing laws, ordinances, regulations and standards (LORS) on the field and nonfield impacts of concern in this analysis. Staff’s analysis focuses on the issues noted below which relate primarily to the physical presence of the line or secondarily to the physical interactions of line electric and magnetic fields.

- Aviation safety;
- Interference with radio-frequency communication;
- Audible noise;
- Fire hazards;
- Hazardous shocks;
- Nuisance shocks; and
- Electric and magnetic field (EMF) exposure.

LAWS, ORDINANCES, REGULATIONS AND STANDARDS (LORS) COMPLIANCE

No change from original analysis presented for the existing ESEC.

ANALYSIS

Since there would be no changes to the structure, design, and routing of the existing 230-kV transmission lines (to be utilized for the proposed ESPFM), the nonfield impacts of potential would remain the same for the existing ESEC and the proposed ESPFM. As discussed in staff’s ESEC analysis, the most significant of the nonfield impacts would relate to aviation safety and hazardous shocks from direct or indirect contact with the energized line. The most significant of the field-related impacts are those encountered as interference with radio-frequency communication, audible noise, nuisance shocks, and human electric and magnetic field (EMF) exposure. As previously noted, the electric fields and related impacts would remain the same from continued 230-kV line operation since the electric field depends on operating voltage. The only field component that directly depends on power generation and related current would be the magnetic field whose post-project levels will need to be measured to assess the contribution from the proposed 449 MW power increment.

In Condition of Certification **TLSN-2**, the Energy Commission required the project owner to measure the electric and magnetic fields from ESEC for comparison with pre-project levels and thus the contribution from ESPFM. The measurements were required for the expected points of maximum impacts. The project owner complied with this requirement by providing the results of these post-project levels in a November 1, 2013, report to the Commission’s Compliance Project Manager (CPM). The average value of the project-related magnetic field was 11.9 milligauss (mG) with a maximum of 12.3 mG. The maximum electric field level was recorded as 0.12 kilovolt per meter (kV/m). It is these existing levels that would be compared with the post-project levels recommended for measurement in Condition of Certification **TLSN-4** for ESPFM.
CONCLUSIONS AND RECOMMENDATIONS

Staff concludes as follows from its analysis of the potential transmission line safety and nuisance impacts from operating the proposed ESPFM:

- Addition of 449 MW to the existing generating capacity would increase project-related magnetic fields by an amount to be assessed from requirements in TLSN-4 for specific measurements.
- Continued transmission at the existing 230 kV would not change the existing electric field and its noted impacts.
- Lack of changes to the design, routing or physical dimensions of the existing line to be used would ensure a lack of aviation impacts during ESPFM operations.

Staff would assess the post-ESPFM EMF levels for ESPFM compliance with existing safety and nuisance LORS of concern in this analysis. Staff has listed the three existing Conditions of Certification (TLSN-1, TLSN-2, and TLSN-3) applicable to ESEC, together with the new Condition of Certification (TLSN-4) recommended only for the proposed ESPFM.

CONDITIONS OF CERTIFICATION FOR THE EXISTING EL SEGUNDO ENERGY CENTER

TLSN-1: The project owner shall ensure that the proposed on-site replacement lines (associated with Units, 5, 6, and 7) are designed and constructed in compliance with CPUC’s GO-95, GO-52, Title 8, Section 2700 Sections 2700 through 2974 of the California Code of Regulations and SCE’s EMF-reduction guidelines arising from CPUC Decision 93-11-013.

Verification: Thirty days before the start of line construction, the project owner shall submit to the Commission’s Compliance Project Manager (CPM) evidence of their intention to comply with the above requirements.

TLSN-2: The project owner shall ensure that a qualified individual is engaged to measure the strengths of the project-related electric and magnetic fields in the post-modification period. Measurements should be made at the same points along the perimeter of the SCE Switchyard, within the route of the on-site replacement lines, and the route of the existing off-site SCE lines, for which field strength values were presented by the applicant.

Verification: The project owner shall ensure that the post-modification measurements are tabulated together with the pre-modification measurements presented by the applicant. A copy of these measurement results shall be filed with the CPM within 60 days after completion of the measurements.

TLSN-3: Thirty days prior to the start of commercial operations, the project owner shall send written notice to all property owners and residents in the City of Manhattan Beach within 1,000 feet of transmission lines between the EI.
Segundo Generating Station and the El Nido Substation of the possible interference impacts associated with the project and procedures for reporting complaints. The project owner shall make every reasonable effort to identify and correct, on a case-specific basis, all complaints of interference with radio or television signals from operation of transmission lines and related facilities. In addition to any transmission repairs, the relevant corrective actions should include, but shall not be limited to, adjusting or modifying receivers, adjusting or repairing, replacing or adding antennas, antenna signal amplifiers, filters, or lead-in cable.

The project owner shall maintain written records for a period of five years, of all complaints of radio or television interference attributable to operation together with the corrective action taken in response to each compliant. All complaints shall be recorded to include notations on the corrective action taken. Complaints not leading to a specific action or for which there was no resolution should be noted and explained. The record shall be signed by the project owner and also the complaint, if possible, to indicate concurrence with the corrective action or agreement with the justification for a lack of action.

Verification: All reports of line-related complaints shall be summarized and included in the Annual Compliance Report to the CPM.

CONDITION OF CERTIFICATION RECOMMENDED FOR THE PROPOSED EL SEGUNDO POWER FACILITY MODIFICATION

Staff recommends the following new condition of certification for ESPFM:

TLSN-4 The project owner shall use a qualified individual to measure the strengths of the electric and magnetic fields from the ESPFM-related lines at the points of maximum intensity along the route for which the project owner provided their measured intensities for the previously approved ESEC. The measurements shall be made after energization according to the American National Standard Institute/Institute of Electrical and Electronic Engineers (ANSI/IEEE) standard procedures. These measurements shall be completed no later than six months after the start of operations.

The project owner shall file copies of the post-energization measurements with the CPM within 60 days after completion of the measurements.
REFERENCES

SUMMARY OF CONCLUSIONS

California Energy Commission staff (hereafter referred to as staff) has analyzed visual resource-related information pertaining to the proposed modification plan to the El Segundo Energy Center (ESEC) and concludes that the proposed amended project would result in less than significant impacts to existing scenic resources within the project viewshed.

In addition, staff concludes that the project, with all recommended Visual Resources Conditions of Certification, as modified, would be consistent with applicable laws, ordinances, regulations and standards (LORS), including goals and policies of the California Coastal Act, and of the city of El Segundo.

If the Energy Commission approves the amended project, staff recommends that the conditions of certification from the Commission Decision for the originally certified El Segundo Power Redevelopment (ESPR) Project (ESEC 2005 and 2007), as modified and augmented herein by staff, be adopted for the proposed El Segundo Power Facility Modification (ESPFM) in order to minimize impacts and conform with applicable LORS to the greatest feasible extent.

INTRODUCTION

Visual resources are the natural and cultural features of the environment that can be viewed. This analysis focuses on whether the ESEC would cause significant adverse visual consequences and whether the project would be in compliance with applicable LORS. The California Environmental Quality Act (CEQA) requires the Energy Commission to determine the potential for significant impacts to visual resources resulting from the proposed project. Appendix VR-1 describes the visual resources methodology employed for the CEQA analysis (Energy Commission staff's methodology), and the “Method and Threshold for Determining Significance,” subsection below, describes the thresholds for determining environmental consequences (as discussed above in the “Summary of Conclusions” subsection). In accordance with staff’s procedure, conditions of certification are proposed as needed to reduce potentially significant impacts (under CEQA) to less than significant levels or to the extent possible, and to ensure LORS conformance, if feasible.

EXISTING PROJECT VISUAL SETTING

The existing El Segundo Generating Station (ESGS), including the previously permitted ESPR project, is located on the coast of Santa Monica Bay in the City of El Segundo, Los Angeles County, approximately 1-1/2 miles south of the Los Angeles International Airport (LAX). The project site is situated at the foot of a coastal bluff west of Vista del Mar, directly overlooking Dockweiler and Manhattan Beach State Parks, which are parts of a system of public beaches along Santa Monica Bay extending for miles to the north.
and south. Immediately north of the project and on the west side of Vista del Mar is the adjacent Chevron ocean marine terminal and the Scattergood Power Plant staging facility. From the vicinity of the project site to the northern boundary of LAX approximately three miles to the north, Vista del Mar follows the western edge of the elevated coastal bluff, affording outstanding, panoramic, largely unimpeded views of the entire Santa Monica Bay to the northwest, west, and south. By contrast, views from Vista del Mar to the east are generally blocked near the road edge by terrain or structures. From the vicinity of the project site southward, views to the Bay from Vista del Mar are blocked by developed portions of the existing ESGS site, and then by continuous residential and commercial development in the City of Manhattan Beach. Bay views are available however, from publicly accessible local streets and parking lots to the west in and adjacent to Manhattan Beach State Park.

PROJECT SITE

The proposed ESPFM project would be located within the existing ESGS site in the approximate location of the existing Units 3 and 4 power block, which would be demolished and replaced by the proposed Units 9, 10, 11 and 12. The proposed ESPFM Units 9 – 12 site occupies the central portion of the ESGS facility, directly south of Units 5 through 8. The site is situated at the foot of a tall coastal bluff (approximately 90 feet tall in the project vicinity) that extends for much of the Santa Monica Bay coastline. **Visual Resources Figure 1, ESEC Project Site,** depicts views of the existing ESGS site.

The site is currently visually dominated by the recently constructed Units 5 through 8, in the northernmost portion of the site, and the Units 3 and 4 power block immediately to their south. The tall heat-recovery steam generators (HRSGs) and exhaust stacks of Units 5 and 7, and the large power block and tall exhaust stacks of Units 3 and 4, are visible to background distances of 3 miles or more in views to the north and south. Units 3 and 4 have a top-of-power block elevation of 156 feet, and a top-of-exhaust stack height of 215 feet. Exhaust stacks of Units 5 and 7 are comparable in height to Units 3 and 4; the HRSGs are less tall than the Unit 2 and 3 power block, with considerably smaller footprints. (Units 6 and 8 are lower in height than the HRSGs). Thus, the existing power block and exhaust stacks extend above the top of the bluff and Vista del Mar. The existing structures (Units 2 and 3, and 5 through 8) present disordered, visually cluttered views of exposed industrial machinery, piping, ductwork and scaffolding. They contrast strongly with their highly scenic coastal setting and with the general visual character of other industrial and residential land uses in the surrounding viewshed. The site recently planted landscape screening on most of its eastern (Vista del Mar) frontage, which will ultimately help screen and soften the presence of the power plants from the immediately adjacent section of roadway with maturation of the plantings. A recently-constructed, approximately 1,700-foot-long decorative seawall adjoins the public bike path/hiking trail immediately west of the project site, at the edge of the adjoining section of state beach. A landscaped berm installed in accordance with original Condition of Certification **VIS-9,** borders the southern edge of the ESEC site along 45th Avenue, and the southwest frontage facing the bike path and the beach.
PROJECT VIEWSHED

The *viewshed* or area of potential visual effect (the area within which the project could potentially be seen) is delineated in *Visual Resources Figure 2, Project Viewshed: Landscape Units and KOPs*. As depicted in that figure, the viewshed is restricted to a narrow strip of the coastal zone, enclosed immediately to the east of Vista del Mar by terrain and existing development, but extending to background distances to the north, west and south. ESGS power plant stacks and vapor plumes are visible to background distances (roughly 3 miles) in views from Vista del Mar to the north, though such views tend to be dominated by the larger, nearer Scattergood Power Plant. They are also visible to background distances from beaches to the north and south.

The following discussion subdivides the project viewshed into landscape units, or areas of broadly uniform visual character and quality, to provide an overview of the existing setting. Visual character and quality as they affect specific key observation points (KOPs) are discussed under each KOP.

All figures referred to in the text may be found at the end of this section.

As delineated in *Visual Resources Figure 2*, the viewshed is divided into a coastal industrial zone within which the ESGS itself is located; coastal open space, encompassing the areas with unimpeded views to Santa Monica Bay, including Manhattan and Dockweiler State Beaches; and residential neighborhoods of the Cities of Manhattan Beach and El Segundo.

Coastal Industrial Landscape

The project site, although situated within the scenic coastal zone, occupies a portion of an extensive coastal heavy industry zone extending to the west of Vista del Mar from 45th Street in Manhattan Beach to Grand Street in El Segundo, and to the east of Vista del Mar from 45th Avenue north to Imperial Highway, approximately 1-1/2 miles to the north of the site. Industrial uses within this area include the adjacent Chevron marine loading facility immediately to the north of the site, the Chevron Refinery to the east, and the Los Angeles Department of Water and Power (LADWP) Scattergood Power Plant and Hyperion Wastewater Treatment facilities to the north. Public coastal access to the beach west of the project site is provided via a County-managed bike path immediately west of the power plant and loading facility. Beach access within the City of El Segundo is available only at Grand Street and Vista del Mar, north of the Chevron marine terminal. Other access in the vicinity includes 45th Street and other local streets within the City of Manhattan Beach south of the project site. (VISUAL RESOURCES Figure 3,- Industrial Facilities in the Project Viewshed), depicts this area.

Despite these industrial uses, existing visual quality of the area is mixed and often good as seen from key viewpoints, notably from Vista del Mar. Between Grand Avenue and 45th Street, the entire Chevron site to the east is substantially screened by a very tall, heavily landscaped berm. Industrial facilities of the refinery are reasonably well-screened from Vista del Mar and the vicinity, and the landscaped berm and setback contribute to a generally attractive roadway corridor. From Imperial Highway to the Chevron marine terminal, views westward to Santa Monica Bay from Vista del Mar are
generally unimpeded. East of Vista del Mar between Imperial Highway and ESGS, the Hyperion Wastewater Treatment facility, though obviously industrial and very extensive, has been treated with architectural and landscape screening measures at the western boundary that conceal much of the plant’s functional apparatus and create a degree of visual unity. Similarly, the Scattergood power plant, though obviously industrial and highly exposed to view, is housed within a building-style enclosure, albeit marked by prominent red and white striped exhaust stacks. North of this industrial zone, facilities of LAX are almost entirely concealed by tall, vegetated sand dunes.

In the immediate vicinity of the project, views from Vista del Mar to the Bay are largely blocked by a combination of the power plant facilities and perimeter landscape screening. The latter filter Bay views but also reduce the industrial character of the power plants as seen from these foreground viewpoints, though they do not screen upper portions of the facilities. The ESGS power blocks and stacks are the only features within the wider viewshed which block views from Vista del Mar to Santa Monica Bay.

This landscape type dominates much of the viewshed, but no KOPs were identified within this landscape type because potential viewers in these locations (Chevron, Scattergood, Hyperion workers, etc.) were presumed to have low visual sensitivity or concern with project impacts due to the industrial, work-related nature of their activities.

Coastal Open Space

This portion of the viewshed consists of the public beaches and adjacent Vista del Mar. Visual quality is high, characterized by predominantly intact, panoramic views of Santa Monica Bay, which extend to the horizon to the north, west, and south and include views of beaches and background mountains. (See Visual Resources Figure 4, Views of Project Site from Nearby Beaches). As described above, the ESGS and other industrial facilities compromise the otherwise outstanding visual character and quality of the area. From the public beaches, which occupy the entire coastline within the viewshed, views tend to be partially enclosed to the east by the coastal bluff face, emphasizing seaward views The portion of Dockweiler State Beach immediately adjoining the project site to the west is generally very narrow due to beach erosion. The Marvin Braude bike trail, abutting the project site, forms a link in this section between the widely-used areas of Dockweiler State Beach to the north and Manhattan State Beach to the south. (bike path photo, showing new seawall) Views from Vista del Mar, which follows the bluff edge throughout the entire viewshed from the boundary of the City of Manhattan Beach to background distances to the north, are enhanced by its elevated bluff-top position, offering largely unobstructed views of Santa Monica Bay. Viewer concern is considered high on the beaches due to the recreational and scenery-oriented nature of viewers’ activities; and moderately high on Vista del Mar, reflecting the combination of recreationists, tourists, and residents with higher viewer concern, and commuters and others with lower levels of viewer concern. Key viewpoints within this landscape unit include:

- KOP 1 - Dockweiler Beach (Petition To Amend (PTA) KOP 1)
- KOP 2 - Dockweiler Beach West of ESGS (PTA 7)
- KOP 3 - Manhattan Beach State Park (PTA 2)
KOP 4 - Vista del Mar – Manhattan Beach (PTA 3)
KOP 5 - Vista del Mar – El Segundo (PTA 8)

Manhattan Beach Residential

Potential sensitive receptors within this portion of the viewshed include residents of homes in the City of Manhattan Beach along 45th Street and The Strand. While views of the project site from the vicinity of 45th Street are largely screened by the existing landscaped berm, and Units 5-8 are screened to a large extent by the nearer existing Units 3 and 4, residents of 45th Street would have views of the new Units 9-12, and very prominent views of laydown and construction activities at the existing tank farm site. ([VISUAL RESOURCES Figure 5, Views from Manhattan Beach Residences](#)), presents views to the project site from the nearby residential neighborhood. Key viewpoints within the Manhattan Beach residential landscape unit include:

KOP 6 – 45th Street, Manhattan Beach (PTA 10)

AMENDED PROJECT VISUAL DESCRIPTION

Visual Resources Table 1 provides a list of the major project features that would contribute to visual change of the landscape, with their dimensions. A more detailed discussion of the proposed project is presented in the Project Description section of this document.

Visual Resources Table 1: Key Project Components

<table>
<thead>
<tr>
<th>Structure</th>
<th>Height</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW STRUCTURES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined Cycle Turbine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion Turbines</td>
<td>25</td>
<td>102</td>
<td>23</td>
</tr>
<tr>
<td>HRSGs (New), Tier 1</td>
<td>80.0</td>
<td>107</td>
<td>35</td>
</tr>
<tr>
<td>CTG Inlet</td>
<td>70</td>
<td>51</td>
<td>27</td>
</tr>
<tr>
<td>Simple Cycle Turbines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trent60 CTG x 2</td>
<td>15</td>
<td>104</td>
<td>31</td>
</tr>
<tr>
<td>CTG to Stack Transition x2</td>
<td>35</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td>Other equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Aux Transformer</td>
<td>30</td>
<td>42</td>
<td>26</td>
</tr>
<tr>
<td>Fin-Fan Cooler</td>
<td>29</td>
<td>93</td>
<td>44</td>
</tr>
</tbody>
</table>

March 2014 4.12-5 VISUAL RESOURCES
TABLE 2-1
Dimensions of Significant Structures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Dimensions (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height</td>
</tr>
<tr>
<td>Elect Room</td>
<td>10</td>
</tr>
<tr>
<td>Steam Transformer</td>
<td>30</td>
</tr>
<tr>
<td>Steam Turbine</td>
<td>20</td>
</tr>
<tr>
<td>Cooling Tower</td>
<td>67</td>
</tr>
<tr>
<td>New Administration/Warehouse Building</td>
<td>40</td>
</tr>
</tbody>
</table>

Note: Table B-1 NRG El Segundo building dimensions used for air quality modeling.

Visual Resources Figure 6 depicts a schematic isometric view of the proposed Units 9 through 12, illustrating the relative scale and proportion of the major power plant components.

The existing ESGS Units 3 and 4 have a top-of-power block elevation of 156 feet and a top-of-exhaust stack height of 215 feet. The proposed Unit 9 would have a top-of-HRSG elevation of 80 feet, considerably shorter than the existing power block, and a top-of-stack elevation of 210 feet, similar to the existing stacks. The new cooling tower structure would be 67 feet tall and 232 feet long. The exhaust stack structures of Units 11/12 would be directly adjoined. Unit 10 would not have a traditional exhaust stack. Individually, the new components would be smaller than the existing Units 3 and 4 power block; taken together, they would also be smaller and considerably less tall and bulky than the existing units.

The proposed new administration/warehouse building would be two stories (up to 40 feet tall), located on the northwest corner of the elevated building pad of the former storage tank site, approximately 600 feet south of the proposed power plant site, and approximately 100 feet east of the bike trail. **VISUAL RESOURCES Figure 7** depicts a simulated view of the proposed administration building from Dockweiler State Beach looking east.

LAWS, ORDINANCES, REGULATIONS, AND STANDARDS (LORS)

Staff also evaluates the project to determine compliance with federal, state and local LORS. **Visual Resources Table 3** lists relevant LORS pertaining to aesthetics or the preservation and protection of sensitive visual resources, and presents a discussion of project conformance with them. **Visual Resources Table 3** may be found at the end of the section, following the discussion of project impacts and mitigation under CEQA, under “Compliance with Applicable LORS.”
The principal visual resource issues of this and previous phases of the project’s proceedings have involved LORS conformance. In the current proceeding, as in the original proceeding, the mitigation measures required under the visual resources conditions of certification were not in response to project impacts against the baseline of the existing power plant. Because the visual baseline of the pre-existing ESGS facility represented a setting of poor visual quality (due primarily to the power plant itself), the continuation of that condition of poor visual quality through introduction of new generation units would not constitute a significant adverse change in visual quality, but simply a continuation of a degraded condition. Rather, the original conditions of certification were generated in response to the fact that both the existing and proposed site constitute a ‘visually degraded area’ of the coastal zone as described in Section 30251 of the Coastal Act. The Coastal Commission and Energy Commission staff interpret the intent of that section to require visual restoration and improvement of such sites to the extent feasible if such uses are approved.

In the original proceeding staff found, and the California Coastal Commission (CCC) concurred, that the project setting was “visually degraded, due in large part to the presence of the [existing] facility,” pursuant to Section 30251 of the Coastal Act (see Appendix VR-2). Section 30251 requires permitted developments “... where feasible, to restore and enhance visual quality in visually degraded areas.” The CCC recommended that specific provisions, reproduced in Condition of Certification VIS-1, be implemented if the project was certified, pursuant to Section 25523(b) of the Warren-Alquist Act and Section 30413(e) of the Coastal Act. These provisions called for the enhancement of views of the facility from areas accessible to the public.

The provisions of the conditions of certification from the original proceeding, including Condition of Certification VIS-1, were incorporated into the subsequent Energy Commission decision approving the amended application for ESEC Units 5 through 8, with modifications to those conditions due to the altered character of the proposed units. Specifically, under the amended ESEC application, the project units 5, 6 and 7 approved in 2005 were replaced with a proposal for ESEC Units 5 through 8, which utilized air-cooling rather than once-through cooling, and different turbine, generation and HRSG units. In contrast to the originally proposed units, the subsequently proposed project HRSGs were physically enclosed units with a visually simpler and less cluttered industrial appearance than those proposed under the original license of the project. They were also somewhat smaller in profile and footprint than the originally proposed units, and thus less visually obtrusive. With the 2007 ESEC modification of the power plant design, architectural screening of the HRSGs, required under Condition of Certification VIS-1, was considered by staff to no longer be necessary (since the bulk of the plant piping and equipment would already be architecturally enclosed as part of the manufacturer’s design). Architectural screening under Conditions of Certification VIS-1 and VIS-4 was thus deleted as no longer necessary. Other requirements of Condition of Certification VIS-1, including perimeter landscaping on Vista del Mar, construction of a decorative seawall along the beach, and construction of a tall landscaped berm on the ESGS site’s 45th Avenue and southwest fence-lines (south and west of former storage tank site), were retained and have largely been completed. Certain issues with implementation of these measures remain, and are addressed in recommended modifications to Condition of Certification VIS-2. The project site with these
improvements in their current state represents the baseline for evaluation of the ESPFM Units 9 through 12 in this analysis.

Although the now-operational ESEC Units 5 through 8 are less visually obtrusive than the originally proposed ESPR Units 5 through 7, they remain highly prominent industrial features that dominate the adjacent coastal landscape to middle-ground distance to the north, west and south. The site’s prominent industrial character continues to contrast greatly with the surrounding natural beach environment, and remains incompatible with the nature- and scenery-oriented recreational and residential land uses that surround it. The ESGS site thus continues to be a ‘visually degraded area’ as defined under Section 30251 of the Coastal Act. However, extensive restoration and enhancement measures required under Conditions of Certification VIS-1 through VIS-9 for Units 5 through 8 have been carried out or are near completion. While these measures by no means negate the visual impairment of the coastal landscape by the power plant, they will in the long term result in visual improvement over the previously existing condition, and may represent the limit of feasible visual improvement measures in the context of the ESGS site. Staff has not identified additional available measures to further improve the site’s visual condition, except as reflected in proposed modifications to recommended Conditions of Certification.

The current proposed replacement of existing Units 3 and 4 with Units 9 through 12 would result in noticeable visual improvement of the ESEC site, greatly reducing the bulk, footprint and industrial character of the site by the replacement of the Units 3 and 4 power block with smaller, lower components. However, even with this improvement, the ESGS would remain a highly prominent facility of very industrial character and would continue to be a ‘visually degraded area’ of the coastal zone. Unfortunately, beyond recommended modifications to Conditions included in this analysis, it is unclear that further substantial visual restoration or enhancement opportunities exist at the ESEC site, due to the absence of locations or opportunities for additional screening.

As discussed further below, if the Energy Commission approves the amended project, the previously required Conditions of Certification with recommended staff modifications should continue to be required under the current amendment.

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

This section includes information about the following:

1. Method and threshold for determining significance
2. Direct/indirect impacts and mitigation
3. Cumulative impacts and mitigation

METHOD AND THRESHOLD FOR DETERMINING SIGNIFICANCE

CEQA Criteria of Significance

The following regulatory criteria were considered in determining whether a visual impact would be significant under CEQA.
The CEQA Guidelines define a “significant effect” on the environment to mean a “substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project including...objects of historic or aesthetic significance.” (Cal. Code Regs., tit.14, §15382.) Appendix G of the Guidelines, under Aesthetics, lists the following four questions to be addressed regarding whether the potential impacts of a project are significant:

1. Would the project have a substantial adverse effect on a scenic vista?
2. Would the project substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?
3. Would the project substantially degrade the existing visual character or quality of the site and its surroundings?
4. Would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

As discussed above, because of the visually degraded baseline condition of the project site, significant visual impacts under CEQA are not anticipated, and are not the primary visual concern of the analysis. However the KOP analysis below provides a detailed CEQA analysis of anticipated impacts.

Key Observation Points (KOPs)

The visual resources approach is based on detailed analysis from representative Key Observation Points (KOPs). KOPs are selected to be representative of the most critical locations from which the project would be seen, based on strong anticipated project effects and high viewer sensitivity. KOPs for the proposed project include ones (1) along major travel corridors (Vista del Mar in Manhattan Beach (southbound) and El Segundo ((northbound)); (2) from recreational areas with visual access (Manhattan State Beach, Dockweiler State Beach); (3) at high-sensitivity residential locations with visual exposure to the project (Manhattan Beach residences along 45th Avenue and The Strand).

At each KOP, the existing landscape is characterized. Photographs were obtained to indicate existing conditions without the project and then were modified to include a simulation of the project. Consequently, staff has a visual representation of the viewshed before and after a project is introduced to assist in the analysis.

Energy Commission staff evaluated the visual setting and proposed project in detail from several viewing areas represented by existing and simulated views of the following six key observation points, provided by the project owner and shown in Visual Resources Figure 3, Key Observation Points (KOPs). The project owner’s simulations were taken from the 2013 PTA. To follow the analysis of this staff assessment, a new KOP numbering system is adopted for this report, as described below and depicted in Visual Resources Figure 3. For each KOP, the equivalent KOP number from the Applicant’s 2013 PTA is provided in parentheses.
• KOP 1 Dockweiler State Beach (PTA KOP 1)
• KOP 2 Dockweiler State Beach (near bike trail, ESGS site) (PTA KOP 7)
• KOP 3 Manhattan State Beach (PTA 2)
• KOP 4 Vista del Mar - Manhattan Beach (northbound) (PTA 3)
• KOP 5 Vista Del Mar - El Segundo (southbound) (PTA 8)
• KOP 6 Manhattan Beach Residences (45th Avenue) (PTA 10)

Each of these six key observation points is shown on Visual Resources Figure 3. At each KOP a visual analysis was conducted. A discussion of the visual setting and anticipated visual change for each KOP is presented in the subsection entitled “C. Visual Character or Quality,” below, and summarized in tabular form in Visual Resources Table 2. Existing and simulated views of the KOPs may be found at the end of this section, with other figures.

DIRECT/INDIRECT IMPACTS AND MITIGATION

This analysis considered the potential impacts of the proposed project in relation to the four significance criteria for visual resource impacts listed in Appendix G of the CEQA Guidelines, under Aesthetics, specified above.

A. Scenic Vistas

"Would the project have a substantial adverse effect on a scenic vista?"

For the purposes of this analysis, a scenic vista is defined as a designated scenic vista (identified in public planning documents); a view of high scenic quality perceived through and along a corridor or opening; or a view from a designated scenic area.

No. Views from the two adjacent state beaches, and from Vista del Mar, may be considered scenic vistas. The proposed Units 9 – 12 project would result in improvement to these views, through removal of the very large Units 3 and 4 power block and their replacement with much smaller Units 9 – 12. While views from beaches to the north and south would be improved slightly, views from the adjoining beach and bike path to the west of ESGS would be improved substantially, and views of the Santa Monica Bay from Vista del Mar to the east would be opened considerably.

B. Scenic Resources

"Would the project substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?"

For the purpose of this analysis, scenic resources include a unique water feature (waterfall, transitional water, part of a stream or river, estuary); a unique physical geological terrain feature (rock masses, outcroppings, layers or spires); a tree having a unique/historical importance to a community (a tree linked to a famous event or person, an ancient, old growth tree); historic building; or other scenically
important physical features, particularly if located within a designated federal scenic byway or state scenic corridor.

No. There are no scenic resources within the project site, so construction of the proposed units would not affect any such physical features.

C. Visual Character or Quality

"Would the project substantially degrade the existing visual character or quality of the site and its surroundings?"

CEQA Criterion C is determined in this analysis by staff’s visual sensitivity/visual change assessment methodology, applied through analysis of representative KOPs throughout the project viewshed.

No. Within the framework of CEQA analysis, this study treats the existing condition, comprising Units 2, 3, and 5 through 8, as the baseline condition. From this perspective, the removal of the Units 3 and 4 power block and their replacement with proposed Units 9 through 12 would reduce the bulk and prominence of the generation facilities and increase view corridors to the Santa Monica Bay as seen from Vista del Mar. Thus, from all KOPs, the proposed condition would represent a visual improvement over the existing condition, a beneficial impact overall.

A detailed CEQA analysis is provided below by KOP. The visual analysis under Criterion C is organized into two categories: 1) construction impacts and 2) operational impacts.

Construction Impacts and Mitigation

Both construction activities and construction laydown and storage could create prominent, visually cluttered views that strongly detract from scenery-oriented recreational activities at adjoining beaches, or from scenic vistas of the bay and beaches as seen from Vista del Mar or other public roads in the coastal zone.

The entire construction and commissioning schedule is anticipated to last approximately 30 months. The decommissioning, demolition, and removal of existing Units 3 and 4 is anticipated to take approximately 6 months. Following completion of site preparation activities, construction and startup of the ESEC from site mobilization to commercial operation is expected to take approximately 24 months. No beach delivery of equipment is proposed.

Laydown and storage would be handled in three phases. Those items requiring long-term storage would be located at the offsite facility at 190th Street in Los Angeles near the intersection of the 110 and 405 freeways, used previously for staging of Units 5 - 8. Components scheduled to be placed into their final location will be staged onsite in the area of the currently abandoned fuel oil storage tanks at the south end of the property. Components located here will be temporary and on a revolving short-term basis. As construction logistics allow, some items will be located directly in the work area.
Off-site staging has occurred over the period of construction of Units 5 – 8 and has not had adverse impacts. The off-site staging site at 190th Street is screened at the perimeter with opaque fencing, and is located in an industrial area with poor visual quality and low visual sensitivity. No adverse effects are thus anticipated from that site’s continued use.

Construction activities at the former tank farm staging and laydown site have been a concern of residents in Manhattan Beach. The landscaped berm installed under previous Condition of Certification VIS-9 was intended in part to provide partial screening of the tank farm laydown activities. However, at this date the landscape plantings on the berm are not mature and do not provide visual screening of proposed equipment laydown. Staff thus recommends new Visual Resources Condition of Certification VIS-10, Screening of Construction Laydown Sites to address potential impacts of equipment staging during the construction period. Although this measure would not eliminate all visual impacts from construction or construction staging, it would reduce the visual clutter and disorder of such activities and, because the activities would be temporary, help reduce their effects to a less-than-significant level.

Operational Impacts and Mitigation

An analysis of operation impacts was conducted for the view areas represented by the key viewpoints selected for in-depth visual analysis. The results of the operation impact analysis are discussed below by KOP and presented in Visual Resources Table 2. The visual impacts of night lighting are discussed in a separate section of this analysis. For each KOP, an evaluation of visual contrast, project dominance, and view blockage is presented with a concluding assessment of the overall degree of visual change caused by the proposed project. Visual change is then considered within the context of the landscape’s visual sensitivity to arrive at a determination of visual impact significance.

The analysis that follows is based in part on visual simulations provided by the project owner and reproduced at the end of this section. These images were reviewed by staff at 'life-sized' scale to support the impact analysis. It should be noted that judgments of visual contrast and dominance should ideally be based on reproductions of the simulations at such 'life-sized' scale (i.e., at a scale that reproduces the viewing conditions as seen by the naked eye at the site of the KOP). Based on camera lens information provided to staff, this implies figure reproduction at approximately ledger-size, viewed at normal reading distance. If simulations are viewed at a smaller reproduction scale, the resulting reduction in apparent visual scale should be borne in mind by the reader.

KOP 1 – Dockweiler State Beach

Visual Resources Figure 8A depicts the view toward the site from Dockweiler Beach State Park from a distance of approximately 1/2 mile looking south. Dockweiler Beach State Park receives very heavy use throughout much of the year. Views of the ESGS are unimpeded and the facility can appear co-dominant with the LADWP Scattergood Power Plant in this general area of use. This KOP represents
typical conditions within the largest, most-used portion of the beach to the north of the ESGS.

Visual Quality: Moderately high. Views of the ESGS facility from foreground distance are of moderately low quality. From foreground distance the facility is large-scale, highly prominent, and visually unavoidable. The visually cluttered, disordered industrial character of the facility combines with prominent oil storage tanks of the Chevron refinery to the east to contrast strongly with its otherwise scenic, predominantly natural surroundings. However, despite the prominence of the existing ESGS facility, the visual quality at this KOP is considered moderately high overall due to the open panoramic views of the Bay and beaches in all other directions of view.

Viewer Concern: High. Viewer concern is considered high due to the recreational and scenery-oriented focus of beach visitors and their strong expectations of high scenic quality.

Viewer Exposure: Moderately low. Viewer exposure to the ESPFM Units 9 through 12 project site is moderately low from Dockweiler Beach to the north. This is because the HRSG/power block of existing ESEC Unit 5 would largely block views of the larger, taller components of Units 9 through 12, including portions of the tall exhaust stacks.

Overall Visual Sensitivity: Overall visual sensitivity of this KOP is therefore moderately high.

Visual Resources Figure 8B presents a visual simulation of the proposed project and illustrates the visibility of the project area as viewed from KOP 1.

Visual Contrast: Low. Visual contrast of the proposed Units 9 through 12 would be low as seen from the majority of Dockweiler Beach to the north of the ESGS due to screening of the units by the existing ESEC Unit 5 power block, and due to the similar industrial character of those proposed components that would be visible. Portions of the proposed new units would be visible and present moderate form contrast against the visual background of the city of Manhattan Beach. However, with surface color treatment with recessive, non-reflective colors to blend with the background as called for in Condition of Certification VIS-5, as modified, contrast could be minimized.

Project Dominance: Low. In relation to the existing industrial setting dominated by ESEC Units 5 – 8, the visual dominance of Units 9 – 12 would be low from this KOP.

View Blockage: Low. View blockage from KOP 1 would also be low, for similar reasons. The existing Unit 5 would block views of much of proposed Units 9 – 12.

Overall Visual Change: Low.
Visual Impact Significance: Despite high overall viewer sensitivity at Dockweiler Beach, visual change from Units 9 – 12 would be low. Therefore, impacts would be less than significant.

Mitigation: In order to minimize potential contrast of new structures where visible from beaches, Condition of Certification VIS-5, Surface Color Treatment of Structures, as modified, is recommended. Staff recommends specification of painting of new units such that lower elevation (non-exhaust stack, non-office) structures be painted in a blue color to match existing Units 5 – 8, in order to provide maximum visual unity and harmony between the units.

Residual Impact Significance After Mitigation. Residual impacts in relation to the existing condition would be negligible.

KOP 2 – Dockweiler State Beach (foreground)
Visual Resources Figure 9A depicts the view toward the site from the rock groin at the northern boundary of the project site in Dockweiler Beach. In this discussion the view is meant to provide an overview of viewer conditions from adjoining portions of the beach, and particularly from the bike path abutting the site’s western fence-line. Baseline conditions of this KOP are essentially similar to those just described for nearby KOP 1. However, dominance of the ESGS is higher due to viewers’ proximity.

Visual Quality: Moderately high. Views of the ESGS facility and ESEC site from adjoining viewpoints are of moderately low quality. Even more than from KOP 1, the power plant components loom over viewers and completely dominate views to the north, east, and south. The visually cluttered, disordered industrial character of the facility contrasts strongly with the otherwise scenic, predominantly natural character of the beach and sea to the west. As depicted in Visual Resources Figure 1 above, however, the highly industrial character of views from these adjoining areas has been greatly moderated by the addition of a tall, well-designed decorative sea wall adjoining much of the bike path along the plant’s western fence-line. The 2200-foot-long wall introduces a substantial degree of visual unity to the path, and a strong element of decorative design. The wall also serves to screen views into the ground plane of the site, and to direct views westward away from the plant and toward the bay. As at KOP 1, visual quality is considered moderately high overall because of the outstanding quality of views away from the plant, toward the bay.

Viewer Concern: High. Viewer concern is considered high due to the recreational and scenery-oriented focus of beach visitors, bicyclists, and pedestrians, and their strong expectations of high scenic quality.

Viewer Exposure: High. Viewer exposure to the ESPFM Units 9 through 12 project site is very high from the bike path and adjoining beach.

Overall Visual Sensitivity: Overall visual sensitivity of this KOP is therefore high.
Visual Resources Figure 9B presents a visual simulation of the proposed project and illustrates the visibility of the project area as viewed from KOP 2.

Visual Contrast: As depicted in the simulation, the contrast of both the existing Units 3 and 4 and the proposed Units 9 – 12 with the surrounding scenic beach landscape is extremely strong. However, the overall change in contrast of nearby views as a result of the ESPFM project would be somewhat beneficial; that is, the contrast with the surrounding scenic beach setting would be similar in character but reduced somewhat by the reduced dominance of the new, smaller units. Contrast is thus low.

Project Dominance: Similarly, visual dominance of the proposed units, like the existing units, would be strong. However, the overall dominance of nearby views would be reduced somewhat by the new ESEC units because of their overall reduced profile, footprint and overall scale.

View Blockage: Substantial view blockage of sky as seen from the bike path occurs due to existing Units 3 and 4, and this would remain true but to a reduced degree under the proposed ESPFM project. Because of the reduced footprint and spatial separation of tall components under the new project, view blockage of the sky would decrease considerably.

Overall Visual Change: Overall contrast, dominance and view blockage of views from KOP 4 would be reduced in relation to the surrounding beach environment to a moderate degree by the proposed ESPFM project.

Visual Impact Significance: Visual impacts of the proposed project would be somewhat beneficial.

Mitigation: In order to minimize potential contrast of new structures where visible from beaches and to enhance visual unity of the power plant components, coloring of the cooling tower and all other non-exhaust stack features in a blue color to match the Units 5 – 8 HRSGs is recommended under Condition of Certification VIS-5, Surface Color Treatment of Structures.

Residual Impact Significance After Mitigation. Residual impacts in relation to the existing condition would be moderately beneficial.

KOP 3 - Manhattan Beach State Park

Visual Resources Figure 10A depicts the view toward the project site from Manhattan Beach State Park at approximately 1/2 mile distance. This view is representative of the hundreds of thousands of annual visitors to Manhattan Beach, at a point near the project site.

Visual Quality – High. Visual quality from the area of this KOP is high due to the panoramic Bay views in three directions. The ESEC Units 5 - 8 are currently hidden behind Units 3 and 4 power block. The project facilities as a whole are visually co-dominant with the tank farm berm in the foreground.
Viewer Concern – High. Viewer concern is high due to the recreation and scenery focus of viewer activity.

Viewer Exposure – Moderate. Visibility of the proposed ESPFM site from this KOP is moderate. While the taller features of stacks and power block are currently highly visible, the lower elevations of the ESEC site are screened by the foreground berm. Overall exposure is thus moderate, despite the very high numbers of viewers.

Overall visual sensitivity is thus moderately high.

Visual Resources Figure 10B presents a visual simulation of the proposed project site and illustrates the visibility of the project area. The on-site storage tanks visible in both the existing and simulated views are existing Chevron storage tanks east of Vista del Mar. ESEC project laydown would be conducted at the level site atop and behind the landscaped berm during project construction.

Visual Contrast: While contrast with the natural surroundings of the ESGS facility, including the new units, would remain strong, the overall change in contrast as a result of the ESEC project would be somewhat beneficial; that is, the contrast with the surrounding scenic beach setting would be reduced somewhat by the elimination of the massive existing Units 3 and 4 power block.

Project Dominance: Visual dominance of the proposed units, like the existing units, would remain moderately strong. However, the overall dominance of views would be reduced somewhat by the elimination of the massive Units 3 and 4 power block and the reduced profile and overall scale of the new ESEC units.

View Blockage: View blockage of the sky would decrease considerably due to the elimination of the massive existing Units 3 and 4 power block.

Overall Visual Change: Overall contrast, dominance and view blockage of views from KOP 2 would be reduced in relation to the surrounding beach environment to a moderate degree by the proposed ESPFM project.

Visual Impact Significance: Visual impacts of the proposed project would be somewhat beneficial.

Mitigation: Conditions of Certification as required under the original and previously approved amendment decisions, should also be applied to the current ESPFM proposal. In particular, implementation of the landscaped berm depicted in KOP 2 is not complete, and has encountered issues of plant survival and suitability of landscape plantings. Modifications to the landscape plan and installation may be required to ensure effectiveness of these measures, as described under modifications of Condition of Certification VIS-2.

Residual Impact Significance After Mitigation. With successful resolution of issues with the landscaped berm, visual impacts of the proposed project would be
somewhat beneficial as seen from KOP 2. However, timely resolution of tree survival issues is critical to achieving mitigation under previous and current Conditions of Certification.

KOP 4 - Vista del Mar - Manhattan Beach (Northbound)

Visual Resources Figure 11A depicts the view of motorists and residents looking toward the project site from Vista del Mar in Manhattan Beach at foreground distance (approximately ½ mile). From this portion of Vista del Mar, views of the power plant are visually subordinate to co-dominant, seen through a narrow view corridor framed by low-rise residential development on each side. At 45th Street, views of the plant become dominant in the viewer’s immediate foreground.

Visual Quality – Moderate. Visual quality from this viewing area is generally moderate, typified by medium density residential structures with little or no street-front landscaping and limited scenic views, but also including some views of the Santa Monica Bay and Mountains.

Viewer Concern – Moderately high. Viewer concern is considered moderately high due to the combination of recreationists, tourists, and residents with higher viewer concern, with commuters and others with lower levels of viewer concern.

Viewer Exposure – Moderately high. Viewer exposure to the plant increases from moderate to high as one approaches the plant. Near-distance views of the existing Units 3 and 4 power block are highly prominent, looming above the roadway and strongly sky-lined against a background of bay and mountains at the horizon.

Overall visual sensitivity is thus considered moderately high.

Visual Resources Figure 11B presents a visual simulation of the proposed project as viewed from KOP 4.

Visual Contrast: The contrast of the ESGS with the surrounding setting, particularly in views toward the bay, would be reduced dramatically by the elimination of the massive existing Units 3 and 4 power block and their replacement with the lower and much smaller Units 9 – 12.

Project Dominance: Visual dominance of the ESGS facility would be reduced dramatically from KOP 3 by the elimination of the existing Units 3 and 4 power block, which currently dominates these views. Although the new exhaust stacks would remain visible and prominent, looming views of the existing power block would be replaced by open views of the bay.

View Blockage: Existing blockage of views to the bay by the existing power block, which is severe, would be largely eliminated by its replacement with the proposed ESPFM units. The much lower, spatially separated units would greatly increase available views to the bay.
Overall Visual Change: Overall contrast, dominance and view blockage of views from KOP 3 would be reduced substantially by elimination of Units 3 and 4 under the proposed ESPFM project.

Visual Impact Significance: Visual impacts of the proposed project from KOP 3 would be beneficial.

Mitigation: None needed.

KOP 5 - Vista del Mar – El Segundo (Southbound)

Visual Resources Figure 12A depicts the view toward the ESEC project from Vista del Mar, immediately adjacent to the ESGS site, southbound. For southbound motorists on Vista del Mar, views of the existing ESEC Units 5 - 8 become highly dominant from a distance of roughly 1/2 mile. However, the existing ESEC exhaust stacks and HRSGs are a prominent feature of the El Segundo/Vista del Mar landscape for southbound motorists from over 1.5 miles or more to the north, as depicted in **Visual Resources Figure 3**.

Visual Quality – Moderate. Within the immediate roadway foreground represented by this KOP, quality of views for southbound motorists is moderate. On one hand, intermittent views to the Bay may still be seen, and extensive landscaping of the Chevron site perimeter to the east contributes to moderately high scenic quality. On the other, the existing views of the plant itself, including power blocks, HRSGs, exhaust stacks, and transmission towers and lines at the roadside, as well as visible portions of the Chevron marine terminal to the west, are of low quality. Thus, overall visual quality was considered to be moderate.

Viewer Concern – Moderately high. High numbers of motorists passing the site include a combination of tourists and recreationists with high scenic expectations, together with commuters, workers and others who would be expected to have lower levels of scenic expectation and concern.

Viewer Exposure – Moderately high. Visibility of the existing Units 5 - 8 is high, due to the height and prominence of the existing HRSGs and exhaust stacks above the level of the roadway in the immediate foreground. Recently planted landscape screening in this portion of roadway will help considerably in filtering views of the existing and proposed units in the future, reducing viewer exposure with greater maturity. Older existing landscaping near the site perimeter also contribute to visual filtering of the plant from Vista del Mar, improving the quality of views in this segment of road.

Very high numbers of motorists see the ESGS facilities from the roadway at very close distances, but the duration of exposure within the foreground radius (from vicinity of Grand Avenue in El Segundo, and 43rd Street in Manhattan Beach) within which strong impacts could be expected is relatively transitory and brief, usually between 20 and 40 seconds at 45 mph.

Overall visual sensitivity is considered moderately high.
Visual Resources Figure 12B depicts a visual simulation of the proposed project from KOP 5.

Visual Contrast: The contrast of the ESGS with the surrounding setting, particularly in views toward the bay, would be reduced dramatically by the elimination of the massive existing Units 3 and 4 power block and their replacement with the lower and much smaller Units 9 – 12.

Project Dominance: Visual dominance of the project facility would be reduced dramatically from KOP 5 by the elimination of the existing Units 3 and 4 power block, which currently dominates these views. Although the new exhaust stacks would remain visible and prominent, looming views of the existing power block would be replaced by open views of the bay.

View Blockage: Existing blockage of views to the bay by the existing Units 3 and 4 power block, which is severe, would be largely eliminated by its replacement with the proposed ESEC units. The much lower, spatially separated units would greatly increase available views to the bay. Intrusion into scenic bay views by Units 5 – 8, and by the exhaust stacks of Units 9 – 12, would remain strong and prominent.

Overall Visual Change: Overall contrast, dominance and view blockage of views from KOP 5, though still strong, would be reduced substantially by elimination of Units 3 and 4 under the proposed ESPFM project.

Visual Impact Significance: Visual impacts of the proposed project from KOP 5 would be beneficial.

Mitigation: None needed

KOP 6 – 45th Street, Manhattan Beach Residences

Visual Resources Figure 13A depicts the view from residences on 45th Street and The Strand, Manhattan Beach (El Porto) looking north toward the ESGS site. Potential sensitive receptors within this portion of the viewshed include residents of homes in the City of Manhattan Beach along 45th Street or The Strand (views from homes further south are largely blocked by intervening structures). While views of the ESEC from the vicinity of 45th Street are largely screened by the intervening landscaped berm, residents of 45th Street could have very prominent views of laydown and construction activities at the former tank farm site.

Visual Quality – High. Views of the bay are visible from most residences exposed to views of this portion of the ESEC site. The mechanical/industrial features of the power plant are largely screened from view due to the landscaped berm on 45th Street.

Viewer Concern – High. Viewer concern of residents is typically considered high.
Viewer Exposure – Moderately high. Visibility and exposure to the ESEC project site would be low, but to the tank farm laydown site, moderately high. Overall visual sensitivity is thus considered high.

Visual Resources Figure 13B depicts a visual simulation of the proposed project from KOP 10.

Visual Contrast: As depicted in VISUAL RESOURCES Figure 13B, ESEC project contrast would be low. It is not clear why the existing Units 3 and 4 exhaust stacks are visible in this view, but the proposed Units 9, 10, and 11 as depicted would not be, since they are of similar height and in similar locations. Nevertheless, even if these stacks would be visible in these views, the level of contrast would remain moderately low. However, temporary contrast of large equipment or material staging could in the worst cases be moderately high.

Project Dominance: As depicted, visual dominance of the ESEC units would be low. However, dominance of large equipment staging could be moderate.

View Blockage: As depicted, view blockage of the ESEC units from this KOP would be negligible. Equipment staging at the tank farm site would not block views of the bay and would thus also be negligible.

Overall Visual Change: Overall long-term visual change from the project would be negligible. However, short-term visual change from staging and laydown could be moderate.

Visual Impact Significance: Long-term impact significance of the project would be negligible. However, temporary construction laydown impacts could potentially be significant.

Mitigation: A key part of the visual effect of the ESEC facility from this area depends upon the landscaped berm and associated plantings required under conditions of the prior project proceedings. Staff has observed that these recent plantings have experienced some survival issues. Measures for further study and replanting on the berm have thus been added to Condition of Certification VIS-9.

In addition, to further address potential impacts of project staging/laydown at the tank farm site, a new Visual Resources Condition of Certification VIS-10 is recommended.

Residual Impact Significance After Mitigation. With success of plantings on the landscaped berm, long-term visual effects of the ESEC project would be beneficial.

In addition, with new Visual Resources Condition of Certification VIS-10, though potential temporary impacts of construction would not be eliminated, they could be reduced to acceptable, less-than-significant levels.
Visual Resources Table 2
KOP Ratings: Visual Sensitivity/Visual Change and Impact Significance under CEQA Criterion C

<table>
<thead>
<tr>
<th>KOP No.</th>
<th>VISUAL SENSITIVITY (Existing Condition)</th>
<th>Viewer Exposure</th>
<th>Overall Viewer Exposure</th>
<th>Overall Visual Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visual Quality</td>
<td>Viewer Concern</td>
<td>Visibility</td>
<td>No. of Viewers</td>
</tr>
<tr>
<td>1</td>
<td>Moderately high</td>
<td>High</td>
<td>Mod. low</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>Moderately high</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>Moderate</td>
<td>Moderately high</td>
<td>Mod. high</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>Moderate</td>
<td>Moderately high</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>6</td>
<td>High</td>
<td>High</td>
<td>Mod. High (Tank farm)</td>
<td>Moderate (Tank farm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KOP No.</th>
<th>VISUAL CHANGE (Project effect in relation to CEQA baseline)</th>
<th>Overall Visual Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contrast</td>
<td>Dominance</td>
</tr>
<tr>
<td>1</td>
<td>Low (reduced)</td>
<td>Low (reduced)</td>
</tr>
<tr>
<td>2</td>
<td>Low (reduced)</td>
<td>Low (reduced)</td>
</tr>
<tr>
<td>3</td>
<td>Low (reduced)</td>
<td>Low (reduced)</td>
</tr>
<tr>
<td>4</td>
<td>Low (reduced)</td>
<td>Low (reduced)</td>
</tr>
<tr>
<td>5</td>
<td>Low (reduced)</td>
<td>Low (reduced)</td>
</tr>
<tr>
<td>6</td>
<td>Low (reduced)</td>
<td>Low (reduced)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KOP No.</th>
<th>KOP VISUAL IMPACT SIGNIFICANCE DETERMINATION – (CEQA Criterion C)</th>
<th>Mitigation (See Staff Proposed KOP Visual Mitigation Measures)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall Visual Sensitivity</td>
<td>Overall Visual Change</td>
</tr>
<tr>
<td>1</td>
<td>Moderately high</td>
<td>Low</td>
</tr>
</tbody>
</table>

March 2014 4.12-21 VISUAL RESOURCES
Water Vapor Plumes

Staff employs a threshold for significant visible vapor plumes of 20 percent of seasonal daylight clear hours. Visible vapor plumes occurring more frequently than this threshold are considered to represent potentially significant visual impacts and subjected to further modeling to determine visible plume size as well as frequency. Staff modeled the GE turbine/HRSG plumes using the Combustion Stack Visible Plume (CSVP) model with a six-year (1990-1995) LAX meteorological data set obtained from the National Climatic Data Center. This analysis determined that frequency of visible plumes from the GE turbine/HRSG (Unit --) would be nil (0 percent) and from the Trent turbine (Unit --) also to be nil. The proposed auxiliary boiler would have a visible plume frequency of 0.3 percent under 25 percent load conditions, and 0.1 percent under full load. The potential for adverse visual impact from visible vapor plumes of the proposed units is thus predicted to be virtually nil (Wenjun 2013).

D. Light And Glare

"Would the project create a new source of substantial light or glare that would adversely affect daytime or nighttime views in the area?"

No. With recommended Conditions of Certification **VIS-6** and **VIS-8**, both permanent operational lighting and temporary construction lighting associated with the proposed units would be hooded and shielded, directed downward and restricted to within the boundaries of the ESGS site. Consistent with safety requirements, lighting would be of minimum necessary brightness and kept off when not in use and employ motion detectors. A lighting complaint resolution form would be kept to document and report all lighting complaints received, and included in the project Annual Compliance Report.
CUMULATIVE IMPACTS AND MITIGATION

A project may result in a significant adverse cumulative impact where its effects are cumulatively considerable. “Cumulatively considerable” means that the incremental effects of an individual project are significant when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects (Cal. Code Regs., tit. 14, § 15130).

Cumulative impacts to visual resources may occur where project facilities occupy the same field of view as other built facilities or impacted landscapes, and an adverse change in the visible landscape character is perceived. In some cases, a cumulative impact could also occur if a viewer perceives that the general visual quality or landscape character of a localized area is diminished by a proliferation of visible structures or construction effects, even if the changes are not within the same field of view as existing (or future) structures or facilities. The result is a perceived “industrialization” of the existing landscape character.

Past cumulative projects are relevant to the extent that they contribute to potential cumulative impacts of the proposed project, when considered with pending and future projects. In the present case, the numerous past industrial facilities in the ESGS’s coastal viewshed, including the Chevron refinery, Scattergood Power Plant, and Hyperion Wastewater Treatment facility, with the ESGS, have cumulatively created a landscape strongly and adversely influenced by these large-scale industrial facilities. The coastal strip between Imperial Highway to the north and 45th Avenue in Manhattan Beach has historically been dominated and visually degraded by these industrial uses. On the other hand, each of these past industrial projects has implemented substantial measures to screen and reduce their industrial character as seen by the public. These measures have included architectural enclosures and facades over mechanical equipment, landscaped berms, and extensive landscape plantings. These measures have substantially improved the Vista del Mar viewshed, reducing the overall industrial character. These measures now include the various visual mitigation and enhancement measures implemented as part of the past project proceedings.

The proposed ESPFM Units 9 – 12 project would be visible within the same viewshed as projects 1 and 4 of the project’s Cumulative Projects list as identified in the Executive Summary of the Preliminary Staff Assessment. These projects are: 1) ESEC Units 5 – 8 (existing); and 4) proposed construction of 4 new generation units at the LADWP Scattergood Generating Station, located approximately ½- mile north of the ESGS.

The proposed ESPFM amendment would contribute to the highly industrial visual presence of the previous, adjacent ESEC Units 5 – 8. Despite Conditions of Certification for those prior units, they remain a highly prominent, highly industrial feature of the coastal viewshed.

The existing Scattergood plant is also a highly prominent feature in the Vista del Mar viewshed to the north of the ESGS, and is prominently visible together with the project site facilities in views from Vista del Mar. The existing cumulative visual effect of the
Scattergood and the project’s facilities is greatly moderated, however, by the architectural enclosure and screening of mechanical equipment at the Scattergood plant, which appears as a simple large building rather than a visually cluttered collection of mechanical equipment.

The potential cumulative impact associated with ESEC and the proposed modification of the Scattergood plant would thus depend upon the design of the Scattergood modifications. If the proposed new Scattergood units employ an architecturally enclosed design similar to the existing facility, their adverse visual effects could be minimized. The incremental visual effects of the new ESPFM units would also be minimal or beneficial, as discussed previously. Thus, the cumulative impacts of the two projects together could also be minor or negligible. If however the replacement units at Scattergood were to be unscreened or otherwise result in adverse visual impacts to the Vista del Mar viewshed, then the overall condition of that viewshed could potentially decline substantially. In such a situation, significant adverse cumulative visual impacts could occur between the existing ESEC Units 5 – 8, the proposed ESPFM Units 9 – 12, and the proposed new Scattergood units. Under such a scenario the contribution of the proposed ESPFM Units 9 – 12 would be cumulatively considerable.

COMPLIANCE WITH APPLICABLE LORS

The proposed project would be subject to the LORS of the CCC and city of El Segundo. Compliance with these LORS is summarized in Visual Resources Table 3.

Visual Resources Table 3

Laws, Ordinances, Regulations and Standards

<table>
<thead>
<tr>
<th>Applicable LORS</th>
<th>Description</th>
<th>Consistency (assumes implementation of staff-recommended conditions of certification)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>California Coastal Act</td>
<td>Permitted development shall be sited and designed to protect views to and along the ocean and scenic coastal areas, to minimize the alteration of natural land forms, to be visually compatible with the character of surrounding areas, and, where feasible, to restore and enhance visual quality in visually degraded areas.” (Pub. Resources Code, § 30251)</td>
</tr>
<tr>
<td>Local</td>
<td>City of El Segundo Coastal Zone Specific Plan/Local Coastal Program</td>
<td>Policy LU5-2.1. New industrial developments shall provide landscaping in parking areas and around the buildings. This landscaping is to be permanently maintained.</td>
</tr>
<tr>
<td>Applicable LORS</td>
<td>Description</td>
<td>Consistency (assumes implementation of staff-recommended conditions of certification)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Policy LU5-2.2. All outdoor storage shall be properly screened by masonry walls and landscaping.</td>
</tr>
<tr>
<td></td>
<td>Consistent. With Conditions of Certification VIS-1, VIS-2, VIS-9 and VIS-10, outdoor storage and staging would be screened by a combination of fencing and landscaping.</td>
<td></td>
</tr>
<tr>
<td>Objective LU5-3. Encourage the rehabilitation of existing substandard blighted industrial areas through the combined efforts of private and public sectors.</td>
<td>Consistent. Conditions of Certification VIS-1 though VIS-10 comprise a collection of feasible mitigation and enhancement measures to rehabilitate the degraded visual condition of the ESGS site.</td>
<td></td>
</tr>
<tr>
<td>Policy LU5-3.1. Revitalize and upgrade industrial areas which contain aesthetic or functional deficiencies in such areas as landscaping, off-street parking, or loading areas.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

As discussed in the preceding analysis, the amended ESEC project is not expected to result in significant adverse impacts in relation to the existing CEQA baseline condition, because of the already degraded condition of the site and viewshed.

Instead, the principal visual issues of the project revolve around LORS conformance with the California Coastal Act. As in prior project proceedings, staff found, and the California Coastal Commission (CCC) concurred, that the project setting was “visually degraded, due in large part to the presence of the [existing] facility,” pursuant to Section 30251 of the Coastal Act. Section 30251 requires permitted developments “... where feasible, to restore and enhance visual quality in visually degraded areas.” The CCC recommended that specific provisions, described in Condition of Certification VIS-1, be implemented if the project was certified, pursuant to Section 25523(b) of the Warren-Alquist Act and Section 30413(e) of the Coastal Act. These provisions called for the enhancement of views of the facility from areas accessible to the public. These and associated Conditions of Certification VIS-2 through VIS-9 have largely been implemented, and would continue to be applied under the current proceeding. Although the condition of the project site and viewshed would remain ‘visually degraded’ even with complete implementation of these measures, all identified feasible mitigation measures have been applied, and substantial visual improvements are anticipated over the long term. Staff thus finds that the proposed project with all recommended conditions conforms with applicable LORS.

