<table>
<thead>
<tr>
<th>DOCKETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docket Number:</td>
</tr>
<tr>
<td>Project Title:</td>
</tr>
<tr>
<td>TN #:</td>
</tr>
<tr>
<td>Document Title:</td>
</tr>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Filer:</td>
</tr>
<tr>
<td>Organization:</td>
</tr>
<tr>
<td>Submitter Role:</td>
</tr>
<tr>
<td>Submission Date:</td>
</tr>
<tr>
<td>Docked Date:</td>
</tr>
</tbody>
</table>
2022 Pre-Rulemaking for Building Energy Efficiency Standards

Payam Bozorgchami, P.E.

Start Time: 9:00 AM

October 6, 2020
What We Will Covering Today

- Opening Comments from Commissioner McAllister
- Key Information on the Development of Title 24, Part 6
- Mazi Shirakh, P.E.
 - General Overview of Heatpump Baselines and PV/Battery Storage Requirements for HRMF and Selected Nonresidential Buildings
- NORESCO
 - Highrise Multifamily (HRMF) Heatpump Baseline
 - Nonresidential Heatpump Baselines
- NORESCO & E3
 - HRMF and Nonresidential PV and Battery Storage
- Mazi Shirakh, P.E.
 - Cleanup Language
 - Section 150.1(c)14 Exceptions
 - New Exception to Section 150.1(c)14
 - JA11 and JA12
 - Section 10-115, Community Solar Language
 - Section 10-109, PV System Requirements
2022 Standards Process

2022 Standards Update Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestones</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2018 - November 2019</td>
<td>Updated Weather Files</td>
</tr>
<tr>
<td>November 2018-December 2019</td>
<td>Metric Development</td>
</tr>
<tr>
<td>November 2018-July 2019</td>
<td>Measures Identified and approval</td>
</tr>
<tr>
<td>August 2019 to October 2020</td>
<td>Stakeholder meeting/workshop & final staff workshop</td>
</tr>
<tr>
<td>August 2020-October 2020</td>
<td>CASE Reports submitted to the CEC</td>
</tr>
<tr>
<td>February 2021</td>
<td>45-day Language Hearings</td>
</tr>
<tr>
<td>July 2021</td>
<td>Adoption of 2022 Standards at a Business Meeting</td>
</tr>
<tr>
<td>July 2021 to November 2021</td>
<td>Staff work on Software, Compliance Manuals, Electronic Documents Available to Industry</td>
</tr>
<tr>
<td>December of 2021</td>
<td>Approval of the Manuals</td>
</tr>
<tr>
<td>January 2022</td>
<td>Software, Compliance Manuals, Electronic Documents Available to Industry</td>
</tr>
<tr>
<td>January 1, 2023</td>
<td>Effective Date</td>
</tr>
</tbody>
</table>
Tentative Pre-Rulemaking Schedule

- **September 1**
 - Energy Savings and Process Improvements for Alterations and Additions
 - Roof deck insulation for low-slope roofs
 - Prescriptive attic insulation for alterations
 - Prescriptive duct sealing
 - Electric resistance water heating
 - Electric resistance space heating
 - 40-ft trigger for prescriptive duct requirements
 - Cool roof for steep-slope roofs
 - Cool roof for low-slope roof

- **September 9**
 - Nonresidential Grid Integration
 - Controlled Receptacle, CEA Proposal

- **September 10**
 - Verification Testing

- **September 22**
 - Outdoor lighting
 - Daylighting

- **September 23**
 - Computer Room Efficiencies
 - Pipe Sizing and Leak Testing for Compressed Air Systems
 - Refrigeration System Operation
Tentative Pre-Rulemaking Schedule (Cont.)

- **September 30**
 - Indoor Air Quality Roundtable discussion with the outside world

- **October 6 and November 19**
 - Solar Photo Voltaic and Electrification
 - Multifamily All Electric

- **October 7**
 - Nonresidential Indoor Lighting
 - Air Distribution
 - Nonresidential HVAC Controls

- **October 13**
 - Multifamily Domestic Hot Water
 - Multifamily Restructuring

- **October 20**
 - Nonresidential High Performance Envelope

- **October 27**
 - Control Environmental Horticulture
 - New Construction Steam Trap

- **October 29** Place holder (Commissioner roundtable discussion on September 30 on IAQ)
 - Indoor Air Quality
Key Web-Links

2022 Title 24 Utility-Sponsored Stakeholder
http://title24stakeholders.com/

Building Energy Efficiency Program
http://www.energy.ca.gov/title24/

Comments to be submitted to:

NOTE: For this workshop comments To Be Submitted By October 20, 2020
Building Standards Staff Contact Information – Energy Commission

Mazi Shirakh, PE
ZNE Technical Lead & Advisor to the 2022 Building Standard Staff.
Mazi.Shirakh@energy.ca.gov
916-654-3839

Payam Bozorgchami, PE
Project Manager, 2022 Building Standards
Payam.Bozorgchami@energy.ca.gov
916-654-4618

Larry Froess, PE
CBECC Software Lead
Larry.Froess@energy.ca.gov
916-654-4525

Peter Strait
Supervisor, Building Standards Development
Peter.Strait@energy.ca.gov
916-654-2817

Haile Bucaneg
Senior Mechanical Engineer
Haile.Bucaneg@energy.ca.gov
916-6518858

Will Vicent
Building Standards Office Manager
Will.Vicent@energy.ca.gov
Comments For Today's Workshop

Due Date: October 20, 2020 By 5:00 PM

Comments to be submitted to:
Questions ?
Thank You!
2022 Building Energy Efficiency Standards Overview

October 6, 2020 Staff Workshop
Heatpump Baselines and PV Requirements
Mazi Shirakh, PE: Building Decarbonization Lead
2022 T24 Standards Building Decarbonization Team

Mazi Shirakh, PE
Building Decarbonization Lead

Bill Pennington
Senior Technical and Program Advisor

Larry Froess, PE
Senior Engineer

Danny Tam
Mechanical Engineer

Payam Bozorgchami, PE
Project Manager, Building Energy Efficiency Standards

Will Vicent
Office Manager, Building Standards Office

Consulting Team:
Energy + Environmental Economics (E3)
NORESCO
TRC
Heatpump Baseline and PV/Storage Workshops

Two workshops, twice the fun:

There are two workshops scheduled for heatpump baselines and nonresidential PV and battery storage requirements:

October 6, 2020
• High level overview of the proposed requirements for heatpump baseline scenarios and PV and storage requirements; will only include “TDV” and not “source energy” baseline options
• Draft language will not be presented today
• Seek public input for concepts presented
• Comments due to Commission by COB October 20

November 19, 2020
• Draft language and detailed analysis will be presented
• Will include both “source energy” and “TDV” baselines
• After seeking further public comments, will become the basis for 45-day language
2022 T24 Standards Goals

Heatpump Baselines For:
1. Lowrise Residential Buildings
2. Highrise Multifamily
3. Selected Nonresidential Occupancies

PV and Battery Storage Requirements For:
1. HRMF
2. Selected Nonresidential Occupancies
New Electrified Baselines and PV Requirements for:

1. LRMF and HRMF
2. Office
3. Retail and Wholesale
4. Educational facilities
5. Warehouses
6. Mixed occupancy building where one or more of these types-of-uses makeup at least 80 percent of the floor areas of the building
Heatpump for space and water heating in the baseline for:

- HRMF and selected nonresidential occupancies
- Establish appropriate source energy and TDV baselines
- Must be feasible and cost effective

Creating feasible and cost-effective heatpump baselines may be a significant challenge for some occupancies.
PV and Possibly Battery Storage Requirements for HRMF and Selected Nonresidential Occupancies:

1. Considering NEM2 and alternative NEM tariffs with hourly exports compensated at avoided cost
2. Emphasize maximizing self-utilization of PV generation and minimizing exports thru:
 i. “Right sizing” the PV system to avoid large exports
 ii. Coupling with battery storage, EV charging, and other load-shifting strategies to maximize self-utilization
3. Possible credit for standalone battery storage systems

Availability of suitable rooftop areas for PV installation may be a limiting factor
For Part 6:
• Create a ~2 EDR credit (plus credit for T4 HPWH and DR) for builders who voluntarily switch to both HPWH and HPSH
 ✓ Make R13 roofdeck insulation mandatory requirement
 ✓ Make 0.064 U-factor walls mandatory requirement
• The mixed-fuel baseline will not be affected

For Part 11 (Calgreen):
• Include HPWH and more efficient windows in the standard design
 ✓ HPWH and HPSH can also comply
 ✓ Make R13 roofdeck insulation mandatory requirement
 ✓ Make 0.064 U-factor walls mandatory requirement
New residential mandatory battery storage ready requirements

1. Panel requirements to accommodate electric end-uses, PV, EVs, and future battery storage installation

2. Identification and isolation of emergency circuits

3. Compatibility with both battery storage systems and backup generators to help with PSPS events

Will reduce the future battery storage installations by $2,000 or more
Cleanup Language
1. Make sure PV sizing equation 150.1(c) is consistent with 2022 TDVs
2. New exception for PVs systems that are less than 2.0 kWDC per building
 ✓ May also address the ADU issue
3. Exception 1 - PV systems are not required to be larger than what can be installed in the Available Effective Annual Solar Access Area (EASAA); clarify the what happens when EASAA is greater than 80 square feet, but smaller than the area required for full NEM compliance
4. Exceptions 2 (CZ15), 3 (2-story buildings), 4, (3-story buildings) – Do we still need these Exceptions given items 2 and 3 above?
5. New Exception for occupied roofs (flat patio areas) - Consider referring to Part 2 provisions for occupiable roofs
6. New Exception for areas for high snow loads
Cleanup Continued

7. 10-109(k) PV Determinations - Review to determine whether this language needs to be clarified or amended

8. 10-115 Community Solar - Review to determine whether this language needs to be clarified or amended; consider lessons learned from SMUD CS application and interactions with the IOUs

9. Other changes proposed by stakeholders?
11. JA 11:
 i. Clean up language on system orientation, there is some confusion on the prescriptive and performance requirements
 ii. Solar assessment tool - Amend language based on lessons learned from prior approval of solar assessment tools: create clear list of functions needed for approval
 iv. Others?
12. JA 12:
 i. Allow credit for standalone battery storage systems
 ii. Revisit roundtrip efficiency
 iii. Revisit control strategies requirements: Basic, TOU, and Advanced DR
 iv. Others?
2018 Oversupply and Ramping: A challenge as more renewables are integrated into the grid

“Duck Curve” updated - CAISO data

|------|------|------|------|------|------|--------|--------|--------|

Solutions

- Target energy efficiency
- Increase storage and demand response
- Enable economic dispatch of renewables
- Decarbonize transportation fuels
- Retrofit existing power plants
- Align time-of-use rates with system conditions
- Diversify resource portfolio
- Deepen regional coordination
Grid Harmonization

Grid harmonization strategies (GHS) when coupled with customer owned PV systems bring maximum benefits to the grid, environment, and occupants.

