DOCKETED				
Docket Number:	19-OIR-01			
Project Title:	Load Management Rulemaking			
TN #:	237440			
Document Title:	2Presentation - 021-04-12 LMS Workshop (3 - Economic Analysis - GSitu)			
Description:	CEC staff economic analysis presentation for the April 12, 2021 staff workshop.			
Filer:	Gabriel Taylor			
Organization:	California Energy Commission			
Submitter Role:	Commission Staff			
Submission Date:	4/13/2021 4:49:33 PM			
Docketed Date:	4/13/2021			

Load Management Standards Economic Analysis

Gavin Situ, P.E., Existing Buildings Office, Efficiency Division Date: April 12, 2021

The standards shall be cost-effective when compared with the costs for new electrical capacity

PRC 25403.5 (Warren Alquist Act)

Is Load Management Standard more cost effective than batteries?

Levelized Cost of Storage (LCOS)

- Measure lifetime costs divided by lifetime energy production
- Allows the comparison of different technologies of unequal life spans, project size, cost, return, and capacities—in this analysis, LMS vs. Battery

LCOS of LMS (\$/MWh) < LCOS of Batteries (\$/MWh)

With an investment of \$14.2 million on LMS over 15 years, under a very conservative estimate:

- Residential behind the meter (BTM) battery owners will save \$81 million in charging costs
- Peak hour load can be reduced by 1800GWh over 15 years, freeing up equal amount of electrical capacity
- LCOS of LMS -\$37/MWh
- LCOS of LMS is smaller than LCOS of Battery (\$80/MWh to \$110/MWh)

LCOS of LMS

$LCOS of LMS = \frac{Net Cost of LMS($)}{Energy Shifted(MWh)}$

= Cost of LMS – Res Battery Charge Optimization AC Peak Load Shift

LCOS of BATTERY

\$80/MWh to \$110/MWh (primary source: Lazard)

 $LCOS of LMS = \frac{Cost of LMS(\$)}{Energy Shifted(MWh)}$

Numerator: what should be counted as cost of LMS

- The net present value of the cost of LMS over 15 years (Cost of LMS)
- <u>minus</u> the financial value of additional benefits, cost reduction, and cost avoidance that <u>LMS can achieve while batteries can **not**</u>

Focus on the reduction of charging cost for residential behind the meter (BTM) batteries optimized by LMS

Res Battery Charge Optimization

 $LCOS of LMS = \frac{Cost of LMS(\$)}{Energy Shifted(MWh)}$

Denominator: The peak hour energy consumption (MWh) shift enabled by LMS

• Focus on one end use: Air Conditioning

AC Peak Load Shift

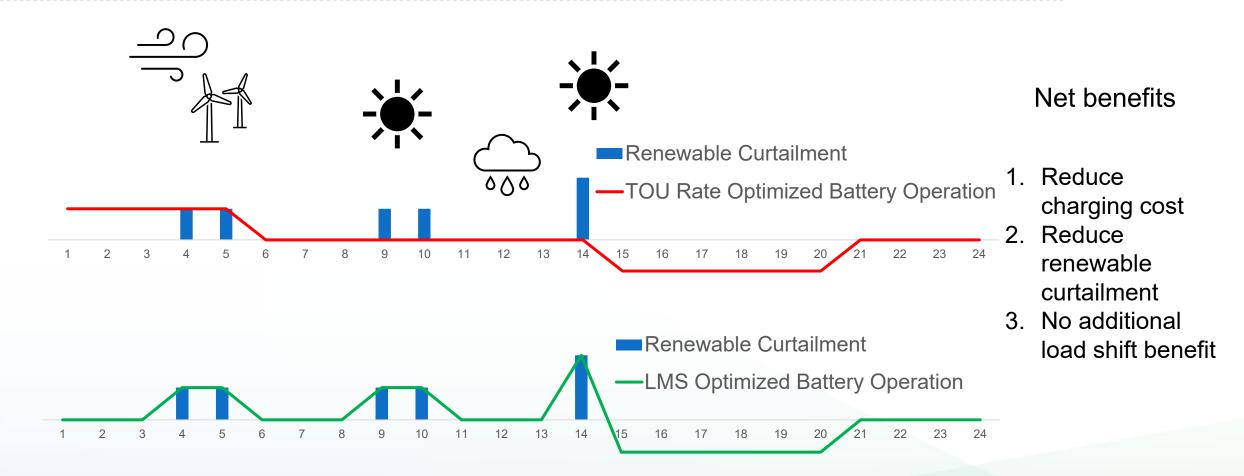
Assumptions and results

Entity	Development & Implementation	Annual Maintenance	15-Year NPV [†]
CEC	\$30,000	\$15,000	\$210,000
Utilities	\$3,750,000	\$75,000	\$4,630,000
Utilities	\$150,000	\$75,000	\$1,030,000
Utilities	\$750,000	\$375,000	\$5,160,000
Utilities	\$150,000	\$75,000	\$1,030,000
ASPs	\$300,000	\$150,000	\$2,060,000
	\$ 5,130,000	\$ 765,000	\$ 14,120,000 Cost of LMS
	CEC Utilities Utilities Utilities Utilities	EntityImplementationCEC\$30,000Utilities\$3,750,000Utilities\$150,000Utilities\$750,000Utilities\$150,000ASPs\$300,000	EntityImplementationMaintenanceCEC\$30,000\$15,000Utilities\$3,750,000\$75,000Utilities\$150,000\$75,000Utilities\$750,000\$375,000Utilities\$150,000\$75,000ASPs\$300,000\$150,000