Staff further notes that significant cumulative visual impacts could potentially be anticipated if the proposed and foreseeable replacement of generation units at the LADWP Scattergood Plant should result in adverse visual impacts in the coastal viewshed of Dockweiler Beach and Vista del Mar.
CONDITIONS OF CERTIFICATION

All Conditions of Certification shall remain the same as approved in the 2010 Commission Decision, except as modified below. The Energy Commission should adopt all of the conditions of certification previously applied to the project in the 2010 Decision, as modified, if it approves the amended project. Staff has proposed modifications to the conditions of certification as shown below. (Note: Deleted text is in strikethrough, new text is bold and underlined). Where no changes to the Conditions of Certification are proposed, the conditions are not reproduced below, but should be applied as in the prior proceedings. Conditions of Certification VIS-1, VIS-3, VIS-8, and VIS-9 thus remain as before. Condition of Certification VIS-4 was previously deleted.

VIS-2 Perimeter screening and on-site landscaping. The project owner shall prepare and implement an approved perimeter screening and on-site landscape plan.

The screening shall, at a minimum, utilize landscape opportunities on all four boundaries of the project site. Landscape screening shall include: continuous tree canopies on the eastern roadside perimeter to enhance visual unity of the Vista del Mar road corridor, compatibility of the proposed project with its coastal setting, and at least partial long-term screening of upper portions of the HRSGs; shrub plantings along Vista del Mar to screen views of the structures, while preserving perpendicular view corridors to the Bay; plantings along 45th Street to provide long-term screening of the tank farm site; and tree planting on the western site perimeter to screen upper portions of power plant units from the bike path. Landscape screening shall also include planting on the path (west) side of all new concrete walls constructed along the existing bike path. The plan shall comply with City of El Segundo Zoning codes (Title 15, Chapter 2, Sec. 15-2-14) pertaining to on-site landscaping.

Final plant selection shall be made in consultation with the Compliance Project Manager (CPM), Coastal Commission staff, and the Cities of Manhattan Beach and El Segundo. Suitable irrigation shall be installed to ensure survival and desired rate of growth. The landscape screening and irrigation system shall be monitored for a period of five years to ensure survival. During this period all dead plant material shall be replaced.

To achieve year-round screening, evergreen species shall be used. Spacing of trees shall be sufficiently dense to ensure substantial screening by the tree canopy at maturity.

Prior to start of construction, the project owner shall submit a landscape plan to the Coastal Commission and the Cities of Manhattan Beach and El Segundo for review and comment, and to the CPM for review and approval. The plan shall include, but not be limited to:

1) A detailed landscape, grading, and irrigation plan, at a reasonable scale, which includes a list of proposed tree and shrub species and installation sizes, and a discussion of both the suitability of the plants for the site...
conditions and mitigation objectives, and conformance with the specific provisions of the Coastal Commission decision, including 1b and 2b specifying preference for native, non-invasive, and drought tolerant species. A list of potential tree species that would be viable in this location shall be prepared by a qualified professional landscape architect familiar with local growing conditions, with the objective of providing the widest possible range of species from which to choose.

2) A demonstration of how the screening conditions shall be met, including:
 - evidence provided by a qualified landscape architect that the specified species are both viable and available;
 - graphic documentation on the plan of Bay view corridors which would exist from Vista del Mar after project construction;
 - a description of tall and short shrub planting zones along Vista del Mar, such that screening of the existing and proposed power plants is maximized, while the aforementioned Bay view corridors are retained.

3) Elevation views or visual simulations of the landscape screening at maturity, in order to show the extent of screening that the landscaping is expected to achieve from the west side of the project, from 45th Street and from Vista del Mar.

4) A detailed schedule for completion of the installation.

5) Maintenance procedures, including any needed irrigation and a plan for routine and regular debris removal for the life of the project.

6) A procedure for monitoring and replacement of all unsuccessful plantings for the life of the project, including monitoring and replacement of pre-existing perimeter landscape plantings, such as those along the Vista del Mar frontage.

7) The project owner shall consult with the CPM to modify the perimeter landscape plan as needed to replace unsuccessful plantings, upgrade the condition and appearance of existing chain link fencing along the Braude bike path, and ensure survival of and effective screening by tree and other landscape plantings.

The project owner shall not implement the plan until the project owner receives written approval of the plan from the CPM.

Verification: At least 120 days prior to the start of construction, the project owner shall submit the perimeter screening and onsite landscape plan to the Coastal Commission and the Cities of Manhattan Beach and El Segundo for comment, and the CPM for review and approval. If the CPM notifies the project owner that revisions of the submittal are needed before the CPM will approve the submittal, the project owner shall prepare and submit to the Cities and CPM a revised submittal.
The project owner shall implement the landscape plan prior to start of commercial operation.

The project owner shall notify the CPM within seven days after completing installation of the landscape plan that the planting and irrigation system are ready for inspection.

The project owner shall report landscape maintenance activities, including replacement of dead vegetation, for the previous year of operation in the Annual Compliance Report.

VIS-5 Structure surface painting and treatment. Prior to the start of commercial operation, the project owner shall paint or treat portions of Units 5, 6 and 7-9 through 12 structures visible to the public, such that their colors minimize visual intrusion and contrast by blending with the landscape; their surfaces do not create glare; and they are consistent with local laws, ordinances, regulations, and standards. Major project structures and appurtenances, excluding the exhaust stacks and administration building, shall be painted blue to match the coloring of existing Units 5 through 8.

Prior to the start of construction, the project owner shall submit to the Coastal Commission and the Cities of El Segundo and Manhattan Beach for review and comment, and to the CPM for review and approval, a specific treatment plan whose proper implementation will satisfy these requirements. The treatment plan shall include:

a) Specification, and 11” x 17” color simulations at life size scale, of the treatment proposed for use on project structures, including structures treated during manufacture;

b) A list of each major project structure, building, tank, transmission line tower and/or pole, and fencing/walls specifying the color(s) and finish proposed for each (colors must be identified by name and by vendor brand or a universal designation);

c) Two sets of brochures and/or color chips for each proposed color;

d) Samples of each proposed treatment and color on each material to which they would be applied that would be visible to the public;

e) A detailed schedule for completion of the treatment; and

f) A procedure to ensure proper treatment maintenance for the life of the project.

The project owner shall not specify to the vendors the treatment of any buildings or structures treated during manufacture, or perform the final treatment on any buildings or structures treated on site, until the project owner receives notification of approval of the treatment plan by the CPM.
Verification: The project owner shall submit its proposed treatment plan at least 90 (ninety) days prior to ordering the first structures that are color treated during manufacture.

If revisions are required, the project owner shall provide the CPM with a revised plan within 30 (thirty) days of receiving notification that revisions are needed.

Prior to commercial operation, the project owner shall notify the CPM that all buildings and structures are ready for inspection.

The project owner shall provide a status report regarding treatment maintenance in the Annual Compliance Report.

VIS-6 Project lighting. Prior to the start of commercial operation, the project owner shall design and install new permanent lighting for Units 5, 6 and 7, such that light bulbs and reflectors are not visible from public viewing areas; lighting does not cause reflected glare; and illumination of the project, the vicinity, and the nighttime sky is minimized. To meet these requirements the project owner shall ensure that:

a) Lighting shall be designed so exterior light fixtures are hooded, with lights directed downward or toward the area to be illuminated and so that backscatter to the nighttime sky is minimized. The design of the lighting shall be such that the luminescence or light source is shielded to prevent light trespass outside the project boundary;

b) All lighting shall be of minimum necessary brightness consistent with worker safety;

c) Wherever feasible and safe, lighting, including administration office interior lighting, shall be kept off when not in use;

d) Design of administration office shall include use of darkened glass to minimize visibility of nighttime interior lighting to public view; and

e) A lighting complaint resolution form (following the general format of that in Appendix VR-1) shall be used by plant operations to record all lighting complaints received and document the resolution of those complaints. All records of lighting complaints shall be kept in the on-site compliance file.

Verification: At least 60 days prior to ordering any permanent exterior lighting, the project owner shall submit to the CPM for review and comment written documentation describing the lighting control measures and fixtures, hoods, shields proposed for use, and incorporate the CPM’s comments in lighting equipment orders.

Prior to first turbine roll, the project owner shall notify the CPM that the lighting has been completed and is ready for inspection. If the CPM notifies the project owner that modifications to the lighting are needed to minimize impacts, within 30 days of receiving
that notification the project owner shall implement the modifications and notify the CPM that the modifications have been completed.

The project owner shall report any lighting complaints and documentation of resolution in the Annual Compliance Report, accompanied by any lighting complaint resolution forms for that year.

VIS-7 Site lighting. Prior to demolition of existing storage tanks, the project owner shall modify Unit 3 and 4 to Units 5 through 8 permanent lighting, such that light bulbs and reflectors are not visible from public viewing areas, particularly in Manhattan Beach, after demolition of Units 3 and 4; lighting does not cause reflected glare; and illumination of the project, the vicinity, and the nighttime sky is minimized. To meet these requirements the project owner shall ensure that:

a) Lighting shall be designed so exterior light fixtures are hooded, with lights directed downward or toward the area to be illuminated and so that backscatter to the nighttime sky is minimized. The design of the lighting shall be such that the luminescence or light source is shielded to prevent light trespass outside the project boundary;

b) All lighting shall be of minimum necessary brightness consistent with worker safety;

c) Project owner shall implement where feasible and practical modifications of circuits in order to allow turning off specific lights when not in use;

d) A lighting complaint resolution form (following the general format of that in Appendix VR-1) shall be used by plant operations to record all lighting complaints received and document the resolution of those complaints. All records of lighting complaints shall be kept in the on-site compliance file.

Verification: At least 60 days prior to ordering of any new permanent exterior lighting for Units 3 and 4, the project owner shall submit to the CPM for review and comment written documentation describing the lighting control measures and fixtures, hoods, shields proposed for use, and incorporate the CPM’s comments in lighting equipment orders.

Prior to demolition of the tanks, the project owner shall notify the CPM that the lighting modifications to Unit 3 and 4 have been completed and are ready for inspection. If the CPM notifies the project owner that modifications to the lighting are needed to minimize impacts, within 30 days of receiving that notification the project owner shall implement the modifications and notify the CPM that the modifications have been completed.

The project owner shall report any complaints about permanent lighting and provide documentation of resolution in the Annual Compliance Report, accompanied by any lighting complaint resolution forms for that year.

VIS-10: Screening of On- and Off-Site Construction and Laydown. Prior to the start of commercial operation, the project owner shall design and install
continuous new opaque perimeter fencing around all proposed construction and laydown sites within the coastal zone, including the Units 3 and 4 portion of the ESGS site facing the beach, and the former tank farm site facing the beach or 45th Avenue. Fencing shall be of sufficient height and extent to minimize the visibility of stored equipment and materials as seen by off-site public viewers. Opaque fencing material shall be maintained and, where damaged or worn, replaced in a timely manner.

Fencing plans shall be prepared for all construction, staging and laydown sites in the coastal zone where construction or staging could be visible from public beaches or roadways.

Prior to start of demolition or laydown activities, project owner shall submit a temporary perimeter fencing plan to the CPM for review and approval. The plan shall provide:

a) A detailed fencing plan at a reasonable scale showing proposed fence locations, fencing types and heights, and fencing details.

b) A detailed schedule for completion of the installation.

c) A procedure for monitoring and replacement of damaged or worn fencing.

Verification: At least 60 days prior to start of ground disturbance, the project owner shall submit the temporary perimeter fencing plan to the CPM for review and approval. If the CPM notifies the project owner that revisions of the submittal are needed before the CPM will approve the submittal, the project owner shall prepare and submit to the CPM a revised plan.

The project owner shall notify the CPM within seven days after completing installation of the fencing plan that the fencing is ready for inspection.

The project owner shall report fencing maintenance activities, including replacement of damaged or worn fencing, for the previous month of construction in the Monthly Compliance Report.
REFERENCES

2013aCoastal Commission Visual Findings on AFC-POS. Submitted to the
California Energy Commission on March 6, 2002.

CEC (TN 26655). Final Staff Assessment – El Segundo Redevelopment Project, dated
9/2002

CEC (CEC-800-2010-015). El Segundo Power Redevelopment Project Amendment
Commission Decision, dated 6/2010

NRG / El Segundo Energy Center LLC (TN 70442) Petition to Amend, dated April 2013.
Submitted to CEC on 04/23/2013

City of El Segundo (COES), 1980.City of Manhattan Beach (COMB).-Coastal Zone
APPENDIX VR-1

ENERGY COMMISSION VISUAL RESOURCE ANALYSIS EVALUATION CRITERIA

Energy Commission staff conducts a visual resource analysis according to Appendix G, “Environmental Checklist Form—Aesthetics,” California Environmental Quality Act (CEQA). The CEQA analysis requires that commission staff make a determination of impact ranging from “Adverse and Significant” to “Not Significant.”

Staff’s analysis is based on Key Observation Points or KOPs. KOPs are photographs of locations within the project area that are highly visible to the public—for example, travel routes; recreational and residential areas; and bodies of water as well as other scenic and historic resources.

Those photographs are taken to indicate existing conditions without the project and then modified to include a simulation of the project. Consequently, staff has a visual representation of the viewshed before and after a project is introduced and makes its analysis accordingly. Information about that analytical process follows.

VISUAL RESOURCE ANALYSIS WITHOUT PROJECT

When analyzing KOPs of existing conditions without the project, staff considers the following conditions: visual quality, viewer concern, visibility, number of viewers, duration of view. Those conditions are then factored into an overall rating of viewer exposure and viewer sensitivity. Information about each condition and rating follows.

Visual Quality

An expression of the visual impression or appeal of a given landscape and the associated public value attributed to the resource. Visual quality is rated from high to low. A high rating is generally reserved for landscapes viewers might describe as picture-perfect.

Landscapes rated high generally are memorable because of the way the components combine in a visual pattern. In addition, those landscapes are free from encroaching elements, thus retaining their visual integrity. Finally, landscapes with high visual quality are visually coherent and harmonious when each element is considered as part of the whole. On the contrary, landscapes rated low are often dominated by visually discordant human alterations.

Viewer Concern

Viewer concern represents the reaction of a viewer to visible changes in the viewshed an area of land visible from a fixed vantage point. For example, viewers have a high expectation for views formally designated as a scenic area or travel corridor as well as for recreational and residential areas. Viewers generally expect that those views would be preserved. Travelers on highways and roads, including those in agricultural areas, are generally considered to have moderate viewer concerns and expectations.
However, viewers tend to have low-to-moderate viewer concern when viewing commercial buildings. And industrial uses typically have the lowest viewer concern. Regardless, the level of concern could be lower if the existing landscape contains discordant elements. In addition, some areas of lower visual quality and degraded visual character may contain particular views of substantially higher visual quality or interest to the public.

Visibility

Visibility is a measure of how well an object can be seen. Visibility depends on the angle or direction of views; extent of visual screening; and topographical relationships between the object and existing homes, streets, or parks. In that sense, visibility is determined by considering any and all obstructions that may be in the sightline—trees and other vegetation; buildings; transmission poles or towers; general air quality conditions such as haze; and general weather conditions such as fog.

Number of Viewers

Number of viewers is a measure of the number of viewers per day who would have a view of the proposed project. *Number of viewers* is organized into the following categories: residential according to the number of residences; motorist according to the number of vehicles; and recreationists.

Duration of View

Duration of view is the amount of time to view the site. For example, a high or extended view of a project site is one reached across a distance in two minutes or longer. In contrast, a low or brief duration of view is reached in a short amount of time—generally less than ten seconds.

Viewer Exposure

Viewer exposure is a function of three elements previously listed, *visibility*, *number of viewers*, and *duration of view*. Viewer exposure can range from a low to high. A partially obscured and brief background view for a few motorists represents a low value; and unobstructed foreground view from a large number of residences represents a high value.

Visual Sensitivity

Visual sensitivity is comprised of three elements previous listed, *visual quality*, *viewer concern*, and *viewer exposure*. Viewer sensitivity tends to be higher for homeowners or people driving for pleasure or engaged in recreational activities and lower for people driving to and from work or as part of their work.

Visual Resource Analysis with Project

Visual resource analyses with photographic simulations of the project involve the elements of contrast, dominance, view disruption, and visual change. Information about each element follows.
Contrast
Contrast concerns the degree to which a project’s visual characteristics or elements — form, line, color, and texture — differ from the same visual elements in the existing landscape. The degree of contrast can range from low to high. A landscape with forms, lines, colors, and textures similar to those of a proposed energy facility is more visually absorbent; that is, more capable of accepting those characteristics than a landscape in which those elements are absent. Generally, visual absorption is inversely proportional to visual contrast.

Dominance
Dominance is a measure of (a) the proportion of the total field of view occupied by the field; (b) a feature’s apparent size relative to other visible landscape features; and (c) the conspicuousness of the feature due to its location in the view.

A feature’s level of dominance is lower in a panoramic setting than in an enclosed setting with a focus on the feature itself. A feature’s level of dominance is higher if it is (1) near the center of the view; (2) elevated relative to the viewer; or (3) has the sky as a backdrop. As the distance between a viewer and a feature increases, its apparent size decreases; and consequently, its dominance decreases. The level of dominance ranges from low to high.

View Disruption
The extent to which any previously visible landscape features are blocked from view constitutes view disruption. The view is also disrupted when the continuity of the view is interrupted. When considering a project’s features, higher quality landscape features can be disrupted by lower quality project features, thus resulting in adverse visual impacts. The degree of view disruption can range from none to high.

Visual Change
Visual change is a function of contrast, dominance, and view disruption. Generally, contrast and dominance contribute more to the degree of visual change than does view disruption.
APPENDIX VR-2
Coastal Commission Letter
March 5, 2002

Mr. Robert Pernell, Presiding Commissioner
California Energy Commission
1516 Ninth Street
Sacramento, CA 95814

RE: Coastal Commission Visual Findings on Application For Certification (AFC) #00-014
– El Segundo Generating Station

Dear Mr. Pernell:

This letter provides the Coastal Commission’s findings regarding the visual impacts of the above-referenced proposed project and its conformity with Coastal Act policies on visual resources. The proposed project involves removing two of four existing electrical generating units at the El Segundo Generating Station (ESGS) and replacing them with three new units. The proposal also includes removing two large storage tanks and extending an existing seawall along the west side of the facility adjacent to Dockweiler State Beach.

We are submitting this letter as part of the full review required pursuant to section 30413(d) of the Coastal Act. The California Energy Commission’s (CEC’s) enabling legislation, the Warren-Alquist Act, recognizes the CEC’s exclusive jurisdiction to approve power plants of greater than 50-megawatt capacity within the coastal zone. Nevertheless, section 30413(d) of the Coastal Act authorizes the Coastal Commission to participate in the AFC review process by submitting to the CEC an analysis of the consistency of a proposed power plant project with, among other things, the policies of the Coastal Act. Subject to certain exceptions stated therein, section 25523(b) of the Warren-Alquist Act requires the CEC to include in its decision on the AFC “specific provisions” that the Coastal Commission determines to be necessary to bring the project into conformity with the policies of the Coastal Act.

This letter addresses the proposed project’s conformity only with the visual resource protection policy of the Coastal Act. We have additional concerns about other elements of the proposal, including: 1) the adverse effects of its ocean cooling water intake system on marine biological resources; 2) its treatment of existing soil and groundwater contamination at the project site; 3) the increased risk of damage due to seismic events, liquefaction, and erosion; and, 4) other impacts associated with project construction. However, based on your staff’s conclusion that the applicant will not be providing additional information regarding visual impacts and mitigation, at this time we are submitting only findings on visual impacts and mitigation measures. We intend to submit later in the review process additional findings on other issues related to the proposal’s consistency with applicable Coastal Act policies. We also reserve our right to review additional information related to visual impacts and mitigation if the applicant or CEC provide such information. In addition, our staff will continue to be involved in your review and will evaluate additional information and provide data requests as needed.
Facility and Surrounding Area – Existing Conditions:

The El Segundo Generating Station (ESGS) is an industrial facility located on and adjacent to Dockweiler State Beach in El Segundo. The facility currently includes electrical generating units, exhaust stacks, fuel storage tanks, cooling water intakes and outfalls, and other equipment and buildings related to power generation. It is located adjacent to Vista Del Mar Avenue on the north and east, a residential area in the City of Manhattan Beach to the south, and Dockweiler and Manhattan State Beaches to the west, north, and south.

ESGS is the predominant visual element along a several mile stretch of Dockweiler and Manhattan State Beaches, in part because it consists of relatively large and highly visible power generating equipment, tall exhaust stacks (up to 224 feet high), and other related facilities, and in part because it protrudes out from the coastal bluffs on the east side of the site and extends onto the beach, interrupting the beach profile. The facility also predominates visually compared with other nearby facilities, such as the Chevron Tank Farm, the Scattergood Generating Station, and the Hyperion Water Treatment Plant. These other facilities mitigate for visual impacts by employing architectural screening, plantings, berms, and other elements.

The CEC’s Staff Assessment determined that ESGS contrasts strongly with its highly scenic coastal setting and that the facility includes “visually chaotic” elements. Its high visual contrast, unscreened or partially screened industrial equipment, occasional vapor plumes, and location immediately on and adjacent to a recreational beach make it a significant contributor to the visual degradation of the immediate area. Additionally, the facility disrupts views to and along the coast and is not visually compatible with much of the character of the surrounding area. The other industrial facilities nearby are generally less obtrusive, due to their locations away from the beach and due to measures taken to reduce their visual impacts.

Review of Proposed Project:

In December 2000, the applicant submitted to the CEC an Application For Certification (AFC) for the proposed project. Coastal Commission staff has worked closely with the CEC staff, the applicant, and other interested parties to address concerns about the proposed project’s conformity with various policies of the Coastal Act. Regarding visual impacts and mitigation measures, the Commission staff requested through letters of June 8, 2001 and October 4, 2001, and through comments at several meetings and workshops, that the applicant respond to various data requests on the visual components of the proposed project, and provide an evaluation of feasible visual mitigation measures. The applicant has not yet provided adequate responses to these requests and the CEC staff has concluded that the applicant will submit no further information on the subject of impacts on visual resources.
Summary of Proposed Project’s Visual Impacts:

The primary visual changes resulting from the proposed project are:

- Replacing two existing electrical generating units with three new units, including two new exhaust stacks and other associated equipment. Overall, the new units will have taller exhaust stacks but will be less bulky than the existing units.
- Extending an existing seawall several hundred feet along the west side of the facility between ESGS and the adjacent bike path and beach.
- Removing two (approximately 180’ diameter) fuel storage tanks at the facility’s south end.
- Reducing visible vapor plumes during plant operations.

In addition, the proposal is expected to significantly extend the life of the current facility and will therefore increase the length of time the area will experience visual degradation due to the facility. The two units proposed for replacement are nearing the end of their useful life. The AFC states that the estimated economic life of the proposed project is approximately 30 years. Absent this proposed project, all or part of the ESGS facility would likely be removed, thus reducing the overall negative visual impact of the facility within a shorter timeframe.

To address visual impacts, the applicant has agreed to meet the City of El Segundo’s ordinances related to landscaping requirements. This would provide some vegetative plantings in the interior and around the perimeter of the facility. The applicant has also agreed to design the seawall with curving surfaces and landscaping to add visual interest. Further, the applicant has discussed, but has not yet agreed to, other measures that would further reduce visual impacts of the existing and proposed facilities, such as covering some portions of the generating units and modifying the night lighting at ESGS.

CEC Staff Recommended Conditions:

The CEC Staff Assessment contains five recommended conditions of certification to address visual impacts:

- **Condition VIS-1** would require the applicant to prepare and implement a perimeter landscape screening plan (evergreen species only to ensure year-long screening) for all four sides of the facility.

- **Condition VIS-2** would require the applicant to construct the extended seawall using architectural treatments meant “to reduce visual monotony, enhance design quality and interest, and discourage graffiti.” The final design would be subject to CEC approval and would include a maintenance plan for graffiti removal.

- **Condition VIS-3** would require the applicant to use architectural screening (such as pop-off panels, wire mesh, or other opaque or semi-transparent cladding) to cover the new generating units to reduce visibility of mechanical equipment. The final design would be subject to CEC approval and would include a maintenance plan.
Condition VIS-4 would require the applicant to paint or treat portions of the new generating units that are visible to the public and not screened by exterior paneling described under Condition VIS-3. The paint colors and finish would be selected to blend with the surroundings and eliminate potential reflective glare to motorists. The final design would be subject to CEC approval and would include a maintenance plan.

Condition VIS-5 would require the applicant to design and install lighting at the new units and modify lighting at the existing units to minimize night lighting impacts. The design would ensure that lighting is the minimum brightness necessary for operational safety, that lights are shielded and directed downward, and would including the use of motion detectors, where feasible, to further reduce lighting impacts. It is also to include a “lighting complaint resolution form” to document and respond to complaints from nearby residents.

Conditions VIS-1 through VIS-4 would require the applicant to submit the plans for approval before the start of the new units’ commercial operations. Condition VIS-5 would require the applicant to provide the lighting plan at least 60 days before ordering exterior lighting.

Project’s Conformity with the Visual Resource Protection Policy of the Coastal Act:

Section 30251 of the Coastal Act is the applicable policy for regulating the visual impacts of proposed development on coastal resources. Section 30251 states:

The scenic and visual qualities of coastal areas shall be considered and protected as a resource of public importance. Permitted development shall be sited and designed to protect views to and along the ocean and scenic coastal areas, to minimize the alteration of natural land forms, to be visually compatible with the character of surrounding areas, and, where feasible, to restore and enhance visual quality in visually degraded area.

The policy’s four requirements, and their applicability to the ESGS facility, are as follows:

Requirement 1: Permitted development shall be sited and designed to protect views to and along the ocean and scenic coastal areas: The CEC Staff Assessment (Section 4.11) determined, and the Coastal Commission concurs, that the ESGS facility contrasts strongly with its highly scenic coastal setting. It includes “visually chaotic” elements, such as extensive pipe and duct systems, scaffolding-type structures, exposed electrical system components, and the like, and stands out more strongly than other industrial facilities in the area. It protrudes out from coastal bluffs, interrupting the beach profile and interrupting views up and down the coast as well as views from inland towards the beach and ocean. Therefore, the Commission finds that the project, as proposed, does not conform to this Coastal Act policy.

Requirement 2: The development shall minimize the alteration of natural landforms: The existing ESGS facility includes a large steep retaining wall on its inland side, and a substantial seawall on the ocean side. The proposal includes extending and raising the existing seawall. The proposal may also require additional and as-of-yet-unknown shoreline alterations, as the CEC Staff Assessment recommends ongoing monitoring of beach erosion rates, which could result in the
applicant requesting further approval for additional shoreline hardening at some point in the future. Additional shoreline hardening is likely to result in changes to the beach profile and may cause increased erosion along nearby areas of the shoreline. Because the recommended monitoring has not yet been completed, we do not yet have the information necessary to determine likely impacts and mitigation measures necessary; therefore, the Commission finds that the proposed project does not conform to this Coastal Act policy.

Requirement 3: It shall be visually compatible with the character of the surrounding areas: As stated above, the CEC Staff Assessment found, and the Coastal Commission concurs, that the ESGS facility contrasts strongly with its setting, includes “visually chaotic elements” such as unscreened or partially-screened industrial equipment, and protrudes out from coastal bluffs to interrupt views from the beach. It is adjacent to, and visible from, beaches used by millions of visitors per year and a bike path used for coastal access and recreation. The proposed removal of large tanks on the southern part of the site will open coastal views from some areas accessible to the public, but will also result in more extensive views of the electrical generating units and associated facilities from the south of ESGS. Therefore, the Commission finds that the proposed project does not conform to this Coastal Act policy.

In instances such as this, when a proposed industrial development does not conform to one or more Coastal Act policies, the Commission may review it to determine if it is “coastal-dependent” and therefore able to be approved subject to provisions of Coastal Act section 30260. Section 30260 states:

Coastal-dependent industrial facilities shall be encouraged to locate or expand within existing sites and shall be permitted reasonable long-term growth where consistent with this division. However, where new or expanded coastal-dependent facilities cannot feasibly be accommodated consistent with other policies of this division, they may nonetheless be permitted in accordance with this section and Sections 30261 and 30262 if (1) alternative locations are infeasible or more environmentally damaging; (2) to do otherwise would adversely affect the public welfare; and (3) adverse environmental effects are mitigated to the maximum extent feasible.

Coastal Act section 30101 defines “coastal-dependent development or use” as “any development or use which requires a site on, or adjacent to, the sea to be able to function at all.” The proposed project is coastal dependent due to its current and proposed use of an existing ocean cooling water system. Recognizing that the proposal may change through future submittals, the Commission nevertheless finds that the current proposal is coastal dependent, and may therefore be found consistent with the Coastal Act if it mitigates its adverse environmental effects on coastal resources to the maximum extent feasible. Feasibility also is an issue of the fourth requirement of section 30251, as shown below, and is discussed in more detail later in this letter.

Requirement 4: In visually degraded areas and where feasible, the development shall restore and enhance visual quality: This requirement establishes a three-part test to determine conformity – (a) is the area visually degraded; (b) if so, are there measures that would restore or enhance visual quality; and, (c) if so, are those measures feasible?
a) **Is the area visually degraded?** The CEC Staff Assessment determined that the ESGS facility contrasts strongly with its highly scenic coastal setting. It includes “visually chaotic” elements, and stands out more strongly than other industrial facilities in the area. It protrudes out from coastal bluffs, interrupting the beach profile and interrupting views up and down the coast as well as views from inland towards the beach and ocean. It is not visually compatible with much of the character of the surrounding area. Therefore, the Commission finds that the ESGS facility and the surrounding area are visually degraded, due in large part to the presence of the facility.

b) **If so, are there measures that would restore or enhance visual quality?** There are a number of measures available that would enhance the visual quality of the facility and the area. Visual restoration or enhancement measures exist along a continuum – from relatively minor enhancements, such as partial screening with vegetation or the use of non-reflective paints, to much more significant visual enhancements, such as enclosing all or most of the facility within architectural screening, fencing, or other structural elements. The CEC Staff Assessment includes several recommended conditions intended to enhance the visual qualities of the facility, such as requiring the applicant to provide perimeter landscaping, architectural screening, painting, and special lighting.

However, while those conditions would appear to eventually result in visual enhancement of the facility, conformity with the Coastal Act, as stated above, requires that project-related impacts and mitigation be determined before making a permit decision rather than after. Because the recommended conditions in the CEC Staff Assessment would require plans be developed and submitted only after construction is completed, the Commission finds that additional measures are needed to ensure conformity with this requirement of the Coastal Act. These measures are further detailed below.

c) **If so, are those measures feasible?** Section 30108 of the Coastal Act defines feasibility as “capable of being accomplished in a successful manner within a reasonable period of time, taking into account economic, environmental, social, and technological factors.” We can determine feasibility in several ways, including reviewing an applicant’s feasibility study or by determining what is feasible based on other information available to the Commission. Since, as stated above, the applicant has declined to respond to requests for an assessment of what visual enhancement measures would be feasible for this proposed project, the Commission must therefore conduct its own analysis.

In determining what is “feasible” under the definition in section 30108, the Commission believes it is appropriate to compare the proposed project to other nearby industrial facilities and other energy projects located elsewhere in California. As stated above, other industrial facilities near ESGS have included several extensive measures to mitigate visual impacts. The nearby Scattergood Generating Station, for example, is largely enclosed within architectural screening. The Chevron Refinery is screened from most viewpoints by a large vegetated berm. The Hyperion Treatment Plant includes both architectural and vegetative screening. These all provide examples of standard and feasible enhancement measures that
partially mitigate the adverse visual impacts of nearby coastal industrial facilities. For recent energy facilities subject to CEC reviews elsewhere in California, designs have included similar enhancement measures, such as architectural screening, vegetative treatments, landscaping, and other measures. For example, the CEC’s Staff Assessments for Calpine’s Metcalf and Russell City energy facilities describe extensive architectural screening and landscaping measures.

“Feasibility”, as defined above, also takes into account economic considerations. In the case of the Metcalf and Russell City facilities mentioned above, CEC staff determined that the visual enhancement measures cost approximately $10 million per facility. This represents about 2.5 to 3.3% of their total project costs of $300 to $400 million. Using the same percentages for visual enhancement at ESGS (with project costs estimated to be between $350 and $400 million) results in a “feasible costs” range of about $8.75 to $13.2 million. In addition, some visual enhancement measures are found to help reduce other costs associated with the facility. For example, the CEC staff determined, and the applicant has concurred, that architectural screening measures meant to improve the facility’s visual quality would help reduce maintenance costs on some of the equipment currently exposed to salt spray from the ocean.

The Metcalf and Russell City facilities cited above, however, are not in the coastal zone, and their visual enhancement measures were based on factors other than conformity with the Coastal Act. For the ESGS facility, located near a highly scenic coastal setting used for recreation and public access, other components of feasibility, such as environmental and social considerations, may weigh more heavily in determining what measures are feasible.

Specific Provisions Needed to Provide Coastal Act Compliance:

We generally concur with the substance of the recommended conditions in the CEC Staff Assessment, and we consider those conditions to be within the range of feasible visual enhancement measures. However, as stated above, conformity with Coastal Act policies requires that the effects of a proposed project on coastal resources and measures necessary to mitigate those effects be known and evaluated before the impacts occur. If this proposed project were being reviewed for a coastal development permit, final mitigation plans would generally be required before permit issuance. While we recognize that the CEC’s process allows for such plans to be approved after certification, we recommend that they be submitted for review and approval as early in the process as possible – if not before certification, then at least before construction begins.

We also recommend that the visual enhancement measures contained within the CEC Staff Assessment’s recommended conditions be consolidated under a facility visual enhancement plan, as described below. This would allow a coordinated evaluation of the necessary visual mitigation measures and would provide an overall assessment of the facility’s visual effects on the surrounding area.
Therefore, the Coastal Commission recommends that the CEC amend its conditions of certification to add the following conditions in order to mitigate “to the maximum extent feasible” the adverse visual effects of the proposed project as required by Coastal Act section 30260:

1) **Facility Visual Enhancement Plan:** Before starting construction, the applicant shall complete a comprehensive visual enhancement plan that includes architectural screening, landscaping, painting, lighting, and other measures that result in an overall enhancement of views of the facility from areas accessible to the public. The plan shall be made available for review and comment by the Executive Director of the Coastal Commission and for review and approval by the CEC. The plan shall include:

 a) **Architectural screening:** All industrial equipment below elevation 125’ (i.e., below the elevation of the outlet dampers on the facility’s exhaust stacks) and visible from the beach, coastal waters, Vista Del Mar Avenue, and other areas accessible by the public shall be screened using panels, wire mesh, louvers or other forms of architectural screening. The screening shall be opaque or semi-transparent and have a non-glare finish, and the color shall be harmonious with the facility’s setting on a public beach. If the applicant proposes, and the CEC concurs, that it is impractical or infeasible to shield portions of the facility using architectural screening, the applicant may instead propose other measures such as landscaping, berms, or fencing to provide the necessary screening. Any such proposal must be based on the definition of feasibility in Coastal Act section 30108 and is subject to review and comment by the Executive Director of the Coastal Commission and review and approval by the CEC.

 b) **Landscaping:** Where used to screen the facility, vegetation chosen shall be selected or maintained to provide year-round screening (e.g., evergreen species). Preference shall be given to native species and/or species requiring little or no irrigation.

 c) **Other structural screening:** Where berms, fencing, or other structural elements are selected as the primary method to screen the facility, the structures shall harmonize with the facility’s setting on a public beach. If berms are used, they shall be vegetated and maintained with evergreen, native, and/or species requiring little or no irrigation. If fencing is used, it shall include a non-glare finish or be painted in a neutral color.

 d) **Necessary submittals:** The Facility Visual Enhancement Plan shall include photographs showing existing conditions and simulated post-construction conditions from Key Observation Points (KOPs) around the facility (these may be the same KOPs that were used to develop the CEC Staff Assessment). The plan shall also include anticipated costs for completing and maintaining the various visual enhancement measures and a detailed schedule for completing construction of these components.
2) **Seawall Design Plan**¹: Before starting construction, the applicant shall complete a plan of the seawall design for review and comment by the Executive Director of the Coastal and for CEC review and approval. This plan shall include:

 a) **Final design**: The seawall along the west side of the facility shall be textured and finished in a neutral color harmonious with its location adjacent to a public bike path and beach. If painted, graffiti-resistant paint shall be used.

 b) **Landscaping**: Where used to enhance the seawall design, vegetation chosen shall be selected or maintained to provide year-round screening (e.g., evergreen species). Preference shall be given to native species and/or species requiring little or no irrigation.

 c) **Necessary submittals**: This seawall design plan shall include photographs showing the existing conditions and simulated post-construction conditions from observation points along the bike path adjacent to the seawall, from the beach, and from other points where the seawall is highly visible. The plan shall also include anticipated costs for completing and maintaining the seawall and a schedule for construction.

We also strongly recommend that the CEC provide opportunities for local residents, beach users, and other interested parties review and comment on the plans.

With these changes, the Coastal Commission believes the visual aspects of the proposed facility will be consistent with the policies of the Coastal Act.

Conclusion:

We recognize that the applicant or the CEC may at some point recommend additional visual enhancement measures or provide additional information regarding the feasibility of various proposed measures. We therefore reserve the right to review future submittals for conformity with the Coastal Act pursuant to our obligations under section 30413.

In closing, we greatly appreciate the efforts of the CEC to work closely with the Coastal Commission to ensure that the proposed project will be carried out in conformity with the Coastal Act. We look forward to continuing to work with you.

Sincerely,

SARA L. WAN
Chair
California Coastal Commission

¹ Please note that we will provide additional findings and recommended conditions later in the review process related to the proposed seawall’s effect on beach erosion.
Units 3 and 4 power block, Units 5 – 8 stacks, from Vista del Mar, Manhattan Beach looking northwest.

Units 3 and 4 power block, Units 5 – 8, from Vista del Mar, El Segundo, looking west toward Santa Monica Bay.

Units 3 and 4 power block from bike path, looking north.

Seawall along bike path west of ESGS site.
No Scale.

Viewshed in Manhattan Beach has been adjusted to account for view blockage by intervening structures.
LADWP Scattergood Plant looking south from Vista del Mar. ESGS/ESEC is visible to the right.

Hyperion Wastewater Treatment Plant from Vista del Mar.

ESEC Units 5 – 8 from Vista del Mar.
VISUAL RESOURCES - FIGURE 4
El Segundo Power Project Amendment - Views of Project Site from Beaches

ESEC Units 5 – 8 in foreground, ESGS Units 3 and 4 (proposed project site) from Dockweiler State Beach, looking south.

Wide-angle view of 45th Street landscaped berm, ESGS Units 3 and 4 powerblock from Manhattan State Beach, looking north.
45th Street landscaped berm from Strand residences, looking north.

Strand residences adjoining ESGS, former tank farm site.

View of landscaped berm from 45th Street residences, looking west.
VISUAL RESOURCES - FIGURE 7
El Segundo Power Project Amendment - Simulated View of Proposed Administration Building
A. View looking south-southeast toward ESGS from Dockweiler Beach State Park in El Segundo. ESGS is visible in the center of the view, and Manhattan Beach is visible.

B. View from KOP 1 showing ESPFM. Landscaping is shown as it would appear 5 years after installation. ESGS is visible in the center of the view, and Manhattan Beach is visible.
A. View to the southeast toward ESGS from a jetty along Dockweiler Beach in El Segundo. The southern and central portions of ESGS are visible in this view, with the Chevron El Segundo Refinery and City of Manhattan Beach visible as backdrop. Landscaping required as part of existing COCs for 00-AFC-14 is shown as it would appear 1 year after installation.

B. View from KOP 7 showing ESPFM. Landscaping is shown as it would appear 5 years after installation.
A. View looking north toward ESGS from Manhattan Beach State Park in Manhattan Beach. ESGS is visible in the center of the view. Landscaping required as part of existing COCs for 00-AFC-14 is shown as it would appear 1 year after installation and is concentrated along the southern and southwestern edge of the project site.

B. View from KOP 3 showing ESPFM. Landscaping is shown as it would appear 5 years after installation.
A. View to the north-northwest toward ESGS from Highland Avenue, in Manhattan Beach. ESGS is visible in the center of this view from within a residential portion of Manhattan Beach near 43rd Street. Landscaping required as part of existing COCs for 00-AFC-14 is shown as it would appear 1 year after installation.

B. View from KOP 4, showing ESPFM. Landscaping is shown as it would appear 5 years after installation.
VISUAL RESOURCES - FIGURE 12
El Segundo Power Project Amendment - View from Key Observation Point 5

A. View looking south-southeast toward ESGS from Vista Del Mar in El Segundo. El Segundo Energy Center is visible in the center of the view from the roadway that passes along the eastern edge of the ESEC site. Landscaping required as part of existing COCs for 00-AFC-14 is shown as it would appear 1 year after installation.

B. View from KOP 5 showing ESPFM. Landscaping is shown as it would appear 5 years after installation.
A. View looking north toward ESGS from The Strand, near 44th Street, in Manhattan Beach. Views toward the center of ESGS are mostly obstructed by the 45th Street berm and landscaping required as part of existing COCs for 00-AFC-14, shown as it would appear 1 year after installation.

B. View from KOP 6 showing ESPFM. Landscaping is shown as it would appear 5 years after installation.
SUMMARY OF CONCLUSIONS

Management of the waste generated during demolition, construction, and operation of the El Segundo Power Facility Modification (ESPFM) would not result in any significant adverse impacts and would comply with applicable waste management laws, ordinances, regulations, and standards, if the measures proposed in the staff’s analysis are implemented. The implementation of the current conditions of certification, including a modification to WASTE-8, and the addition of WASTE-9 for the El Segundo Energy Center (ESEC), 00-AFC-14, will continue to mitigate impacts to below significance for the decommissioning and demolition of Units 3 and 4, and the construction and operation of Units 9, 10, 11, and 12. Condition of certification WASTE-8 was modified to reflect South Coast Air Quality Management District’s (SCAQMD) reporting requirements for the disposal of asbestos-containing materials in the Los Angeles air basin. An additional condition of certification, WASTE-9, was added to mitigate any potential impact from the demolition of Units 3 and 4.

There are a number of Recognized Environmental Conditions (RECs) located on the ESEC project parcel where the ESPFM will be constructed. The project owner has established programs in place to address, develop and implement remediation strategies, and worker safety standards that would mitigate these conditions and protect the environment and ESEC personnel.

INTRODUCTION

This analysis investigates issues associated with wastes generated from the proposed demolition, construction, and operation of the ESPFM. It evaluates the proposed waste management plans and mitigation measures designed to reduce the risks and environmental impacts associated with handling, storing, and disposing of project-related hazardous and non-hazardous wastes. The technical scope of this analysis encompasses solid wastes existing on site and those to be generated during demolition, and facility construction and operation. Management and discharge of wastewater is addressed in the Soil and Water Resources section of this document. Additional information related to waste management may also be covered in the Worker Safety/Fire Protection and Hazardous Materials Management sections of this document.

Energy Commission staff’s objectives in conducting this waste management analysis are to ensure that:

- the management of project wastes would be in compliance with all applicable laws, ordinances, regulations, and standards (LORS). Compliance with LORS ensures that wastes generated during the construction and operation of the proposed project would be managed in an environmentally safe manner.
• the disposal of project wastes would not result in significant adverse impacts to existing waste disposal facilities, or result in other waste-related significant adverse effects on the environment.

• upon project completion, the site is managed in such a way that project wastes and waste constituents would not pose a significant risk to humans or the environment.

LAWS, ORDINANCES, REGULATIONS, AND STANDARDS (LORS)

The following federal, state, and local environmental LORS have been established to ensure the safe and proper management of both solid and hazardous wastes in order to protect human health and the environment. Project compliance with the various LORS is a major component of staff’s determination regarding the significance and acceptability of the ESPFM with respect to management of waste.

WASTE MANAGEMENT Table 1
Laws, Ordinances, Regulations, and Standards (LORS)

<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td></td>
</tr>
<tr>
<td>Title 42, United States Code, §§ 6901, et seq.</td>
<td>The Solid Waste Disposal Act, as amended and revised by the Resource Conservation and Recovery Act (RCRA) et al., establishes requirements for the management of solid wastes (including hazardous wastes), landfills, underground storage tanks, and certain medical wastes. The statute also addresses program administration, implementation, and delegation to states, enforcement provisions, and responsibilities, as well as research, training, and grant funding provisions.</td>
</tr>
</tbody>
</table>
| Solid Waste Disposal Act of 1965 (as amended and revised by the Resource Conservation and Recovery Act of 1976, et al.) | RCRA Subtitle C establishes provisions for the generation, storage, treatment, and disposal of hazardous waste, including requirements addressing:
• generator record keeping practices that identify quantities of hazardous wastes generated and their disposition;
• waste labeling practices and use of appropriate containers;
• use of a manifest when transporting wastes;
• submission of periodic reports to the United States Environmental Protection Agency (U.S. EPA) or other authorized agency; and
• corrective action to remediate releases of hazardous waste and contamination associated with RCRA-regulated facilities. |
| RCRA Subtitle D establishes provisions for the design and operation of solid waste landfills. | RCRA is administered at the federal level by U.S. EPA and its 10 regional offices. The Pacific Southwest regional office (Region 9) |
| Title 42, United States Code, §§ 9601, et seq. | The Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), also known as Superfund, establishes authority and funding mechanisms for cleanup of uncontrolled or abandoned hazardous waste sites, as well as cleanup of accidents, spills, or emergency releases of pollutants and contaminants into the environment. Among other things, the statute addresses:
- reporting requirements for releases of hazardous substances;
- requirements for remedial action at closed or abandoned hazardous waste sites and brownfields;
- liability of persons responsible for releases of hazardous substances or waste; and
- requirements for property owners/potential buyers to conduct “all appropriate inquiries” into previous ownership and uses of the property to 1) determine if hazardous substances have been or may have been released at the site and 2) establish that the owner/buyer did not cause or contribute to the release. A Phase I Environmental Site Assessment is commonly used to satisfy CERCLA “all appropriate inquiries” requirements. |
|---|---|
| Title 40, Code of Federal Regulations (CFR), Subchapter I – Solid Wastes | These regulations were established by U.S. EPA to implement the provisions of the Solid Waste Disposal Act and RCRA (described above). Among other things, the regulations establish the criteria for classification of solid waste disposal facilities (landfills), hazardous waste characteristic criteria and regulatory thresholds, hazardous waste generator requirements, and requirements for management of used oil and universal wastes.
- Part 246 addresses source separation for materials recovery guidelines.
- Part 257 addresses the criteria for classification of solid waste disposal facilities and practices.
- Part 258 addresses the criteria for municipal solid waste landfills.
- Parts 260 through 279 address management of hazardous wastes, used oil, and universal wastes (i.e., batteries, mercury-containing equipment, and lamps).

U.S. EPA implements the regulations at the federal level. However, California is an authorized state so the regulations are implemented by state agencies and authorized local agencies in lieu of U.S. EPA. |
<p>| Title 49, CFR, Parts 172 and 173 | U.S. Department of Transportation established standards for transport of hazardous materials and hazardous wastes. The standards include requirements for labeling, packaging, and shipping of hazardous materials and hazardous wastes, as well as training requirements for personnel completing shipping papers and manifests. Section 172.205 specifically addresses use and preparation of hazardous waste manifests in accordance with Title 40, CFR, section 262.20. |</p>
<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Health and Safety Code, Chapter 6.5, §§ 25100, et seq.</td>
<td>This California law creates the framework under which hazardous wastes must be managed in California. The law provides for the development of a state hazardous waste program that administers and implements the provisions of the federal RCRA program. It also provides for the designation of California-only hazardous wastes and development of standards (regulations) that are equal to or, in some cases, more stringent than federal requirements.</td>
</tr>
<tr>
<td>Hazardous Waste Control Act of 1972, as amended</td>
<td>The California Environmental Protection Agency (Cal/EPA), Department of Toxic Substances Control (DTSC) administers and implements the provisions of the law at the state level. Certified Unified Program Agencies (CUPAs) implement some elements of the law at the local level.</td>
</tr>
<tr>
<td>Title 22, California Code of Regulations (CCR), Division 4.5</td>
<td>These regulations establish requirements for the management and disposal of hazardous waste in accordance with the provisions of the California Hazardous Waste Control Act and federal RCRA. As with the federal requirements, waste generators must determine if their wastes are hazardous according to specified characteristics or lists of wastes. Hazardous waste generators must obtain identification numbers, prepare manifests before transporting the waste off site, and use only permitted treatment, storage, and disposal facilities. Generator standards also include requirements for record keeping, reporting, packaging, and labeling. Additionally, while not a federal requirement, California requires that hazardous waste be transported by registered hazardous waste transporters.</td>
</tr>
<tr>
<td>Environmental Health Standards for the Management of Hazardous Waste</td>
<td>The standards addressed by Title 22, CFR include:</td>
</tr>
</tbody>
</table>
| | • Identification and Listing of Hazardous Waste (Chapter 11, §§ 66261.1, et seq.)
• Standards Applicable to Generators of Hazardous Waste (Chapter 12, §§ 66262.10, et seq.)
• Standards Applicable to Transporters of Hazardous Waste (Chapter 13, §§ 66263.10, et seq.)
• Standards for Universal Waste Management (Chapter 23, §§ 66273.1, et seq.)
• Standards for the Management of Used Oil (Chapter 29, §§ 66279.1, et seq.)
• Requirements for Units and Facilities Deemed to Have a Permit by Rule (Chapter 45, §§ 67450.1, et seq.) |
| | The Title 22 regulations are established and enforced at the state level by DTSC. Some generator standards are also enforced at the local level by CUPAs. |
| California Health and Safety Code, Chapter 6.11 §§ 25404–25404.9 | The Unified Program consolidates, coordinates, and makes consistent the administrative requirements, permits, inspections, and enforcement activities of the six environmental and emergency response programs |
Unified Hazardous Waste and Hazardous Materials Management Regulatory Program (Unified Program)

- Aboveground Storage Tank Program
- Business Plan Program
- California Accidental Release Prevention (CalARP) Program
- Hazardous Material Management Plan / Hazardous Material Inventory Statement Program
- Hazardous Waste Generator / Tiered Permitting Program
- Underground Storage Tank Program

The state agencies responsible for these programs set the standards for their programs while local governments implement the standards. The local agencies implementing the Unified Program are known as Certified Unified Program Agencies (CUPAs). Los Angeles County Department of Environmental Health is the area CUPA.

Note: The Waste Management analysis only considers application of the Hazardous Waste Generator/Tiered Permitting element of the Unified Program. Other elements of the Unified Program may be addressed in the Hazardous Materials and/or Worker Health and Safety analysis sections.

Title 27, CCR, Division 1, Subdivision 4, Chapter 1, §§ 15100, et seq.

- Article 9 – Unified Program Standardized Forms and Formats (§§ 15400–15410).
- Article 10 – Business Reporting to CUPAs (§§ 15600–15620).

Public Resources Code, Division 30, §§ 40000, et seq.

The California Integrated Waste Management Act of 1989 (as amended) establishes mandates and standards for management of solid waste. Among other things, the law includes provisions addressing solid waste source reduction and recycling, standards for design and construction of municipal landfills, and programs for county waste management plans and local implementation of solid waste requirements.

The act was amended in 2011 (AB 341) to include a legislative declaration of a state policy goal that not less than 75 percent of solid waste generated be source reduced, recycled, or composted by the year 2020. The 2011 amendments expand recycling to businesses and apartment buildings; require the state to develop programs to recycle three-quarters of generated waste; and require commercial and public entities that generate more than four cubic yards of commercial solid waste per week, and multifamily residential dwellings of five units or more, to arrange for recycling services beginning July 1, 2012.
| Title 14, CCR, Division 7, § 17200, et seq. | These regulations further implement the provisions of the California Integrated Waste Management Act and set forth minimum standards for solid waste handling and disposal. The regulations include standards for solid waste management, as well as enforcement and program administration provisions.
- Chapter 3 – Minimum Standards for Solid Waste Handling and Disposal.
- Chapter 3.5 – Standards for Handling and Disposal of Asbestos Containing Waste.
- Chapter 7 – Special Waste Standards.
- Chapter 8 – Used Oil Recycling Program.
| California Integrated Waste Management Board | |
| California Health and Safety Code, Division 20, Chapter 6.5, Article 11.9, §25244.12, et seq. | This law was enacted to expand the state’s hazardous waste source reduction activities. Among other things, it establishes hazardous waste source reduction review, planning, and reporting requirements for businesses that routinely generate more than 12,000 kilograms (~26,400 pounds) of hazardous waste in a designated reporting year. The review and planning elements are required to be done on a 4-year cycle, with a summary progress report due to DTSC every 4th year. |
| Hazardous Waste Source Reduction and Management Review Act of 1989 (also known as SB 14). | |
| Title 22, CCR, § 67100.1 et seq. | These regulations further clarify and implement the provisions of the Hazardous Waste Source Reduction and Management Review Act of 1989 (noted above). The regulations establish the specific review elements and reporting requirements to be completed by generators subject to the act. |
| Hazardous Waste Source Reduction and Management Review. | |
| California Health and Safety Code Section 101480 101490 | These regulations authorize a local officer, such as the director of the Los Angeles County Department of Environmental Health to enter into voluntary agreements for the oversight of remedial action at sites contaminated by wastes. |
| Title 22, CCR, Chapter 32, §67383.1 – 67383.5 | This chapter establishes minimum standards for the management of all underground and aboveground tank systems that held hazardous waste or hazardous materials, and are to be disposed, reclaimed or closed in place. |
| Title 8, CCR §1529 and §5208 | These regulations require the proper removal of asbestos containing materials in all construction work and are enforced by California Occupational Safety and Health Administration (Cal-OSHA). |
| Title 14, Chapter 9 Division 7 –(AB 939) | AB 939 established the organization, structure, and mission of California Integrated Waste Management Board (CIWMB) in 1989. AB 939 not only mandated local jurisdictions to meet numerical diversion goals of 25% by 1995 and 50% by 2000, but also established an |
An integrated framework for program implementation, solid waste planning, and solid waste facility and landfill compliance. Other elements included encouraging resource conservation and considering the effects of waste management operations. The diversion goals and program requirements are implemented through a disposal based reporting system by local jurisdictions under CIWMB regulatory oversight. Facility compliance requirements are implemented under a different approach primarily through local government enforcement agencies.

Cal Recycle, formerly known as the CIWMB, is the state’s leading authority on recycling, waste reduction, and product reuse officially known as the Department of Resources Recycling and Recovery.

Cal OSHA’s Lead in Construction Standard is contained in Title 8, Section 1532.1 of the California Code of Regulations

The regulations address all of the following areas: permissible exposure limits (PELs); exposure assessment; compliance methods; respiratory protection; protective clothing and equipment; housekeeping; medical surveillance; medical removal protection (MRP); employee information, training, and certification; signage; record keeping; monitoring; and agency notification.

Title 17, CCR, Division 1, Chapter 8, Section 35001

Requirements for lead hazard evaluation and abatement activities, accreditation of training providers, and certification of individuals engaged in lead-based paint activities.

Local

South Coast Air Quality Management District (SCAQMD) Rule 1403

This rule establishes survey requirements, notification and work practice requirements to prevent asbestos emissions from emanating during renovation and demolition activities. SCAQMD Rule 1403 incorporates the requirements of the federal asbestos requirements found in National Emissions Standard for Hazardous Air Pollutants (NESHAP) in code of Federal Regulations (CFR) Title 40, Part 61, Subpart M.

Los Angeles County Integrated Waste Management Plan

The plan provides guidance for local management of solid waste and household hazardous waste (incorporates the county's Source Reduction and Recycling Elements, which detail means of reducing commercial and industrial sources of solid waste).

Los Angeles County Health Care Agency - Environmental Health Division, Hazardous Waste Inspection Program

Hazardous Material Division is the Certified Unified Program Agency (CUPA) for Los Angeles County that regulates and conducts inspections of businesses that handle hazardous materials, hazardous wastes, and/or have underground storage tanks. Hazardous Material Division programs include assistance with oversight on property re-development (i.e., brownfields) and voluntary or private oversight cleanup assistance.

LACOFD Health Hazardous Materials Division

Regulates hazardous waste generator permitting and hazardous waste handling and storage.

Los Angeles County Code Section 68.905

Incorporates by reference the California Health & Safety Code Division 20, Chapter 6.11 which requires the facility to operate as a unified
This policy and ensuing program are designed to assist the county in compliance with this state mandate. The Integrated Waste Management Act of 1989 (AB939) required cities and counties to reduce, by 50%, the amount of waste disposed of in landfills by the year 2000 and beyond or potentially incur fines of up to $10,000 per day.

SETTING

PROPOSED PROJECT

The El Segundo Power Facility Modification (ESPFM) is a Petition to Amend (PTA) the ESEC project by replacing existing once-through-cooled (OTC) boiler Units 3 and 4 with new efficient dry-cooled, units 9, 10, 11, and 12. ESPFM would make substantial changes to the ESEC, California Energy Commission license 00-AFC-14.

The ESEC is located on a 33-acre parcel at 301 Vista Del Mar Boulevard in El Segundo, California. ESEC is situated on a highly disturbed industrial brownfield site. The project is located on the coast of the Pacific Ocean between Dockweiler State Beach and the city of Manhattan Beach, and 2.5 miles southwest of the Los Angeles International Airport. Other industrial projects located within a half-mile or less of the project include the Los Angeles Department of Water and Power’s Scattergood Generating Station, the City of Los Angeles’ Hyperion Wastewater Treatment Plant, the Chevron Marine Terminal and the Chevron Refinery (NRG 2013a, page 2-2).

The PTA proposes to:
- Shutdown and demolition of Units 3 and 4;
- Removal and remediation of existing ESEC retention basins;
- Change in location for the permitted administration building to a lower elevation;
- Construction of a new administration, maintenance and operations support building;
- Modifications to existing site access; and
- Improvements to beach access (NRG 2013a, page 2-1).

The offsite laydown area will be located at 777 W. 190th Street in Gardena, California. The 190th Street laydown area was incorporated in the 2010 ESEC PTA and would continue to be used for the ESPFM. The 12.1-acre site is paved with asphalt and has night lighting and includes a perimeter security fence (NRG 2013a 3-172).

The demolition of the El Segundo Generating Station Units 3 and 4, remediation of existing retention basins, and the construction and operation of Units 9 through 12, will produce a variety of mixed wastes, such as soil, wood, metal, and concrete. Waste will be recycled where practical, and non-recyclable waste will be deposited in a Class III
landfill. The hazardous waste generated during this phase of the project will consist of asbestos debris, heavy metal dust, used oils, universal wastes, solvents, and empty hazardous waste material containers (NRG 2013a, § 2.4). Universal wastes are hazardous wastes that contain mercury, lead, cadmium, copper, and other substances hazardous to human and environmental health. Examples of universal wastes are batteries, fluorescent tubes, and some electronic devices.

Operation and maintenance of the plant and associated facilities will generate a variety of wastes, including a small quantity of hazardous wastes. To control air emissions, the project’s turbine units would use selective catalytic reduction and oxidation catalyst equipment and chemicals, which generate both solid and hazardous waste.

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

METHOD AND THRESHOLD FOR DETERMINING SIGNIFICANCE

This waste management analysis addresses: a) existing project site conditions and the potential for contamination associated with prior activities on or near the project site, and b) the impacts from the generation and management of wastes during project construction and operation.

A. For any site in California proposed for the construction of a power plant, the applicant must provide documentation about the nature of any potential or existing releases of hazardous substances or contamination at the site. If potential or existing releases or contamination at the site are identified, the significance of the release or contamination would be determined by site-specific factors, including, but not limited to: the amount and concentration of contaminants or contamination; the proposed use of the area where the contaminants/contamination is found; and any potential pathways for workers, the public, sensitive species or environmental areas could be exposed to the contaminants. Any unmitigated contamination or releases of hazardous substances that pose a risk to human health or environmental receptors would be considered significant by Energy Commission staff.

As a first step in documenting existing site conditions, the Energy Commission’s power plant site certification regulations require that a Phase I Environmental Site Assessment (ESA) be prepared¹ and submitted as part of an application for certification. The Phase I ESA is conducted to identify any conditions indicative of releases and threatened releases of hazardous substances at the site and to identify any areas known to be contaminated (or a source of contamination) or near the site.

In general, the Phase I ESA uses a qualified environmental professional to conduct inquiries into past uses and ownership of the property, research hazardous substance releases and hazardous waste disposal at the site and within a certain

¹ Title 20, California Code of Regulations, section 1704(c) and Appendix B, section (g)(12)(A). Note that the Phase I ESA must be prepared according to American Society for Testing and Materials protocol or an equivalent method agreed upon by the applicant and the Energy Commission staff.
distance of the site, and visually inspect the property, making observations about the potential for contamination and possible areas of concern. After conducting all necessary file reviews, interviews, and site observations, the environmental professional then provides findings about the environmental conditions at the site. In addition, since the Phase I ESA does not include sampling or testing, the environmental professional may also give an opinion about the potential need for any additional investigation. Additional investigation may be needed, for example, if there were significant gaps in the information available about the site, an ongoing release is suspected, or to confirm an existing environmental condition.

If additional investigation is needed to identify the extent of possible contamination, a Phase II ESA may be required. The Phase II ESA usually includes sampling and testing of potentially contaminated media to verify the level of contamination and the potential for remediation at the site.