Grid Harmonization Strategies Defined:

Grid Harmonization are strategies and measures that allow the home occupants to use their energy assets to maximize self-utilization of PV array output, and limit grid exports to periods beneficial to the grid and the ratepayer;

Examples of GHS include but are not limited to PVs in combination with battery storage, demand response, thermal storage, and in the future Electric Vehicle (EV) harmonization.
“Annual” netting assumes all hours of the day/year have the same emission and energy cost values, not a correct assumption. Blue line smooths out the belly of the duck and achieves zero carbon and zero energy without resorting to netting.
Title 24 2022 ACM: Electric Baseline Analysis
High-Rise Residential Buildings
OBJECTIVES

- Identify all-electric HVAC systems for consideration as 2022 ACM Baselines
- Evaluate performance relative to current ACM Baselines
 - All current baselines use gas heat
 - TDV expected to increase when switching to electric heat
- Improved glazing options also considered for inclusion
APPRAOCH

- Use CEC prototype
 - 10 Story High-rise Residential

- Service and Domestic Hot Water Systems – Electric Only
ELECTRIC BASELINE SYSTEM OPTIONS

<table>
<thead>
<tr>
<th>Highrise Residential Dwelling Units*</th>
<th>Systems Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Baseline</td>
<td>Systems Analyzed</td>
</tr>
<tr>
<td>Single Zone Air Conditioner with Gas Furnace Heat</td>
<td>- Single Zone Heat Pump</td>
</tr>
<tr>
<td></td>
<td>- Single Zone Heat Pump w/ Gas Supplemental Heat</td>
</tr>
<tr>
<td></td>
<td>- Variable Refrigerant Flow</td>
</tr>
<tr>
<td></td>
<td>- Water Source Heat Pump w/ Elec. Boiler</td>
</tr>
<tr>
<td>Balanced Ventilation</td>
<td>Balanced Ventilation</td>
</tr>
</tbody>
</table>

HVAC systems for nonresidential spaces were modeled to match the baseline for all options
High-Rise Residential

- Baseline is Single Zone Air Conditioner (SZAC) with gas furnace
- Heat pump gives TDV results close to baseline, but negative savings in many climate zones
- Switch to gas supplemental heat provides TDV savings in all zones except CZ16
- SZHP with improved glazing, particularly lower U-factor, can achieve savings in all climate zones
High-Rise Residential

- Heat pump with electric supplemental heat in all climate zones
 - U-Factor 0.36 glazing (current baseline) in CZ3, 6, 7, 8, 9, 11 and 15
 - U-factor 0.30 glazing in CZ1, 2, 4, 5, 10, 12, 13, and 14
 - U-factor 0.20 glazing in CZ 16

- Alternatively for CZ16, gas supplemental heat and U-factor 0.30 glazing
OBJECTIVES

- Identify heat pump based HVAC systems for consideration as 2022 ACM Baselines
- Evaluate performance relative to current ACM Baselines
 - All current baselines use gas heat
 - TDV expected to increase when switching to electric heat
- Identify systems that have lower TDV consumption, but result in a minimal increase in stringency
 - A new baseline with higher TDV consumption would decrease stringency for projects with electric heat
 - Systems with large differences from the baseline in TDV consumption are excluded from the results that will follow
Approach

- Use CEC prototypes
 - Office – Small, Medium and Large
 - Retail – Small, Medium and Large
 - Small Restaurant
 - Small School
 - Warehouse

- Service and Domestic Hot Water Systems – Electric Only

- Cooling parameters match baseline
 - Federal standards may impact this if baselines change in CBECC-Com

- Fan parameters also match baseline

- For similar system types, impacts are due to heating type only.
ALTERNATIVE SYSTEM OPTIONS

<table>
<thead>
<tr>
<th>Current Baseline</th>
<th>Systems Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Office</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone Heat Pump with Gas Supplemental Heat</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone VAV Heat Pump</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone VAV Heat Pump with Gas Sup. Heat</td>
</tr>
<tr>
<td></td>
<td>▪ Variable Refrigerant Flow + DOAS</td>
</tr>
<tr>
<td>Medium Office</td>
<td></td>
</tr>
<tr>
<td>Packaged Variable Air Volume – Hot Water Heat with Gas Boiler</td>
<td>▪ Packaged VAV – Electric Resistance Reheat</td>
</tr>
<tr>
<td></td>
<td>▪ Packaged VAV – Electric Reheat & Parallel Fan Boxes</td>
</tr>
<tr>
<td></td>
<td>▪ Packaged VAV w/ Heat Pump Boiler</td>
</tr>
<tr>
<td></td>
<td>▪ Variable Refrigerant Flow + DOAS</td>
</tr>
<tr>
<td></td>
<td>▪ Water Source Heat Pump w/ Elec. Boiler + DOAS</td>
</tr>
<tr>
<td>Large Office</td>
<td></td>
</tr>
<tr>
<td>Built-Up Variable Air Volume – Hot Water Heat with Gas Boiler</td>
<td>▪ Variable Air Volume (VAV) w/ Elec. Reheat</td>
</tr>
<tr>
<td></td>
<td>▪ VAV w/ Electric Reheat & Parallel Fan Boxes</td>
</tr>
<tr>
<td></td>
<td>▪ VAV w/ Heat Pump Boiler</td>
</tr>
<tr>
<td></td>
<td>▪ Water Source Heat Pump w/ Elec. Boiler + DOAS</td>
</tr>
</tbody>
</table>
ALTERNATIVE SYSTEM OPTIONS

<table>
<thead>
<tr>
<th>Current Baseline</th>
<th>Systems Analyzed</th>
</tr>
</thead>
</table>
| Small Retail | ▪ Single Zone Heat Pump
 ▪ Single Zone Heat Pump with Gas Sup. Heat
 ▪ Single Zone VAV Heat Pump
 ▪ Single Zone VAV Heat Pump with Gas Sup. Heat |
| Single Zone and Single Zone Variable Air Volume (VAV) – Gas Furnace Heat | |
| Medium Retail | ▪ Single Zone Heat Pump
 ▪ Single Zone Heat Pump with Gas Sup. Heat
 ▪ Single Zone VAV Heat Pump
 ▪ Single Zone VAV Heat Pump with Gas Sup. Heat |
| Single Zone and Single Zone VAV – Gas Furnace Heat | |
| Large Retail | ▪ Single Zone Heat Pump
 ▪ Single Zone Heat Pump with Gas Sup. Heat
 ▪ Single Zone VAV Heat Pump
 ▪ Single Zone VAV Heat Pump with Gas Sup. Heat |
| Single Zone VAV – Gas Furnace Heat | |
ALTERNATIVE SYSTEM OPTIONS

<table>
<thead>
<tr>
<th>Current Baseline</th>
<th>Systems Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restaurant (Small)</td>
<td>Single Zone and Single Zone VAV – Gas Furnace Heat</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone Heat Pump</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone Heat Pump with Gas Sup. Heat</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone VAV Heat Pump</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone VAV Heat Pump with Gas Sup. Heat</td>
</tr>
<tr>
<td>School (Small)</td>
<td>Single Zone and Single Zone VAV – Gas Furnace Heat</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone Heat Pump</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone Heat Pump with Gas Sup. Heat</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone VAV Heat Pump</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone VAV Heat Pump with Gas Sup. Heat</td>
</tr>
<tr>
<td></td>
<td>▪ Packaged VAV – Electric Resistance Reheat</td>
</tr>
<tr>
<td></td>
<td>▪ Packaged VAV – Electric Reheat & Parallel Fan Boxes</td>
</tr>
<tr>
<td></td>
<td>▪ Variable Refrigerant Flow</td>
</tr>
<tr>
<td></td>
<td>▪ Water Source Heat Pump w/ Elec. Boiler + DOAS</td>
</tr>
<tr>
<td>Warehouse</td>
<td>Single Zone VAZ (Office), Heating Ventilating System (Storage) – Gas Furnace Heat</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone Heat Pump</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone Heat Pump with Gas Sup. Heat</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone VAV Heat Pump</td>
</tr>
<tr>
<td></td>
<td>▪ Single Zone VAV Heat Pump with Gas Sup. Heat</td>
</tr>
</tbody>
</table>
Small Office

- Baseline is single zone air conditioners (SZAC) with gas furnace heat
- Changing furnace to heat pump heat - small reduction in TDV in some climate zones, small increase in others
- Changing supplemental heat to gas gives TDV savings in all CZ
Medium Office

- Baseline is Packaged VAV with hot water reheat from a gas boiler
- Electric reheat options increase TDV
- Heat Pump Boiler and VRF models do not provide TDV savings
Medium Office

- Baseline is Packaged VAV with hot water reheat from a gas boiler
- WSHP shows much higher TDV consumption
- Electric reheat, heat pump boiler and VRF models do not provide TDV savings
Large Office

- Baseline is a Built-up VAV with chillers and hot water reheat from a gas boiler
- WSHP shows much higher TDV consumption
- Electric reheat options increase TDV except in CZ8
- Electric boiler options do not perform much better
Small Retail

- Baseline is a mix of SZAC and single zone VAV air conditioners (SZVAVAC), all with gas furnace heat.
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1 and CZ16
- Changing supplemental heat to gas gives TDV savings in all CZ

RESULTS

-8% -6% -4% -2% 0% 2% 4%

<table>
<thead>
<tr>
<th>Results</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>Wt. Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SZ Mixed HP</td>
<td></td>
</tr>
<tr>
<td>SZ Mixed HP GasSup</td>
<td></td>
</tr>
</tbody>
</table>
Medium Retail

- Baseline is a mix of SZAC and SZVAVAC, with gas furnace heat.
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1 and CZ16
- Changing supplemental heat to gas gives TDV savings in all CZ
Large Retail

- Baseline is SZVAVAC with gas furnace heat.
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1 and CZ16
- Changing supplemental heat to gas gives TDV savings in all CZ
Small Restaurant

- Baseline is a mix of SZAC and SZVAVAC, both with gas furnace heat
- Switch to heat pump provides TDV savings in every climate zone except CZ16
- Gas supplemental heat gives TDV savings in CZ16 too
Small School

- Baseline is a mix of SZAC and SZVAVAC, all with gas furnace heat.
- Changing furnace to heat pump heat - small reduction in TDV except in CZ1, CZ5 and CZ16
- Changing supplemental heat to gas provides TDV savings except in CZ1
Warehouse

- Baseline is a SZVAVAC serving the office and heating/ventilating units serving storage areas, all with gas furnace heat.
- No direct electric heat alternative to the H/V units
- Constant volume heat pumps show increased TDC
- Change to gas supplemental heat reduces TDV in all climate zones
CONCLUSIONS

- Switch of baseline from gas furnace to heat pump appears viable
 - Need to evaluate impact of Federal minimum cooling efficiencies
 - Need to investigate additional options to avoid baseline with higher TDV consumption
 - Envelope changes?
 - Climate zone specific additional measures?

