| DOCKETED | | |------------------|--| | Docket Number: | 08-AFC-08A | | Project Title: | Hydrogen Energy Center Application for Certification Amendment | | TN #: | 233603-8 | | Document Title: | Amended AFC Volume III - HECA 8 | | Description: | *** These documents supersedes TN 65049 which was just the cover letter due to the fact the Amended AFC was too large to docket at the time. *** - Document was on proceeding webpage and is now moved over to the docket log. | | Filer: | Raquel Rodriguez | | Organization: | California Energy Commission | | Submitter Role: | Commission Staff | | Submission Date: | 6/22/2020 12:59:32 PM | | Docketed Date: | 6/22/2020 | Amended Application for Certification for HYDROGEN ENERGY CALIFORNIA (08-AFC-8) Kern County, California **Volume III: Appendices C through R** Prepared for: **Hydrogen Energy California LLC** Submitted to: California Energy Commission U.S. Department of Energy Prepared by: Appendix C Transmission Network Upgrade Hydrogen Energy California LLC (HECA LLC) (Applicant) submitted an Interconnection Request (IR) to the California Independent System Operator (ISO), as required per Federal Energy Regulatory Committee (FERC) Order No. 2003 for Large Generating Facility interconnections to the California Independent System Operator (CAISO) Controlled Grid. The IR was received November 15, 2011, along with a \$250,000 Study Deposit and evidence of site control. CAISO identified the IR as complete in accordance with the requirements of the Generator Interconnection Procedure (GIP), and the project was assigned queue number Q 870 as part of the Cluster 5 CAISO application group. Following the Scoping Meeting held January 5, 2012, HECA LLC executed a Generator Interconnection Study Process Agreement (GISPA) on January 27, 2012. The purpose of the GISPA is to determine the impacts on the electrical systems providing network upgrades and interconnection facilities, and estimated costs and time to construct the Project facilities required to connect to the ISO Controlled Grid. As a member of the Cluster 5 study group, per the GIP the studies are to be conducted between June 1 and October 12, 2012, and will culminate in the release of the Phase I Interconnection study results. These results will be reviewed in a required "Results Meeting" within 30 days of the release of the Phase I Report. The initial posting of financial security based on the Phase I Report is required within 90 days of the release of the Phase I Report. The Phase II Interconnection Study then follows and is to be conducted between January 15 and July 30, 2013; a Phase II Interconnection Report will be issued, and the second financial posting is required within 180 days of the release of the Phase II Report. A Large Generator Interconnection Agreement (LGIA) with the Transmission Operator, CAISO, and the Applicant will then be executed as the formal connection offer. The third financial posting and construction start will follow the execution of the LGIA. The LGIA is anticipated in late 2013, based on the Study timeline as dictated by the CAISO GIP. Appendix D Engineering Design Criteria Appendix D-1 Civil Engineering Design Criteria # APPENDIX D1 CIVIL ENGINEERING DESIGN CRITERIA TABLE OF CONTENTS | 1.0 | Introd | uction | | D1-1 | |-----|---------|------------|--|-------| | 2.0 | Applio | cable Laws | s, Ordinances, Regulations, and Standards | D1-1 | | | 2.1 | Federal | l | D1-1 | | | 2.2 | State | | D1-2 | | | 2.3 | | ⁷ | | | | 2.4 | | y Codes and Standards | | | 3.0 | Civil l | Design Cri | teria | D1-3 | | | 3.1 | Founda | itions | D1-3 | | | | 3.1.1 | Geotechnical Investigation | | | | | 3.1.2 | Foundation Design criteria | D1-3 | | | 3.2 | Design | Loads | D1-4 | | | | 3.2.1 | Vehicular Loads | D1-4 | | | 3.3 | Project | Site | D1-4 | | | | 3.3.1 | Project Site Arrangement | D1-4 | | | | 3.3.2 | Project Site Survey Control | D1-5 | | | | 3.3.3 | Project Site Preparation | D1-5 | | | | 3.3.4 | Excavation and Fill | D1-5 | | | | 3.3.5 | Grading and Embankments | D1-5 | | | | 3.3.6 | Backfilling and Compaction | | | | | 3.3.7 | Project Site Drainage | | | | | | 3.3.7.1 Drainage Swales and Ditches | | | | | | 3.3.7.2 Drainage Culverts | | | | | | 3.3.7.3 Process Unit Area Storm Water System | | | | | | 3.3.7.4 Storm Water Retention | | | | | | 3.3.7.5 Solids Handling Water Collection | | | | | 3.3.8 | Erosion and Sedimentation Control | | | | | 3.3.9 | Roads | | | | | 3.3.10 | Fencing and Security | D1-9 | | | | 3.3.11 | Landscape Plan | D1-9 | | | | 3.3.12 | Sanitary Waste System | D1-10 | # APPENDIX D1 CIVIL ENGINEERING DESIGN CRITERIA TABLE OF CONTENTS This page intentionally left blank #### 1.0 INTRODUCTION Control of the design, engineering, procurement, and construction activities on the Project will be completed in accordance with various predetermined standard practices and project specific practices. An orderly sequence of events for the implementation of the Project is planned, consisting of the following major activities: - Conceptual design - Licensing and permitting - Preliminary and detailed design - Procurement - Construction and construction management - Startup, testing, and checkout - Project completion The purpose of this appendix is to summarize the codes, standards, and practices that will be used for the Project. The general Civil Engineering Design Criteria defined herein will form the basis of design for site preparation, site drainage, roads and other civil systems for the Project. More specific design requirements will be developed during preliminary and detailed design to support material procurement and construction. It is not the intent of this appendix to present the detailed design information for each component and system, but rather to summarize the codes, standards, and general engineering criteria that will be used for design. Section 2 summarizes the applicable codes, standards, laws and ordinances and Section 3 provides general criteria for civil works. # 2.0 APPLICABLE LAWS, ORDINANCES, REGULATIONS, AND STANDARDS The design and construction of the facility will conform to the following laws, ordinances, regulations, and standards (LORS). When an edition date is not indicated, the latest edition and addenda applicable at start of detailed design will apply. #### 2.1 Federal - Title 29, Code of Federal Regulations (CFR), Part 1910, Occupational Safety and Health Standards. - Title 40, CFR §112 et seq., U.S. Environmental Protection Agency (USEPA), Oil Pollution Prevention requires a Spill Prevention Control and Countermeasure (SPCC) plan of facilities storing oil in excess of 1,320 gallons in aggregate in above-ground containers 55 gallons or greater in capacity; or 42,000 gallons total storage below ground. # **CIVIL ENGINEERING DESIGN CRITERIA** #### 2.2 State - California Business and Professions Code §6704, et seq., §6730 and §6736, requires state registration to practice as a Civil Engineer or Structural Engineer in California. - California Vehicle Code §35780, et seq., requires a land permit from Caltrans to transport heavy loads on state roads. - California Labor Code §6500, et seq., requires a permit for construction of trenches or excavations 5 feet or deeper where personnel have to descend. This also applies to construction of any building, structure, false work or scaffolding that is more than three stories high or equivalent. - State of California Department of Transportation (Caltrans), Standard Specifications. - State of California Department of Water Resources, Encroachment Permit required for any activity that is within 1 mile of a State Water Project facilities, June 2005. - Title 24, Code of California Regulations (CCR) §2-111, et seq.; §3-100, et seq.; §4-106, et seq.; §5-102, et seq.; §6-T8-769, et seq.; §6-T8-3233, et seq.; §6-T8-3270, et seq.; §6-T8-5138, et seq.; §6T8-5465, et seq.; §6-T8-5531, et seq.; and §6-T8-5545, et seq. - Title 8, CCR, §1500, et seq.; §2300, et seq.; and §3200, et seq., describes general construction safety orders, industrial safety orders, and work safety requirements and procedures. # 2.3 County - Kern County Code, Title 17 Buildings and Construction. - Kern County Development Standards, Standards for Drainage # 2.4 Industry Codes and Standards The following industry codes and standards will be followed in development of project specifications and design guidelines. - Specifications for materials will generally follow the standard specification for the American Society for Testing and Materials (ASTM) and the American National Standards Institute (ANSI), National Bureau of Standards (NBS). - Field and laboratory testing procedures for materials will follow standard ASTM specifications. - Design and placement of structural concrete will follow the recommended practices and the latest version of the American Concrete Institute Code (ACI) and the Concrete Reinforcing Steel Institute (CRSI). - Welding procedures and qualifications for welders will follow the recommended practices and codes of the American Welding Society (AWS). - Preparation of metal surfaces for coating systems will follow the specifications and standard practices of the Steel Structures Painting Council (SSPC), National Association for Corrosion Engineers (NACE) and the specific instructions of the coatings manufacturer. - Plumbing will conform to the Uniform Plumbing Code (UPC). - American Association of State Highway and Transportation Officials (AASHTO), Bridge Design Specifications, 4th edition, 2008 Interim Revisions. - American Water Works Association (AWWA). Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) for Kern County, California. Map # 06029C2225E ####
3.0 CIVIL DESIGN CRITERIA #### 3.1 Foundations # 3.1.1 Geotechnical Investigation A preliminary geotechnical investigation has been performed by URS (Job No. 28067571). A Supplemental geotechnical investigation will be conducted during the subsequent detailed engineering phase. The Project Site is relatively flat, and is currently developed as agricultural fields with irrigation and drainage canals and ditches running through the property. The general site elevation varies slightly from the high point grade elevation of 288.5 feet, North American Vertical Datum 1988 (NAVD88). The Project Site covers approximately 453acres, about half of which will be occupied by the main process plant areas and buildings. The unused portion of the site disturbed during construction will be returned to its pre-existing condition after completion of the site work. The historic high groundwater level is below 35 feet from existing grade at the lowest point. The Project Site is immediately underlain by approximately 10 feet of fine grained soils comprised of predominately clays and silty clays. Below the 10-foot level, the soils consist of granular material to a maximum explored depth of 100 feet below the existing ground surface. # 3.1.2 Foundation Design criteria The preliminary Geotechnical Investigation Report has identified the use of shallow foundations or deep (pile) foundations. Detailed foundation design criteria, including allowable soil bearing pressures, piling and dynamic soil properties will be developed for the project based on the results and recommendations contained in the detailed geotechnical investigation report. # **CIVIL ENGINEERING DESIGN CRITERIA** # 3.2 Design Loads Design loads for structures and equipment foundations are discussed in Appendix D2, Structural Design Criteria. Design loads for pavements and buried items will be determined according to the criteria described below. #### 3.2.1 Vehicular Loads Plant roads, process area concrete pavements, buried piping, and culverts will be designed for AASHTO HS-20 truckloads. Loads for construction equipment such as loaded scrapers, crawler cranes, equipment transport trailers, etc., may exceed the more typical HS-20 loadings and such loadings will be evaluated based on equipment manufacturer's recommendations. # 3.3 Project Site # 3.3.1 Project Site Arrangement The Project Site arrangement will conform to applicable LORS. The principal elements in the selection of Project Site arrangement criteria are the physical space requirements and relationships dictated by each of the major plant systems. Distances between various systems will be minimized for economy. However, adequate clearance between systems will be provided as needed for construction, operations, maintenance, access, and fire protection. The plant will be located and oriented to minimize costs of construction, while remaining operationally efficient. Utility interconnections will be optimized as much as practical. Treatment systems will be provided for facility wastewater streams. A private sanitary sewage disposal system will be provided. The Project Site arrangement will be developed to optimize fill and/or excavation costs while maintaining the safety and efficiency of plant construction, operation, and maintenance. Internal access roads will be provided within the plant for construction and plant operation purposes. Project Site infrastructure will conform to the following criteria: The project site is located outside the limits of the 100-year flood boundary as identified by FEMA. - Site surfaces will be designed and graded to promote positive site drainage. - Roads will be designed and installed for ease of construction and operational access purposes. - Oil and chemical storage areas will be designed and constructed to contain potential spills. - Storm drainage collection systems will be designed and installed. - Sanitary sewer collection and a private onsite sewage disposal system will be designed and installed. - Locations and requirements for site security fencing or walls, as appropriate, will conform to local laws and regulations. # 3.3.2 Project Site Survey Control A topographic mapping survey was completed for portions of Sections 9, 10, and 15, Township 30 South, Range 24 East, Mount Diablo Principal Meridian, Kern County, California dated February 9, 2009. The Project Site is located in Section 10. The basis for horizontal control is the California Coordinate System (CCS 83) Zone V, 2007.0 Epoch, relative to the North American Datum of 1983 (NAD 83). The basis of bearings for the Project Site is tied to National Geodetic Survey (NGS) continuous operating reference stations GDEC P541 and P563. The vertical datum is the North American Vertical Datum of 1988 (NAVD 88). # 3.3.3 Project Site Preparation Project Site preparation will consist of clearing, stripping, and grubbing and excavating or filling soils to design grades and elevations. Root mats or stumps, if any, will be removed. Holes will be filled with material suitable for embankment and compacted to the required density. The existing irrigation canal will be over-excavated to reach competent subgrade before filling with suitable material. Materials from clearing, stripping and grubbing operations containing deleterious materials will be removed from the Project Site and disposed of at an approved disposal facility in accordance with applicable LORS. Topsoil, where present, will be stockpiled at a designated onsite location for future landscaping purposes. Temporary construction laydown, access roads and parking areas will be graded and surfaced. These areas will be later returned to their pre-existing conditions at the completion of construction. Temporary and/or permanent site fencing will be installed to secure the site. Drainage, erosion and dust control measures will be implemented to control the release of dust and sediment from the site. #### 3.3.4 Excavation and Fill Excavation will consist of the removal of soil material to the lines and grades necessary for construction. Material suitable for backfill and/or earthen berms will be stored in stockpiles or placed at designated locations using proper erosion protection measures. Excavated material that meets the suitability requirements stipulated in the geotechnical investigation reports will be used as general site fill. Excavated material may also be used for earthen berms. The volume of excavation and fill will be balanced to the maximum extent practical. Confined temporary excavations for trenching for underground utilities installations and foundations construction will be sloped or braced to prevent cave-ins during construction. All excavation and trenching operations will comply with local, state, and federal Occupational Safety and Health Administration (OSHA) regulations. # 3.3.5 Grading and Embankments Project Site grading operations will establish a working surface for construction and plant operating areas, provide positive drainage from buildings and structures, and provide