<table>
<thead>
<tr>
<th>DOCKETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docket Number:</td>
</tr>
<tr>
<td>Project Title:</td>
</tr>
<tr>
<td>TN #:</td>
</tr>
<tr>
<td>Document Title:</td>
</tr>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Filer:</td>
</tr>
<tr>
<td>Organization:</td>
</tr>
<tr>
<td>Submitter Role:</td>
</tr>
<tr>
<td>Submission Date:</td>
</tr>
<tr>
<td>Docketed Date:</td>
</tr>
</tbody>
</table>
Energy Resilience and ZEV

California Energy Commission Workshop on Zero Emission Vehicle Resilience and Three Revolutions in Transportation

7/15/2020

Jana Ganion | Sustainability and Government Affairs Director
jganion@bluelakerancheria-nsn.gov
Tribal Gov’t “Climate-smart” Resilience

- Build “Climate-smart” infrastructure across lifeline sectors
 - Energy
 - Water
 - Food
 - Communications/IT
 - Transportation
 - Biodiesel manufacturing
 - ZEV charging stations
 - Transition government fleet to ZEV
 - Community/employee/low-income ZEV programs

- Achieve zero net greenhouse gas emissions by 2030
- Support community and economy with resilient, reliable, clean infrastructure.
Microgrid Details

- Two microgrids in operation (more in development)
 - Community scale – powers government offices, economic enterprises, lifeline sectors
 - Facility scale – powers fuel station / convenience store complex
- Both have solar PV + battery storage backbone generation w/ smart controls
 - With legacy gensets for deep emergency back up
- Both seamlessly island from the larger grid
- Both microgrids have ZEV level 2 charging
 - 4 ports now; another 10 ports by ~11/2020
- Funding mix: Tribe, EPIC, SGIP, CALeVIP, Partner match
- Public / private partnerships
Climate-smart infrastructure is working

- Public Safety Power Shutoff (PSPS)
 - 10/9/19 - served ~10% of the region

- Electric Vehicle (EV) charging
 - Provided direct charging for the region
 - Many residential and regional EV chargers non-functional due to lack of back up power
 - Enabled vehicle-to-grid functions

- The PSPS did its job – no wildfires

- Microgrids did their job – regional support for electrified transportation
Wildfire Outages + Microgrid Reflections

- PSPS outages were relatively short
- If outages would have lasted longer, there would have been other issues
 - Cellular / internet communications outages - which impacts ZEV charging station functions (data, customer billing, coordination with electrical systems)
 - Limitations to longevity and availability (per day) of back up power in some cases
 - Reliant on local generation and supply chains
- Mega-wildfires and related grid outages predicted for the next decade

2017 wildfire adjacent to Blue Lake Rancheria
Photo credit: CalTrans
Microgrids as ZEV Solutions

Microgrid design considerations for ZEV charging
- Trickle and level 2 chargers - manageable in microgrids
- Fast chargers - design challenges (big power use / spikes)
- May need to control charging volumes as load shed strategy
 - When islanded

How to best manage microgrids w/ ZEV charging infrastructure operationally and economically?
- Expertise/capacity; Ensure safety
- Grid ecosystem benefits – vehicle-to-grid, demand response
- Economies of scale – rates, apps/signage, O&M, IT networks
- Utility / CCA owned and operated?

How are ZEV microgrids valued; how do we fund them?
- Business as usual vs. in emergencies
- Broad/public vs. narrow/private benefits