- Electric alternatives to gas boilers problematic

- Need to evaluate Federal cooling efficiency minimums

- Will be looking at inclusion of DOAS options
PV and Storage Cost Summary

October 6, 2020

Presented by: John Arent
OBJECTIVES

- Determine costs for inclusion in economic analyses

- PV systems
 - Installation relative to array size

- Battery systems
 - Installation versus capacity and duration
 - Replacement costs for 10-year expected life
METHODOLOGY

Project and representative costs
- Contacted top 50 installing contractors with commercial projects in CA
- Contacted MEP and sustainability firms
- Contacted facility managers of large corporations
- Distributed cost survey to respondents for PV and storage prices

Literature review for PV and storage prices
- Current prices
- Price trends

Storage:
- Contacted battery storage manufacturers and providers
- Reviewed other sources of cost data
PV System Cost
- EnergySage, 2020 Commercial PV estimates
- Sourced Survey Estimates (Solar Contracting Firms-2, MEP-1, Facility Manager-1)

Battery System Cost
- Solar Contracting Firm – survey estimate
- Leading Manufacturer / Turnkey Provider – survey and interview
PV COST RESULTS – NEW CONSTRUCTION

- Combined Data Sources: Survey (contractors, Facility Mgr, MEP), LBNL data, NEM median binned data
- Adjusted data to NC with $0.18/W reduction for customer acquisition costs (Friedman 2014)
- Data gathered for 2018 through 2020 and includes commercial PV costs for 5 kW through 1000 kW
- Cost adjusted to 2023 based on projected PV cost. Inflation not applied

\[y = 4.5015x^{-0.154} \]
Customer acquisition costs average $0.18/W for commercial projects (Friedman 2014)

Companies with growth plan may incur higher acquisition costs

Other soft costs include:
 - PII – permitting, inspection and interconnection
 - EPC – engineering, procurement and construction

Possibility of additional reduction in operating costs
 - Reduction in other soft costs
 - Reduction in costs of balance-of-system (BOS) costs with infrastructure in place
Between 2019 and 2023, the NREL Forecast Scenarios estimate a drop in installed costs of 3%, 15% or 20% for conservative, moderate, and aggressive scenarios, respectively.

This analysis assumes a reduction midway between the conservative and moderate scenarios, for a 9% reduction in cost between 2019 and 2023.

Applied adjustment factors to cost data based on year system was installed.
FURTHER STUDY

- Small commercial PV systems (< 25 kW) have a much higher cost ($/W) than larger systems
 - Requires further study to understand cost drivers

- Current data sources do not sufficiently differentiate between new construction and retrofit costs
 - In the process of collecting further information
 - Acquisition costs have been adjusted for, but there may be other costs that may not be incurred in new construction projects
BATTERY STORAGE ESTIMATES

- Commercial Battery: installed costs of $600 to $800 per kWh
 - $600/kWh for large systems
 - $800/kWh for systems below 100 kW

- Battery cost of 4-hour storage is 10-15% lower than 2-hour storage

- Expected life of 10 years
 - Replacement costs will be at least 30% lower (2/3 are hard costs)
 - Future battery costs projected to drop by 30% at year 10
 - Overall replacement cost is 50% lower than first cost
BATTERY STORAGE – DESIGN CONSIDERATIONS

- Some major battery installers do not offer systems below 100 kW
 - Tesla Powerwall may be offered by other providers

- Footprint: a 100 kW system takes up a full parking space

- Duration: systems available in 1- to 4-hour duration
 - 2 hour most common (aligned with SGIP program)
 - 4 hour more useful for alignment with ISO / grid
 - Costs are higher for higher current output (shorter duration): approximately 10-15% lower cost/kWh for 4-hr batteries, per contractor estimate and NREL study
NREL Study shows battery storage costs dropping by 11%, 45%, to 67% for three projection scenarios. Future cost trends are important for storage, given 10-year expected life.

Recommend average of high (conservative) and Mid (moderate) scenarios, for an estimated 30% drop by 2030.
TESLA POWERWALL COSTS

- Slight cost reduction for multiple battery systems
- Potential additional cost reduction for new construction

<table>
<thead>
<tr>
<th>Qty</th>
<th>kWh</th>
<th>Usable kWh</th>
<th>Battery Cost</th>
<th>Total System Cost</th>
<th>Cost/kWh</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>13.5</td>
<td>$6,500</td>
<td>$11,000</td>
<td>$815</td>
<td>https://www.solarreviews.com/blog/is-the-tesla-powerwall-the-best-solar-battery-available</td>
</tr>
<tr>
<td>2</td>
<td>28</td>
<td>27</td>
<td>$13,000</td>
<td>$21,500</td>
<td>$796</td>
<td>https://www.solarreviews.com/blog/is-the-tesla-powerwall-the-best-solar-battery-available</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>67.5</td>
<td>$32,500</td>
<td>$53,000</td>
<td>$785</td>
<td>Projected based on reduced installation cost of second unit</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>13.5</td>
<td>$9,250</td>
<td>$13,400</td>
<td>$993</td>
<td>https://www.buildwithrise.com/stories/tesla-powerwall2-basics</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>40.5</td>
<td>$19,500</td>
<td>$24,691</td>
<td>$610</td>
<td>2020 Estimate for Davis Residence, from Tesla Palo Alto, CA</td>
</tr>
</tbody>
</table>
PRELIMINARY RECOMMENDATIONS

› PV installed cost (regression from cost data):

\[
\text{Cost ($/W)} = 4.5015 \times kW^{-0.154}
\]

<table>
<thead>
<tr>
<th>PV kW DC</th>
<th>PV Cost ($/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$3.16</td>
</tr>
<tr>
<td>20</td>
<td>$2.84</td>
</tr>
<tr>
<td>50</td>
<td>$2.46</td>
</tr>
<tr>
<td>100</td>
<td>$2.21</td>
</tr>
<tr>
<td>200</td>
<td>$1.99</td>
</tr>
<tr>
<td>500</td>
<td>$1.73</td>
</tr>
<tr>
<td>1000</td>
<td>$1.55</td>
</tr>
</tbody>
</table>

› Battery installed cost

- Replacement Cost at 10 years:
 \[600/\text{kWh} \times 30\% \text{ price drop} – 30\% \text{ soft costs}\]
 \[= $284/\text{kWh} \text{ replacement}\]

- Replacement Cost at 20 years:
 \[600/\text{kWh} \times 38.5\% \text{ price drop} – 30\% \text{ soft costs}\]

<table>
<thead>
<tr>
<th>Battery Size</th>
<th>Battery First Cost ($/kWh)</th>
<th>Battery Replacement Cost ($/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 kW</td>
<td>$800</td>
<td>$392 (year 10) $344 (year 20)</td>
</tr>
<tr>
<td>> 100 kW</td>
<td>$600</td>
<td>$284 (year 10) $258 (year 20)</td>
</tr>
</tbody>
</table>
NEXT STEPS

- Collect feedback from workshop attendees and incorporate into cost data
- Refine costs for small systems (< 25 kW)
- Investigate cost differential between new construction and retrofit projects
ACKNOWLEDGEMENTS

NORESCO Team: Roger Hedrick, Silas Taylor, Rahul Athalye
Capital Cost Comparison—Nameplate Energy ($/kWh)

In addition to analyzing storage costs on a levelized basis, Lazard’s LCOS also evaluates system costs on the basis of nameplate energy.
Nonresidential PV and Battery Cost-Effectiveness Draft Results

October 7, 2020

Snoller Price
Mike Sontag
Jun Zhang
Emily Peterson
Brian Conlon
Sierra Spencer
Sumin Wang
Agenda

+ Background and Context
+ Scope of Analysis and Dimensions Considered
+ Medium Office Deep Dive
 - PV-only Cost Effectiveness
 - Storage-only Cost Effectiveness
 - PV + Storage Cost Effectiveness
+ Storage Duration Sensitivity
+ Reliability and Resiliency Sensitivity
+ EV Charging Compliance Option Framework
+ Appendix
Goals of this Analysis

+ Evaluate participant benefits and cost effectiveness of behind the meter PV and storage in HRMF and Nonresidential new construction
+ Study multiple configurations and sizes of PV and storage, with focus on limited grid exports
+ Cost-effectiveness measured under both TDV-based rates and current retail rates
 - TDV cost-effectiveness evaluated with multiple configurations to bound potential future rate design
+ Evaluation covers HRMF and nonresidential prototype buildings in each of the 16 climate zones
+ Present data inputs and methodology in a transparent manner
 - Open to improved data on capital costs, technology characteristics, storage control operations, future price signals, etc
Key Findings

+ **PV + Storage as a package (smaller configuration) is cost-effective for most building categories due to co-benefits of combined systems**
 - PV + Storage provides additional participant benefits, including reliability and resiliency

+ **PV is cost effective across all scenarios from participant perspective, except under most significant rate reform**
 - Minimizing exports allows for significant PV benefits, while having robust cost-effectiveness in all rate sensitivities
 - Note: most significant rate reform is analogous to “buy all - sell all” on avoided cost treatment of rooftop PV

+ **Storage-only presents large grid benefits, but is generally not cost-effective in this analysis**

+ **Next Steps:**
 - Collect additional relevant data from stakeholders,
 - Perform additional analysis to refine optimal size and configuration in context of building codes and standards
Modeling Inputs and Dimensions
Cost-Effectiveness Modeling Framework

- Building Load Profiles (10 prototypes x 16 Climate Zones)
- Solar/Storage sizing & configurations
- Rates (Utility Rates, TDV-based rates)
- Solar + Storage Lifecycle Costs
- Bill Savings/Lifecycle Cost Effectiveness
- Avoided Costs
- Storage Dispatch/Control
- Optimal Sizing

Scope of the Analysis

+ 9 major sensitivities – many combinations!

<table>
<thead>
<tr>
<th>Rates</th>
<th>PV Size</th>
<th>Storage Size</th>
<th>Storage Dispatch</th>
<th>Configurations</th>
<th>Building Types</th>
<th>Building Fuels</th>
<th>Climate Zones</th>
<th>Reliability/Resiliency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full TDV</td>
<td>Full NEM</td>
<td>PV Capacity</td>
<td>Optimal</td>
<td>PV only</td>
<td>Small Office</td>
<td>Mixed Fuel</td>
<td>All CZs</td>
<td>Not included</td>
</tr>
<tr>
<td>Export on Avoided</td>
<td>Self-Util</td>
<td>Minimize Solar Exports</td>
<td>Basic</td>
<td>Storage Only</td>
<td>Medium Office</td>
<td>All-Electric</td>
<td>Included</td>
<td></td>
</tr>
<tr>
<td>Export on wholesale</td>
<td>15% Exports</td>
<td></td>
<td>PV+ storage</td>
<td>Large Office</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoided Cost for all</td>
<td>Roof Space</td>
<td></td>
<td></td>
<td>Small Retail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility Rates</td>
<td></td>
<td></td>
<td></td>
<td>Medium Retail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Large Retail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Small School</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Warehouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Large School</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High-Rise Res</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What are TDVs?