adequate soil coverage for the protection of underground utilities. Graded areas will be smooth, compacted, free from irregular surface changes, and sloped to drain. Cut and fill slopes and # **CIVIL ENGINEERING DESIGN CRITERIA** embankments will be designed to be stable and capable of carrying anticipated loads from either equipment or structures. Final earth grades adjacent to buildings will be at least 6 inches below the finished floor surface elevation and will be sloped away from the building to maintain proper drainage. Slopes for permanent embankments will be no steeper than 2:1 (horizontal to vertical) as recommended in the geotechnical report. # 3.3.6 Backfilling and Compaction Areas to receive fill will be prepared by removing unsuitable material and rocks. The bottom of the excavation will be examined for loose or soft materials. Such materials will be excavated fully and backfilled with compacted fill material. Fill material will be placed and compacted, as a minimum, to the grades and densities recommended in the geotechnical investigation report. Backfilling will be done in layers of uniform, specified thickness. Soil in each layer will be properly moistened to facilitate compaction to achieve the specified density. In order to verify compaction, representative field density and moisture-content tests will be taken during compaction operations. The subgrade (original ground), subbases, and base courses of roads, as a minimum, will be prepared and compacted in accordance with recommendations based on the geotechnical investigations. Compaction testing will be in accordance with ASTM standards. Uncompacted topsoil will be placed in areas to be seeded or otherwise landscaped. # 3.3.7 Project Site Drainage Storm water runoff from the Project Site will be contained onsite. The Project Site drainage system will be designed to comply with all applicable LORS. The design of the drainage system within each process unit area is dependent on whether process solids (e.g., petroleum coke, coal, fluxant, or gasifier solids) are present. Drainage within the gasification process and storage areas (where process solids are present) will be collected and conveyed to the solids handling water collection facility, where most of the solids will settle out. Water recovered by the solids handling water collection facility can be reused as makeup to the gasification grinding system or processed by the gasification water treatment system and recycled. High carbon content solids, such as those containing petcoke or coal, will be recycled as feedstock to the gasification system. High ash content solids will be concentrated with other gasification solids for offsite disposal in accordance with applicable LORS. Drainage from remote solids handling areas where distances are prohibitive for gravity flow will use collection sumps for settlement of solids. These areas include Feedstock Truck Unloading,
Inactive Feedstock Storage, Active Feedstock Silos, Crusher Station, and Truck Washes. # APPENDIX D1 CIVIL ENGINEERING DESIGN CRITERIA Drainage within process areas where solids are not present will be collected through a network of catch basins and conveyed through underground piping to a low flow control structure. The low flow control structure will connect to a pumped or gravity trunk interceptor pipeline. Runoff during initial rainfall periods will be directed to the "low flow" collection system for testing and treating (if required) prior to reuse as makeup to the cooling towers or gasification system. Runoff in excess of this initial period will be directed to a storm water retention basin. A separate retention basin will be constructed for the Acid Gas Recovery Unit for secondary containment purposes in the event of a possible chemical spill within this unit. Drainage outside of process unit areas but within the main plant area will be accomplished through surface (sheet) flow wherever practical. The surface drainage system will consist of mild slopes, drainage swales, and ditches to intercept sheet flow. Graded surfaces will slope away from buildings and structures at a minimum grade of 2 percent. A storm water collection system with inlets and underground piping will be provided in areas where swales are not feasible. This drainage will be directed to the process area retention basin by way of the process area underground piping system. Runoff from undisturbed areas located within the Project Site and outside the main plant area, as well as temporary use areas returned to their pre-existing condition after construction, will surface flow to the nearest plant storm drainage interceptor ditch or swale. These drains will be designed to convey excess surface runoff to storm water retention basins located throughout the Project Site. This system will consist of drainage swales, ditches, culverts and/or underground piping where necessary. The existing drainage patterns outside the Project Site will remain undisturbed. Excess offsite surface runoff will be directed around the Project Site according to the existing drainage patterns. Existing drainage ditches currently located at the site property boundary will be improved where necessary to prevent damage to the Project from offsite runoff. Runoff from possible oil and chemical use areas, such as transformer areas and chemical storage areas, will be contained. Storm water collected in these areas will be tested and if contaminated will be treated. If the storm water is not contaminated, it will be directed to storm water retention. # 3.3.7.1 Drainage Swales and Ditches Drainage swales and ditches in unpaved areas of the process units will be sized to convey the Intermediate Storm Design Discharge (ISDD), commonly referred to as the 10-year rainfall runoff flow in accordance with the Kern County Development Standards pertaining to Drainage. Erosion protection for swales and ditches will be provided where peak runoff velocities may be excessive. These swales and ditches will be protected by erosion control fabric, riprap, or concrete paving. # 3.3.7.2 Drainage Culverts Drainage culverts will be provided at road and embankment crossings. Culverts will be constructed of reinforced concrete (RCP), corrugated high-density polyethylene (HDPE) pipe or # **CIVIL ENGINEERING DESIGN CRITERIA** corrugated metal pipe (CMP). Culverts will be sized to convey the ISDD (10-year rainfall) storm flow without exceeding the soffit of the culvert. Culvert capacity will be checked to convey the 50-year storm flow without the headwater overtopping the base of the road or top of embankment. All culverts will be designed to handle AASHTO HS20 truck loads and construction equipment loadings as applicable to the design. Allowance for corrosion protection over the expected life of the plant will be accounted for in the design and selection of culvert materials. Culverts will have flared end sections compatible with the ditch side slopes or concrete headwalls at both the inlet and outlet. The inlets and outlets of all culverts will be protected from erosion by the installation of riprap. # 3.3.7.3 Process Unit Area Storm Water System The storm water system within the process units will be sized to convey surface runoff from the ISDD storm (10-year rainfall) event or fire flow, whichever is greater. Catch basins will be constructed of cast-in-place or precast concrete and secured with steel grates. Pipes will be designed to limit flow velocities to a maximum of 8 feet per second (fps). A minimum design velocity of 2 fps will be used to facilitate self cleaning. The minimum cover requirement, loading, and material selection for pipes will be as specified for culverts. #### 3.3.7.4 Storm Water Retention Storm water runoff from within the main process plant area will drain to a storm water retention basin. The storm water retention basins will be sized in accordance with the Kern County Development Standards pertaining to Drainage. The retention basin will be an excavated structure containing an impermeable liner. Water that accumulates in the storm water retention basin will be treated and reused as cooling water make-up, gasification water makeup or treated within the gasification water treatment system. Storm water runoff from outside the main process plant area will drain to separate storm water retention basins. Retention basins will be excavated below grade and will be unlined to allow percolation of accumulated runoff into the underlying soil layer. # 3.3.7.5 Solids Handling Water Collection The solids handling water collection system will capture runoff (stormwater and washdown water) from solids handling areas, which include gasification, black water handling, gasifier solids temporary storage, and inactive feedstock storage. The various collection facilities will be constructed of concrete, and will provide for mobile equipment access to remove accumulated solids. Water that accumulates within the solids handling collection facilities will be reused as makeup to gasification, treated within the water treatment system, or reused as feed to the ZLD unit. High carbon content solids, such as petcoke or coal, will be recycled as feedstock to the gasification system. High ash content solids will be concentrated to discharge as gasification solids for offsite disposal in accordance with applicable LORS. #### 3.3.8 Erosion and Sedimentation Control Erosion and sedimentation control measures will be provided throughout the Project Site to retain sediment onsite. The Project Site drainage system will drain to zero discharge retention basins that will settle any remaining sediment carried by site runoff to prevent the release of sediment from the Project Site. Vegetation will be removed as required during site clearing and grubbing operations. Preparation of the Project Site will be followed by earthmoving which will alter the site topography. Final finish grading will begin when all other earthmoving operations are completed. Final grading may include seeding disturbed areas not occupied by plant facilities or surfaced with concrete, asphalt or crushed aggregate. Temporary erosion and sedimentation control measures to be used during construction will be designed to prevent sediments from being displaced by storm water runoff. Temporary control measures (consistent with applicable best management practices) will be maintained as necessary throughout the construction period. Temporary erosion control measures will be maintained as necessary throughout the construction period and will be designed to convey runoff from the 10-year storm event. Permanent erosion and sedimentation control measures within the Project Site will include the runoff collection system (ditches, inlets, culverts, drainage piping) and storm water retention basin, surfaced traffic and work areas. #### 3.3.9 Roads All plant roads will be appropriately maintained during the construction period. Unsurfaced roads will receive periodic watering or applications of a dust preventive material to minimize dust problems. Permanent plant roads will be asphalt paved. Pavement sections will be designed in accordance with the anticipated traffic conditions and the recommendations contained in the Geotechnical Report. # 3.3.10 Fencing and Security Chain-link security fencing will be provided around the plant perimeter and other areas requiring controlled access. Fencing heights will be in accordance with applicable codes and regulatory requirements. The main entrance to the secured area will have a controlled access gate. # 3.3.11 Landscape Plan Landscaping will be planned as follows and in consultation with the responsible public agencies: • The landscape plan will rely on site topography, concentrating on those viewpoints visible to the general public. # **CIVIL ENGINEERING DESIGN CRITERIA** All landscape material used will be selected with due consideration for the climatic and soil conditions on the Project Site. The theme for the planting plan will be derived from an assessment of naturally occurring plant materials and an evaluation of the need for additional screening. # 3.3.12 Sanitary Waste System Sanitary sewage will be conveyed by an underground gravity collection system and discharged to a private (onsite) sewage disposal system consisting of a conventional septic tank and leach field. The design of the sanitary sewage system will be in accordance with applicable local, state and county codes, including, specific LORS, and the Uniform Plumbing Code. The total quantity of flow used in sizing the sewage disposal system will be calculated based on a plant population of 100 persons discharging 35 gallons per person per day. Pipe sizing and slope will be in accordance with the Uniform Plumbing Code. # Appendix D-2 Structural Engineering Design Criteria # APPENDIX D2 STRUCTURAL ENGINEERING DESIGN CRITERIA TABLE OF CONTENTS | 1.0
| Introd | uction | | D2-1 | |-----|--------|----------------------------|--|-------| | 2.0 | Design | n Codes, S | tandards, Laws, and Ordinances | D2-1 | | | 2.1 | Federal | L | D2-1 | | | 2.2 | | | | | | 2.3 | | ······································ | | | | 2.4 | - | y Codes and Standards | | | 3.0 | Struct | Structural Design Criteria | | | | | 3.1 | Natural | Phenomena | D2-5 | | | | 3.1.1 | Rainfall | D2-5 | | | | 3.1.2 | Wind Speed | D2-5 | | | | 3.1.3 | Temperature | D2-5 | | | | 3.1.4 | Earthquake | D2-6 | | | | 3.1.5 | Snow | D2-6 | | | | 3.1.6 | Flood | D2-6 | | | 3.2 | Design | Loads, Load Combinations, and Allowable Stresses | D2-6 | | | | 3.2.1 | Dead Loads (D) | D2-6 | | | | 3.2.2 | Live Loads (L) or Roof Live Load (L _r) | | | | | 3.2.3 | Wind Loads (W) | | | | | 3.2.4 | Traffic Loads (TI) | | | | | 3.2.5 | Earthquake Loads (E) | | | | | 3.2.6 | Construction/Erection Loads (C) | | | | | 3.2.7 | Vibration Loads (V) | | | | | 3.2.8 | Other Loads (R) | | | | | 3.2.9 | Load Combinations | | | | 3.3 | | ıgs | D2-8 | | | | 3.3.1 | Architectural System | | | | | 3.3.2 | Prefabricated Metal Buildings | | | | 3.4 | Concre | te Structures | | | | | 3.4.1 | Materials | | | | | 3.4.2 | Design | | | | | 3.4.3 | Mixes | | | | | 3.4.4 | Reinforcing Steel Test. | | | | 3.5 | | ral Steel | | | | | 3.5.1 | Materials | | | | | 3.5.2 | Design | | | | 3.6 | | uake Design Criteria | | | | 2.0 | 3.6.1 | Buildings | | | | | 3.6.2 | Non-Building Structures | | | | | 3.6.3 | Non-Structural Components | | | 4.0 | ~ | | • | | | 4.0 | Struct | ural Metho | odology | D2-12 | # APPENDIX D2 STRUCTURAL ENGINEERING DESIGN CRITERIA TABLE OF CONTENTS | 5.0 | Natur | Natural Phenomena Hazards Mitigation | | | |-----|-------|--|-------|--| | | 5.1 | Earthquake Hazard Mitigation Criteria | D2-12 | | | | 5.2 | Meteorological and Climatic Hazards Mitigation | | | #### 1.0 INTRODUCTION Control of the design, engineering, procurement, and construction activities on the Project will be completed in accordance with various pre-determined standard practices and project-specific practices. An orderly sequence of events for the implementation of the Project is planned consisting of the following major activities: - Conceptual design - Licensing and permitting - Preliminary and detailed design - Procurement - Construction and construction management - Startup, testing, and checkout - Project completion The purpose of this appendix is to summarize the codes, standards, and practices that will be used during the engineering, procurement, and construction phases of the Project. These criteria will form the basis of the design for the structural components and systems for the Project. More specific design and construction-related specifications and criteria will be developed during preliminary and/or detailed design to support material procurement, fabrication, and construction. Section 2 summarizes the applicable codes and standards and Section 3 includes the general criteria for natural phenomena, design loads, building system, and concrete and steel design. Section 4 describes the structural design methodology for structures and equipment foundations. Section 5 describes the hazard mitigation for the Project. # 2.0 DESIGN CODES, STANDARDS, LAWS, AND ORDINANCES The design and specification of work will be in accordance with all applicable laws and regulations of the federal government, the state of California, and local codes and ordinances. The following laws, ordinances, regulations, and standards (LORS) have been identified as applying to structural design and construction. When an edition date is not indicated, the latest edition and addenda applicable at time of the start of design and construction will apply. #### 2.1 Federal • Title 29, Code of Federal Regulations (CFR), Part 1910, Occupational Safety and Health Standards. #### 2.2 State • Business and Professions Code §6704, et seq.; §6730 and §6736. Requires state registration to practice as a Civil Engineer or Structural Engineer in California. # STRUCTURAL ENGINEERING DESIGN CRITERIA - Labor Code §6500, *et seq.