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Source: BloombergNEF, IEA, IPCC.

Projections for global final energy 
consumption in 2050
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Source: BloombergNEF

Hydrogen has potential as a zero-
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Source: BloombergNEF, International Energy Agency. Note: For deliberate production, the category terms indicate the source materials; for byproduct, the terms 
refer to the industries

Hydrogen production by source and 
application by sector, 2018
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Source: BloombergNEF.

Estimated shipment of water 
electrolyzers, 2018 
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Source: BloombergNEF. Note: The range for fossil fuel derive hydrogen reflects current costs.

Forecast levelized cost of renewable 
hydrogen production from large projects
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Source: BloombergNEF. Note: The project scale is assumed to be 2-3MW in 2019, 100MW in 2030, 400MW in 2050. The results in the conservative-scenario are 
based on electrolyzers powered by PV alone, while the optimistic results are based on a PV-plus-wind power source. In 2019, the conservative and optimistic cases 
for alkaline electrolyzers corresponds to projects adopting Western-made equipment and Chinese-made equipment, respectively.
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Source: BloombergNEF

Benchmark system capex based on large-scale electrolyzers, 2014 and 2019 
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Source: BloombergNEF

Benchmark system capex based on large-scale electrolyzers, 2014 and 2019 
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Source: Japan METI, BloombergNEF. Note: The power ratings of the systems are in the range of 700-1,000W.

Installation volume and price of PEM fuel cell 
systems under Japan's Ene-Farm program
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Source: BloombergNEF. Note: The two dashed boxes indicate that PEM electrolysis system capex for large projects is derived from cost estimates for 4MW PEM 
systems, and should be considered as a hypothetical value
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Source: BloombergNEF. Note: The gray range represents the global diversity of benchmark LCOEs. These figures exclude curtailment and subsidies.

Renewable electricity cost continues to 
fall
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Source: BloombergNEF.

Learning rates of PV and wind LCOE
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Source: BloombergNEF. Note: PV capacity here in DC.

Increase in PV build and reduction in 
LCOE from demand for renewable 
hydrogen, 2050 
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Source: BloombergNEF. Note: Wind capacity here refers to onshore installation.

Increase in wind build and reduction in 
LCOE from demand for renewable 
hydrogen, 2050
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Source: BloombergNEF.

A system with storage AC-coupled with 
PV

+

_

PV module array

Battery array

PV inverter

(mono-directional)

Battery inverter

(bi-directional)

Transformer

Transformer

Grid

DC AC AC

DC AC AC



16

Source: BloombergNEF.
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Source: BloombergNEF. Note: The electricity cost is for captive renewable power plants designed for electrolyzers. 

LCOE forecast for electrolyzers, 2030 
and 2050 (2019$/MWh)
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Source: BloombergNEF. Note: The range for fossil fuel derive hydrogen reflects current costs.

Green hydrogen will be cheaper than 
grey hydrogen
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Source: BloombergNEF.

A variety of storage options exist

Hydrogen storage options and levelized cost of storage, 2019
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Source: Oxford Institute for Energy Studies, Bloomberg, International Energy Agency (IEA), Japan Ministry of Trade Economy, Trade and Industry

Hydrogen will need to be stored at 
similar scales to natural gas
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Source: Solution Mining Research Institute, published in Blanco and Faaij 2018, A review at the role of storage in energy systems with a focus on Power to Gas and 
long-term storage, Renewable and Sustainable Energy Reviews Journal

Major world salt deposits
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Source: BloombergNEF.

A variety of storage options exist

Hydrogen storage options and levelized cost of storage, 2019

1.90

0.23 0.71
1.41

4.50 4.57

0.19

2.83

0.97

3.89 3.79

7.33
6.65

1.19

0

2

4

6

8

Depleted gas fields Salt caverns Rock caverns Ammonia Liquid organic

hydrogen carriers

Liquid hydrogen Pressurized

containers

$/
kg months

years

weeks

days



23

Source: BloombergNEF.

Prices across the board should fall in 
future

Hydrogen storage options and levelized cost of storage, future best case

1.07

0.11 0.23

0.87

1.86

0.95

0.17

1.71

0.38

1.11

2.39
2.69

1.81

0.86

0

1

2

3

Depleted gas
fields

Salt caverns Rock caverns Ammonia Liquid organic
hydrogen
carriers

Liquid hydrogen Pressurized
containers

$/
kg months

years

weeks
days



24

Source: BloombergNEF. Note 1: Ammonia assumed unsuitable at small scale due to its toxicity. Note 2: While LOHC is cheaper than LH2 for long distance trucking, it 
is less likely to be used than the more commercially developed LH2. Note 3: assumes salt cavern storage for pipelines.
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Source: BloombergNEF. Note 1: Ammonia assumed unsuitable at small scale due to its toxicity. Note 2: While LOHC is cheaper than LH2 for long distance trucking, it 
is less likely to be used than the more commercially developed LH2. Note 3: assumes salt cavern storage for pipelines.
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Source: BloombergNEF. Note: The assumptions are detailed for each component in the tab les below. Stack based on levelized costs of production, transportation 
and storage. These fuel prices scenarios are all availab le in the ‘Market’ tab of EPVAL, BNEF’s project finance model.

Hydrogen delivery fuel cost scenarios, 
2019-2050
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Source: BloombergNEF, CSIRO. Note: Technology readiness level is measured on a scale of 1 (basic research) to 9 (proven in anoperational environment).
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Source: BloombergNEF. Note: sectoral emissions based on 2018 figures, abatement costs for renewable hydrogen delivered at $1/kg to large users, $4/kg to road 
vehicles.

Marginal abatement cost curve from using $1/kg 
hydrogen for emission reductions, by sector in 2050
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Source: BloombergNEF. Note: Aluminum demand is for alumina production and aluminum recycling only. Cement demand is for process heat only. Oil refining 
demand is for hydrogen use only. Road transport and heating demand that is unlikely to be met by electrification only: assumed to be 50% of space and water 
heating, 25% of light-duty vehicles, 50% of medium-duty trucks, 30% of buses and 75% of heavy-duty trucks

 

Potential demand for hydrogen in 
different scenarios, 2050
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