- The TDVs (Time Dependent Value) are a long-term forecast of hourly electricity, natural gas and propane costs to building owners and are used for cost-effectiveness activities in Title 24 Building Code.

- The TDVs answer the question of what is cost-effective in the long term, as required by the Warren-Alquist Act.

- Time-differentiation reflects the underlying marginal cost of producing and delivering energy.

- Area-correlation reflects underlying marginal cost shapes correlated with each climate zones weather file.
Rates Sensitivities Considered

<table>
<thead>
<tr>
<th>Rate Name</th>
<th>Compensation for Self-Utilized Electricity (Imports)</th>
<th>Compensation for Exports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Utility Retail Rates</td>
<td>Retail Rate + Non-bypassable charge</td>
<td>Retail Rate</td>
</tr>
<tr>
<td>Full TDV (NEM2.0)</td>
<td>Full TDV</td>
<td>Full TDV – Non-bypassable charges</td>
</tr>
<tr>
<td>Export on Avoided Costs</td>
<td>Full TDV</td>
<td>Avoided Costs</td>
</tr>
<tr>
<td>Export on Wholesale Costs</td>
<td>Full TDV</td>
<td>Wholesale Costs</td>
</tr>
<tr>
<td>Self-utilized/export on Avoided Costs</td>
<td>Avoided Costs</td>
<td>Avoided Costs</td>
</tr>
</tbody>
</table>

- **Self-utilized electricity** is generated and consumed behind the meter
- **Imported electricity** is taken from the grid to power end-use loads
- **Exported electricity** is generated behind the meter and sent to the grid
TDV Rate Sensitivities

- Full TDV is highest, avoided costs and wholesale costs are similar in magnitude.
- Different Climate zones have different hourly profiles due to local T&D peaks.
 - Climate zones in inland LA Basin have slightly higher midday rates.

Note: TDV rate on y-axis is levelized lifetime present value.

Medium Office, Mixed Fuel Load, CZ8

Medium Office, Mixed Fuel Load, CZ13
PV Sizing

+ Three sizing options for each building type and climate zone
 • Max NEM Complaint
 – Annual solar gen = annual total building consumption
 – ~40% of annual PV generation is exported to grid
 • Self-utilization (~20% Exports PV)
 – Sized to generate the amount of PV that is self-utilized in Max NEM Compliant case
 – ~20% of annual PV generation is exported to grid
 • 5% Exports
 – 5% of annual PV generation is exported to grid

+ PV sizes compared to roof area constraints to ensure viable system size

Average PV Size by Building Type

(See appendix for Large Office sizing)
Key PV Inputs

+ PV Costs
- Considers full lifetime capital & replacement costs, fixed O&M costs, investment tax credit
- 2% Inflation rate
- 3% Real discount rate

**+ Fixed O&M: $11/kWDC-yr (2018$)1

+ ITC: 10%

+ Lifetime: 30 years

+ PV Tilt: assumed zero tilt, to maximize roof utilization

+ PV Azimuth: South-facing

+ Inverter Load Ratio: 1.0

<table>
<thead>
<tr>
<th>PV (kWdc)</th>
<th>CAPEX (2020$/W_{DC}$)</th>
<th>Lifetime NPV Costs used in this analysis (2023/kW$_{DC}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$3.16</td>
<td>$3,263</td>
</tr>
<tr>
<td>20</td>
<td>$2.84</td>
<td>$2,957</td>
</tr>
<tr>
<td>50</td>
<td>$2.46</td>
<td>$2,594</td>
</tr>
<tr>
<td>100</td>
<td>$2.21</td>
<td>$2,355</td>
</tr>
<tr>
<td>200</td>
<td>$1.99</td>
<td>$2,145</td>
</tr>
<tr>
<td>500</td>
<td>$1.73</td>
<td>$1,897</td>
</tr>
<tr>
<td>1000</td>
<td>$1.55</td>
<td>$1,725</td>
</tr>
</tbody>
</table>

Fixed OM costs in 2020 NREL ATB include annualized large component replacement costs over technical life (e.g., inverters at 15 years)
Storage Sizing

+ Two sizing options for each building type, climate zone
 - **Max Storage**: Sized to *Self-utilization* (~20% Exports) PV capacity
 - **Min Solar Export**: Sized to minimize net solar exports
 - Reduces PV gen exports form 20% to ~10%

+ Typical assumption is 4-hr duration
+ Additional sensitivity with 2-hr duration

![Average Storage Size by Building Type](Image)
Key Storage Inputs

+ **Storage Costs**
 - Considers full lifetime capital & replacement costs, fixed O&M costs, investment tax credit
+ **Fixed O&M:** $29.61/kW_{DC-yr} (2018$)2
+ **10% ITC**
+ **Storage RTE:** 85%
+ **Storage duration:** 4 hours
+ **Storage lifetime:** 10 years (cell replacement)
+ **AC-coupled**
+ **Inverter Load Ratio:** 1.0 - No PV generation “clipping”
+ **Exclude SGIP incentive in cost-effectiveness evaluation for code requirement**
+ **Assumed only charge from solar to maximize ITC**

### Battery Size (kW)	Battery CAPEX (2020 $/kWh)	Battery Replacement Cost (2020$/kWh)
< 100 | $800 | $392 (year 10) $344 (year 20)
> 100 | $600 | $284 (year 10) $258 (year 20)

Two major factors impact energy storage economic benefit:

- **Controls scheme:** Commercially available energy storage does have sophisticated controls, but cannot match perfect foresight.
- **Price signal:** Current retail rates have limited alignment between participant benefits and grid benefits.

<table>
<thead>
<tr>
<th>Near-term Proxy</th>
<th>Aspirational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls Scheme</td>
<td>Basic</td>
</tr>
<tr>
<td></td>
<td>Optimal Dispatch (Perfect Foresight)</td>
</tr>
<tr>
<td>Rate Signal/ Participant</td>
<td>Retail Rates</td>
</tr>
<tr>
<td></td>
<td>Full TDV-based rate signal</td>
</tr>
</tbody>
</table>

Less Sophisticated: Less Alignment with Grid Benefits

More Sophisticated: Higher Grid Benefits
Optimal Dispatch Option

- Optimal dispatch responds based on customer load, PV generation, different rate signals to maximize customer benefit
- These plots show annual average of rate signals
- TOU rate also includes demand charges (not shown)

Full TDV

Medium Office, Mixed Fuel Load, CZ12

- ~20% Exports PV, Min Solar Export Storage, Optimal Dispatch

\[\text{Export Rate $/kWh} \]

- Hour of day

Gross Load

\[\text{MW} \]

PG&E B-10 TOU

Medium Office, Mixed Fuel Load, CZ12

- ~20% Exports PV, Min Solar Export Storage, Optimal Dispatch

\[\text{Export Rate $/kWh} \]

- Hour of day

Gross Load

\[\text{MW} \]

TDV and retail rates are both in levelized lifetime present value
Optimal Dispatch Option

- Behind the meter PV largely coincides with Medium office load profile
 - Some continued load after PV gen decreases, contributing to duck curve

Full TDV

PG&E B-10 TOU

TDV and retail rates are both in levelized lifetime present value
Under TDV based rate, optimal storage charging is mid-day, and discharges in evening (spring, summer, fall) and morning (winter), matching grid marginal costs.

Commercial retail rates are dominated by demand charges, and optimal dispatch focuses on more lucrative demand charge clipping.

Full TDV

PG&E B-10 TOU

TDV and retail rates are both in levelized lifetime present value.
Optimal Dispatch Option – Rate Signals

+ Under TDV based rate, net load is increased mid-day to take advantage of cheap electricity, decreased in late evening to avoid expensive grid power

+ Under retail rate signal, net demand is minimized, even though it does not necessarily align with grid peak

Full TDV

PG&E B-10 TOU

\[\text{TDV and retail rates are both in levelized lifetime present value}\]
Basic Dispatch Option

+ Battery charges on PV net exports and discharges when load again exceeds PV production
+ Demonstrates simple “maximize solar consumption” control scheme

Example PV & Storage Dispatch under “Basic Dispatch”
PV-Only Cost-Effectiveness
Under Full TDV rate, self-utilized electricity generation is compensated nearly the same as exported electricity.

Benefit/Cost ratio stays largely the same, regardless of PV size (except in case of PV cost reductions due to economies of scale).

No added incentive for limited exports.

PV is cost-effective for all sizes.
PV Cost-Effectiveness with Export on Avoided Costs

+ “Export on Avoided Costs” and “Export on Wholesale Costs” rates have higher compensation for self-utilized PV generation than exports
+ Benefit/Cost ratio increases with smaller PV size
+ Increased incentive to self-utilize PV generation
+ PV cost effective for all sizes

Cost Effectiveness

[Bar graphs showing lifetime NPV and B/C ratio for different scenarios: Max NEM PV No Storage, ~20% Exports PV No Storage, 5% Exports PV No Storage, Roof Constraint No Storage. Each scenario has two bars representing benefit and cost with calculated B/C ratios.]
Utility Rates Increase PV cost-Effectiveness

- PV more cost-effective under existing retail rates than all TDV-based rates
- Current utility retail rates compensate exports at nearly the same rate as self-utilized generation (with the exception of "Non-Bypassable Charges")
- Higher mid-day prices during behind the meter PV generation drive higher cost-effectiveness
- Little incentive to limit exports

Cost Effectiveness – B10-TOU Rate

Medium Office, CZ12, Mixed Fuel Load
Utility Rate, Optimal Dispatch

- Max NEM PV
- ~20% Exports
- 5% Exports
- Roof Constraint

Lifetime NPV (2023$)

B/C Ratio
PV System Net Benefits

+ Below chart summarizes preceding benefit/cost charts
+ Map of Net Benefit shows that, for medium office, all PV sizes are cost effective under all rate sensitivities except for lowest bound of import/export on avoided costs
+ Smaller sized systems with limited exports are insulated to major changes in rate design
PV System Net Benefits

+ Expanding to Medium office, all climate zones, general trend stays consistent
+ Climate zone 1, 16 are less cost-effective than other climate zones due to limited PV output
+ Rate sensitivity of import/export under avoided costs are on the brink of cost-effectiveness

Cost Effectiveness, All Sizes, Rates, Climate Zones

![Graph showing net benefits vs. climate zone for different scenarios like Max NEM PV, Export on Avoided Costs, Export on Wholesale Market Costs, and more.](Image)
PV Only Net Benefit on TDV/Exported on Avoided Costs