*, requires a permit for construction of trenches or excavations 5 feet or deeper where personnel have to descend. This also applies to construction or demolition of any building, structure, false work, or scaffolding which is more than three stories high or equivalent. - Title 24, California Administration Code (CAC) §2-111, et seq.; §s 3-100, et seq.; §4-106 et seq.; §5-102, et seq.; §6-T8-769, et seq.; §6-T8-3233, et seq.; §ST8-3270, et seq.; §6-T8-5138, et seq.; §6-T8-5465, et seq.; §6-T8-5531, et seq.; and §6-T8-5545, et seq. Adopts current edition of California Building Code (CBC) as minimal legal building standards. - State of California Department of Transportation (Caltrans), Standard Specifications, 2010. - State of California Department of Water Resources, Encroachment Permit required for any activity that is within 1 mile of a State Water Project facilities, June 2005. - California Building Code (CBC), 2010 Edition. - Title 8, Code of California Regulations (CCR), §1500, et seq.; §2300, et seq.; and §3200, et seq., describes general construction safety orders, industrial safety orders, and work safety requirements and procedures. # 2.3 County • Kern County, California, Rules and Regulations. # 2.4 Industry Codes and Standards The following general design requirements and procedures will be followed in development of Project specifications regarding the use of Codes and Industry Standards. - Specifications for materials will generally follow the standard specifications of the American Society for Testing and Materials (ASTM), National Bureau of Standards (NBS) and the American National Standards Institute (ANSI). - Field and laboratory testing procedures for materials will follow standard ASTM standards. - Design loads for buildings and other structures shall be based on the CBC which references the American Society of Civil Engineers (ASCE) standards. - Design and placement of structural concrete will follow the recommended practices of the CBC, the American Concrete Institute (ACI), and the Concrete Reinforcing Steel Institute (CRSI). # STRUCTURAL ENGINEERING DESIGN CRITERIA - Design, fabrication, and erection of structural steel will follow the recommended practices of the CBC and the American Institute of Steel Construction (AISC) Code. - Design and construction of oil storage tanks and large low pressure hydrocarbon storage tanks including their foundations shall conform to the American Petroleum Institute (API) standards. - Design of cranes including rail and support girders shall be per the Crane Manufacturers Association of America (CMAA) specifications. - Steel components for metal wall panels and roof decking will conform to the CBC and the American Iron and Steel Institute (AISI) Specification for the Design of Light Gage Cold-Formed Structural Members. - Welding procedures, welding materials, qualifications for welders, qualification of inspectors, non-destructive testing (NDT) and non-destructive examination (NDE) shall follow the recommended practices and codes of the American Welding Society (AWS) and AISC. - Preparation of metal surfaces for coating systems will follow the specifications and standard practices of the Steel Structures Painting Council (SSPC), National Association for Corrosion Engineers (NACE), and the specific instructions of the coatings manufacturer. - Design and erection of masonry materials will follow the recommended practices of the CBC and the ACI Concrete Masonry Structures Design and Construction Manual. - Plumbing will conform to the California Plumbing Code (CPC)-2010. - Design of roof coverings will conform to the requirements of the National Fire Protection Association (NFPA) and Factory Mutual (FM). - American Society of Civil Engineers (ASCE 7-05), Minimum Design Loads for Buildings and other Structures. - American Institute of Steel Construction (AISC). - ANSI/AISC 360-05 Specification for Structural Steel Buildings - ANSI/AISC 303-05 Code of Standard Practice for Steel Buildings and Bridges - AISC Manual of Steel Construction, 13th Edition - ANSI/AISC 341-05 Seismic Provisions for Structural Steel Building, Including Supplement No. 1 - ANSI/AISC 358-05 Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications - RCSC Specification for Structural Joints using ASTM A325 or A490 Bolts # STRUCTURAL ENGINEERING DESIGN CRITERIA - American Iron and Steel Institute (AISI), North American Specification for the Design of Cold-Formed Steel Structural Members. - American Welding Society (AWS), AWS D1.1, Structural Welding Code-Steel. - American Concrete Institute (ACI). - ACI 318 Building Code Requirements for Structural Concrete - ACI 530 Building Code Requirements for Masonry Structures - ACI 350 Code requirements for Environmental Engineering Concrete Structures - American Society for Testing and Materials (ASTM). - ASTM A36 Standard Specification for Carbon Structural Steel - ASTM A53 Standard Specification for Pipe, Steel Black and Hot-Dipped, Zinc Coated, Welded and Seamless - ASTM A82- Standard Specification for Steel Wire, Plain, for Concrete Reinforcement - ASTM A153 Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware - ASTM A185 Standard Specification for Welded Steel Wire Reinforcement, Plain, for Concrete - ASTM A307 Standard Specification for Carbon Steel Bolts and Studs. 60,000 pounds per square inch (psi) Tensile Strength - ASTM A325 Standard Specification for Structural Bolts, Steel, Heat Treated - ASTM A490 Standard Specification for Structural Bolts, Alloy Steel, Heat Treated, 150ksi Minimum Tensile Strength - ASTM A500 Standard Specification for Cold-formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes - ASTM A563 Standard
Specification for Carbon and Alloy Steel Nuts - ASTM A572 Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel - ASTM A653/A653M Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process - ASTM A706/A706M— Standard Specification for Low-Allow Steel Deformed and Plain Bars for Concrete Reinforcement - ASTM A786/A786M— Standard Specification for Hot-Rolled Carbon, Low-Alloy, High Strength Low-Allow and Alloy Steel Floor Plates - ASTM A992 Standard Specification for Steel Structural Shapes for Use in Building Framing - ASTM A1011/A1011M Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength - ASTM F436 Standard Specification for Hardened Steel Washers - ASTM F1554 Standard Specification for Anchor Bolts, Steel, 36, 55 and 105ksi Yield Strength # STRUCTURAL ENGINEERING DESIGN CRITERIA - ASTM F1852 Standard Specification for "Twist-Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength - ASTM F2280 Standard Specification for "Twist-Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 150 ksi Minimum Tensile Strength - Masonry Institute of America (MIA), Reinforced Masonry Engineering Handbook. - American Society of Nondestructive Testing (ASNT) - American Water Works Association (AWWA). - AWWA D100 Welded Steel Tanks for Water Storage - AWWA C301 Prestressed Concrete Pressure Pipe, Steel Cylinder Type for Water and Other Liquids - AWWA C302 Standards for Reinforced Concrete Water Pipe Non-cylinder Type, Not Pre-stressed - American Association of State Highway and Transportation Officials (AASHTO) Bridge Design Specifications. - Heating, Ventilating, and Air Conditioning Guide by American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE). - NFPA 1 Fire Code. #### 3.0 STRUCTURAL DESIGN CRITERIA #### 3.1 Natural Phenomena #### 3.1.1 Rainfall See Civil Design Criteria, Appendix D1 #### 3.1.2 Wind Speed This basic design wind speed (3-second gust) is 85 miles per hour as per CBC 2010. # 3.1.3 Temperature Systems and system component design criteria, which require ambient temperature extremes, will use 39 degrees Fahrenheit (°F) minimum winter and 97°F maximum summer dry-bulb temperatures. Design relative humidity is 20 percent in summer and 82 percent in winter. # STRUCTURAL ENGINEERING DESIGN CRITERIA # 3.1.4 Earthquake The Project Site is located in a high hazard earthquake zone and the mapped maximum credible accelerations and design response spectrum will be determined from §1613 of CBC 2010. The preliminary geotechnical investigation report, included under Appendix P, has denoted the Project Site as Site Class "D" with following seismic design parameters: - Spectral Acceleration, Ss = 1.105 - Spectral Acceleration, $S_1 = 0.497$ - Site Coefficient, $F_1 = 1.058$ - Site Coefficient, $F_V = 1.503$ #### 3.1.5 Snow The Project Site is located in a zero ground snow load area. #### 3.1.6 Flood Based on Kern County, California Flood Insurance Rate Map (FIRM) No. 06029C2225E dated September 2008, the Project Site is in an unmapped area and is not in the 100-year flood zone. # 3.2 Design Loads, Load Combinations, and Allowable Stresses Design loads for all structures will be determined according to the criteria described below. The plant will be designed for Occupancy Category III in accordance with CBC Table 1604.5 and the corresponding Importance Factors for wind, snow, and earthquake will be considered in the design. # 3.2.1 Dead Loads (D) Dead loads will be considered permanent loads. They consist of the weights of the structure and all equipment of a permanent or semi-permanent nature including tanks, bins, wall panels, partitions, roofing, piping, drains, electrical trays, bus ducts, and the contents of tanks and bins measured at full operating capacity. The contents of tanks and bins will not be considered for resisting overturning due to wind forces, but will be considered effective for resisting overturning for earthquake forces. # 3.2.2 Live Loads (L) or Roof Live Load (L_r) Live loads are those defined by use or occupancy of building or structure. They consist of uniformly distributed, concentrated, or moving loads. Uniform live loads are assumed unit loads that are sufficient to provide for movable and transitory loads, such as the weight of people, portable equipment and tools, planking and small equipment, or parts which may be moved over or placed on floors during maintenance operations. These uniform live loads will not be applied to floor areas that will be permanently occupied by equipment or other dead loads. # STRUCTURAL ENGINEERING DESIGN CRITERIA Equipment live loads are calculated loads based upon the actual weight and size of the equipment and parts to be placed on floors during dismantling and maintenance, or to be temporarily placed on or moved over floors during installation. Consideration will be given to designing appropriate areas of the ground floor for support of heavy equipment such as construction and maintenance cranes. Live loads may be reduced in accordance with the provisions of CBC §1607.9 for floors and §1607.11.2 for roofs. Live load reduction will not be permitted in areas where equipment lay down loads are considered. All roof areas will be designed for live loads as indicated in CBC Subsection 1607.11. Roofs will also be designed for rainwater accumulation load effect of CBC §1611. All roof areas will be designed for a minimum of 20 pounds per square foot (psf) live load in addition to calculated dead loads. #### 3.2.3 Wind Loads (W) Wind loads on structures, systems, and components will be determined from ASCE 7-05 and CBC 2010. Consideration will be given to along-wind and across-wind responses. A step function of pressure with height and Exposure C conditions will be used. The Importance Factor will equal 1.15. Allowance will not be made for the effect of shielding by other structures. The overturning moment calculated from wind pressure will not exceed two-thirds of the dead load resisting moment. The uplift forces calculated from the wind load pressure will not exceed two-thirds of the resisting dead load. For determining stresses, all vertical design loads except roof live loads will be considered to act simultaneously with the wind pressure. # 3.2.4 Traffic Loads (TI) Bridges, trenches, and underground installations accessible to truck loading will be designed to withstand HS20 load as defined by AASHTO Standard Specifications for Highway Bridges. Maintenance or construction crane or bridge crane loads will also be considered where applicable. # 3.2.5 Earthquake Loads (E) Loads will be determined in accordance with the requirements specified in CBC 2010 §1613 and spectral accelerations and site class listed in Section 3.1.4. The Importance Factor will equal 1.25. # 3.2.6 Construction/Erection Loads (C) Construction/erection loads are temporary forces caused by erection of structures or equipment. The integrity of the structures will be maintained with or without use of temporary framing struts or ties and cable bracing. # STRUCTURAL ENGINEERING DESIGN CRITERIA #### 3.2.7 Vibration Loads (V) Vibration loads are defined as forces that are caused by vibrating machinery such as pumps, blowers, fans, generators, and compressors. Supports and foundations for vibrating equipment will be designed to limit vibrations to levels that are acceptable for equipment operation and human tolerance. #### 3.2.8 Other Loads (R) Other loads such as impact, blast, temperature, hydrostatic and earth pressures will be considered when applicable. #### 3.2.9 Load Combinations At a minimum, buildings and other structures will be designed to resist the load combinations specified in CBC 2010 §1605 for strength design or allowable stress design. # 3.3 Buildings General design criteria for the architectural systems are discussed in the following subsections. # 3.3.1 Architectural System General design criteria for materials and installation of architectural systems or components will be as follows: - Exterior Walls. These will be metal wall panel systems of the factory-assembled or field-erected type with exposed fasteners and minimum thickness of exterior sheet of 24 gauge galvanized steel. Installed walls will be watertight and will provide a "U" factor in accordance with the California Administrative Code, Title 24 and the ASHRAE Handbook. Added insulation will be provided for sound absorption on walls enclosing equipment generating excessive noise. - Interior Walls. Where durability is required, interior walls may be constructed of concrete block masonry, structurally designed and reinforced as required. In offices, shops, etc., metal studs with gypsum board will usually be used to form interior partitions. Insulation for sound control will be used where required by design. - **Fire Exits and Doors.** Fire exits will be provided at outside walls as required by code. Exit signs will be provided. Fire doors will bear an Underwriters Laboratory (UL) certification level for class of opening and rating for door, frame, and hardware. Doors will conform to hollow metal door requirements and have fillers adequate to meet the fire rating. - Large Access Exterior Doors. Large access exterior doors will be rolling steel type with weather seals and windlocks. Components will be formed from galvanized steel, factory assembled and field painted. Doors will be motor or manually operated. - Metal Roof Deck and Insulation System. Roof deck and insulation system will be fluted steel decking with a minimum depth of 1-½ inches. The deck will have interlocking side laps. The completed roof system will carry a UL Class 90 rating in accordance with UL 580. The roof