In conducting its assessment of a proposed project, Energy Commission staff will review the project’s Phase I ESA and work with the appropriate oversight agencies as necessary to determine if additional site characterization work is needed and if any mitigation is necessary at the site to ensure protection of human health and the environment from any hazardous substance releases or contamination identified.

B. Regarding the management of project-related wastes generated during construction and operation of the proposed project, staff reviewed the applicant’s proposed solid and hazardous waste management methods and determined if the methods proposed are consistent with the LORS identified for waste disposal and recycling. The federal, state, and local LORS represent a comprehensive regulatory system designed to protect human health and the environment from impacts associated with management of both non-hazardous and hazardous wastes. Absent any unusual circumstances, staff considers project compliance with LORS to be sufficient to ensure that no significant impacts would occur as a result of project waste management.

Staff then reviewed the capacity available at off-site treatment and disposal sites and determines whether or not the proposed power plant’s waste would have a significant impact on the volume of waste a facility is permitted to accept. Staff used a waste volume threshold equal to 10 percent of a disposal facility’s remaining permitted capacity to determine if the impact from disposal of project wastes at a particular facility would be significant.

DIRECT/INDIRECT IMPACTS AND MITIGATION

Existing Site Contamination

The El Segundo Generating Station (ESGS) was built on the project site as a gas-fired, ocean-cooled steam-powered electricity generating station. Units 1 and 2 were constructed in the 1950s, and Units 3 and 4 were constructed in the 1960s. The demolition and removal of the original Units 1 and 2 occurred in 2009 through 2010. ESEC Units 5, 6, 7 and 8 were located on the site previously occupied by Units 1 and 2.
The PTA proposes to remove steam boiler Units 3 and 4 and replace them with efficient dry-cooled natural gas-fired combustion turbines Units 9, 10, 11 and 12.

A Phase I ESA dated October 24, 2013, was prepared by Environmental Resources Management for the ESEC. The ESA encompassed 33 acres situated on four parcels, 4138-029-800, 4138-029-802, 4138-029-803, and 4138-029-004. The ESA was completed in accordance with the American Society for Testing and Materials Standard Practice E 1527-05 for ESAs (LL 2013j). The RECs and Historical RECs identified are included in WASTE MANAGEMENT Table 2 and WASTE MANAGEMENT Figure 1.

WASTE MANAGEMENT Table 2

Recognized Environmental Conditions (RECs)

<table>
<thead>
<tr>
<th>REC</th>
<th>Description</th>
<th>Remediation Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater contamination flowing onsite from the adjacent Chevron Refinery</td>
<td>The Los Angeles Regional Water Quality Board (LARWQCB) issued a Cleanup and Abatement Order No. 88-55 in 1988. Chevron USA directed to clean up a total petroleum hydrocarbon and volatile organic compound release to soil and groundwater at the Chevron Refinery and surrounding areas. Releases from the Chevron Refinery have resulted in soil and groundwater contamination beneath the entire ESGS site. SWRCB Geotracker ID SL372482441</td>
<td>In 1995, LARWQCB issued a Revised Cleanup and Abatement Order to Chevron Refinery for contaminant clean up in groundwater and soil vapor beneath ESGS.</td>
</tr>
<tr>
<td>Uninvestigated Areas of Concern (AOC)</td>
<td>The AOCs are located beneath the administration trailers, the parking and laydown area, the Cutter Oil AST and the Southern California Edison (SCE) Switchyard.</td>
<td>These shall be addressed during decommissioning and demolition of Units 3 and 4.</td>
</tr>
<tr>
<td>Areas of Potential Concern (AOPC)</td>
<td>Twenty-nine areas of AOPCs were identified on the ESGS site. Twenty-one were located in the location of current ESEC area/Units 1 & 2. Most of the features have been removed or remediated</td>
<td>The AOPCs are considered Historical Recognized Environmental Concerns HRECs. These shall be address during decommissioning and demolition of Units 3 and 4.</td>
</tr>
<tr>
<td>Retention Basins</td>
<td>The soil and groundwater beneath, and at localized areas parallel to, the pipelines between the generating units and the retention basins have been impacted by heavy metals, primarily nickel and vanadium. DTSC Envirostor ID number 60001197</td>
<td>SCE is required to mitigate impacted soil and groundwater under DTSC oversight during closure activities. SCE has completed a Draft Closure Plan for public review.</td>
</tr>
<tr>
<td>Visitor Parking Area</td>
<td>Two bulk aboveground storage tanks (ASTs) were removed from the current parking and laydown area in 2011 and</td>
<td>NRG will be conducting additional investigation to assess the impacted areas.</td>
</tr>
</tbody>
</table>
In 1996, Southern California Edison Company (SCE) implemented a Water Quality Monitoring Program in response to a Final Judgment pursuant to a Stipulation, handed down by the Superior Court in California. The Stipulation alleged that SCE has stored hazardous wastes in non-permitted wastewater retention basins at many of their electrical generating stations in southern California. The ESGS is one of the facilities cited in the agreement. Edison agreed to close these basins according to Chapter 15 of Title 22, California Code of Regulations.

SCE developed a Closure Plan for the Department of Toxic Substances Control (DTSC). The purpose of the Closure Plan is to allow DTSC and public review of the proposed plans, standards, and contingencies for remediating the ESGS retention basin site. The Closure Plan included areas where historical boiler cleaning operations may have led to contamination. Those areas include the retention basin, pipelines, drains and sumps that conveyed chemicals and wastewater to the retention basin (SCE 2010, page 14). The basins have not stored hazardous wastewater for 17 years (SCE 2010, page 19).

In 1965, the ESGS had a single wastewater retention basin. In 1987, the wastewater retention basin was partitioned into two basins separated by a thick concrete wall. The larger, northern portion of the original basin was designated as the Retention Basin. The smaller, southern portion was used as a Boiler Chemical Cleaning Basin. In 1989, a double liner of HDPE and leachate collection system was installed over the asphaltic liner. Currently, the North Retention Basin is used to collect and store non-hazardous wastewater and stormwater runoff from the facility. No process wastewater will be discharged from the ESEC facility via the existing retention basin or either outfall.
structure (NRG 2013a, page 2-20). Plant drains that conveyed plant wastes from Units 3 and 4 to the retention basin and the retention basin will be removed (NRG 2013a, 2-21).

Chevron USA was directed to clean up a total petroleum hydrocarbon and volatile organic compound release to soil and groundwater at the Chevron Refinery and surrounding areas. Releases from the Chevron Refinery have resulted in soil and groundwater contamination beneath the ESGS site.

The project owner will come in contact with many of the RECs listed in WASTE MANAGEMENT Table 2 during demolition. The project owner and SCE has indicated they would contact the regulatory agency and, when required complete remediation, of contaminated areas prior to construction. SCE is accountable for some of the environmental liability associated with the past operation. SCE is currently working with the DTSC on the closure of the ESEC retention basin site and all related equipment (Jamison and Associates 2012).

Staff has reviewed the existing conditions of certification which were adopted for the ESEC. These conditions were developed to address site contamination during, demolition, construction, and operation of ESEC. Staff believes these conditions are sufficient to ensure that the demolition and construction of ESPFM would not result in any impacts to the environment and health and safety of site personnel. Condition of certification WASTE-1 requires that the project owner maintain a Waste Generator Identification. This number is used to identify and track the project activities related to storage and transportation of hazardous waste from the site. The project owner would be required to temporary storage and transport waste, use licensed hazardous waste haulers, and recycle or dispose of waste at authorized disposal facilities in accordance with established standards applicable to generators of hazardous waste with Title 22, CCR, §§ 66262.10 et seq. Proper hazardous material handling and good housekeeping practices will help keep spill wastes to a minimum. However, to ensure proper cleanup and management of any contaminated soils or waste materials generated from hazardous materials spills, staff proposes Condition of Certification WASTE-2 requiring the project owner/operator to report, clean up, and remediate as necessary, any hazardous materials spills or releases in accordance with all applicable federal, state, and local requirements. More information on hazardous material management, spill reporting, containment, and spill control and countermeasures plan provisions for the project are provided in the Hazardous Materials Management section of the ESPFM PTA staff analysis.

Furthermore, Conditions of Certification WASTE-4, WASTE-5, WASTE-6, and WASTE-9 address any soil contamination contingency that may be encountered during project construction. WASTE-4 requires that an experienced and qualified Professional Engineer or Professional Geologist be available for consultation in the event contaminated soil not previously identified is encountered. If contaminated soil is identified, WASTE-5 requires that the Professional Engineer or Professional Geologist inspect the site, determine what is required to characterize the nature and extent of contamination, and provide a report to the CPM with findings and recommended actions. WASTE-6 and WASTE-9 also addresses identification and investigation of any
previously unidentified soil or groundwater contamination that may be encountered. **WASTE-9** is added to reflect the changes associated with the ESPFM.

ESEC has programs in place to deal with waste management issues at the project site from the demolition of Units 1 and 2 and the fuel oil tanks, and the construction of Units 5 through 8. SCE has a Draft Closure Plan for the retention basins. The Chevron Refinery cleanup is ongoing. The ESEC staff has historically complied with the conditions of certification. Previous examples of compliance with conditions and regulation include a March 3, 2011, submittal, in response to the fuel oil storage tank demolition. ESEC provided staff with asbestos surveys, mercury remediation certification letter, waste manifests for disposal of asbestos containing material (ACM) and the Hazardous Waste Tank Inspection certification, in response to conditions of certification **LAND-6, WORKER SAFETY-3, and WASTE-6**.

Demolition and Construction Impacts and Mitigation

The entire construction and commissioning schedule is anticipated to last approximately 30 months. The decommissioning, demolition, and removal of existing Units 3 and 4 is anticipated to take approximately six months. Following completion of site preparation activities, construction and startup of the ESPFM are expected to take approximately 24 months, from site mobilization to commercial operation. Site preparation, demolition, and construction of the proposed power plant and associated facilities would generate both nonhazardous and hazardous wastes in solid and liquid forms. Before demolition and construction can begin, the project owner would be required to develop and implement a demolition for Units 3 and 4, and Construction Waste Management Plan for Units 9, 10, 11, and 12, per proposed Condition of Certification **WASTE-3**.

Nonhazardous Wastes

Nonhazardous waste would be generated from the demolition and construction of Units 3 and 4, and the construction and installation of ESPFM Units 9, 10, 11 and 12. Demolition and construction waste will consist of wood, glass, plastic, paper, scrap metals, concrete, and asphalt. All non-hazardous wastes would be recycled to the extent possible and non-recyclable wastes would be collected by a licensed hauler and disposed in a solid waste disposal facility, in accordance with Title 14, California Code of Regulations, section 17200 et seq.

Nonhazardous waste streams from construction include paper, scrap wood, glass, metal, plastics, concrete, asphalt, oil absorbent mats, and oily rags (NRG 2013a, Table 2-12). The applicant estimates that about 20-40 cubic yards of these types of wastes will be generated on a weekly basis plus about 1000 square feet of oily mats and three to four 55-gallon drums of oily rags per month during the construction period. Most, if not all, of these wastes would be sent to a waste disposal facility. PTA Tables 2-12 provide descriptions of construction and demolition waste streams and management methods (NRG 2013a, pages 2-16).

PTA Table 2-12 also lists wastes typically generated during construction include waste oil and grease, paint, used batteries, spent solvent, welding materials, and start-up
cleaning of the HRSG. The 200,000 gallons generated during this process can most likely be recycled. Table 2-12 additionally lists the management methods of the wastes.

Nonhazardous liquid wastes would also be generated during construction, including sanitary wastes, dust suppression and stormwater drainage, and equipment wash and test water. Sanitary wastes would be collected in portable, self-contained chemical toilets and pumped periodically for disposal at an appropriate facility. Potentially contaminated equipment wash and/or test water would be contained at designated areas, tested to determine if hazardous, and either discharged to the storm water retention basin (if nonhazardous) or transported to an appropriate treatment/disposal facility. Please see the Soil and Water Resources section of this document for more information on the management of project wastewater.

Hazardous Wastes
Demolition, dewatering, and construction are expected to generate both solid and liquid hazardous wastes (NRG 2013a, Table 2-12). The waste generated will include: asbestos waste, electrical equipment, used oils, universal wastes and lead-acid storage batteries (NRG 20013a, page 2-16). Demolition of Units 3 and 4 would generate 122,767 square feet of asbestos containing materials that would be disposed of in a permitted facility (NRG 2013a, Table 2-10 and 2-11). The project owner shall submit a survey of all Asbestos-Containing Materials (ACM) and Regulated Building Materials (RBM) that contain lead-based paint to the El Segundo Fire Department. The South Coast Air Quality Management District (SCAQMD) Rule 1403 requires the owner or operator of a demolition or renovation to submit an Asbestos Demolition or Renovation Operation Plan at least 10 working days before any asbestos stripping or removal work begins. WASTE-8 requires that the project owner submit the ACM and lead survey to the El Segundo Fire Department, and the SCAQMD Asbestos Notification Form for review and approval prior to removal and disposal of asbestos. This program ensures there will be no release of asbestos that could impact public health and safety. The generation of other hazardous wastes anticipated during construction includes empty hazardous material containers, solvents, waste paint, oil absorbents, used oil, oily rags, batteries, and cleaning wastes. The amount of waste generated would be minor if handled in the manner identified in the PTA (NRG 2013a).

During demolition, as much as 20,000 cubic yards of contaminated soil will be excavated and managed. More may be encountered in other areas including soils beneath the footprints of Units 3 and 4 and other structures to be demolished. All excavated soil would be characterized and managed according to the Waste Management Plan and WASTE-3 condition of certification. The soil will be transported to a soil recycling facility or a Class I landfill.

Should any construction waste management-related enforcement action be taken or initiated by a regulatory agency, the project owner would be required by proposed Condition of Certification WASTE-2 to notify the Energy Commission’s Compliance Project Manager (CPM) whenever the owner becomes aware of any such action.

In the event that construction excavation, grading, or trenching activities for the proposed project encounter potentially contaminated soils and/or specific handling,
disposal, and other precautions that may be necessary pursuant to hazardous waste management LORS, staff finds that proposed Conditions of Certification WASTE-4 and WASTE-5 will be adequate to address any soil contamination contingency that may be encountered during construction of the project and would ensure compliance with LORS. Absent any unusual circumstances, staff considers project compliance with LORS to be sufficient to ensure that no significant impacts would occur as a result of project waste management activities.

Operation Impacts and Mitigation

The proposed ESPFM would generate non-hazardous and hazardous wastes in both solid and liquid forms under normal operating conditions. Section 2.4, Table 2-13, of the project PTA provides a summary of the operation waste streams, expected waste volumes and generation frequency, and management methods proposed. Before operations can begin, the project owner would be required to develop and implement an Operation Waste Management Plan pursuant to proposed Condition of Certification WASTE-3.

Non-Hazardous Solid Wastes

The generations of non-hazardous solid wastes expected during project operation include routine maintenance wastes as well as domestic and office wastes (such as office paper, newsprint, aluminum cans, plastic, and glass). All non-hazardous wastes will be recycled to the extent possible, and non-recyclable wastes will be regularly transported off site to a local solid waste disposal facility.

Non-Hazardous Liquid Wastes

Non-hazardous liquid wastes would be generated during facility operation and are discussed in the Soil and Water Resources section of this document.

Hazardous Wastes

The generation of hazardous wastes expected during routine project operation includes used hydraulic fluids, oils, greases, oily filters and rags, spent selective catalytic reduction catalysts, cleaning solutions and solvents, and batteries. In addition, spills and unauthorized releases of hazardous materials or hazardous wastes may generate contaminated soils or materials that may require corrective action and management as hazardous waste. Proper hazardous material handling and good housekeeping practices will help keep spill wastes to a minimum. However, to ensure proper cleanup and management of any contaminated soils or waste materials generated from hazardous materials spills, staff proposes Condition of Certification WASTE-5 requiring the project owner/operator to report, clean up, and remediate as necessary, any hazardous materials spills or releases in accordance with all applicable federal, state, and local requirements. More information on hazardous material management, spill reporting, containment, and spill control and countermeasures plan provisions for the project are provided in the Hazardous Material Management section of the PTA analysis.

Hazardous wastes likely to be generated during routine project operation include oily water, Combustion Turbine Generator wastewater, heat recovery steam generator (HRSG) washwater, spent selective catalytic reduction (SCR) catalysts, and minimal
amounts of used cleaning solvents. About 5 gallons per day of oily water, 7200 gallons per year of CTG wastewater, 50,000 gallons of HRSG wash water per cleaning (2 cleanings every 5 years), and 50 cubic meters of SCR catalyst (containing heavy metals such as vanadium) are expected to be generated on an annual basis from the new combined cycle units (NRG 2013a, Table 2-13). The amount of hazardous wastes generated during the operation of ESPFM would be minor with source reduction and recycling of wastes implemented whenever possible (NRG 2013a, Table 2-13).

The hazardous wastes would be temporarily stored on site, transported off site by licensed hazardous waste haulers, and recycled or disposed at authorized disposal facilities in accordance with established standards applicable to generators of hazardous waste (Title 22, CCR, §§ 66262.10 et seq.). Should any operations waste management-related enforcement action be taken or initiated by a regulatory agency, the project owner would be required by proposed Condition of Certification WASTE-2 to notify the CPM whenever the owner becomes aware of any such action.

Impact on Existing Waste Disposal Facilities

Non-Hazardous Wastes
The ESPFM facility would generate nonhazardous solid waste that would add to the total waste generated in Los Angeles County, California. The proposed project will generate approximately 25,200 cubic yards of solid waste during demolition and construction of ESPFM, and less than 100 cubic yards per year would be produced during operation. Nonhazardous waste would be disposed in a California Class III landfill (NRG 2013a, Section 2.4).

WASTE MANAGEMENT Table 3 presents details of three non-hazardous (Class III) waste disposal facilities that could potentially take the non-hazardous construction and operation wastes that would be generated but could not be diverted by the ESPFM. Total solid waste disposal in Los Angeles County in 2014, was 6.4 million tons\(^2\). The remaining capacity for the three landfills listed in Waste Table 3 combined is approximately 471 million cubic yards. The total amount of non-hazardous waste generated from project construction is 25,200 cubic yards based on a 30-month demolition and construction schedule. During operation the majority of solid waste generated will be recycled and diverted to the maximum extent feasible NRG 2013a, Tables 2-12 and 2-13. Less than 100 cubic yards per year will be generated during operation. Solid waste disposal from ESPFM would contribute less than one percent of the available landfill capacity. Staff concludes that disposal of the solid wastes generated by ESPFM could occur without significantly impacting the capacity or remaining life of any of these facilities.

Hazardous Wastes
WASTE MANAGEMENT Table 3 displays information on the Class I landfills available in California. The Kettleman Hills facility also accepts Class II and Class III wastes. Kettleman Hills and Buttonwillow landfills have a combined approximately 15 million
cubic yards of remaining hazardous waste disposal capacity, with up to 31 years of combined remaining operating lifetime.

<table>
<thead>
<tr>
<th>Landfill³</th>
<th>Location</th>
<th>Maximum Permitted Capacity</th>
<th>Remaining Capacity</th>
<th>Estimated Closure Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>Cubic yards</td>
<td>Cubic yards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class III - Nonhazardous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frank Bowerman Sanitary Landfill</td>
<td>Irvine, CA</td>
<td>266 million</td>
<td>205 million</td>
<td>2053</td>
</tr>
<tr>
<td>El Sobrante Landfill</td>
<td>Corona, CA</td>
<td>185 million</td>
<td>146 million</td>
<td>2045</td>
</tr>
<tr>
<td>Simi Valley Landfill</td>
<td>Simi Valley, CA</td>
<td>120 million</td>
<td>120 million</td>
<td>2052</td>
</tr>
<tr>
<td>Class I - Hazardous Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Waste Management-Kettleman (Class I, II, III)</td>
<td>Kettleman, CA</td>
<td>10 million</td>
<td>6 million*</td>
<td>2044</td>
</tr>
<tr>
<td>Clean Harbors Buttonwillow (Class I)</td>
<td>Kern, CA</td>
<td>14.3 million</td>
<td>9.2 million</td>
<td>2040</td>
</tr>
</tbody>
</table>

Hazardous wastes generated during demolition, construction, and operation would be recycled to the extent possible and practical. Those wastes that cannot be recycled would be transported off site to a permitted treatment, storage, or disposal facility. Approximately 122,767 square feet of friable asbestos, would be generated from the demolition of Units 3 and 4. Less than 100 cubic yards per year of other hazardous waste would be generated during demolition, construction and operation of ESPFM. The total amount of hazardous wastes generated by the ESPFM project would consume less than one percent of the 15 million cubic yards of remaining permitted capacity. Therefore, impacts from disposal of ESPFM generated hazardous wastes would have a less than significant impact on the remaining capacity at Class I landfills.

CUMULATIVE IMPACTS AND MITIGATION

The CEQA Guidelines (Section 15355) define cumulative effects as “two or more individual effects which, when considered together, are considerable or which compound or increase other environmental impacts.”

Long-term cumulative impacts are not anticipated with the implementation of ESPFM and the listed projects in the Project Description’s ESPFM Master List of Cumulative

³ List of landfills obtained from AFC 00-AFC-14 Waste Management section.
Impacts because each project is required to comply with CEQA guideline requirements for evaluating potential cumulative impacts, and/or obtain approval from the city prior to permitting and construction by demonstrating conformance to existing CalRecycle (Title 24) and the County of Los Angeles C&D regulations or ordinances. As proposed, the amount of non-hazardous and hazardous wastes generated during construction and operation of the ESPFM would add to the total quantity of waste generated in the State of California, however, project wastes would be generated in modest quantities. Approximately 25,200 cubic yards of solid waste and approximately 122,767 square-feet of asbestos will be generated during demolition of Units 3, and 4 and construction of Units 9 through 12, and less than 100 tons per year of hazardous waste will be generated during operation (NRG 2013a, pages 2-12 through 2-17). Waste recycling would be employed wherever practical, and sufficient capacity is available at several treatment and disposal facilities to handle the volumes of wastes that would be generated by the project. In 2012, 6.4 million tons of solid waste was landfilled in Los Angeles County. ESPFM’s contribution would be less than one percent of the county’s waste generation.

COMPLIANCE WITH LORS

Energy Commission staff concludes that the proposed ESPFM would comply with all applicable LORS regulating the management of hazardous and non-hazardous wastes during both facility construction and operation. The project owner is required to recycle and/or dispose hazardous and non-hazardous wastes at facilities licensed or otherwise approved to accept the wastes. Because hazardous wastes would be produced during both project construction and operation, the ESPFM would be required to obtain a hazardous waste generator identification number from U.S. EPA. The ESPFM would also be required to properly store, package, and label all hazardous waste; use only approved transporters; prepare hazardous waste manifests; keep detailed records; and appropriately train employees, in accordance with state and federal hazardous waste management requirements.

In the Socioeconomics section of this staff assessment, staff presents census information that shows that there are minority populations within one mile and six miles of the project. Since staff has added conditions of certification that would reduce the risk associated with hazardous waste to a less than significant level, staff concludes that there will be no significant impact from construction or operation of the power plant on minority populations. Therefore, there are no environmental justice issues for Waste Management.

CONCLUSIONS

Consistent with the three main objectives for staff’s waste management analysis (as noted in the Introduction section of this analysis), staff provides the following conclusions:

1) After review of the applicant’s proposed waste management procedures, staff concludes that project wastes would be managed in compliance with all applicable
waste management LORS. Staff notes that demolition, construction and operation wastes would be characterized and managed as either hazardous or non-hazardous waste. All non-hazardous wastes would be recycled to the extent feasible, and nonrecyclable wastes would be collected by a licensed hauler and disposed of at a permitted solid waste disposal facility. Hazardous wastes would be accumulated onsite in accordance with accumulation time limits and then properly manifested, transported to, and disposed of at a permitted hazardous waste management facility by licensed hazardous waste collection and disposal companies.

However, to help ensure and facilitate ongoing project compliance with LORS, staff proposes Conditions of Certification **WASTE-1 through 9**. These conditions would require the project owner to do all of the following:

- Once the ESPFM project owner identifies which areas of contamination will be remediated staff proposes conditions that ensure the project site is investigated and any contamination identified is remediates as necessary, with appropriate professional and regulatory agency oversight (**WASTE-1, 2, 4, and 5**).
- Report any waste management-related LORS enforcement actions and how violations will be corrected (**WASTE-2**).
- Prepare Construction Waste Management and Operation Waste Management Plans detailing the types and volumes of wastes to be generated and how wastes will be managed, recycled, and/or disposed of after generation (**WASTE-3**).

2) Conditions at the ESPFM project site do include areas where prior site uses and/or demolition activities may have resulted in releases of hazardous substances or soil contamination. To ensure that the project site is investigated and remediates as necessary and to reduce any impacts from prior or future hazardous substance or hazardous waste releases at the site to a level of insignificance, staff proposes Conditions of Certification **WASTE-1, 2, 4, 5, 6, 7, 8 and 9**. These conditions would require the project owner to ensure that the project site is investigated and remediates as necessary; demonstrate that project wastes are managed properly; and ensure that any future spills or releases of hazardous substances or wastes are properly reported, cleaned-up, and remediates as necessary. Therefore, staff concludes that construction and operation of the proposed ESPFM project would not result in contamination or releases of hazardous substances that would pose a substantial risk to human health or the environment.

3) Regarding impacts of project wastes on existing waste disposal facilities, staff uses a waste volume threshold equal to ten (10) percent of a disposal facility’s remaining capacity to determine if the impact from disposal of project wastes at a particular facility would be significant. The existing available capacity for the three Class III landfills that may be used to manage nonhazardous project wastes exceeds 471 million cubic yards. The total amount of nonhazardous wastes generated from construction and operation of ESPFM would contribute less than 0.1 percent of the remaining landfill capacity. Therefore, disposal of project generated non-hazardous wastes would have a less than significant impact on Class III landfill capacity.
In addition, the two Class I disposal facilities that could be used for hazardous wastes generated by the construction and operation of ESPFM have a combined remaining capacity in excess of 15 million cubic yards. The total amount of hazardous wastes generated by the ESPFM project would contribute less than one percent of the remaining permitted capacity. Therefore, impacts from disposal of ESPFM generated hazardous wastes would also have a less than significant impact on the remaining capacity at Class I landfills.

Staff concludes that management of the waste generated during demolition, construction and operation of the ESPFM project would not result in any significant adverse impacts, and would comply with applicable LORS, if the waste management practices and mitigation measures proposed in the ESPFM project and staff’s proposed conditions of certification are implemented.

PROPOSED CONDITIONS OF CERTIFICATION

Condition of Certification **WASTE-8** was updated to reflect additional LORS required for the disposal of asbestos. Staff added condition of certification **WASTE-9** to reflect the changes for ESPFM, which include the demolition of Units 3 and 4 and the construction of Units 9, 10, 11, and 12.

WASTE-1 The project owner and, if necessary, its construction contractor, shall each obtain a hazardous waste generator identification number from the Department of Toxic Substances Control prior to generating any hazardous waste.

Verification: The project owner shall notify the CPM via the monthly compliance report of its receipt and keep a copy of the identification number on file at the project site.

WASTE-2 Upon becoming aware of any impending waste management-related enforcement action by any local, state, or federal authority, the project owner shall notify the CPM of any such action taken or proposed to be taken against the project itself, or against any waste hauler or disposal facility or treatment operator with which the owner contracts.

Verification: The project owner shall notify the CPM in writing within 10 days of becoming aware of an impending enforcement action. The CPM shall notify the project owner of any changes that will be required in the manner in which project-related wastes are managed.

WASTE-3 Prior to the start of both site mobilization and project operation, the project owner shall prepare and submit to the CPM for review and approval, and to local agencies, if applicable, for review and comment, a waste management plan for all wastes generated during construction and operation of the facility, respectively. The plans shall contain, at a minimum, the following:
A description of all waste streams, including projections of frequency, amounts generated and hazard classifications; and

Methods of managing each waste, including storage, treatment methods and companies contracted with for treatment services, waste testing methods to assure correct classification, methods of transportation, disposal requirements and sites, and recycling and waste minimization/reduction plans.

Verification: No less than 30 days prior to the start of site mobilization, the project owner shall submit the demolition and construction waste management plan to and to local agencies, if applicable, for review and comment, and the CPM. The operation waste management plan shall be submitted no less than 30 days prior to the start of project operation. The project owner shall submit any required revisions within 20 days of notification by the CPM (or mutually agreed upon date). In the Annual Compliance Reports, the project owner shall document the actual waste management methods used during the year compared to planned management methods.

WASTE-4 The project owner shall have a Registered Professional Engineer or Geologist, with experience in remedial investigation and feasibility studies, available for consultation during soil excavation and grading activities. The Registered Professional Engineer or Geologist shall be given full authority to oversee any earth moving activities that have the potential to disturb contaminated soil.

Verification: At least 30 days prior to the start of site mobilization, the project owner shall submit the qualifications and experience of the Registered Professional Engineer or Geologist to the CPM for approval.

WASTE-5 If potentially contaminated soil is unearthed during excavation at either the proposed site or linear facilities as evidenced by discoloration, odor, detection by handheld instruments, or other signs, the Registered Professional Engineer or Geologist shall inspect the site, determine the need for sampling to confirm the nature and extent of contamination, and file a written report to the project owner and CPM stating the recommended course of action. Depending on the nature and extent of contamination, the Registered Professional Engineer or Geologist shall have the authority to temporarily suspend construction activity at that location for the protection of workers or the public. If, in the opinion of the Registered Professional Engineer or Geologist, significant remediation may be required, the project owner shall contact representatives of the Los Angeles Regional Water Quality Control Board, the Chatsworth Field Office of the California Department of Toxic Substances Control the CPM, and other local agencies, if applicable, for guidance and possible oversight.

Verification: The project owner shall submit any reports filed by the Registered Professional Engineer or Geologist to the CPM and the City of El Segundo Fire Department within 5 days of their receipt. The project owner shall notify the CPM within 24 hours of any orders issued to halt construction.
Before demolition of either the fuel oil tanks or the existing generator buildings and any other building, respectively, the project owner shall prepare a Remedial Investigation Workplan (RI Workplan). This plan shall include a detailed site characterization plan with soil and groundwater sampling and analysis to determine the extent and nature of contamination existing beneath these structures. The RI Workplan shall be provided to the Chatsworth Field Office of the California Department of Toxic Substances Control, the Los Angeles Regional Water Quality Control, and the City of El Segundo Fire Department, and other local agencies, if applicable, for review and comment, and to the CEC CPM for review and approval. If contaminated soil or groundwater is found to exist, the project owner shall contact representatives of the above-named agencies for further guidance and possible oversight. In no event shall the project owner proceed with site preparation or construction activities at any location on the site where hazardous waste contamination is found to be present until that location is either remediated or shown to pose an insignificant risk to humans and the environment as demonstrated to the satisfaction of the LARWQCB, DTSC, and the CPM.

Verification: At least sixty (60) days prior to commencement of fuel tank or structure demolition, respectively, the project owner shall provide the RI Workplan to the Chatsworth Field Office of the California Department of Toxic Substances Control, the Los Angeles Regional Water Quality Control Board, the City of El Segundo Fire Department, other agencies, if applicable, and the CEC CPM. Within thirty (30) days of completion of the sampling and analysis and prior to the initiation of any construction activities, the project owner shall provide the results of the sampling and analysis to the Chatsworth Field Office of the California Department of Toxic Substances Control, the Los Angeles Regional Water Quality Control Board, the City of El Segundo Fire Department, other agencies, if applicable, and the CPM for review and guidance on possible remediation.

Before demolition of the existing generator buildings and any other building, the project owner shall ensure that the appropriate portion of the site is surrounded by a berm or other solid structures capable of containing any runoff from that portion of the site and preventing this runoff from leaving the site. In no event shall the project owner proceed with site preparation or construction activities at any location on the site where hazardous waste contamination is found to be present until that location has such containment in place to the satisfaction of the CPM.

Verification: At least thirty (30) days prior to commencement of site preparation activities, the project owner shall provide written plans on containment to the CPM for review and approval.

Prior to modification or demolition of existing structures, the project owner shall complete and submit a survey of all Asbestos-Containing Materials (ACM) and Regulated Building Materials (RBM) that contain lead-based paint to the El Segundo Fire Department and a South Coast Air Quality
Management District Asbestos Demolition Notification Form (SCAQMD Rule 1403) for review and comment and to the CPM for approval. After receiving approval, the project owner shall remove all ACM and RBM from the site prior to demolition.

Verification: no less than sixty (60) days prior to commencement of structure demolition, the project owner shall provide the survey to the El Segundo Fire Department and the South Coast Air Quality Management District for review and comment, and to the CPM for review and approval. The project owner shall inform the CPM, via the monthly compliance report, of the data when all ACM and RBM were removed from the site.

WASTE-9 Before demolition of the existing Units 3 and 4 and any other support building or equipment, the project owner shall prepare a Remedial Investigation Workplan (RI Workplan). This plan shall include a detailed site characterization plan with soil and groundwater sampling and analysis to determine the extent and nature of contamination existing beneath these structures. The RI Workplan shall be provided to the Chatsworth Field Office of the California Department of Toxic Substances Control (DTSC), the Los Angeles Regional Water Quality Control (LARWQCB), and the City of El Segundo Fire Department, and other local agencies, if applicable, for review and comment, and to the CPM for review and approval. If contaminated soil or groundwater is found to exist, the project owner shall contact representatives of the above-named agencies for further guidance and possible oversight. In no event shall the project owner proceed with site preparation or construction activities at any location on the site where hazardous waste contamination is found to be present until that location is either remediated or shown to pose an insignificant risk to humans and the environment as demonstrated to the satisfaction of the LARWQCB, DTSC, and the CPM.

Verification: At least sixty (60) days prior to commencement of Units 3 and 4 demolition or structure demolition, respectively, the project owner shall provide the RI Workplan to the Chatsworth Field Office of the California Department of Toxic Substances Control, the Los Angeles Regional Water Quality Control Board, the City of El Segundo Fire Department, other agencies, if applicable, and the CPM. Within thirty (30) days of completion of the sampling and analysis and prior to the initiation of any construction activities, the project owner shall provide the results of the sampling and analysis to the Chatsworth Field Office of the California Department of Toxic Substances Control, the Los Angeles Regional Water Quality Control Board, the City of El Segundo Fire Department, other agencies, if applicable, and the CPM for review and guidance on possible remediation.
REFERENCES

WASTE MANAGEMENT - FIGURE 1
El Segundo Energy Center Amendment (ESEC) - Areas For Investigation or Identified Remediation

CALIFORNIA ENERGY COMMISSION - SITING, TRANSMISSION AND ENVIRONMENTAL PROTECTION DIVISION
SOURCE: TN 200552 Figure DR88-1, CH2HILL
SUMMARY OF CONCLUSIONS

California Energy Commission staff (staff) evaluated the proposed El Segundo Energy Center, LLC (ESEC LLC) modified project (amendment dated April 23, 2013; NRG 2013a) in terms of worker safety and fire protection matters. Worker safety and fire protection is legislated by laws, ordinances, regulations, and standards (LORS), and enforced through regulations codified at the Federal, State, and local levels. Worker safety is of utmost importance at the project location and is ensured through workplace safety practices that include engineering controls, administrative controls, and worker training. Industrial workers at the facility operate process equipment and handle hazardous materials daily and may face hazards that can result in accidents and serious injury. Protection measures are employed to either eliminate these hazards or minimize the risk through controls, special training, or use of protective equipment.

In the period since the original licensing of this project in 2000, a Petition to Amend was filed in 2005, a staff assessment to that Petition was filed in 2005, a Decision was filed in 2005 (CEC 2005a), a second Petition to Amend was filed in 2007, a staff assessment to that Petition was published in 2008, and a Decision was adopted in 2010 (CEC 2010a). Even though substantial and numerous modifications have been made to this power plant over the past ten years and additional changes are now proposed for the modified project, staff is not proposing new conditions of certification for the modified project, also known as the El Segundo Power Facility Modification (ESPFM). The existing Conditions of Certification with minimal revisions to reflect current nomenclature, current Energy Commission practice, and to clarify requirements during demolition activities would be sufficient to ensure compliance with all LORS.

Therefore, this Preliminary Staff Assessment (PSA) indicates that with the continued implementation of the currently-required six (6) mitigation measures, worker safety and fire protection at the modified project site would not present a significant risk to on-site workers. These conditions would ensure that the most modern fire prevention, detection, and suppressions systems are installed and implemented. With adoption of the proposed conditions of certification, the ESPFM will comply with all applicable laws, ordinances, regulations, and standards and will not result in any unmitigated significant adverse impacts.

INTRODUCTION

On April 23, 2013, ESEC LLC filed a petition with the Energy Commission requesting to replace utility boiler Units 3 and 4 with one new combined cycle (consisting of a combustion turbine generator (Unit 9), and a one steam turbine generator (Unit 10)) and two simple-cycle combustion turbines (Units 11 and 12) for the project totaling 449 megawatt (MW) (NRG 2013a). The current amendment proposes the demolition of the existing steam boiler Units 3 and 4, to be replaced with combined cycle Units 9 and 10, with dry cooling technology, and simple cycle Units 11 and 12.
The proposed project is located within the existing 33-acre El Segundo Energy Center (ESEC) site. The site is located at the southernmost city limit of the city of El Segundo, on the coast of the Pacific Ocean, between Dockweiler State Beach and the city of Manhattan Beach, in Los Angeles County. See Project Description Figures 1 and 2.

The purpose of this Staff Assessment is to assess the worker safety and fire protection measures proposed by the ESPFM and to determine whether the project owner has proposed adequate measures to:

- comply with applicable safety LORS;
- protect the workers during demolition, construction and operation of the facility;
- protect against fire; and
- provide adequate emergency response procedures.

METHODOLOGY AND THRESHOLDS FOR DETERMINING ENVIRONMENTAL CONSEQUENCES

Two issues are assessed in Worker Safety and Fire Protection:

- The potential for adverse impacts on the safety of workers during demolition, construction, and operations activities, and
- Fire prevention/protection, emergency medical response, and hazardous materials spill response during construction and operations.

Worker safety issues are thoroughly addressed by the California Department of Occupational Safety and Health (Cal/OSHA) regulations. If all LORS are followed, workers will be adequately protected. Thus, the standard for staff’s review and determination of significant impacts on workers is whether or not the project owner has demonstrated adequate knowledge about, and dedication to, implementing all pertinent and relevant Cal/OSHA standards.

Regarding fire prevention matters, staff reviews and evaluates the on-site fire-fighting systems proposed by the project owner and the time needed for off-site local fire departments to respond to a fire, medical, or hazardous material emergency at the proposed power plant site. If on-site systems do not follow established codes and industry standards, staff recommends additional measures. Staff reviews and evaluates the local fire department capabilities and response time in each area and interviews the local fire officials to determine if they feel adequately trained, manned, and equipped to respond to the needs of a power plant. Staff then determines if the presence of the power plant would cause a significant impact on a local fire department. If it does, staff will recommend that the project owner mitigate this impact by providing increased resources to the fire department.

Staff has also established a procedure when a local fire department has identified either a significant incremental project impact to the local agency or a significant incremental cumulative impact to a local agency. Staff first conducts an initial review of the position and either agrees or disagrees with the fire department’s determination that a significant
impact would exist if the proposed power plant is built and operated. A process then starts whereby the project owner can either accept the determination made by staff or refute the determination by providing a Fire Needs Assessment and a Risk Assessment. The Fire Needs Assessment would address fire response and equipment/staffing/location needs while the Risk Assessment would be used to establish that while an impact to the fire department may indeed exist, the risk (chances) of that impact occurring and causing injury or death is less than significant.

LAWS, ORDINANCES, REGULATIONS, AND STANDARDS (LORS)

Worker Safety and Fire Protection Table 1 Laws, Ordinances, Regulations, and Standards (LORS)

<table>
<thead>
<tr>
<th>Applicable LORS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td></td>
</tr>
<tr>
<td>Title 29 U.S. Code (USC) section 651 et seq (Occupational Safety and Health Act of 1970)</td>
<td>This act mandates safety requirements in the workplace with the purpose of “[assuring] so far as possible every working man and woman in the nation safe and healthful working conditions and to preserve our human resources” (29 USC §651).</td>
</tr>
<tr>
<td>Title 29 Code of Federal Regulation (CFR) sections 1910.1 to 1910.1500 (Occupational Safety and Health Administration Safety and Health Regulations)</td>
<td>These sections define the procedures for promulgating regulations and conducting inspections to implement and enforce safety and health procedures to protect workers, particularly in the industrial sector.</td>
</tr>
<tr>
<td>29 CFR sections 1952.170 to 1952.175</td>
<td>These sections provide federal approval of California’s plan for enforcement of its own Safety and Health requirements, in lieu of most of the federal requirements found in 29 CFR sections 1910.1 to 1910.1500.</td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>Title 8 California Code of Regulations (Cal CodeRegs.) all applicable sections (Cal/OSHA regulations)</td>
<td>These sections require that all employers follow these regulations as they pertain to the work involved. This includes regulations pertaining to safety matters during construction, commissioning, and operations of power plants, as well as safety around electrical components, fire safety, and hazardous materials use, storage, and handling.</td>
</tr>
<tr>
<td>Health and Safety Code section 25500, et seq.</td>
<td>This section presents Risk Management Plan requirements for threshold quantities of listed acutely hazardous materials at a facility.</td>
</tr>
<tr>
<td>Health and Safety Code sections 25500 to 25541</td>
<td>These sections require a Hazardous Material Business Plan detailing emergency response plans for hazardous materials emergency at a facility.</td>
</tr>
<tr>
<td>Local (or locally enforced)</td>
<td></td>
</tr>
<tr>
<td>City of El Segundo Fire Department, Environmental Safety Division</td>
<td>The City of El Segundo Fire Department (CESFD), Environmental Safety Division is the CUPA and therefore regulates RMPs (Article</td>
</tr>
</tbody>
</table>
PROPOSED MODIFIED PROJECT

ESEC LLC, a wholly owned subsidiary of NRG Energy, Inc. (NRG), proposes to make substantial changes to the ESEC. These changes are referred to as the ESPFM. Primary changes include the demolition and replacement of two once-through-cooled natural gas-fired utility boiler units (Units 3 and 4), with one new combined cycle generator (Unit 9 combustion turbine and Unit 10 steam turbine generator) and two simple-cycle gas turbines (Units 11 and 12). This change will eliminate the use of ocean water for once-through cooling at the facility. The proposed changes would also upgrade and improve the ESEC’s existing and approved site infrastructure, provide fast start and dispatch flexibility capabilities to support Southern California grid load balancing and renewable energy integration, and implement improvements to coastal access. See Project Description Figures 3, 4, 5, 6 and 7.

Specific changes proposed through this Petition to Amend (PTA) include:

- Shutdown and demolition of Units 3 and 4;
- Removal and remediation of existing ESEC retention basins;
- Construction of a new, combined administration, maintenance, and operations support building;
- Modifications to existing site access; and
- Improvements to beach access.

The following new major equipment would be installed:

- **Unit 9** - One fast start combustion turbine in a combined-cycle configuration, rated at 222 MW net, incorporating a General Electric natural gas combustion turbine generator designed to achieve 75 percent of base load output in 10 minutes;
- As part of the combined cycle, one two-pressure, duct-fired heat recovery steam generator (HRSG) designed for rapid startup with conventional selective catalytic reduction system (SCR)/carbon monoxide (CO) catalysts;
- As part of the combined cycle, **Unit 10** - One single-case, non-reheat axial exhaust admission condensing steam turbine generator (STG) rated at 112 MW and designed for non-traditional elevated condensing pressure to minimize cooling system size;
- One Heller dry cooling tower system;
- Units 11 and 12 - Two Rolls Royce Trent 60 generators, rated at a nominal 55 MW/unit net, consisting of advanced aeroderivative simple-cycle gas turbines; and
One Cleaver Brooks auxiliary boiler consisting of a direct contact spray condenser and a mechanically-induced-draft dry-cooling tower.

SETTING AND EXISTING CONDITIONS

The proposed modified project is located wholly within the City of El Segundo and thus the City of El Segundo Fire Department (CESFD) is the Enforcing Agency and has within it the Fire Code Official under the California Fire Code. Fire support services would come from CESFD Fire Station No. 1 (located at 314 Main Street) which is the closest station to the site. The response time to the project site is estimated to be less than 3-5 minutes. Station 2 is located at 2161 El Segundo Boulevard, with an estimated response time of 4-5 minutes (CESFD 2001). Station 1 is also assigned as the off-site hazardous materials (hazmat) first responder for the ESEC. Station 1 has two designated hazmat personnel and is equipped with a hazmat engine. Station 1 firemen are also hazmat trained (CESFD 2001).

ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

WORKER SAFETY

Industrial environments are potentially dangerous during demolition, construction, and operation of facilities. Workers at the proposed modified ESEC would be exposed to loud noises, moving equipment, trenches, and confined space entry and egress problems. The workers may experience falls, trips, burns, lacerations, and numerous other injuries. They have the potential to be exposed to falling equipment or structures, chemical spills, hazardous waste, fires, explosions, and electrical sparks and electrocution. It is important for the ESEC to have well-defined policies and procedures, training, and hazard recognition and control at its facility to minimize such hazards and protect workers. If the facility complies with all LORS and conditions of certification, workers would be adequately protected from health and safety hazards.

A Safety and Health Program would be prepared by the project owner to minimize worker hazards during demolition, construction, and operation. Staff uses the phrase “Safety and Health Program” to refer to the measures that would be taken to ensure compliance with the applicable LORS during the demolition/construction and operational phases of the project.

Demolition and Construction Safety and Health Program

Workers at the ESEC would be exposed to hazards typical of demolition, construction, and operation of a natural gas-fired electric power generating facility. During demolition and construction, one set of worker safety policies and procedures would be followed.

Construction Safety Orders are published at Title 8 California Code of Regulations sections 1502, et seq. These requirements are promulgated by Cal/OSHA and would be applicable to the construction phase of the project. The Construction Safety and Health Program would include the following:
• Demolition and Construction Injury and Illness Prevention Program (8 Cal Code Regs. §1509)

• Demolition and Construction Fire Prevention Plan (8 Cal Code Regs. §1920)

• Personal Protective Equipment Program (8 Cal Code Regs. §§1514-1522)

• Demolition and Emergency Action Program and Plan

• Demolition and Construction Fire Prevention Plan (8 Cal Code Regs 3221)

Additional programs under General Industry Safety Orders (8 Cal Code Regs. §§3200 to 6184), Electrical Safety Orders (8 Cal Code Regs. §§2299 to 2974) and Unfired Pressure Vessel Safety Orders (8 Cal Code Regs. §§450 to 544) would be established and implemented and would address many important worker safety and health issues. It is not staff’s intent to list them all but some of the newer and revised Cal-OSHA regulations address such matters as excavation and trenching, employee exposure monitoring, hearing conservation, ergonomics, heat and cold stress monitoring and control, confined space entry, and Lock Out/Tag Out of dangerous operations and electrical circuits. Prior to the start of demolition and through construction, detailed programs and plans would be provided to the Energy Commission Compliance Project Manager (CPM) and to the CESFD pursuant to existing Condition of Certification WORKER SAFETY-1.

Operations and Maintenance Safety and Health Program

Prior to the start of operations at ESEC, the Operations and Maintenance Safety and Health Program would be prepared. This operational safety program would include the following programs and plans:

• Injury and Illness Prevention Program (8 Cal Code Regs. §3203)

• Fire Protection and Prevention Program (8 Cal Code Regs. §3221)

• Personal Protective Equipment Program (8 Cal Code Regs. §§3401 to 3411)

• Emergency Action Plan (8 Cal Code Regs. §3220)

• A Hazardous Materials Management Program

In addition, the requirements under General Industry Safety Orders (8 Cal Code Regs. §§3200 to 6184), Electrical Safety Orders (8 Cal Code Regs. §§2299 to 2974) and Unfired Pressure Vessel Safety Orders (8 Cal Code Regs. §§450 to 544) would be applicable to the project. Written safety programs for ESEC, which the project owner would develop, would ensure compliance with the above-mentioned requirements.

Prior to operation of ESEC, all detailed programs and plans would be provided to the CPM and the CESFD pursuant to existing Condition of Certification WORKER SAFETY-2.

Fire Prevention Plan

California Code of Regulations requires an Operations Fire Prevention Plan (8 Cal Code Regs. §3221). The plan would accomplish the following:
• determine general program requirements (scope, purpose, and applicability);
• determine potential fire hazards;
• develop good housekeeping practices and proper handling and materials storage;
• determine potential ignition sources and control measures for these sources;
• determine persons responsible for equipment and system maintenance;
• locate portable and fixed fire-fighting equipment in suitable areas;
• establish and determine training and instruction requirements; and
• define recordkeeping requirements.

Under the existing license for the project, the project owner is required to submit a final Fire Prevention Plan to the CPM for review and approval and to the CESFD for review and comment to satisfy existing Conditions of Certification WORKER SAFETY-1 and WORKER SAFETY-2.

Additional Mitigation Measures

Protecting construction workers from injury and disease is among the greatest challenges in occupational safety and health. The following facts are reported by the National Institute for Occupational Safety and Health (NIOSH):

• More than 7 million persons work in the construction industry, representing 6 percent of the labor force. Approximately 1.5 million of these workers are self-employed.

• Of approximately 600,000 construction companies, 90 percent employ fewer than 20 workers. Few have formal safety and health programs.

• From 1980 to 1993, an average of 1,079 construction workers were killed on the job each year—more fatal injuries than in any other industry.

• Falls caused 3,859 construction worker fatalities (25.6 percent) between 1980 and 1993.

• Construction injuries account for 15 percent of workers' compensation costs.

• Assuring safety and health in construction is complex, involving short-term work sites, changing hazards, and multiple operations and crews working in close proximity.

• In 1990, Congress directed NIOSH to undertake research and training to reduce diseases and injuries among construction workers in the United States. Under this mandate, NIOSH funds both intramural and extramural research projects.

The hazards associated with the construction industry are thus well documented. These hazards increase in complexity in the multi-employer worksites typical of large, complex, industrial-type projects such as the construction of natural gas-fired power plants. In order to reduce and/or eliminate these hazards, it has become standard industry practice to hire a Construction Safety Supervisor to ensure a safe and healthful environment for all personnel. That this standard practice has reduced and/or eliminated hazards has been evident in the audits staff recently conducted of power plants under construction. The
federal Occupational Safety and Health Administration (OSHA) has also entered into strategic alliances with several professional and trade organizations to promote and recognize safety professionals trained as Construction Safety Supervisors, Construction Health and Safety Officers, and other professional designations. The goal of these partnerships is to encourage construction subcontractors in four areas:

- to improve their safety and health performance;
- to assist them in striving for the elimination of the four hazards (falls, electrical, caught in/between and struck-by hazards), which account for the majority of fatalities and injuries in this industry and have been the focus of targeted OSHA inspections;
- to prevent serious accidents in the construction industry through implementation of enhanced safety and health programs and increased employee training; and
- to recognize those subcontractors with exemplary safety and health programs.

To date, there are no OSHA or Cal/OSHA requirements that an employer hire or provide for a Construction Safety Officer. OSHA and Cal/OSHA regulations do, however, require that safety be provided by an employer and the term Competent Person is used in many OSHA and Cal/OSHA standards, documents, and directives. A Competent Person is usually defined by OSHA as an individual who, by way of training and/or experience, is knowledgeable of standards, is capable of identifying workplace hazards relating to the specific operations, is designated by the employer, and has authority to take appropriate action. Existing Condition of Certification WORKER SAFETY-4 requires the project owner to designate and provide for a power plant site Construction Safety Supervisor which serves as the Competent Person during both demolition and construction activities as required by OSHA and Cal/OSHA. Staff does not propose any changes to this condition.

As discussed above, the hazards associated with the construction industry are well documented. These hazards increase in complexity in the multi-employer worksites typical of large, complex, industrial-type projects such as the demolition and construction of power plants.

Accidents, fires, and a worker death have occurred at Energy Commission-certified power plants in the past due to the failure to recognize and control safety hazards and the inability to adequately supervise compliance with occupational safety and health regulations. Safety problems have been documented by Energy Commission staff in safety audits conducted in 2005 (and later) at several power plants under construction. The findings of the audit staff include, but are not limited to, such safety oversights as:

- lack of posted confined space warning placards/signs;
- confusing and/or inadequate electrical and machinery lockout/tagout permitting and procedures;
- confusing and/or inappropriate procedures for handing over lockout/tagout and confined space permits from the construction team to commissioning team and then to operations;
• dangerous placement of hydraulic elevated platforms under each other;
• inappropriate placement of fire extinguishers near hotwork;
• dangerous placement of numerous power cords in standing water on the site, thus increasing the risk of electrocution;
• construction of an unsafe aqueous ammonia unloading pad;
• inappropriate and unsecure placement of above-ground natural gas pipelines inside the facility but too close to the perimeter fence; and
• lack of adequate employee- or contractor-written training programs addressing proper procedures to follow in the event of finding suspicious packages or objects either on or off site.

In order to reduce and/or eliminate these hazards, it is necessary for the Energy Commission to have a professional Safety Monitor on site to track compliance with Cal/OSHA regulations and periodically audit safety compliance during both demolition and construction activities, commissioning, and for the hand-over to operational status. (The project owner is relieved of the duty to provide a Safety Monitor once all demolition and construction activities are completed.) These requirements are outlined in existing Condition of Certification WORKER SAFETY-5. A Safety Monitor, hired by the project owner, yet reporting to the Chief Building Official (CBO) and CPM, would serve as an “extra set of eyes” to ensure that safety procedures and practices are fully implemented at all power plants certified by the Energy Commission. During the audits conducted by staff, most site safety professionals welcomed the audit team and actively engaged it in questions about the team’s findings and recommendations. These safety professionals recognized that safety requires continuous vigilance and that the presence of an independent audit team provided a fresh perspective of the site. Staff does not propose any changes to existing WORKER SAFETY-5.

FIRE PROTECTION

During demolition, construction and operation of the modified ESEC, there is the potential for both small fires and major structural fires. Electrical sparks, combustion of fuel oil, natural gas or flammable liquids, explosions, and over-heated equipment may cause small fires. Major structural fires may develop from uncontrolled fires or be caused by large explosions of natural gas or other flammable gasses or liquids. Compliance with all LORS would be adequate to assure protection from all fire hazards.

The project would rely on both onsite fire protection systems and local fire protection services. The onsite fire protection system provides the first line of defense for small fires. In the event of a major fire, fire support services including trained firefighters and equipment for a sustained response would be required from the City of El Segundo Fire Department (CESFD).

As mentioned above in this section of the PSA, fire support services from the CESFD would come from Fire Station No. 1, which is the closest station to the site and is located at 314 Main Street, and from Station 2, located at 2161 El Segundo Boulevard. The response times to the project site of less than 3-5 minutes and 4-5 minutes,
respectively, (CESFD 2001) are adequate. Station 1 is also assigned as the off-site hazardous materials (hazmat) first responder for the ESEC. Station 1 has two designated hazmat personnel and is equipped with a hazmat engine. Station 1 firemen are also hazmat trained (CESFD 2001).

Staff reviewed the information provided in the PTA regarding available fire protection services and equipment (NRG 2013a, p. 2-24) to determine if the project would adequately protect workers and if it would affect the fire protection services in the area.

The fire protection systems limit personnel injury, loss of life, property loss, and plant downtime due to fire. According to the PTA, the existing power plant firewater system had been upgraded significantly as part of the ESEC project but the location of the existing firewater storage tank and electric motor-driven firewater pump would not change. The firewater supply and pumping system is dedicated solely to fire fighting needs and would provide the required quantity of fire-fighting water to yard hydrants, hose stations, and water spray and sprinkler systems.

There are currently two sources of firewater and these sources would remain: the primary source is the existing firewater storage tank and the secondary source is the water main from the City of Manhattan Beach. A diesel engine-driven pump would take water from the city water line and would also operate as the backup pump to the electric pump for the water tank. Both pumps are capable of supplying maximum water demand for any automatic sprinkler system plus water for fire hydrants and hose stations.

The new firewater distribution system required for Units 5, 6, 7 and 8, proposed Units 9, 10, 11 and 12, the new administration building, maintenance shop, and warehouse, would be incorporated into the existing firewater distribution system. This added demand would not, according to the PTA, affect the ability of the existing fire water loop system and thus water flow and pressure would be maintained as per code. Isolation valves in the firewater loop and system would be added to isolate any failure in one part of the system.

Fire hydrants with hose houses would be spaced at approximately 250-foot intervals around the fire loop as per local fire codes. Fixed fire protection systems would be provided for the steam turbine bearings and lube oil equipment and station transformers. In addition to the fixed fire protection system, portable CO₂ and dry chemical extinguishers would be located throughout the plant (including the switchgear rooms).

The PTA indicates that the administration and maintenance building would be relocated to the existing tank farm area on the southern portion of the site. Staff supports this change in that it would enable improved access for facility and emergency services personnel, and visitors and allow visitor access to the site without vehicles having to traverse through the northern portion of the site from the site entrance. The improved access would allow for a direct and straight route from the main site entrance to the newly located administration and maintenance building.
Staff concludes that the information in the PTA indicates that the project intends to meet the fire protection and suppression requirements of all applicable LORS. As per Condition of Certifications WORKER SAFETY-1 and -2, the project owner would be required to provide a Fire Prevention Program to staff and to the City of El Segundo Fire Department, prior to demolition & construction and operation of the project, to confirm the adequacy and approve the proposed fire protection measures.

Emergency Medical Services Response

Staff conducted a statewide survey to determine the frequency of Emergency Medical Services (EMS) response and off-site fire-fighter response for natural gas-fired power plants in California. The purpose of the analysis was to determine what impact, if any, power plants may have on local emergency services. Staff has concluded that incidents at power plants that require fire or EMS response are infrequent and represent an insignificant impact on the local fire departments, except for rare instances where a rural fire department has mostly volunteer fire-fighting staff. However, staff has determined that the potential for both work-related and non-work-related heart attacks exists at power plants. In fact, staff’s research on the frequency of EMS response to gas-fired power plants shows that many of the responses for cardiac emergencies involved non-work-related incidences, including those involving visitors. The need for prompt response within a few minutes is well documented in the medical literature. Staff believes that the quickest medical intervention can only be achieved with the use of an on-site automatic external defibrillator (AED); the response from an off-site provider would take longer regardless of the provider location. This fact is also well documented and serves as the basis for many private and public locations (e.g., airports, factories, government buildings) maintaining on-site cardiac defibrillation devices. Therefore, staff concludes that, with the advent of modern cost-effective cardiac defibrillation devices, it is proper in a power plant environment to maintain such a device on site in order to treat cardiac arrhythmias resulting from industrial accidents or other non-work related causes.

Staff believes that existing Condition of Certification WORKER SAFETY-6, which requires an AED on the site be retained and that certain power plant employees on site during demolition, construction, and operations be trained in its use.

CUMULATIVE IMPACT ANALYSIS

Staff concludes that due to the nature of worker safety and the required adherence by each individual employer to LORS, there is no cumulative impact on worker safety regardless of the number of projects in an area. Therefore, only potential cumulative impacts on fire protection are analyzed.

Staff has analyzed the potential for fire protection cumulative impacts at many other power plant projects located in California and in the region of the proposed ESEC. A significant cumulative fire protection impact is defined as the simultaneous emergency at multiple locations that would require the concurrent response for rescue, fire fighting, hazardous materials spill control, and/or EMS response. Existing locations that would likely need emergency response, or locations where such facilities might likely be built, were both considered.
The Executive Summary section of this document provides detailed information on the potential cumulative projects in the project area (see Table-1, Master List of Cumulative Projects). Staff reviewed 30 projects that were deemed completed, planned, or foreseeable. Staff notes that all of these projects or developments in the area or region already have or will need emergency response and fire protection plan reviews and emergency response services provided by the local fire authority, be it the CESFD or that of another jurisdiction such as the nearby Manhattan Beach Fire Department. The need for rescue, fire, hazardous materials, and EMS response is necessary in this area but not particularly frequent at the current power plant facility. All the projects identified in Table-1, as well as other area power plants that are operating, under construction, or proposed, have had any direct fire protection impacts mitigated to a level of less than significant.

Staff believes that while cumulative impacts are theoretically possible, they are not probable because of the many safeguards implemented to both prevent and control the industrial environment, spills, and fires. The chances of one event at any industrial location requiring a concerted response from the CESFD is high because accidents do happen in industrial environments. However, the chance of two or more occurring simultaneously, with resulting draw-down of fire department resources to the point of endangering this or other communities with lack of fire department coverage, is real but not high. Staff believes the risk of draw-down due to an event at the proposed ESEC is less than significant and thus cumulative impacts are also less than significant impact.

The project owner would develop and implement a fire protection program for the ESEC independent of any other projects considered for potential cumulative impacts. Staff believes that the facility, as proposed by the project owner and with the additional mitigation measures proposed by staff, poses a less than significant risk.

Based upon staff’s experience with power plants around the state and the historical record of seismic events, staff concludes that while it is possible that during a major earthquake response to the power plant could have a cumulative impact on the CESFD, the probability of that happening is less than significant given the many fire detection and suppression systems, as well as shut-off valves and other controls that would exist at the modified ESEC. Staff believes that other industrial, commercial, and residential environments would pose a greater challenge during a major seismic event than the proposed ESEC facility. Therefore, this project would not have a significant incremental direct or cumulative impact on the fire department’s ability to respond to a fire or other emergency and no mitigation is required.