Building Types

Building Type	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Net Benefits per Watt PV ($)	
High Rise	0.95	2	19	25	22	26	21	33	3	31	23	21	24	32	3	21	-10	
Large Office	1.3	24	23	28	25	29	23	33	3	32	31	23	24	25	36	31	24	-8
Medium Office	0.93	19	18	24	21	24	19	29	28	27	19	2	2	31	29	2	-6	
Small Office	0.57	16	15	21	18	21	16	25	25	23	16	16	17	28	23	17	-4	
Large Retail	1.5	25	25	3	28	31	25	35	34	32	25	25	26	37	31	26	-2	
Medium Retail	0.88	19	18	24	21	25	19	29	28	26	19	19	2	31	25	2	-4	
Small Retail	0.68	17	17	22	2	23	17	27	27	25	17	18	18	3	24	19	-2	
Small School	0.67	16	15	2	18	21	16	25	25	23	16	16	17	28	23	17	-2	
Warehouse	0.47	14	14	19	16	19	14	24	23	22	14	15	16	27	22	15	-2	

~20% Exports PV, No Storage, Export on Avoided Costs
Mixed Fuel Load, Optimal Dispatch

Energy + Environmental Economics
PV Only Net Benefit on Utility Rates Across Building Types

~20% Exports PV, No Storage, Utility Rate Mixed Fuel Load, Optimal Dispatch

<table>
<thead>
<tr>
<th>Building Type</th>
<th>CZ</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rise Residential</td>
<td>7.3</td>
<td>9</td>
</tr>
<tr>
<td>Large Office</td>
<td>2</td>
<td>3.6</td>
</tr>
<tr>
<td>Medium Office</td>
<td>3</td>
<td>4.1</td>
</tr>
<tr>
<td>Small Office</td>
<td>42</td>
<td>5.4</td>
</tr>
<tr>
<td>Large Retail</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>Medium Retail</td>
<td>26</td>
<td>3.6</td>
</tr>
<tr>
<td>Small Retail</td>
<td>42</td>
<td>5.4</td>
</tr>
<tr>
<td>Small School</td>
<td>29</td>
<td>4.1</td>
</tr>
<tr>
<td>Warehouse</td>
<td>42</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Net Benefits per Watt PV ($)
PV Cost Effectiveness Across Building Types

+ With exception of some edge cases, PV is cost effective across building types and climate zones, even under conservative compensation assumptions (TDV rate with exports on avoided costs)
+ Larger buildings have improved cost effectiveness due to lower PV costs
+ Under TDV rates, some further variation in cost effectiveness between building types, likely driven by coincidence of building loads and PV generation
+ Utility rates impact cost-effectiveness of PV, depending on utility, selected rate tariff
 • Note: Some utilities have options for alternative rate tariffs for customers within a given customer class (Ex. one tariff option with high demand charges and low volumetric charges, and one tariff option with low demand charges and high volumetric charges). This analysis did not attempt to optimize rate design for PV customers
Storage-Only Cost-Effectiveness
Storage Cost-Effectiveness with Full TDV Rate

+ Storage-only is borderline cost-effective under Full TDV Rate
+ With Full TDV rate, storage imports energy from the grid, to reduce load in high cost hours, arbitraging high and low price signals
+ Larger battery has higher BC ratio due to proportionally lower battery cost ($/kWh)
+ Note: basic dispatch defined by charging on solar, so only optimal dispatch tested for storage-only

Cost Effectiveness

Medium Office, CZ12, Mixed Fuel Load
Full TDV, Optimal Dispatch

- Energy Charge Savings
- Demand Charge Savings
- PV Costs
- Storage Costs
- B/C Ratio

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Cost</th>
<th>B/C Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.83</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Energy-Environmental Economics
Storage generally less cost-effective under existing utility rates

Storage benefit is largely comprised of peak demand clipping of monthly demand charges
• This specific utility rate has lower demand charges than other examined rates
• Energy arbitrage opportunity is limited

Note that prototype buildings may have flatter load profiles than actual buildings, limiting opportunity for demand charge reduction
• Many real-world scenarios where BTM energy storage is cost-effective for participants
Storage System Net Benefits

+ Expanding to medium office, all climate zones, cost-effectiveness does not change dramatically based on climate zone for storage-only systems.

+ Largely not cost-effective, but could change based on storage cost projections, and potential cost declines.
PV+Storage Cost-Effectiveness with Full TDV Rate

+ Focused on Self-utilization (~20% Exports) PV size with larger and smaller storage sizes
+ PV+Storage combined as a package has a lifetime net benefit under Full TDV rate
+ Smaller storage system has higher Benefit-cost ratio due to diminishing returns in benefits of storage sizing

Cost Effectiveness

Medium Office, CZ12, Mixed Fuel Load
Full TDV, Optimal Dispatch
PV+Storage Cost-Effectiveness with Exports on Avoided Costs

- On Export on Avoided Costs rate, smaller system has higher net benefit than larger storage system.
- Smaller system size is more insulated to potential NEM rate reforms.
Utility rates affect cost-effectiveness

+ Utility retail rate increases on cost-effectiveness for PV+Storage for smaller battery size, due to strong cost-effectiveness of PV, potential for large demand charge reduction opportunities

+ Net benefit with smaller storage size notably higher than larger storage configuration
Basic dispatch limits cost-effectiveness

+ Smaller PV+Storage configuration still cost-effective with Basic dispatch under Full TDV rate scenario
 • Battery only charges on PV net exports and discharges when load again exceeds PV production
+ Due to diminishing returns, smaller storage size is cost-effective while large storage size is not
+ This case represents a low-booked value for PV+storage cost-effectiveness
PV+Storage System Net Benefits, Optimal Dispatch

- Expanding to medium office, all climate zones, general trend stays consistent
- Climate zone 1, 16 are less cost-effective than other climate zones due to limited PV output
- Rate sensitivity of import/export under avoided costs is not cost-effective
- Utility rate has mixed impacts on cost-effectiveness

Cost Effectiveness, All Rates & Climate Zones
PV + Storage Optimal Dispatch on TDV/Exported on Avoided Costs Across Building Types

~20% Exports PV, Min Solar Export, Export on Avoided Costs Mixed Fuel Load, Optimal Dispatch

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Climate Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rise Residential</td>
<td>13</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>17</td>
<td>18</td>
<td>17</td>
<td>21</td>
<td>2</td>
<td>2</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Large Office</td>
<td>13</td>
<td>17</td>
<td>16</td>
<td>18</td>
<td>17</td>
<td>18</td>
<td>17</td>
<td>2</td>
<td>2</td>
<td>19</td>
<td>17</td>
<td>18</td>
<td>2</td>
<td>19</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium Office</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Office</td>
<td>1</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Retail</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>22</td>
<td>21</td>
<td>22</td>
<td>21</td>
<td>24</td>
<td>24</td>
<td>23</td>
<td>2</td>
<td>21</td>
<td>24</td>
<td>22</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium Retail</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small Retail</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>18</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>16</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small School</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warehouse</td>
<td>0.89</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PV + Storage Optimal Dispatch on Utility Rates Across Building Types

~20% Exports PV, Min Solar Export, Utility Rate Mixed Fuel Load, Optimal Dispatch

Building Type	CZ 1	CZ 2	CZ 3	CZ 4	CZ 5	CZ 6	CZ 7	CZ 8	CZ 9	CZ 10	CZ 11	CZ 12	CZ 13	CZ 14	CZ 15	CZ 16	
High Rise Residential	24	31	32	33	34	3	3	3	3	3	3	29	32	34	29	32	27
Large Office	16	22	22	22	19	19	18	19	2	21	22	22	2	19	17		
Medium Office	13	16	16	17	17	15	15	15	15	16	16	17	17	16	16	14	
Small Office	15	18	18	18	19	14	14	13	14	15	18	18	18	15	14	13	
Large Retail	19	25	24	25	25	18	19	18	18	2	23	24	24	19	18	17	
Medium Retail	15	19	19	2	2	14	14	14	14	15	18	19	19	15	14	14	
Small Retail	18	22	23	23	24	13	13	13	13	14	22	23	23	14	13	13	
Small School	12	15	15	15	16	12	12	12	12	13	14	15	15	13	12	11	
Warehouse	13	15	15	16	16	13	13	13	13	14	15	16	16	14	13	13	

B/C Ratio
- Positive values indicate a beneficial cost ratio.
- Negative values indicate a cost-saving opportunity.
- Zero indicates a neutral cost.

Utility Rates
- CZ: California Zoning
- PG&E: Pacific Gas & Electric
- SCE: Southern California Edison
- SDG&E: San Diego Gas & Electric
PV+Storage Cost Effectiveness Across Building Types

+ With exception of some edge cases, PV+storage with the smaller sizing configuration is cost effective across building types and climate zones, even under conservative compensation assumptions (TDV rate with exports on avoided costs)
+ Basic dispatch diminishes cost effectiveness across building types, yielding some non-cost-effective combinations
+ Cost-effectiveness by building type largely driven by cost declines for larger systems
+ Under TDV rates, some further variation in cost effectiveness between building types, likely driven by building load profile and ability for PV+storage to impact net load
+ Using selected utility rates, co-benefits of PV and storage yields a generally cost-effective solution for prototype buildings
Storage Duration & Size Sensitivity
Storage Duration Sensitivity

2-hour duration improves cost-effectiveness

2-hour Storage

4-hour Storage
Reliability & Resiliency Value Sensitivity
If considered, reliability value can largely improve cost-effectiveness

- Reliability benefit comes from having PV generation or reserving storage energy for unplanned short T&D power interruptions
Resiliency Benefit Improves Cost-Effectiveness

- If considered, resiliency value can largely improve cost-effectiveness
 - Resiliency benefit comes from covering critical load during planned outage days (ex. Public Safety Power Shutoff)

Without Reliability, Resiliency Value

<table>
<thead>
<tr>
<th>Medium Office, CZ12, Mixed Fuel Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/C Ratio</td>
</tr>
</tbody>
</table>

With Resiliency Value Only

<table>
<thead>
<tr>
<th>Medium Office, CZ12, Mixed Fuel Load with Resiliency Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/C Ratio</td>
</tr>
</tbody>
</table>
EV Charging Compliance Option Framework
In order to meet California’s 2025 ZEV goals, CARB estimates an additional need of 8,000-76,000 public/workplace level 2 (L2, ~7 kW) EV chargers, beyond those forecast under current building codes and incentives.

Title 24, Part 11 (CALGreen) requires ~6% of a building's parking spaces be "EV Capable" – cable raceway and sufficient panel capacity to support Electric Vehicle Supply Equipment (EVSE) – but does not require installation of the charger equipment itself.

Granting Title 24, Part 6 compliance credit for EVSE installation in non-residential buildings could help fill this gap.