system will have a minimum slope of ¼ inch per foot. Deflection of the roof panels will not exceed 1/180 of their span. - **Painting.** Exterior steel material that is not galvanized or factory finished will be painted. The paint color will match or harmonize with the color of the exterior face of the wall panels. - **Color Schemes.** Color schemes will be selected for overall compatibility and based on owner preferences. # 3.3.2 Pre-Engineered Metal Buildings Prefabricated metal buildings (packaged to include exterior doors, wall louvers, windows, skylights, and related enclosure components) will be furnished as follows: - Building Enclosure. Building enclosures will be of manufacturer's standard modular rigid frame construction with tapered or uniform depth rafters rigidly connected at ends to pinned-base tapered or uniform depth columns. Purlins and girts will be cold-formed "C" or "Z" sections conforming to Specifications for Design of Cold-Formed Steel Structural Members of American Iron and Steel Institute. All other members will be hot-rolled shapes conforming to Specification for Design, Fabrication and Erection of Structural Steel for Buildings of AISC. Metal roof coverings will be of pre-finished standing seam panels of 24 gauge minimum. - Steel. Cold-formed components will conform to ASTM A570, Grade E, 42,000 pounds per square (psi) minimum yield for material thickness equal to or less than 0.23 inch, or to ASTM A375, 50,000 psi minimum yield for high tensile strength purlin or girt sections with material thickness equal to or less than 0.23 inch. Roof covering and wall covering will conform to ASTM A446, Grade A, galvanized 33,000 psi minimum yield. All cold-formed components will be manufactured by precision roll or break forming. #### 3.4 Concrete Structures Reinforced concrete structures will be designed in accordance with ACI 318, Building Code Requirements for Reinforced Concrete and the CBC. #### 3.4.1 Materials The materials described below will be specified and used as a basis for design. • **Reinforcing Steel.** Reinforcing steel will meet the requirements of ASTM A706. # STRUCTURAL ENGINEERING DESIGN CRITERIA - **Cement.** Cement used in all concrete mixes will be Portland cement meeting the requirements of ASTM C150 Type II. - **Aggregates.** Fine aggregates will be clean natural sand. Coarse aggregates will be crushed gravel or stone. All aggregates will meet the requirements of ASTM C33. - Admixtures. Plasticizers and retarders may be used to control setting time and to obtain optimum workability. Air entrainment will be per ACI requirements. Calcium chloride will not beused. Interior slabs will be trowel finished. - Water. Clean water of potable quality will be used in all concrete. # 3.4.2 Design Strengths The structural concrete strengths will be used as follows: - Above and under ground structures: 4000 psi - Foundations: 4000 psi - Liquid retaining structures: 4000 psi - Paving and side walks: 3000 psi - Fireproofing: 3000 psi - Electrical duct banks: 2000 psi - Manholes, catch basins, ditch lining, end walls, curbs: 3000 psi - Precast concrete: 5000 psi #### 3.4.3 Mixes Concrete strength test method will conform to ASTM C39. # 3.4.4 Reinforcing Steel Test Mill test reports will be obtained from the reinforcing steel supplier and retained in Project records. #### 3.5 Structural Steel Steel framed structures will be designed in accordance with the CBC and the AISC Specification for the Structural Steel Building. In addition, steel framed structures will be designed in accordance with the criteria discussed in the following subsections. #### 3.5.1 Materials Structural steel shapes, plates, and appurtenances for general use will conform to ASTM A36, A572 and A992. Structural steel required for tube sections will conform to ASTM A500, Grade B. Connection bolts will conform to ASTM A307, ASTM A325 or ASTM A490. Connections will conform to AISC Manual of Steel Construction. Welding electrodes will be as specified by the AWS. All structural steel will be shop primed and finish painted after fabrication or galvanized. # 3.5.2 Design Steel structures, braced or rigid frame, will be designed in accordance with Steel Construction Manual and ANSI/AISC-360-05, Specification for Structural Steel Buildings. Suspended concrete slabs will be considered as horizontal diaphragms after setup and curing. Deflections of the support steel will be controlled to prohibit "ponding" of the fresh concrete as it is placed. Metal roof decks attached with welding washers or fasteners may be considered to provide a structure with lateral force diaphragm action. Connections will be in accordance with AISC standard connection design for field bolted connections. # 3.6 Earthquake Design Criteria This section provides the general criteria and procedures that will be used for earthquake design of building and non-building structures. The Project is located in a high earthquake zone and structures, systems and equipment will be designed for mapped spectral accelerations for 0.2 second and 1 second given in Section 3.1.4. The earthquake performance objectives for this facility are as follows: - Resist minor levels of ground motion without damage - Resist moderate levels of ground motion without structural damage, but possibly experience some non-structural damage - Resist major levels of ground motion without collapse, but possibly with some structural as well as non-structural damage To achieve these objectives, the Project will be designed in accordance with the CBC 2010 and ASCE 7-05. Structures having one or more of the features listed in ASCE 7-05 Table 12.3-1 and Table 12.3.2, will be designated as having a horizontal (plan) and vertical structural irregularity, respectively. All structures, regular or irregular, will be designed by static or dynamic procedures in accordance with ASCE 7-05 Chapter 12 for Building Structures, Chapter 13 for Non-Structural Components and Chapter 15 for Non-Building Structures. Provisions for torsional irregularity, overturning, discontinuous lateral load-resisting element, story drift limitation, and P-Delta effects, etc., will be considered in accordance with Chapter 12 of ASCE 7-05. # 3.6.1 Buildings and Non-Building Structures Similar to Buildings The building structural system will be constructed of steel framing supported on spread footings that may be tied together by perimeter grade beams and floor slab. Lateral forces may be resisted by moment-frames or braced-frames and by horizontal bracing in the roof steel. Earthquake forces will be computed in accordance with the CBC and Chapters 12 and 15 of ## STRUCTURAL ENGINEERING DESIGN CRITERIA ASCE 7-05. The earthquake dead load (D), will include the total dead load of the structural system, architectural enclosure, and the weight of any attached permanent equipment. ## 3.6.2 Non-Building Structures Not Similar to Buildings Non-building structures such as tanks and equipment skids will be designed to resist earthquake forces in accordance with the CBC and ASCE 7-05 Chapter 15 and the applicable section of relevant industry standards, such as API 650 and ACI 350. ## 3.6.3 Non-Structural Components Non-structural components and equipment, including piping and cable tray and their supports, will be designed in accordance with the CBC and ASCE 7-05 Chapter 13. #### 4.0 STRUCTURAL METHODOLOGY Appropriate analysis and design tools (software) and engineering methods will be used for the design of steel and concrete structures and their foundations required for supporting equipment, pipes, and buildings. Applicable loads and load combinations will used. The analysis and design of the structural systems and their foundations will be in accordance with the referenced state, county, and industry codes and standards in Section 2. Static and dynamic analysis will be performed, when applicable. Foundation design will conform to the recommendations of the Geotechnical Investigation Report developed for the Project Site. Equipment, pipe, and building structures and equipment will be securely anchored to the foundation using cast-in-place steel anchor bolts designed to resist imposed loads. All structural analysis and design calculations will be designed under the supervision of a Civil Engineer registered in the State of California. All structural steel, concrete, piling, and foundation drawings issued for construction will be sealed by a California State registered Civil Engineer. #### 5.0 NATURAL PHENOMENA HAZARDS MITIGATION Structural, system, and components will be designed to mitigate natural phenomena hazards such as wind, rain, and earthquakes. This section addresses the structural design criteria used to mitigate such hazards. ## 5.1 Earthquake Hazard Mitigation Criteria Based on the preliminary geotechnical report (Appendix P), the Project Site is not in any active or potentially active fault zones. The closest known active faults are the San Andreas Fault approximately 21 miles to the west, the White Wolf Fault approximately 22 miles to the southeast, and the Pleito Thrust approximately 23 miles southeast of the Project Site. Based on the available geological data and in the absence of any active faults passing through the Project Site, the potential for primary ground rupture, liquefaction, subsidence ground failure, landslides, volcanic activity, tsunamis, seiches, and differential soil settlement is either low or non-existent. ## STRUCTURAL ENGINEERING DESIGN CRITERIA Specific design features that will be incorporated into the power plant to mitigate the identified earthquake hazards include the following: - Appropriate analysis techniques will be employed to calculate structure specific earthquake loads. - Plant structures, equipment, piping, and other components will be designed to resist the Project-specific earthquake loads. - All equipment will be positively anchored to its supporting structure. Nominal uplift capacity will
be provided in the absence of calculated overturning forces. - Anchorages will be designed to resist the Project-specific earthquake loadings. - The design of piping connections to structures, tanks, and equipment will consider the differential earthquake displacements between components. - Adjacent structures will be isolated from one another. - Structural elements will be designed to comply with special detailing requirements intended to provide ductility. - Connections for steel structures will have a minimum load carrying capability without regard to the calculated load. - Lateral and vertical displacements of structures and elements of structures will be limited to specified values. ## 5.2 Meteorological and Climatic Hazards Mitigation Meteorological and climatic data will form the design basis for the Project. Portions of the data and the design bases that pertain to structural engineering have been provided in this appendix. Specific design features that will be incorporated to mitigate meteorological and climatic hazards include the following: - Structures and cladding will be designed to resist the wind forces. - Sensitive structures will be designed for wind-induced vibration excitation. - Roofs will be equipped with drains to prevent accumulation of rainfall. - Plant drainage systems will be designed to convey the runoff from a rainfall event in accordance with Civil Engineering Design Criteria listed in Appendix B1. - Ground floor levels of structures will be placed above probable flood levels. - The Project Site will be graded to convey runoff away from structures and equipment. The foregoing design features will be incorporated in accordance with applicable codes and standards identified in this appendix. The degree of safety offered by these features is consistent with the requirements of the applicable codes and standards and the economic benefits provided by these features. ## APPENDIX D2 STRUCTURAL ENGINEERING DESIGN CRITERIA This page intentionally left blank ## Appendix D-3 Mechanical Engineering Design Criteria ## APPENDIX D3 MECHANICAL ENGINEERING DESIGN CRITERIA TABLE OF CONTENTS | 1.0 | Introdu | action | | D3-1 | |-----|---------|---|---|------| | 2.0 | Applic | Applicable Laws, Ordinances, Regulations, and Standards | | | | | 2.1 | Federal | I | D3-1 | | | 2.2 | State | | D3-2 | | | 2.3 | County | <i>T</i> | D3-2 | | | 2.4 | | y Codes and Standards | | | 3.0 | Mecha | nical Eng | ineering General Design Criteria | D3-3 | | | 3.1 | Piping | | D3-3 | | | | 3.1.1 | Design Temperature and Pressure | | | | | 3.1.2 | General Design and Selection Criteria | D3-4 | | | | 3.1.3 | Piping Materials | D3-4 | | | | 3.1.4 | Cathodic Protection | D3-4 | | | | 3.1.5 | Piping Fabrication | D3-4 | | | | | 3.1.5.1 Welder Qualification and Welding Procedures | D3-5 | | | | | 3.1.5.2 Nondestructive Examination and Inspection | D3-5 | | | | 3.1.6 | Pipe Supports and Hangers | D3-5 | | | | | 3.1.6.1 Design and Selection Criteria | D3-5 | | | 3.2 | Insulati | ion and Lagging | D3-5 | | | | 3.2.1 | Insulation Materials and Installation | D3-6 | | | | 3.2.2 | Lagging Materials and Installation | D3-6 | | | 3.3 | Rotatin | ng Equipment | D3-6 | | | 3.4 | Pressur | re Vessels | D3-6 | | | 3.5 | Storage | e Tanks | D3-6 | | | 3.6 | Heat R | ecovery Steam Generators | D3-7 | | | 3.7 | | nd Tube Heat Exchangers | | | | 3.8 | | oled Heat Exchangers | | | | 3.9 | | g Towers | | ## APPENDIX D3 MECHANICAL ENGINEERING DESIGN CRITERIA TABLE OF CONTENTS This page intentionally left blank #### 1.0 INTRODUCTION Control of the design, engineering, procurement, and construction activities on the Project will be completed in accordance with various predetermined standard practices and Project-specific programs/practices. An orderly sequence of events for the implementation of the Project is planned, consisting of the following major activities: - Conceptual design - Licensing and permitting - Detailed design - Procurement - Construction and construction management - Startup, testing, and checkout - Project completion The purpose of this appendix is to summarize the codes and standards and standard design criteria and practices that will be used during the Project. The general mechanical design criteria defined herein form the basis of the design for the mechanical components and systems of the Project. More specific design information is developed during detailed design to support equipment and erection specifications. It is not the intent of this appendix to present the detailed design information for each component and system, but rather to summarize the codes, standards, and general criteria that will be used. Section 2 summarizes the applicable codes and standards. Section 3 includes the general design criteria for piping, valves, insulation, lagging, and freeze protection. ## 2.0 APPLICABLE LAWS, ORDINANCES, REGULATIONS, AND STANDARDS The design and construction of the Project will conform to the following laws, ordinances, regulations, and standards (LORS). When an edition date is not indicated, the latest edition and addenda applicable at start of detailed design will apply. #### 2.1 Federal - Occupational Safety and Health Administration (OSHA), Department of Labor - 29 Code of Federal Regulations (CFR) 1910 Occupational Safety and Health Standards - 29 CFR 1926 Safety and Health Regulations for Construction - 40 CFR 60.18-Protection of Environment: Part 60-Standards of performance for New stationary Sources (General control device and work practice requirements) ## MECHANICAL ENGINEERING DESIGN CRITERIA #### 2.2 State - California Administrative Code, Title 8 - Chapters 4 through 7, Groups 20 Flammable Liquids, Gases, and Vapors - Group 27, Fire Protection - CBC California Building Code ## 2.3 County • Kern County, California, Rules and Regulations. ## 2.4 Industry Codes and Standards - ABMA American Boiler Manufacturer's Association - ACS American Chemical Society - AFBMA Antifriction Bearing Manufacturers Association - AGMA American Gear Manufacturers Association - AISC American Institute of Steel Construction - AMCA Air Movers Control Association - ANSI American National Standards Institute - API American Petroleum Institute - ASCE American Society of Civil Engineers - ASHT American Standards of the Hydraulic Institute - ASHRAE American Society of Heating, Refrigeration and Air Conditioning - ASME American Society of Mechanical Engineers - Section I Power Boilers - Section II Materials Specification - Section V Non-destructive Examination - Section VIII Unfired Pressure Vessels - Section IX Welding and Brazing Qualifications - B31.1 Power Piping - B31.3 Process Piping - B16.5 Flanges and Flanged Fittings - ASNT American Society for Nondestructive Testing - ASTM American Society for Testing and Materials - AWS American Welding Society - AWWA American Water Works Association - CEMA Conveying Equipment Manufacturers Association - CGA Compressed Gas Association - CMAA Crane Manufacturers Association of America - EJMA Expansion Joint Manufacturing Association - HEI Heat Exchange Institute - HI Hydraulic Institute Standards ## MECHANICAL ENGINEERING DESIGN CRITERIA - IEEE Institute of Electrical and Electronics Engineers - ISA Instrument Society of America - MSS Manufacturers Standardization Society of the Valve and Fittings Industry - NACE National Association of Corrosion Engineers - NFPA National Fire Protection Association - NBS National Bureau of Standards - NEC National Electrical Code - NEMA National Electrical Manufacturers Association - NPDES National Pollution Discharge Elimination System - PFI Pipe Fabrication Institute - PIP Process Industry Practices - RCRA Resource Conservation & Recovery Act - SSPC Steel Structures Painting Council, Volume 2 - TEMA Tubular Exchanger Manufacturers Association - CBC California Building Code - UFC Uniform Fire Code - UL Underwriters Laboratories - USEPA U.S. Environmental Protection Agency Other recognized standards will be used as required to serve as design, fabrication, and construction guidelines when not in conflict with the standards listed above. The codes and industry standards used for design, fabrication, and construction will be the codes and industry standards, including all addenda, in effect as stated in equipment and construction purchase or contract documents. #### 3.0 MECHANICAL ENGINEERING GENERAL DESIGN CRITERIA ## 3.1 Piping Piping will be designed, selected, and fabricated in accordance with the following criteria. #### 3.1.1 Design Temperature and Pressure The design pressure and temperature for piping will be consistent with conditions established for the design of the associated system. The design pressure of a piping system will be the maximum of: - The set or burst pressure of a relief device mounted in the line. - The set or burst pressure of a relief device installed on equipment that is connected to the line, adjusted accordingly to account for static head and friction loss. - If the system has no relief device or can be isolated from a relief device, the maximum pressure upstream equipment can generate (e.g., pump shutoff pressure). ## MECHANICAL ENGINEERING DESIGN CRITERIA • The maximum sustained pressure that may act on the system plus the applicable design margin. The process piping design pressures will be in accordance with applicable codes. All design pressure values will be rounded up to the next 5 pounds per square inch (psi) increment unless otherwise specified. The design temperature of a piping system will be based on: - The maximum sustained temperature which may act on the system plus the applicable design margin unless otherwise specified. - If a heat exchanger (or a piece of equipment in which heat is being removed) can be taken out of service or bypassed, then the line downstream of that equipment should be designed for the