The CESFD has stated in the past that its ability to respond to emergency calls would not be affected by the construction and operation of the existing power plant (CESFD 2001) and staff concludes that this would hold true for the modified ESEC facility. Therefore, staff finds that no mitigation is required.
COMPLIANCE WITH LORS
Staff concludes that demolition, construction, and operation of the ESEC project would be in compliance with all applicable LORS regarding long-term and short-term project impacts in the areas of worker safety and fire protection.

NOTEWORTHY PUBLIC BENEFITS
The demolition, construction, and operation activities proposed for the modified ESEC, requires in general, smaller quantities of hazardous materials and materials that are less dangerous to the public than the previously-licensed natural-gas fired power plant currently operating on the site (such as the discontinued use aqueous hydrazine). Building this modified power plant would supply required energy in California more efficiently using modern fast-start technology while at the same time reduce the risks of fire and hazardous materials spills.

RESPONSE TO COMMENTS
No comments on worker safety or fire protection issues have been received at this time from agencies or the public.

CONCLUSIONS
Staff concludes that existing Conditions of Certifications WORKER SAFETY-1 through WORKER SAFETY-6 are adequate to ensure adequate levels of industrial safety and comply with applicable LORS with only minor amendments to reflect current nomenclature, current Energy Commission practice, and to clarify requirements during demolition activities. (revisions are in strikeout or bold underline)

PROPOSED CONDITIONS OF CERTIFICATION
WORKER SAFETY-1 The project owner shall submit to the Compliance Project Manager (CPM) for approval, a copy of the Project Demolition and Construction Safety and Health Program containing the following:

- A Demolition and Construction Safety Program;
- A Demolition and Construction Personal Protective Equipment Program;
- A Demolition and Construction Exposure Monitoring Program;
- A Demolition and Construction Emergency Action Plan; and

The Safety Program, Personal Protective Equipment Program, the Exposure Monitoring Program, the Heat Stress Protection Plan, and the Injury and Illness Prevention Program shall be submitted to the CPM for review and approval concerning compliance of the program with all applicable safety
orders. The Demolition and Construction Emergency Action Plan and the Fire Prevention Plan shall be submitted to the City of El Segundo Fire Department (CESFD) for review and comment prior to submittal to the CPM for approval.

The Demolition and Construction Fire Protection and Prevention Plan and Emergency Action Plan shall include the following:

1. Methods to maintain fire access roadways and submittal of a fire access layout plan for review by the El Segundo Fire Department and approval by the CPM.
2. Provision of a suitable replacement for the existing fire suppression water reservoir prior to demolishing the existing reservoir.
3. Provision of fire flow calculations to verify that the available water supply proposed will be adequate for emergency operations.
4. A requirement that all temporary fire mains and hydrants shall be adequately braced and tied-down to anticipate the effects of water hammer and that protection from vehicular impact is provided as necessary.

Verification: At least 30 days prior to **commencement of demolition activities or site mobilization for construction, whichever occurs first**, the project owner shall submit to the CPM for review and approval a copy of the Project Demolition and Construction Safety and Health Program. The project owner shall provide a letter from the City of El Segundo Fire Department stating that they have reviewed and commented on the Demolition and Construction Fire Prevention Plan and Emergency Action Plan.

WORKER SAFETY-2 The project owner shall submit to the CPM for approval a copy of the Project Operations and Maintenance Safety and Health Program containing the following:

- An Operation Injury and Illness Prevention Plan;
- An Emergency Action Plan;
- Hazardous Materials Management Program;
- Operations and Maintenance Safety Program;
- Fire Protection and Prevention Program (8 CCR § 3221); and;
- Personal Protective Equipment Program (8 CCR §§ 3401-3411).

The Operation Injury and Illness Prevention Plan, Emergency Action Plan, and Personal Protective Equipment Program shall be submitted to the CPM for review and comment concerning compliance of the programs with all applicable safety orders. The Fire Prevention Plan and the Emergency Action Plan shall also be submitted to the CESFD for review and comment.

The Project Operations Fire Protection and Prevention Plan and Emergency Action Plan shall address:

1. Provision of remote annunciation for all fire alarm and automatic suppression devices and the placement of remote annunciation at the security station on Vista Del Mar.
2. Provision of a complete fire alarm system and automatic fire sprinklers for the new administration building and any new control buildings.

3. A secondary entrance point for Fire Department operations along the northern boundary of the property.

Verification: At least 30 days prior to the start of operation, the project owner shall submit to the CPM and the CESFD a copy of the Project Operations and Maintenance Safety & Health Program.

WORKER SAFETY-3 Before using one of the fuel oil storage tanks as a clean soils storage area, the project owner shall ensure that the integrity of the floor has not been compromised by cracks or holes, the tanks have been thoroughly cleaned, no airborne hydrocarbons are present above the method detection level of a hand-held PID hydrocarbon vapor detector, and that the earth-moving vehicles used are equipped with environmental cabs.

Verification: At least 30 days prior to the start of using the tanks as a storage area, the project owner shall submit to the CPM a report verifying the integrity of the floor, describing the results of the PID monitoring, and a statement that all earth-moving vehicles used are equipped with properly functioning environmental cabs.

WORKER SAFETY-4 The project owner shall provide a site Construction Safety Supervisor (CSS) who, by way of training and/or experience, is knowledgeable of power plant construction activities and relevant laws, ordinances, regulations, and standards, is capable of identifying workplace hazards relating to the construction activities, and has authority to take appropriate action to assure compliance and mitigate hazards. The CSS shall:

- Have over-all authority for coordination and implementation of all occupational safety and health practices, policies, and programs;
- Assure that the safety program for the project complies with Cal/OSHA & federal regulations related to power plant projects;
- Assure that all **demolition**, construction, and commissioning workers and supervisors receive adequate safety training;
- Complete accident and safety-related incident investigations, emergency response reports for injuries, and inform the CPM of safety-related incidents; and
- Assure that all the plans identified in **Worker Safety-1** and **-2** are implemented.

Verification: At least thirty (30) days prior to the commencement of demolition activities or start of project mobilization for construction, whichever occurs first, the project owner shall submit to the CPM the name and contact information for the Construction Safety Supervisor (CSS). The contact information of any replacement (CSS) shall be submitted to the CPM within one business day.
The CSS shall submit in the Monthly Compliance Report a monthly safety inspection report to include:

- Record of all employees trained for that month (all records shall be kept on site for the duration of the project);
- Summary report of safety management actions and safety-related incidents that occurred during the month;
- Report of any continuing or unresolved situations and incidents that may pose danger to life or health; and
- Report of accidents and injuries that occurred during the month.

WORKER SAFETY-5 The project owner shall make payments to the Chief Building Official (CBO) for the services of a Safety Monitor based upon a reasonable fee schedule to be negotiated between the project owner and the CBO. Those services shall be in addition to other work performed by the CBO. The Safety Monitor shall be selected by and report directly to the CBO, and will be responsible for verifying that the Construction Safety Supervisor, as required in *Worker Safety-4*, implements all appropriate Cal/OSHA and Commission safety requirements. The Safety Monitor shall conduct on-site (including linear facilities) safety inspections *during demolition and construction* at intervals necessary to fulfill those responsibilities.

Verification: Prior to the *commencement of demolition activities or start of construction, whichever occurs first*, the project owner shall provide proof of its agreement to fund the Safety Monitor services to the CPM for review and approval.

WORKER SAFETY-6 The project owner shall ensure that a portable automatic cardiac defibrillator (also known as an automatic external defibrillator or AED) is located on site during *demolition, construction, and operations* and shall implement a program to ensure that workers are properly trained in its use and that the equipment is properly maintained and functioning at all times. During *demolition, construction, and commissioning*, the following persons shall be trained in its use and shall be on-site whenever the workers that they supervise are on-site: the Construction Project Manager or delegate, the Construction Safety Supervisor or delegate, and all shift foremen *during demolition and construction activities*. During operations, all power plant employees shall be trained in its use. The training program shall be submitted to the CPM for review and approval.

Verification: At least thirty (30) days prior to the *commencement of demolition activities or start of construction mobilization, whichever occurs first*, the project owner shall submit to the CPM proof that a portable automatic cardiac defibrillator exists on site and a copy of the training and maintenance program for review and approval.
REFERENCES

ENGINEERING
ASSESSMENT
SUMMARY OF CONCLUSIONS

Based on the review of the Petition to Amend (PTA) for the El Segundo Power Facility Modification (ESPFM) project, the California Energy Commission staff concludes that the design, construction, and eventual closure of the project and its linear facilities would likely comply with applicable engineering laws, ordinances, regulations and standards (LORS). The proposed conditions of certification, below, would ensure compliance with these LORS.

INTRODUCTION

Facility design encompasses the civil, structural, mechanical, and electrical engineering design of the last phase of the El Segundo Energy Center (ESEC) project, which is designated ESPFM. The purpose of this analysis is to:

- Verify that the LORS that apply to the engineering design and construction of the project have been identified;
- Verify that both the project and its ancillary facilities are sufficiently described, including proposed design criteria and analysis methods, in order to provide reasonable assurance that the project will be designed and constructed in accordance with all applicable engineering LORS, in a manner that also ensures the public health and safety;
- Determine whether special design features should be considered during final design to address conditions unique to the site which could influence public health and safety; and
- Describe the design review and construction inspection process and establish the conditions of certification used to monitor and ensure compliance with the engineering LORS, in addition to any special design requirements.

Subjects discussed in this analysis include:

- Identification of the engineering LORS that apply to facility design;
- Evaluation of the project owner’s proposed design criteria, including identification of criteria essential to public health and safety; and
- Conditions of Certification proposed by the California Energy Commission (Energy Commission) staff, to ensure that the project will be designed and constructed to ensure public health and safety and comply with all applicable engineering LORS.
LAWS, ORDINANCES, REGULATIONS AND STANDARDS (LORS)

Lists of LORS applicable to each engineering discipline (civil, structural, mechanical, and electrical) are described in the PTA for the ESPFM (NRG 2013a, § 1.10). Key LORS are listed in FACILITY DESIGN Table 1, below:

FACILITY DESIGN Table 1
Key Engineering Laws, Ordinances, Regulations and Standards (LORS)

<table>
<thead>
<tr>
<th>Applicable LORS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td>Title 29 Code of Federal Regulations (CFR), Part 1910, Occupational Safety and Health standards</td>
</tr>
<tr>
<td>State</td>
<td>2013 (or the latest edition in effect) California Building Standards Code (CBSC) (also known as Title 24, California Code of Regulations)</td>
</tr>
<tr>
<td>Local</td>
<td>City of El Segundo regulations and ordinances</td>
</tr>
</tbody>
</table>
| General | American National Standards Institute (ANSI)
| | American Society of Mechanical Engineers (ASME)
| | American Welding Society (AWS)
| | American Society for Testing and Materials (ASTM) |

The following conditions of certification require the project to comply with the California Building Standards Code and City of El Segundo regulations and ordinances to ensure that the project would be built to applicable engineering codes and ensure public health and safety.

For the project to be built in a manner that would ensure public health and safety and operational integrity of project equipment, the LORS listed above in FACILITY DESIGN Table 1 under the “General” heading, must also be met. The LORS listed under this heading are only some of the key engineering standards applicable to the project.

SETTING

On April 23, 2013, El Segundo Energy Center, L.L.C. (ESEC LLC) filed the ESPFM PTA with the Energy Commission. This PTA requests to replace the existing utility boilers, or Units 3 and 4 at the ESEC with one new combined cycle train consisting of one natural gas combustion turbine generator (CTG), one heat recovery steam generator (HRSG) and one steam turbine generator (STG), and two new simple cycle gas turbines. The PTA also proposes the replacement of a once-through seawater cooling system with dry-cooling technology. The new combined cycle is designated Unit 9 for the CTG and Unit 10 for the HRSG and STG. The two simple cycle gas turbines are designated Units 11 and 12.

The ESPFM would be built on the ESEC site, an existing and operating power plant in the city of El Segundo. For more information on the site and its related project description, please see the Project Description section of this document.
ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

The purpose of this analysis is to ensure that the project would be built to applicable engineering codes and ensure public health and safety. This analysis further verifies that applicable engineering LORS have been identified and that the project and its ancillary facilities have been described in adequate detail. It also evaluates the project owner’s proposed design criteria, describes the design review and construction inspection process, and establishes conditions of certification that would monitor and ensure compliance with engineering LORS and any other special design requirements. These conditions allow both the Energy Commission compliance project manager (CPM) and the project owner to adopt a compliance monitoring program that will verify compliance with these LORS.

SITE PREPARATION AND DEVELOPMENT

Staff has evaluated the proposed design criteria for grading, flood protection, erosion control, site drainage, and site access, in addition to the criteria for designing and constructing linear support facilities such as natural gas and electric transmission interconnections. The project owner proposes the use of accepted industry standards (see NRG 2013a, §1.10), for a representative list of applicable industry standards, design practices, and construction methods in preparing and developing the site. Staff concludes that this project, including its linear facilities, would most likely comply with all applicable site preparation LORS. To ensure compliance, staff proposes the conditions of certification listed below and in the Geology and Paleontology section of this document.

MAJOR STRUCTURES, SYSTEMS, AND EQUIPMENT

Major structures, systems, and equipment are structures and their associated components or equipment that are necessary for power production, costly or time consuming to repair or replace, are used for the storage, containment, or handling of hazardous or toxic materials, or could become potential health and safety hazards if not constructed according to applicable engineering LORS.

The ESPFM would be designed and constructed to the 2013 California Building Standards Code (CBSC), also known as Title 24, California Code of Regulations, which encompasses the California Building Code (CBC), California Building Standards Administrative Code, California Electrical Code, California Mechanical Code, California Plumbing Code, California Energy Code, California Fire Code, California Code for Building Conservation, California Reference Standards Code, and other applicable codes and standards in effect when the design and construction of the project actually begin. If the initial designs are submitted to the chief building official (CBO) for review and approval after the update to the 2013 CBSC takes effect, the 2013 CBSC provisions shall be replaced with the updated provisions.

Certain structures in a power plant may be required under the CBC, to undergo dynamic lateral force (structural) analysis; others may be designed using the simpler static analysis procedure. In order to ensure that structures are analyzed according to their appropriate lateral force procedure, staff has included Condition of Certification STRUC-
1, below, which, in part, requires the project CBO’s review and approval of the owner’s proposed lateral force procedures before construction begins.

PROJECT QUALITY PROCEDURES
As with the original ESEC project, staff expects that similar quality assurance and quality control programs will be employed to ensure the project’s systems and components will be designed, fabricated, stored, transported, installed, and tested in accordance with all appropriate power plant technical codes and standards. Compliance with design requirements would be verified through specific inspections and audits. Implementation of these quality assurance and quality control programs would ensure that ESPFM is actually designed, procured, fabricated, and installed as described in this analysis.

COMPLIANCE MONITORING
Under Section 104 of the 2013 CBC, the CBO is authorized and directed to enforce all provisions of the CBC. The Energy Commission itself serves as the building official, and has the responsibility to enforce the code, for all of the energy facilities it certifies. In addition, the Energy Commission has the power to interpret the CBC and adopt and enforce both rules and supplemental regulations that clarify application of the CBC’s provisions.

The Energy Commission’s design review and construction inspection process conforms to CBC requirements and ensures that all Facility Design Conditions of Certification are met. As provided by Section 103 of the 2013 CBC, the Energy Commission appoints experts to perform design review and construction inspections and act as delegate CBOs on behalf of the Energy Commission. These delegates may include the local building official and/or independent consultants hired to provide technical expertise that is not provided by the local official alone. The project owner, through permit fees provided by the CBC, pays the cost of these reviews and inspections. While building permits in addition to Energy Commission certification are not required for this project, the project owner pays in lieu of CBC permit fees to cover the costs of these reviews and inspections.

Engineering and compliance staff will invite the City of El Segundo or a third-party engineering consultant to act as CBO for this project. When an entity has been assigned CBO duties, Energy Commission staff will complete a memorandum of understanding (MOU) with that entity to outline both its roles and responsibilities and those of its subcontractors and delegates.

Staff has adopted the conditions of certification included in the original Energy Commission Decision for the ESEC (CEC 2005) to ensure protection of public health and safety and compliance with engineering design LORS. Some of these conditions address the roles, responsibilities, and qualifications of the engineers who would design and build the proposed project (Facility Design Conditions of Certification GEN-1 through GEN-8). These engineers must be registered in California and sign and stamp every submittal of design plans, calculations, and specifications submitted to the CBO. These conditions require that every element of the project’s construction (subject to
CBO review and approval) be approved by the CBO before it is performed. They also require that qualified special inspectors perform or oversee special inspections required by all applicable LORS.

While the Energy Commission and delegate CBO have the authority to allow some flexibility in scheduling construction activities, these conditions are written so that no element of construction (of permanent facilities subject to CBO review and approval) which could be difficult to reverse or correct can proceed without prior CBO approval. Elements of construction that are not difficult to reverse may proceed without approval of the plans. The project owner bears the responsibility to fully modify construction elements in order to comply with all design changes resulting from the CBO’s subsequent plan review and approval process.

FACILITY CLOSURE AND NON-OPERATION

Facility closure is defined in the Compliance Conditions and Compliance Monitoring Plan section of this document, as a facility shutdown with no intent to restart operation. It may also be the cumulative result of unsuccessful efforts to re-start over an increasingly lengthy period of non-operation, condemned by inadequate means and/or lack of a viable plan. Facility closures can occur due to a variety of factors, including, but not limited to, irreparable damage and/or functional or economic obsolescence.

Non-operation is defined in the Compliance Conditions and Compliance Monitoring Plan section as a time-limited event, and can encompass part, or all, of a facility. Non-operation can be a planned event, usually for minor equipment maintenance or repair, or unplanned, usually the result of unanticipated events or emergencies. Future conditions that could affect facility closure and non-operation are largely unknown at this time.

In order to ensure that facility closure and non-operation would be completed in a manner that is environmentally sound, safe, and protects the public health and safety, the project owner must submit a closure plan to the Energy Commission for review and approval prior to the commencement of closing the facility, as required in Condition of Certification COM-14 (Non-Operation) and COM-15 (Facility Closure Planning) in the Compliance Conditions and Compliance Monitoring Plan section of this document.

The requirements in the Compliance Conditions and Compliance Monitoring Plan section of this document, are adequate protection, even in the unlikely event of project abandonment.

CONCLUSIONS AND RECOMMENDATIONS

1. The LORS identified in the PTA and supporting documents directly apply to the project.
2. Staff has evaluated the proposed engineering LORS, design criteria, and design methods in the record, and concludes that the design, construction, and eventual closure of the project will likely comply with applicable engineering LORS.

3. The existing conditions of certification will ensure the ESPFM is designed and constructed in accordance with applicable engineering LORS. This will be accomplished through design review, plan checking, and field inspections that will be performed by the CBO or other Energy Commission delegate. Staff will audit the CBO to ensure satisfactory performance.

4. Though future conditions that could affect facility closure and non-operation are largely unknown at this time, it can reasonably be concluded that if the project owner complies with Condition of Certification COM-14 (Non-Operation) and submits a facility closure plan as required by Condition of Certification COM-15, as provided in the Compliance Conditions and Compliance Monitoring Plan section of this document prior to decommissioning, decommissioning procedures will comply with all applicable engineering LORS.

Energy Commission staff recommends that:

1. The following conditions of certification be adopted to ensure that the project is designed and constructed in a manner that protects the public health and safety and complies with all applicable engineering LORS;

2. The project be designed and built to the 2013 CBSC (or successor standards, if in effect when initial project engineering designs are submitted to the CBO for review); and

3. The CBO reviews the final designs, checks plans, and performs field inspections during construction. Energy Commission staff shall audit and monitor the CBO to ensure satisfactory performance.

CONDITIONS OF CERTIFICATION

Following are the existing conditions of certification applicable to the ESPFM with the following revisions. The compliance requirements for facility design designated Conditions of Certification GEN-1 through GEN-8, CIVIL-1 through CIVIL-4, STRUC-1 through STRUC-4, MECH-1 through MECH-3, and ELEC-1 have been revised accordingly. These revisions include:

- Updating the applicable version and section references of the California Building Standards Code.
- Updating Condition of Certification GEN-2 to reflect the equipment proposed for the new Units 9 through 12 as specified in GEN-2, Table 1: Major Structures and Equipment List.
- The building code requires that the minimum electrical load for electrical equipment and systems requiring CBO review and inspection is 120 volts, not 480 volts.
The added text is identified as **bold** and *underlined*, and the deleted text is identified as *strikethrough*.

GEN-1 The project owner shall design, construct and inspect the project in accordance with the 2013 edition of the California Building Standards Code (CBSC) (also known as Title 24, California Code of Regulations), which encompasses the California Building Code (CBC), California Building Standards Administrative Code, California Electrical Code, California Mechanical Code, California Plumbing Code, California Energy Code, California Fire Code, California Code for Building Conservation, California Reference Standards Code, and all other applicable LORS in effect at the time initial design plans are submitted to the CBO for review and approval. (The CBSC in effect is that edition that has been adopted by the California Building Standards Commission and published at least 180 days previously.) All transmission facilities (lines, switchyards, switching stations, and substations) are covered by the Transmission System Engineering Conditions of Certification.

In the event that the initial engineering designs are submitted to the CBO when a successor to the 2013 CBSC is in effect, the 2013 CBSC provisions identified herein shall be replaced with the applicable successor provisions. Where, in any specific case, different sections of the code specify different materials, methods of construction, or other requirements, the most restrictive shall govern. Where there is a conflict between a general requirement and a specific requirement, the specific requirement shall govern.

Verification: Within 30 days after receipt of the Certificate of Occupancy, the project owner shall submit to the California Energy Commission Compliance Project Manager (CPM) a statement of verification, signed by the responsible design engineer, attesting that all designs, construction, installation and inspection requirements of the applicable LORS and the Energy Commission Decision have been met in the area of facility design. The project owner shall provide the CPM a copy of the Certificate of Occupancy within 30 days of receipt from the CBO [2013 CBC, Section 409.111 – Certificate of Occupancy].

GEN-2 Prior to submittal of the initial engineering designs for CBO review, the project owner shall furnish to the CPM and to the CBO a schedule of facility design submittals, a Master Drawing List, and a Master Specifications List. The schedule shall contain a list of proposed submittal packages of designs, calculations, and specifications for major structures and equipment. To facilitate audits by Energy Commission staff, the project owner shall provide specific packages to the CPM when requested.

Verification: At least 60 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of rough grading, the project owner shall submit to the CBO and to the CPM the schedule, the Master Drawing List, and the
Master Specifications List of documents to be submitted to the CBO for review and approval. These documents shall be the pertinent design documents for the major structures and equipment listed in Table 1 below. Major structures and equipment shall be added to or deleted from the table only with CPM approval. The project owner shall provide schedule updates in the Monthly Compliance Report.

Table 1: Major Structures and Equipment List

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Turbine Enclosure</td>
<td>2</td>
</tr>
<tr>
<td>Gas Turbine Inlet Filter</td>
<td>2</td>
</tr>
<tr>
<td>Electrical Package</td>
<td>2</td>
</tr>
<tr>
<td>Lube Oil Cooler</td>
<td>2</td>
</tr>
<tr>
<td>Rotor Air Cooler (Fin-Fan)</td>
<td>2</td>
</tr>
<tr>
<td>Heat Recovery Steam Generator</td>
<td>2</td>
</tr>
<tr>
<td>HRSG Stack</td>
<td>2</td>
</tr>
<tr>
<td>Boiler Blow Down</td>
<td>2</td>
</tr>
<tr>
<td>Boiler Feedwater Pumps</td>
<td>2</td>
</tr>
<tr>
<td>Sampling Panel</td>
<td>2</td>
</tr>
<tr>
<td>Continuous Emissions Monitoring</td>
<td>2</td>
</tr>
<tr>
<td>SCR Skid</td>
<td>2</td>
</tr>
<tr>
<td>MV Switchgear</td>
<td>2</td>
</tr>
<tr>
<td>Generator Circuit Breaker</td>
<td>2</td>
</tr>
<tr>
<td>Auxiliary Transformer</td>
<td>2</td>
</tr>
<tr>
<td>Generator Transformer – Gas Turbine</td>
<td>2</td>
</tr>
<tr>
<td>Generator Transformer – Steam Turbine</td>
<td>2</td>
</tr>
<tr>
<td>Oil/Water Separator</td>
<td>2</td>
</tr>
<tr>
<td>Steam Turbine PCC</td>
<td>2</td>
</tr>
<tr>
<td>Gland Steam Condensers</td>
<td>2</td>
</tr>
<tr>
<td>Steam Turbine</td>
<td>2</td>
</tr>
<tr>
<td>ST Lube Oil Cooler</td>
<td>2</td>
</tr>
<tr>
<td>Steam Turbine Fin Fan Cooler</td>
<td>2</td>
</tr>
<tr>
<td>Condensate Polishing Fin Fan Cooler</td>
<td>2</td>
</tr>
<tr>
<td>Air Compressor Area</td>
<td>2</td>
</tr>
<tr>
<td>Balance of Plant PCC</td>
<td>2</td>
</tr>
<tr>
<td>Chemical Dosing Equipment</td>
<td>2</td>
</tr>
<tr>
<td>Deaerator / Drain Tanks / Condensate Pumps</td>
<td>2</td>
</tr>
<tr>
<td>Fuel Gas Conditioning/metering</td>
<td>4</td>
</tr>
<tr>
<td>Fuel Gas Compressors</td>
<td>2</td>
</tr>
<tr>
<td>Raw Water Water Tank</td>
<td>1</td>
</tr>
<tr>
<td>Demineralized Water Tank</td>
<td>1</td>
</tr>
<tr>
<td>Raw Water Forwarding Pumps</td>
<td>2</td>
</tr>
<tr>
<td>Electric Fire Water Pumps</td>
<td>4</td>
</tr>
<tr>
<td>Demineralized Water Forwarding Pumps</td>
<td>2</td>
</tr>
<tr>
<td>Fire Water Tank</td>
<td>4</td>
</tr>
</tbody>
</table>
The project owner shall make payments to the CBO for design review, plan check and construction inspection based upon a reasonable fee schedule to be negotiated between the project owner and the CBO. These fees may be consistent with the fees listed in the 2013 CBC [Chapter 1, Section 109h-107 and Table 1-A, Building Permit Fees; Appendix Chapter 33, Section 3310 and Table A-33-A, Grading Plan Review Fees; and Table A-33-B, Grading Permit Fees], adjusted for inflation and other appropriate adjustments; may be based on the value of the facilities reviewed; may be based on hourly rates; or may be as otherwise agreed by the project owner and the CBO.

Verification: The project owner shall make the required payments to the CBO in accordance with the agreement between the project owner and the CBO. The project owner shall send a copy of the CBO's receipt of payment to the CPM in the next Monthly Compliance Report indicating that the applicable fees have been paid.
GEN-4 Prior to the start of rough grading, the project owner shall assign a California registered architect, structural engineer or civil engineer, as a resident engineer (RE), to be in general responsible charge of the project [Building Standards Administrative Code (California Code of Regulations, title 24, § 4-209, Designation of Responsibilities).] All transmission facilities (lines, switchyards, switching stations, and substations) are covered by the Transmission System Engineering Conditions of Certification.

The RE may delegate responsibility for portions of the project to other registered engineers. Registered mechanical and electrical engineers may be delegated responsibility for mechanical and electrical portions of the project respectively. A project may be divided into parts, provided each part is clearly defined as a distinct unit. Separate assignment of general responsible charge may be made for each designated part.

The RE shall:

1. Monitor construction progress of work requiring CBO design review and inspection to ensure compliance with LORS;

2. Ensure that construction of all the facilities subject to CBO design review and inspection conforms in every material respect to the applicable LORS, these Conditions of Certification, approved plans, and specifications;

3. Prepare documents to initiate changes in the approved drawings and specifications when directed by the project owner or as required by conditions on the project;

4. Be responsible for providing the project inspectors and testing agency(ies) with complete and up-to-date set(s) of stamped drawings, plans, specifications and any other required documents;

5. Be responsible for the timely submittal of construction progress reports to the CBO from the project inspectors, the contractor, and other engineers who have been delegated responsibility for portions of the project; and

6. Be responsible for notifying the CBO of corrective action or the disposition of items noted on laboratory reports or other tests as not conforming to the approved plans and specifications.

The RE shall have the authority to halt construction and to require changes or remedial work, if the work does not conform to applicable requirements.

If the RE or the delegated engineers are reassigned or replaced, the project owner shall submit the name, qualifications and registration number of the newly assigned engineer to the CBO for review and approval. The project owner shall notify the CPM of the CBO’s approval of the new engineer.

Verification: At least 30 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of rough grading, the project owner shall submit to the CBO for review and approval, the name, qualifications and registration number of the RE and any other delegated engineers assigned to the project. The
project owner shall notify the CPM of the CBO's approvals of the RE and other delegated engineer(s) within five days of the approval.

If the RE or the delegated engineer(s) are subsequently reassigned or replaced, the project owner has five days in which to submit the name, qualifications, and registration number of the newly assigned engineer to the CBO for review and approval. The project owner shall notify the CPM of the CBO's approval of the new engineer within five days of the approval.

GEN-5 Prior to the start of rough grading, the project owner shall assign at least one of each of the following California registered engineers to the project: A) a civil engineer; B) a geotechnical engineer or a civil engineer experienced and knowledgeable in the practice of soils engineering; C) a design engineer, who is either a structural engineer or a civil engineer fully competent and proficient in the design of power plant structures and equipment supports; D) a mechanical engineer; and E) an electrical engineer. [California Business and Professions Code Section 6704 et seq., and Sections 6730 and 6736 requires state registration to practice as a civil engineer or structural engineer in California.] All transmission facilities (lines, switchyards, switching stations, and substations) are covered by the Transmission System Engineering Conditions of Certification.

The tasks performed by the civil, mechanical, electrical or design engineers may be divided between two or more engineers, as long as each engineer is responsible for a particular segment of the project (e.g., proposed earthwork, civil structures, power plant structures, equipment support). No segment of the project shall have more than one responsible engineer. The transmission line may be the responsibility of a separate California registered electrical engineer.

The project owner shall submit to the CBO for review and approval, the names, qualifications and registration numbers of all responsible engineers assigned to the project [2013 CBC, Section 104.104.2, Powers and Duties of Building Official].

If any one of the designated responsible engineers is subsequently reassigned or replaced, the project owner shall submit the name, qualifications and registration number of the newly assigned responsible engineer to the CBO for review and approval. The project owner shall notify the CPM of the CBO's approval of the new engineer.

A: The civil engineer shall:

1. Design, or be responsible for design, stamp, and sign all plans, calculations, and specifications for proposed site work, civil works, and related facilities requiring design review and inspection by the CBO. At a minimum, these include: grading, site preparation, excavation, compaction, construction of secondary containment, foundations, erosion and sedimentation control structures, drainage facilities,
underground utilities, culverts, site access roads, and sanitary sewer systems; and

2. Provide consultation to the RE during the construction phase of the project, and recommend changes in the design of the civil works facilities and changes in the construction procedures.

B: The geotechnical engineer or civil engineer, experienced and knowledgeable in the practice of soils engineering, shall:

1. Review all the engineering geology reports, and prepare final soils grading report;

2. Prepare the soils engineering reports required by the 2013 CBC, Appendix Chapter 18, Section 1803.3309.5 – Soils Engineering Report and Section 3309.6 – Engineering Geology Report;

3. Be present, as required, during site grading and earthwork to provide consultation and monitor compliance with the requirements set forth in the 2013 CBC, Appendix Chapter 17, Section 1704.3317 Special Inspection, Grading Inspections;

4. Recommend field changes to the civil engineer and RE;

5. Review the geotechnical report, field exploration report, laboratory tests, and engineering analyses detailing the nature and extent of the site soils that may be susceptible to liquefaction, rapid settlement or collapse when saturated under load; and

6. Prepare reports on foundation investigation to comply with the 2013 CBC, Chapter 18, Section 1803.6.04, Reporting Foundation Investigations.

This engineer shall be authorized to halt earthwork and to require changes; if site conditions are unsafe or do not conform with predicted conditions used as a basis for design of earthwork or foundations [2013 CBC, Section 104.2.4, Stop Orders].

C: The design engineer shall:

1. Be directly responsible for the design of the proposed structures and equipment supports;

2. Provide consultation to the RE during design and construction of the project;

3. Monitor construction progress to ensure compliance with LORS;

4. Evaluate and recommend necessary changes in design; and

5. Prepare and sign all major building plans, specifications and calculations.

D: The mechanical engineer shall be responsible for, and sign and stamp a statement with, each mechanical submittal to the CBO, stating that the proposed final design plans, specifications, and calculations conform to all
the mechanical engineering design requirements set forth in the Energy Commission Decision.

E: The electrical engineer shall:
1. Be responsible for the electrical design of the project; and
2. Sign and stamp electrical design drawings, plans, specifications, and calculations.

Verification: At least 30 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of rough grading, the project owner shall submit to the CBO for review and approval, the names, qualifications and registration numbers of all the responsible engineers assigned to the project. The project owner shall notify the CPM of the CBO's approvals of the engineers within five days of the approval.

If the designated responsible engineer is subsequently reassigned or replaced, the project owner has five days in which to submit the name, qualifications, and registration number of the newly assigned engineer to the CBO for review and approval. The project owner shall notify the CPM of the CBO's approval of the new engineer within five days of the approval.

GEN-6 Prior to the start of an activity requiring special inspection, the project owner shall assign to the project, qualified and certified special inspector(s) who shall be responsible for the special inspections required by the 2013 CBC, Chapter 17, Section 1701, Special Inspections, Section, 1701.5 Type of Work (requiring special inspection), and Section 110406.3.5, Structural Tests and Special Inspections, Inspection and observation program. All transmission facilities (lines, switchyards, switching stations, and substations) are covered by the Transmission System Engineering Conditions of Certification.

The special inspector shall:
1. Be a qualified person who shall demonstrate competence, to the satisfaction of the CBO, for inspection of the particular type of construction requiring special or continuous inspection;
2. Observe the work assigned for conformance with the approved design drawings and specifications;
3. Furnish inspection reports to the CBO and RE. All discrepancies shall be brought to the immediate attention of the RE for correction, then, if uncorrected, to the CBO and the CPM for corrective action; and 4. Submit a final signed report to the RE, CBO, and CPM, stating whether the work requiring special inspection was, to the best of the inspector's knowledge, in conformance with the approved plans and specifications and the applicable provisions of the applicable edition of the CBC.

A certified weld inspector, certified by the American Welding Society (AWS), and/or American Society of Mechanical Engineers (ASME) as applicable, shall
inspect welding performed on-site requiring special inspection (including structural, piping, tanks and pressure vessels).

Verification: At least 15 days prior to the start of an activity requiring special inspection, the project owner shall submit to the CBO for review and approval, with a copy to the CPM, the name(s) and qualifications of the certified weld inspector(s), or other certified special inspector(s) assigned to the project to perform one or more of the duties set forth above. The project owner shall also submit to the CPM a copy of the CBO's approval of the qualifications of all special inspectors in the next Monthly Compliance Report.

If the special inspector is subsequently reassigned or replaced, the project owner has five days in which to submit the name and qualifications of the newly assigned special inspector to the CBO for approval. The project owner shall notify the CPM of the CBO's approval of the newly assigned inspector within five days of the approval.

GEN-7 The project owner shall keep the CBO informed regarding the status of engineering and construction. If any discrepancy in design and/or construction is discovered in any work that has undergone CBO design review and approval, the project owner shall document the discrepancy and recommend the corrective action required. The discrepancy documentation shall be submitted to the CBO for review and approval. The discrepancy documentation shall reference this Condition of Certification and, if appropriate, the applicable sections of the CBC and/or other LORS.

Verification: The project owner shall transmit a copy of the CBO's approval of any corrective action taken to resolve a discrepancy to the CPM in the next Monthly Compliance Report. If any corrective action is disapproved, the project owner shall advise the CPM, within five days, of the reason for disapproval, and the revised corrective action to obtain CBO's approval.

GEN-8 The project owner shall obtain the CBO's final approval of all completed work that has undergone CBO design review and approval. The project owner shall request the CBO to inspect the completed structure and review the submitted documents. When the work and the "as-built" and "as graded" plans conform to the approved final plans, the project owner shall notify the CPM regarding the CBO's final approval. The marked up "as-built" drawings for the construction of structural and architectural work shall be submitted to the CBO. Changes approved by the CBO shall be identified on the "as-built" drawings [2013 CBC, Section 110.408, Inspections]. The project owner shall retain one set of approved engineering plans, specifications and calculations at the project site or at another accessible location during the operating life of the project [2013 CBC, Section 107.5106.4-2, Retention of Plans].

Verification: Within 15 days of the completion of any work, the project owner shall submit to the CBO, with a copy to the CPM in the next Monthly Compliance Report, (a) a written notice that the completed work is ready for final inspection, and (b) a signed statement that the work conforms to the final approved plans. After storing final
approved engineering plans, specifications and calculations as described above, the
project owner shall submit to the CPM a letter stating that the above documents have
been stored and indicate the storage location of such documents.

CIVIL-1 Prior to the start of site grading, the project owner shall submit to the CBO for
review and approval the following:

1. Design of the proposed drainage structures and the grading plan;
2. An erosion and sedimentation control plan;
3. Related calculations and specifications, signed and stamped by the
 responsible civil engineer; and
4. Soils report as required by the [2013 CBC][1803.6. Reporting Soils Engineering Report] and Section

Verification: At least 15 days prior to the start of site grading (or a lesser number of
days mutually agreed to by the project owner and the CBO), the project owner shall
submit the documents described above to the CBO for design review and approval. In
the next Monthly Compliance Report following the CBO's approval, the project owner
shall submit a written statement certifying that the documents have been approved by
the CBO.

CIVIL-2 The resident engineer shall, if appropriate, stop all earthworks and
construction in the affected areas when the responsible geotechnical engineer
or civil engineer experienced and knowledgeable in the practice of soils
engineering identifies unforeseen adverse soil or geologic conditions. The
project owner shall submit modified plans, specifications and calculations to
the CBO based on these new conditions. The project owner shall obtain
approval from the CBO before resuming earthwork and construction in the
affected area [2013 CBC, Section 115.404.2.4, Stop orders].

Verification: The project owner shall notify the CPM, within five days, when earthwork
and construction is stopped as a result of unforeseen adverse geologic/soil conditions.
Within five days of the CBO's approval to resume earthwork and construction in the
affected areas, the project owner shall provide to the CPM a copy of the CBO's
approval.

CIVIL-3 The project owner shall perform inspections in accordance with the [2013 CBC][110.108, Inspections; Chapter 17, Section
1704-1704.6, Continuous and Periodic Special Inspection; and Appendix
Chapter 33, Section 3317, Grading Inspection]. All plant site-grading operations
for which a grading permit is required shall be subject to inspection by the
CBO. If, in the course of inspection, it is discovered that the work is not being
performed in accordance with the approved plans, the discrepancies shall be
reported immediately to the resident engineer, the CBO, and the CPM. The
project owner shall prepare a written report detailing all discrepancies and
noncompliance items, and the proposed corrective action, and send copies to the CBO and the CPM.

Verification: Within five days of the discovery of any discrepancies, the resident engineer shall transmit to the CBO and the CPM a Non-Conformance Report (NCR), and the proposed corrective action. Within five days of resolution of the NCR, the project owner shall submit the details of the corrective action to the CBO and the CPM. A list of NCRs, for the reporting month, shall also be included in the following Monthly Compliance Report.

CIVIL-4 After completion of finished grading and erosion and sedimentation control and drainage facilities, the project owner shall obtain the CBO's approval of the final "as-graded" grading plans, and final "as-built" plans for the erosion and sedimentation control facilities [2013 CBC, Section 111409, Certificate of Occupancy].

Verification: Within 30 days of the completion of the erosion and sediment control mitigation and drainage facilities, the project owner shall submit to the CBO the responsible civil engineer's signed statement that the installation of the facilities and all erosion control measures were completed in accordance with the final approved combined grading plans, and that the facilities are adequate for their intended purposes. The project owner shall submit a copy of this report to the CPM in the next Monthly Compliance Report.

STRUC-1 Prior to the start of any increment of construction of any major structure or component listed in Table 1 of Condition of Certification **GEN-2**, above, the project owner shall submit to the CBO for design review and approval the proposed lateral force procedures for project structures and the applicable designs, plans and drawings for project structures. Proposed lateral force procedures, designs, plans and drawings shall be those for the following items (from Table 1, above):

1. Major project structures;
2. Major foundations, equipment supports and anchorage;
3. Large field fabricated tanks;
4. Turbine/generator pedestal; and
5. Switchyard structures.

Construction of any structure or component shall not commence until the CBO has approved the lateral force procedures to be employed in designing that structure or component.

The project owner shall:

1. Obtain approval from the CBO of lateral force procedures proposed for project structures;
2. Obtain approval from the CBO for the final design plans, specifications, calculations, soils reports, and applicable quality control procedures. If
there are conflicting requirements, the more stringent shall govern (i.e., highest loads, or lowest allowable stresses shall govern). All plans, calculations, and specifications for foundations that support structures shall be filed concurrently with the structure plans, calculations, and specifications \[2013\textcopyright 1998\ CBC, Section 104.1-108.4, Duties and Powers of Building Official Approval Required\];

3. Submit to the CBO the required number of copies of the structural plans, specifications, calculations, and other required documents of the designated major structures at least 60 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of on-site fabrication and installation of each structure, equipment support, or foundation \[2013\textcopyright 1998\ CBC, Section 107.5-106.4.2, Retention of plans and Section 107.4-106.3.2, Submittal documents\]; and

4. Ensure that the final plans, calculations, and specifications clearly reflect the inclusion of approved criteria, assumptions, and methods used to develop the design. The final designs, plans, calculations and specifications shall be signed and stamped by the responsible design engineer \[2013\textcopyright 1998\ CBC, Section 107.3.4-106.3.4, Design Professionals in Responsible Charge Architect or Engineer of Record\].

Verification: At least 30 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of any increment of construction of any structure or component listed in Condition of Certification GEN-2, above, the project owner shall submit to the CBO, with a copy to the CPM, the responsible design engineer's signed statement that the final design plans, specifications and calculations conform with all of the requirements set forth in the Energy Commission Decision. If the CBO discovers non-conformance with the stated requirements, the project owner shall correct and resubmit the plans to the CBO within 20 days of receipt of the nonconforming submittal with a copy of the transmittal letter to the CPM. The project owner shall submit to the CPM a copy of a statement from the CBO that the proposed structural plans, specifications, and calculations have been approved and are in conformance with the requirements set forth in the applicable LORS.

STRUC-2 The project owner shall submit to the CBO the required number of sets of the following documents related to work that has undergone CBO design review and approval:

1. Concrete cylinder strength test reports (including date of testing, date sample taken, design concrete strength, tested cylinder strength, age of test, type and size of sample, location and quantity of concrete placement from which sample was taken, and mix design designation and parameters);

2. Concrete pour sign-off sheets;

3. Bolt torque inspection reports (including location of test, date, bolt size, and recorded torques);
4. Field weld inspection reports (including type of weld, location of weld, inspection of non-destructive testing procedure and results, welder qualifications, certifications, qualified procedure description or number); and

5. Reports covering other structural activities requiring special inspections shall be in accordance with the 2013 CBC, Chapter 17, Section 1704-1704, Special Inspections, Section 1705-1704-5, Required Verification and Inspection Type of Work (requiring special inspection), Section 1702, Structural Observation and Section 1704.5 1703, Nondestructive Testing.

Verification: If a discrepancy is discovered in any of the above data, the project owner shall, within five days, prepare and submit an NCR describing the nature of the discrepancies to the CBO, with a copy of the transmittal letter to the CPM. The NCR shall reference the Condition(s) of Certification and the applicable CBC chapter and section. Within five days of resolution of the NCR, the project owner shall submit a copy of the corrective action to the CBO and the CPM. The project owner shall transmit a copy of the CBO's approval or disapproval of the corrective action to the CPM within 15 days. If disapproved, the project owner shall advise the CPM, within five days, the reason for disapproval, and the revised corrective action to obtain the CBO's approval.

STRUC-3 The project owner shall submit to the CBO design changes to the final plans required by the 2013 CBC, Chapter 1, Section 107 106.3.2, Submittal documents, and Section 106.3.3, Information on plans and specifications, including the revised drawings, specifications, calculations, and a complete description of, and supporting rationale for, the proposed changes, and shall give the CBO prior notice of the intended filing.

Verification: On a schedule suitable to the CBO, the project owner shall notify the CBO of the intended filing of design changes, and shall submit the required number of sets of revised drawings and the required number of copies of the other abovementioned documents to the CBO, with a copy of the transmittal letter to the CPM. The project owner shall notify the CPM, via the Monthly Compliance Report, when the CBO has approved the revised plans.

STRUC-4 Tanks and vessels containing quantities of toxic or hazardous materials exceeding amounts specified in Chapter 3, Table 3-E of the 2013 CBC shall, at a minimum, be designed to comply with H-2 Occupancy Category 2 of the 2013 CBC.

Verification: At least 30 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of installation of the tanks or vessels containing the above specified quantities of toxic or hazardous materials, the project owner shall submit to the CBO for design review and approval final design plans, specifications, and calculations, including a copy of the signed and stamped engineer’s certification.
The project owner shall send copies of the CBO approvals of plan checks to the CPM in the following Monthly Compliance Report. The project owner shall also transmit a copy of the CBO’s inspection approvals to the CPM in the Monthly Compliance Report following completion of any inspection.

MECH-1 Prior to the start of any increment of major piping or plumbing construction, the project owner shall submit, for CBO design review and approval, the proposed final design, specifications and calculations for each plant major piping and plumbing systems listed in the **Table 1**, Condition of Certification GEN 2, above.

Physical layout drawings and drawings not related to code compliance and life safety need not be submitted. The submittal shall also include the applicable **quality assurance and quality control** QA/QC procedures. Upon completion of construction of any such major piping or plumbing system, the project owner shall request the CBO’s inspection approval of said construction [2013 1998 CBC, Section 107.3.2, Submittal Documents, Section 108.3, Inspection Requests, Section 110.3.4, Approval Required; 2013 1998 California Plumbing Code, Section 103.1.4, Inspection Request, Section 103.0.304.1.4, Approval].

The responsible mechanical engineer shall stamp and sign all plans, drawings and calculations for the major piping and plumbing systems subject to the CBO design review and approval, and submit a signed statement to the CBO when the said proposed piping and plumbing systems have been designed, fabricated and installed in accordance with all of the applicable laws, ordinances, regulations and industry standards [Section 107.3.4, Design Professional in Responsible Charge, Architect or Engineer of Record], which may include, but not be limited to:

- American National Standards Institute (ANSI) B31.1-2010 (Power Piping Code);
- ANSI B31.2 (Fuel Gas Piping Code);
- ANSI B31.3-2010 (Chemical Plant and Petroleum Refinery Piping Code);
- ANSI B31.8 (Gas Transmission and Distribution Piping Code);
- Title 24, California Code of Regulations, Part 5 (California Plumbing Code);
- Title 24, California Code of Regulations, Part 6 (California Energy Code, for building energy conservation systems and temperature control and ventilation systems);
- Title 24, California Code of Regulations, Part 2 (California Building Code);
- and Specific City/County code. Codes and ordinances as adopted by the City of El Segundo.

The CBO may deputize inspectors to carry out the functions of the code enforcement agency [2013 CBC, Section 1003.104.2.2, Deputies].

Verification: At least 30 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of any increment of major piping or plumbing construction listed in Table 1, Condition of Certification GEN-2 above, the project owner shall submit to the CBO for design review and approval the final plans, specifications and calculations, including a copy of the signed and stamped statement from the responsible mechanical engineer certifying compliance with the applicable LORS, and shall send the CPM a copy of the transmittal letter in the next Monthly Compliance Report.

The project owner shall transmit to the CPM, in the Monthly Compliance Report following completion of any inspection, a copy of the transmittal letter conveying the CBO's inspection approvals.

MECH-2 For all pressure vessels installed in the plant, the project owner shall submit to the CBO and California Occupational Safety and Health Administration (Cal-OSHA), prior to operation, the code certification papers and other documents required by the applicable LORS. Upon completion of the installation of any pressure vessel, the project owner shall request the appropriate CBO and/or Cal-OSHA inspection of said installation [2013 CBC, Section 115.4.108.3 – Inspection Requests].

The project owner shall:

1. Ensure that all boilers and fired and unfired pressure vessels are designed, fabricated and installed in accordance with the appropriate section of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, or other applicable code. Vendor certification, with identification of applicable code, shall be submitted for prefabricated vessels and tanks; and

2. Have the responsible design engineer submit a statement to the CBO that the proposed final design plans, specifications and calculations conform to all of the requirements set forth in the appropriate ASME Boiler and Pressure Vessel Code or other applicable codes.

Verification: At least 30 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of on-site fabrication or installation of any pressure vessel, the project owner shall submit to the CBO for design review and approval, the above listed documents, including a copy of the signed and stamped engineer's certification, with a copy of the transmittal letter to the CPM.
The project owner shall transmit to the CPM, in the Monthly Compliance Report following completion of any inspection, a copy of the transmittal letter conveying the CBO's and/or Cal-OSHA inspection approvals.

MECH-3 Prior to the start of construction of any heating, ventilating, air conditioning (HVAC) or refrigeration system, the project owner shall submit to the CBO for design review and approval the design plans, specifications, calculations and quality control procedures for that system. Packaged HVAC systems, where used, shall be identified with the appropriate manufacturer's data sheets.

The project owner shall design and install all HVAC and refrigeration systems within buildings and related structures in accordance with the CBC and other applicable codes. Upon completion of any increment of construction, the project owner shall request the CBO's inspection and approval of said construction. The final plans, specifications and calculations shall include approved criteria, assumptions and methods used to develop the design. In addition, the responsible mechanical engineer shall sign and stamp all plans, drawings and calculations and submit a signed statement to the CBO that the proposed final design plans, specifications and calculations conform with the applicable LORS [2013 CBC, Section 110.3.8, Other Inspections; Section 107.3.4, Design Professional in Responsible Charge Architect or Engineer of Record].

Verification: At least 30 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of construction of any HVAC or refrigeration system, the project owner shall submit to the CBO the required HVAC and refrigeration calculations, plans and specifications, including a copy of the signed and stamped statement from the responsible mechanical engineer certifying compliance with the CBC and other applicable codes, with a copy of the transmittal letter to the CPM.

ELEC-1 Prior to the start of any increment of electrical construction for electrical equipment and systems 120-480 volts and higher, listed below, with the exception of underground duct work and any physical layout drawings and drawings not related to code compliance and life safety, the project owner shall submit, for CBO design review and approval, the proposed final design, specifications and calculations [CBC 2013, Section 107.406.3.2, Submittal documents]. Upon approval, the above listed plans, together with design changes and design change notices, shall remain on the site or at another accessible location for the operating life of the project. The project owner shall request that the CBO inspect the installation to ensure compliance with the requirements of applicable LORS [2013 CBC, Section 110.3408.4, Approval Required, and Section 110.5408.3, Inspection Requests]. All transmission facilities (lines, switchyards, switching stations, and substations) are handled in Conditions of Certification in the Transmission System Engineering section of this document.
A. Final plant design plans to include:
 1. one-line diagrams for the 13.8 kV, 4.16 kV and 120/480 V systems; and
 2. system grounding drawings.

B. Final plant calculations to establish:
 1. short-circuit ratings of plant equipment;
 2. ampacity of feeder cables;
 3. voltage drop in feeder cables;
 4. system grounding requirements;
 5. coordination study calculations for fuses, circuit breakers and protective relay settings for the 13.8 kV, 4.16 kV and 120/480 V systems;
 6. system grounding requirements; and
 7. lighting energy calculations.

C. The following activities shall be reported to the CPM in the Monthly Compliance Report:
 1. receipt or delay of major electrical equipment;
 2. testing or energizing of major electrical equipment; and
 3. a signed statement by the registered electrical engineer certifying that the proposed final design plans and specifications conform to requirements set forth in the Energy Commission Decision.

Verification: At least 30 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of each increment of electrical construction, the project owner shall submit to the CBO for design review and approval the above listed documents. The project owner shall include in this submittal a copy of the signed and stamped statement from the responsible electrical engineer attesting compliance with the applicable LORS, and shall send the CPM a copy of the transmittal letter in the next Monthly Compliance Report.

REFERENCES

SUMMARY OF CONCLUSIONS

The proposed El Segundo Energy Center (ESEC) site is located in a geologically active area along the coast of Southern California.

The site is not underlain by an active fault and the site is not subject to surface fault rupture. The site’s most proximal known active fault is a segment of the Palos Verdes fault which is located approximately five miles south of the proposed project site. Numerous other active faults are located in both the onshore and offshore vicinity of the project site.

Because of its geologic setting, the site could be subject to very strong levels of earthquake-related ground shaking. The significant effects of strong ground shaking on the ESEC structures must be mitigated through structural designs required by the most recent edition of the California Building Code (currently CBC 2013). CBC 2013 requires that structures be designed to resist seismic stresses from anticipated maximum ground acceleration.

In addition to strong seismic shaking, the project may be subject to soil failure caused by liquefaction and/or dynamic compaction. A design-level geotechnical investigation required for the project by the CBC 2013, and proposed Geology Condition of Certification GEO-1 and proposed Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1, would present standard engineering design requirements for mitigation of strong seismic shaking, liquefaction and potential excessive settlement due to dynamic compaction.

While not likely to occur during the project design life, the site is subject to inundation by tsunami. U.S. Building codes generally have not addressed the subject of designing structures in tsunami zones (Reynolds 2013). FEMA’s Coastal Construction Manual (FEMA 55), developed to provide design and construction guidance for structures built in coastal areas, addresses seismic loads for coastal structures and provides information on tsunami and associated loads (CSSC 2005).

Petroleum is the only economic geologic resource in the project vicinity. The project site is located approximately one mile west of the El Segundo Oil Field and one-half mile south of a single producing oil well owned by Occidental Petroleum. Other than petroleum, there are no known viable minerologic or geologic resources at the proposed ESEC site.

The project site is highly disturbed and partially covered by artificial fill. No significant paleontological resources were reported by the applicant’s paleontologist during the paleontological archive and literature reviews. Paleontological monitoring was conducted by the project owner during recent construction of the adjacent ESEC Units 5-8. The results of that monitoring were compiled and presented in the Paleontological Resources Report (PRR). The PRR documents the discovery of 251 valuable
paleontological resources during construction of ESEC Units 5-8 (JMA 2014). If, similar to ESEC Units 5-8, paleontological resources are discovered during construction of El Segundo Power Facility Modification (ESPFM) Units 9-12, Conditions of Certification which outline required procedures to mitigate adverse affects to paleontological resources are proposed to be included as part of this project’s approval.

Demolition, construction, and operation of the ESPFM would not result in any significant adverse impacts to paleontological, geological or mineralogical resources; would not be subject to immitigable geologic hazards; and would comply with applicable laws, ordinances, regulations, and standards if the measures proposed in the staff’s analysis are implemented. The implementation of the current conditions of certification, including proposed modification to PAL-7, and the addition of PAL-8 for the ESEC will continue to mitigate impacts to below significance for the decommissioning and demolition of El Segundo Generating Station (ESGS) Units 3 and 4, and the construction and operation of ESEC Units 9,10, 11, and 12. Condition of certification PAL-7 was modified to clarify the responsibility of the Paleontological Resource Specialist (PRS) to describe the sensitivity and significance of discovered paleontological resources in the PRR required in PAL-7. Proposed Condition of Certification PAL-8 has been added to assure that the components described in the Paleontological Resources Monitoring and Mitigation Plan (PRMMP), (required in PAL-3) are adequately performed.

While valuable paleontological resources are expected to be discovered during construction of the proposed project, potential impacts to paleontological resources due to construction activities would be mitigated through worker training and monitoring by qualified paleontologists, as required by proposed Conditions of Certification PAL-1 through PAL-8.

INTRODUCTION

In this section, California Energy Commission (Energy Commission) staff discusses the potential impacts of geologic hazards on the proposed ESEC facility as well as the ESEC's potential impact on geologic, mineralogic, and paleontologic resources. Staff’s objective is to identify resources that could be significantly adversely affected, evaluate the potential of the project construction and operation to significantly impact the resources and provide mitigation measures as necessary to ensure that there would be no significant adverse impacts to geological and paleontological resources during the project construction, operation, and closure and to ensure that operation of the plant would not expose occupants to high-probability geologic hazards. A brief geological and paleontological overview is provided. The section concludes with staff’s proposed Conditions of Certification that, if implemented, would reduce any project impacts to geologic hazards and geologic, mineralogic, and paleontologic resources to less than significant levels.
Applicable laws, ordinances, regulations and standards (LORS) are listed in the petition to amend (PTA) (NRG 2013a). The following briefly describes the current LORS for both geologic hazards and resources and mineralogic and paleontologic resources.

Geology and Paleontology Table 1

Laws, Ordinances, Regulations, and Standards (LORS)

<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
<td>The site is not located on Federal Land and there are no federal regulations directly applicable to the geological or paleontological conditions at the project site</td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>Alquist-Priolo Earthquake Fault Zoning Act, Public Resources Code (PRC), section 2621–2630</td>
<td>Mitigates against surface fault rupture of known active faults beneath occupied structures. Requires disclosure to potential buyers of existing real estate and a 50-foot setback for new occupied buildings.</td>
</tr>
<tr>
<td>Seismic Hazards Mapping Act, PRC section 2690–2699</td>
<td>Maps identify areas (zones) that are subject to the effects of strong ground shaking, such as liquefaction, landslides, tsunamis, and seiches. Requires a geotechnical report be prepared that defines and delineates any seismic hazard prior to approval of a project located in a seismic hazard zone.</td>
</tr>
<tr>
<td>CEQA, Appendix G Environmental Checklist Form</td>
<td>Asks if project would have impacts on paleontological and mineralogical resources or a unique geological feature.</td>
</tr>
<tr>
<td>California Building Code</td>
<td>Requires buildings and other construction to be designed to protect the public from geological hazards.</td>
</tr>
<tr>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>City of El Segundo General Plan</td>
<td>The City of El Segundo addresses public safety and welfare in the City through implementation of its General Plan and compliance with applicable local regulations. General Plan policies specific to geologic, soil, and seismic hazards are listed in the Public Safety Element.</td>
</tr>
</tbody>
</table>

Standards
<table>
<thead>
<tr>
<th>Applicable Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Society for Vertebrate Paleontology (SVP), 2010</td>
<td>The “Measures for Assessment and Mitigation of Adverse Impacts to Non-Renewable Paleontological Resources: Standard Procedures” is a set of procedures and standards for assessing and mitigating impacts to vertebrate paleontological resources developed by the SVP, a national organization of professional scientists. The measures were adopted in October 1995, and revised in 2010 following adoption of the Paleontological Resources Preservation Act (PRPA) of 2009.</td>
</tr>
<tr>
<td>Bureau of Land Management (BLM) Instructional Memorandum 2008-009</td>
<td>Provides up-to-date methodologies for assessing paleontological sensitivity and management guidelines for paleontological resources on lands managed by the Bureau of Land Management. While not required on non-BLM lands, the methodologies are useful for all paleontological studies, regardless of land ownership.</td>
</tr>
</tbody>
</table>

SETTING

The proposed project is located within the existing coastal-adjacent 33-acre El Segundo Generating Station (ESGS) power plant site. The site is located in Los Angeles County, approximately 2.5 miles southwest of the Los Angeles International Airport, west of Interstate 405, and on the eastern shore of Santa Monica Bay at the southernmost city limit of the city of El Segundo (GEOLOGY AND PALEONTOLOGY- FIGURE 1).

The site vicinity is a coastal urban and suburban environment with a variety of commercial, residential, and industrial land uses (GEOLOGY AND PALEONTOLOGY-FIGURE 2). A number of parks and schools are scattered throughout the City’s residential neighborhoods. The south-western portion of the City is occupied by the Chevron/Texaco Oil Refinery, the City of Los Angeles Scattergood Energy Plant, and the ESGS/ESEC Plant. The remainder of the City contains larger parcels with office complexes, industrial uses, and other more intense uses, including high-rise office buildings.

REGIONAL SETTING

Formation of the western coast of North America began in late Triassic during the inception of the Mid-Atlantic rise (DeCourten 2008). Lateral crustal spreading from the mid-Atlantic rise separated the European and African continents from the North American and South American continents. This motion caused the continental North American crustal plate to migrate westward. At this time, the east Pacific rise was also active forming new oceanic crust that was spreading west forming the Pacific plate and east forming the Farallon plate. As the North American plate migrated westward, the eastern edge of the Farallon plate was overridden and subducted beneath the advancing North American plate (Atwater 1998). This crustal subduction continued into the Miocene (Yeats 2010). As the Farallon plate disappeared into the subduction zone, the East Pacific Rise reached the western edge of the continent and the northern end of the Peninsular Ranges became deformed (Yeats 2010). This deformation caused the
Channel Islands-San Nicolas Island crustal block and the Santa Monica Mountains crustal block to move west from the Peninsular Ranges, leaving behind a rift which became the Los Angeles basin (Yeats 2010). The Los Angeles Basin then became filled with late Cenozoic marine sediments which overlie diversely oriented Mesozoic basement rocks.