Designing proposal so that it does not double count with LCFS.

This compliance credit is based on chargers in daytime charging locations that provide grid benefits:

- TDV value of shifting EV charging load from a typical residential charging shape (during peak or evening hours) to a more solar-aligned workplace charging shape.
How significant would the credit be?

Compliance Credit per Charger
- TDV 8,777 to 19,000 kBtu per charger lifecycle
- Levelized Source Energy 3,172 to 3,194 kBtu per charger per year
- Savings of at least 0.2 Tonnes CO2-e per charger per year

Figures assume EV charges on grid energy – greater savings from PV charging

![Graph showing average TDV (2023 $/kWh NPV) and EV load for different hours and rooms.](image)

![Bar chart showing nonres EV load shift compliance credit for medium office.](image)
Conclusions and Next Steps
Key Findings

+ PV + Storage as a package (smaller configuration) is cost-effective for most building categories due to co-benefits of combined systems
 - PV + Storage provides additional participant benefits, including reliability and resiliency

+ PV is cost effective across all scenarios from participant perspective, except under most significant rate reform
 - Minimizing exports allows for significant PV benefits, while having robust cost-effectiveness in all rate sensitivities
 - Note: most significant rate reform is analogous to “buy all - sell all” on avoided cost treatment of rooftop PV

+ Storage-only presents large grid benefits, but is generally not cost-effective in this analysis
Next Steps

+ Refine sizing and configuration
+ Calculate source energy, emissions impacts of selected configurations
+ Refine battery controls
 • Optimal dispatch is an upper bound
 • Basic dispatch is likely too conservative
 • Explore more realistic controls, or heuristic for benefit captured in real world vs optimal dispatch
+ Collect real-world data from interested stakeholders
 • Capital and operating costs
 • Technology characteristics
 • Battery control schemes
 • Typical storage duration
 • Future rate design
Thank you!
Appendix Contents

+ Additional Results
 - PV-Only and Storage-Only
 - PV+Storage

+ Reliability + Resiliency Inputs

+ Net Benefit Results By Building Type (Climate Zone 12)

+ Detailed Rate Scenario Assumptions

+ Solar + Storage Tool Details
Appendix – Additional PV-Only and Storage-Only Results
PV Capacity Factor

+ CZ01 has much lower PV output (less cost-effective), CZ14 has much higher PV output (more cost-effective)

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>Weather Station Name</th>
<th>Capacity Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZ01</td>
<td>Arcata AP</td>
<td>15.3%</td>
</tr>
<tr>
<td>CZ02</td>
<td>Santa Rosa (AWOS)</td>
<td>18.1%</td>
</tr>
<tr>
<td>CZ03</td>
<td>Oakland Metro AP</td>
<td>18.7%</td>
</tr>
<tr>
<td>CZ04</td>
<td>San Jose Reid Hill</td>
<td>19.1%</td>
</tr>
<tr>
<td>CZ05</td>
<td>Santa Maria Public AP</td>
<td>19.9%</td>
</tr>
<tr>
<td>CZ06</td>
<td>Torrance Muni AP</td>
<td>20.1%</td>
</tr>
<tr>
<td>CZ07</td>
<td>San Diego Lindbergh F</td>
<td>18.6%</td>
</tr>
<tr>
<td>CZ08</td>
<td>Fullerton Muni AP</td>
<td>19.4%</td>
</tr>
<tr>
<td>CZ09</td>
<td>Burbank Gindle Pasad</td>
<td>20.3%</td>
</tr>
<tr>
<td>CZ10</td>
<td>Riverside Muni</td>
<td>20.3%</td>
</tr>
<tr>
<td>CZ11</td>
<td>Red Bluff Muni AP</td>
<td>18.2%</td>
</tr>
<tr>
<td>CZ12</td>
<td>Sacramento Executive</td>
<td>18.7%</td>
</tr>
<tr>
<td>CZ13</td>
<td>Fresno Yosemite IAP</td>
<td>18.8%</td>
</tr>
<tr>
<td>CZ14</td>
<td>Palmdale AP</td>
<td>21.9%</td>
</tr>
<tr>
<td>CZ15</td>
<td>Palm Springs IAP</td>
<td>20.3%</td>
</tr>
<tr>
<td>CZ16</td>
<td>Blue Canyon AP</td>
<td>19.4%</td>
</tr>
</tbody>
</table>

Capacity Factor
PV Sizing

Three sizing options for each building type and climate zone

- **Max NEM Complaint**
 - Annual solar gen = annual total building consumption
 - ~40% of annual PV generation is exported to grid

- **Self-utilization (~20% Exports PV)**
 - Sized to generate the amount of PV that is self-utilized in *Max NEM Compliant* case
 - ~20% of annual PV generation is exported to grid

- **5% Exports**
 - 5% of annual PV generation is exported to grid

PV sizes compared to roof area constraints to ensure viable system size
PV Only Net Benefit on Utility Rates Across Building Types w/ LADWP & SMUD

~20% Exports PV, No Storage, Utility Rate Mixed Fuel Load, Optimal Dispatch

<table>
<thead>
<tr>
<th>Building Type</th>
<th>73</th>
<th>9</th>
<th>93</th>
<th>96</th>
<th>10</th>
<th>55</th>
<th>97</th>
<th>55</th>
<th>55</th>
<th>11</th>
<th>94</th>
<th>2</th>
<th>9.7</th>
<th>9.2</th>
<th>8.7</th>
<th>7.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rise Residential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Office</td>
<td>2</td>
<td>36</td>
<td>32</td>
<td>34</td>
<td>37</td>
<td>29</td>
<td>25</td>
<td>27</td>
<td>3</td>
<td>3</td>
<td>32</td>
<td>22</td>
<td>33</td>
<td>24</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Medium Office</td>
<td>3</td>
<td>41</td>
<td>43</td>
<td>43</td>
<td>47</td>
<td>25</td>
<td>21</td>
<td>24</td>
<td>24</td>
<td>27</td>
<td>4</td>
<td>17</td>
<td>42</td>
<td>22</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Small Office</td>
<td>42</td>
<td>54</td>
<td>57</td>
<td>58</td>
<td>61</td>
<td>48</td>
<td>15</td>
<td>46</td>
<td>47</td>
<td>22</td>
<td>55</td>
<td>13</td>
<td>57</td>
<td>18</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Large Retail</td>
<td>19</td>
<td>3</td>
<td>29</td>
<td>3</td>
<td>31</td>
<td>53</td>
<td>2</td>
<td>51</td>
<td>54</td>
<td>25</td>
<td>28</td>
<td>22</td>
<td>27</td>
<td>17</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Medium Retail</td>
<td>26</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>4</td>
<td>47</td>
<td>14</td>
<td>44</td>
<td>47</td>
<td>18</td>
<td>36</td>
<td>15</td>
<td>36</td>
<td>13</td>
<td>0.98</td>
<td>1.1</td>
</tr>
<tr>
<td>Small Retail</td>
<td>42</td>
<td>54</td>
<td>57</td>
<td>58</td>
<td>62</td>
<td>45</td>
<td>12</td>
<td>43</td>
<td>45</td>
<td>16</td>
<td>55</td>
<td>13</td>
<td>57</td>
<td>11</td>
<td>0.75</td>
<td>0.91</td>
</tr>
<tr>
<td>Small School</td>
<td>29</td>
<td>41</td>
<td>42</td>
<td>44</td>
<td>49</td>
<td>54</td>
<td>14</td>
<td>53</td>
<td>53</td>
<td>2</td>
<td>38</td>
<td>15</td>
<td>4</td>
<td>18</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Warehouse</td>
<td>42</td>
<td>54</td>
<td>56</td>
<td>58</td>
<td>61</td>
<td>44</td>
<td>15</td>
<td>42</td>
<td>45</td>
<td>21</td>
<td>54</td>
<td>13</td>
<td>56</td>
<td>19</td>
<td>13</td>
<td>15</td>
</tr>
</tbody>
</table>

Climate Zone:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Net Benefits per Watt PV ($):
-2 -4 -6 -8 -10

CZ Utility
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PG&E PG&E PG&E PG&E PG&E PG&E LADWP SDG&E LADWP LADWP SCE PG&E SMUD PG&E SCE SCE

Energy + Environmental Economics
Storage Cost-Effectiveness with Export on Avoided Costs

- Storage-only is slightly less cost-effective under Export on Avoided Costs
- Larger battery has higher BC ratio due to proportionally lower battery cost ($/kWh)
- Significant benefits, but benefits do not outweigh costs
Storage System Net Benefits

+ The chart aggregates previous storage only charts, with all rate sensitivities for Medium Office, CZ-12

+ Largely not cost-effective, but could change based on storage cost projections, and potential cost declines
Basic dispatch limits cost-effectiveness

+ PV+Storage still cost-effective with Basic dispatch under utility rates
 - Battery charges on PV net exports and discharges when load again exceeds PV production
+ Basic dispatch matches TOU-periods, and building load profile reasonably well, to reduce energy costs and demand charges

Cost Effectiveness – B10-TOU Rate, Basic Dispatch

- Medium Office, CZ12, Mixed Fuel Load Utility Rate, Basic Dispatch

- Energy Charge Savings
- Demand Charge Savings
- PV Costs
- Storage Costs
- B/C Ratio

~20% Exports PV
Max Storage
174 kW PV
174 kW Storage

~20% Exports PV
Min Solar Export
71 kW PV
71 kW Storage
For smaller storage size, cost effective across all configurations

Medium Office, CZ 12, Mixed Fuel

- 20% Exports PV Max Storage
 - 174 kW PV
 - 71 kW Storage
- 20% Exports PV Min Solar Export
 - 174 kW PV
 - 71 kW Storage
- Energy Charge Savings
- Demand Charge Savings
- PV Costs
- Storage Costs
- B/C Ratio

Optimal Dispatch
Basic Dispatch
PV+Storage System Net Benefits

Basic dispatch limits cost-effectiveness, but PV+Storage is still cost-effective

Cost Effectiveness, All Sizes, All Rates

- Full TDV
- Basic Dispatch
- Export on Avoided Costs
- Basic Dispatch
- Export on Wholesale Market Costs
- Basic Dispatch
- Self Util & Export on Avoided Costs
- Basic Dispatch
- Utility Rate
- Basic Dispatch

- Full TDV
- Optimal Dispatch
- Export on Avoided Costs
- Optimal Dispatch
- Export on Wholesale Market Costs
- Optimal Dispatch
- Self Util & Export on Avoided Costs
- Optimal Dispatch
- Utility Rate
- Optimal Dispatch
Expanding to medium office, all climate zones, general trend stays consistent

Basic dispatch limits cost-effectiveness, but smaller PV+Storage is still cost-effective in most climate zones