resulting higher temperature. ## 3.1.2 General Design and Selection Criteria Piping will be designed in accordance with the requirements of the Code for Pressure Piping, ASME B31.1-Power Piping for Power Block, ASME B31.3-Process Piping, and other codes and standards referenced in Section 2, Codes and Standards. Pipeline will be in accordance to related Practice/Standards of CFR/U.S. Department of Transportation (DOT). Pipe stress analysis will be performed in accordance with ASME B31 codes. All pipe supports will be suitable to restrain the piping where subjected to external loads as stipulated by the California Building Code (CBC) – Seismic and Wind Load Criteria. Material selection will generally be based on the design temperature, composition of the process fluid, and service conditions. ## 3.1.3 Piping Materials • Piping materials will be in accordance with applicable ASTM and ASME standards. Materials to be incorporated in permanent systems will be new, unused, and undamaged. Piping materials will be specified in accordance with ASME B16.5 –Pipe Flanges and Flanged Fittings, along with other standards referenced in the appropriate ASME B31 code. #### 3.1.4 Cathodic Protection Where required, steel underground pressure piping will be cathodically protected and will be isolated from aboveground piping and other steel components. Above ground isolation will be achieved by installation of isolation flange kits with insulating gaskets, tubes, and washers. ## 3.1.5 Piping Fabrication Piping fabrication will generally be in accordance with the requirements of the Piping Fabrication Institute (PFI) and ASME B31 codes. #### 3.1.5.1 Welder Qualification and Welding Procedures Welding procedures, welders, and welding operators will be qualified in accordance with ASME Section IX code requirements. Backing rings will not be allowed for shop or field welds except where specifically permitted. #### 3.1.5.2 Nondestructive Examination and Inspection Inspection and testing of piping will be performed in accordance with the requirements of ASME B31.1 or B31.3. Non-destructive examination will generally include visual, radiographic, magnetic particle and liquid penetrant, and ultrasonic examinations. - Visual examination of welds will be performed by personnel qualified and certified in accordance with AWS QCI, Standard for Qualification and Certification of Welding Inspectors. - Non-destructive examination will be performed by personnel certified in accordance with ASNT Recommended Practice SNT-TC-1A. - Radiographic examination will be performed on welds or welds to pressure retaining components as required by ASME B31.1 or ASME B31.3 CODE. - Magnetic particle and liquid penetrant examination will be performed as required by ASME B31.1 or ASME B31.3 Code. #### 3.1.6 Pipe Supports and Hangers The term "pipe supports" includes all assemblies such as hangers, floorstands, anchors, guides, brackets, sway braces, vibration dampeners, positioners, and any supplementary steel required for pipe supports. ## 3.1.6.1 Design and Selection Criteria All support materials, design, and construction will be in accordance with the latest applicable provisions of the Power Piping Code, ASME B31.1 or B31.3. Seismic design of piping systems will be in accordance with criteria as stipulated by the CBC. ## 3.2 Insulation and Lagging The insulation and lagging to be applied to piping, equipment, and ductwork for the purposes of reducing heat loss, and personnel protection, will be in accordance with the following criteria. ## MECHANICAL ENGINEERING DESIGN CRITERIA #### 3.2.1 Insulation Materials and Installation Insulation materials will be mineral fiber or calcium silicates, with aluminum jacketing. Fiberglass insulation or other new insulation types may be used. Insulation materials will not contain asbestos. Personnel protection insulation on piping and equipment will be designed to limit outside lagging surface temperature to a maximum as indicated by OSHA at 70 degrees Fahrenheit (°F) ambient and wind speed of 10 miles per hour. ## 3.2.2 Lagging Materials and Installation All insulated surfaces of equipment, ductwork, piping, and valves will be lagged, except where removable covers are used. ## 3.3 Rotating Equipment Rotating equipment specifications will be developed for each specific type of equipment. Each specification will reference applicable industry standards and codes. General service pumps will comply with ANSI B73.1. Pump and driver will be mounted on a common foundation. Vertical pumps will comply with Hydraulic Institute Standards (HI). Firewater pump, driver and accessories will comply with NFPA 20. The steam turbine generator (STG) and the combustion turbine generator (CTG) will be guided by API 612 and the CTG will be guided by API 616, latest editions, subject to the applicable standards of the manufacturer. Dynamic compressors will be specified in accordance with API 617 – Axial and Centrifugal Compressors and Expander-compressors for Petroleum, Chemical and Gas Industry Services. #### 3.4 Pressure Vessels Vessels will be designed and built in accordance with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1 or Division 2 for high pressure vessels, latest edition and addenda. In addition, the vessels and supports will be designed for seismic loading in accordance with the CBC 2007 and wind loading in accordance with ASCE 7-02. Finite Element Analysis (FEA) and dynamic analysis will be applied as appropriate to reactors, high temperature and tall vessels. ## 3.5 Storage Tanks Field-fabricated tanks will be designed, erected, and tested in accordance with AWWA D 100 or API 650. The make-up water storage tank which also provides firewater storage will also conform to NFPA requirements. Tanks containing demineralized water will be carbon steel with a phenolic epoxy liner or stainless steel. ## 3.6 Heat Recovery Steam Generators The heat recovery steam generators (HRSG) will be designed and constructed in accordance with ASME Boiler and Pressure Vessel Code, Section I, latest edition and addenda. The feedwater heater section will be designed and constructed per ASME Section I or VIII. All sections will utilize finned-tube design with materials suitable for operating conditions. All steam drums will be remote mounted. The seismic design criteria will be in accordance with CBC 2007 and wind loading in accordance with ASCE 7-02. ## 3.7 Shell and Tube Heat Exchangers Shell and tube heat exchangers will be designed, code stamped and built in accordance with TEMA, ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, latest edition and addenda, and FEA where applicable. Thermal, hydraulic and vibration calculations shall be done in accordance with current HTRI – Heat Transfer Research Institute software. ## 3.8 Air Cooled Heat Exchangers Air cooled heat exchanger bundles will be designed, code stamped and built in accordance with ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, latest edition and addenda and FEA where applicable. All air cooled exchangers shall be in accordance with API American Petroleum Institute Standard 661, Air Cooled Heat Exchangers for General Refinery Service, latest edition. Thermal, hydraulic and vibration calculations shall be done in accordance with current HTRI Heat Transfer Research Institute software. In addition, the support (structural members of the air coolers) will be designed for seismic loading in accordance with CBC 2010 and wind loading in accordance with ASCE 7-05. ## 3.9 Cooling Towers Cooling towers will be designed in accordance with Cooling Tower Institute Standards. The cooling towers will be field erected. Construction materials will either be wood or fiberglass. In addition, the tower will be designed for seismic loading in accordance with CBC 2010 and wind loading in accordance with ASCE 7-05. ## Appendix D-4 Electrical Engineering Design Criteria # APPENDIX D4 ELECTRICAL ENGINEERING DESIGN CRITERIA TABLE OF CONTENTS | 1.0 | Introduction | D4-1 | |------|--|--------------------------| | 2.0 | General | D4-1 | | 3.0 | Codes and Standards | D4-1 | | 4.0 | System Grounding | D4-2 | | 5.0 | Environmental | D4-2 | | 6.0 | Plant Voltage Table | D4-4 | | 7.0 | Power Distribution Centers | D4-4 | | 8.0 | Area Classification | D4-5 | | 9.0 | 230 kV Switchyards | D4-5 | | 10.0 | Transformers 10.1 CT/ST/G Step-Up Transformer 10.2 ASU Step-Down Transformer 10.3 Unit Auxiliary Step-Down Transformer 10.4 13.8-4.16 kV Unit Auxiliary Step-Down Transformers 10.5 13.8-0.48 kV Auxiliary Step-Down Transformers 10.6 4.16-0.48 kV Auxiliary Step-Down Transformers | D4-6 D4-7 D4-7 D4-8 D4-8 | | 11.0 | CT/ST/G Generator Circuit Breaker | D4-9 | | 12.0 | CT/ST/G Relaying | D4-9 | | 13.0 | CT/ST/G Metering | D4-9 | | 14.0 | ISO Phase Bus | D4-9 | | 15.0 | MV Switchgear | D4-9 | | 16.0 | MV Motor Controller | D4-10 | | 17.0 | 480 V Switchgear | D4-11 | | 18.0 | LV Motor Control Center | D4-11 | | 19.0 | UninterruptIble Power Systems | D4-12 | | 20.0 | UninterruptIble Power Systems Distribution Panels | D4-12 | ## APPENDIX D4 ELECTRICAL ENGINEERING DESIGN CRITERIA TABLE OF CONTENTS | 21.0 | 125 Vdc Systems | D4-12 | |------|------------------------------|-------| | 22.0 | Standby Diesel Generators | D4-12 | | 23.0 | Cables and Wiring – General | D4-13 | | 24.0 | MV Cable | D4-13 | | 25.0 | Signal Separation | D4-14 | | 26.0 | Lighting | D4-14 | | 27.0 | Receptacles | D4-15 | | 28.0 | Grounding | D4-15 | | 29.0 | Lightning Protection | D4-15 | | 30.0 | Conduit | D4-16 | | 31.0 | Cable Tray | D4-16 | | 32.0 | Telephone | D4-16 | | 33.0 | Security System | D4-16 | | 34.0 | Electric Heat Tracing
System | D4-16 | | 35.0 | Motors | D4-17 | #### 1.0 INTRODUCTION The purpose of this appendix is to summarize the Codes and Standards and design criteria and practices that will be used during the Project. The general design criteria defined herein form the basis of the design for the major components and systems of the Project. More specific design information will be developed during detailed design to support equipment and installation specifications. #### 2.0 GENERAL The power plant electrical distribution system configuration is indicated on the following Overall One Line Diagrams: A4UV-132-65-DG-0001, 2, 3, 4, 5, 6 and 7. The power plant will have a 230 kilovolt (kV) transmission line interconnection to a future Pacific Gas and Electric Company (PG&E) Substation. The details of the 230 kV transmission lines to the future PG&E Substation are described in the Application for Certification (AFC) Section 4, Electrical Transmission. Startup power for the combustion turbine (CT) will be obtained by back feeding from the 230 kV grid through the main and auxiliary load transformers. Standby diesel generators will provide essential service power in the event of a grid failure. This document includes typical relay and meter descriptions. Final determination of specific relay or meter types and manufacturers will be made during the engineering phase of the project. #### 3.0 CODES AND STANDARDS Electrical equipment and materials will conform to the applicable provisions of the following Codes and Standards: - American National Standards Institute (ANSI) - Institute of Electrical and Electronics Engineers (IEEE) - National Electrical Manufacturers Association (NEMA) - American Society for Testing and Materials (ASTM) - Underwriters Laboratories (UL) - Factory Mutual (FM) - Occupational Safety and Health Administration (OSHA) ## **ELECTRICAL ENGINEERING DESIGN CRITERIA** - National Fire Protection Association (NFPA) - American Petroleum Institute (API) - National Electrical Safety Code (NESC) (only for 230 kV work) - National Electrical Code (NEC) - Insulated Cable Engineers Association (ICEA) - Association of Edison Illuminating Companies (AEIC) (Only for medium voltage cable) - Illuminating Engineering Society of North America (IESNA) - International Electrotechnical Commission (IEC) Note IEC standards may be used on motors and other electrical equipment such as large sync motor starting LCIs (load commutated inverter) manufactured outside the U.S. - Federal Aviation Administration (FAA) (Obstruction Marking and Lighting) #### 4.0 SYSTEM GROUNDING System grounding will be as follows: - 230 kV System: CT/ST/G and (Combustion Turbine/Steam Turbine/Generator) step-up transformer (GSU) solidly grounded at high-voltage (HV) wye winding - 21 kV System: CT/ST/G high resistance grounded at the generator neutral - 13.8 kV System: Low resistance grounded to 400 ampere (A), 10 seconds - 4.16 kV System: Low resistance grounded to 400 A, 10 seconds - 0.48 kV System: High resistance grounded with pulse detection grounding system - 208/120 volt (V) System: Solidly grounded at distribution transformer wye winding - 125 volt direct current (Vdc) System: Ungrounded with ground detection at battery chargers #### 5.0 ENVIRONMENTAL Electrical equipment shall be designed to meet the site seismic criteria along with the maximum and minimum design ambient conditions. Electrical equipment will be designed to satisfy seismic requirements of IEEE 693. Specifications shall include the general requirements (Annex Sections A and B), the high level of qualification, and the appropriate specific requirements (Annex Sections C-P) of IEEE 693 for the following equipment: - 230 kV Switchyard Equipment - Generator Step-Up Transformer - Isolated Phase Bus - Generator Circuit Breakers - Auxiliary Transformers - Switchgear and Non-Segregated Bus - Diesel Generators - Medium-Voltage Motor Control Center - 480 V Aux Transformers and Switchgear - Station Batteries Medium Voltage (MV) and Low Voltage (LV) switchgear, MV Controllers, LV MCCs, batteries, chargers, uninterruptible power systems (UPS), and distributed control systems racks will be located indoors in pre-fabricated electrical power distribution centers (PDC) with redundant heating, ventilation, and air conditioning (HVAC) units. Electrical equipment for outdoor environments will be housed in NEMA 3R or NEMA 4 weatherproof enclosures. Conduit entry to outdoor enclosures will not be from the top unless an appropriate waterproof connection is used. Enclosures for all equipment will be in accordance with NEMA standards and type number and will be suitable for their location as follows: - NEMA 1 Indoors (General Purpose) - NEMA 3R Outdoors and Indoors (in wet locations) - NEMA 4 Outdoors and Indoors (in wet locations dust tight) - NEMA 4X Outdoors Indoors in wet and corrosion-resistant locations - NEMA 7 Classified Areas, Class I, Division 1, Groups B, C, and D - NEMA 9 Classified Areas, Class II, Division 1 - NEMA 12 Non-environmentally controlled indoor dusty areas #### 6.0 PLANT VOLTAGE TABLE | Service | Motor or