In early Miocene, plate motion slowly shifted from subduction along the western margin of the North American Continent to transform faulting. As the area was subjected to simple right-lateral shear in late Miocene and early Pliocene time, the pre-existing faults in the Mesozoic basement rocks (formed during the earlier subduction period), propagated upward into the Cenozoic marine sediments as transform fault systems. The orientation of these “new” transform fault systems was controlled by the orientation of the older faults. Localization of shear within these faults caused the older, diversely oriented normal and reverse faults to become inactive as shear stresses reoccupied these pre-existing structures producing the shear (strike–slip) system of today (Yeats 2010).

The Project site is located in the northwestern corner of the Los Angeles Basin in the transition zone between the Transverse Range and the Peninsular Range Structural Provinces of Southern California (GEOLOGY AND PALEONTOLOGY - FIGURE 3). Geologically, the Los Angeles Basin and vicinity are divided into four structural blocks related to uplifted zones and synclinal depressions, and are bounded by faults. The project site lies near the northern end of the Southwestern Block, between the Palos Verdes and Newport-Inglewood faults (Norris 1990).

The topography in the area is characterized by a series of northwest trending rounded hills consisting of stabilized sand dunes rising above the main coastal plain. The elevation rises from sea level along the southwestern border of the City of El Segundo to approximately 160 feet above mean sea level in the northern section of the city (El Segundo 2004). Some of the northern area of the city retains the natural dune landscape. In the southern portion of the city, more of the natural topography has been altered. A series of stabilized sand dunes referred to as the El Segundo Sand Dunes and Sand Hills cover the western part of the city. To the west of the city are steep coastal bluffs, exceeding 30 percent slope, descending to a coastal beach area. The eastern section of the city is flat and at an elevation almost at sea level. The flat surface represents the original erosion terrace of the Torrance Plain on which the coastal sand dunes were deposited (El Segundo 2004).

The Torrance Plain consists of elevated dense silty sand older alluvium, which is covered, locally, with moderately dense silty sand of older eolian deposits. The Torrance Plain is incised and filled with soft, locally derived sandy silt and sandy clay of younger alluvium (CDMG 1998).

The Torrance Plain is underlain by marine and non-marine sediments of the Lakewood Formation. The Lakewood Formation consists of fine to medium grained sandstones, gravelly sandstones and clays which weather into clays and silty clays. The western section of the City is underlain by dune sands in varying stages of consolidation.
PROJECT SITE DESCRIPTION

The site is located at the southernmost city limit of the city of El Segundo on the coast of the Pacific Ocean, between Dockweiler State Beach and the city of Manhattan Beach, in Los Angeles County within the existing 33-acre site ESGS power plant. It is located less than a 1/4 mile south of the Los Angeles Department of Water & Power’s Scattergood Generating Station and 1/2 mile south of the city of Los Angeles’ Hyperion Wastewater Treatment Plant. The Chevron El Segundo refinery is located across Vista Del Mar from ESEC. The city of Manhattan Beach is immediately to the south.

The scope of the ESEC project 2013 Petition to Amend (PTA) is to decommission one existing unit, demolish two existing units, and install equipment to provide 435 Mega Watts (MW) net / 449 MW gross of more efficient generating units. The equipment proposed for installation includes one NRG fast start combined-cycle generator unit (CC Fast), rated at 222 MW net, incorporating a General Electric natural gas combustion turbine generator designed to achieve 75 percent of base load output in 10 minutes, one two-pressure, duct-fired heat recovery steam generator (HRSG) designed for rapid startup with conventional selective catalytic reduction system (SCR)/carbon monoxide (CO) catalysts, one single-case, non-reheat axial exhaust admission condensing steam turbine generator (STG) rated at 112 MW and designed for non-traditional elevated condensing pressure to minimize cooling system size, one Heller dry cooling tower system, two Rolls Royce Trent 60 generators, rated at 55 MW/unit net, consisting of advanced aeroderivative simple-cycle gas turbines, and one Cleaver Brooks auxiliary boiler consisting of a direct contact spray condenser and a mechanically-induced-draft dry-cooling tower.

The project site lies at an elevation of approximately 19 to 20 feet above mean sea level. Existing grade at the power plant site is approximately 1 percent. The existing site drainage is sheet flow in nature and drains locally via on-site drainage channels into a retention basin to the south. A more complete discussion of on-site drainage is included in the Soils and Water Resources section of this staff assessment.

The depth to ground water varies with the tide, but ground water may be encountered at ten feet below existing grade. Site near-surface geology consists of artificial fill, alluvium and semi-consolidated dune sand. The character of the fill is unknown. Since the plant was constructed in the early 1950’s, construction records documenting fill material and compaction may not be available. The alluvium is made up of Quaternary to Recent age sands, silts, clays, and gravel beneath existing fill. Underneath the alluvium are Tertiary age marine and continental units of sandstone, conglomerate, and clays.

A cut slope approximately 70 feet high makes up the eastern border of the site. This slope is heavily vegetated and is cut into semi-consolidated dune sand. The toe of the slope is supported by an approximately 3-foot-high concrete retaining wall, which also bears a number of pipes associated with the facility. The southern end of the slope includes two additional retaining walls, each about 5 feet high, stepped up the slope. These higher walls appear to terminate to the north just about at the southern end of Units 5 through 8. North of Units 5 through 8, the slope gradually steepens.
ASSESSMENT OF IMPACTS AND DISCUSSION OF MITIGATION

This section assesses two types of impacts. The first is the potential impacts the proposed facility could have on existing geologic, mineralogic, and paleontologic resources in the area. The second is the potential geologic hazards, which could adversely affect the proper functioning of the proposed facility and create life/safety concerns.

METHOD AND THRESHOLD FOR DETERMINING SIGNIFICANCE

The California Environmental Quality Act (CEQA) guidelines, Appendix G, provide a checklist of questions that lead agencies typically address when assessing impacts related to geologic and mineralogic resources, and effects of geologic hazards.

- Section (V) (c) includes guidelines that determine if a project will either directly or indirectly destroy a unique paleontological resource or site, or a unique geological feature.
- Sections (VI) (a), (b), (c), (d), and (e) focus on whether or not the project would expose persons or structures to geologic hazards.
- Sections (XI) (a) and (b) concern the project’s effects on mineral resources.

To assess potential impacts on unique geologic features and effects on mineral resources, staff has reviewed geologic and mineral resource maps for the surrounding area, as well as site-specific information provided by the petitioner, to determine if geologic and mineralogic resources exist in the area.

To assess potential impacts on paleontological resources, staff reviewed the paleontological resources technical report and section 5.8 of the AFC (EPSR 2000). No significant paleontological resources were reported by the applicant’s paleontologist during the paleontological archive and literature reviews. The project site is highly disturbed and partially covered by artificial fill. No paleontological resources were observed by Energy Commission staff at the project site during site visits on March 13 and May 2, 2001. In compliance with the conditions of certification for the construction of ESEC Units 5 through 8 between 2011 and 2013, paleontological monitoring was conducted on the site and along project linears. The Paleontological Resources Report (PRR) has recently been finalized documenting the discovery of valuable fossils in the adjacent facility.

If, similar to ESEC Units 5-8, paleontological resources are discovered during construction of ESPFM Units 9-12, conditions of certification which outline required procedures to mitigate adverse affects to paleontological resources are proposed to be included as part of this project’s approval.

The California Building Standards Code (CBSC) and CBC 2013 provide geotechnical and geological investigation and design guidelines, which engineers must follow when designing a facility. As a result, the criterion used to assess the significance of a geologic hazard includes evaluating each hazard’s potential impact on the design, construction, and operation of the proposed facility. Geologic hazards include faulting.
and seismicity, liquefaction, dynamic compaction, hydrocompaction, subsidence, expansive soils, landslides, tsunamis, seiches, and others as may be dictated by site-specific conditions.

DIRECT/INDIRECT IMPACTS AND MITIGATION

An assessment of the potential impacts to geologic, mineralogic, and paleontologic resources, and from geologic hazards is provided below. The assessment of impacts is followed by a summary of potential impacts that may occur during construction and operation of the project and provides recommended conditions of certification that would ensure potential impacts are mitigated to a level that is less than significant. The recommended Conditions of Certification would allow the Energy Commission’s compliance project manager (CPM) and the petitioner to adopt a compliance monitoring scheme ensuring ongoing compliance with LORS applicable to geologic hazards and the protection of geologic, mineralogic, and paleontologic resources.

GEOLOGIC AND MINERALLOGIC RESOURCES

The project is located adjacent to the El Segundo Oil Field (GEOLOGY AND PALEONTOLOGY - FIGURE 4). A single producing oil well owned by Occidental Petroleum is located approximately one-half mile north of the site. The project location is designated as Mineral Resources Zone-3, an area of undetermined mineral resources potential (CDMG 1987). No mineral resources are known to have been identified at the present site and there are no significant sand or gravel mines in the area. At the ESEC site, the geologic units at the surface and in the subsurface are widespread alluvial deposits that occur throughout the El Segundo area (GEOLOGY AND PALEONTOLOGY - FIGURE 5). These geologic units are not unique in terms of recreational, commercial, or scientific value.

Based on the information above, it is staff’s opinion that the project would have no effect on oil and gas production or on other geologic resources of commercial value or on the availability of such resources and would not have any significant adverse direct or indirect impacts to potential geologic and mineralogic resources.

PALEONTOLOGIC RESOURCES

Geotechnical investigations conducted on site indicate the site is mantled by a layer of engineered fill approximately 2 feet thick underlain by Holocene-age alluvial and dune deposits consisting of silty sand and sand (Ninyo 2006). The Holocene deposits consist of alternating layers of medium dense to very dense sand, clayey sand, silty sand, gravelly sand and sandy silt and firm to hard, clayey silt and silty clay to the maximum depth explored being 28 feet (Ninyo 2006). Underlying the Holocene deposits are sediments of the Pleistocene Palos Verdes Formation. The Palos Verdes Formation consists of greenish-gray, fine- to medium-grained sand with traces of silt and clay. Within the Palos Verdes Formation is a unit referred to as the Palos Verdes Sand. The Palos Verdes Sand is a fossiliferous layer of marine gray sands and gravels (BonTerra 2010). This unit was deposited between 95,000 and 130,000 years before present and has produced a large number of fish fossils, as well as the remains of terrestrial and aquatic birds and mammals (BonTerra 2010). Although primarily known for its fossil
mollusks, the Palos Verdes Sand has yielded remains of sharks, bony fish, birds, and marine mammals (BonTerra 2010). In addition to the marine fossils, a number of large, extinct, Ice Age land mammals such as mammoth, mastodon, bison, horse, and camel have been found (BonTerra 2010). The Palos Verdes Sand represents a time when coastal waters off Southern California were several degrees warmer than today (BonTerra 2010).

Beneath the Palos Verdes Formation lies the San Pedro Formation. The San Pedro Formation represents the oldest known Cenozoic sedimentary unit of Pleistocene age in the Los Angeles Coastal Region. This formation was described for outcrops in the vicinity of nearby San Pedro Harbor and then applied to extensive beds of unconsolidated sand containing abundant mollusk shells of Pleistocene age, outcropping as far south as San Diego and as far north as Santa Monica. The fossiliferous sand unit within the San Pedro Formation is referred to as the San Pedro Sand (BonTerra 2010). The San Pedro Sand consists of gray to dark gray to reddish-yellow stained siltstone and clayey siltstone with friable, interbedded fine to gravelly coarse grained sandstones. Based on sedimentary structures and variable lithologies, this rock unit represents a wide range of depositional environments. These environments range from nearshore, shallow marine to lagoonal, to back-bay tidal flat (BonTerra 2010).

In the San Pedro area, the San Pedro Sand has yielded crustaceans, marine mollusks (clams and snails), bony fish and sharks, amphibians, and birds (BonTerra 2010). Large late Pleistocene extinct mammals found there include Bison, Mammuthus (mammoth), Paramylodon (sloth), Equus (horse), and Capromeryx (very small antelope). In addition to the large extinct mammals, extant pond turtle, rabbits, rodents, and marine mammals also occur. Recent amino acid dating of marine mollusks from the San Pedro Sand in the Palos Verdes Hills has yielded dates of 330,000 years before present (Ponti 1989).

Beneath the Pleistocene San Pedro Sand is the Pliocene Pico Formation. The Pico Formation is composed of marine sands, silts, and clays, and extends nearly a thousand feet below the base of the San Pedro Sand (BonTerra 2010). The uppermost portion of this unit is composed of silts and clays, with local lenses of gravel, while the lowermost portion of this unit is composed of sands and gravels. This unit, and those underlying it, was not analyzed in detail, because they lie well below the depth of any anticipated construction activity.

The La Brea Tar Pit fossil mammal assemblage of upper Pleistocene age is derived from the Palos Verdes Sand. This assemblage includes a wide variety of carnivores (dogs and cats), small to large ungulate herbivores (deer, antelope, camel, horse, pig), sloth, and a myriad of small mammals including rabbits, rodents, insectivores and a variety of birds and lower vertebrates (frogs, lizards and snakes).

Many of the fossil specimens represent the best preserved specimens of particular taxa found to date. Mammalian assemblages collected from both the San Pedro Sands and Palos Verdes Sands in the vicinity of the project area contain fossil remains of most of the Rancho La Brea terrestrial vertebrate groups. Also included at some of these sites
are aquatic mammalian taxa including otter, whale, and dolphin as well as shark and teleost fish taxa, and birds.

Numerous paleontological sites occur within a five-mile radius of the ESEC site. A fossil proboscidian (elephant family) bone was found in the middle of the Los Angeles International Airport. At other sites a baby mammoth jaw, horse, mammoth, bison, rabbit, rodent, and fish material was recovered.

During the geotechnical investigation for ESEC Units 5, 6, 7 and 8, shell fragments were found in drill cuttings returned to the surface from depths between 5 and 22 feet below ground surface (Ninyo 2010). These depths generally coincided with the top of the Older Alluvium unit beneath the fill and dune sands. During construction of ESEC Units 5, 6, 7 and 8, all excavations were monitored in accordance with Conditions of Certification PAL-1 through PAL-7. The PRR was recently completed and it documents the results of the paleontological monitoring conducted on the site (JMA 2014). The PRR indicates that a total of 251 whole and partial fossil specimens representing 25 genera were collected during the monitoring program. The collected fossils are considered by the PRS to be “valuable paleontological resources” (JMA 2014).

Even though the site is developed and paved and mantled with artificial fill, excavations are proposed for project construction. If the excavations extend through the fill, native soils may be encountered. Based on the discoveries during monitoring of the area adjacent to the project site (JMA 2014), there is a high potential for valuable fossils to be encountered in the excavations. Therefore, staff considers monitoring of construction activities in accordance with the existing and proposed Conditions of Certification is necessary.

In this analysis, existing Condition of Certification PAL-7 has been modified with proposed language that clarifies the responsibility of the PRS to describe the sensitivity and significance of discovered paleontological resources in the Paleontological Resources Report (PRR) required in PAL-7. Proposed Condition of Certification PAL-8 has been added to assure that the components described in the Paleontological Resources Monitoring and Mitigation Plan (PRMMP), (required in PAL-3) is adequately performed.

Proposed Conditions of Certification PAL-1 to PAL-8 are designed to mitigate any potential paleontological resource impacts, as discussed above, to a less than significant level. Essentially, these conditions would require a worker education program in conjunction with monitoring of proposed earthwork activities by qualified professional paleontologists (paleontologic resource specialist; PRS).

Earthwork would be halted in the immediate area of the find at any time potential fossils are recognized by either the paleontological monitor or the worker. When properly implemented, the conditions of certification would yield a net gain to the science of paleontology since fossils that would not otherwise have been discovered can be collected, identified, studied, and properly curated. A paleontological resource specialist would be retained for the proposed project by the petitioner to produce a monitoring and mitigation plan, conduct the worker training, and provide the on-site monitoring. During
the monitoring, the PRS can petition the CPM for a change in the monitoring protocol. Most commonly, this would be a request for lesser monitoring after sufficient monitoring has been performed to ascertain that there is little chance of finding significant fossils. In other cases, the PRS can propose increased monitoring due to unexpected fossil discoveries or in response to repeated out-of-compliance incidents by the earthwork contractor.

GEOLOGICAL HAZARDS

The AFC and the Final Engineering Geology Report (Ninyo 2013) provides documentation of potential geologic hazards at the proposed ESEC plant site. Staff reviewed information presented in the engineering geology report and conducted independent research regarding the site’s susceptibility to geologic hazards. Staff believes that the possibility of geologic hazards affecting plant operations, during its practical design life (40 years), would be low because the owner would further evaluate site conditions and design structures to mitigate potential impacts. The potential and probability for the site to be affected by geologic hazards such as strong seismic shaking, liquefaction and dynamic compaction, would need to be addressed in a project geotechnical report per CBC 2013 requirements. Recommendations from the geotechnical report should be incorporated in the project design.

Staff’s independent research included the review of available geologic maps, reports, and related data of the proposed ESEC plant site. Geological information from the California Geological Survey (CGS), California Division of Mines and Geology (CDMG), and other governmental organizations was reviewed. Staff’s analysis of this information is provided below.

Faulting and Seismicity

In southern California, tectonic deformation between the Pacific and North American plates is accommodated primarily by a zone of transform strike slip faults oriented with a predominant northwest trend; however, within this complex zone of shear, areas of tectonic compression also occurs which has formed numerous folds (anticlines and synclines), reverse faults and blind thrust faults.

Major active and potentially faults in the region are shown on GEOLOGY AND PALEONTOLOGY - FIGURE 6. Most of the tectonic deformation in southern California occurs along strike slip faults associated with the on land portion of the San Andreas fault system. In addition to the on land faults, the tectonic shear is shared with faults in the offshore inner Continental Borderland region (Grant 2004).

In 2002, Grant and Rockwell postulated that an active 300-km-long Coastal Fault zone extends between the Los Angeles basin and coastal Baja California (Grant 2002). This Coastal Fault zone includes those faults contained within the inner Continental Borderland which become contiguous with the Agua Blanca fault in Baja California (Grant 2004). The Agua Blanca fault is considered to have a slip rate between 5 and 7 millimeters/year (Rockwell 2012). That slip is believed to be transferred to the offshore faults within the inner Continental Borderland (Rockwell 2012). The geometry and slip rate of faults in the inner Continental Borderland are poorly constrained relative to
onshore faults, yet they may pose significant seismic risk because they are close to populated areas, and several offshore faults appear to displace seafloor sediments (Legg 1991).

Active faults in southern California associated with shear between the north American and Pacific plates include (from east to west), the San Andreas fault zone, the San Jacinto fault zone, the Elsinore fault zone, the Whittier fault zone, the Newport-Inglewood fault zone, the Palos Verdes fault zone, the San Diego Trough fault zone and the San Clemente fault zone. Faults specific to the inner Continental Borderland include the Newport-Inglewood fault zone, the Palos Verdes fault zone, the San Diego Trough fault zone and the San Clemente fault zone (Legg 2002).

In addition to the strike slip faults discussed above, compressive forces have formed folds (anticlines and synclines), reverse faults and blind thrust faults (Blind thrusts). Blind thrusts underlie regions undergoing contraction in the Los Angeles Basin and are expressed at the surface only as active folds. The Compton-Los Alamitos fault and the San Joaquin Blind thrust are examples of this style of deformation. Seismic hazards posed by active thrusts are assessed in the Los Angeles Basin by a number of means, all of which are aimed at placing constraints on fault slip rates, earthquake recurrence and fault geometry and segmentation (Mueller 2005). Research into the relationship between fault slip, fault geometry and fold growth thus provides insight into the occurrence of earthquakes produced on these structures. Large earthquakes originating on blind thrusts within Southern California have occurred in the past century, illuminating their geometry and potential for seismic hazard and include the Moment magnitude (Mw) 5.9 1987 Whittier Narrows earthquake and the Mw 6.8 1994 Northridge earthquake. It is likely that in 1769, a Magnitude 7+ earthquake occurred on the San Joaquin Blind thrust which uplifted coastal Orange County approximately 10 feet (Grant 2004).

An In depth study of the active faults in the Los Angeles Basin Metropolitan Region was completed by the Southern California Earthquake Center in 2001 (SCEC 2001). Active faults with a potential to affect the ESEC site are listed and described below and their locations presented on GEOLOGY AND PALEONTOLOGY - FIGURE 6.

San Andreas Fault Zone

The San Andreas is the "master" fault of an intricate fault system that defines the boundary between the Pacific and North American crustal plates in California (Schulz 1992). The entire San Andreas fault system is more than 800 miles long and extends to depths of at least 10 miles within the Earth. In detail, the fault is a complex zone of crushed and broken rock from a few hundred feet to a mile wide. Many smaller faults branch from and join the San Andreas fault zone.

Over much of its length, a linear trough reveals the presence of the San Andreas fault; from the air, the linear arrangement of lakes, bays, and valleys in this trough is striking. Viewed from the ground, however, the features are more subtle. For example, many people driving near Crystal Springs Reservoir, near San Francisco, or along Tomales Bay, or through Cajon or Tejon Passes may not realize that they are within the San Andreas fault zone. On the ground, the fault can be recognized by carefully inspecting
the landscape. The fault zone is marked by distinctive landforms that include long straight escarpments, narrow ridges, and small undrained ponds formed by the settling of small blocks within the zone. Many stream channels characteristically jog sharply to the right where they cross the fault.

At least 350 miles of offset has occurred along the San Andreas fault since it came into being about 15-20 million years ago (Schulz 1992). Surveying demonstrates the strain (displacement) occurs along the fault at the rate of approximately 2 inches per year.

San Jacinto Fault Zone
The San Jacinto fault zone is one of the major branches of the San Andreas fault system in southern California (Sharp 1965).

The San Jacinto fault zone is a complex zone of splaying and overlapping strike-slip fault segments, steps and bends, and associated zones of contractional and extensional deformation (Dorsey 2002). Offsets on basement piercing points and Pleistocene strata indicate that about 25 km of slip has accumulated on the San Jacinto fault during the past 1.5 to 2.0 Ma (Dorsey 2002). Based on GPS studies and offsets of dated Quaternary deposits, the rate of slip on the San Jacinto system is generally agreed to be ~10-12 mm/yr. This represents 20-25 percent of the present-day Pacific-North American relative plate motion (Dorsey 2002).

The straightness, continuity, and high seismicity of the San Jacinto fault zone suggest that it may be currently the most important member of the San Andreas fault system in southern California (Sharp 1965).

Elsinore Fault Zone
The Elsinore fault zone parallels the San Jacinto and is part of the same right-lateral crustal plate strain system as the San Andreas and the San Jacinto (ECI 2000). The Elsinore branches into the Whittier fault near Santa Ana Canyon, where it borders the Puente Hills to the southwest and the Chino fault to the northeast. The most apparent displacements on the Whittier-Elsinore have been vertical, as evidenced by the steep scarp (an earthquake-built cliff) along the Santa Ana Mountains.

Whittier Fault Zone
The Whittier fault zone is exposed for a distance of about 25 miles along the south slopes of the Puente Hills from the Whittier Narrows on the northwest to the Santa Ana River near its southwest end (Yerkes 1965). In the vicinity of the Santa Ana River, it joins with the northern end of the Elsinore Fault Zone. Recent deformation along the Whittier Fault Zone is indicated by steeply tilted and locally overturned strata of late Pleistocene age (Yerkes 1965). Trenching along the fault has uncovered evidence of recent offsets, including faulted Holocene alluvium dated at 1400 to 2200 years before present (Gath 1988).

Transverse Ranges Southern Boundary Fault System
Transverse Ranges Southern Boundary fault system is a west-trending system of reverse, oblique-slip, and strike-slip faults that extends for more than 200 km along the southern edge of the Transverse Ranges (Dolan 1997, Dolan 2000a). The Transverse
Ranges Southern Boundary Fault System in the Los Angeles Region as discussed below includes the Santa Monica Fault, The Hollywood fault and the Raymond fault. To the west of the Los Angeles region, The Anacapa-Dume, Malibu Coast, Santa Cruz Island, and Santa Rosa Island faults are also part of this system, but are not included in this analysis.

Santa Monica fault

The Santa Monica fault extends east from the coastline in Pacific Palisades through Santa Monica and West Los Angeles and merges with the Hollywood fault at the West Beverly Hills Lineament in Beverly Hills, west of the crossing of Santa Monica Boulevard and Wilshire Boulevard, where its strike is northeast (SCEC 2001).

Onshore, the fault offsets the ground surface 2-3.5 km south of the Santa Monica Mountains range front (Dolan 2000a). Accordingly, the fault traverses alluvium that allows the Quaternary history of the fault to be characterized based on geomorphology, stratigraphy, and seismic reflection characteristics (Dolan 1997; Dolan 2000a).

The Southern California Earthquake Data Center states the type of faulting is left-reverse, extends a length of 24 km and has a probable magnitude between 6.0 and 7.0 (SCEDC 2013).

According to Dolan and Pratt (Dolan 1997), uplift of an alluvial-fan surface north of the fault requires a reverse-slip rate of ~0.5 mm/yr.

Hollywood fault

The Hollywood fault extends East-Northeast from the end of the Santa Monica Fault for a distance of 14 km through Beverly Hills, West Hollywood, and Hollywood to the Los Angeles River and Interstate 5. The Hollywood fault is separated from the Santa Monica Fault where the fault makes a left step of 1.2 km, possibly attributed to offset by the northwest continuation of the Newport-Inglewood fault.

In Hollywood, where the fault was studied in detail by James Dolan (Dolan 1997; Dolan 2000b), the active fault is close to the Santa Monica Mountains range front. Farther west, however, near the intersection of Sunset and La Cienega boulevards in West Hollywood, the active fault lies near the base of a pronounced south-facing alluvial apron along the mountain front (Dolan 1997; Lindvall 2001).

Based on a number of independent geological investigations and recent work by the California Geological Survey (CGS), which lead to the publication of 2010 Fault Activity Map of California (CGS 2010a), CGS has commenced a detailed study of the Hollywood Fault and its associated splay faults for possible zoning as “Active” pursuant to the Alquist-Priolo Act (CGS 2007a). This ongoing investigation and resulting maps and report are scheduled for completion by the end of 2013 or the beginning of 2014 (Parrish 2013).

While the report in preparation will update existing information, the Southern California Earthquake Data Center states the type of faulting of the Hollywood fault is left-reverse,
extends a length of 15 km and has a probable magnitude between 5.8 and 6.5 with a slip rate between 0.33 and 0.75 mm/yr. (SCEDC 2013).

Raymond fault
A sharp gravity gradient connects the western end of the Raymond fault across the Los Angeles River floodplain with the eastern end of the Hollywood fault, but this connection is not confirmed by geological evidence except for local air-photo lineations. The Raymond fault extends 25 km from the Los Angeles River east of Griffith Park east to east-northeast across the San Gabriel Valley through South Pasadena, Pasadena, San Marino, Arcadia, and Monrovia to a junction with the Sierra Madre fault at the foot of the San Gabriel Mountains. The fault is defined by aligned left-deflected drainages, shutter ridges, sagponds, and pressure ridges in right-stepping restraining bends which indicate that the Raymond fault is predominantly a left-slip fault (SCEC 2001). The 1988 Pasadena earthquake of ML 4.9 probably occurred on the Raymond fault based on the fault-plane solution of the mainshock and the distribution of aftershocks (Jones 1990). Interpretation of aftershock epicenters indicate that the plane of the fault dips 80° north.

The Southern California Earthquake Data Center states the type of faulting of the Raymond fault is left-lateral strike slip with only minor reverse component, extends a length of 25 km and has a probable magnitude between 6.0 and 7.0 with a slip rate between 0.10 and 0.22 mm/yr. (SCEDC 2013).

Compton-Los Alamitos Fault Zone
The Compton blind thrust fault is active and has generated at least six large-magnitude earthquakes (Mw 7.0–7.4) during the past 14,000 years (Leon 2009). Deformed Holocene strata record recent activity on the Compton thrust and are marked by discrete sequences that thicken repeatedly across a series of buried fold scarps. Minimum uplift in each of the scarp-forming events, which occurred at 0.7–1.75 thousand years ago (ka) (event 1), 0.7–3.4 ka or 1.9–3.4 ka (event 2), 5.6–7.2 ka (event 3), 5.4–8.4 ka (event 4), 10.3–12.5 ka (event 5), and 10.3–13.7 ka (event 6), ranged from ~0.6 to ~1.9 m,, indicating minimum thrust displacements of ≥1.3 to 4.2 m. Such large displacements are consistent with the occurrence of large-magnitude earthquakes (Mw ≥ 7). This large, concealed fault underlies the Los Angeles metropolitan area and thus poses one of the largest deterministic seismic risks in the United States (Leon 2009).

San Joaquin Hills Blind Thrust
The late Quaternary uplift rate of the San Joaquin Hills is approximately twice as high as uplift rates parallel to the Newport-Inglewood Fault Zone (NIFZ) along the coast to the south (Grant 2002). Several observations suggest that the San Joaquin Hills are underlain by a fault that is distinct from the NIFZ, although they may be linked kinematically. There are several Quaternary anticlines along the NIFZ north of the San Joaquin Hills (Grant 2002). However, the San Joaquin Hills anticline is longer and has the greatest topographic expression. Other topographically prominent anticlines, such as Signal Hill, are located within the structurally complex NIFZ and are associated with step-overs (Barrows 1974).
Geomorphologic studies along the coastline in the vicinity of the San Joaquin Hills have discovered emergent shorelines along the open coast and an elevated marsh bench in Newport Back Bay. The surface of the marsh bench is approximately 5 feet above the current marsh elevation (Grant 2002). Radiocarbon dating and interpretation of the introduction of exotic pollens contained within the elevated marsh bench indicates that the marsh bench was uplifted between the years 1635 and 1797 (Grant 2002).

On July 28, 1769 a strong temblor was described by explorer Gaspar de Portola while he was in the central Los Angeles basin area (Townley 1939). The mainshock was described as violent, and at least two dozen earthquakes followed it over the course of several days. It is likely that the 1769 San Joaquin Hills earthquake occurred on the San Joaquin Blind Thrust and was responsible for the uplift of the elevated marsh bench in Newport Bay and the emergent shorelines along the open coastline (Grant 2002). The San Joaquin earthquake may be the largest known earthquake that has originated within the greater Los Angeles region in the last few centuries (Grant 2002).

Newport-Inglewood Fault Zone

The Newport-Inglewood fault zone (NIFZ) is approximately 1.5-2.5 km wide, trends N45-60W, is mainly a right-lateral tectonic structure that extends from the Santa Monica Mountains on the north to offshore connection with the Rose Canyon fault at San Diego on the south (Shlemon 2008). Known active fault traces in the NIFZ zone of deformation have been mapped in Alquist-Priolo Special Studies Zones (CDMG 1997).

The Newport–Inglewood fault zone (NIFZ) was first identified as a significant threat to southern California residents in 1933 when it generated the M 6.3 Long Beach earthquake, killing 115 people and providing motivation for passage of the first seismic safety legislation in the United States (Grant 2004).

Ongoing studies indicate the NIFZ is capable of generating earthquakes with magnitudes up to 7.4 Mw (Toppozada 1989) or 7.5 Mw (Petersen 2008). The higher magnitude indicated by Petersen uses a fault length of 208 km as described by Shlemon (2008). At its closest approach, the active trace of the NIFZ lies approximately 6 miles northeast of the project site (GEOLOGY AND PALEONTOLOGY - FIGURE 6).

Palos Verdes Fault Zone

The Palos Verdes Fault Zone extends southwestward from the northern part of Santa Monica Bay to the area southwest of Lasuen Knoll, offshore from Dana Point (Fisher 2004). The structure of the Palos Verdes Fault Zone changes markedly southeastward across the San Pedro Shelf and slope. Under the northern part of the shelf, this fault zone includes several strands, but the main strand dips west and is probably an oblique-slip fault (Fisher 2004). Under the slope, this fault zone consists of several fault strands having normal separation, most of which dip moderately east. To the southeast near Lasuen Knoll, the Palos Verdes Fault Zone locally is a low angle fault that dips east, but elsewhere near this knoll the fault appears to dip steeply. Fresh sea-floor scarps near Lasuen Knoll indicate recent fault movement (Fisher 2004).

Analysis of wave-cut terraces and offset stream courses indicates total fault-slip rate to be around 3 mm/yr. (Fisher 2004). The main style of movement along the Palos Verdes
Fault Zone has been strike slip and multibeam bathymetric data show recent scarps along this fault near Lasuen Knoll indicating the fault’s recent activity. At its closest approach, the trace of the Palos Verdes Fault Zone lies approximately 5 miles south of the project site (GEOLOGY AND PALEONTOLOGY - FIGURE 6).

San Diego Trough Fault Zone
The San Diego Trough Fault Zone runs roughly from the Mexican border northward toward Catalina Island. The San Diego trough fault zone (SDTFZ) is part of a 90-km-wide zone of faults within the inner Continental Borderland that accommodates motion between the Pacific and North American plates (Ryan 2012). New seismic reflection data shows that the fault zone steps across a 5-km-wide stepover and continues for an additional 60 km north of its previously mapped extent. At the latitude of Santa Catalina Island, the SDTFZ bends 20° to the west and may be linked via a complex zone of folds with the Palos Verdes fault zone (PVFZ). If this is the case, this fault zone would be one of the longest in the California Borderland, and could produce some of the largest earthquakes in the region (Poppick 2013). The 1986 epicenter of the Oceanside earthquake (a magnitude 5.4 quake that caused nearly one million dollars in damage, 29 injuries, and one death) and the associated 1986 earthquake swarm is located within the SDTFZ (Poppick 2013). In a cooperative program between the U.S. Geological Survey (USGS) and the Monterey Bay Aquarium Research Institute (MBARI), the coseismic offset of a submarine channel that intersects the fault zone near the SDTFZ– PVFV junction was measured and dated. This research indicated an estimated horizontal slip rate of about 1.5±0.3 mm/yr over the past 12,270 yr (Ryan 2012).

San Clemente Fault Zone
The San Clemente fault zone is the westernmost of the group of right lateral faults traversing the California Inner Continental Borderland (Legg 1989). The main trace of the San Clemente fault cuts a straight path directly across the rugged topography of the region, displaying evidence of a steeply dipping (near vertical) fault surface. Modern tectonic activity along the San Clemente fault zone is demonstrated by numerous earthquakes with epicenters located along the fault's trend. The average strike of the San Clemente fault is parallel to the Pacific-North American relative plate motion vector at this location and is a part of the broad Pacific-North American transform plate boundary (Legg 1989).

Fault Rupture
All of the faults discussed above have the potential to generate strong seismic shaking at the project site. However, none have the potential to cause fault offset of the ground surface at the project site.

The Alquist-Priolo Earthquake Fault Zoning Act of 1994 (formerly known as the Alquist-Priolo Special Studies Zone Act of 1972) stipulates that no structure for human occupancy may be built within an Earthquake Fault Zone until geologic investigations demonstrate that the site is free of fault traces that are likely to rupture with surface displacement (CGS 2007a). Earthquake Fault Zones include faults considered to have been active during Holocene time and to have a relatively high potential for surface...
rupture (CGS 2008). An Earthquake Fault Zone has not been mapped on the project site. Fault rupture almost always follows pre-existing faults, which are zones of weakness (CGS 2007). No active faults are shown on published maps as crossing the boundary of new construction on the proposed ESEC power plant site or associated linear facilities. Therefore, it is highly unlikely that the site would experience surface fault rupture during the project’s design life.

Seismic Shaking

Preliminary estimates of ground motion based on probabilistic seismic hazard analyses have been calculated for the project site using the USGS Earthquake Hazards application called the U.S. Seismic “DesignMaps” Web Application (*Geology and Paleontology Table 2*). This application produces seismic hazard curves, uniform hazard response spectra, and seismic design values. The values provided by this application are based upon data from the 2008 USGS National Seismic Hazard Mapping Project. These design parameters are for use with the 2012 International Building Code, the 2010 ASCE-7 Standard, the 2009 NEHRP Provisions, and their respective predecessors.

These parameters are project-specific and, based on ESEC’s location, were calculated using latitude and longitude inputs of 33.910 degrees north and 118.425 degrees west, respectively. Other inputs for this application are the site “type” which is based on the underlying geologic materials and the “Structure Risk Category”. The assumed site class for ESEC is “E”, which is applicable to soft clay soil. These parameters can be updated as appropriate following the results presented in a project-specific geotechnical investigation report performed for the site. The assumed “Structure Risk Category” is “III”, which is based on its inherent risk to people and the need for the structure to function following a damaging event. Risk categories range from I (non essential) to IV (critical). Examples of risk category I include agriculture facilities, minor storage facilities, etc., while examples of category IV include fire stations, hospitals, nuclear power facilities, etc.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumed Site Class</td>
<td>E</td>
</tr>
<tr>
<td>Structure Risk Category</td>
<td>III - Substantial</td>
</tr>
<tr>
<td>SS – Mapped Spectral Acceleration, Short (0.2 Second) Period</td>
<td>1.642 g</td>
</tr>
<tr>
<td>S1 – Mapped Spectral Acceleration, Long (1.0 Second) Period</td>
<td>0.616 g</td>
</tr>
<tr>
<td>Fa – Site Coefficient, Short (0.2 Second) Period</td>
<td>0.900</td>
</tr>
<tr>
<td>Fv – Site Coefficient, Long (1.0 Second) Period</td>
<td>2.400</td>
</tr>
<tr>
<td>SDS – Design Spectral Response Acceleration, Short (0.2 Second) Period</td>
<td>0.985 g</td>
</tr>
<tr>
<td>SD1 – Design Spectral Response Acceleration, Long (1.0 Second) Period</td>
<td>0.986 g</td>
</tr>
<tr>
<td>SMS – Spectral Response Acceleration, Short (0.2 Second) Period</td>
<td>1.478 g</td>
</tr>
<tr>
<td>SM1 – Spectral Response Acceleration, Long (1.0 Second) Period</td>
<td>1.479 g</td>
</tr>
</tbody>
</table>

ASCE = American Society of Civil Engineers
Values from USGS 2010b

The ground acceleration values presented are typical for the area. Other developments in the adjacent area will also be designed to accommodate strong seismic shaking. The potential for and mitigation of the effects of strong seismic shaking during an earthquake should be addressed in a project-specific geotechnical report, per CBC 2013 requirements, and proposed Condition of Certification GEO-1 and Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1. Compliance with these conditions of certification would ensure the project is built to current seismic standards and potential impacts would be mitigated to insignificant levels in accordance with current standards of engineering practice.

Liquefaction

Liquefaction is the phenomenon in which uniformly sized, loosely deposited, saturated, granular soils with low clay contents undergo rapid loss of shear strength through the development of excess pore pressure during strong earthquake induced ground shaking of sufficient duration to cause the soil to behave as a fluid for a short period of time. Liquefaction generally occurs in saturated or near-saturated cohesionless soils at depths shallower than 50 feet below the ground surface. If the liquefying layer is near the surface, the effect for any structure supported on it is much like that of quicksand, resulting in sinking or tilting. If the layer is deeper in the subsurface, it can provide a sliding surface for materials above it, resulting in lateral motion (spreading or lurching) toward any nearby ‘free face’ (shore bluff, river embankment, excavation wall (PBS&J 2009).

The proposed project site is mapped adjacent to a Liquefaction Investigation Zone on the State of California Seismic Hazard Zone Map for the Venice Quadrangles (CGS 1999). A Liquefaction Investigation Zone is an area “where historic occurrence of liquefaction, or local geological, geotechnical and groundwater conditions indicate a potential for permanent ground displacement such that mitigation as defined in Public
Resources Codes Section 2693(c) [Seismic Hazards Mapping Act] would be required (CGS 1999).

Groundwater was encountered during construction of ESEC Units 5 through 8 at depths between 7 and 11 feet below ground surface (Ninyo 2013). The presence of shallow groundwater raises concerns about liquefaction potential, settlement rates, and the possible need for construction dewatering.

Based on site observations and review of information presented in the final engineering geology report (Ninyo 2013), subsurface conditions at the site are likely to be conducive to liquefaction. Groundwater levels should be confirmed and the liquefaction potential on the proposed ESEC site should be addressed in a project-specific geotechnical report, per CBC 2013 requirements and proposed Condition of Certification GEO-1, and Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1.

Lateral Spreading

Lateral spreading of the ground surface during an earthquake usually takes place along weak shear zones that have formed within a liquefiable soil layer. Lateral spreading generally takes place in the direction of a free-face (i.e., retaining wall, slope, and/or channel).

An empirical model is typically used to predict the amount of horizontal ground displacement within a site (Ninyo 2013). For sites located in proximity to a free-face, the amount of lateral ground displacement is strongly correlated with the distance of the site from the free-face.

The project site lies at an elevation of approximately 19 to 20 feet above mean sea level. Grading for the construction of the initial ESGS facility created a free-face cut slope approximately 70 feet high cut into older Dune Sand deposits along the eastern border of the site. In the preliminary geotechnical report, groundwater in this area was determined to be at an elevation near sea level. Therefore, the soils in the area of the free face are not saturated and the likelihood of lateral spreading due to liquefaction affecting the free-face on the eastern portion of this site is considered remote.

Other factors such as earthquake magnitude, distance from the earthquake epicenter, thickness of the liquefiable layers, and the fines content and particle sizes of liquefiable layers also affect the amount of lateral ground displacement. Based on the relative density of the potentially liquefiable soil layers, Ninyo and Moore concluded in their Final Engineering Geology Report that “the project site is not considered susceptible to significant seismically induced lateral spread” (Ninyo 2013). However, the susceptibility of the underlying beds to lateral spread beneath the proposed ESEC site should be addressed in a project-specific geotechnical report, per CBC 2013 requirements and proposed Condition of Certification GEO-1 and Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1.
Dynamic Compaction

Dynamic compaction of soils results when relatively unconsolidated granular materials experience vibration associated with seismic events. The vibration causes a decrease in soil volume, as the soil grains tend to rearrange into a more dense state (an increase in soil density). The decrease in volume can result in settlement of overlying structural improvements.

In order to estimate the amount of post-earthquake settlement of site soils, Ninyo & Moore used seismically induced cyclic stress ratios and corrected blow counts (N-values) to calculate the potential volumetric strain of the soil (Ninyo 2013). Their analysis indicated that seismically induced settlement at the project site would be approximately 2 inches or less.

The potential for and mitigation of the effects of dynamic compaction of proposed site soils during an earthquake should be addressed in a project-specific geotechnical report, per CBC 2013 requirements and proposed Conditions of Certification GEO-1, and Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1. Common mitigation methods would include deep foundations (driven piles; drilled shafts) for severe conditions, geogrid reinforced fill pads for moderate severity and over-excavation and replacement for areas of minimal hazard.

Compressible Soils

Compressible soils are generally those soils that undergo consolidation when exposed to new loading, such as fill placement or building construction. Buildings, structures and other improvements may be subject to excessive settlement-related distress when built above compressible soils. Settlement of sufficient magnitude to cause significant structural damage is normally associated with rapidly deposited alluvial soils.

The potential for and mitigation of the effects of consolidation of site soils should be addressed in a project-specific geotechnical report, per CBC 2013 requirements and proposed Condition of Certification GEO-1, and Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1. Typical mitigation measures would include over-excavation/replacement, mat foundations or deep foundations, depending on severity and foundation loads.

Expansive Soils

Soil expansion occurs when clay-rich soils with an affinity for water exist in-place at a moisture content below their plastic limit. The addition of moisture from irrigation, precipitation, capillary tension, water line breaks, etc. causes the clay soils to absorb water molecules into their structure, which in turn causes an increase in the overall volume of the soil. This increase in volume can correspond to excessive movement (heave) of overlying structural improvements. The potential for and mitigation of the effects of expansive soils on the proposed site should be addressed in a project-specific geotechnical report, per CBC 2013 requirements and proposed Conditions of Certification GEO-1, and Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1. Mitigation would normally be accomplished by over-excavation and
replacement of the expansive soils. For deep-seated conditions, deep foundations are commonly used. Lime-treated (chemical modification) is often used to mitigate expansive clays in pavement areas.

Corrosive Soils

The project site is located in a geologic environment that could potentially contain soils that are corrosive to concrete and metals. Corrosive soils are defined as having earth materials with more than 500 ppm chlorides, a sulfate concentration of 0.20 percent (i.e., 2,000 ppm) or more, a pH of less than 5.5, or an electrical resistivity of less than 1,000 ohm-centimeters.

Corrosive soil conditions may exacerbate the corrosion hazard to buried conduits, foundations, and other buried concrete or metal improvements. Corrosive soil could cause premature deterioration of underground structures or foundations. Constructing project improvements on corrosive soils could have a significant impact to the project.

Laboratory testing of soils collected during the geotechnical evaluation conducted for ESEC Units 5-8 indicate that soils in the project area may be classified as non-corrosive (Ninyo 2010). As that evaluation was conducted on the property adjacent to the proposed project site, the potential for and mitigation of the effects of corrosive soils on the project site should be addressed in a project-specific geotechnical report, per CBC 2013 requirements and proposed Conditions of Certification GEO-1, and **Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1**. Mitigation of corrosive soil conditions may involve the use of concrete resistant to sulfate exposure. Corrosion protection for metals may be needed for underground foundations or structures in areas where corrosive groundwater or soil could potentially cause deterioration. Typical mitigation techniques include epoxy and metallic protective coatings, the use of alternative (corrosion resistant) materials, and selection of the appropriate type of cement and water/cement ratio.

Landslides

Landslides occur when masses of rock, earth, or debris move down a slope, including rock falls, deep failure of slopes, and shallow debris flows. Landslides are influenced by human activity (mining and construction of buildings, railroads, and highways) and natural factors (geology, precipitation, and topography). Frequently, they accompany other natural hazards. Although landslides sometimes occur during earthquake activity, earthquakes are rarely their primary cause.

The most common cause of a landslide is an increase in the down slope gravitational stress applied to slope materials (oversteepening). This may be produced either by natural processes or human activities. Undercutting of a valley wall by stream erosion is a common way in which slopes may be naturally oversteepened. Other ways include excessive rainfall or irrigation on a cliff or slope.

A cut slope approximately 70 feet high makes up the eastern border of the site. This slope is heavily vegetated and is cut into semi-consolidated dune sand. The toe of the slope is supported by an approximately 3-foot-high concrete retaining wall, which also
bears a number of pipes associated with the facility. The southern end of the slope includes two additional retaining walls, each about 5 feet high, stepped up the slope. These higher walls appear to terminate to the north just about at the southern end of Units 5 through 8. The potential for and mitigation of the effects of landslides on the proposed site should be addressed in a project-specific geotechnical report, per CBC 2013 requirements and proposed Conditions of Certification GEO-1, and Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1.

Tsunamis and Seiches

Tsunamis are large-scale seismic-sea waves caused by offshore earthquakes, submarine landslides and/or volcanic activity. Seiches are waves generated within enclosed water bodies such as bays, lakes or reservoirs caused by seismic shaking, rapid tectonic uplift, basin bottom displacement and/or land sliding.

A tsunami can be categorized as local, regional, or Pacific-wide. Those terms describe the potential destruction relative to the tsunami source area.

Local (near-source) tsunamis occur soon after the generating event and allow little time for warning and evacuations. Their impact may be large, but in a limited area. For example, in 1958, waves from a local tsunami in Lituya, Alaska ran up 485 meters, but destruction was focused on a small area.

Regional (intermediate) tsunamis are by far the most common. Destruction may be limited because the energy released was not sufficient to generate a destructive Pacific-wide tsunami, or because the source area limited the destructive potential of the tsunami. These events can occur within 15 minutes to 2 hours after the generating event. Areas affected by the tsunamis may not have felt the generating event.

Pacific-wide (distant source) tsunamis are much less frequent, but have a far greater destructive potential. The waves are not only larger initially, but they subject distant coastal areas to their destructive impact as they cross the Pacific basin. For example, the Chilean tsunami of May 22, 1960, spread death and destruction across the Pacific from Chile to Hawaii, Japan, and the Philippines. These events may have long lead times (up to 6 hours), but the breadth of the destruction is wide (OES 1998).

All of coastal California is at risk from tsunamis (CSSC 2005). Eighty-two possible or confirmed tsunamis have been observed or recorded in California during historic times. Most of these events were small and only detected by tide gages. Eleven were large enough to cause damage and four events caused deaths (CSSC 2005). Two tsunami events caused major damage.

Tsunamis that damaged California’s coast have come from all around the Pacific basin including South America and Alaska. However, damaging tsunamis can also be caused by local offshore faults or coastal and submarine landslides. These local sources have the potential to cause locally greater wave heights and do pose a threat to the state. The largest historic local-source tsunami on the west coast was caused by the 1927 Point Arguello, California, earthquake that produced waves of about 7 feet in the nearby coastal area (CSSC 2005).
Studies have been conducted to evaluate the potential generation of tsunamis from earthquakes originating in the inner Continental Borderland (Legg 2002). These studies indicate that the Catalina fault is the most likely source of local tsunami generation. The Catalina fault is the northern continuation of the San Diego Trough fault zone discussed above (Ryan 2012). Near Catalina, the fault changes orientation to a more westerly trend forming a restraining bend. At this bend, crustal compression occurs and subsequent deformation creates uplift. Depending on the amount of underwater crustal uplift that takes place, a tsunami could be generated. Additionally, amplification of the wave form can occur due to ocean floor bathymetry causing wave refraction and constructive interference or wave amplification (Legg 2002). Areas considered susceptible to tsunami wave amplification include the coast from Los Angeles and Long Beach harbors to Newport Beach. Legg further states “proximity to the coastal zone of urban Los Angeles and Orange Counties, orientation so as to direct tsunami energy towards the southern California coast and size of seafloor uplift (exceeding 1,300 square kilometers and almost 2,000 meters of seafloor relief) suggests that the Santa Catalina Island restraining bend represents the most serious local tsunami threat to coastal southern California” (Legg 2002). Based on detailed earthquake modeling using variable earthquake scenarios, Legg determined the maximum runup of a tsunami in the project area caused by an earthquake on the Catalina Island restraining bend would have a height between 1.5 to 2.2 meters (5 to 7.2 feet) (Legg 2002).

In addition to tsunamis generated by earthquake rupture of the seafloor, the possibility that major tsunamis could be generated by massive submarine slumps was recognized a century ago (Synolakis 2002). In more recent years, a variety of studies has supported the scenario of the generation of a major tsunami by a large submarine mass failure, itself induced or triggered by a large earthquake in a coastal area. In addition to the classical documented cases of Grand Banks in 1929, Kalapana, Hawaii in 1975 and the ongoing speculation about the great 1946 Aleutian tsunami, careful analyses of run-up patterns along shorelines often reveal a peaked distribution, with very intense and localized maxima, generally attributed to a local submarine mass failure, against the background of a more regular wave amplitude reflecting the coseismic dislocation (Synolakis 2002). This would be the case, in particular, for localities in Prince William Sound during the great 1964 Alaska earthquake, at Riangkroko during the 1992 Flores, Indonesia event, and during the recent Izmit, Turkey earthquake (Yalciner et al. 1999). This scenario can also explain minor tsunamis during strike–slip earthquakes on nearby on-land faults, for example, following the 1989 Loma Prieta earthquake (Ma et al. 1991). It is clear that the exact timing of failure in this framework is variable, but delays of a few minutes to a few tens of minutes could easily be attributed to the complex nucleation of a failure plane in metastable sediment, or to a mild secondary trigger (aftershock) tipping a precarious balance (Murty 1979).

Characteristics of tsunamis generated by the two kinds of sources can be compared in very general terms by considering the vertical deformation of the sea floor caused by either event. Catastrophic earthquakes can result in coherent surface rupture over long distances (Kanamori 1975) with vertical displacement usually reaching several meters (Plafker 1965). Tsunamis generated by seafloor displacement caused by earthquakes typically have long wavelengths and long periods and have a high potential for transoceanic travel and subsequent impact to distant shores. Conversely, the linear
dimension of an underwater landslide rarely exceeds 100 km (Piper 1987). However the areal dimension of the sliding mass could easily reach hundreds of square meters (Piper 1987). Tsunamis caused by submarine mass failures are more geographically contained, although they may give rise to higher amplitudes in the local field (Plafker 1969).

Current research has demonstrated that modeling of landslide tsunami hazards requires information and data from seismology, marine geology, geotechnical engineering and hydrodynamics (Bardet 2003). The outcomes of hydrodynamic simulations were found to depend largely on the assumptions made on the geological and geotechnical processes governing mass failures. These discoveries raised fundamental issues in the modeling of tsunamis, especially about the prediction of future mass failure events.

Thirty years of surveys have shown that the slopes of the southern California Borderland contain a large number of landslide deposits (Lee 2009). The submarine landslide most likely to affect the ESEC site is the Palos Verdes debris avalanche. The Palos Verdes debris avalanche occurs on one of the steepest slopes in the Los Angeles offshore region (Lee 2000). Should it catastrophically reactivate, the Palos Verdes debris avalanche would likely cause a tsunami run-up of up to 3 meters (10 feet) over a 30 kilometer (18 mile) long stretch of low-lying coastline (Lee 2009).

The California Geological Survey has published tsunami inundation maps for the entire California coastline (CGS 2009). Initial tsunami modeling was performed by the University of Southern California (USC) Tsunami Research Center funded through the California Emergency Management Agency (CalEMA) by the National Tsunami Hazard Mitigation Program. A suite of tsunami source events was selected for modeling, representing realistic local and distant earthquakes and hypothetical extreme undersea, near-shore landslides. Local tsunami sources that were considered include offshore reverse-thrust faults, restraining bends on strike-slip fault zones and large submarine landslides capable of significant seafloor displacement and tsunami generation. Distant tsunami sources that were considered include great subduction zone events that are known to have occurred historically (1960 Chile and 1964 Alaska earthquakes) and others which can occur around the Pacific Ocean “Ring of Fire.”

As a disclaimer, the map states that it is not a legal document and does not meet disclosure requirements for real estate transactions nor for any other regulatory purpose (CGS 2009). However, the inundation map has been compiled with best currently available scientific information. The inundation line represents the maximum considered tsunami run-up from a number of extreme, yet realistic, tsunami sources. The map indicates that the areas in the site vicinity that are situated at elevations less than 7 feet above sea level could be inundated by a tsunami (GEOLOGY AND PALEONTOLOGY - FIGURE 7).

Based on modeling a dozen distant and local “worst case” sources, and modeling at MHW (Mean High Water) conditions, CGS determined that the maximum flood elevations from the modeling in the area of the project are about 11 feet above MSL (Mean Sea Level). The two sources that could produce this maximum flood level are a magnitude 7.6 earthquake from the Catalina 7 local scenario and a magnitude 9.2
earthquake from the Alaska-Aleutians 3 scenario. The beach heights in the project area are very close to 11 feet MSL. Again, the worst-case scenario is that tsunami flood elevations could reach 11 feet MSL near the site but it would take quite large events to produce such flooding (CEC 2013). Therefore, it is unlikely that the project would be affected by tsunami during its design life.

U.S. Building codes generally have not addressed the subject of designing structures in tsunami zones. FEMA’s Coastal Construction Manual (FEMA 55), developed to provide design and construction guidance for residential structures built in coastal areas, addresses seismic loads for coastal structures and provides information on tsunami and associated loads (CSSC 2005). FEMA 55 cites ASCE Standard ASCE 7-10, *Minimum Design Loads for Buildings and Other Structures* as the reference to be consulted during design of structures. ASCE 7-10 is codified in CBC 2013.

A seiche is a standing wave in an enclosed or partially enclosed body of water. The effect is caused by resonances in a body of water that has been disturbed by one or more of a number of factors, most often meteorological effects (wind and atmospheric pressure variations), seismic activity or by tsunamis. Seiches and seiche-related phenomena have been observed on lakes, reservoirs, swimming pools, bays, harbors and seas. The key requirement for formation of a seiche is that the body of water be at least partially bounded, allowing the formation of the standing wave. There are no standing bodies of water in the project vicinity. The elevated surface of the project site would isolate the project from any perceived inundation and the likelihood of a seiche or a tsunami impacting the site is considered low.

The potential for and mitigation of the effects of tsunami or seiche caused inundation on the proposed site should be addressed in a project-specific geotechnical report, per CBC 2013 requirements and proposed Conditions of Certification GEO-1, and Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1. Mitigation of tsunami run-up hazards includes structural and civil engineering evaluation, strengthening of seafront structures and providing emergency warning systems. Structural reinforcement at the site can be included for tsunami protection, as deemed appropriate at the detailed design stage by the project structural engineer.

OPERATION IMPACTS AND MITIGATION

Operation of the proposed plant facilities should not have any adverse impact on geologic, mineralogic, or paleontologic resources. Once the plant is constructed and operating, there would be no further disturbances that could affect these resources.

Potential geologic hazards, including strong ground shaking, ground subsidence, liquefaction, settlement due to compressible soils, hydrocompaction, or dynamic compaction, corrosive soils and the possible presence of expansive clay soils can be effectively mitigated through facility design such that these potential hazards should not affect future operation of the facility. Compliance with Condition of Certification GEO-1, and Conditions of Certification GEN-1, GEN-5 and CIVIL-1 in the Facility Design section would ensure the project is constructed to current seismic building standards.
and potential impacts would be mitigated in accordance with current standards of engineering practice.

CUMULATIVE IMPACTS AND MITIGATION

No geologic and mineralogic resources have been identified in the project area. The site has not been identified as containing a significant mineral deposit that should be protected. Development of this project is not expected to lead to a significantly cumulative effect on geologic and mineralogic resources within the project area.

The PRR for paleontological monitoring conducted during construction operations on the other half of the ESGS property (ESEC Units 5 through 8), documents the discovery of 251 whole and partial fossil specimens. It is highly likely that similar conditions and similar discoveries will be made during construction of ESPFM units 9 through 12.

If significant paleontological resources are uncovered during construction of ESPFM units 9 through 12, they would be protected and preserved in accordance with Conditions Of Certification PAL-1 through PAL-8. These conditions would also mitigate any potential cumulative impacts.

The proposed ESPFM would be situated in an active geologic environment. Strong ground shaking potential must be mitigated through foundation and structural design as required by the CBC 2013. The potential for lateral spreading and liquefaction must be addressed and mitigated through appropriate facility design. Compressible soils and soils that may be subject to settlement due to dynamic compaction, must be addressed and mitigated in accordance with a design-level geotechnical investigation as required by the CBC 2013, and proposed Conditions of Certification GEO-1, and Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1.

FACILITY CLOSURE

Future facility closure activities would not be expected to impact geologic or mineralogic resources since no such resources are known to exist at either the project location or along its proposed linear. In addition, the decommissioning and closure of the proposed project should not negatively affect geologic, mineralogic, or paleontologic resources since the majority of the ground disturbed during plant decommissioning and closure would have been already disturbed, and mitigated as required, during construction and operation of the project.

CONCLUSIONS

The petitioner would be able to comply with applicable LORS, provided that the proposed Conditions of Certification are followed. The proposed design and construction of the project should have no adverse impact with respect to geologic, mineralogic, and paleontologic resources. Staff proposes to ensure compliance with applicable LORS through the adoption of the proposed Conditions of Certification listed below.
The El Segundo Energy Center (ESEC) site is located in a geologically active area along the coast of Southern California.

The site is not underlain by an active fault and the site is not subject to surface fault rupture. The site’s most proximal known active fault is a segment of the Palos Verdes fault which is located approximately five miles south of the proposed project site. Numerous other active faults are located in both the onshore and offshore vicinity of the project site.

Because of its geologic setting, the site could be subject to very strong levels of earthquake-related ground shaking. The significant effects of strong ground shaking on the ESPFM structures must be mitigated through structural designs required by the most recent edition of the California Building Code (currently CBC 2013). CBC 2013 requires that structures be designed to resist seismic stresses from anticipated maximum ground acceleration.

In addition to strong seismic shaking, the project may be subject to soil failure caused by liquefaction and/or dynamic compaction. A design-level geotechnical investigation required for the project by the CBC 2013, and proposed Conditions of Certification GEO-1 and proposed Facility Design Conditions of Certification GEN-1, GEN-5 and CIVIL-1, would present standard engineering design requirements for mitigation of strong seismic shaking, liquefaction and potential excessive settlement due to dynamic compaction.

While not likely to occur during the project design life, the site is subject to inundation by tsunami. U.S. Building codes generally have not addressed the subject of designing structures in tsunami zones (Reynolds 2013). FEMA’s Coastal Construction Manual (FEMA 55), developed to provide design and construction guidance for structures built in coastal areas, addresses seismic loads for coastal structures and provides information on tsunami and associated loads (CSSC 2005).

Petroleum is the only economic geologic resource in the project vicinity. The project site is located approximately one mile west of the El Segundo Oil Field and one-half mile south of a single producing oil well owned by Occidental Petroleum. Other than petroleum, there are no known viable minerologic or geologic resources at the proposed ESEC site.

The project site is highly disturbed and partially covered by artificial fill. No significant paleontological resources were reported by the applicant’s paleontologist during the paleontological archive and literature reviews. Paleontological monitoring was conducted by the project owner during recent construction of the adjacent ESEC property. The results of that monitoring were compiled and presented in the Paleontological Resources Report (PRR). The PRR documents the discovery of 251 valuable paleontological resources during construction of ESEC Units 5-8.