Rate sensitivity of import/export under avoided costs is not cost-effective

Utility rate has mixed impacts on cost-effectiveness
PV + Storage Basic Dispatch on TDV/Exported onAvoided Costs Across Building Types

~20% Exports PV, Min Solar Export, Export on Avoided Costs
Mixed Fuel Load, Basic Dispatch

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Climate Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rise Residential</td>
<td>0.96</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>14</td>
<td>17</td>
<td>17</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Large Office</td>
<td>0.92</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>Medium Office</td>
<td>0.74</td>
<td>0.99</td>
<td>0.95</td>
<td>11</td>
<td>0.99</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Small Office</td>
<td>0.76</td>
<td>1</td>
<td>0.97</td>
<td>11</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Large Retail</td>
<td>1.3</td>
<td>13</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>21</td>
<td>2</td>
<td>19</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>21</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>Medium Retail</td>
<td>0.97</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Small Retail</td>
<td>0.95</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>13</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Small School</td>
<td>0.67</td>
<td>0.84</td>
<td>0.85</td>
<td>0.9</td>
<td>0.87</td>
<td>0.94</td>
<td>0.88</td>
<td>1</td>
<td>1</td>
<td>0.99</td>
<td>0.86</td>
<td>0.85</td>
<td>0.89</td>
<td>11</td>
<td>1</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Warehouse</td>
<td>0.65</td>
<td>0.87</td>
<td>0.85</td>
<td>0.92</td>
<td>0.87</td>
<td>0.96</td>
<td>0.87</td>
<td>1</td>
<td>1</td>
<td>0.99</td>
<td>0.85</td>
<td>0.86</td>
<td>0.88</td>
<td>11</td>
<td>1</td>
<td>0.85</td>
<td></td>
</tr>
</tbody>
</table>

B/C Ratio
PV + Storage Optimal Dispatch on Utility Rates Across Building Types w/ LADWP & SMUD

~20% Exports PV, Min Solar Export, Utility Rate Mixed Fuel Load, Optimal Dispatch

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Climate Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rise Residential</td>
<td>1</td>
</tr>
<tr>
<td>Large Office</td>
<td>2</td>
</tr>
<tr>
<td>Medium Office</td>
<td>3</td>
</tr>
<tr>
<td>Small Office</td>
<td>4</td>
</tr>
<tr>
<td>Large Retail</td>
<td>5</td>
</tr>
<tr>
<td>Medium Retail</td>
<td>6</td>
</tr>
<tr>
<td>Small Retail</td>
<td>7</td>
</tr>
<tr>
<td>Small School</td>
<td>8</td>
</tr>
<tr>
<td>Warehouse</td>
<td>9</td>
</tr>
</tbody>
</table>

Utility Rates
- **1** PG&E
- **2** PG&E
- **3** PG&E
- **4** PG&E
- **6** LADWP
- **7** SDG&E
- **8** LADWP
- **9** LADWP
- **10** SCE
- **11** PG&E
- **12** SMUD
- **13** PG&E
- **14** SCE
- **15** SCE
- **16** SCE
PV + Storage Optimal Dispatch on TDV/Exported on Avoided Costs Across Building Types – All-Electric

~20% Exports PV, Min Solar Export, Export on Avoided Costs
All Electric Load, Optimal Dispatch

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Climate Zone 1</th>
<th>Climate Zone 2</th>
<th>Climate Zone 3</th>
<th>Climate Zone 4</th>
<th>Climate Zone 5</th>
<th>Climate Zone 6</th>
<th>Climate Zone 7</th>
<th>Climate Zone 8</th>
<th>Climate Zone 9</th>
<th>Climate Zone 10</th>
<th>Climate Zone 11</th>
<th>Climate Zone 12</th>
<th>Climate Zone 13</th>
<th>Climate Zone 14</th>
<th>Climate Zone 15</th>
<th>Climate Zone 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rise Residential</td>
<td>13</td>
<td>17</td>
<td>16</td>
<td>18</td>
<td>17</td>
<td>19</td>
<td>17</td>
<td>22</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>17</td>
<td>18</td>
<td>2</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Large Office</td>
<td>14</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>18</td>
<td>2</td>
<td>2</td>
<td>19</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>Medium Office</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Small Office</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Large Retail</td>
<td>17</td>
<td>21</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>21</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>25</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>Medium Retail</td>
<td>13</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>19</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Small Retail</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Small School</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Warehouse</td>
<td>0.92</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Appendix - Reliability & Resiliency Inputs
Key Reliability & Resiliency Assumptions

Benefit calculation methodology
- Reliability (ability to cover short-duration unplanned T&D power interruptions)
 - average T&D interruption probability * energy availability in PV and storage * interruption costs (VoLL)
- Resiliency (ability to cover long-duration multi-day planned outage events)
 - covered critical load by PV and storage during outage days * interruption costs (VoLL) + covered non-critical load * VoLL * 50%

Reliability metrics
- From PGE 2019 Reliability Report
 - SAIDI – 117.7
 - SAIFI – 1.010
 - CAIDI – 116.5

Interruption costs (VoLL)
- From LBNL Interruption Cost Estimate (ICE)
- By building type
 - Medium Office: 85.39 2016$/kWh

Outage events
- A 3-day outage event within the first week of November

Critical load
- Assume 10% of building load

Storage will be encouraged to cover critical load during planned outage days to obtain resiliency benefits

VoLL Assumptions by Building Type

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Load Type</th>
<th>MWh</th>
<th>Sector</th>
<th>VoLL 2016 $/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-rise Res</td>
<td>Mixed-fuel</td>
<td>691</td>
<td>Medium and Large C&I</td>
<td>69.86</td>
</tr>
<tr>
<td>Large Office</td>
<td>Mixed-fuel</td>
<td>3609</td>
<td>Medium and Large C&I</td>
<td>31.63</td>
</tr>
<tr>
<td>Medium Office</td>
<td>Mixed-fuel</td>
<td>453</td>
<td>Medium and Large C&I</td>
<td>85.39</td>
</tr>
<tr>
<td>Small Office</td>
<td>Mixed-fuel</td>
<td>62</td>
<td>Small C&I</td>
<td>223.41</td>
</tr>
<tr>
<td>Large Office</td>
<td>Mixed-fuel</td>
<td>1754</td>
<td>Medium and Large C&I</td>
<td>44.75</td>
</tr>
<tr>
<td>Medium Retail</td>
<td>Mixed-fuel</td>
<td>188</td>
<td>Medium and Large C&I</td>
<td>129.44</td>
</tr>
<tr>
<td>Medium Retail</td>
<td>Mixed-fuel</td>
<td>103</td>
<td>Small C&I</td>
<td>145.65</td>
</tr>
<tr>
<td>Small School</td>
<td>Mixed-fuel</td>
<td>179</td>
<td>Small C&I</td>
<td>91.17</td>
</tr>
<tr>
<td>Warehouse</td>
<td>Mixed-fuel</td>
<td>73</td>
<td>Small C&I</td>
<td>194.73</td>
</tr>
</tbody>
</table>
Detailed Operation – Outage Days

- Optimal storage dispatch under utility retail rate
- Storage discharges conservatively during non-solar hours to make sure it covers critical loads during these outage days as much as possible
- Storage still discharges to reduce customer peak demand to minimize demand charges
Appendix - Net Benefit Results By Building Type (CZ 12)
High Rise Residential

High Rise Residential, CZ12, Mixed Fuel Load

Net Benefit ($)

- No PV
- Max Solar Export
- Min Solar Export
- No Storage
- ~20% Storage
- No Exports
- PV Exports
- No Storage
- Roof Constraint
- ~20% Storage
- Max Exports
- ~20% Exports
- Min Solar Export

- NEM2.0, Basic Dispatch
- Export on Avoided Costs, Basic Dispatch
- Export on Wholesale Market Costs, Basic Dispatch
- NEM3.0 Lower Bookend, Basic Dispatch
- Utility Rate, Basic Dispatch
- NEM2.0, Optimal Dispatch
- Export on Avoided Costs, Optimal Dispatch
- Export on Wholesale Market Costs, Optimal Dispatch
- NEM3.0 Lower Bookend, Optimal Dispatch
- Utility Rate, Optimal Dispatch
Medium Office

Medium Office, CZ12, Mixed Fuel Load

Net Benefit ($)

-1000000
-500000
0
500000
1000000

No PV
Max Storage
Min Solar Export
No PV Export
Max NEM PV
~20% Exports PV
No Storage
5% Exports PV
Roof Constraint
~20% Exports PV
Max Storage
~20% Export Export

NEM2.0, Basic Dispatch
Export on Avoided Costs, Basic Dispatch
Export on Wholesale Market Costs, Basic Dispatch
NEM3.0 Lower Bookend, Basic Dispatch
Utility Rate, Basic Dispatch

NEM2.0, Optimal Dispatch
Export on Avoided Costs, Optimal Dispatch
Export on Wholesale Market Costs, Optimal Dispatch
NEM3.0 Lower Bookend, Optimal Dispatch
Utility Rate, Optimal Dispatch
Small Office

Small Office, CZ12, Mixed Fuel Load

- NEM2.0, Basic Dispatch
- Export on Avoided Costs, Basic Dispatch
- Export on Wholesale Market Costs, Basic Dispatch
- NEM3.0 Lower Bookend, Basic Dispatch
- Utility Rate, Basic Dispatch

- NEM2.0, Optimal Dispatch
- Export on Avoided Costs, Optimal Dispatch
- Export on Wholesale Market Costs, Optimal Dispatch
- NEM3.0 Lower Bookend, Optimal Dispatch
- Utility Rate, Optimal Dispatch
Warehouse

Warehouse, CZ12, Mixed Fuel Load

Net Benefit ($)

-200000
-100000
0
100000
200000

No PV Max Storage
No PV Min Solar Export
Max Storage
~20% Exports PV
No Storage
5% Exports PV
No Storage
Roof Constraint
~20% Exports PV
Max Storage
~20% Exports PV
Min Solar Export

- NEM2.0, Basic Dispatch
- Export on Avoided Costs, Basic Dispatch
- Export on Wholesale Market Costs, Basic Dispatch
- NEM3.0 Lower Bookend, Basic Dispatch
- Utility Rate, Basic Dispatch
- NEM2.0, Optimal Dispatch
- Export on Avoided Costs, Optimal Dispatch
- Export on Wholesale Market Costs, Optimal Dispatch
- NEM3.0 Lower Bookend, Optimal Dispatch
- Utility Rate, Optimal Dispatch
Appendix - Rate Assumptions
TDV-Based Rate Sensitivity Definitions

+ **Full TDV:** All TDV cost components
+ **Non-Bypassable Charges (NBC’s):** Calculated based on existing NEM2.0 NBC’s
+ **Avoided Costs:** All cost components except Retail Adjustment
+ **Wholesale Costs:** All cost components except Retail Adjustment, Emissions Abatement, and GHG Adder

<table>
<thead>
<tr>
<th>Rate Name</th>
<th>Compensation for Self-Utilized Electricity</th>
<th>Compensation for Exports</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEM 2.0</td>
<td>Full TDV</td>
<td>TDV – NBC’s</td>
</tr>
<tr>
<td>Export on Avoided Costs</td>
<td>Full TDV</td>
<td>Avoided Costs</td>
</tr>
<tr>
<td>Export on Wholesale Costs</td>
<td>Full TDV</td>
<td>Wholesale Costs</td>
</tr>
<tr>
<td>Import/export on Avoided Costs</td>
<td>Avoided Costs</td>
<td>Avoided Costs</td>
</tr>
</tbody>
</table>

![Chart showing energy costs and adjustments](chart.png)
Why do we measure cost-effectiveness with TDV instead of actual retail rate structures that are in place?