Generator
Rated Voltage | System
Voltage | |---|--|-------------------| | PG&E Utility Interconnection | - | 230 kV | | CT/ST/Generator Voltage | 21 kV | 21 kV | | Plant Large Synchronous Motors with LCI Soft
Starting | 13,800 V | 13,800 V | | Plant Large Synchronous and Induction Motors with Direct on Line Starting | 13,200 V | 13,800 V | | MV motors > 5,000 HP | 13,200-13,800 V | 13,800 V | | MV motors 300 HP to 5,000 HP | 4,000 V | 4,160 V | | LV motors from 3/4 HP to 250 HP including large motor operated valves (3-Phase) | 460 V | 480 V | | Standby Generator Voltage | 4160 V | 4160 V | | Street or area flood lighting | - | 480 V | | Lighting, receptacles, space heaters, heat tracing | - | 208/120 V | | Motors 1/2 HP and below (1-Phase) | 115 V | 120 V | | UPS power (1-Phase) | - | 120 V | | Protection system, LV & MV switchgear controls, UPS input power | - | 125 Vdc | | Emergency lube and seal oil pump motors and other dc motors less than 40 HP | 120 V | 125 Vdc | | DCS instrumentation and controls | - | 24 Vdc | #### 7.0 POWER DISTRIBUTION CENTERS Power Distribution Centers (PDCs) will be prefabricated metal buildings housing the MV and LV electrical distribution equipment, 125 Vdc system with batteries UPS and the DCS racks. The PDCs will be factory assembled, wired, tested and operational in metal enclosures containing various combinations of electrical power and control equipment. The PDCs will be sized for the equipment and vendor-recommended operating and maintenance access. The PDCs will be furnished with heating and air conditioning, fire detection and fire alarm systems, power distribution, lighting, and grounding. The PDCs will be elevated above grade with sufficient space for cable trays and conduits to enter from below. The PDCs ceiling height will be at least 11 feet to provide sufficient space for cables trays installed over the equipment for wiring within the PDCs. #### 8.0 AREA CLASSIFICATION Area classification will be as defined by NEC supplemented by the recommendations in the NFPA standard and API. Process areas will be classified where required as Class I, Division 2, Group D (and Group B when the fuel contains more than 30 percent hydrogen by volume). Generator hydrogen control cabinets, valves, and storage bottles will be classified as Class I, Division 2, Group B. Areas where combustible dust may be present will be classified as Class II. ## 9.0 230 KV SWITCHYARDS There will be two separate 230 kV switchyards, one for the HECA plant, and one for the Air Separation Unit (ASU). The 230 kV switchyards will have the following features: - Configured as a single breaker scheme - Rated for 245 kV maximum operating voltage and 900 kV Basic Impulse Level (BIL) - One 230 kV transmission line to a future PG&E Substation from each switchyard. HECA plant line sized for the total power plant output, and ASU line sized for total ASU load. - Metal Oxide 192 kV lightning arrestors with a 158 kV Maximum Continuous Operating Voltage (MCOV) rating on the transmission line exits to PG&E Midway substation - Main busbars sized for 3,000 A using aluminum bus - Breakers will have a 3,000 A, 63 kA symmetrical interrupting rating - Breakers will be dead tank type SF6 insulated with dual trip coils - Breakers will have C800 relay class current transformers - Revenue metering high-accuracy class current transformers rated 0.15 percent accuracy on line exit to PG&E - Three potential transformers rated 0.3 percent accuracy on each line and transformer exit - Manual group operated vertical break disconnect switches rated 3,000 A - Lightning protection via overhead shield wires and masts - Composite insulators on the transmission lines with 230 inch creepage distances - Porcelain-post insulators with 230 inch creepage distances - Relay building with heating, ventilation, and air conditioning (HVAC) - Dual 125 Vdc battery systems, including dual 125 Vdc panels The transmission line protective relays will be microprocessor based with fiber optic communications to the future PG&E Substation via optical ground wires (OPGW). Two separate transmission line relays with current differential functions with phase and ground back up functions (GE UR L90 and SEL 311L) will be used along with an additional third relay (GE UR D60) with step distance functions to be used in a communications-aided scheme. ## **ELECTRICAL ENGINEERING DESIGN CRITERIA** The 230 kV transformer will have redundant differential relays with phase and ground overcurrent backup functions (GE UR T60 and SEL 387A). Breaker failure relays with sync check (GE UR C60) will be used on the 230 kV breaker. Each main bus will have a bus differential relay (GE UR B90). Each breaker will have a breaker failure relay
(GE UR C60). Communications processors (SEL-2032) will be used to interface to the DCS via fiber optic cables. The 230 kV transmission line exit revenue metering will be fed from revenue metering class current transformers (CTs) and potential transformers (PTs) located on the transmission line exit to the future PG&E Substation. California Independent System Operator (CAISO) metering will be via CAISO approved multifunction meters (ION 8600A), which will be connected to a Remote Intelligent Gateway (RIG) to communicate with CAISO. The 230 kV transformer meters (ION 8600A) for CAISO metering use will be fed from three revenue metering class CTs located in the transformer bushings and three PTs located on the 230 kV transformer exits. #### 10.0 TRANSFORMERS The main features of the plant transformers are described below. Refer to the One Line Diagrams for the transformer MVA ratings. ## 10.1 CT/ST/G Step-Up Transformer The CT/ST/G step-up transformer will have the following features: - 21 kV Delta to 238 kV grounded wye, 3-phase, 60 Hz, core form, copper windings - ONAN/ONAF/ONAF, 65 Deg C, Impedance (Z) = 9 percent (ONAN MVA base) (ONAN = Mineral oil natural convection flow through cooling equipment and in windings, ONAF = Mineral oil cooled by forced air cooling equipment) - Note: Final Impedance to be confirmed after electrical system studies - HV Deenergized Tap Changer (DETC), full-capacity taps, plus/minus 2 × 2 ½ percent - HV BIL = 750 kV, LV and HV Neutral (HO) BIL = 150 kV - Metal Oxide 192 kV lightning arrestors with a 158 kV Maximum Continuous Operating Voltage (MCOV) rating - HV condenser-type composite bushings rated 900 kV BIL with 230-inch creepage distances - LV cover-mounted bushings for iso phase bus (IPB) flanges - Conservator oil preservation system with bladder and silicon gel breather - Qualitrol[®] oil, temp, gas accumulation alarm relays and gauges - Sudden-pressure relay and pressure-relief device - Transformer temperature and alarm monitoring system (GE MO150) - Transformer fault gas and water in oil monitor (GE Hydran) • ANSI standard factory tests, including heat run and noise test with certified test reports ## 10.2 ASU Step-Down Transformer The ASU 230-13.8 kV step-down transformer will have the following features: - 230 kV Delta to 13.8 kV low-resistance grounded wye, 3-phase, 60 Hz, copper windings - ONAN/ONAF/ONAF, 65 Deg C, Z= 9 percent (ONAN MVA base) Note: Final impedance to be determined after electrical system studies - HV DETC, full capacity taps, plus/minus $2 \times 2 \frac{1}{2}$ percent - HV BIL = 750 kV, LV and HO BIL = 110 kV - Metal Oxide 192 kV lightning arrestors with a 158 kV Maximum Continuous Operating Voltage (MCOV) rating - HV condenser-type composite bushings rated 900 kV BIL with 230 inch creepage distances - LV cover-mounted bushings for IPB flanges - Conservator oil preservation system with bladder and silicon gel breather - Qualitrol® oil, temp, gas accumulation alarm relays and gauges - Sudden-pressure relay and pressure-relief device - Transformer temperature and alarm monitoring system (GE MO150) - Transformer fault gas and water in oil monitor (GE Hydran) - ANSI standard factory tests, including heat run and noise test with certified test reports ## 10.3 Unit Auxiliary Step-Down Transformer The 21-13.8 kV unit auxiliary step-down transformer will have the following features: - 21 kV delta to two 13.8 kV low-resistance grounded wyes, three winding transformer, 3-phase, 60 Hz, copper windings - ONAN/ONAF/ONAF, 65 Deg C, Z(HX)=Z(HY)=14 percent, Z(XY)=25% (90 MVA) Note: Final impedances to be determined after electrical system studies - HVLTC (Load tap changer), plus/minus 15 percent, 32-step - Beckwith M-2001C LTC controller to control LV voltage - HV BIL = 150 kV - LV and XO BIL = 110 kV - HV cover-mounted bushings for IPB flanges - LV cover-mounted bushings for non-segregated bus duct flange - Conservator oil preservation system with bladder and silicon gel breather - Qualitrol® oil and temp alarm relays and gauges - Qualitrol[®] sudden-pressure relay - ANSI standard factory tests including heat run and noise test with certified test reports ## **ELECTRICAL ENGINEERING DESIGN CRITERIA** ## 10.4 13.8-4.16 kV Unit Auxiliary Step-Down Transformers The 13.8-4.16 kV unit auxiliary step-down transformers will have the following features: - 13.8 kV delta to 4.16 kV low-resistance grounded wye, 3-phase, 60 Hz, copper windings - ONAN/ONAF/ONAF, 65 Deg C, Z= 7 percent (ONAN MVA base) Note: Final impedance to be determined after electrical system studies - HV DETC, full capacity taps, \pm 2 × 2.5 percent - HV BIL = 110 kV - LV and XO BIL = 60 kV - HV side-mounted bushings in a full-height HV cable termination compartment - LV side-mounted bushings for non-segregated bus-duct flange - Sealed tank oil preservation system - Qualitrol® oil and temp alarm relays and gauges - Qualitrol[®] sudden-pressure relay - ANSI standard factory tests including heat run and noise test on one unit with certified test reports ## 10.5 13.8-0.48 kV Auxiliary Step-Down Transformers - 13.8 kV delta to 0.48 kV high-resistance grounded wye, 3-phase, 60 Hz, copper windings - ONAN/ONAF, 65 Deg C, Z= 7 percent (ONAN MVA base) Note: Final impedance to be determined after electrical system studies - HV DETC, full capacity taps, plus/minus 2 × 2.5 percent - HV BIL = 110 kV - LV and XO BIL = 30 kV - HV side-mounted bushings in a full-height HV cable termination compartment - LV side-mounted bushings for non-segregated bus-duct flange - Sealed tank oil preservation system - Qualitrol® oil and temp alarm relays and gauges - Qualitrol[®] sudden-pressure relay - ANSI standard factory tests, including heat run test on one unit with certified test reports ## 10.6 4.16-0.48 kV Auxiliary Step-Down Transformers - 4.16 kV delta to 0.48 kV high-resistance grounded wye, 3-phase, 60 Hz, copper windings - ONAN/ONAF, 65 Deg C, Z= 7 percent (ONAN MVA base) Note: Final impedance to be determined after electrical system studies - HV DETC, full-capacity taps, plus/minus 2 × 2.5 percent - HV BIL = 60 kV - LV and XO BIL = 30 kV - HV side-mounted bushings in a full-height HV cable termination compartment - LV side-mounted bushings for non-segregated bus duct flange - Sealed tank oil preservation system - Qualitrol® oil and temp alarm relays and gauges - Qualitrol[®] sudden-pressure relay - ANSI standard factory tests, including heat run test on one unit with certified test reports #### 11.0 CT/ST/G GENERATOR CIRCUIT BREAKER CT/ST/G generator circuit breaker (GCB) will be installed outdoors on a galvanized steel platform in line with the iso phase bus. The GCB will be rated at 105 percent of the maximum continuous current. The GCB will be supplied with dual trip coils, bus-side motor-operated disconnect switch, and potential and current transformers. The GCB will have the interrupting ratings shown on the One Line Diagrams. #### 12.0 CT/ST/G RELAYING Dual generator protection micro-processor based relays with communications to the turbine control system (TCS) will be used. The CT/ST/G generator circuit breaker (GCB) will be equipped with a generator breaker failure relay. #### 13.0 CT/ST/G METERING Generator metering will use a micro-processor based multi-function meter with communications to the turbine control system (TCS) and to the DCS. #### 14.0 ISO PHASE BUS The iso phase bus will be aluminum conductor braced for the maximum available fault current for each section of bus. The iso phase bus will be rated at least 105 percent of the nominal generator output, with total temperature limits of 80 degrees Celsius (°C) on the enclosure and 105°C on the conductor. Filtered drains will be provided to drain off moisture due to condensation. #### 15.0 MV SWITCHGEAR The 13.8 kV and 4.16 kV switchgear will be indoor, metal-clad switchgear. The power bus will be copper and will be insulated with flame-retardant, non-hygroscopic insulation. The 13.8 kV and 4.16 kV switchgear will use vacuum draw out circuit breakers with a remote racking device. Where feasible, two high-breaker construction will be used. All breakers will be remotely controlled from the DCS. ## **ELECTRICAL ENGINEERING DESIGN CRITERIA** The 18-13.8 kV unit auxiliary transformers will have a differential relay with phase and ground overcurrent backup functions. The 13.8 kV main incoming breakers will have breaker failure protection included in the unit auxiliary transformer differential relay. The 13.8 kV switchgear will have high-impedance bus differential relays. The 13.8-4.16 kV auxiliary transformers will be primary-protected by a feeder protection relay. The 13.8-4.16 kV transformers will have a differential protection relay. The 4.16-0.48 kV transformers will be protected by a feeder protection phase and ground overcurrent relay. Each 13.8 kV and 4.16 kV breaker will be electrically operated and remotely controlled from the DCS. MV switchgear protective relays will trip via lockout relays, which will have coils monitored by the protective relays. Motors rated greater than 5,000 HP will be fed from 13.8 kV circuit breakers and will have a microprocessor-based motor protection relay with a communications port connected to the DCS. Motor differential protection using self-balancing current transformers will be used on circuit breaker fed motors. Motor-stator resistance temperature detectors (RTDs) will be wired to the motor protection relay. Each 13.8 kV and 4.16 kV breaker will have a power measurement ION 6200-EP1 display meter with a communications port connected to the DCS. A manual bus transfer scheme with make-before-break circuitry with momentary paralleling of the unit two auxiliary transformers will be used on the double-ended switchgear. A sync-check relay will be connected to the line side PTs on each incoming breaker. #### 16.0 MV MOTOR CONTROLLER The MV motor controllers (MV MC) will be metal-enclosed, NEMA 1 indoor type. The power bus will