Similar to the discoveries made during construction of ESEC Units 5-8, paleontological resources are expected to be discovered during construction of the proposed project. Potential impacts to paleontological resources due to construction activities would be
mitigated through worker training and monitoring by qualified paleontologists, as required by proposed Conditions of Certification PAL-1 through PAL-8.

Based on this information, Energy Commission staff believes that the potential adverse cumulative impacts to project facilities from geologic hazards during its design life are less than significant. Similarly, staff believes the potential adverse cumulative impacts to potential geologic, mineralogic, and paleontologic resources from the construction, operation, and closure of the proposed project, if any, are less than significant. It is staff’s opinion that the proposed ESPFM can be designed and constructed in accordance with all applicable laws, ordinances, regulations, and standards (LORS), and in a manner that both protects environmental quality and assures public safety.

PROPOSED CONDITIONS OF CERTIFICATION

The conditions of certification presented in the Final Decision remain applicable to this amended project. In addition, staff has proposed modifications to some of the conditions of certification as shown below. (Note: Deleted text is in strikethrough, new text is bold and underlined). Condition of Certification PAL-7 has been modified with proposed language that clarifies the responsibility of the PRS to describe the sensitivity and significance of discovered paleontological resources in the Paleontological Resources Report (PRR) required in PAL-7. Proposed Condition of Certification PAL-8 has been added to assure that the components described in the Paleontological Resources Monitoring and Mitigation Plan (PRMMP), (required in PAL-3) is adequately performed.

General Conditions of Certification with respect to engineering geology are proposed under Conditions of Certification GEN-1, GEN-5, and CIVIL-1 in the Facility Design section and in GEO-1 of this section. Proposed Paleontological Conditions of Certification follow in PAL-1 through PAL-8.

It is staff’s opinion that the likelihood of encountering paleontologic resources could be high in areas where native Pleistocene age deposits occur. Staff would consider reducing monitoring intensity, at the recommendation of the project PRS, following examination of sufficient, representative excavations that fully describe site stratigraphy.

GEO-1 A Soils Engineering Report as required by Section 1803 of the California Building Code (CBC 2013), shall specifically include laboratory test data, associated geotechnical engineering analyses, and a thorough discussion of seismicity; liquefaction; dynamic compaction; compressible soils; corrosive soils; and tsunami. In accordance with CBC 2013, the report should also include recommendations for ground improvement and/or foundation systems necessary to mitigate these potential geologic hazards, if present.

Verification: The project owner shall include in the application for a grading permit a copy of the Soils Engineering Report which addresses the potential for strong seismic shaking; liquefaction; dynamic compaction; settlement due to compressible soils; corrosive soils; and tsunami, and a summary of how the results of the analyses were incorporated into the project foundation and grading plan design for review and comment by the Chief Building Official (CBO). A copy of the Soils Engineering Report,
application for grading permit and any comments by the CBO are to be provided to the CPM at least 30 days prior to grading.

PAL-1 The project owner shall provide the compliance project manager (CPM) with the resume and qualifications of its paleontological resource specialist (PRS) for review and approval. If the approved PRS is replaced prior to completion of project mitigation and submittal of the paleontological resources report (PRR), the project owner shall obtain CPM approval of the replacement PRS. The project owner shall keep resumes on file for qualified paleontological resources monitors (PRMs). If a PRM is replaced, the resume of the replacement PRM shall also be provided to the CPM for review and approval.

The PRS resume shall include the names and phone numbers of references. The resume shall also demonstrate to the satisfaction of the CPM the appropriate education and experience to accomplish the required paleontological resource tasks.

As determined by the CPM, the PRS shall meet the minimum qualifications for a vertebrate paleontologist as described in the Standard Procedures for the Assessment and Mitigation of Adverse Impacts to Paleontological Resources by the Society of Vertebrate Paleontology (SVP 2010). The experience of the PRS shall include the following:

1. Institutional affiliations, appropriate credentials, and college degree;
2. Ability to recognize and collect fossils in the field;
3. Local geological and biostratigraphic expertise;
4. Proficiency in identifying vertebrate and invertebrate fossils; and
5. At least three years of paleontological resource mitigation and field experience in California and at least one year of experience leading paleontological resource mitigation and field activities.

The project owner shall ensure that the PRS obtains qualified paleontological resource monitors to monitor as he or she deems necessary on the project. Paleontologic resource monitors (PRMs) shall have the equivalent or combination of the following qualifications approved by the CPM:

- BS or BA degree in geology or paleontology and one year of experience monitoring in California; or
- AS or AA in geology, paleontology, or biology and four years’ experience monitoring in California; or
- Enrollment in upper division classes pursuing a degree in the fields of geology or paleontology and two years of monitoring experience in California.
Verification:
(1) At least 60 days prior to the start of ground disturbance, the project owner shall submit a resume and statement of availability of its designated PRS for on-site work to the CPM, whose approval must be obtained.

(2) At least 20 days prior to ground disturbance, the PRS or project owner shall provide a letter with resumes naming anticipated PRMs for the project. The letter shall state that the identified monitors meet the minimum qualifications for paleontological resource monitoring as required by this condition of certification. If additional monitors are obtained during the project, the PRS shall provide additional letters and resumes to the CPM. The letter shall be provided to the CPM for approval no later than one week prior to the monitor’s beginning on-site duties.

(3) Prior to any change in the PRS, the project owner shall submit the resume of the proposed new PRS to the CPM for review and approval.

PAL-2 The project owner shall provide to the PRS and the CPM, for approval, maps and drawings showing the footprint of the power plant, construction lay down areas, and all related facilities. Maps shall identify all areas of the project where ground disturbance is anticipated. If the PRS requests enlargements or strip maps for linear facility routes, the project owner shall provide copies to the PRS and CPM. The site grading plan and the plan and profile drawings for the utility lines would be acceptable for this purpose. The plan drawings should show the location, depth, and extent of all ground disturbances and be at a scale between 1 inch = 40 feet and 1 inch = 100 feet. If the footprint of the project or its linear facilities change, the project owner shall provide maps and drawings reflecting those changes to the PRS and CPM.

If construction of the project proceeds in phases, maps and drawings may be submitted prior to the start of each phase. A letter identifying the proposed schedule of each project phase shall be provided to the PRS and CPM. Before work commences on affected phases, the project owner shall notify the PRS and CPM of any construction phase scheduling changes.

At a minimum, the project owner shall ensure that the PRS or PRM consults weekly with the project superintendent or construction field manager to confirm area(s) to be worked the following week, until ground disturbance is completed.

Verification:
(1) At least 30 days prior to the start of ground disturbance, the project owner shall provide the maps and drawings to the PRS and CPM.

(2) If there are changes to the footprint of the project, revised maps and drawings shall be provided to the PRS and CPM at least 15 days prior to the start of ground disturbance.

(3) If there are changes to the scheduling of the construction phases, the project owner shall submit a letter to the CPM within 5 days of identifying the changes.
The project owner shall ensure that the PRS prepares a Paleontological Resources Monitoring and Mitigation Plan (PRMMP) and submits the PRMMP to the CPM for review and approval. Approval of the PRMMP by the CPM shall occur prior to any ground disturbance. The PRMMP shall function as the formal guide for monitoring, collecting, and sampling activities, and may be modified with CPM approval. The PRMMP shall be used as the basis of discussion when on-site decisions or changes are proposed. Copies of the PRMMP shall include all updates and reside with the PRS, each monitor, the project owner’s on-site manager, and the CPM.

The PRMMP shall be developed in accordance with the guidelines of the Society of Vertebrate Paleontology (SVP 2010) and shall include, but not be limited, to the following:

1. Assurance that the performance and sequence of project-related tasks, such as any literature searches, pre-construction surveys, worker environmental training, fieldwork, flagging or staking, construction monitoring, mapping and data recovery, fossil preparation and collection, identification and inventory, preparation of final reports, and transmittal of materials for curation will be performed according to PRMMP procedures;

2. Identification of the person(s) expected to assist with each of the tasks identified within the PRMMP and these conditions of certification;

3. A thorough discussion of the anticipated geologic units expected to be encountered, the location and depth of the units relative to the project when known, and the known sensitivity of those units based on the occurrence of fossils either in that unit or in correlative units;

4. An explanation of why sampling is needed, a description of the sampling methodology, and how much sampling is expected to take place in which geologic units. Include descriptions of different sampling procedures that shall be used for fine-grained and coarse-grained units;

5. A discussion of the locations of where the monitoring of project construction activities is deemed necessary, and a proposed plan for monitoring and sampling at these locations;

6. A discussion of procedures to be followed: (a) in the event of a significant fossil discovery, (b) stopping construction, (c) resuming construction, and (d) how notifications will be performed;

7. A discussion of equipment and supplies necessary for collection of fossil materials and any specialized equipment needed to prepare, remove, load, transport, and analyze large-sized fossils or extensive fossil deposits;

8. Procedures for inventory, preparation, and delivery for curation into a retrievable storage collection in a public repository or museum, which meet the Society of Vertebrate Paleontology’s standards and requirements for the curation of paleontological resources;

9. Identification of the institution that has agreed to receive data and fossil materials collected, requirements or specifications for materials delivered for
curation, and how they will be met, and the name and phone number of the contact person at the institution; and

10. A copy of the paleontological conditions of certification.

Verification: At least 30 days prior to ground disturbance, the project owner shall provide a copy of the PRMMP to the CPM. Approval of the PRMMP by the CPM shall occur prior to any ground disturbance. The PRMMP shall include an affidavit of authorship by the PRS, and acceptance of the PRMMP by the project owner evidenced by a signature.

PAL-4 Prior to ground disturbance the project owner and the PRS shall prepare a CPM-approved Worker Environmental Awareness Program (WEAP).

The WEAP shall address the possibility of encountering paleontological resources in the field, the sensitivity and importance of these resources, and legal obligations to preserve and protect those resources. The purpose of the WEAP is to train project workers to recognize paleontologic resources and identify procedures they should follow to ensure there are no impacts to sensitive paleontologic resources. The WEAP shall include:

1. A discussion of applicable laws and penalties under the law;
2. Good quality photographs or physical examples of vertebrate fossils for project sites containing units of high paleontologic sensitivity;
3. Information that the PRS or PRM has the authority to stop or redirect construction in the event of a discovery or unanticipated impact to a paleontological resource;
4. Instruction that employees are to stop or redirect work in the vicinity of a find and to contact their supervisor and the PRS or PRM;
5. An informational brochure that identifies reporting procedures in the event of a discovery;
6. A WEAP certification of completion form signed by each worker indicating that he/she has received the training; and
7. A sticker that shall be placed on hard hats indicating that environmental training has been completed.

The Project Owner shall also submit the training script and, if the project owner is planning to use a video for training, a copy of the training video with the set of reporting procedures for workers to follow that will be used to present the WEAP and qualify workers to conduct ground disturbing activities that could impact paleontologic resources.

Verification:

(1) At least 30 days prior to ground disturbance, the project owner shall submit to the CPM for review and comment the draft WEAP, including the brochure and sticker. The submittal shall also include a draft training script and, if the project owner is planning to
use a video for training, a copy of the training video with the set of reporting procedures for workers to follow.

(2) At least 15 days prior to ground disturbance, the project owner shall submit to the CPM for approval the final WEAP and training script.

PAL-5 No worker shall excavate or perform any ground disturbance activity prior to receiving CPM-approved WEAP training by the PRS, unless specifically approved by the CPM.

Prior to project kick-off and ground disturbance the following workers shall be WEAP trained by the PRS in-person: project managers, construction supervisors, foremen, and all general workers involved with or who operate ground-disturbing equipment or tools. Following project kick-off, a CPM-approved video or in-person training may be used for new employees. The training program may be combined with other training programs prepared for cultural and biological resources, hazardous materials, or other areas of interest or concern. A WEAP certification of completion form shall be used to document who has received the required training.

Verification:

(1) In the Monthly Compliance Report (MCR), the project owner shall provide copies of the WEAP certification of completion forms with the names of those trained and the trainer or type of training (in-person and/or video) offered that month. An example of a suitable WEAP certification completion form is provided below. The MCR shall also include a running total of all persons who have completed the training to date.

(2) If the project owner requests an alternate paleontological WEAP trainer, the resume and qualifications of the trainer shall be submitted to the CPM for review and approval prior to installation of an alternate trainer. Alternate trainers shall not conduct WEAP training prior to CPM authorization.

PAL-6 The project owner shall ensure that the PRS and PRM(s) monitor, consistent with the PRMMP, all construction-related grading, excavation, trenching, and augering in areas where potential fossil-bearing materials have been identified, both at the site and along any constructed linear facilities associated with the project. In the event that the PRS determines full-time monitoring is not necessary in locations that were identified as potentially fossil-bearing in the PRMMP, the project owner shall notify and seek the concurrence of the CPM.

The project owner shall ensure that the PRS and PRM(s) have the authority to stop or redirect construction if paleontological resources are encountered. The project owner shall ensure that there is no interference with monitoring activities unless directed by the PRS. Monitoring activities shall be conducted as follows:

1. Any change of monitoring from the accepted schedule in the PRMMP shall be proposed in a letter or email from the PRS and the project owner to the CPM prior to the change in monitoring and be included in the monthly
compliance report. The letter or email shall include the justification for the change in monitoring and be submitted to the CPM for review and approval.

2. The project owner shall ensure that the PRM(s) keep a daily monitoring log of paleontological resource activities. The PRS may informally discuss paleontological resource monitoring and mitigation activities with the CPM at any time.

3. The project owner shall ensure that the PRS notifies the CPM within 24 hours of the occurrence of any incidents of non-compliance with any paleontological resources conditions of certification. The PRS shall recommend corrective action to resolve the issues or achieve compliance with the conditions of certification.

4. For any significant paleontological resources encountered, either the project owner or the PRS shall notify the CPM within 24 hours, or Monday morning in the case of a weekend event, when construction has been stopped because of a paleontological find.

The project owner shall ensure that the PRS prepares a summary of monitoring and other paleontological activities that will be included in each MCR. The summary will include the name(s) of PRS or PRM(s) active during the month, general descriptions of training and monitored construction activities, and general locations of excavations, grading, and other activities. A section of the report shall include the geologic units or subunits encountered, descriptions of samplings within each unit, and a list of identified fossils. A final section of the report will address any issues or concerns about the project relating to paleontologic monitoring, including any incidents of non-compliance or any changes to the monitoring plan that have been approved by the CPM. If no monitoring took place during the month, the report shall include an explanation in the summary as to why monitoring was not conducted.

Verification: The project owner shall ensure that the PRS submits the summary of monitoring and paleontological activities in the MCR. When feasible, the CPM shall be notified 10 days in advance of any proposed changes in monitoring different from that identified in the PRMMP. If there is any unforeseen change in monitoring, the notice shall be given as soon as possible prior to implementation of the change.

PAL-7 The project owner shall ensure preparation of a Paleontologic Resources Report (PRR) by the designated PRS. The PRR shall be prepared following completion of the ground-disturbing activities. The PRR shall include an analysis of the collected fossil materials and related information and submit it to the CPM for review and approval.

The report shall include, but **is not** limited to, a description and inventory of recovered fossil materials; a map showing the location of paleontologic resources encountered; determinations of sensitivity and significance; and **the PRS’ description of sensitivity and significance of those resources** statement by the PRS that project impacts to paleontologic resources have been mitigated below the level of significance.
Verification: Within 90 days after completion of ground-disturbing activities, including landscaping, the project owner shall submit the PRR under confidential cover to the CPM.

PAL-8 The project owner, through the designated PRS, shall ensure that all components of the PRMMP are adequately performed, including collection of fossil material, preparation of fossil material for analysis, analysis of fossils, identification and inventory of fossils, preparation of fossils for curation, and delivery for curation of all significant paleontological resource materials encountered and collected during project construction. The project owner shall pay all curation fees charged by the museum for fossil material collected and curated as a result of paleontological mitigation. The project owner shall also provide the curator with documentation showing the project owner irrevocably and unconditionally donates, gives, and assigns permanent, absolute, and unconditional ownership of the fossil material.

Verification: Within 60 days after the submittal of the PRR, the project owner shall submit documentation to the CPM showing fees have been paid for curation and the owner relinquishes control and ownership of all fossil material.
Certification of Completion
Worker Environmental Awareness Program
EL SEGUNDO ENERGY CENTER (00-AFC-14C)

This is to certify these individuals have completed a mandatory California Energy Commission-approved Worker Environmental Awareness Program (WEAP). The WEAP includes pertinent information on cultural, paleontological, and biological resources for all personnel (that is, construction supervisors, crews, and plant operators) working on site or at related facilities. By signing below, the participant indicates that he/she understands and shall abide by the guidelines set forth in the program materials. Include this completed form in the Monthly Compliance Report.

<table>
<thead>
<tr>
<th>No.</th>
<th>Employee Name</th>
<th>Title/Company</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cultural Trainer: ______________ Signature: ______________ Date: ___/___/____
PaleoTrainer: ______________ Signature: ______________ Date: ___/___/____
Biological Trainer: ______________ Signature: ______________ Date: ___/___/____
REFERENCES

BonTerra 2010 - BonTerra Consulting, Paleontological Resources Assessment, Newport Banning Ranch, Newport Beach, California, February 16, 2010.

CDMG 1994—California Division of Mines and Geology, Fault Activity Map of California and Adjacent Areas with Locations and Ages of Recent Volcanic Eruptions, Scale: 1:750,000.

CDMG 1998, California Division of Mines and Geology, Seismic Hazard Zone Report for the Torrance 7.5-Minute Quadrangle, Los Angeles County, California, 1998.

CDMG 1999a, California Division of Mines and Geology, Seismic Hazard Zone Report for the Venice 7.5-Minute Quadrangle, March 25, 1999.

Easterbrook 2011 - Easterbrook, Don J., The Little Ice Age (1300 A.D. to the 20th century), Magnitude and Range of Climate Change, Dept. of Geology, Western Washington University, January 26, 2011.

Rockwell 1993 – Rockwell, T.K., et. al., Late Quaternary Slip Rates Along the Agua Blanca Fault, Baja California, Mexico: in Geological Investigations of Baja California: South Coast Geological Society, Annual Field Trip Guidebook, No.21, 1993.

Scripps 2012 - Scripps Institution of Oceanography, Climate Change and Sea Level Rise Scenarios for California Vulnerability and Adaptation Assessment, A White Paper from the California Energy Commission’s California Climate Change Center, July 2012.

SVP 1995—Society of Vertebrate Paleontology, Measures for Assessment and Mitigation of Adverse Impacts to Non-Renewable Paleontologic Resources: Standard Procedures.

UCMP 2008—University of California Museum of Paleontology, Paleontology Collection Locality Records Website: http://ucmpdb.berkeley.edu/.

Wilson 2010 – Wilson, Rick, Barberopoulou, Aggeliki, Synolakis, Costas and Miller, Kevin, California Mapping Program, Tsunami Hazard Mapping Efforts, PEER PTHA Meeting power point presentation handout, UC Berkley, June 17, 2010.

GEOLOGY AND PALEONTOLOGY - FIGURE 1
El Segundo Energy Center Amendment (ESEC) - Vicinity Map

PROJECT SITE

SOURCE: April 2013 Petition to Amend, 00-AFC-14, Fig. 1-1, CH2M HILL
GEOLOGY AND PALEONTOLOGY - FIGURE 4
El Segundo Energy Center Amendment (ESEC) - Los Angeles Basin area oil fields
El Segundo Energy Center - Fault Locations

Legend:
- Fault Lines
- Major Roads
- El Segundo Project Boundary

Source: Dept of Conservation, California Geological Survey Seismic Hazard Assessment & Geologic Mapping Programs
GEOLOGY AND PALEONTOLOGY - FIGURE 7
El Segundo Energy Center Amendment (ESEC) - Tsunami Inundation
POWER PLANT EFFICIENCY
Edward Brady

SUMMARY OF CONCLUSIONS

At average project site climatic conditions, the combined cycle Units 9 and 10 would provide 295 megawatts (MW) gross at 53.4 percent efficiency lower heating value (LHV) and the simple cycle Units 11 and 12 would individually provide 58 MW gross of electricity at an overall project fuel efficiency of 42.2 percent LHV, for a total of 411 MW gross. (This site-specific total gross rating is different than that provided in the Petition to Amend, or 449 MW gross [NRG 2013a, Table 1-2A]; the 449 MW figure is a nominal number independent of the average site-specific climatic conditions of 77.8°F and 49.6 percent relative humidity [NRG 2013a, Figure 2-4].) While the project would consume substantial amounts of energy, it would do so in the most efficient manner practicable. It would not create significant adverse effects on energy supplies or resources, would not require additional sources of energy supply, and would not consume energy in a wasteful or inefficient manner. No energy standards apply to this project. Staff therefore concludes that this project would create no significant adverse impacts on energy resources.

No cumulative impacts on energy resources are likely. Facility closure would not likely present significant impacts on electric system efficiency.

INTRODUCTION

One of the responsibilities of the California Energy Commission (Energy Commission) is to make findings on whether the energy use by a power plant, including the proposed Petition to Amend (PTA), would result in significant adverse impacts on the environment, as defined in the California Environmental Quality Act (CEQA). If the Energy Commission finds that the project’s energy consumption creates a significant adverse impact, it must further determine if feasible mitigation measures could eliminate or minimize that impact. In this analysis, staff addresses the inefficient and unnecessary consumption of energy.

In order to determine the Energy Commission’s findings, this analysis examines:

- whether the facility would likely present any adverse impacts upon energy resources; and if so,
- whether these adverse impacts are significant; and if so,
- whether feasible mitigation measures could eliminate those adverse impacts or reduce them to a level of insignificance.

LAWS, ORDINANCES, REGULATIONS, AND STANDARDS

No federal, state, or local/county laws, ordinances, regulations, and standards (LORS) apply to the efficiency of this project.
SETTING

On April 23, 2013, El Segundo Energy Center, L.L.C. (ESEC, LLC) filed the El Segundo Power Facility Modification (ESPFM) PTA with the Energy Commission. This PTA requests to replace the existing older and less energy efficient utility boilers, or Units 3 and 4, at the El Segundo Energy Center (ESEC) with one new and more efficient combined cycle train consisting of one natural gas combustion turbine generator (CTG), one heat recovery steam generator (HRSG) and one steam turbine generator (STG), and two new, more efficient simple cycle CTGs. The PTA also proposes the replacement of a once-through seawater cooling system with dry-cooling technology. The new combined cycle is designated Unit 9 for the CTG and Unit 10 for the HRSG and STG. The two simple cycle gas turbines are designated Units 11 and 12. Under this PTA, the combined capacity of the new power complex is sized to replace and allow the decommissioning of four existing steam boilers (Units 3 and 4).

The combined cycle train is designed for quick start intermediate duty and the two simple cycle gas turbines are designed for peaker duty. The combined cycle train would use a rapid start technology capable of reaching 70 percent capacity (207 MW) in 10 minutes and an air-cooled condenser designed to eliminate once-through cooling currently in use by the existing Units 3 and 4. The project owner proposes a GE Frame 7FA natural gas combined cycle train, incorporating a 7FA.05 CTG with a dual pressure HRSG. The two natural gas simple cycle peakers would be Rolls Royce Trent 60 DLE ISI¹ aero-derivative CTGs.

Natural gas fuel would be provided from the existing gas service, delivering 450 psig (pounds per square inch gauge) natural gas to Unit 9 and 850 psig natural gas to Units 11 and 12. The natural gas would be used to fuel the three combustion turbines, and the duct heater and auxiliary boiler serving the combined cycle train. Heat from the steam turbine generator would be rejected through the dry air cooler, or air-cooled condenser.

ASSESSMENT OF IMPACTS

METHOD AND THRESHOLD FOR DETERMINING THE SIGNIFICANCE OF ENERGY RESOURCES

CEQA guidelines state that the environmental analysis “…shall describe feasible measures which could minimize significant adverse impacts, including where relevant, inefficient and unnecessary consumption of energy” (California Code of Regulations, Title 14, §15126.4[a][1]). Appendix F of the guidelines further suggests consideration of such factors as the project’s energy requirements and energy use efficiency; its effects on local and regional energy supplies and energy resources; its requirements for additional energy supply capacity; its compliance with existing energy standards; and any alternatives that could reduce the wasteful, inefficient, and unnecessary consumption of energy (CCR, Title 14, §15000 et seq., Appendix F).

¹ DLE: Dry Low Emissions. ISI: Inlet Spray Intercooling (NRG 2013a, §2.2.1).
The inefficient and unnecessary consumption of energy, in the form of non-renewable fuels such as natural gas and oil, constitutes an adverse environmental impact. An adverse impact can be considered significant if it results in:

- Adverse effects on local and regional energy supplies and energy resources;
- A requirement for additional energy supply capacity;
- Noncompliance with existing energy standards; or
- The wasteful, inefficient, and unnecessary consumption of fuel or energy.

PROJECT ENERGY REQUIREMENTS AND ENERGY USE EFFICIENCY

Any power plant large enough to fall under Energy Commission siting jurisdiction (50 MW or greater) will, by definition, consume large amounts of energy. Under normal conditions the new Units 9-12, or ESPFM, would burn natural gas at a maximum rate of approximately 2,939 million British thermal units (mmBtu) per hour at LHV, during peak load operation (NRG 2013a, Tables 2-2 and 2-3). This is a substantial rate of energy consumption that could potentially impact energy supplies. However, because the new combined cycle Units 9 and 10 and the two simple cycle Units 11 and 12 would be more efficient than the gas-fired generation systems they replace, this is a reduction in the project’s required natural gas quantities.

The natural gas required for the combined cycle and simple cycle trains would be provided from the existing metering station currently feeding the project (NRG 2013a, §2.2.5), filtered and compressed to 450 psig for the GE Frame 7FA gas turbine and 850 psig each for Units 11 and 12. In addition to the three CTGs, natural gas would be heated from 245°F to 365°F in the HRSG duct heater, acting as a medium for the economizer bleed. The auxiliary boiler would be used to pre-heat the fuel gas until the economizer bleed operating temperature is reached. According to the project owner, no changes would be required to the existing ESEC natural gas supply pipelines furnished by Southern California Gas Company (SoCalGas), given the existing boilers of Units 3 and 4 are less efficient than the proposed Units 9 through 12. Thus, the existing pipeline would be adequate to provide the needed quantities of fuel for the facility incorporating the proposed units.

ADVERSE EFFECTS ON ENERGY SUPPLIES AND RESOURCES

The project owner has described its source of natural gas to operate the project (NRG 2013a, § 2.2.5). The existing natural gas pipeline to the ESEC is provided by SoCalGas. The SoCalGas natural gas pipeline system appears to be suited to supply natural gas to the project. The SoCalGas system draws from extensive supplies originating in the Southwest and in Canada, and is capable of delivering the gas that the project would require to operate. This natural gas supply is a reliable source of natural gas for the project. It is therefore unlikely that the project would create a substantial adverse impact on natural gas supplies.

ADDITIONAL ENERGY SUPPLY REQUIREMENTS

Natural gas fuel would be supplied to the project by SoCalGas from the existing natural gas metering station (NRG 2013a, § 2.2.5). Units 9-12 are principally designed to
replace the power currently generated by Units 3-4, similar to the replacement scheme where Units 1 and 2 were replaced by Units 5 through 7 in the original ESEC project. The combined fuel demand for the original Units 1 through 4 provides 1,020 MW net (NRG 2013a, § 2.1, Table 1-2A). The fuel demand for the ESPFM would be enough to generate a total of 995 MW net, slightly less than the original plant capacity of 1,020 MW, resulting in a slight reduction in fuel consumption. This amount of fuel would be further reduced due to the new, more efficient machines (CTGs and STGs) proposed in the PTA, as compared to the older utility boilers referred to as Units 1-4. Thus, no additional energy supplies would be required.

COMPLIANCE WITH ENERGY STANDARDS
No standards apply to the efficiency of the ESEC project or other non-cogeneration projects.

ALTERNATIVES TO REDUCE WASTEFUL, INEFFECTIVE, AND UNNECESSARY ENERGY CONSUMPTION
The project could be deemed to create significant adverse impacts on energy resources if alternatives were available that could reduce the project’s fuel use. The evaluation of alternatives to the project (that could reduce wasteful, inefficient, or unnecessary energy consumption) first requires the examination of the project’s energy consumption. Project fuel efficiency, and therefore its rate of energy consumption, is determined by both the configuration of the power producing system and the selection of equipment used to generate its power. As discussed above, the replacement of Units 3-4 with Units 9-12 exercises a transition to new equipment with higher efficiency.

Project Configuration
The plant would employ one General Electric Frame 7FA CTG (combustion turbine generator) which would consume natural gas, one dual pressure HRSG (heat recovery steam generator) equipped with duct burners[^2], and one condensing STG (steam turbine generator) in a one-on-one combined cycle configuration (NRG 2013a, § 2.2.1). Electricity would be generated by the gas turbine and by the steam turbine operating on heat energy recovered from the gas turbine’s exhaust. By recovering this heat, which would otherwise be lost up the exhaust stack, the efficiency of any combined cycle power plant is increased from that of either a gas turbine or a steam turbine operating alone. This configuration is well suited to the large, steady loads met by a base load plant that generates energy efficiently over long periods of time.

The project owner proposes to use a rapid response technology in order to use the combined cycle in a fast start mode having the ability to reach 75 percent capacity in ten minutes and 100 percent capacity in 85 minutes (NRG 2013a, § 2.2.7). This assumes that the STG would be capable of reaching full capacity in 45 minutes from hot start condition, 85 minutes in warm start condition, and 125 minutes from cold standby condition. An auxiliary steam boiler would provide steam to reach economizer temperatures more quickly. The ESPFM is designed to produce intermediate and peak

[^2]: duct burners would also consume natural gas
electricity and ancillary load-following services. These capabilities would allow the project to provide more operating flexibility than a conventional combine cycle plant (one that would operate primarily in base load mode due to the lack of this rapid response capability).

As a complement to the rapid response combined cycle configuration, the project owner proposes to employ two Rolls Royce Trent 60 CTGs as peakers, providing a simple cycle system suitable for use in a load balancing dispatch mode. Each Trent 60 would utilize inlet spray injection to boost efficiency. The spray injection allows further cooling of pressurized air prior to entering the combustion chamber, which translates to more electricity produced for the same amount of fuel.

Equipment Selection

Because site-specific design conditions are not available for comparable power generating systems (i.e.; CTGs), the International Standards Organization (ISO) design conditions are used below for comparison to similarly configured systems.

Combined Cycle Duty – Units 9-10

The F-class advanced gas turbine proposed for installation in this project represents one of the most modern and efficient machines available. The project owner would install one GE Frame 7FA combustion gas turbine generator in a one-on-one combined cycle power train nominally rated at 323 MW and 58.2 percent net plant efficiency LHV under ISO conditions.

One possible alternative is the Siemens (formerly Westinghouse) SCC6-5000F, nominally rated in a one-on-one train combined cycle configuration at 307 MW and 57.0 percent efficiency LHV at ISO conditions (2013 GTW Handbook, p. 35).

Another alternative is the Mitsubishi Heavy Industries (MHI) MPCP1 (M501F), nominally rated in a one-on-one configuration at 285.1 MW with an efficiency rating of 57.1 percent LHV at ISO conditions (2013 GTW Handbook, p. 33).

See **Efficiency Table 1** below.

<table>
<thead>
<tr>
<th>Description</th>
<th>ISO Rated Net Output (MW)</th>
<th>Efficiency (LHV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE 7FA</td>
<td>323.0</td>
<td>58.2 percent</td>
</tr>
<tr>
<td>Siemens SCC6-5000F</td>
<td>307.0</td>
<td>57.0 percent</td>
</tr>
<tr>
<td>MHI MPCP1(M501G)</td>
<td>285.1</td>
<td>57.1 percent</td>
</tr>
</tbody>
</table>

3 ISO design conditions are 15°C (59°F), 60 percent relative humidity, and one atmosphere of pressure (equivalent to sea level).

5 ISO rated MW values are used here because site-specific values are not available for the comparable systems, such as the Siemens and MHI machines. The 323 MW rating used here for the GE 7FA combined cycle train, thus, does not reflect the site-specific climatic conditions that result in 295 MW used elsewhere in this section for this train.
Any differences among the SCC6-5000F, the MHI M501F, and the GE 7FA in actual operating efficiency would be insignificant. Selecting among these machines is thus based on other factors such as generating capacity, cost, commercial availability and experience, and the control technology to bring the combined cycle system to full power as quickly as possible. Due to GE Frame 7F’s extensive commercial experience, staff believes the project owner’s selection of the GE’s gas turbine is reasonable.

Simple Cycle Duty – Units 11 and 12

The project owner also proposes to employ two Rolls Royce Trent 60 CTGs for simple cycle peaker duty, designated Units 11 and 12. These aero-derivative units were designed for flexibility and capable of handling the stress of multiple starts and stops. Alternative machines to the Rolls Royce Trent 60 are the M6000PD SPRINT, the SGT-800, and the SwiftPac 60, which are aero-derivative machines adapted from General Electric, Siemens Power Generation, and Pratt & Whitney aircraft engines, respectively.

The Siemens SGT-800 gas turbine generator in a simple cycle configuration is nominally rated at 50.5 MW and 38.3 percent efficiency LHV at ISO conditions (2013 GTW, p. 20). The GE LM6000PD SPRINT gas turbine generator in a simple cycle configuration is nominally rated at 47.5 MW and 41.8 percent efficiency LHV at ISO conditions (2013 GTW, p. 14). The Pratt & Whitney SwiftPac 60 gas turbine generator in a simple cycle configuration is nominally rated at 62.0 MW and 37.0 percent efficiency LHV at ISO conditions (2013 GTW Handbook, p. 20). See **Efficiency Table 2** below.

<table>
<thead>
<tr>
<th>Description</th>
<th>ISO Rated Net Output (MW)</th>
<th>Efficiency (LHV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolls Royce Trent 60 DLE ISI</td>
<td>61.8</td>
<td>43.4 percent</td>
</tr>
<tr>
<td>Siemens SGT-800</td>
<td>50.5</td>
<td>38.3 percent</td>
</tr>
<tr>
<td>GE LM6000PD Sprint</td>
<td>47.5</td>
<td>41.8 percent</td>
</tr>
<tr>
<td>P&W SwiftPac 60</td>
<td>62.0</td>
<td>37.0 percent</td>
</tr>
</tbody>
</table>

Any differences among these machines in actual operating efficiency would be insignificant. Due to the Trent 60’s extensive commercial experience, staff believes the project owner’s selection of this gas turbine is reasonable.

Efficiency of Alternatives to the Project

The project’s objectives include the efficient generation of electricity to help meet the future electrical power needs (NRG 2013a, § 2.1).

6 ISO rated MW values are used here because site-specific values are not available for the comparable systems, such as the Siemens and P&W machines. The 61.8 MW rating used here for the Trent 60 machine, thus, does not reflect the site-specific climatic conditions that result in 58 MW used elsewhere in this section for this machine.
Alternative Generating Technologies

Alternative generating technologies for the ESPFM are considered in the PTA (NRG 2013a, § 2.1). For purposes of this analysis, fossil fuels, hydroelectric, solar, wind, and geothermal technologies are all considered.

The project owner has selected the mix of natural gas combined cycle and natural gas simple cycle components utilizing fast start and dispatch flexibility in order to support southern California grid load balancing and renewable energy integration (NRG 2013a, § 1.1). This project would provide an important element in the introduction of renewable energy sources by providing a bridge for power-loss intermittencies characteristic of wind turbines, solar photovoltaic, and solar thermal electric generation systems. Given the project objectives, location, and the commercial experience of the selected technologies, staff agrees with the project owner that only natural gas-burning technologies are feasible for this project.

Natural Gas-Burning Technologies

Fuel consumption is one of the most important economic factors in selecting an electric generator. Fuel typically accounts for over two-thirds of the total operating costs of a fossil fuel-fired power plant. Under a competitive power market system, where operating costs are critical in determining the competitiveness and profitability of a power plant, the plant owner is strongly motivated to purchase fuel-efficient machinery.

A modern intermediate load combined cycle power plant (Units 9 and 10) would offer a balance between high efficiency and start-up flexibility and complements the simple cycle peaker systems (Units 11 and 12), providing a highly adaptable power package.

The Rolls Royce Trent 60 aero-derivative CTGs would provide very fast response to power grid dispatch, while the GE 7FA and the simplified dual pressure HRSG design would provide additional power demand response by providing cold to hot start-up capability in a large industrial-duty system.

A possible alternative to the F-class CTG selected for the ESPFM is to employ the larger industrial-duty next generation G-class (e.g., Siemens-Westinghouse 501G) which would use partial steam cooling to allow slightly higher temperatures, yielding proportionately greater efficiency. Due to the project’s need for operational flexibility, in actual operation, one would expect to see the difference in efficiency diminish, since larger-capacity G-class turbines would run at less than optimum (full) output more frequently than smaller-capacity F-class turbines. (Gas turbine efficiency drops rapidly at less than full load.) Given the minor efficiency improvement promised by the G-class turbine, and since this machine would have to operate at less than optimum base load efficiency in order to meet the project load capacity requirements, staff believes the project owner’s decision to purchase the 7FA series machines is reasonable.

Another possible alternative to the 7FA class advanced gas turbine is an H-class next generation machine with a claimed fuel efficiency of 60 percent LHV and 400 MW nominal output at ISO conditions. This high efficiency is achieved through a higher pressure ratio and firing temperature, made possible by cooling the initial turbine stages with steam instead of air. The first Frame 7H machine has only recently completed
commissioning at the Inland Empire Energy Center in Riverside County, California. Given the lack of commercial experience with this machine and the project load requirements, staff agrees with the project owner’s decision to use the smaller, more flexible 7FA model.

As an alternative to the ESPFM, retrofitting existing Units 3 and 4 of the ESEC while maintaining the existing boilers would not provide the operating flexibility and efficiency improvement offered by the 7FA combined cycle and Trent 60 simple cycle trains in a hybrid configuration.

Inlet Air Cooling

Other alternatives include gas turbine inlet air cooling methods. The two most common techniques are evaporative coolers or foggers, and chillers. Both increase power output by cooling gas turbine inlet air. A mechanical chiller offers greater power output than the evaporative cooler on hot, humid days. However, it consumes electric power to operate its refrigeration process, slightly reducing its overall net power output and overall efficiency. An absorption chiller uses less electricity but is less reliable than its electric-driven counterpart. An evaporative cooler or fogger boosts power output most efficiently on dry days; it uses less electricity than a mechanical chiller, possibly producing a slightly higher operating efficiency. Efficiency differences between these alternatives are relatively insignificant.

Given the climate at the project site and the relative lack of clear superiority of one system over another, staff agrees that the project owner’s choice of an evaporative gas turbine inlet air cooling system (NRG 2013a, § 2.3) would have no significant adverse energy impacts.

Alternative Heat Rejection System

The project owner proposes to employ a dry cooling system (air-cooled condensers) as the means for rejecting power cycle heat from the steam turbine. An alternative heat rejection system would utilize a wet cooling system (a cooling tower).

The local climate in the project area is characterized by relatively moderate coastal temperatures and variable relative humidity. In low temperature and high relative humidity, the air-cooled condenser performs slightly better than the evaporative cooling tower. In high temperatures and low relative humidity, the evaporative cooling tower performs marginally better than the air-cooled condenser. However, due to the restriction of using existing water supplies, the project owner has chosen to use dry cooling. This is acceptable to staff, given that only a slight efficiency improvement would be provided by the wet cooling alternative in such a mild coastal environment.

Staff concludes that the selected project configuration (rapid response combined cycle) and generating equipment (7FA.05 and Rolls Royce Trent 60 gas turbines and associated cooling systems) represent the most efficient feasible combination for satisfying the project’s objectives. The one-on-one CTG/HRSG/STG configuration allows for baseline flexibility during unit operation, sequencing Units 11 and 12 upon dispatch command. This offers a flexibility advantage over the larger machines during unit turn-down or turn-up.
Beyond those discussed above, there are no alternatives that would significantly reduce energy consumption while satisfying the project’s objectives of producing intermediate and peak electricity and ancillary load-following services.

Staff, therefore, concludes that the project would not create a significant adverse impact on energy resources.

CUMULATIVE IMPACTS

No nearby projects have been identified that could potentially combine with the ESPFM project to create cumulative impacts on fuel resources. The SoCalGas natural gas supply system is adequate to supply the ESPFM project without adversely impacting its other customers. See the section of this document entitled Power Plant Reliability for further discussion of this subject.

NOTEWORTHY PUBLIC BENEFITS

The project owner expects to increase power supply reliability in the California electricity market by meeting both the state’s energy needs and contributing to regional electricity reserves. By doing so in a fuel-efficient manner, a combined cycle system that optimizes quick response capabilities provides system simplicity, efficiency and flexibility, and complements the peaker turbines proposed in the PTA. By replacing the existing power generation units, which are old and relatively inefficient, and by providing a bridge for power-loss intermittencies characteristic of wind turbines, solar photovoltaic, and solar thermal electric generation systems, the ESPFM would benefit California’s electricity consumers.

CONCLUSIONS AND RECOMMENDATIONS

At average project site climatic conditions, the combined cycle train would provide 295 MW gross at 53.4 percent efficiency LHV and the simple cycle Units 11 and 12 would individually provide 58 MW gross of electricity at an overall project fuel efficiency of 42.2 percent LHV, for a total of 411 MW gross\(^7\). While the project would consume substantial amounts of energy, it would do so in the most efficient manner practicable (see discussion in PROJECT ENERGY REQUIREMENTS AND ENERGY USE EFFICIENCY, above). It would not create significant adverse effects on energy supplies or resources, would not require additional sources of energy supply, and would not consume energy in a wasteful or inefficient manner. No energy standards apply to this project. Staff therefore concludes that this project would create no significant adverse impacts on energy resources.

No cumulative impacts on energy resources are likely. Facility closure would not likely present significant impacts on electric system efficiency.

\(^7\) This site specific total gross rating is different than that provided in the PTA, or 449 MW gross (NRG 2013a, Table 1-2A); the 449 MW figure is a nominal number independent of the average site-specific climatic conditions of 77.8\(^\circ\)F and 49.6 percent relative humidity (NRG 2013a, Figure 2-4)
PROPOSED CONDITIONS OF CERTIFICATION

No conditions of certification are proposed.

REFERENCES

POWER PLANT RELIABILITY
Edward Brady

SUMMARY OF CONCLUSIONS

The project owner’s commitment to capacity factors of 60 percent for the natural gas combined cycle train designated Units 9 and 10 and 55 percent for the natural gas simple cycle units designated Units 11 and 12, respectively (NRG 2013a, § 2.2.6), yield derived equivalent availability factors, or EAFs\(^1\) of 94 percent for Units 9-10 and 89 percent for Units 11-12. Staff believes these availabilities are achievable. Based on a review of the Petition to Amend (PTA), staff concludes that the final phase of the El Segundo Energy Center (ESEC) designated as the El Segundo Power Facility Modification (ESPFM) would be built and would operate in a manner consistent with industry norms for reliable operation.

INTRODUCTION

In this analysis, California Energy Commission (Energy Commission) staff addresses the reliability issues of the ESPFM to determine if it is likely to be built in accordance with typical industry norms for reliable power generation. Staff uses these norms as a benchmark because they ensure that the resulting project would not be likely to degrade the overall reliability of the electric system it serves (see the “Setting” subsection, below).

The scope of this power plant reliability analysis covers these benchmarks:
- equipment availability and plant maintainability;
- fuel and water availability; and,
- power plant reliability in relation to natural hazards.

The PTA proposes the demolition of Units 3 and 4, to be replaced with Units 9, 10, 11, and 12, and the replacement of a once-through seawater cooling system with dry-cooling technology. Units 9-12 are principally designed to replace the power currently generated by Units 3-4, similar to the replacement scheme when Units 1 and 2 were replaced by Units 5 through 7 in the original ESEC project (see the Energy Commission Decision, CEC 2005a).

Staff has examined the project design criteria to determine if the project is likely to be built in accordance with typical industry norms for reliable power generation. While the project owner did not provide an equivalent availability factor (EAF) in its PTA, staff derived EAFs for the three distinct systems (Units 9-10, Unit 11, and Unit 12) included in the ESPFM project, which staff has used as industry benchmarks in order to evaluate the project’s reliability.

\(^1\) Equivalent availability factor, or EAF, is the percentage of time a unit is available for dispatch, and reflects the probability of planned and forced (unplanned) outages.
LAWS, ORDINANCES, REGULATIONS, AND STANDARDS

No federal, state, or local/county laws, ordinances, regulations, or standards (LORS) apply to the reliability of this project.

SETTING

In the restructured competitive electric power industry, the responsibility for maintaining system reliability falls largely to the state’s control area operators, such as the California Independent System Operator (California ISO), which purchase, dispatch, and sell electricity throughout the state. How the California ISO and other control area operators ensure system reliability is an evolving process; new protocols are being developed and put in place to ensure sufficient reliability in the competitive market system. “Must-run” power purchase agreements and “participating generator” agreements are two mechanisms that ensure an adequate supply of reliable power.

The California ISO also requires that power plants selling ancillary services, as well as those holding reliability must-run contracts, fulfill certain requirements, including:

- filing periodic reports on plant reliability;
- reporting all outages and their causes; and
- scheduling all planned maintenance outages with the California ISO.

The California ISO’s mechanisms to ensure adequate power plant reliability have apparently been developed with the assumption that individual power plants competing to sell power into the system will exhibit reliability levels similar to those of power plants of past decades. However, there is reason to believe that, with free market competition, financial pressures on power plant owners to minimize their capital outlays and maintenance expenditures may ultimately reduce the reliability of many existing and newly constructed power plants. Until the state’s restructured competitive electricity market has undergone a shakeout period and the effects of varying power plant reliability are thoroughly understood and compensated for, staff recommends that power plant owners continue to build and operate their projects to the industry’s current level of reliability.

The nominal gross output for the system provided under the ESPFM is 449 megawatts (MW), 334 MW from Units 9-10 and 57.4 MW each from Units 11 and 12 (NRG 2013a, Table 1-2A). The ability of this project to start up, shut down, turn down, and provide load following, when needed, would allow the system operator to adapt the plant’s output to changing conditions in the energy and ancillary services markets (NRG 2013a, §§ 3.1.4.2, 4.1.4.3, 3.1.4.4).

ASSESSMENT OF IMPACTS

METHOD FOR DETERMINING RELIABILITY

The Energy Commission must make findings as to how the project is designed, sited, and operated in order to ensure its safe and reliable operation (Title 20, California Code
of Regulations § 1752[c]). Staff will conclude that a project is acceptable if it does not degrade the reliability of the utility system to which it is connected. This will be the case if a project is at least as reliable as other power plants on that system.

The equivalent availability factor, or EAF, of a power plant is the percentage of time it is available to generate power; both planned and unplanned outages subtract from this availability. Measures of power plant reliability are based upon both the plant’s actual ability to generate power when it is considered to be available, and upon starting failures and unplanned (or forced) outages. For practical purposes, reliability can be considered a combination of these two industry measures, making a reliable power plant one that is available when called upon to operate. Power plant systems must be able to operate for extended periods without shutting down for maintenance or repairs. Achieving this reliability requires adequate levels of equipment availability, plant maintainability with scheduled maintenance outages, fuel and water availability, and resistance to natural hazards. Staff examines these factors for a project and compares them to industry norms. If they compare favorably for this project, staff will then conclude that the project will be as reliable as other power plants on the electric system and will not degrade system reliability.

Note that the term “availability factor, or AF” used in this analysis is different than the term “equivalent availability factor, or EAF”, in that, AF does not account for forced outages. AF is the percentage of time the power plant is available to generate power; with only planned outages subtract from this availability.

EQUIPMENT AVAILABILITY

Equipment availability would be ensured by adopting appropriate quality assurance and quality control programs during the design, procurement, construction, and operation of the plant and by providing for the adequate maintenance and repair of the equipment and systems discussed below.

Quality Control Program

Similar to the original ESEC project, staff expects that equipment will be purchased from qualified suppliers based on technical and commercial evaluations; and suppliers’ personnel, production capability, past performance, quality assurance (design, manufacturing and procurement) and quality control (receipt inspection, handling, storage, installation, start-up and performance testing) programs. Also similar to the original ESEC project, staff expects the project owner to perform receipt inspections, test components, and administer independent testing contracts. Staff believes that implementation of this program would result in standard reliability of design and construction. To ensure this implementation, staff has proposed appropriate conditions of certification in the section of this document entitled **Facility Design**.
PLANT MAINTAINABILITY

Equipment Redundancy

A generating facility must be capable of being maintained while operating. A typical approach to this is to provide redundant examples of those pieces of equipment that are most likely to require service or repair.

The project owner plans to provide an appropriate redundancy of function for the project (NRG 2013a, § 2.9.1). Because the project consists of three independent equipment trains, it is inherently reliable. A single equipment failure cannot disable more than one train, which allows the plant to continue to generate, but at reduced output. Plant ancillary systems are also designed with adequate redundancy to ensure their continued operation if equipment fails. Staff believes that this project’s proposed equipment redundancy would be sufficient for its reliable operation.

Maintenance Program

Equipment manufacturers provide maintenance recommendations for their products, and the project owner would base the project’s maintenance program on those recommendations. The program would encompass both preventive and predictive maintenance techniques. Maintenance outages would probably be planned for periods of low electricity demand. Staff expects that the project would be adequately maintained to ensure an acceptable level of reliability.

FUEL AND WATER AVAILABILITY

The long-term availability of fuel and of water for cooling or process use is necessary to ensure the reliability of any power plant. The need for reliable sources of fuel and water is obvious; lacking long-term availability of either source, the service life of the plant could be curtailed, threatening both the power supply and the economic viability of the plant.

Fuel Availability

Natural gas fuel would be supplied to the project by Southern California Gas Company (SoCalGas) from the existing natural gas metering station currently feeding the project (NRG 2013a, § 2.2.5). Units 9-12 are principally designed to replace the power currently generated by Units 3-4, similar to the replacement scheme where Units 1 and 2 were replaced by Units 5 through 7 in the original ESEC project (CEC 2005a). The combined fuel demand for the original Units 1 through 4 provided 1,020 MW net of electric power (NRG 2013a, § 2.1). The fuel demand for the ESPFM would be enough to generate a total of 995 MW net, slightly less than the original plant capacity of 1,020 MW, resulting in a slight reduction in fuel consumption. This amount of fuel would be further reduced due to the new, more efficient electric generating equipment (combustion turbine generators and steam turbine generator) proposed in the PTA, as compared to the older utility boilers of Units 1-4. Thus, no additional quantities of fuel would be required.

SoCalGas’s natural gas system represents a resource of considerable capacity and offers access to adequate supplies of gas. Staff concludes that there would be adequate natural gas supply and pipeline capacity to meet the project’s needs.
Water Supply Reliability

The project owner proposes to consolidate the source of the plant’s annual water consumption by shifting the bulk of the requirement from the cities of El Segundo and Manhattan Beach (Metropolitan Water District of Southern California, or MWD) to the West Basin Municipal Water District (WBMWD) requiring less than one acre feet per year (afy) from the former (0.72 from MWD) and increasing usage from an average of 112 to 119 afy from the latter (from WBMWD). The completion of this phase of improvements at the ESEC site would mark the elimination of seawater cooling (NRG 2013a, Table 2-7) following the decommissioning and demolition of Units 3 and 4.

The GE 7FA.05 combustion turbine generator used in the combined cycle system and the Rolls Royce Trent 60 combustion turbine generators used in the simple cycles would use water at the same rate for air intake evaporative cooling and intermediate water injection at rates similar to other manufacturers.

The project owner proposes to use the existing potable water service to the site (NRG 2013a, § 2.3, Table 2-9, p. 2-12) via a new 10-inch water line for reclaim water and an existing 6-inch water line for irrigation.

Therefore, staff believes the source of water supply represents a reliable source for the project. For further discussion of water supply, see the Soil And Water Resources section of this document.

POWER PLANT RELIABILITY IN RELATION TO NATURAL HAZARDS

Natural forces can threaten the reliable operation of a power plant. Seismic shaking (earthquakes), flooding, and tsunami could present credible threats to the project’s reliable operation.

Seismic Shaking

The site lies within a seismically active area (NRG 2013a, §§ 2.1.4, 3.4). For further discussion of seismicity, see the Geology And Paleontology section of this document. The project would be designed and constructed to the latest appropriate LORS (NRG 2013a, §§ 1.10, 3.4.5). Compliance with current seismic design LORS represents an upgrading of performance during seismic shaking compared to older facilities since these LORS have been continually upgraded. Because it would be built to the latest seismic design LORS, this project would likely perform at least as well as, and perhaps better than, existing plants in the electric power system. Staff has proposed conditions of certification to ensure this; see the section of this document entitled Facility Design. In light of the general historical performance of California power plants and the electrical system in seismic events, staff has no special concerns with the power plant’s functional reliability during seismic events.

Flooding, Storm Surge and Wave Run-up

The project site is located in a Federal Emergency Management Area (FEMA) Zone X, which indicates the site is at an elevation above the 100-year floodplain. Ocean storm surges are considered in the FEMA floodplain. See Soil And Water Resources section
A drainage, erosion and sediment control plan would be implemented (see Facility Design).

In light of this, staff believes there are no special concerns with power plant functional reliability due to flooding, storm surge or wave run-up.

Tsunami and Seiche

The proposed site is not within the zone identified by California Emergency Management Agency (CEMA) as a tsunami inundation zone; see Soil And Water Resources and Geology And Paleontology sections of this document. While not likely to occur during the project life, the site is subject to inundation by tsunami. U.S. Building codes generally have not addressed the subject of designing structures in tsunami zones.

FEMA’s Coastal Construction Manual (FEMA 55), developed to provide design and construction guidance for structures built in coastal areas, addresses seismic loads for coastal structures and provides information on tsunami and associated loads. FEMA 55 cites American Society of Civil Engineers Standard ASCE 7-10, “Minimum Design Loads for Buildings and Other Structures” as the reference to be consulted during design of structures. ASCE 7-10 is codified in 2013 California Building Code. Project would be designed and constructed to this code (see Facility Design).

For further discussion, also see Soil And Water Resources and Geology And Paleontology.

COMPARISON WITH EXISTING FACILITIES

Industry statistics for AFs (availability factors) and EAFs (equivalent availability factors), as well as other related reliability data, are maintained by the North American Electric Reliability Corporation (NERC). NERC regularly polls North American utility companies on their project reliability through its Generating Availability Data System (GADS), and periodically summarizes and publishes those statistics on the Internet [http://www.nerc.com]. The NERC reported the following generating unit EAFs for the years 2007 through 2011: 87 percent for combined cycle plants and 91 percent for simple cycle plants (NERC 2012). See comparison of project EAFs with existing plants EAFs in Reliability Table 1 below.

The project owner expects Units 9-10 to attain a capacity factor of 0.60 (NRG 2013a, § 2.2.6), which translates to an expected availability of 0.60 x 8,760 hours = 5,256 hours per year. Additionally, the start-up and shutdown of this system is expected to take 200 hours to start-up, leaving 5256 – 200 = 5056 full load operating hours (FLOH) per year (2013 PTA, § 3.1.4.4), and an availability factor (AF) of 5056/5256 = 0.96 or 96 percent. (Note that the 200 hours shutdown specified in the Petition to Amend is not included in the calculation, because it does not occur within the expected on-line operating window.

The AF predicts the expected availability, but does not account for unexpected outages. For these outage values, staff used statistical data taken from the current NERC GADS
for a natural gas combined cycle unit\(^2\), where the difference between the expected and total outage hours is the unexpected hours. These hours can be calculated using the statistical values for AF and EAF\(^3\) from the NERC data: (AF – EAF) x FLOH = Unexpected Outages Hours. For Units 9-10, the unexpected outage hours would be (0.8909 - 0.8676) x 5056 = 118 hours. From the statistical difference, the EAF for Units 9-10 would be (5256 - 200 - 118)/5256 = 0.94 or 94 percent.

The same method of evaluation would be applied individually to Units 11 and 12. Based on the project owner’s estimate of 55 percent capacity factor, the expected FLOH is 0.55 x 8760 = 4818 hours per year. For an expected 480 start-up hours, AF = (4818 – 480)/4818 = 0.90 or 90 percent. The unexpected outages hours based on GADS statistics for a natural gas simple cycle unit would be (0.9235 – 0.9086) x 4818 = 72 hours. So based on the GADS data\(^4\), the EAF for Unit 11 or Unit 12 would be (4818 – 480 – 72)/4818 = 0.89 or 89 percent.

<table>
<thead>
<tr>
<th>System</th>
<th>EAF (ESPFM)</th>
<th>EAF (NERC Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units 9-10</td>
<td>94 percent</td>
<td>87 percent</td>
</tr>
<tr>
<td>Units 11 and 12</td>
<td>89 percent</td>
<td>91 percent</td>
</tr>
</tbody>
</table>

The project’s gas turbines have been on the market for several years and are expected to exhibit typically high availability. The derived EAFs (equivalent availability factors) from these estimates appear reasonable when compared with NERC figures based on similar plants throughout North America (see Reliability Table 1 above). In fact, these machines can well be expected to outperform the fleet of various (mostly older and smaller) gas turbines that make up NERC statistics.

In addition, because the ESPFM would consist of three independent power trains, maintenance can be scheduled during times of the year when the full plant output is not required to meet market demand. The project owner’s commitment on plant availability, therefore, appears to be realistic. Stated procedures for assuring the design, procurement, and construction of a reliable power plant appear to be consistent with industry norms. Staff concludes that they would ultimately produce an adequately reliable plant.

\(^3\) Equivalent availability factor, or EAF, is the percentage of time a unit is available for dispatch, and reflects the probability of planned and forced (unplanned) outages.

\(^4\) ibid, Gas Turbine, 50 Plus MW
NOTEWORTHY PROJECT BENEFITS

This project would enhance power supply reliability in the California electricity market by helping to meet the state’s growing energy demand and providing operating flexibility (that is, the ability to start up, shut down, turn down, and provide load following, when needed). The fact that the ESPFM consists of three generator trains, configured as independent equipment trains, provides inherent reliability. A single equipment failure cannot disable more than one train, thereby allowing the plant to continue to generate, though at reduced output. Furthermore, the ESPFM would provide a bridge for power-loss intermittencies characteristic of wind turbines, solar photovoltaic, and solar thermal electric generation systems.

CONCLUSION

The project owner’s predictions of 60 percent capacity factor for Units 9-10 and 55 percent for Units 11 and 12 yield equivalent availability factors of 94 percent and 89 percent, respectively, which staff believes are achievable. Based on a review of the proposal, staff concludes that the plant would be built and operated in a manner consistent with industry norms for reliable operation. No conditions of certification are proposed.

PROPOSED CONDITIONS OF CERTIFICATION

No conditions of certification are proposed.

REFERENCES

TRANSMISSION SYSTEM ENGINEERING
Testimony of Sudath Edirisuriya and Mark Hesters

SUMMARY OF CONCLUSION

The modifications of the El Segundo Energy Center LLC petition (PTA) do not impact the previously approved 230kV plant switchyard, outlet lines, and termination facilities. The certified facilities are adequate and in accordance with industry standards and good utility practices and are acceptable to Staff according to engineering laws, ordinances, regulations and standards (LORS).

• The project modifications do not affect the net output of the power plant. Therefore, the existing 230kV plant switchyard and generator-tie lines are adequate and are rated to withstand the net output of the project.

• The Large Generator Interconnection Agreement (LGIA) for replacement of new generator units are currently being evaluated by the California Independent System Operator (California ISO). LGIA will be amended if there are any changes to be integrated.

• Staff believes previous planning study (System Impact Study) is applicable in this amendment due to unchanged net output of the modified project.

Staff concludes that these facilities will comply with LORS, assuming the Conditions of Certification TSE-1 through TSE-8 are met. The project owner has committed to a specific transmission mitigation alternative and no foreseeable, significant downstream facilities will be attributed to the interconnection and operation of the El Segundo Power Facility Modification (ESPFM). Staff does not propose any changes to the existing conditions of certification.

INTRODUCTION

STAFF ANALYSIS

This Transmission System Engineering (TSE) analysis examines whether this project’s proposed interconnection conforms to all LORS required for safe and reliable electric power transmission. Additionally, under the California Environmental Quality Act (CEQA), the California Energy Commission (Energy Commission) must conduct an environmental review of the “whole of the action,” which may include facilities not licensed by the Energy Commission (California Code of Regulations, title 14, §15378). The Energy Commission must therefore identify the system impacts and necessary new or modified transmission facilities downstream that are both required for interconnection and represent the “whole of the action.”

Energy Commission staff relies upon the interconnecting authority, in this case the California ISO, for the analysis of impacts on the transmission grid from the proposed interconnection, as well as the identification and approval of new or modified facilities downstream that could be required for mitigation. The ESPFM would connect to the
Southern California Edison (SCE) transmission system and require both analysis by SCE and approval by the California ISO. No changes are proposed to the interconnection for this project.