- We want the building code to be relatively stable over time and from cycle to cycle, the TDVs reflect a ‘perfect’ marginal cost of service which is a long-term signal for retail rates.
- By using the underlying system marginal costs we are reflecting building measures that provide the greatest underlying value to the energy system, even if retail rates are flat or have a different time of use period.
Climate Zone/Utility Rate Mapping

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>PG&E</th>
<th>SCE</th>
<th>SDG&E</th>
<th>LADWP</th>
<th>SMUD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZ01</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ02</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ03</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ04</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ05</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ06</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CZ07</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CZ08</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CZ09</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CZ10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ11</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ12</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CZ13</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ14</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ15</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CZ16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Retail rates are assigned based on prototype building peak load and CZ

Climate Zones in PG&E territory, for example use these rates (see Appendix for other utilities)

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Mix-fuel Peak Load (kW) / All-electric Peak Load (kW)</th>
<th>PG&E Retail Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OffLrg</td>
<td>1582/1611</td>
<td>B-20 Extra Large General - Time of Use (1000 +)</td>
</tr>
<tr>
<td>OffMed</td>
<td>210/230</td>
<td>B-10 Medium General - Time of Use</td>
</tr>
<tr>
<td>OffSml</td>
<td>23/27</td>
<td>B-6 Small General Time of use (0-75 kW)</td>
</tr>
<tr>
<td>RetlLrg</td>
<td>808/1012</td>
<td>B-19 Large General Time of use (or Extra large general TOU) (500-1000)</td>
</tr>
<tr>
<td>RetlMed</td>
<td>99/118</td>
<td>B-10 Medium/Large General Time of use</td>
</tr>
<tr>
<td>RetlSml</td>
<td>40/54</td>
<td>B-6 Small General Time of use (0-75 kW)</td>
</tr>
<tr>
<td>Whse</td>
<td>29/210</td>
<td>B-6 Small/Medium General TOU</td>
</tr>
<tr>
<td>SchSml</td>
<td>87/164</td>
<td>B-10 Medium General TOU</td>
</tr>
<tr>
<td>HRR10Story</td>
<td>5</td>
<td>E-TOU-C-NEM2 Residential - Time of Use - Rate C (NEM 2.0)</td>
</tr>
</tbody>
</table>
Retail rates are assigned based on prototype building peak load and CZ
Climate Zones in SCE territory use these rates

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Mix-fuel Peak Load (kW) / All-electric Peak Load (kW)</th>
<th>SCE Retail Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OffLrg</td>
<td>1610/1838</td>
<td>TOU-8 Large General- TOU Option D (Below 2kV) (NEM 2.0)(500+)</td>
</tr>
<tr>
<td>OffMed</td>
<td>236/262</td>
<td>TOU-GS-3 General-TOU Demand Metered, Rate D (NEM 2.0) (200-500kW)</td>
</tr>
<tr>
<td>OffSml</td>
<td>25/30</td>
<td>TOU-GS-2 General-TOU Demand Metered, Option D (NEM 2.0) (20-200kW)</td>
</tr>
<tr>
<td>RetlLrg</td>
<td>960/1117</td>
<td>TOU-8 Large General- TOU Option D (Below 2kV) (NEM 2.0)(500+)</td>
</tr>
<tr>
<td>RetlMed</td>
<td>106/134</td>
<td>TOU-GS-2 General-TOU Demand Metered, Option D (NEM 2.0) (20-200kW)</td>
</tr>
<tr>
<td>RetlSml</td>
<td>46.59</td>
<td>TOU-GS-2 General-TOU Demand Metered, Option D (NEM 2.0) (20-200kW)</td>
</tr>
<tr>
<td>Whse</td>
<td>33/207</td>
<td>TOU-GS-2 General-TOU Demand Metered, Option D (NEM 2.0) (20-200kW)</td>
</tr>
<tr>
<td>SchSml</td>
<td>104/179</td>
<td>TOU-GS-2 General-TOU Demand Metered, Option D (NEM 2.0) (20-200kW)</td>
</tr>
</tbody>
</table>
Retail rates are assigned based on prototype building peak load and CZ
Climate Zones in SDG&E territory use these rates

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Mix-fuel Peak Load (kW) / All-electric Peak Load (kW)</th>
<th>SDG&E Retail Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OffLrg</td>
<td>1610/1665</td>
<td>AL-TOU General-Time Metered (20+)</td>
</tr>
<tr>
<td>OffMed</td>
<td>236/262</td>
<td>AL-TOU General-Time Metered (20+)</td>
</tr>
<tr>
<td>OffSml</td>
<td>25/27</td>
<td>AL-TOU General-Time Metered (20+)</td>
</tr>
<tr>
<td>RetlLrg</td>
<td>960/1117</td>
<td>AL-TOU General-Time Metered (20+)</td>
</tr>
<tr>
<td>RetlMed</td>
<td>106/114</td>
<td>AL-TOU General-Time Metered (20+)</td>
</tr>
<tr>
<td>RetlSml</td>
<td>46/51</td>
<td>AL-TOU General-Time Metered (20+)</td>
</tr>
<tr>
<td>Whse</td>
<td>33/207</td>
<td>AL-TOU General-Time Metered (20+)</td>
</tr>
<tr>
<td>SchSml</td>
<td>104/148</td>
<td>AL-TOU General-Time Metered (20+)</td>
</tr>
</tbody>
</table>
Utility Rates Assumptions – SMUD

- Retail rates are assigned based on prototype building peak load and CZ
- Climate Zones in SMUD territory use these rates

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Mix-fuel Peak Load (kW) / All-electric Peak Load (kW)</th>
<th>SMUD Retail Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OffLrg</td>
<td>1423/1523</td>
<td>GS-TOU1 Large General -TOU (1000+)</td>
</tr>
<tr>
<td>OffMed</td>
<td>204/229</td>
<td>GSS_T General-Demand (20+)</td>
</tr>
<tr>
<td>OffSml</td>
<td>22/24</td>
<td>GSS_T General-Demand (20+)</td>
</tr>
<tr>
<td>RetlLrg</td>
<td>764/957</td>
<td>GSS_T General-Demand (20+)</td>
</tr>
<tr>
<td>RetlMed</td>
<td>81/111</td>
<td>GSS_T General-Demand (20+)</td>
</tr>
<tr>
<td>RetlSml</td>
<td>40/46</td>
<td>GSS_T General-Demand (20+)</td>
</tr>
<tr>
<td>Whse</td>
<td>29/205</td>
<td>GSS_T General-Demand (20+)</td>
</tr>
<tr>
<td>SchSml</td>
<td>82/164</td>
<td>GSS_T General-Demand (20+)</td>
</tr>
</tbody>
</table>
Utility Rates Assumptions – LADWP

Retail rates are assigned based on prototype building peak load and CZ
Climate Zones in LADWP territory use these rates

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Mix-fuel Peak Load (kW) / All-electric Peak Load (kW)</th>
<th>LADWP Retail Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OffLrg</td>
<td>1582/1485</td>
<td>CG-2 Customer Generation-Primary, Rate A</td>
</tr>
<tr>
<td>OffMed</td>
<td>202/225</td>
<td>CG-2 Customer Generation-Primary, Rate A</td>
</tr>
<tr>
<td>OffSml</td>
<td>22/23</td>
<td>A-1 Small General TOU, Rate B</td>
</tr>
<tr>
<td>RetlLrg</td>
<td>780/964</td>
<td>CG-2 Customer Generation-Primary, Rate A</td>
</tr>
<tr>
<td>RetlMed</td>
<td>87/108</td>
<td>CG-2 Customer Generation-Primary, Rate A</td>
</tr>
<tr>
<td>RetlSml</td>
<td>40/42</td>
<td>CG-2 Customer Generation-Primary, Rate A</td>
</tr>
<tr>
<td>Whse</td>
<td>32/178</td>
<td>CG-2 Customer Generation-Primary, Rate A</td>
</tr>
<tr>
<td>SchSml</td>
<td>85/143</td>
<td>CG-2 Customer Generation-Primary, Rate A</td>
</tr>
</tbody>
</table>
Appendix – Solar + Storage Tool Details
Solar + Storage Tool Overview

+ A DER valuation tool with an optimization engine for dispatch

Results:
- NPV and annual benefits and costs
- Cost tests
- DER optimal dispatch

+ Maximizing net benefits, subject to
 - Technology operating constraints
 - Program and market rules

+ Value-stacking and customizable benefits selection

+ Co-optimization among DER technologies
 - PV, storage, and other generators can “work” together to maximize net benefits

+ Flexible optimization window (Daily, Monthly, Annual) and Intervals (Hourly, 15mins, 5mins)

Customers Control
- Bill savings
- Utility program revenues (e.g. DR)
- Back-up power

Utility Control
- System avoided costs or wholesale energy and capacity market
- Transmission and distribution deferral value
- Ancillary service revenue
- Avoided GHG costs

Joint Control
- Joint optimization
- Bill savings + Avoided system costs
- Bill savings + Avoided GHG costs

Solar + Storage Tool Capabilities

+ **Dispatchable**
 - Objective function: minimizing net costs
 - Subject to technology, market, and incentive (e.g. ITC) constraints
 - Co-optimization across multiple technologies with perfect foresight
 - Price taker

+ **Partial Dispatchable**
 - Dispatch with the consideration of customer comfort level
 - Co-optimize with both dispatchable and partial dispatchable technologies

+ **Fixed shapes**
 - User input based on the specific project or customer
 - Default PV shapes pre-loaded for each climate zone

Other highlights
- Temperature-based day mapping
- Flexible Optimization Window (Daily, Monthly, Annual) and Intervals (Hourly, 15mins, 5mins)
Example Dispatch – PV + Storage

Storage dispatch under a TOU rate

Storage Dispatch for July 28, 2020

Discharge during peak periods until battery is depleted

TOU rate (right axis)

Storage dispatched to reduce demand charges

Storage Dispatch for September 5, 2020

Battery discharge during off-peak hours to reduce customer peak

Energy Supply for July 28, 2020

Energy Supply for September 5, 2020