be copper, and will be insulated with flame-retardant, non-hygroscopic insulation. 4 kV motors, 5,000 HP and below, will be fed from MV controllers using fused controllers, type NEMA E2 with vacuum contactors and a microprocessor-based motor protection relay with a communications port connected to the DCS. Motor RTDs will be wired to the motor relay. Each motor feeder will be electrically operated and remotely controlled from the DCS. The motor-protection device will be used to provide metered data to the DCS. #### 17.0 480 V SWITCHGEAR The LV switchgear will be metal-enclosed drawout switchgear, indoor type. The power bus will be copper, and will be insulated with flame-retardant, non-hygroscopic insulation. Each breaker will be electrically operated and remotely controlled from the DCS. Each 480 V main breaker will have a power measurement ION 6200-EP1 display meter with a communications port connected to the DCS. Each LV breaker will have adjustable long-time and short-time trip elements with three-phase current indication. Ground and instantaneous protections are not required. A manual bus transfer scheme with make-before-break circuitry with momentary paralleling of the unit two auxiliary transformers will be used on the double-ended low-voltage switchgear. A sync-check relay will be connected to the line side PTs on each incoming breaker. ## 18.0 LV MOTOR CONTROL CENTER The LV MCC will be metal-enclosed, freestanding, dead front, NEMA 1 type MCCs with NEMA Type B wiring. The power bus will be copper and will be insulated with flame-retardant, non-hygroscopic insulation. Circuit breakers will be 3-pole, rated 600 Vac, 100 A minimum frame size, with interrupting rating equal to the short-circuit bracing of the main bus. The motor-circuit protector (MCP) for motor starters will be molded case type and will have adjustable magnetic-only trip units. Feeder breakers will be molded case type with thermal-magnetic trip units. Controllers for LV 3-phase motors will be the combination type consisting of a MCP and a magnetic contactor with an electronic overload relay. A 480-120 volt control power transformer (CPT) will be supplied for each combination motor starter and lighting/heating controller. CPT will be provided with additional volt ampere (VA) capacity for space heater power for motors 30 HP and larger. The CPT will not be less than 50 VA. Combination motor starters and lighting/heating controllers, NEMA Sizes 1 through 4, will be of plug-in type. The minimum contactor size will be NEMA Size 1. Outdoor lighting controllers will be similar to combination motor starters except that overload relays will not be provided and the circuit breaker will be thermal-magnetic type. A photocell will provide automatic lighting control. A hand-off-auto (H-O-A) switch will be mounted on the controller door to select automatic or hand (ON) control. ## **ELECTRICAL ENGINEERING DESIGN CRITERIA** #### 19.0 UNINTERRUPTIBLE POWER SYSTEMS UPS systems will have a single phase inverter with 125 Vdc input and 120 Vac output. A static switch and manual by-pass switch will be located external to the inverter cabinet. UPS equipment will be located in the PDCs (Refer to One Line Diagrams). #### 20.0 UNINTERRUPTIBLE POWER SYSTEMS DISTRIBUTION PANELS UPS distribution panels will supply the DCS and instrumentation power supply loads. The DCS loads will be normally fed from the UPS-backed essential panel board. The DCS backup power supply is from a panel board fed from a normal alternating current source. ## 21.0 125 VDC SYSTEMS 125 Vdc battery systems will be sized to provide 125 Vdc power per the required load profile. The 125 Vdc battery used for the CT/ST/G emergency lube oil and seal oil pumps will be sized for a time duration required by the CT/ST/G manufacturer. The UPS load on the batteries will have a load profile duration of 30 minutes for safe plant shutdown. In the event of a utility grid failure, the essential service diesel generators will be able to supply power to the UPS isolation transformers in less than 30 minutes. Dual battery chargers, sized to recharge a fully discharged battery in 24 hours, will feed each battery. The batteries for the 125 Vdc system will be located on racks in the PDC. Sufficient ventilation to prevent the accumulation of an explosive mixture of gases will be provided. #### 22.0 STANDBY DIESEL GENERATORS Two 4160 V, 60 Hz, 3-Phase, 1,500 kilowatt electrical (kWe), 0.8 power factor (PF) standby diesel generators (DG) in a weather-protected non-walk-in outdoor enclosures will be connected to the 4160 V switchgear to supply essential service power to critical lube oil and cooling pumps, gasification and auxiliary steam systems, gasification quench system, station battery chargers, UPS, electric heat tracing, control room lighting, and other critical plant loads. Each standby generator will have a class H insulation system rated 125°C at standby rating, a brushless excitation system with a PMG, and VPI insulation. Dual 12 Vdc batteries will be used to start the diesel engine. A local control panel (LCP) will be located in the generator enclosure with standard microprocessor-based engine and generator controls, interlocks, metering, alarms, and synchronizing system. Remote control of the diesel generator will be from DCS operators via a fiber optic cable to Seller's control system. #### 23.0 CABLES AND WIRING – GENERAL The allowable ampacity of power cables will be in accordance with ICEA and NEC requirements. Cables installed in cable trays will have insulation and jacket materials that have non-propagating and self-extinguishing characteristics to minimize possible damage caused by cable fires. At a minimum, these cables will meet IEEE 383 flame-test requirements. Lighting and receptacle wiring inside buildings will be type THWN-THHN. All control panel wiring will be insulated with 600 V NEC-type SIS insulation and all panel wiring will have wire numbers for identification. #### 24.0 MV CABLE MV cable will be rated 15 kV or 5 kV, 105°C, stranded copper conductor, ethylene propylene rubber (EPR) insulation (133 percent level), copper tape shield, and an overall polyvinyl chloride (PVC) cable jacket. Multi-conductor MV cable will include a bare copper ground wire. MV cable shields will be grounded at the source end. MV Cable rated 2 kV, non-shielded, single conductor cable may be used for generator dc excitation cable or used for generator excitation transformer secondary leads. #### 24.1 LV Power and Control Cable Single-conductor LV power cable will be of the following types: - 1/C 600V, XHHW-2, cross-linked polyethylene (XLPE) insulation (for lighting conductors in conduit outdoors). - 1/C, 600V, EPR insulation; PVC Jacket "For CT Use" (Or non-jacketed FR-EP with appropriate UL Flame test "For CT Use"): 1/C #1/0, 1/C #2/0, 1/C #4/0, 1/C 250 thousand circular mil (kemil), 1/C 350 kemil, 1/C 500 kemil, 1/C 750 kemil. - Single-conductor wire and cable will be rated 600 V, 90°C, and will have XLPE or EPR insulation. Single-conductor 600 V tray cable greater than #1/0 AWG will have XLPE or EPR insulation with a PVC cable jacket rated for CT use. Non-jacketed flame-retardant ethylene propylene (FREP) insulation with appropriate UL flame test may also be used for large single-conductor cables. Multi-conductor LV power cable will be of the following types: • 600V, XHHW-2, XLPE or EPR insulation; PVC-jacketed overall, 3/C # 8 and larger, power cable with copper equipment grounding wire sized per NEC requirements (TC rated). ## **ELECTRICAL ENGINEERING DESIGN CRITERIA** Multi-conductor control cable will be of the following types: • 600V, XHHW-2, XLPE or EPR insulation; PVC-jacketed overall, multi-conductor control cable (TC rated): #10 AWG, #12 AWG, #14 AWG. Multi-conductor cable conductor identification will be in accordance with Table E-2 of NEMA WC 57 (ICEA S-73-532). #### 24.2 Instrument Cable Single-pair instrument cable will be rated 300 V, XLPE insulation, twisted shielded pairs with drain wires and a PVC cable jacket. Conductor size will be No. 16 AWG stranded for single pair. Multi-pair instrument cable will be rated 300 V, XLPE insulation, twisted shielded pairs, or triads as required, drain wires, overall shield, and a PVC cable jacket. This type of wire will be used for both LV alarm and instrument (milliamp) circuits, and RTD-type signal (three wire signal). Conductor size will be No. 18 AWG stranded for multi-pair and multi-triad cable. Single-pair thermocouple extension cable will be solid alloy conductor with flame-retardant XLPE insulation, twisted and shielded with drain wire, and a PVC jacket. Solid alloy wire No. 16 AWG will be used for single-pair cable. Multiple-pair thermocouple extension wire will be solid alloy conductor with flame retardant XLPE insulation, with each pair identified, twisted and shielded pairs with drain wire and overall PVC jacket. Extension wire will be colored, matched, and calibrated to ANSI C96.1 for standard limits of error for this type of wire. Solid alloy wire No. 20 AWG will be used for multi-pair cables. #### 25.0 SIGNAL SEPARATION The conduit and tray separation and minimum spacing requirements for parallel runs will generally follow Table 2 of the Process Industry Practice PIP PCCEL001. #### 26.0 LIGHTING The lighting system will be designed in accordance with IESNA and API RP540, Electrical Installations in Petroleum Processing Plants illumination level recommendations with 0.8 maintenance factor. The Illuminating Engineering Society (IES) Lighting Handbook-Application Volume, Section 9, will be used for additional information on illumination levels for different process, non-process, and building areas. Outdoor lighting will be sodium vapor fixtures controlled by photocells with reflectors to direct the light toward the ground or platform. Self-contained battery-backed emergency lighting and exit signs will be furnished to provide personnel egress
from buildings during a total loss of plant power. Emergency lighting will be designed to maintain the necessary illumination for a minimum of 90 minutes. Plant perimeter roadway lighting will be included. Illumination levels will be measured horizontally at floor or grade level. IES recommended methods of calculation and maintenance factor will be used. Maintained in-service lighting levels will be as follows: | LOCATION | FOOTCANDLES (fc) | |--------------------------------|------------------| | Control Room | 50 | | Process Area | 15 | | Switch-rooms | 30 | | Stairways and Ladders (active) | 5 | | General Outdoor Area | 2 | Aircraft warning lights (ACWL) will be installed on structures and stacks as required by the Federal Aviation Administration (FAA) per Advisory Circular AC 70/7460-1K 'Obstruction Marking and Lighting'. All ACWL shall meet FAA requirements. #### 27.0 RECEPTACLES All 120 V outdoor receptacles will be ground fault circuit interrupter (GFCI) type receptacles. All 120 V receptacles will be located so equipment at grade can be reached with a 75-foot extension cord. 480 V welding receptacles will be located within maintenance areas so that equipment can be reached within a 100-foot radius. #### 28.0 GROUNDING The grounding system design will be per IEEE-80 guidelines. A copper grounding grid consisting of driven ground rods interconnected by bare #4/0 AWG copper conductors to form a complete grounding system for the power plant will be installed. Grid interconnection will be completed using exothermic welding or approved compression connectors. Fences near electrical equipment will be grounded at every other post. #### 29.0 LIGHTNING PROTECTION Lightning protection, where required, will be provided in accordance with NFPA 780 and UL 96. Lightning protection will not be required on metal tanks and stacks. ## **ELECTRICAL ENGINEERING DESIGN CRITERIA** #### 30.0 CONDUIT Underground conduits will be PVC Schedule 40. Conduit risers and elbows will be PVC. Aboveground conduit will generally be rigid galvanized steel (RGS). Aluminum, PVC Schedule 80, or PVC-coated conduit may also be used in corrosive areas. Aboveground conduit will be ¾-inch minimum except ½-inch conduit may be used to connect to instruments or devices with ½-inch nipples as required. Electric metallic tubing may be used only for indoor lighting in offices, control rooms, and where the conduit is not subjected to physical damage. Connections to equipment requiring removal from service or subjected to vibration or movement will be made with flexible conduit. Liquid-tight flexible metal conduit and approved fittings will be used for outdoor and indoor equipment. Conduit and fittings in hazardous areas will be suitable for the service. #### 31.0 CABLE TRAY The cable tray will be per NEMA Standard VE-1. The cable tray will generally be aluminum ladder-type. The channel tray will generally be ventilated aluminum-type. Solid-bottom galvanized-steel cable tray with covers will be used, where necessary. Tray covers will be used, where necessary, to protect cables from physical damage. #### 32.0 TELEPHONE The plant telephone system will consist of a main telephone board located in the Administration Building to allow the telephone company to install and terminate their main telephone cable. Telephone outlets will be distributed throughout the plant buildings and PDCs. #### 33.0 SECURITY SYSTEM A motorized operator will control the main gate. The main gate operator will include inputs from control room and receptionist switches, exit loop, and a local keypad or card reader station. An intercom system will be provided to allow voice communications between the main gate and the control room and receptionist area. #### 34.0 ELECTRIC HEAT TRACING SYSTEM An electric heat tracing system will be provided as required for freeze protection and process heating as shown on the P&IDs. ## **ELECTRICAL ENGINEERING DESIGN CRITERIA** The electric heat tracing will consist of self-regulating heat-tracing cable (for temperatures below 250 degrees Fahrenheit (°F), mineral insulated (MI) tracing (for temperatures above 250°F), thermostats, electric heat-tracing control panels and electric heat tracing circuit breaker panels. Electric heat trace monitoring will be provided with microprocessor-based multi-point modules installed in the electric heat trace control panel with ground fault monitoring of each heat-tracing circuit. The monitor will have RS485 communications to the DCS. #### 35.0 MOTORS The plant motors will be in accordance with the following Standards: - MV synchronous motors will be per API-546 - MV induction motors will be per IEEE 841 (300 HP to 500 HP), API-541 (500 HP and above), or API-547 (250 HP and above). - LV induction motors ½ HP and below will be 115 V, 1-phase per NEMA MG-1 - LV induction motors ³/₄ HP through 250 HP will be 460 V, 3-phase per IEEE 841 All synchronous motors will be rated 1.0 power factor and will have a power factor controller to maintain 1.0 power factor at all load levels. Motor enclosures for 460 V will be totally enclosed fan cooled (TEFC). Motor enclosures for 4,000 V will be TEFC for 300 HP to 500 HP or WPII for 250 HP and larger. All motors will have, at a minimum, Class F insulation limited to an allowable Class B temperature rise. All 4 kV and 13.2 kV motors will be capable of starting at 80 percent of motor-rated nameplate voltage. Motors rated 460 V, 200 HP or greater, will be designed for a minimum terminal voltage of 85 percent rated motor voltage during starting. All other 460 V motors per NEMA MG-1, should start and accelerate its load at a minimum terminal voltage of 90 percent rated motor voltage. Motor nameplate HP ratings will be determined by multiplying the rated driven equipment brake or shaft HP by the following minimum sizing factors: For low voltage motors below 30 HP use a factor of 1.25; for LV motors 30 HP to 60 HP use a factor of 1.15; for 75 HP and larger use a factor of 1.1; and for MV motors use a factor of 1.1. The 460 V motor service factor will be 1.15, and MV motor service factor will be 1.0, except for IEEE-841 motors which will be 1.15. Motors 100 HP and larger will have space heaters. # APPENDIX D4 ELECTRICAL ENGINEERING DESIGN CRITERIA This page intentionally left blank Appendix D-5 Controls System Design Criteria # APPENDIX D5 CONTROLS SYSTEMS DESIGN CRITERIA TABLE OF CONTENTS | 1.0 | Introd | luction | D5-1 | |-----|--------|--|------| | 2.0 | Refere | ences and Standards | D5-1 | | 3.0 | Centra | al Control | D5-2 | | | 3.1 | Operator's Work Stations | | | | 3.2 | Alarm Management | | | | 3.3 | Report Generation | | | | 3.4 | Optimization | | | | 3.5 | Support Work Stations | | | | 3.6 | Firewalls | | | | 3.7 | Outside Communications | | | | 3.8 | Support Equipment | D5-4 | | 4.0 | Remo | te Data Acquisition and Control | D5-4 | | | 4.1 | Programmable Logic Controllers (PLC) | | | | 4.2 | Control Packages with Supplied Equipment | | | | 4.3 | Safety Instrumented Systems (SIS) | | | | 4.4 | Fire and Gas System | | | 5.0 | Field | Instrumentation | D5-6 | | | 5.1 | General | | | | 5.2 | Final Control Elements – Valves | | | | 5.3 | Cables | | | | 5.4 | Vibration Condition Monitoring | | # APPENDIX D5 CONTROLS SYSTEMS DESIGN CRITERIA TABLE OF CONTENTS This page intentionally left blank #### 1.0 INTRODUCTION Control of the design, engineering, procurement, and construction activities on the Project will be completed in accordance with various pre-determined standard practices and Project-specific programs/practices. An orderly sequence of events for the implementation of the Project is planned consisting of the following major activities: - Conceptual design - Licensing and permitting - Detailed design - Procurement - Construction and construction management - Startup, testing, and checkout - Project completion The purpose of this document is to summarize the codes and standards and standard design criteria and practices that will be used during the Project engineering, design, and construction phases of the Project. These criteria form the basis of the design for the control systems components and systems for the Project. More specific design and construction-related specifications and criteria will be developed during detailed design to support equipment procurement and construction. The following design approach outlines the engineering design services by the Controls Systems Engineering Group. The design will include required system architecture drawing. The design of the Plant Control System will require the integration of many available technologies related to sensors, control elements, and plant data acquisition and control. The design is intended to assemble the total system so that the plant operations personnel will have the state-of-the-art control and monitoring capabilities. The plant will be designed around a distributed control system (DCS) supported by auxiliary systems to allow the plant personnel to analyze plant conditions and react in a timely manner to upset conditions. Multi-level system architecture will be provided with security levels between each level in order to prevent accidental manipulation of plant operations. Plant control will be achieved mainly in the central control room. #### 2.0 REFERENCES AND STANDARDS The Project will develop detailed project-specific practices and procedures during detailed design. The Project practices and procedures will be developed from the owner's engineering technical practices. The owner's engineering technical practices incorporate the following industry standards with additional guidance based on the owner's experience: - AGA American Gas Association - ANSI/ISA-84.00.01: Functional Safety: Safety Instrumented Systems for the Process Sector - CGA Compressed Gas Association - ISA RP 60.3 Human Engineering for Control Centers #### **APPENDIX D5** #### **CONTROL SYSTEMS DESIGN