LAWS, ORDINANCES, REGULATIONS AND STANDARDS

- California Public Utilities Commission General Order 95 (CPUC GO-95), “Rules for Overhead Electric Line Construction,” formulates uniform requirements for construction of overhead lines. Compliance with this order ensures adequate service and safety to persons engaged in the construction, maintenance and operation or use of overhead electric lines and to the public in general.

- California Public Utilities Commission General Order 128 (CPUC GO-128), “Rules for Construction of Underground Electric Supply and Communications Systems”, formulates uniform requirements and minimum standards to be used for underground supply systems to ensure adequate service and safety to persons engaged in the construction, maintenance and operation or use of underground electric lines and to the public in general.

- The National Electric Safety Code, 2012 provides electrical, mechanical, civil and structural requirements for overhead electric line construction and operation.

- NERC/WECC Planning Standards: The Western Electricity Coordinating Council (WECC) Planning Standards are merged with the North American Electric Reliability Council (NERC) Planning Standards and provide the system performance standards used in assessing the reliability of the interconnected system. These standards require the continuity of service to loads as the first priority and preservation of interconnected operation as a secondary priority. Certain aspects of the NERC/WECC standards are either more stringent or more specific than the NERC standards alone. These standards provide planning for electric systems so as to withstand the more probable forced and maintenance outage system contingencies at projected customer demand and anticipated electricity transfer levels, while continuing to operate reliably within equipment and electric system thermal, voltage and stability limits. These standards include the reliability criteria for system adequacy and security, system modeling data requirements, system protection and control, and system restoration. Analysis of the WECC system is based to a large degree on NERC Standards TPL-001 through TPL-004 of the standards and “Table I. Transmission System Standards-Normal and Emergency Conditions” and WECC Disturbance-Performance Table” and on Section I.D, “NERC and WECC Standards for Voltage Support and Reactive Power.” These standards require that the results of power flow and stability simulations verify defined performance levels. Performance levels are defined by specifying the allowable variations in thermal loading, voltage and frequency, and loss of load that may occur on systems during various disturbances. Performance levels range from no significant adverse effects inside and outside a system area during a minor disturbance (loss of load or a single transmission element out of service) to a level that seeks to prevent system cascading and the subsequent blackout of islanded areas during a major disturbance (such as loss of multiple 500 kV lines along a common right of way,
and/or multiple generators). While controlled loss of generation or load or system separation is permitted in certain circumstances, their uncontrolled loss is not permitted (WECC Ongoing).

- NERC Reliability Standards for the Bulk Electric Systems of North America provide national policies, standards, principles and guidelines to assure the adequacy and security of the electric transmission system. The NERC Reliability Standards provide for system performance levels under normal and contingency conditions. With regard to power flow and stability simulations, while these Reliability Standards are similar to NERC/WECC Standards, certain aspects of the NERC/WECC Standards are either more stringent or more specific than the NERC Standards for Transmission System Contingency Performance. The NERC Reliability Standards apply not only to interconnected system operation but also to individual service areas (NERC Ongoing).

- California ISO Planning Standards also provide standards and guidelines to assure the adequacy, security and reliability in the planning of the California ISO transmission grid facilities. The California ISO Grid Planning Standards incorporate the NERC/WECC and NERC Reliability Planning Standards. With regard to power flow, stability simulations, Special Protection Systems and Load Interruption Standards, these Planning Standards are similar to the NERC/WECC or NERC Reliability Planning Standards for Transmission System Contingency Performance. However, the California ISO Standards also provide some additional requirements that are not address in the NERC / WECC standards, provide interpretations of the NERC/WECC criteria specific to the California ISO grid, and identify whether specific criteria should be adopted. The California ISO Standards apply to all participating transmission owners interconnecting to the California ISO controlled grid. They also apply when there are any impacts to the California ISO grid due to facilities interconnecting to adjacent controlled grids not operated by the California ISO. The California ISO standards will be revised from time to time to ensure they are consistent with the current state of the electrical industry and in conformance with NERC Reliability Standards and WECC Regional Criteria (Cal-ISO June, 23 2011).

- California ISO/Federal Energy Regulatory Commission (FERC) Electric Tariff provides guidelines for construction of all transmission additions/upgrades (projects) within the California ISO controlled grid. The California ISO determines the “Need” for the proposed modified project where it will promote economic efficiency or maintain system reliability. The California ISO also determines the Cost Responsibility of the proposed modified project and provides an Operational Review of all facilities that are to be connected to the California ISO grid (Cal-ISO 2007a).

PROJECT DESCRIPTION

The PTA proposes to modify the El Segundo Energy Center (ESEC) by replacing two once-through-cooled boiler units, units 3 and 4, with modern and efficient, dry cooled, natural-gas-fired combustion gas units. The proposed generators would consist of one NRG fast start combined cycle unit rated at net 325 megawatts (MW) (Gas turbine generator and Heat Recovery steam generator) and two Rolls Royce simple-cycle gas
turbine units each rated at 55 MW. The new installation units 9, 10, 11 and 12 will add net generation capacity of 435 MW to the plant. The combination of existing units 5 through 8 and modified units 9 through 12 will dispatch approximately net output of 995 MW to the California ISO grid. Therefore, net rated energy transmits from the modified plant to the California ISO grid is consistent with the present LGIA filed at the California ISO.

The transmission facilities are limited to those on site that would connect the new generating facilities with the on-site El Segundo substation. No new transmission lines would be required for the project. The project’s 230 kV generator tie lines would connect to the 230 kV El Segundo substation by utilizing the existing 230 kV equipment. The interconnection and operation of the project would require the replacement of circuit breakers and wave traps in the SCE transmission network, no significant downstream facilities have been identified as a reasonably foreseeable consequence of the ESPFM.

POWER PLANT SWITCHYARD
The on-site switchyard would be designed to conform to applicable industry standards and would include three new generator step-up transformers. The 230 kV circuit breakers disconnect switches and surge arrestors would be appropriately rated as determined by the Detailed Facilities Study. No major new equipment is required for the El Segundo substation to accommodate the project. The onsite facilities would be owned, operated, and maintained by the project owners (ESPR 2000a). Staff concludes that these facilities are acceptable.

TRANSMISSION LINE
Two 230 kV generator tie lines would connect the project switchyard to the existing 230 kV El Segundo substation, with the existing 230 kV equipment located on site. The generator tie lines would build with bundled 765-kcmil ACSR and are rated to carry the full load output of the project. No new offsite transmission facilities would be required to interconnect the project.

EXISTING FACILITIES AND RELATED SYSTEMS
The ESPFM proposes to connect the project to the existing El Segundo substation in the SCE service territory. Thus, the project would interconnect to the center of the SCE transmission network. As shown in the System Impact and Facility Studies for the project, the operation of the ESPFM would impact many transmission facilities in the SCE transmission network although no significant downstream facilities will be required.

DOWNSTREAM IMPACTS
The project impacts on the transmission system downstream of the interconnection facilities are discussed under System Reliability below. No new or modified transmission

\[1\] Downstream facilities are those that are beyond the point where the line emanating from the power plant joins with the (existing) interconnected system (see California Public Utilities Commission v. California Energy Resources Conservation and Development Commission (1984) 150 Cal. App. 3d 437 [197 Cal. Rptr. 866]).
facilities beyond the project’s interconnection with the existing transmission system are identified as a result of the power plant addition to the California transmission system.

ANALYSIS

Staff has used previous planning study information in this amendment to evaluate the impacts caused by the project into the California ISO grid. Staff finds the previous study is applicable due to unchanged net output of the project. Therefore the previous planning study information has been retained in this report.

SYSTEM RELIABILITY

Introduction

A system reliability study is performed to determine the effects of connecting a new power plant to the existing electric grid. The study identifies impacts and also ways negative impacts can be minimized or negated. Any new transmission facilities such as the power plant switchyard, the outlet line, and downstream facilities, required to connect a project to the grid are considered part of the project and are subject to review in the Application for Certification process. Based on the results of the Facilities Study and the subsequent letter from the project owner, staff has determined that the ESPFM would not cause significant line overloads under normal conditions. Transmission lines do overload under normal and emergency or outage conditions, which will require mitigation, but significant downstream facilities will not be required.

Scope of Reliability Studies

Power flow, short circuit and stability studies with and without the project are performed to determine conformance with reliability criteria established by NERC, WECC, and the California ISO. The project is modeled in the studies with an additional plant delivery of 280 MW for power flow analysis. The study results provide snapshots of highly stressed operation and are not illustrative of month to month or day to day operation. Power flow studies included generators and utility expansion plans and were based on the assumption that the projects would be completed and generating power in the late spring of 2003. The status of potential new generators has changed several times since the first Facility Study was completed for the ESEC and several potential plants located near El Segundo are no longer viable. As a result, SCE has updated the Facility Study once for the ESEC and an updated study was filed at the Energy Commission on May 21, 2002. The 2003 cases used as a basis for the studies are considered valid for the purpose of the California ISO and TSE analysis.

Facilities Study Summary

The power flow study results indicate that, under the stressed conditions studied, an extensive list of existing line overloads would be slightly increased due to the project. In addition, a limited number of heavily loaded facilities would reach overload conditions with the addition of the project. The study describes four mitigation alternatives for the identified overloads (ESPR 2002x, pages 5 and 6). The project owner has committed to alternative 3 which uses Special Protection Systems and replaces equipment such as
wave traps and circuit breakers that are within the fence line of existing facilities (ESPR 2002gg, page 1). Thus, no new or modified transmission facilities beyond the project’s interconnection with the existing transmission system would be required as a result of the power plant addition. New and increased overloads are listed in the summary that follows:

Load flow analysis for Spring 2003 Transmission System Planning Model conditions

Under N-0 conditions, addition of the project increases four pre-existing overloads.

1. The project triggers three new overloads for N-1 contingencies.
2. The project increases seven existing overloads for N-1 contingencies.
3. The project triggers two new overloads for N-2 contingencies.
4. The project increases five existing overloads for N-2 contingencies.

Load flow analysis for Heavy Summer 2003 conditions

Under N-0 conditions, addition of the project increases two pre-existing overloads.

1. The project triggers three new overloads for N-1 contingencies.
2. The project increases three existing overloads for N-1 contingencies.
3. The project triggers one new overload for N-2 contingencies.
4. The project increases five existing overloads for N-2 contingencies.

The above list shows that the project increases already existing overloads on a great number of lines. Since the upgrade of these existing overloads will be triggered by other power plant projects, the facilities associated with the upgrades are not required for the interconnection and operation of the ESPFM and as such are not a reasonably foreseeable consequence of this project. Overloads that are directly attributable to the project are limited to contingency overloads that will be mitigated with Special Protection Systems (SPS) that would reduce the output from the modified project under specified conditions. Staff concludes that there are no major system additions, beyond the interconnection facilities, required as a reasonably foreseeable consequence of the project. The project owner states a commitment to a remedial action scheme (RAS) and project re-design to avoid overload conditions that would trigger the need for significant new physical upgrades (ESPR 2002gg, page 1).

Short Circuit Study Results

Short circuit analyses are conducted to assure that existing and proposed breaker ratings are sufficient to withstand high levels of current during a fault (such as when a line touches the ground). The short circuit duty analysis found that 22 circuit breakers would need to be replaced due to the ESPFM. Breaker work and any substation equipment replacement will occur inside the fence lines of the existing substation.

Stability Study Results

Stability studies were performed to ensure that the transmission system remains stable during normal and abnormal operating conditions with the project connected to the system. Dynamic stability analysis found no new unstable system condition with addition of the project for either spring or summer cases (ESPR 2000i).
California ISO Review
The California ISO review of the project owner’s submittals supports the Energy Commission staff’s analysis, states preliminary interconnection approval, and recommends further study for the EL Segundo Project (Cal-ISO 2001a) (called the ESEC at the Energy Commission). The Facility Study identified an alternative that will mitigate overloads with SPS and will not require the upgrade of existing transmission lines. The project owner may be required to pay for some part of the physical reinforcements that are required to alleviate overloads, however those reinforcements are triggered by other new generators and would be required even if the ESPFM is not approved. That is, the project will be required to contribute to cost sharing of system reinforcements, however will not be considered to have solely triggered the need for physical reinforcements. No significant new downstream project facilities are likely to be identified as required to accommodate the project in the additional studies. The California ISO final interconnection approval is in conformance with NERC, WSCC and California ISO reliability criteria.

Alternative Transmission Line Routes
Due to the use of existing on-site facilities, Energy Commission staff concludes no alternatives would be feasible at the site that would vary significantly from the ESPFM’s proposed transmission interconnection (ESPR 2000a).

CUMULATIVE IMPACTS
Due to the large number of potential new generators in the SCE area there would be cumulative impacts associated with the interconnection and operation of the ESPFM. The System Impact Study (SIS) and the Facility Study both indicate that there are facility overloads caused by other proposed generators that would be exacerbated by the ESPFM. However, whether or not these other generators will ever be permitted and operated is very uncertain.

Since the SIS was completed for the ESEC in December 18, 2000, there have been significant changes in the generators proposed in the SCE area. The California ISO has recommended that the Facility Study, completed September 12, 2001, be updated because significant projects that were in the SCE new generator queue ahead of the ESPFM have since dropped out of the queue and are no longer expected to be built. Thus, while there could be cumulative transmission impacts caused by the combined operation of the ESPFM and other proposed projects, these potential impacts are highly speculative because of the uncertainty surrounding the other generators. Impacts caused by the ESPFM will be mitigated as previously discussed.

CONCLUSIONS AND RECOMMENDATIONS
The modifications of the El Segundo Energy Center LLC petition do not impact the previously approved 230kV plant switchyard, outlet lines, and termination facilities. The certified facilities are adequate and in accordance with industry standards and good utility practices and are acceptable to Staff according to engineering LORS.
The project modifications do not affect the net output of the power plant. Therefore, the existing 230kV plant switchyard and generator-tie lines are adequate and are rated to withstand the net output of the project.

The Large Generator Interconnection Agreement (LGIA) for replacement of new generator units are currently being evaluated by the California ISO. LGIA will be amended if there are any changes to be integrated.

Staff believes previous planning study (SIS) is applicable in this amendment due to unchanged net output of the modified project.

Staff concludes that these facilities will comply with LORS, assuming the Conditions of Certification TSE-1 through TSE-8 are met. The applicant has committed to a specific transmission mitigation alternative and no foreseeable, significant downstream facilities will be attributed to the interconnection and operation of the ESPFM.

CONDITIONS OF CERTIFICATION

Staff does not propose any changes to the existing conditions of certification.

TSE-1 The project owner shall furnish to the CPM and to the CBO a schedule of transmission facility design submittals, a Master Drawing List, a Master Specifications List, and a Major Equipment and Structure List. The schedule shall contain a description and list of proposed submittal packages for design, calculations, and specifications for major structures and equipment. To facilitate audits by Energy Commission staff, the project owner shall provide designated packages to the CPM when requested.

Verification: At least 60 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of construction, the project owner shall submit the schedule, a Master Drawing List, and a Master Specifications List to the CBO and to the CPM. The schedule shall contain a description and list of proposed submittal packages for design, calculations, and specifications for major structures and equipment (see a list of major equipment in Table 1: Major Equipment List below). Additions and deletions shall be made to the table only with CPM and CBO approval. The project owner shall provide schedule updates in the Monthly Compliance Report.

<table>
<thead>
<tr>
<th>Table 1: Major Equipment List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakers</td>
</tr>
<tr>
<td>Step-up Transformer</td>
</tr>
<tr>
<td>Switchyard</td>
</tr>
<tr>
<td>Busses</td>
</tr>
<tr>
<td>Surge Arrestors</td>
</tr>
<tr>
<td>Disconnects</td>
</tr>
<tr>
<td>Take off facilities</td>
</tr>
<tr>
<td>Electrical Control Building</td>
</tr>
<tr>
<td>Switchyard Control Building</td>
</tr>
<tr>
<td>Transmission Pole/Tower</td>
</tr>
<tr>
<td>Grounding System</td>
</tr>
</tbody>
</table>
TSE-2 Prior to the start of construction the project owner shall assign an electrical engineer and at least one of each of the following to the project: A) a civil engineer; B) a geotechnical engineer or a civil engineer experienced and knowledgeable in the practice of soils engineering; C) a design engineer, who is either a structural engineer or a civil engineer fully competent and proficient in the design of power plant structures and equipment supports; or D) a mechanical engineer. (Business and Professions Code Sections 6704 et seq., require state registration to practice as a civil engineer or structural engineer in California.)

The tasks performed by the civil, mechanical, electrical or design engineers may be divided between two or more engineers, as long as each engineer is responsible for a particular segment of the project (e.g., proposed earthwork, civil structures, power plant structures, equipment support). No segment of the project shall have more than one responsible engineer. The transmission line may be the responsibility of a separate California registered electrical engineer. The civil, geotechnical or civil and design engineer assigned in conformance with Facility Design condition GEN-5, may be responsible for design and review of the TSE facilities.

The project owner shall submit to the CBO for review and approval, the names, qualifications and registration numbers of all engineers assigned to the project. If any one of the designated engineers is subsequently reassigned or replaced, the project owner shall submit the name, qualifications and registration number of the newly assigned engineer to the CBO for review and approval. The project owner shall notify the CPM of the CBO’s approval of the new engineer. This engineer shall be authorized to halt earthwork and to require changes; if site conditions are unsafe or do not conform with predicted conditions used as a basis for design of earthwork or foundations.

The electrical engineer shall:

1. Be responsible for the electrical design of the power plant switchyard, outlet and termination facilities; and
2. Sign and stamp electrical design drawings, plans, specifications, and calculations.

Verification: At least 30 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of rough grading, the project owner shall submit to the CBO for review and approval, the names, qualifications and registration numbers of all the responsible engineers assigned to the project. The project owner shall notify the CPM of the CBO’s approvals of the engineers within five days of the approval.

If the designated responsible engineer is subsequently reassigned or replaced, the project owner has five days in which to submit the name, qualifications, and registration number of the newly assigned engineer to the CBO for review and approval. The project owner shall notify the CPM of the CBO’s approval of the new engineer within five days of the approval.
TSE-3 If any discrepancy in design and/or construction is discovered in any engineering work that has undergone CBO design review and approval, the project owner shall document the discrepancy and recommend corrective action. (1998 CBC, Chapter 1, Section 108.4, Approval Required; Chapter 17, Section 1701.3, Duties and Responsibilities of the Special Inspector; Appendix Chapter 33, Section 3317.7, Notification of Noncompliance]. The discrepancy documentation shall become a controlled document and shall be submitted to the CBO for review and approval and shall reference this condition of certification.

Verification: The project owner shall submit a copy of the CBO’s approval or disapproval of any corrective action taken to resolve a discrepancy to the CPM within 15 days of receipt. If disapproved, the project owner shall advise the CPM, within five days, the reason for disapproval, and the revised corrective action required to obtain the CBO’s approval.

TSE-4 For the power plant switchyard, outlet line and termination, the project owner shall not begin any increment of construction until plans for that increment have been approved by the CBO. These plans, together with design changes and design change notices, shall remain on the site for one year after completion of construction. The project owner shall request that the CBO inspect the installation to ensure compliance with the requirements of applicable LORS.

The following activities shall be reported in the Monthly Compliance Report:

 a) receipt or delay of major electrical equipment;
 b) testing or energization of major electrical equipment; and
 c) the number of electrical drawings approved, submitted for approval, and still to be submitted.

Verification: At least 30 days (or a lesser number of days mutually agreed to by the project owner and the CBO) prior to the start of each increment of construction, the project owner shall submit to the CBO for review and approval the final design plans, specifications and calculations for equipment and systems of the power plant switchyard, outlet line and termination, including a copy of the signed and stamped statement from the responsible electrical engineer attesting to compliance with the applicable LORS, and send the CPM a copy of the transmittal letter in the next Monthly Compliance Report.

TSE-5 The project owner shall ensure that the design, construction and operation of the proposed transmission facilities will conform to all applicable LORS, including the requirements listed below. The substitution of CPM and CBO approved “equivalent” equipment and equivalent substation configurations is acceptable. The project owner shall submit the required number of copies of the design drawings and calculations as determined by the CBO.

 a) The power plant switchyard and outlet line shall meet or exceed the electrical, mechanical, civil and structural requirements of CPUC General Order 95 or National Electric Safety Code (NESC), Title 8 of the California
Code and Regulations (Title 8), Articles 35, 36 and 37 of the “High Voltage Electric Safety Orders”, National Electric Code (NEC) and related industry standards.

b) Breakers and busses in the power plan switchyard and other switchyards, where applicable, shall be sized to comply with a short-circuit analysis.

c) Outlet line crossings and line parallels with transmission and distribution facilities shall be coordinated with the transmission line owner and comply with the owner’s standards.

d) The project conductors shall be sized to accommodate the full output from the project.

e) Termination facilities shall comply with applicable SCE interconnection standards.

f) The project owner shall provide:

i) The final Detailed Facility Study (DFS) including a description of facility upgrades, operational mitigation measures, and/or Special Protection System (SPS) sequencing and timing if applicable,

ii) Executed Facility Interconnection Agreement

iii) Verification of California ISO Notice of Synchronization.

Verification: At least 60 days prior to the start of construction of transmission facilities (or a lessor number of days mutually agree to by the project owner and CBO, the project owner shall submit to the CBO for approval:

a) Design drawings, specifications and calculations conforming with CPUC General Order 95 or NESC, Title 8, Articles 35, 36 and 37 of the “High Voltage Electric Safety Orders”, NEC, applicable interconnection standards and related industry standards, for the poles/towers, foundations, anchor bolts, conductors, grounding systems and major switchyard equipment.

b) For each element of the transmission facilities identified above, the submittal package to the CBO shall contain the design criteria, a discussion of the calculation method(s), a sample calculation based on “worst case conditions”\(^2\) and a statement signed and sealed by the registered engineer in responsible charge, or other acceptable alternative verification, that the transmission element(s) will conform with CPUC General Order 95 or NESC, Title 8, California Code of Regulations, Articles 35, 36 and 37 of the, “High Voltage Electric Safety Orders”, NEC, applicable interconnection standards, and related industry standards.

c) Electrical one-line diagrams signed and sealed by the registered professional electrical engineer in responsible charge, a route map, and an engineering description of equipment and the configurations covered by requirements **TSE-5** a) through f) above.

d) The DFS operational mitigation measures, SPS, and executed Facility Interconnection Agreement shall be provided concurrently to the CPM and CBO.

\(^2\) Worst case conditions for the foundations would include for instance, a dead-end or angle pole.
Substitution of equipment and substation configurations shall be identified and justified by the project owner for CBO approval.

TSE-6 The project owner shall inform the CPM and CBO of any impending changes, which may not conform to the requirements TSE-5 a) through f), and have not received CPM and CBO approval, and request approval to implement such changes. A detailed description of the proposed change and complete engineering, environmental, and economic rationale for the change shall accompany the request. Construction involving changed equipment or substation configurations shall not begin without prior written approval of the changes by the CBO and the CPM.

Verification: At least 60 days prior to the construction of transmission facilities, the project owner shall inform the CBO and the CPM of any impending changes which may not conform to requirements of TSE-5 and request approval to implement such changes.

TSE-7 The project owner shall provide the following Notice to the California Independent System Operator (California ISO) prior to synchronizing the facility with the California Transmission system:

1. At least one week prior to synchronizing the facility with the grid for testing, provide the California ISO a letter stating the proposed date of synchronization; and

2. At least one business day prior to synchronizing the facility with the grid for testing, provide telephone notification to the ISO Outage Coordination Department.

Verification: The project owner shall provide copies of the California ISO letter to the CPM when it is sent to the California ISO one week prior to initial synchronization with the grid. The project owner shall contact the California ISO Outage Coordination Department, Monday through Friday, between the hours of 0700 and 1530 at: (916) 351-2300 at least one business day prior to synchronizing the facility with the grid for testing. A report of conversation with the California ISO shall be provided electronically to the CPM one day before synchronizing the facility with the California transmission system for the first time.

TSE-8 The project owner shall be responsible for the inspection of the transmission facilities during and after project construction, and any subsequent CPM and CBO approved changes thereto, to ensure conformance with CPUC GO-95 or NESC, Title 8, CCR, Articles 35, 36 and 37 of the, “High Voltage Electric Safety Orders”, applicable interconnection standards, NEC and related industry standards. In case of non-conformance, the project owner shall inform the CPM and CBO in writing, within 10 days of discovering such non-conformance and describe the corrective actions to be taken.

Verification: Within 60 days after first synchronization of the project, the project owner shall transmit to the CPM and CBO:
a) “As built” engineering description(s) and one-line drawings of the electrical portion of
the facilities signed and sealed by the registered electrical engineer in responsible
charge. A statement attesting to conformance with CPUC GO-95 or NESC, Title 8,
California Code of Regulations, Articles 35, 36 and 37 of the, “High Voltage Electric
Safety Orders”, and applicable interconnection standards, NEC, related industry
standards, and these conditions shall be provided concurrently.

b) An “as built” engineering description of the mechanical, structural, and civil portion of
the transmission facilities signed and sealed by the registered engineer in
responsible charge or acceptable alternative verification. “As built” drawings of the
mechanical, structural, and civil portion of the transmission facilities shall be
maintained at the power plant and made available, if requested, for CPM audit as set
forth in the “Compliance Monitoring Plan”.

c) A summary of inspections of the completed transmission facilities, and identification
of any nonconforming work and corrective actions taken, signed and sealed by the
registered engineer in charge.

REFERENCES

CEC 2013a-CEC /C. Marxen (TN 90818). Notice of Receipt for the Petition to Amend,

California ISO (California Independent System Operator) Tariff, Ongoing, – California
ISO Tariff Scheduling Protocol posted July 11, 2013,

California ISO (California Independent System Operator) 2011a – California ISO
Planning Standards.

California ISO (California Independent System Operator) posted July 11, 2013 Ongoing
– California ISO, FERC Electric Tariff,

CPUC GO-95 California Public Utilities Commission General Order 95 (CPUC GO 95)
http://www.cpuc.ca.gov/gos/GO95/go_95_startup_page.html

CPUC GO-128 California Public Utilities Commission General Order 128 (CPUC GO
128) http://162.15.7.24/gos/OriginalGO128/index.htm

NERC (North American Electric Reliability Council) Ongoing – Reliability Standards for
the Bulk Electric Systems of North America,

Updated 2012.
ESPR (El Segundo Power Station) 2000a – Application for Certification

Submitted to the California Energy Commission on December 18, 2000.

ESPR (El Segundo Power Station) – 2001 – Record of Telephone conversation between CEC staff and the legal counsel for the applicant, John McKinsey. The applicant reports that RAS is planned to avoid overloads over upgrades of the overhead/underground or other transmission lines, and in the event that RAS developed for the full plant output will not meet required criteria for transmission system reliability, the project is committed to modification of the generation project design to make RAS work and thereby avoid physical upgrades to transmission lines. April 26, 2001.

DEFINITION OF TERMS

AAC All aluminum conductor
ACSR Aluminum conductor steel-reinforced
ACSS Aluminum conductor steel-supported

Ampacity Current-carrying capacity, expressed in amperes, of a conductor at specified ambient conditions, at which damage to the conductor is nonexistent or deemed acceptable based on economic, safety, and reliability considerations

Ampere The unit of current flowing in a conductor

Bundled Two wires, 18 inches apart

Bus Conductors that serve as a common connection for two or more circuits

Conductor The part of the transmission line (the wire) that carries the current.

Congestion Management A scheduling protocol that ensures dispatched generation and transmission loading (imports) will not violate criteria

Double Contingency Also known as emergency or N-2 condition, occurs when a forced outage of two system elements occurs -- usually (but not exclusively) caused by one single event. Examples of an N-2 contingency include loss of two transmission circuits on single tower line or loss of two elements connected by a common circuit breaker due to the failure of that common breaker

Emergency Overload See Single Contingency condition. This is also called an N-1.

Kcmil or KCM Thousand circular mil. A unit of the conductor’s cross sectional area; when divided by 1,273, the area in square inches is obtained.

Kilovolt (kV) A unit of potential difference, or voltage, between two conductors of a circuit, or between a conductor and the ground

Loop An electrical cul de sac. A transmission configuration that interrupts an existing circuit, diverts it to another connection, and returns it back to the interrupted circuit, thus forming a loop or cul de sac

Megavar One megavolt ampere reactive

Megavars Mega-volt-ampere-reactive. One million volt-ampere-reactive. Reactive power is generally associated with the reactive nature of motor loads that must be fed by generation units in the system
Megavolt Ampere (MVA) A unit of apparent power, equals the product of the line voltage in kilovolts, current in amperes, the square root of 3, divided by 1,000

Megawatt (MW) A unit of power equivalent to 1,341 horsepower

N-0 Condition See Normal Operation/Normal Overload, below

Normal Operation/Normal Overload (N-0) When all customers receive the power they are entitled to without interruption and at steady voltage, and no element of the transmission system is loaded beyond its continuous rating

N-1 Condition See Single Contingency, below

N-2 Condition See Double Contingency, above

Outlet Transmission facilities (circuit, transformer, circuit breaker, etc.) linking generation facilities with the main grid

Power Flow Analysis A power flow analysis is a forward-looking computer simulation of essentially all generation and transmission system facilities that identifies overloaded circuits, transformers, and other equipment and system voltage levels

Reactive Power Reactive power is generally associated with the reactive nature of motor loads that must be fed by generation units in the system. An adequate supply of reactive power is required to maintain voltage levels in the system

Remedial Action Scheme A remedial action scheme is an automatic control provision that, as one example, will trip a selected generating unit when a circuit overloads

SF6 Sulfur hexafluoride is an insulating medium

Single Contingency Also known as emergency or N-1 condition, occurs when one major transmission element (circuit, transformer, circuit breaker, etc.) or one generator is out of service

Solid Dielectric Cable Copper or aluminum conductors that are insulated by solid polyethylene type insulation and covered by a metallic shield and outer polyethylene jacket

Special Protection Scheme/System Detects a transmission outage (either a single or credible multiple contingency) or an overloaded transmission facility and then trips or runs back generation output to avoid potential overloaded facilities or other criteria violations

Switchyard A power plant switchyard is an integral part of a power plant that is used as an outlet for one or more electric generators

Thermal Rating See ampacity.

TSE Transmission System Engineering
Tap A transmission configuration that creates an interconnection through a short single circuit to a small or medium-sized load or generator. The new single circuit line is inserted into an existing circuit by utilizing breakers at existing terminals of the circuit, rather than installing breakers at the interconnection in a new switchyard.

Undercrossing A transmission configuration where a transmission line crosses below the conductors of another transmission line, generally at 90 degrees.

Underbuild A transmission or distribution configuration where a transmission or distribution circuit is attached to a transmission tower or pole below (under) the principle transmission line conductors.
SUMMARY OF CONCLUSIONS

This section evaluates a reasonable range of alternatives to the proposed El Segundo Power Facility Modification (ESPFM). The range of alternatives considered by California Energy Commission (Energy Commission) staff includes alternative sites, alternative site configurations, and alternative technologies. Each of these alternatives have been eliminated from detailed consideration due to a failure to meet most of the basic project objectives, infeasibility, inability to avoid significant environmental impacts, or any combination thereof. An evaluation of the No-Project Alternative has also been provided in this analysis. Staff concludes that:

- Locating the proposed ESPFM Units 9 through 12 at an alternative site would have feasibility issues because the facility owner, El Segundo Energy Center, L.L.C. (ESEC LLC), owns and has full access to the (El Segundo Energy Center (ESEC) site, and no other site is identified where the facility owner could reasonably acquire site access to allow the timely completion of necessary environmental reviews, permitting, and approvals. The extent to which development of a different site could meet the project objectives is unknown, although it is questionable whether any off-site alternative would allow the project to remain a viable proposal given the likely extreme project schedule delay that would accompany a change of project site. In that circumstance, none of the project objectives would be attained.

- While alternative site configurations would likely meet most of the basic project objectives, they would not avoid or substantially lessen the project impacts identified in this Preliminary Staff Assessment (PSA) that could otherwise be mitigated to a level of insignificance for the ESPFM as proposed. Demolishing the existing Units 3 and 4 to make room for the proposed Units 9 through 12 would continue the use of a portion of the ESEC site that has traditionally been used for electric generation. Siting the administration building within the former tank farm area and maintaining an open buffer area on the southern portion of the ESEC site would be compatible with the neighboring residential area. A reconfigured alternative that would expand energy generation to this remaining open portion of the site would potentially cause significant effects in addition to those that would be caused by the project as proposed.

- The facility owner has selected a mix of natural gas combined cycle and natural gas simple cycle components utilizing fast start and dispatch flexibility in order to support southern California grid load balancing and renewable energy integration (NRG 2013a, § 1.1). This configuration would provide an important element in the introduction of renewable energy sources by providing a bridge for power-loss intermittencies characteristic of wind turbines, solar photovoltaic, and solar thermal electric generation systems. Given the project objectives, location, and the
commercial experience of the selected technologies, staff agrees with the facility owner that only natural gas-burning technologies are feasible for this project.

- Units 3 and 4 are older power generation facilities that the state is looking to replace with fast-start and dispatch flexibility capabilities to provide grid stability to accommodate increased renewable energy and provide back-up for planned and unplanned grid outages in response to excessive demands. Thus, the No-Project Alternative would fail to meet most of the basic project objectives.

Within this PSA, with the exception of Cultural Resources, which remains undetermined at this time (see Executive Summary Table 1), the proposed ESPFM with the incorporation of staff’s recommended modifications to the conditions of certification would be the environmentally superior alternative on the basis of feasibility and the minimization or avoidance of significant physical environmental impacts of the project, while also attaining all of the basic project objectives.

CEQA REQUIREMENTS

As lead agency for the proposed ESPFM the Energy Commission is required to consider and discuss alternatives to the ESPFM. The guiding principles for the selection of alternatives for analysis are provided by the California Environmental Quality Act Guidelines (CEQA Guidelines) (Cal. Code Regs., tit. 14, §15000 et seq.). According to section 15126.6 of the CEQA Guidelines, the alternatives analysis must:

- Describe a range of reasonable alternatives to the project, or to the location of the project, which would feasibly attain most of the basic objectives of the project.

- Consider alternatives that would avoid or substantially lessen any significant environmental impacts of the proposed project, including alternatives that would be more costly or would otherwise impede the project’s objectives.

- Evaluate the comparative merits of the alternatives.

The lead agency is responsible for selecting a range of project alternatives for examination and must publicly disclose its reasoning for selecting those alternatives (Cal. Code Regs., tit. 14, §15126.6[a]). CEQA does not require an Environmental Impact Report (EIR) to “consider every conceivable alternative to a project. Rather, CEQA requires consideration of a “reasonable range of potentially feasible alternatives.” The reasonable range of alternatives must be selected and discussed in a manner that fosters meaningful public participation and informed decision making (Cal. Code Regs., tit. 14, §15126.6[f][f]). That is, the range of alternatives presented in this analysis is limited to ones that will inform a reasoned choice by the Energy Commission. Under the “rule of reason,” an agency need not consider an alternative whose effect cannot be reasonably ascertained and whose implementation is remote and speculative (Cal. Code Regs., tit. 14, §15126.6[f][f][3]).

The CEQA lead agency is also required to:

1. Evaluate a No-Project Alternative.
(2) Identify alternatives that were initially considered but then rejected from further evaluation.

(3) Identify the environmentally superior alternative among the other alternatives (Cal. Code Regs., tit. 14, §15126.6).

Alternatives may be eliminated from detailed consideration by the lead agency if they fail to meet most of the basic project objectives, are infeasible, or could not avoid any significant environmental effects (Cal. Code Regs., tit. 14, §15126.6[c]).

PROJECT OBJECTIVES

The California Independent System Operator (California ISO) has identified the importance for new power generation facilities in their Los Angeles Basin Local Reliability Area to replace the ocean water once-through-cooling (OTC) plants that are expected to retire as a result of the California State Water Resources Control Board’s Water Quality Control Policy on the Use of Coastal and Estuarine Waters for Power Plant Cooling (referred to as the OTC Policy). The project objectives are also consistent with the use of the offset exemption contained within the South Coast Air Quality Management District’s (SCAQMD) Rule 1304(a)(2) that allows for the replacement of older, less efficient, electric utility steam boilers with specific new generation technologies on a megawatt-to-megawatt basis.

As described in the Petition to Amend (PTA), the facility owner’s specific project objectives are as follows:

- Maximize use of limited existing air offsets by replacing older generating equipment with new low-emission combustion turbine equipment that will significantly reduce air pollutant emissions as compared to the boilers they are replacing, pursuant to South Coast Air Quality Management District (SCAQMD) Rule 1304.
- Redevelop brownfield site in proximity to existing infrastructure.
- Install air-cooled condenser and eliminate need for once-through ocean water cooling process.
- Remove existing once-through cooling process at ESEC as a means to meet the state’s once-through cooling policy, consistent with ESEC’s stated Once-Through Cooling Implementation Plan to retire Units 3 and 4 by December 31, 2015, and replace the generation via Track 1 compliance path.
- Provide grid stability to accommodate increased renewable energy generation by adding dispatch capabilities to accommodate planned and unplanned grid outages in response to excessive demands and natural disasters.
- Incorporate visual elements into facility design consistent with the ESEC license and subsequent PTAs related to 00-AFC-14C that considers community input.
Integrate community-defined site improvements, including improvements to pedestrian/bicycle use of bike path, landscaping and frontage improvements.

Improve fire, emergency, public safety, and environmental protections through installation and operation of new more efficient generating units.

Improve public access through implementation of existing Conditions of Certification LAND-9 through LAND-11.

Based upon a review of the facility owner’s project objectives, staff developed the following objectives to complete an alternatives analysis. These objectives are consistent with the applicant’s proposal but are not so narrow that they are only limited to the construction of the ESPFM as proposed.

- Redevelop brownfield site in proximity to existing electrical, water, wastewater, and natural gas infrastructure.
- Maximize use of limited existing air offsets by replacing older electric utility steam boilers with advanced gas turbines, including combined cycle and simple cycle configurations, pursuant to SCAQMD Rule 1304.
- Site the project to serve the load area without constructing new transmission facilities.
- Develop a 448.8 MW power generation plant that provides efficient operational flexibility with rapid-start and fast ramping capability to allow for efficient integration of renewable energy sources in the California electrical grid.
- Provide efficient, reliable and predictable power supply by using combined-cycle and simple cycle natural gas-fired combustion turbines.
- Be able to support the local capacity requirements of Southern California’s Los Angeles Basin Local Reliability Area.

ENERGY COMMISSION STAFF’S ALTERNATIVES SCREENING PROCESS

The CEQA Guidelines describe selection of a reasonable range of alternatives and the requirement to include those that could feasibly accomplish most of the basic project objectives while avoiding or substantially lessening one or more of the significant effects (Cal. Code Regs., tit. 14, §15126.6, subd. (c)). The CEQA Guidelines address the requirement for the alternatives analysis to briefly describe the rationale for selecting alternatives to be discussed. The analysis should identify any alternatives that were considered by the lead agency but were rejected as infeasible and briefly explain the reasons underlying the lead agency’s determination.

The CEQA Guidelines list factors that may be considered when addressing feasibility of alternatives: site suitability; economic viability; availability of infrastructure; general plan consistency; other plans or regulatory limitations; jurisdictional boundaries; and whether the proponent can reasonably acquire, control or otherwise have access to the...
alternative site (or the site is already owned by the proponent). No one of these factors establishes a fixed limit on the scope of reasonable alternatives (Cal. Code Regs., tit. 14, §15126.6, subd. (f)(1)).

Pursuant to CEQA, the purpose of staff’s alternatives analysis is to identify the potential significant impacts of the ESPFM and to focus on alternatives that are capable of avoiding or substantially reducing those impacts while still meeting most of the basic project objectives.

To prepare the analysis of alternatives, staff used the methodology summarized below:

- Describe the objectives of the project and compare those against potentially feasible alternatives to the project.
- Identify any potential significant environmental impacts of the project.
- Identify and evaluate alternatives to the project which would mitigate impacts.
- Evaluate the impacts of not constructing the project to determine whether the “no project” alternative is superior to the project as proposed.

ALTERNATIVES ELIMINATED FROM DETAILED CONSIDERATION

The CEQA Guidelines §15126.6(c) describe selection of a reasonable range of alternatives and the requirement to include those that could feasibly accomplish most of the basic project objectives while avoiding or substantially lessening one or more of the significant effects. The analysis should identify any alternatives that were considered by the lead agency but were rejected as infeasible. CEQA requires a brief explanation of the reasons underlying the lead agency’s determination to eliminate alternatives from detailed analysis.

The following alternatives were considered but eliminated from detailed consideration. Those alternatives that were not carried forward for full analysis include Alternative Sites, Alternative Site Configuration, Technology Alternatives, and the No-Project Alternative. The following provides staff’s reasons for eliminating these alternatives from detailed analysis.

Alternative Sites

Relationship of the Proposed ESPFM to the Project Site
The Warren-Alquist Act addresses aspects of an applicant’s site selection criteria for thermal power plants and the use of an existing industrial site for such use when the project has a strong relationship to the existing industrial site. When this is the case, it is “reasonable not to analyze alternative sites for the project” (Pub. Resources Code, § 25540.6, subd. (b)). The analysis below addresses the project’s strong relationship to the project site, both from a regulatory and practical standpoint, and provides a framework for staff’s selection of the project alternatives.
Use of the Existing ESEC site for Electrical Power Generation

The long-term historical use of the project site for electrical power generation is applicable to the discussion of the project’s strong relationship to the site. This analysis recognizes the fact that the proposed ESPFM would be constructed and operated at the existing ESEC site.

Originally built in the 1950s, the ESEC (formerly known as the El Segundo Generating Station) was a 1,052 MW power plant, consisting of four simple-cycle, natural gas-fired, utility boiler generating units. In 2000, the facility owner applied to the Energy Commission to demolish and replace Units 1 and 2 with combined-cycle Units 5, 6, and 7, and continue the use of once-through cooling. The modified project was certified by the Energy Commission on February 3, 2005. (CEC 2005a) In 2007, the facility owner petitioned to amend the 2005 Energy Commission Decision, seeking to install smaller, rapid-start, combined-cycle units, using dry-cooling technology, to be designated as Unit 5 and 6 and Unit 7 and 8. (CEC 2010a) The Energy Commission approved this amendment on June 30, 2010. As part of this PTA, Unit 3 had to cease operation prior to Units 5–8 becoming operational and producing power. NRG started construction on Units 5-8, in June 2011, and the project started commercial operation in August 2013.

The ESEC site has a General Plan land use designation of Heavy Industrial with consistent zoning. The project as proposed in the PTA would make use of much of the infrastructure of the existing site, including the existing water supply, drainage system, wastewater system, natural gas supply line, and access to the adjacent Southern California Edison (SCE) switchyard to connect to the transmission grid. Off-site infrastructure is not proposed or required. Additionally, staff notes that the proposed project would use recycled water exclusively for industrial operation, therefore, including a recycled water alternative in this analysis was not applicable.

Expansion of Existing Coastal Power Plants

The California Coastal Act of 1976 (Coastal Act) protects coastal resources from the major impacts of power plant siting. In 1978, the California Coastal Commission (Coastal Commission) adopted a report that satisfied a requirement of the Coastal Act to designate specific locations in the coastal zone where the location of an electric generating facility would prevent the achievement of the objectives of the Coastal Act (Pub. Resources Code § 30413 (b)). The 1978 report was revised in 1984 and re-adopted in 1985 (Coastal Commission 1985). In accordance with the Coastal Act, the report designates sensitive resource areas along the California coast as unsuitable for power plant construction and provides “that specific locations that are presently used for such facilities and reasonable expansion thereof shall not be so designated.” This policy encourages expansion of existing power plant sites if new plants are necessary, thereby protecting undeveloped coastal areas (Coastal Commission 1985).

In a related effort, the Energy Commission prepared a 1980 study that examined opportunities for the reasonable expansion of existing power plants in the state’s Coastal Zone and reviewed the effects of the designated resource areas on expansion opportunities (Energy Commission 1980). The 1980 study defines reasonable in this context to mean the provision or maintenance of land area adequate to satisfy a specific
site’s share of the state’s need for increased electrical power generating capacity over the Energy Commission’s planning intervals of 12 and 20 years (Energy Commission 1980). The study also gives practical consideration to coastal power plant expansion and siting opportunities. The ancillary support facilities already exist at the power plant sites, and the industrial-type land use has been established, which are important points to consider from a practical standpoint (Energy Commission 1980).

The expansion areas should be inside or adjacent to the existing site boundaries, or within a distance that would permit the cost effective use of the existing power plant support facilities, where necessary or advisable.

The 1980 study describes expansion opportunities for various combinations of plant types and sizes at 20 of the 25 evaluated sites. The El Segundo power plant is characterized as having “available land constraints that essentially prohibit on-site expansion of any kind other than repowering. Off-site expansion would require the relocation of adjacent refinery storage facilities to provide adequate area. The plant’s southern boundary immediately abuts private residential and public beach areas” (Energy Commission 1980). The proposed ESPFM project would be located inside the existing ESEC, and no off-site expansion of power plant facilities would be required.

Alternative Site Summary

Any alternative that would, in theory, require conversion of some other area of similar acreage to a new electrical power generation facility would bring into question some of the feasibility issues listed above. ESEC, LLC owns and has full access to the ESEC site, and no other site is identified where the facility owner could reasonably acquire site access to allow the timely completion of necessary environmental reviews, permitting, and approvals. The extent to which development of a different site could meet the project objectives is unknown, although it is questionable whether any off-site alternative would allow the project to remain a viable proposal given the likely extreme project schedule delay that would accompany a change of project site. In that circumstance, none of the project objectives would be attained for the proposed ESPFM. Staff’s analysis provides evidence of the proposed project’s strong relationship to the project site, and given the uncertain potential for development of any alternative site to achieve the project objectives, offsite alternatives were eliminated from detailed consideration.

Alternative Site Configurations

Site Constraints

The existing Units 3 and 4 occupy approximately 4 to 5 acres of the overall ESEC site. The facility owner has proposed a modification that is designed to replace the existing Units 3 and 4 within the same footprint. The locations of existing on-site infrastructure within the ESEC site, including the relatively new Units 5 through 8, and the adjacent residential community to the south are constraints on other potential site configurations.

The large paved area in the southern portion of the property previously contained two large oil storage tanks that have been removed. This area is proposed to remain open and a buffer for the houses along 45th Street in the City of Manhattan Beach. The facility
owner proposes to relocate the administration building to the northern edge of the previous tank farm as shown on Project Description Figures 3 and 4. Staff does not propose any technologies or site modifications that would include power generating facilities in this open area.

Administration Building

The proposed administration building would be a contemporary design, entailing extensive use of glass, and a masonry structure with a flat gray finish similar to the finish of the other project structures. See Project Description Figures 9, 10 and 11. It would be two stories (up to 40 feet tall), which would partially screen the view of the plant’s industrial features. Adjacent to the north side of the administration building, in the general area of the existing retention basin, space for maintenance, equipment storage, and warehouse access at plant grade would be provided. This area would be on the “back side” of the administration building, screened from the neighboring community to the south.

The administration building would be set back from the western property boundary by a perimeter roadway, sloped berm and bioswale. The visual impacts from the administration building were not found to be significant with conditions of certification included. Staff is not requesting that the building be moved because of visual impacts.

While alternative site configurations would likely meet most of the basic project objectives, they would not avoid or substantially lessen the project impacts identified in this PSA that could otherwise be mitigated to less than significant levels for the ESPFM as proposed. Demolishing the existing Units 3 and 4 to make room for the proposed Units 9 through 12 would continue the use of a portion of the ESEC site that has traditionally been used for electric generation. Siting the administration building within the former tank farm area and maintaining an open buffer area on the southern portion of the ESEC site would be compatible with the neighboring residential area. A reconfigured alternative expanding energy generation to this remaining open portion of the site would potentially cause significant effects in addition to those that would be caused by the project as proposed. Based on these conclusions, staff has eliminated alternative site configurations from further discussion.

Technology Alternatives

The facility owner selected a single train of 1x1 General Electric (GE) “CC Fast”—a net 325 MW, air-cooled, fast start, combined-cycle plant utilizing the Heller cooling system, duct burners, and auxiliary boiler because this configuration offers more megawatts per square footage site area and more efficiency with respect to greenhouse (GHG) emissions/heat rate as compared to a single train of the Siemens Flex Plant 10 configuration recently completed. The GE CC Fast configuration qualifies for exemption from emission offsets requirement according to SCAQMD Rule 1304(a)(2) - Electric Utility Steam Boiler Replacement in the South Coast Air Basin. The CC Fast includes a fast start like the Siemens Flex Plant 10, as well as traditional start ups.

The Rolls Royce Trent 60 turbines were selected because they are aeroderivative gas turbines that are intercooled (via wet compression technology). They qualify as
advanced gas turbines according to SCAQMD Rule 1135 with NOx emissions less than 0.10 pounds per net megawatt-hour (lb/net MWh). They qualify for exemption from emission offsets requirement according to SCAQMD Rule 1304(a)(2) - Electric Utility Steam Boiler Replacement in the South Coast Air Basin. Larger peaking units, such as the GE LMS100, have qualified for the SCAQMD Rule 1304 exemption as well. The facility owner considered GE LMS100s, but the project area is too small to accommodate two LMS100s, and likely could not accommodate the cooling system required for a single LMS100. Compared to GE LMS100s, the Trent 60s would: (1) offer a lower minimum energy output (approximately 29 MW) than larger peaking units such as GE LMS100s, (2) are of similar efficiency as the LMS100s, and (3) occupy less space than the LMS100s, especially the water-cooled version of the LMS100.

Further, the Trent 60s would require less water for cooling, and their cooling systems would be smaller than those of the GE LMS100s. By placing the two Trent 60s (with a maximum nominal net output of 55 MW individually), the facility owner can maximize the number of megawatts (110 MW net) per square foot area in contrast to a single, larger LMS100, which has an output of 100 MW. The facility owner's use of two Trent 60s, each with operating ranges of 29 MW to 55 MW for each turbine, would provide the grid with more peaking capacity options than a single 100 MW unit.

The facility owner considered other combined-cycle configurations and peaking combustion turbines in the months leading up to its air permit filing in March 2013, and its submission of the PTA in April 2013. However, none of these other configurations or turbines offered the (1) megawatt density to effectively maximize the megawatts per square foot desired to be generated at the ESEC site, (2) efficiency with respect to GHG emissions/heat rate, and (3) flexibility of megawatt output range from minimum to maximum. (LL 2013e)

The facility owner has selected a mix of natural gas combined cycle and natural gas simple cycle components utilizing fast start and dispatch flexibility in order to support southern California grid load balancing and renewable energy integration (NRG 2013a, § 1.1). This configuration would provide an important element in the introduction of renewable energy sources by providing a bridge for power-loss intermittencies characteristic of wind turbines, solar photovoltaic, and solar thermal electric generation systems. Given the project objectives, location, and the commercial experience of the selected technologies, staff agrees with the facility owner that only natural gas-burning technologies are feasible for this project.

As an alternative to the ESPFM, retrofitting existing Units 3 and 4 of the ESEC while maintaining the existing boilers would not provide the operating flexibility and efficiency improvement offered by the 7FA combined cycle and Trent 60 simple cycle trains in a hybrid configuration.

For additional information regarding the ESPFM project configuration and equipment selection please refer to the Power Plant Efficiency section of this PSA.
No Project Alternative

This analysis evaluates the No-Project Alternative to the ESPFM to fulfill the requirements of CEQA §15126. As discussed in the subsection “Energy Commission Staff’s Alternatives Screening Process,” the Energy Commission evaluates the impacts of not constructing a project to determine whether a No-Project Alternative is superior to the project (a CEQA requirement that the option of not building the project must be analyzed and compared to the project).

The ESEC Units 3 and 4 are existing power facilities from the 1950s and 1960s. Unit 3 ceased operation in July 2013 and is not allowed to operate because of a lack of air credits by the SCAQMD. Unit 4 is currently operating and is scheduled to cease operating because of the use of OTC by December 31, 2015.

The most reasonably expected no project alternative is that Unit 4 would continue to operate until the end of 2015 and then cease operations. Unit 4 would be decommissioned and then Units 3 and 4 would be left in place. There are no conditions of certification that require the demolition of Units 3 and 4. The facility owner has indicated these facilities would remain on site.

If the No-Project Alternative was selected, the demolition, construction, and operational impacts from the proposed ESPFM would not occur. As determined by Energy Commission staff in this PSA, the demolition, construction, and operation of the ESPFM is not likely to cause potentially significant adverse impacts with the incorporation of staff’s recommended modifications to the conditions of certification, with the exception of Cultural Resources, which remains undetermined at this time. Additionally, the existing visual condition of the ESEC site and viewshed would remain visually degraded by leaving the existing Units 3 and 4 in place and the opportunity to enhance the visual quality of the site through the installation of the smaller and considerably less tall and bulky proposed Units 9 through 12 would be missed. Therefore, selecting the No-Project Alternative over the proposed ESPFM would be inconsistent with Section 30251 of the Coastal Act, which requires permitted developments “…where feasible, to restore and enhance visual quality in visually degraded areas.”

The facility owner is currently bidding into a Request for Offers (RFO) process with SCE. This process is requesting bids to provide power to supply between 1,200 and 1,700 MWs to replace the energy provided by the San Onofre Nuclear Generating Station. The proposed ESPFM would satisfy the RFO requirements.

If the project is not built, the region would not benefit from the relatively efficient source of 448.8 MW of new generation that this facility would provide. This new generation would increase the supply of energy and potentially serve load demands in the Los Angeles Basin.

If no new natural gas plants were constructed, reliance on older power plants may increase. These plants would consume more fuel and emit more air pollutants per kilowatt-hour generated than the proposed project. In the near term, the more likely
result is that existing plants, many of which produce higher level of pollutants, would operate more than they do now.

As stated in the “Technology Alternatives” subsection above, retrofitting existing Units 3 and 4 of the ESEC to eliminate the use of OTC, while maintaining the existing boilers would not provide the operating flexibility and efficiency improvement offered by the 7FA combined cycle and Trent 60 simple cycle trains in a hybrid configuration as proposed for ESPFM. Furthermore, Unit 3 is currently non-operational and lacks air credits to be allowed to operate so this alternative would be infeasible under current regulations and would fail to meet most of the project objectives.

Units 3 and 4 are older power generation facilities that the state is looking to replace with fast-start and dispatch flexibility capabilities to provide grid stability to accommodate increased renewable energy and provide back-up for planned and unplanned grid outages in response to excessive demands. Thus, the No-Project Alternative would also fail to meet the most of the basic project objectives.

RESPONSE TO AGENCY AND PUBLIC COMMENTS

Staff has not received comments on aspects of the ESPFM related to alternatives.

CEQA ENVIRONMENTALLY SUPERIOR ALTERNATIVE

In CEQA analyses, the “no project” alternative is compared to the proposed project and determined to be superior, equivalent, or inferior to it. The CEQA Guidelines state that “the purpose of describing and analyzing a “no project” alternative is to allow decision makers to compare the impacts of approving the proposed project with the impacts of not approving the proposed project” (Cal. Code Regs., tit. § 15126.6(i)). Toward that end, the “no project” analysis considers “existing conditions” and “what would be reasonably expected to occur in the foreseeable future if the project were not approved…” (§ 15126.6(e)(2)). The No-Project Alternative provides a baseline against which the effects of the proposed action may be compared.

Staff’s analysis shows that alternative sites, site configurations, technologies, and the No-Project Alternative would not be feasible alternatives to the project that would meet most of the basic project objectives, nor substantially lessen significant environmental impacts of the proposed project. Within this PSA, with the exception of Cultural Resources, which remains undetermined at this time (see Executive Summary Table 1), the proposed ESPFM with the incorporation of staff’s recommended modifications to the conditions of certification would be the environmentally superior alternative on the basis of feasibility and the minimization or avoidance of significant physical environmental impacts of the project, while also attaining all of the basic project objectives.
REFERENCES

INTRODUCTION

The El Segundo Energy Center (ESEC) Compliance Conditions of Certification, including a Compliance Monitoring Plan (Compliance Plan), are established as required by Public Resources Code section 25532. These conditions are being updated to incorporate the most current Compliance Conditions of Certification into the El Segundo Power Facility Modification (ESPFM). The Compliance Plan provides a means for assuring that the facility is constructed, operated, and closed in compliance with public health and safety and environmental law; all other applicable laws, ordinances, regulations, and standards (LORS); and the conditions adopted by the Energy Commission and specified in the Commission’s written Decision on the project's Application for Certification, or otherwise required by law.

The Compliance Plan is composed of elements that:

- Set forth the duties and responsibilities of the compliance project manager (CPM), the project owner or operator (project owner), delegate agencies, and others;
- Set forth the requirements for handling confidential records and maintaining the compliance record;
- State procedures for settling disputes and making post-certification changes;
- State the requirements for periodic compliance reports and other administrative procedures that are necessary to verify the compliance status for all Energy Commission-approved conditions of certification;
- Establish contingency planning, facility non-operation protocols, and closure requirements; and
- Establish a tracking method for the technical area conditions of certification that contain measures required to mitigate potentially adverse project impacts associated with construction, operation, and closure below a level of significance; each technical condition of certification also includes one or more verification provisions that describe the means of assuring that the condition has been satisfied.

REVISED COMPLIANCE CONDITIONS

Recent compliance monitoring experience has demonstrated the need to revise the Compliance Conditions of Certification to improve compliance enforcement. These new conditions are now being proposed for all new projects at the Energy Commission and have been included as part of this amendment to be consistent with current definitions and current compliance enforcement policies. The list below summarizes the revisions.
• Definitions for specific terms pertinent to compliance monitoring, including, “Start of Construction,” “Start of Commercial Operation,” “Non-Operation and Closure,” “Site Assessment and Pre-Construction Activities,” and “Site Mobilization and Construction,” among others;

• A new subsection and expanded discussion of “Roles and Responsibilities” and new sections for “Pre-Construction and Pre-Operation Compliance Meeting” and “Energy Commission Record;” and

• New condition of certification addressing “Non-Operation” and “Facility Closure Planning.”

Specifically the following condition changes have been made:

• **Compliance-1** through **Compliance-9** have been renamed **COM-1** through **COM-9** and the language has been updated to reflect new definitions and compliance enforcement policies.

• **COM-10** (Amendments, Staff-Approved Project Modification, Ownership changes, and Verification Changes) replaces old **Compliance-14** (Amendments, Ownership changes, Staff Approved Project Modification and Verification Changes).

• **COM-11** (previously **Compliance-10**) has been updated to incorporate a number of administrative changes to reporting complaints, notices and citations.

• **COM-12** (Emergency Response Site Contingency Plan), is a new condition requiring a Contingency Plan for emergency response for a number of foreseeable emergency events.

• **COM-13** (Incident-Reporting Requirements) is also a new condition requiring the project owner to notify the CPM within one hour of any serious event, as defined by the condition, occur.

• **COM-14** (Non-Operation) and **COM-15** (Facility Closure Plan) replaces **Compliance-11** (Compliance Conditions for Facility Closure), **Compliance-12** (Unplanned temporary closure/On site Contingency Plan), and **Compliance-13** (Unplanned Permanent Closure/On site Contingency Plan).

• **COM-16** Financial Assurance for Closure and Post-Closure Care is a new requirement that ensures that adequate funds are available to finance interim operation, facility closure, and post-closure care as needed.

KEY PROJECT EVENT DEFINITIONS

The following terms and definitions help determine when various conditions of certification are implemented.
PROJECT CERTIFICATION
Project certification occurs on the day the Energy Commission docket its Decision after adopting it at a publically noticed Business Meeting or hearing. At that time, all Energy Commission conditions of certification become binding on the project owner and the proposed facility.

SITE ASSESSMENT AND PRE-CONSTRUCTION ACTIVITIES
The below-listed site assessment and pre-construction activities may be initiated or completed prior to the start of construction, subject to the CPM’s approval of the specific site assessment or pre-construction activities.

Site assessment and pre-construction activities include the following, but only to the extent the activities are minimally disruptive to soil and vegetation and shall not affect listed or special-status species or other sensitive resources:

1. The installation of environmental monitoring equipment;
2. A minimally invasive soil or geological investigation;
3. A topographical survey;
4. Any other study or investigation to determine the environmental acceptability or feasibility of the use of the site for any particular facility; and
5. Any minimally invasive work to provide safe access to the site for any of the purposes specified in 1-4, above.

SITE MOBILIZATION AND CONSTRUCTION
When a condition of certification requires the project owner to take an action or obtain CPM approval prior to the start of construction, or within a period of time relative to the start of construction, that action must be taken, or approval must be obtained, prior to any site mobilization or construction activities, as defined below.

Site mobilization and construction activities are those necessary to provide site access for construction mobilization and facility installation, including both temporary and permanent equipment and structures, as determined by the CPM.

Site mobilization and construction activities include, but are not limited to:

1. Ground disturbance activities like grading, boring, trenching, leveling, mechanical clearing, grubbing, and scraping;
2. Site preparation activities, such as access roads, temporary fencing, trailer and utility installation, construction equipment installation and storage, equipment and supply laydown areas, borrow and fill sites, temporary parking facilities, and chemical spraying and controlled burns; and
3. Permanent installation activities for all facility and linear structures, including access roads, fencing, utilities, parking facilities, equipment storage, mitigation and landscaping activities, and other installations, as applicable.