Locational Marginal Price (LMP):

- 1. Best represents the time-dependent marginal cost of electricity consumption
- 2. Fundamental cost saving of load shift
- 3. LMP has carbon pricing component built-in
- 4. Total LMP saving is the aggregate saving, TOU rate is mechanism to divide the savings

Res Battery Charge Optimization


Operation Before

- 1. Discharge during peak hour
- 2. The charging is **complicated:**
 - Current TOU rates incentivize charging at night
 - Federal tax incentive requires charging by renewables, but the incentive quickly declines to 10% 2020 onward, and enforcement unclear
 - SGIP requires participants charging when GHG signal is low

Operation After

- 1. Discharge during peak hour
- 2. Smart and optimized charging whenever curtailment would otherwise occur

Res Battery Charge Optimization

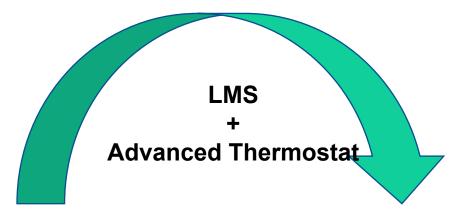
Assumption, Approach, and Data Source

1. Use CEC's 2020-2030 demand forecast and calculate implied total capacity of Res BTM Battery in 2025

Result: 758MWh daily charging capacity in 2025

- 2. Same 2025 forecast data also suggests that this capacity happens to be able to with reduce renewable curtailment to near zero, **IF** they all charge using renewables
- Assume, Res BTM battery moves away from indiscriminate night charging, and maximize charging by curtailed renewables, up to the total capacity of Res BTM Battery
- 4. Calculate annual total curtailment charging. Results: 198,000 MWh

Res Battery Charge Optimization


- 5. Every MWh charged with curtailed renewables is valued at **\$0 LMP**
- 6. Every MWh previously charged by non-curtailed energy at night is valued at average 2019 night time LMP
- 7. Calculate 2019 average night time LMP based on publicly available CAISO 2019 LMP data Result: 34.3\$/MWh
- 8. Calculate annual cost saving

Cost Saving = Annual total curtailment charge $* \Delta LMP$ = 198,000MWh * 34.3/MWh = \$6.8 million

To be conservative, we disregard the future increase of battery capacity. Net present value of 15 years of annual cost saving: \$~81 million

Res Battery Charge Optimization

Operation Before Unmanaged use, high coincidence with peak hour **Operation After** Intelligent precooling during off peak as desired; Shed during peak

 $C_{AC} = E_{AC.Peak}rmp$

- C_{AC} : AC Peak Load Shift, achieved by advanced thermostat with LMS feeding price information
- *E*_{AC,Peak} : Statewide peak Hour cooling load by location. data source: CEC Energy Assessment Division
- r: Reduction of peak hour cooling load. r = 90% (based on multiple studies and modeling)

 $C_{AC} = E_{AC.Peak}rmp$

• *m*: **Current** market share of advanced thermostat. m = 13.8%

Advanced thermostats currently have 13.8% market share in CA (Source: Ecobee/Statista)

Same per capita advanced thermostat ownership across CA

- *p*: Participation rate by advanced thermostats. *p* = 26% (Source: Ecobee)
 Advanced thermostat owner in Hot Summer Area has 50% participation rate
 Advanced owner in Mild Summer Area has 20% participation rate
- $mp = 13.8\% \times 26\% = 3.6\%$, very low and conservative percentage of overall population participating

Results

- 1. Annual peak period energy consumption shifted: 120 GWh
- 2. 15-year energy consumption shifted: **1800 GWh AC Peak Load Shift**
- 3. Summer months average daily peak period cooling load reduction: 200 MW

$$LCOS of LMS = \frac{Cost of LMS(\$)}{Energy Shifted(MWh)}$$

<u>Cost of LMS – Res Battery Charge Optimization</u> <u>AC Peak Load Shift</u>

\$14 Million – \$81 million

1800 *GWh*

= -\$37/WMh

< \$80/WMh(Battery LCOS)

- 1. Heat Pump Water Heater (HPWH) is expected to play a big role in decarbonization and load management soon
- 2. Current installation of HPWH is low communicating HPWH even lower
- 3. Using current installation numbers (consistent with AC analysis), 15-year total energy consumption shifted is estimated to be approximately 100 GWh
- 4. Not considered for now due to its relatively small magnitude (less than 5% of AC shift)
- 5. Not included in the draft staff report

Result Summary

With an investment of \$14.2 million on LMS over 15 years, under a very conservative estimate:

- Residential behind the meter (BTM) battery owners will save \$81 million in charging costs
- Peak hour load can be reduced by 1800GWh, freeing up equal amount of electrical capacity
- LCOS of LMS: -\$37/MWh
- LCOS of LMS is smaller than LCOS of Battery (\$80/MWh to \$110/MWh)