SYSTEM COMMISSIONING AND DECOMMISSIONING
Commissioning activities are designed to test the functionality of a facility’s installed components and systems to ensure safe and reliable operation. Although decommissioning is often synonymous with facility closure, specific decommissioning activities also systematically test the removal of such systems to ensure a facility’s safe closure. For compliance monitoring purposes, commissioning examples include interface connection and utility pre-testing, “cold” and “hot” electrical testing, system pressurization and optimization tests, grid synchronization, and combustion turbine “first fire.” Decommissioning activity examples include utility shut down, system depressurization and de-electrification, structure removal, and site reclamation.

START OF COMMERCIAL OPERATION
For compliance monitoring purposes, “commercial operation” or “operation” begins once commissioning activities are complete, the certificate of occupancy has been issued, and the power plant has reached reliable steady-state electrical production. At the start of commercial operation, plant control is usually transferred from the construction manager to the plant operations manager. Operation activities can include a steady state of electrical production, or, for “peaker plants,” a seasonal or on-demand operational regime to meet peak load demands.

NON-OPERATION AND CLOSURE
Non-operation is time-limited and can encompass part or all of a facility. Non-operation can be a planned event, usually for minor equipment maintenance or repair, or unplanned, usually the result of unanticipated events or emergencies.

Closure is a facility shutdown with no intent to restart operation. It may also be the cumulative result of unsuccessful efforts to re-start over an increasingly lengthy period of non-operation, condemned by inadequate means and/or lack of a viable plan. Facility closures can occur due to a variety of factors, including, but not limited to, irreparable damage and/or functional or economic obsolescence.

ROLES AND RESPONSIBILITIES
Provided below is a generalized description of the compliance roles and responsibilities for Energy Commission staff (staff) and the project owner for the construction and operation of the ESEC.

COMPLIANCE PROJECT MANAGER RESPONSIBILITIES
The CPM’s compliance monitoring and project oversight responsibilities include:

• ensuring that the design, construction, operation, and closure of the project facilities are in compliance with the terms and conditions of the Decision;
• resolving complaints;
• processing post-certification project amendments for changes to the project description, conditions of certification, ownership or operational control, and requests for extension of the deadline for the start of construction (see COM-10 for instructions on filing a Petition to Amend or to extend a construction start date);
• documenting and tracking compliance filings; and
• ensuring that compliance files are maintained and accessible.

The CPM is the central contact person for the Energy Commission during project pre-construction, construction, emergency response, operation, and closure. The CPM shall consult with the appropriate responsible parties when handling compliance issues, disputes, complaints, and amendments.

All project compliance submittals are submitted to the CPM for processing. Where a submittal requires CPM approval, the approval shall involve appropriate Energy Commission technical staff and management. All submittals must include searchable electronic versions (.pdf, MS Word, or equivalent files).

Pre-Construction and Pre-Operation Compliance Meeting

The CPM usually schedules pre-construction and pre-operation compliance meetings prior to the projected start-dates of construction, plant operation, or both. These meetings are used to assist the Energy Commission and the project owner’s technical staff in the status review of all required pre-construction or pre-operation conditions of certification, and take proper action if outstanding conditions remain. In addition, these meetings ensure, to the extent possible, that the Energy Commission’s conditions of certification do not delay the construction and operation of the plant due to last-minute unforeseen issues or a compliance oversight. Pre-construction meetings held during the certification process must be publicly noticed unless they are confined to administrative issues and processes.

Energy Commission Record

The Energy Commission maintains the following documents and information as public records, in either the Compliance files or Dockets files, for the life of the project (or other period as specified):

• All documents demonstrating compliance with any legal requirements relating to the construction, operation, and closure of the facility;
• All Monthly and Annual Compliance Reports (MCRs, ACRs) filed by the project owner;
• All project-related complaints of alleged noncompliance filed with the Energy Commission; and
• All petitions for project or condition of certification changes and the resulting staff or Energy Commission action.
CHIEF BUILDING OFFICIAL DELEGATION AND AGENCY COOPERATION

Under the California Building Code Standards, while monitoring project construction and operation, staff acts as, and has the authority of, the Chief Building Official (CBO). Staff may delegate some CBO responsibility to either an independent third-party contractor or a local building official. However, staff retains CBO authority when selecting a delegate CBO, including the interpretation and enforcement of state and local codes and the use of discretion, as necessary, in implementing the various codes and standards.

The delegate CBO will also be responsible to facilitate compliance with all environmental conditions of certification, including cultural resources, and the implementation of all appropriate codes and standards and Energy Commission requirements. The CBO will conduct on-site (including linear facilities) reviews and inspections at intervals necessary to fulfill those responsibilities. The project owner will pay all delegate CBO fees necessary to cover the costs of these reviews and inspections.

PROJECT OWNER RESPONSIBILITIES

The project owner is responsible for ensuring that all conditions of certification in the ESEC Decision are satisfied. The project owner shall submit all compliance submittals to the CPM for processing unless the conditions specify another recipient. The Compliance Conditions of Certification regarding post-certification changes specify measures that the project owner must take when modifying the project’s design, operation, or performance requirements, or to transfer ownership or operational control. Failure to comply with any of the conditions of certification may result in a correction order, an administrative fine, certification revocation, or any combination thereof, as appropriate. A summary of the Compliance Conditions of Certification are included as Compliance Conditions Table 1 at the end of this Compliance Plan.

COMPLIANCE ENFORCEMENT

The Energy Commission’s legal authority to enforce the terms and conditions of its Decision are specified in Public Resources Code sections 25534 and 25900. The Energy Commission may amend or revoke a project certification and may impose a civil penalty for any significant failure to comply with the terms or conditions of the Decision. The Energy Commission’s actions and fine assessments would take into account the specific circumstances of the incident(s).

PERIODIC COMPLIANCE REPORTING

Many of the conditions of certification require submittals in the MCRs and ACRs. All compliance submittals assist the CPM in tracking project activities and monitoring compliance with the terms and conditions of the ESEC Decision. During construction, the project owner or an authorized agent shall submit compliance reports on a monthly basis. During operation, compliance reports are submitted annually, except as otherwise required. These reports and the requirements for an accompanying compliance matrix are described below.
NONCOMPLIANCE COMPLAINT PROCEDURES

Any person or agency may file a complaint alleging noncompliance with the conditions of certification. Such a complaint shall be subject to review by the Energy Commission pursuant to Title 20, California Code of Regulations, section 1237, but, in many instances, the issue(s) can be resolved by using an informal dispute resolution process. Both the informal and formal complaint procedures, as described in current state law and regulations, are summarized below. Energy Commission staff shall follow these provisions unless superseded by future law or regulations. The California Office of Administrative Law provides on-line access to the California Code of Regulations at http://www.oal.ca.gov/.

Informal Dispute Resolution Process

The following informal procedure is designed to resolve code and compliance interpretation disputes stemming from the project’s conditions of certifications and other LORS. The project owner, the Energy Commission, or any other party, including members of the public, may initiate the informal dispute resolution process. Disputes may pertain to actions or decisions made by any party, including the Energy Commission’s delegate agents.

This process may precede the formal complaint and investigation procedure specified in Title 20, California Code of Regulations, section 1237, but is not intended to be a prerequisite or substitute for it. This informal procedure may not be used to change the terms and conditions of certification in the Decision, although the agreed-upon resolution may result in a project owner proposing an amendment. The informal dispute resolution process encourages all parties to openly discuss the conflict and reach a mutually agreeable solution. If a dispute cannot be resolved, then the matter must be brought before the full Energy Commission for consideration via the complaint and investigation procedure specified in Title 20, California Code of Regulations, section 1237.

Request for Informal Investigation

Any individual, group, or agency may request that the CPM conduct an informal investigation of alleged noncompliance with the Energy Commission’s conditions of certification. Upon receipt of an informal investigation request, the CPM shall promptly provide both verbal and written notification to the project owner of the allegation(s), along with all known and relevant information of the alleged noncompliance. The CPM shall evaluate the request and, if the CPM determines that further investigation is necessary, shall ask the project owner to promptly conduct a formal inquiry into the matter and provide within seven days a written report of the investigation results, along with corrective measures proposed or undertaken. Depending on the urgency of the matter, the CPM may conduct a site visit and/or request that the project owner provide an initial verbal report within 48 hours.

Request for Informal Meeting

In the event that either the requesting party or Energy Commission staff are not satisfied with the project owner’s investigative report or corrective measures, either party may
submit a written request to the CPM for a meeting with the project owner. The request shall be made within 14 days of the project owner’s filing of the required investigative report. Upon receipt of such a request, the CPM shall attempt to:

1. immediately schedule a meeting with the requesting party and the project owner, to be held at a mutually convenient time and place;
2. secure the attendance of appropriate Energy Commission staff and staff of any other agencies with expertise in the subject area of concern, as necessary; and
3. conduct the meeting in an informal and objective manner so as to encourage the voluntary settlement of the dispute in a fair and equitable manner.

After the meeting, the CPM shall promptly prepare and distribute copies to all parties, and to the project file, of a summary memorandum that fairly and accurately identifies the positions of all parties and any understandings reached. If no agreement was reached, the CPM shall direct the complainant to the formal complaint process provided under Title 20, California Code of Regulations, section 1237.

Formal Dispute Resolution Procedure

Any person may file a complaint with the Energy Commission’s Dockets Unit alleging noncompliance with a Commission Decision adopted pursuant to Public Resources Code section 25500. Requirements for complaint filings and a description of how complaints are processed are provided in Title 20, California Code of Regulations, section 1237.

POST-CERTIFICATION CHANGES TO THE ENERGY COMMISSION DECISION

The project owner must petition the Energy Commission pursuant to Title 20, California Code of Regulations, section 1769, to modify the design, operation, or performance requirements of the project and/or the linear facilities, or to transfer ownership or operational control of the facility. It is the responsibility of the project owner to contact the CPM to determine if a proposed project change should be considered a project modification pursuant to section 1769. Implementation of a project modification without first securing Energy Commission approval may result in an enforcement action including civil penalties in accordance with Public Resources Code, section 25534.

Below is a summary of the criteria for determining the type of approval process required, reflecting the provisions of Title 20, California Code of Regulations, section 1769, at the time this Compliance Plan was drafted. If the Energy Commission modifies this regulation, the language in effect at the time of the requested change shall apply. Upon request, the CPM can provide sample formats of these submittals.

AMENDMENT

The project owner shall submit a Petition to Amend the Energy Commission Decision, pursuant to Title 20, California Code of Regulations, section 1769 (a), when proposing
modifications to the design, operation, or performance requirements of the project and/or the linear facilities. If a proposed modification results in an added, changed, or deleted condition of certification, or makes changes causing noncompliance with any applicable LORS, the petition shall be processed as a formal amendment to the Decision, triggering public notification of the proposal, public review of the Energy Commission staff's analysis, and consideration of approval by the full Energy Commission.

CHANGE OF OWNERSHIP AND/OR OPERATIONAL CONTROL

Change of ownership or operational control also requires that the project owner file a petition pursuant to section 1769 (b). This process requires public notice and approval by the full Commission. The petition shall be in the form of a legal brief and fulfill the requirements of section 1769 (b).

STAFF-APPROVED PROJECT MODIFICATION

Modifications that do not result in additions, deletions, or changes to the conditions of certification, that are compliant with the applicable LORS, and that shall not have significant environmental impacts, may be authorized by the CPM as a staff-approved project modification pursuant to section 1769 (a) (2). Once the CPM files a Notice of Determination of the proposed project modifications, any person may file an objection to the CPM’s determination within 14 days of service on the grounds that the modification does not meet the criteria of section 1769 (a) (2). If there is a valid objection to the CPM’s determination, the petition must be processed as a formal amendment to the Decision and must be considered for approval by the full Commission at a publically noticed Business Meeting or hearing.

VERIFICATION CHANGE

Each condition of certification (except for the Compliance Conditions) has one or more means of verifying the project owner’s compliance with the provisions of the condition. These verifications specify the actions and deadlines by which a project owner demonstrates compliance with the Energy Commission-adopted conditions. A verification may be modified by the CPM without requesting a Decision amendment if the change does not conflict with any condition of certification, does not violate any LORS, and provides an effective alternative means of verification.

EMERGENCY RESPONSE CONTINGENCY PLANNING AND INCIDENT REPORTING

To protect public health and safety and environmental quality, the conditions of certification include contingency planning and incident reporting requirements to ensure compliance with necessary health and safety practices. A well-drafted contingency plan avoids or limits potential hazards and impacts resulting from serious incidents involving personal injury, hazardous spills, flood, fire, explosions or other catastrophic events and ensures a comprehensive timely response. All such incidents must be reported immediately to the CPM and documented. These requirements are designed to build
from “lessons learned” limit the hazards and impacts, anticipate and prevent recurrence, and provide for the safe and secure shutdown and re-start of the facility.

FACILITY CLOSURE

The Energy Commission cannot reasonably foresee all potential circumstances in existence when a facility permanently closes. Therefore, the closure conditions provided herein strive for the flexibility to address circumstances that may exist at some future time. Most importantly, facility closure must be consistent with all applicable Energy Commission conditions of certification and the LORS in effect at that time.

Although a non-operational facility may intend to resume operations, if it remains non-operational for longer than one year and the project owner does not present a viable plan to resume operation, the Energy Commission can conclude that closure is imminent and direct the project owner to commence closure preparations. Should the project owner effectively abandon a facility, the Energy Commission can access the required financial assurance funds to begin closure, but the owner remains liable for all associated costs.

Prior to submittal of the facility's Final Closure Plan to the Energy Commission, the project owner and the CPM will hold a meeting to discuss the specific contents of the plan. In the event that significant issues are associated with the plan's approval, the CPM will hold one or more workshops and/or the Commission may hold public hearings as part of its approval procedure.

With the exception of measures to eliminate any immediate threats to public health and safety or to the environment, facility closure activities cannot be initiated until the Energy Commission approves the Final Closure Plan and Cost Estimate and the project owner complies with any requirements the Commission may incorporate as conditions of approval of the Final Closure Plan.

COMPLIANCE CONDITIONS OF CERTIFICATION

For the ESPFM, staff proposes the Compliance Conditions of Certification below. Compliance-1 through Compliance-9 have been renamed COM-1 through COM-9 and the language had been updated to reflect new definitions and compliance enforcement policies. COM-10 (Amendments, Staff-Approved Project Modification, Ownership changes, and Verification Changes) replaces old Compliance-14 (Amendments, Ownership changes, Staff Approved Project Modification and Verification Changes). COM-11 (previously Compliance-10) has been updated to incorporate a number of administrative changes to reporting complaints, notices and citations. COM-12 (Emergency Response Site Contingency Plan), is a new condition requiring a Contingency Plan for emergency response for a number of foreseeable emergency events. COM-13 (Incident-Reporting Requirements) is also a new condition requiring the project owner to notify the CPM within one hour of any serious event, as defined by the condition, occur. COM-14 (Non-Operation) and COM-15 (Facility Closure Plan) replaces Compliance-11 (Compliance Conditions for Facility Closure), Compliance-12
(Unplanned temporary closure/On site Contingency Plan), and Compliance-13 (Unplanned Permanent Closure/On site Contingency Plan). COM-16 Financial Assurance for Closure and Post-Closure Care is a new requirement ensures that adequate funds are available to finance interim operation, facility closure, and post-closure care as needed. (Revisions are in strikeout or bold underline.)

COM-1: (Compliance-4) Unrestricted Access. The project owner shall take all steps necessary to ensure that the CPM, responsible Energy Commission staff, and delegated agencies or consultants shall be guaranteed and granted have unrestricted access to the power plant site, related facilities, project-related staff, and the records maintained on-site for the purpose of conducting audits, surveys, inspections, or general site visits. Although the CPM shall normally schedule site visits on dates and times-agreeable to the project owner, the CPM reserves the right to make unannounced visits at any time, whether such visits are by the CPM in person or through representatives from Energy Commission staff, delegated agencies, or consultants.

COM-2: (Compliance-2) Compliance Record. The project owner shall maintain electronic copies of all project files and submittals on-site, or at an alternative site approved by the CPM, for the operational life and closure of the project, unless a lesser period of time is specified by the conditions of certification. The files shall also contain at least one hard copy of: copies of all “as-built” drawings, documents submitted as verification for conditions, and other project-related documents.

1. The facility’s Application(s) for Certification;
2. all amendment petitions and Energy Commission orders;
3. All site-related environmental impact and survey documentation;
4. All appraisals, assessments, and studies for the project;
5. All finalized original and amended structural plans and “as-built” drawings for the entire project;
6. All citations, warnings, violations, or corrective actions applicable to the project, and
7. The most current versions of any plans, manuals and training documentation required by the conditions of certification or applicable LORS.

Energy Commission staff and delegate agencies shall, upon request to the project owner, be given unrestricted access to the files maintained pursuant to this condition.

Compliance Verification Submittals (COMPLIANCE-3) Each condition of certification is followed by a means of verification. The verification describes the Energy Commission’s procedure(s) to ensure post-
certification compliance with adopted conditions. The verification procedures, unlike the conditions, may be modified as necessary by the CPM.

Verification of compliance with the conditions of certification can be accomplished by the following:
1. monthly and/or annual compliance reports, filed by the project owner or authorized agent, reporting on work done and providing pertinent documentation, as required by the specific conditions of certification;
2. appropriate letters from delegate agencies verifying compliance;
3. energy Commission staff audits of project records; and/or
4. energy Commission staff inspections of work, or other evidence that the requirements are satisfied.

Verification lead times associated with start of construction may require the project owner to file submittals during the certification process, particularly if construction is planned to commence shortly after certification.

A cover letter from the project owner or authorized agent is required for all compliance submittals and correspondence pertaining to compliance matters. The cover letter subject line shall identify the project by AFC number, the appropriate condition(s) of certification by condition number(s), and a brief description of the subject of the submittal. The project owner shall also identify those submittals not required by a condition of certification with a statement such as: “This submittal is for information only and is not required by a specific condition of certification.” When submitting supplementary or corrected information, the project owner shall reference the date of the previous submittal and CEC submittal number.

The project owner is responsible for the delivery and content of all verification submittals to the CPM, whether such condition was satisfied by work performed by the project owner or an agent of the project owner. All hardcopy submittals shall be addressed as follows:

Joseph Douglas, CPM
(00-AFC-14C)
California Energy Commission
1516 Ninth Street (MS-2000)
Sacramento, CA 95814

Those submittals shall be accompanied by a searchable electronic copy, on a CD or by e-mail, as agreed upon by the CPM.

If the project owner desires Energy Commission staff action by a specific date, that request shall be made in the submittal cover letter and shall include a detailed explanation of the effects on the project if that date is not met.
COM-3: (Compliance-3) Compliance Verification Submittals. Each condition of certification is followed by a means of verification. The verification describes the Energy Commission’s procedure(s) to ensure post-certification compliance with adopted conditions.

Verification lead times associated with the start of construction or closure may require the project owner to file submittals during the AFC process, particularly if construction is planned to commence shortly after certification. The verification procedures, unlike the conditions, may be modified as necessary by the CPM.

A cover letter from the project owner or an authorized agent is required for all compliance submittals and correspondence pertaining to compliance matters. The cover letter subject line shall identify the project by AFC number, cite the appropriate condition(s) of certification number(s), and give a brief description of the subject of the submittal. When submitting supplementary or corrected information, the project owner shall reference the date of the previous submittal and the condition(s) of certification applicable.

All reports and plans required by the project’s conditions of certification shall be submitted in a searchable electronic format (.pdf, MS Word, or Excel, etc.) and include standard formatting elements such as a table of contents, identifying by title and page number each section, table, graphic, exhibit, or addendum. All report and/or plan graphics and maps shall be adequately scaled and shall include a key with descriptive labels, directional headings, a bar scale, and the most recent revision date.

The project owner is responsible for the content and delivery of all verification submittals to the CPM, whether the actions required by the verification were satisfied by the project owner or an agent of the project owner. All submittals shall be accompanied by an electronic copy on an electronic storage medium, or by e-mail, as agreed upon by the CPM. If hard-copy submittals are required, please address as follows:

 Compliance Project Manager
 El Segundo Energy Center (00-AFC-14C)
 California Energy Commission
 1516 Ninth Street (MS-2000)
 Sacramento, CA 95814

Those submittals shall be accompanied by a searchable electronic copy, on a CD or by e-mail, as agreed upon by the CPM.

COM-4: (Compliance-4) Pre-Construction Matrix and Tasks Prior to Start of Construction. Prior to commencing start of construction, the project owner...
shall submit to the CPM a compliance matrix addressing including only those conditions that must be fulfilled before the start of construction. This matrix shall be submitted by the project owner to the CPM. Theis matrix shall be included with the project owner’s first compliance submittal or prior to the first pre-construction meeting, whichever comes first, and shall be submitted in a format similar to the description below. It will be submitted in the same format as the compliance matrix described below.

Site mobilization and construction activities shall not start commence until all of following occur: project owner has submitted the pre-construction matrix and all submittals required by compliance verifications pertaining to all pre-construction conditions of certification, and the CPM has issued an authorization-to-construct letter to the project owner. The deadlines for submitting various compliance verifications to the CPM allow sufficient staff time to review and comment on, and if necessary, allow the project owner to revise the submittal in a timely manner. These procedures help ensure that project construction proceeds according to schedule. Failure to submit required compliance documents by the specified deadlines may result in delayed authorizations to commence various stages of the project. The pre-construction matrix is submitted, all preconstruction conditions have been complied with, and the CPM has issued a letter to the project owner authorizing construction. Various lead times for submittal of compliance verification documents to the CPM for conditions of certification are established to allow sufficient staff time to review and comment and, if necessary, allow the project owner to revise the submittal in a timely manner. This will ensure that project construction may proceed according to schedule. Failure to submit compliance documents within the specified lead time may result in delays in authorization to commence various stages of project development.

If the project owner anticipates site mobilization immediately following project certification commencing project construction as soon as the project is certified, it may be necessary for the project owner to file compliance submittals prior to project-certification. In these instances, compliance verifications can be submitted submittals should be completed in advance of the required deadlines and the anticipated authorizations to start construction. where the necessary lead time for a required compliance event extends beyond the date anticipated for start of construction. The project owner must understand that the submittal of compliance documents submitting compliance verification requirements prior to certification these authorizations is at the owner’s own risk. Any approval by Energy Commission staff prior to project certification is subject to change, based upon the Commission Decision, or amendment thereto, and early staff compliance approvals do not imply that the Energy Commission will certify the project for actual construction and operation.
Compliance Reporting
There are two different compliance reports that the project owner must submit to assist the CPM in tracking activities and monitoring compliance with the terms and conditions of the Energy Commission Decision. During construction, the project owner or authorized agent will submit Monthly Compliance Reports. During operation, an Annual Compliance Report must be submitted. These reports, and the requirement for an accompanying compliance matrix, are described below. The majority of the conditions of certification require that compliance submittals be submitted to the CPM in the monthly or annual compliance reports.

COM-5: (Compliance-5) Compliance Matrix. A compliance matrix shall be submitted by the project owner to the CPM along with each monthly and annual compliance report. **The project owner shall submit a compliance matrix to the CPM with each MCR and ACR.** The compliance matrix is intended to provide the CPM with the current status of all conditions of certification in a spreadsheet format. **The compliance matrix must shall identify:**

1. The technical area (e.g., biological resources, facility design, etc.);
2. The condition number;
3. A brief description of the verification action or submittal required by the condition;
4. The date the submittal is required (e.g., sixty (60) days prior to construction, after final inspection, etc.);
5. The expected or actual submittal date;
6. The date a submittal or action was approved by the Chief Building Official (CBO), CPM, or delegate agency, if applicable;
7. The compliance status of each condition (e.g., “not started,” “in progress,” or “completed” (include the date)); and
8. If the condition was amended, the updated language and the date the amendment was proposed or approved.

Satisfied conditions shall be placed at the end of the matrix. The CPM can provide a template for the compliance matrix upon request.

COM-6: (Compliance-6) Monthly Compliance Reports and Key Events List. The first Monthly Compliance Report (MCR) is due one (1) month following the docketing of the project’s Decision. Energy Commission business meeting date upon which the project was approved, unless otherwise agreed to by the CPM. The first **MCR Monthly Compliance Report shall include the AFC number and an initial list of dates for each of the events identified on the Key Events List. (The Key Events List form is found at the end of these General Conditions this Compliance Plan).**
During pre-construction, and construction, or closure of the project, the project owner or authorized agent shall submit an original and an electronic searchable version of the Monthly Compliance Report (MCR) within ten (10) working days after the end of each reporting month, unless otherwise specified by the CPM. Monthly Compliance Reports (MCRs) shall be clearly identified for the month being reported. The searchable electronic copy may be filed on an electronic storage medium or by e-mail, subject to CPM approval. The compliance verification submittal condition provides guidance on report production standards, and the MCR reports shall contain, at a minimum:

1. a summary of the current project construction status, a revised/updated schedule if there are significant delays, and an explanation of any significant changes to the schedule;

2. documents required by specific conditions to be submitted along with the Monthly Compliance Report (MCR). Each of these items must be identified in the transmittal letter, as well as the conditions they satisfy, and submitted as attachments to the MCR Monthly Compliance Report;

3. an initial, and thereafter updated, compliance matrix showing the status of all conditions of certification;

4. a list of conditions that have been satisfied during the reporting period, and a description or reference to the actions that satisfied the condition;

5. a list of any submittal deadlines that were missed, accompanied by an explanation and an estimate of when the information will be provided;

6. a cumulative listing of any approved changes to the conditions of certification;

7. a list of any filings submitted to, and permits issued by, other governmental agencies during the month;

8. a projection of project compliance activities scheduled during the next two months. The project owner shall notify the CPM as soon as any changes are made to the project construction schedule that would affect compliance with conditions of certification;

9. a listing of the month’s additions to the on-site compliance file; and

10. a listing of complaints, notices of violation, official warnings, and citations received during the month; a description of the resolution of the resolved actions taken to date to resolve the issues; and the status of any unresolved actions.

All sections, exhibits, or addendums shall be separated by tabbed dividers or as acceptable by the CPM.

COM-7: (Compliance-7) Annual Compliance Reports. After construction is complete, the project owner shall submit searchable electronic Annual Compliance Reports (ACR)s instead of MCRs Monthly Compliance Reports. The reports—
are for each year of commercial operation and are due to the CPM each year at a date agreed to by the CPM. ACRs are due for each year of commercial operation and may be required for a specified period after decommissioning to monitor closure compliance, as specified by the CPM. The searchable electronic copies may be filed on an electronic storage medium or by e-mail, subject to CPM approval. Each Annual Compliance Report ACR shall must include the AFC number, identify the reporting period, and shall contain the following:

1. an updated compliance matrix showing the status of all conditions of certification (fully satisfied conditions do not need to be included in the matrix after they have been reported as completed);

2. a summary of the current project operating status and an explanation of any significant changes to facility operations during the year;

3. documents required by specific conditions to be submitted along with the Annual Compliance Report ACR; Each of these items shall be identified in the transmittal letter with the condition it satisfies and submitted as an attachment to the Annual Compliance Report ACR;

4. a cumulative list of all post-certification changes approved by the Energy Commission or cleared by the CPM;

5. an explanation for any submittal deadlines that were missed, accompanied by an estimate of when the information will be provided;

6. a list of filings submitted to, and permits issued by, other governmental agencies during the year;

7. a projection of project compliance activities scheduled during the next year;

8. a list of the year’s additions to the on-site compliance file;

9. an evaluation of the Site Contingency Plan for unplanned facility closure, including any suggestions necessary for bringing the plan up-to-date (see Compliance Conditions for Facility Closure addressed later in this section); amendments and plan updates; and

10. a list of complaints, notices of violation, official warnings, and citations received during the year, a description of resolution of any resolved matters how the issues were resolved, and the status of any unresolved matters.

COM-8: (Compliance-8) Confidential Information. Any information that the project owner deems designates as confidential shall be submitted to the Energy Commission’s Executive Director with an application for confidentiality, pursuant to Title 20, California Code of Regulations, section 2505(a). Any information determined to be deemed confidential pursuant to the regulations shall be kept confidential as provided for in remain undisclosed, as provided in Title 20, California Code of Regulations, section 2501, et. seq.
COM-9: **(Compliance-9)** Annual Energy Facility Compliance Fee. Pursuant to the provisions of section 25806 (b) of the Public Resources Code, the project owner is required to pay an annually adjusted compliance fee, which is adjusted annually. Current compliance fee information is available on the Energy Commission's website at http://www.energy.ca.gov/siting/filing_fees.html. **The project owner may also contact the CPM for the current fee information.** The initial payment is due on the date the Energy Commission docket its final Decision of the Business Meeting at which the Energy Commission adopts the final decision. All subsequent payments are due by July 1 of each year in which the facility retains its certification. The payment instrument shall be made payable to the California Energy Commission and mailed to: Accounting Office MS 02, California Energy Commission, 1516 9th St., Sacramento, CA 95814.

COM-10: **Amendments, Staff-Approved Project Modifications, Ownership Changes, and Verification Changes.** The project owner shall petition the Energy Commission, pursuant to Title 20, California Code of Regulations, section 1769, to modify the design, operation, or performance requirements of the project or linear facilities, or to transfer ownership or operational control of the facility. The CPM will determine whether staff approval will be sufficient, or whether Commission approval will be necessary. It is the project owner’s responsibility to contact the CPM to determine if a proposed project change triggers the requirements of section 1769. Section 1769 details the required contents for a Petition to Amend an Energy Commission Decision. The only change that can be requested by means of a letter to the CPM is a request to change the verification method of a condition of certification.

Implementation of a project modification without first securing Energy Commission, or Energy Commission staff, approval, may result in an enforcement action, including civil penalties, in accordance with section 25534 of the Public Resources Code. If the Energy Commission’s rules regarding amendments are revised, the rules in effect at the time the change is requested shall apply.

COM-11: **(Compliance-10)** Reporting of Complaints, Notices, and Citations. Prior to the start of construction or decommissioning, the project owner must send a letter to property owners within one (1) mile of the project, notifying them of a telephone number to contact project representatives with questions, complaints, or concerns. If the telephone is not staffed twenty-four (24) hours per day, it shall include automatic answering with a date and time stamp recording. All recorded complaints shall be responded to within 24 hours.
The project owner shall respond to all recorded complaints within twenty-four (24) hours or the next business day. The telephone number shall be project site shall posted at the telephone number on-site—project site—and easily visible to a passersby during construction, and operation and closure. The project owner shall provide the contact information to the telephone number shall be provided to the CPM who will post it on the Energy Commission’s web page at http://www.energy.ca.gov/sitingcases/power_plants_contacts.html—http://www.energy.ca.gov/sitingcases/elsegundo/.

Any changes to the telephone number shall be submitted immediately to the CPM, who will update the web page.

The project owner shall report any disruption to the contact system or telephone number change to the CPM promptly, to allow the CPM to update the Energy Commission’s facility webpage accordingly.

In addition to all complaints, notices, and citations included with the MCRs and ACRs, within ten (10) days of receipt, the project owner shall report, and provide copies to the CPM, of all complaints, including noise and lighting complaints, notices of violation, notices of fines, official warnings, and citations. The monthly and annual compliance reporting requirements described above, the project owner shall report and provide copies to the CPM of all complaint forms, including noise and lighting complaints, notices of violation, notices of fines, official warnings, and citations within 10 days of receipt. Complaints shall be logged and numbered.

Noise complaints shall be recorded on the form provided in the NOISE and VIBRATION conditions of certification. All other complaints shall be recorded on the complaint form (Attachment A) at the end of this Compliance Plan.

COMPLIANCE CONDITIONS FOR FACILITY CLOSURE
Planned Closure (COMPLIANCE-11)
In order to ensure that a planned facility closure does not create adverse impacts, a closure process that provides for careful consideration of available options and applicable laws, ordinances, regulations, standards, and local/regional plans in existence at the time of closure will be undertaken. To ensure adequate review of a planned project closure, the project owner shall submit a proposed facility closure plan to the Energy Commission for review and approval at least 12 months (or other period of time agreed to by the CPM) prior to the commencement of closure activities. The project owner shall file 120 copies (or other number of copies agreed upon by the CPM) of a proposed facility closure plan with the Energy Commission.

The plan shall:
1. identify and discuss any impacts and mitigation to address significant adverse impacts associated with proposed closure activities and to address-
facilities, equipment, or other project-related remnants that will remain at the site;

2. Identify a schedule of activities for closure of the power plant site, transmission line corridor, and all other appurtenant facilities constructed as part of the project;

3. Identify any facilities or equipment intended to remain on site after closure, the reason, and any future use; and

4. Address conformance of the plan with all applicable laws, ordinances, regulations, standards, and local/regional plans in existence at the time of facility closure, and applicable conditions of certification.

Prior to submittal of the proposed facility closure plan, a meeting shall be held between the project owner and the Energy Commission CPM for the purpose of discussing the specific contents of the plan.

In the event that there are significant issues associated with the proposed facility closure plan’s approval, or if the desires of local officials or interested parties are inconsistent with the plan, the CPM shall hold one or more workshops and/or the Energy Commission may hold public hearings as part of its approval procedure.

As necessary, prior to or during the closure plan process, the project owner shall take appropriate steps to eliminate any immediate threats to public health and safety and the environment, but shall not commence any other closure activities until the Energy Commission approves the facility closure plan.

Unplanned Temporary Closure/On-Site Contingency Plan (COMPLIANCE-12)

In order to ensure that public health and safety and the environment are protected in the event of an unplanned temporary facility closure, it is essential to have an on-site contingency plan in place. The on-site contingency plan will help to ensure that all necessary steps to mitigate public health and safety impacts and environmental impacts are taken in a timely manner.

The project owner shall submit an on-site contingency plan for CPM review and approval. The plan shall be submitted no less than 60 days (or other time agreed to by the CPM) prior to commencement of commercial operation. The approved plan must be in place prior to commercial operation of the facility and shall be kept at the site at all times.

The project owner, in consultation with the CPM, will update the on-site contingency plan as necessary. The CPM may require revisions to the on-site contingency plan over the life of the project. In the annual compliance reports submitted to the Energy Commission, the project owner will review the on-site contingency plan, and recommend changes to bring the plan up to date. Any changes to the plan must be approved by the CPM.
The on-site contingency plan shall provide for taking immediate steps to secure the facility from trespassing or encroachment. In addition, for closures of more than 90 days, unless other arrangements are agreed to by the CPM, the plan shall provide for removal of hazardous materials and hazardous wastes, draining of all chemicals from storage tanks and other equipment, and the safe shutdown of all equipment. (Also see specific conditions of certification for the technical areas of Hazardous Materials Management and Waste Management)

In addition, consistent with requirements under unplanned permanent closure addressed below, the nature and extent of insurance coverage, and major equipment warranties must also be included in the on-site contingency plan. In addition, the status of the insurance coverage and major equipment warranties must be updated in the annual compliance reports.

In the event of an unplanned temporary closure, the project owner shall notify the CPM, as well as other responsible agencies, by telephone, fax, or e-mail, within 24 hours and shall take all necessary steps to implement the on-site contingency plan. The project owner shall keep the CPM informed of the circumstances and expected duration of the closure.

If the CPM determines that an unplanned temporary closure is likely to be permanent, or for a duration of more than 12 months, a closure plan consistent with the requirements for a planned closure shall be developed and submitted to the CPM within 90 days of the CPM’s determination (or other period of time agreed to by the CPM).

Unplanned Permanent Closure/On-Site Contingency Plan (COMPLIANCE-13)

The on-site contingency plan required for unplanned temporary closure shall also cover unplanned permanent facility closure. All of the requirements specified for unplanned temporary closure shall also apply to unplanned permanent closure.

In addition, the on-site contingency plan shall address how the project owner will ensure that all required closure steps will be successfully undertaken in the event of abandonment.

In the event of an unplanned permanent closure, the project owner shall notify the CPM, as well as other responsible agencies, by telephone, fax, or e-mail, within 24 hours and shall take all necessary steps to implement the on-site contingency plan. The project owner shall keep the CPM informed of the status of all closure activities.

A closure plan, consistent with the requirements for a planned closure, shall be developed and submitted to the CPM within 90 days of the permanent closure or another period of time agreed to by the CPM.
Post Certification Changes to the Energy Commission Decision:

Amendments, Ownership Changes, Staff Approved Project Modifications and Verification Changes (COMPLIANCE-14)

The project owner must petition the Energy Commission pursuant to Title 20, California Code of Regulations, section 1769, in order to modify the project (including linear facilities) design, operation or performance requirements, and to transfer ownership or operational control of the facility. It is the responsibility of the project owner to contact the CPM to determine if a proposed project change should be considered a project modification pursuant to section 1769. Implementation of a project modification without first securing Energy Commission, or Energy Commission staff approval, may result in enforcement action that could result in civil penalties in accordance with section 25534 of the Public Resources Code.

A petition is required for amendments and for staff approved project modifications as specified below. Both shall be filed as a “Petition to Amend.” Staff will determine if the change is significant or insignificant. For verification changes, a letter from the project owner is sufficient. In all cases, the petition or letter requesting a change should be submitted to the CPM, who will file it with the Energy Commission’s Dockets Unit in accordance with Title 20, California Code of Regulations, section 1209.

The criteria that determine which type of approval and the process that applies are explained below. They reflect the provisions of Section 1769 at the time this condition was drafted. If the Commission’s rules regarding amendments are amended, the rules in effect at the time an amendment is requested shall apply.

Amendment

The project owner shall petition the Energy Commission, pursuant to Title 20, California Code of Regulations, Section 1769(a), when proposing modifications to the project (including linear facilities) design, operation, or performance requirements. If a proposed modification results in deletion or change of a condition of certification, or makes changes that would cause the project not to comply with any applicable laws, ordinances, regulations, or standards the petition will be processed as a formal amendment to the final decision, which requires public notice and review of the Energy Commission staff analysis and approval by the full Commission. The petition shall be in the form of a legal brief and fulfill the requirements of Section 1769(a). Upon request, the CPM will provide a sample petition to use as a template.

Change of Ownership

Change of ownership or operational control also requires that the project owner file a petition pursuant to section 1769 (b). This process requires public-
notice and approval by the full Commission. The petition shall be in the form of a legal brief and fulfill the requirements of Section 1769(b). Upon request, the CPM will provide a sample petition to use as a template.

Staff Approved Project Modification
Modifications that do not result in deletions or changes to conditions of certification, that are compliant with laws, ordinances, regulations and standards and will not have significant environmental impacts may be authorized by the CPM as a staff approved project modification pursuant to section 1769(a) (2). Once staff files an intention to approve the proposed project modifications, any person may file an objection to staff’s determination within 14 days of service on the grounds that the modification does not meet the criteria of section 1769 (a)(2). If a person objects to staff’s determination, the petition must be processed as a formal amendment to the decision and must be approved by the full commission at a noticed business meeting or hearing.

Verification Change
A verification may be modified by the CPM without requesting an amendment to the decision if the change does not conflict with the conditions of certification and provides an effective alternate means of verification.

COM-12: Emergency Response Site Contingency Plan. No less than sixty (60) days prior to the start of commercial operation (or other date agreed to by the CPM), the project owner shall submit for CPM review and approval, an Emergency Response Site Contingency Plan (Contingency Plan). The Contingency Plan shall evidence a facility’s coordinated emergency response and recovery preparedness for a series of reasonably foreseeable emergency events. The CPM may require the updating of the Contingency Plan over the life of the facility. Contingency Plan elements include, but are not limited to:

1. a site-specific list and direct contact information for persons, agencies, and responders to be notified for an unanticipated event;

2. a detailed and labeled facility map, including all fences and gates, the windsock location (if applicable), the on- and off-site assembly areas, and the main roads and highways near the site;

3. a detailed and labeled map of population centers, sensitive receptors, and the nearest emergency response facilities;

4. a description of the on-site, first response and backup emergency alert and communication systems, site-specific emergency response protocols, and procedures for maintaining the facility’s contingency response capabilities, including a detailed map of
interior and exterior evacuation routes, and the planned location(s) of all permanent safety equipment;

5. an organizational chart including the name, contact information, and first aid/emergency response certification(s) and renewal date(s) for all personnel regularly on-site;

6. a brief description of reasonably foreseeable, site-specific incidents and accident sequences (on- and off-site), including response procedures and protocols and site security measures to maintain twenty-four-hour site security;

7. procedures for maintaining contingency response capabilities; and

8. the procedures and implementation sequence for the safe and secure shutdown of all non-critical equipment and removal of hazardous materials and waste (see also specific conditions of certification for the technical areas of Public Health, Waste Management, Hazardous Materials Management, and Worker Safety).

COM-13: Incident-Reporting Requirements. Within one (1) hour, the project owner shall notify the CPM or Compliance Office Manager, by telephone and e-mail, of any incident at the power plant or appurtenant facilities that results or could result in any of the following:

1. reduction in the facility’s ability to respond to dispatch (excluding forced outages caused by protective equipment or other typically encountered shutdown events);

2. health and safety impacts on the surrounding population;

3. property damage off-site;

4. response by off-site emergency response agencies;

5. serious on-site injury;

6. serious environmental damage; or

7. emergency reporting to any federal, state, or local agency.

The notice shall describe the circumstances, status, and expected duration of the incident. If warranted, as soon as it is safe and feasible, the project owner shall implement the safe shutdown of any non-critical equipment and removal of any hazardous materials and waste that pose a threat to public health and safety and to environmental quality (also, see specific conditions of certification for the technical areas of Hazardous Materials Management and Waste Management).
Within one (1) week of the incident, the project owner shall submit to the CPM a detailed incident report, which includes, as appropriate, the following information:

1. a brief description of the incident, including its date, time, and location;
2. a description of the cause of the incident, or likely causes if it is still under investigation;
3. the location of any off-site impacts;
4. description of any resultant impacts;
5. a description of emergency response actions associated with the incident;
6. identification of responding agencies;
7. identification of emergency notifications made to federal, state, and/or local agencies;
8. identification of any hazardous materials released and an estimate of the quantity released;
9. a description of any injuries, fatalities, or property damage that occurred as a result of the incident;
10. fines or violations assessed or being processed by other agencies;
11. name, phone number, and e-mail address of the appropriate facility contact person having knowledge of the event; and
12. corrective actions to prevent a recurrence of the incident.

The project owner shall maintain all incident report records for the life of the project, including closure. After the submittal of the initial report for any incident, the project owner shall submit to the CPM copies of incident reports within twenty-four (24) hours of a request.

COM-14: Non-Operation. If the facility ceases operation temporarily, either planned or unplanned, for longer than one (1) week (or other CPM-approved date), but less than three (3) months (or other CPM-approved date), the project owner shall notify the CPM, interested agencies, and nearby property owners. Notice of planned non-operation shall be given at least two (2) weeks prior to the scheduled date. Notice of unplanned non-operation shall be provided no later than one (1) week after non-operation begins.

For any non-operation, a Repair/Restoration Plan for conducting the activities necessary to restore the facility to availability and reliable and/or improved performance shall be submitted to the CPM within one
(1) week after notice of non-operation is given. If non-operation is due to an unplanned incident, temporary repairs and/or corrective actions may be undertaken before the Repair/Restoration Plan is submitted. The Repair/Restoration Plan shall include:

1. **identification of operational and non-operational components of the plant;**
2. **a detailed description of the repair or restoration activities;**
3. **a proposed schedule for completing the repair or restoration activities;**
4. **an assessment of whether or not the proposed activities would require changing, adding, and/or deleting any conditions of certification, and/or would cause noncompliance with any applicable LORS; and**
5. **planned activities during non-operation, including any measures to ensure continued compliance with all conditions of certification and LORS.**

Monthly written updates to the CPM for non-operational periods, until operation resumes, shall include:

1. **progress relative to the schedule;**
2. **developments that delayed or advanced progress or that may delay or advance future progress;**
3. **any public, agency, or media comments or complaints; and**
4. **projected date for the resumption of operation.**

During non-operation, all applicable conditions of certification and reporting requirements remain in effect. If, after one (1) year from the date of the project owner’s last report of productive Repair/Restoration Plan work, the facility does not resume operation or does not provide a plan to resume operation, the Executive Director may assign suspended status to the facility and recommend commencement of permanent closure activities. Within ninety (90) days of the Executive Director’s determination, the project owner shall do one of the following:

1. **If the facility has a closure plan, the project owner shall update it and submit it for Energy Commission review and approval.**
2. **If the facility does not have a closure plan, the project owner shall develop one consistent with the requirements in this Compliance Plan and submit it for Energy Commission review and approval.**
COM-15: Facility Closure Planning. To ensure that a facility’s eventual permanent closure and long-term maintenance do not pose a threat to public health and safety and/or to environmental quality, the project owner shall coordinate with the Energy Commission to plan and prepare for eventual permanent closure.

A. Provisional Closure Plan and Estimate of Permanent Closure Costs

To assure satisfactory long-term site maintenance and adequate closure for “the whole of a project,” the project owner shall submit a Provisional Closure Plan and Cost Estimate for CPM review and approval within sixty (60) days after the start of commercial operation. The Provisional Closure Plan and Cost Estimate shall consider applicable final closure plan requirements, and reflect the use of an independent third party to carry out the permanent closure:

1. facility closure costs at a time in the facility’s projected life span when the mode and scope of facility operation would make permanent closure the most expensive;
2. the use of an independent third party to carry out the permanent closure; and
3. no use of salvage value to offset closure costs.

The Provisional Closure Plan and Cost Estimate shall provide for a phased closure process and include but not be limited to:

1. comprehensive scope of work and itemized budget;
2. closure plan development costs;
3. dismantling and demolition;
4. recycling and site clean-up;
5. mitigation and monitoring direct, indirect, and cumulative impacts;
6. site remediation and/or restoration;
7. interim and long term operation monitoring and maintenance, including long-term equipment replacement costs; and
8. contingencies.

The project owner shall include an updated Provisional Closure Plan and Cost Estimate in every fifth-year ACR for CPM review and approval. Each updated Provisional Closure Plan and Cost Estimate shall reflect the most current regulatory standards, best management practices, and applicable LORS.
B. Final Closure Plan and Cost Estimate

At least three (3) years prior to initiating a permanent facility closure, the project owner shall submit for Energy Commission review and approval, a Final Closure Plan and Cost Estimate, which includes any long-term, post-closure site maintenance and monitoring. Final Closure Plan and Cost Estimate contents include, but are not limited to:

1. a statement of specific Final Closure Plan objectives;

2. a statement of qualifications and resumes of the technical experts proposed to conduct the closure activities, with detailed descriptions of previous power plant closure experience;

3. identification of any facility-related installations not part of the Energy Commission certification, designation of who is responsible for these, and an explanation of what will be done with them after closure;

4. a comprehensive scope of work and itemized budget for permanent plant closure and long-term site maintenance activities, with a description and explanation of methods to be used, broken down by phases, including, but not limited to:
 a. dismantling and demolition;
 b. recycling and site clean-up;
 c. impact mitigation and monitoring;
 d. site remediation and/or restoration and;
 e. any contingencies

5. a revised/updated Final Cost Estimate for all closure activities, by phases, including site monitoring and maintenance costs, and long-term equipment replacement;

6. a schedule projecting all phases of closure activities for the power plant site and all appurtenances constructed as part of the Energy Commission-certified project;

7. an electronic submittal package of all relevant plans, drawings, risk assessments, and maintenance schedules and/or reports, including an above- and below-ground infrastructure inventory map and registered engineer’s or delegate CBO’s assessment of demolishing the facility; additionally, for any facility that permanently ceased operation prior to submitting a Final Closure Plan and Cost Estimate and for which only minimal or no maintenance has been done since, a comprehensive condition report focused on identifying potential hazards;
8. all information additionally required by the facility’s conditions of certification applicable to plant closure;

9. an equipment disposition plan, including:
 a. recycling and disposal methods for equipment and materials; and
 b. identification and justification for any equipment and materials that will remain on-site after closure;

10. a site disposition plan, including but not limited to:
 a. proposed rehabilitation, restoration, and/or remediation procedures, as required by the conditions of certification and applicable LORS, and,
 b. site maintenance activities, and
 c. anticipated future land-use options after closure;

11. identification and assessment of all potential direct, indirect, and cumulative impacts and proposal of mitigation measures to reduce significant adverse impacts to a less-than-significant level; potential impacts to be considered shall include, but not be limited to:
 a. traffic
 b. noise and vibration
 c. soil erosion
 d. air quality degradation
 e. solid waste
 f. hazardous materials
 g. waste water discharges
 h. contaminated soil

12. identification of all current conditions of certification, LORS, federal, state, regional, and local planning efforts applicable to the facility, and proposed strategies for achieving and maintaining compliance during closure;

13. updated mailing list or Listserv of all responsible agencies, potentially interested parties, and property owners within one (1) mile of the facility;

14. identification of alternatives to plant closure and assessment of the feasibility and environmental impacts of these; and

15. description of and schedule for security measures and safe shutdown of all non-critical equipment and removal of hazardous
materials and waste (see conditions of certification for Public Health, Waste Management, Hazardous Materials Management, and Worker Safety).

If implementation of an Energy Commission-approved Final Closure Plan and Cost Estimate is not initiated within one (1) year of its approval date, it shall be updated and re-submitted to the Commission for supplementary review and approval. If a project owner initiates but then suspends closure activities, and the suspension continues for longer than one (1) year, or subsequently abandons the facility, the Energy Commission may access the required financial assurance funds to complete the closure. The project owner remains liable for all costs of contingency planning and closure.

COM-16: Financial Assurance for Closure and Post-Closure Care. The project owner shall provide financial assurances to the Energy Commission, guaranteeing adequate and readily available funds to finance interim operation, facility closure, and post-closure site care, as needed.

Within thirty (30) days following CPM approval of the project owner’s first Provisional Closure Plan and Cost Estimate, pursuant to COM-15, the project owner shall establish an irrevocable closure surety bond and standby trust fund. The surety bond shall guarantee the project owner’s performance of closure, as specified in the Provisional Closure Plan, and shall be in the amount of the CPM-approved Provisional Closure Cost Estimate. The standby trust fund shall have as its Beneficiary the California State Energy Resources Conservation and Development Commission.

Within sixty (60) days of CPM approval of each sequential Provisional Cost Estimate prepared pursuant to COM-15, the amount of the surety bond shall be adjusted to reflect any change in the estimate. Within thirty (30) days of making the adjustment, the project owner shall submit for CPM review and approval documentation of the adjustment. Each year, on the anniversary of the establishment of the surety bond and standby trust fund, the project owner shall provide to the CPM documentation from the sureties of the bond’s current value.

Using surety bond funds to implement closure may not fully satisfy the project owner’s obligations under these conditions.

Provisions from California Bond and Undertaking Law, as well as other statutory and case law, may be applicable.
KEY EVENTS LIST

PROJECT:

DOCKET #:

COMPLIANCE PROJECT MANAGER:

<table>
<thead>
<tr>
<th>EVENT DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certification Date</td>
<td></td>
</tr>
<tr>
<td>Obtain Site Control</td>
<td></td>
</tr>
<tr>
<td>On-line Date</td>
<td></td>
</tr>
</tbody>
</table>

POWER PLANT SITE ACTIVITIES

<table>
<thead>
<tr>
<th>EVENT DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Site Assessment/Pre-construction</td>
<td></td>
</tr>
<tr>
<td>Start Site Mobilization/Construction</td>
<td></td>
</tr>
<tr>
<td>Begin Pouring Major Foundation Concrete</td>
<td></td>
</tr>
<tr>
<td>Begin Installation of Major Equipment</td>
<td></td>
</tr>
<tr>
<td>Completion of Installation of Major Equipment</td>
<td></td>
</tr>
<tr>
<td>First Combustion of Gas Turbine</td>
<td></td>
</tr>
<tr>
<td>Obtain Building Occupation Permit</td>
<td></td>
</tr>
<tr>
<td>Start Commercial Operation</td>
<td></td>
</tr>
<tr>
<td>Complete All Construction</td>
<td></td>
</tr>
</tbody>
</table>

TRANSMISSION LINE ACTIVITIES

<table>
<thead>
<tr>
<th>EVENT DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start T/L Construction</td>
<td></td>
</tr>
<tr>
<td>Synchronization with Grid and Interconnection</td>
<td></td>
</tr>
<tr>
<td>Complete T/L Construction</td>
<td></td>
</tr>
</tbody>
</table>

FUEL SUPPLY LINE ACTIVITIES

<table>
<thead>
<tr>
<th>EVENT DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Gas Pipeline Construction and Interconnection</td>
<td></td>
</tr>
<tr>
<td>Complete Gas Pipeline Construction</td>
<td></td>
</tr>
</tbody>
</table>

WATER SUPPLY LINE ACTIVITIES

<table>
<thead>
<tr>
<th>EVENT DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Water Supply Line Construction</td>
<td></td>
</tr>
<tr>
<td>Complete Water Supply Line Construction</td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Summary of Compliance Conditions of Certification

<table>
<thead>
<tr>
<th>CONDITION NUMBER</th>
<th>SUBJECT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM-1</td>
<td>Unrestricted Access</td>
<td>The project owner shall grant Energy Commission staff and delegate agencies or consultants unrestricted access to the power plant site.</td>
</tr>
<tr>
<td>COM-2</td>
<td>Compliance Record</td>
<td>The project owner shall maintain project files on-site. Energy Commission staff and delegate agencies shall be given unrestricted access to the files.</td>
</tr>
<tr>
<td>COM-3</td>
<td>Compliance Verification Submittals</td>
<td>The project owner is responsible for the delivery and content of all verification submittals to the CPM, whether such condition was satisfied by work performed or the project owner or his agent.</td>
</tr>
<tr>
<td>COM-4</td>
<td>Pre-construction Matrix and Tasks Prior to Start of Construction</td>
<td>Construction shall not commence until all of the following activities/submittals have been completed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Project owner has submitted a pre-construction matrix identifying conditions to be fulfilled before the start of construction;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Project owner has completed all pre-construction conditions to the CPM’s satisfaction; and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CPM has issued a letter to the project owner authorizing construction.</td>
</tr>
<tr>
<td>COM-5</td>
<td>Compliance Matrix</td>
<td>The project owner shall submit a compliance matrix (in a spreadsheet format) with each Monthly and Annual Compliance Report, which includes the current status of all Compliance Conditions of Certification.</td>
</tr>
<tr>
<td>COM-6</td>
<td>Monthly Compliance Reports and Key Events List</td>
<td>During construction, the project owner shall submit Monthly Compliance Reports (MCRs) which include specific information. The first MCR is due 1 month following the docketing of the Energy Commission’s Decision and shall include an initial list of dates for each of the events identified on the Key Events List.</td>
</tr>
<tr>
<td>COM-7</td>
<td>Annual Compliance Reports</td>
<td>After construction ends and throughout the life of the project, the project owner shall submit Annual Compliance Reports (ACRs) instead of Monthly Compliance Reports.</td>
</tr>
<tr>
<td>COM-8</td>
<td>Confidential Information</td>
<td>Any information the project owner designates as confidential shall be submitted to the Energy Commission’s Executive Director with a request for confidentiality.</td>
</tr>
<tr>
<td>COM-9</td>
<td>Annual Fees</td>
<td>Required payment of the Annual Energy Facility Compliance Fee.</td>
</tr>
<tr>
<td>COM-10</td>
<td>Amendments, Staff-Approved Project Modifications, Ownership Changes, and Verification Changes</td>
<td>The project owner shall petition the Energy Commission to delete or change a condition of certification, modify the project design or operational requirements, and/or transfer ownership or operational control of the facility.</td>
</tr>
<tr>
<td>CONDITION NUMBER</td>
<td>SUBJECT</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>COM-11</td>
<td>Reporting of Complaints, Notices, and Citations</td>
<td>Prior to the start of construction, the project owner shall provide all property owners within a 1-mile radius a telephone number to contact project representatives with questions, complaints or concerns. The project owner shall respond to all recorded complaints within 24 hours. Within 10 days of receipt, the project owner shall report to the CPM all notices, complaints, violations, and citations.</td>
</tr>
<tr>
<td>COM-12</td>
<td>Site Contingency Plan</td>
<td>No less than 60 days prior to the start of commercial operation the project owner shall submit an on-site Contingency Plan to ensure protection of public health and safety and environmental quality during a response to an unanticipated event or emergency.</td>
</tr>
<tr>
<td>COM-13</td>
<td>Incident-Reporting Requirements</td>
<td>The project owner shall notify the CPM within 1 hour of an incident and submit a detailed incident report within 30 days, maintain records of incident report, and submit public health and safety documents with employee training provisions.</td>
</tr>
<tr>
<td>COM-14</td>
<td>Non-Operation</td>
<td>No later than 2 weeks prior to a facility’s planned non-operation, or no later than 2 weeks after the start of unplanned non-operation, the project owner shall notify the CPM, interested agencies and nearby property owners of this status. During non-operation, the project owner shall provide written updates to the CPM.</td>
</tr>
<tr>
<td>COM-15</td>
<td>Facility Closure Planning</td>
<td>Within 60 days after initiating commercial operation, the project owner shall submit a Provisional Closure Plan and Cost Estimate for permanent closure. At least 3 years prior to closing, the project owner shall submit a Final Closure Plan and Cost Estimate.</td>
</tr>
<tr>
<td>COM-16</td>
<td>Financial Assurance for Closure and Post-Closure Care</td>
<td>Within 30 days following approval of the Provisional Closure Plan and Cost Estimate or the Final Closure Plan and Cost Estimate (whichever is most recent), the project owner shall establish a CPM-approved closure financial assurance mechanism to ensure the availability of funds needed to adequately perform facility closure and post-closure care.</td>
</tr>
</tbody>
</table>
ATTACHMENT A
COMPLAINT REPORT and RESOLUTION FORM

COMPLAINT LOG NUMBER:_________________________ DOCKET NUMBER:_________________________

PROJECT NAME:__

COMPLAINANT INFORMATION

NAME:____________________________________ PHONE NUMBER:________________
ADDRESS:__

COMPLAINT

DATE COMPLAINT RECEIVED:_________________________ TIME COMPLAINT RECEIVED:_________________________

COMPLAINT RECEIVED BY:_________________________ ☐ TELEPHONE ☐ IN WRITING (COPY ATTACHED)

DATE OF FIRST OCCURRENCE:_________________________

DESCRIPTION OF COMPLAINT (INCLUDING DATES, FREQUENCY, AND DURATION):

__

__

__

FINDINGS OF INVESTIGATION BY PLANT PERSONNEL:

__

__

__

DOES COMPLAINT RELATE TO VIOLATION OF A CEC REQUIREMENT? ☐ YES ☐ NO

DATE COMPLAINANT CONTACTED TO DISCUSS FINDINGS:_________________________

DESCRIPTION OF CORRECTIVE MEASURES TAKEN OR OTHER COMPLAINT RESOLUTION:

__

__

__

DOES COMPLAINANT AGREE WITH PROPOSED RESOLUTION?

☐ YES ☐ NO

IF NOT, EXPLAIN:

__

CORRECTIVE ACTION

IF CORRECTIVE ACTION NECESSARY, DATE COMPLETED:_________________________

DATE FIRST LETTER SENT TO COMPLAINANT (COPY ATTACHED):_________________________

DATE FINAL LETTER SENT TO COMPLAINANT (COPY ATTACHED):_________________________

OTHER RELEVANT INFORMATION:

__

__

__

“This information is certified to be correct.”

PLANT MANAGER SIGNATURE:_________________________ DATE:_________________________

(ATTACH ADDITIONAL PAGES AND ALL SUPPORTING DOCUMENTATION, AS REQUIRED)
PREPARATION TEAM
EL SEGUNDO ENERGY CENTER 00-AFC-14C

PRELIMINARY STAFF ASSESSMENT
El Segundo Energy Center 2014 Dry Cooling Amendment

PREPARATION TEAM

Executive Summary .. Christine Stora
Introduction .. Christine Stora
Project Description .. Christine Stora

Environmental Assessment
Air Quality ... Wenjun Qian, Ph.D. P.E.
Biological Resources ... Ann Crisp
Cultural Resources .. Gabriel Roark, Melissa Mourkas, ASLA and Thomas Gates, Ph.D.
Hazardous Materials Management .. Alvin Greenberg, Ph.D.
Land Use .. Michael Baron
Noise and Vibration ... Shahab Khoshmashrab, P.E.
Public Health .. Obed Odoemelam, Ph.D.
Socioeconomics .. James Adams and Lisa Worrall
Soil and Water Resources ... Mike Conway, P.G.
Traffic and Transportation ... Jonathan Fong
Transmission Line Safety and Nuisance .. Obed Odoemelam, Ph.D.
Visual Resources .. William Kanemoto and David Flores
Waste Management ... Ellie Townsend-Hough
Worker Safety/Fire Protection ... Alvin Greenberg, Ph.D.

Engineering Assessment
Facility Design ... Shahab Khoshmashrab, P.E.
Geology and Paleontology .. Casey Weaver, CEG
Power Plant Efficiency .. Edward Brady, P.E.
Power Plant Reliability .. Edward Brady, P.E.
Transmission System Engineering ... Sudath Edirisuriya and Mark Hesters
Alternatives ... Amanda Stennick
General Conditions .. Christine Stora
Project Assistant ... Marci Errecart
Staff Attorney .. Elena Miller, J.D.