CRITERIA** - ISA RP 60.7 Control Center Construction - ISA S71.04 Environmental Conditions for Process Measurement and Control Systems: Airborne Contaminants - API RP 554 Process Instrumentation and Control - API RP 520 PT II: Sizing, Selection, and Installation of Pressure Relieving Devices in Refineries - API RP 556: Instrumentation and Control Systems for Fired Heaters and Steam Generators - EEMUA Engineering Equipment Manufacturers Users Association - IEC-61508: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems - FAA Federal Aviation Association - NFPA 75 Standards for Protection of Data Equipment. - NFPA 101 Life Safety Code - NFPA 85: Boiler and Combustion Systems Hazards Code 2007 Edition - NFPA 72: National Fire Alarm Code - NFPA 70: National Electric Code - Electrical equipment and components to be purchased will include third party approvals from UL, FM, TUV or CSA as required. #### 3.0 CENTRAL CONTROL Control Center (CC) size will be determined by the number of process units to be controlled, the number of operators required to control the units, a minimum complement of supervisory/technical personnel, and the amount of equipment within the building. Equipment housed in a CC typically includes the following: - Field Termination or marshalling cabinets. - Process Automation System (PAS) equipment, including consoles, I/O racks, communication racks, and support equipment required by technical or maintenance personnel. - Communication systems, including but not limited to Public Address (PA) or paging systems, VHF/UHF radio systems, telephone equipment, general purpose communications associated with Ethernet or similar communication networks, and so on. - Uninterruptible power supply (UPS) equipment, batteries, associated switchgear, breaker, electrical panels, and transformers. - Machinery condition monitoring systems. - HVAC and air purification equipment. - Computers used directly for control or management of the process. #### 3.1 Operator's Work Stations The system operator interface or HMI will be a microprocessor-based workstation (or workstations) with a state-of-the-art object-based graphical user interface. The HMI software typically includes the following HMI displays and functions: - Menu/navigation displays - Configuration displays - Alarm summary display - Event summary display - Operating group displays - Trend displays - Loop tuning display - System status display - Diagnostic and maintenance displays - Point detail displays Collected data will be available for use in operator trend displays, custom displays, reports, application programs, spreadsheets, and ODBC compliant databases. The system will include built-in reporting functions, such as alarm/event log, alarm duration log, integrated Excel reports, free format reports, point cross-reference report, and ODBC data exchange reports. Support for generation of periodic, demand, and event-driven reports to screen, printer, file, or directly to another computer for analysis or viewing electronically will be included. ### 3.2 Alarm Management The system will be capable of monitoring the process signals for out-of-normal conditions as set by the plant supervisory personnel. When detected, an alarm condition will be presented to the operator for proper action. In addition, all alarms will be given a priority level, so that the operator can respond to the more serious conditions first. Each alarm will be time stamped, logged on the alarm recorder, and stored in the system historian to be available for analysis. The system will also be supplied with Sequence of Events capability in order to be able to identify first out events when serial conditions need to be documented. ### 3.3 Report Generation The capability to develop useful reports for both the operations and supervisory personnel will be included in the system. These will be routine reports, as well as, special reports generated to support short-term goals or testing programs. ### 3.4 Optimization This function will allow the plant supervisory personnel to develop control schemes to enhance the overall safety, efficiency, and emissions parameters of the plant operations. This #### **APPENDIX D5** #### CONTROL SYSTEMS DESIGN CRITERIA development work will normally occur using the plant data but in an off-line mode until the techniques are fully developed and tested so that implementation is completed in a safe manner. #### 3.5 Support Work Stations Work stations will be provided to support software development and testing, report generation, optimization and advanced control, as well as engineering work stations to allow for system troubleshooting and configuration changes to the system without interfering with the operation of the plant. #### 3.6 Firewalls Prevention of access to the direct plant controls by unauthorized individuals will be provided to provide a high level of security to the operations. These firewalls will be provided between each level of the overall system. #### 3.7 Outside Communications Capability to communicate with parties outside of the plant will be provided at the highest level of the system. These typically include owner employees that are not located at the Project Site, but may include suppliers of goods and services, and outside parties and suppliers of equipment for maintenance purposes. This firewall will be supplied with a very secure firewall protocol. #### 3.8 Support Equipment The control building will be equipped with UPS to maintain the operation of the control system during power outages. Also, the building will be provided with a very complete fire detection, alarm, and response system. #### 4.0 REMOTE DATA ACQUISITION AND CONTROL To acquire the plant information and deliver the control signals to the final control elements, remote hardware will be supplied. It will be housed in instrument shelters located at or near the process units or equipment areas and will be connected to the central control system by redundant fiber optic data highways. This hardware will be capable of acquiring analog data in the form compatible with the field instrumentation and delivering analog control signals to final control elements such as control valves. In addition, digital inputs that depict status of equipment and digital outputs usually applied to on/off control, are processed by this type of hardware. Sequence-of-Events processing is also included in this area. ### 4.1 Programmable Logic Controllers (PLC) Programmable logic controllers will be applied to areas requiring standalone sequential control such as solids handling or water treating systems. These controllers will be interfaced to the central control system through direct communication channels. #### 4.2 Control Packages with Supplied Equipment Certain equipment such as large compressors, gas and steam turbines, and packaged process units, are supplied with dedicated control systems that are pre-programmed to manage the startup, operation, safeguard, and shutdown of the supplied equipment. This type of system will also be interfaced to the central control system through redundant communication channels to allow the operator to be informed of the operation of the equipment as well as to enter control commands. Either redundant or triple-redundant controllers will be considered, depending on the critically of the application. #### 4.3 Safety Instrumented Systems (SIS) The Project will implement the latest proven Safety Instrumented System (SIS) equipment as an integral part of the control system design. The design of the SIS system will comply with the Project SIS safety requirements specification. The appropriate Safety Instrumentation Level (SIL) will be determined and implemented during the detailed design stage. The SIS system will be based on a programmable technology. The operator interface will be engineered so that SIS information is available through the operator display Emergency Safety Device (ESD) buttons in the control room will be connected through a safety-approved redundant link to the remote equipment rooms. The SIS system will provide sequence of events recording. The interface to this event log will be common with that of the DCS and the SIS will be time-synchronized with the DCS. ### 4.4 Fire and Gas System Dedicated processors will be provided for fire and gas detection and alarming. The operator interface to the fire and gas system will be via the operator displays in the central control room. The field signals will be gathered in the remote equipment rooms, and data will be transmitted to the fire and gas systems. Fire detection equipment for smoke detection, heat detection, manual stations, alarms, and signal monitoring and system control will be of the hard-wired addressable type which includes but is not limited to control unit, power supply, input modules, alarm modules, extinguishing system releasing modules, and auxiliary relay modules, as required, to provide the required system logic. Ultraviolet/Infrared (UV/IR) flame detection equipment will be of the microprocessor-based multi-channel type. Buildings including the central control room, power distribution centers, and remote control equipment, should be fitted with a high-sensitivity smoke detection system for early warning. These systems will detect fire before visible smoke or fire is present. # APPENDIX D5 CONTROL SYSTEMS DESIGN CRITERIA #### 5.0 FIFLD INSTRUMENTATION #### 5.1 General All instrumentation, with the exception of valve actuators and local indicators, should be electronic. The use of local pneumatic controllers will be avoided. Instrumentation selection will restrict the use of mercury-containing substances. Dedicated field instruments will be used for SIS applications. Adequate redundancy will be provided as necessary to meet the requirements defined by the loop integrity level and plant reliability requirements. Switches will not be used in SIS applications
where transmitters are available as an option for a measurement signal. The use of local gauges (temperature, pressure, level, and flow) will be minimized through the use of local liquid crystal display (LCD) readouts on transmitters. Wherever possible, instruments will be close coupled and impulse tubing minimized. Instruments should be located in areas with easy access (such as walkways, permanent platforms, or at grade). Technologies that would lead to minimizing on-site calibration of the instruments will be considered. Wireless transmitters may be used where appropriate and in non-critical applications. #### 5.2 Final Control Elements – Valves All instrument valves will comply with the Project fugitive emissions requirements. Valves with double-acting actuators (no spring) will have an associated interlock configured such that the valve is moved to the safe position on low instrument air pressure. This interlock will generally be configured in the DCS unless the duty demands use of the SIS system. Options to obtain and use control valve signatures will be investigated during the design. #### 5.3 Cables Fiber optic cables for network connectivity may be used between the remote areas and the central control buildings with route diversity. Fiber optic cables meant for control-related use will have dedicated patch panels to separate them from general-purpose telecommunication patch panels. The control-related fiber and related equipment will be uniquely marked by color and by tagging convention. Additional protection will be considered during design. # APPENDIX D5 CONTROL SYSTEMS DESIGN CRITERIA SIS cable and wires will be different colors and will be tagged/labeled to distinguish from normal control wiring. SIS junction boxes will be separate and labeled to identify contents as relating to SIS. ## 5.4 Vibration Condition Monitoring Vibration monitoring equipment will be supplied on all major rotating equipment. A central condition monitoring system may be provided to help minimize the life-cycle costs for the plant. # APPENDIX D5 CONTROL SYSTEMS DESIGN CRITERIA This page intentionally left blank Appendix E **Air Quality** # Appendix E-1 Seasonal and Annual Wind Roses # Appendix E-2 **Construction Criteria Pollutant and Greenhouse Gas Emissions** | | | | 1 | | | | |---|-----------|------------|--------|--------|--------|--------| | Activity | PM_{10} | $PM_{2.5}$ | CO | ROG | NO_x | SO_2 | | Project Construction Emissions | | | | | | | | On-Site Combustion Emissions | | | | | | | | Construction Equipment - On-road | 7.84 | 7.06 | 61.80 | 22.69 | 127.81 | 0.13 | | Construction Equipment - Off-road | 13.28 | 12.22 | 126.21 | 38.72 | 181.10 | 0.32 | | Worker Vehicles | 0.01 | 0.00 | 3.00 | 0.23 | 0.24 | 0.008 | | Delivery Trucks | 1.824 | 1.654 | 2.205 | 1.359 | 5.138 | 0.004 | | Linear Combustion Emissions | 0.00 | 0.00 | 155.42 | 44.31 | 258.98 | 0.00 | | On-Site Fugitive Emissions | | | | | | | | Construction Equipment - On-road | 55.98 | 5.60 | | | | | | Construction Equipment - Off-road | 0.94 | 0.09 | | | | | | Worker Vehicles | 4.42 | 0.44 | | | | | | Delivery Trucks | 143.40 | 14.34 | | | | | | Construction Activity | 36.28 | 11.55 | | | | | | Linear Fugitive Emissions | 0.00 | 0.00 | 1 | | | | | Subtotal of Project Emissions | 263.95 | 52.96 | 348.63 | 107.31 | 573.26 | 0.46 | | Off-Site Construction Emissions | - | | | | | | | Off-Site Combustion Emissions | | | | | | | | Worker Vehicles | 0.39 | 0.20 | 230.14 | 7.08 | 27.55 | 0.272 | | Delivery Trucks | 11.02 | 9.45 | 15.40 | 3.40 | 78.16 | 0.07 | | Off-Site Paved Road Fugitive Dust Emissions | | • | | | | | | Worker Vehicles | 0.85 | 0.21 | | | | | | Delivery Trucks | 13.87 | 3.40 | 1 | | | | | Subtotal of Off-Site Emissions | 26.13 | 13.26 | 245.54 | 10.48 | 105.71 | 0.35 | | Total Maximum Daily Emissions (lbs/day) | 290 | 66 | 594 | 118 | 679 | 1 | | Estimated Annual Maximum Construction Emissions of Criteria Pollutants (tons/yr) | | | | | | | | |--|-----------|-------------------|-------|-------|--------|--------|--| | Activity | PM_{10} | PM _{2.5} | CO | ROG | NO_x | SO_2 | | | Project Construction Emissions | | | | | | | | | On-Site Combustion Emissions | | | | | | | | | Construction Equipment - On-road | 0.78 | 0.70 | 7.68 | 2.77 | 15.84 | 0.02 | | | Construction Equipment - Off-road | 1.48 | 1.37 | 17.68 | 5.41 | 26.24 | 0.03 | | | Worker Vehicles | 0.00 | 0.00 | 0.43 | 0.03 | 0.03 | 0.001 | | | Delivery Trucks | 0.158 | 0.143 | 0.291 | 0.179 | 0.678 | 0.001 | | | Linear Combustion Emissions | 0.14 | 0.13 | 12.89 | 3.86 | 21.52 | 0.03 | | | On-Site Fugitive Emissions | | | | | | | | | Construction Equipment - On-road | 6.04 | 0.60 | | | | | | | Construction Equipment - Off-road | 0.15 | 0.01 | | | | | | | Worker Vehicles | 0.76 | 0.08 | 1 | | | | | | Delivery Trucks | 12.24 | 1.22 | | | | | | | Construction Activity | 4.76 | 1.54 | 1 | | | | | | Linear Fugitive Emissions | 0.11 | 0.01 | 1 | | | | | | Subtotal of Project Emissions | 29.20 | 5.80 | 38.98 | 12.25 | 64.31 | 0.08 | | | Off-Site Construction Emissions | | | | | | | | | Off-Site Combustion Emissions | | | | | | | | | Worker Vehicles | 0.07 | 0.03 | 33.08 | 1.02 | 3.96 | 0.039 | | | Delivery Trucks | 1.00 | 0.86 | 2.03 | 0.45 | 10.32 | 0.01 | | | Off-Site Paved Road Fugitive Dust Emissions | | • | | • | | | | | Worker Vehicles | 0.14 | 0.04 | | | | | | | Delivery Trucks | 1.27 | 0.31 |] | | | | | | Subtotal of Off-Site Emissions | 2.48 | 1.24 | 35.11 | 1.47 | 14.28 | 0.05 | | | Total Maximum Annual Emissions (tons/year) | 32 | 7 | 74 | 14 | 79 | 0 | | | Estimated Emissions of GHG | Pollutants, Ent | ire Consti | ruction Po | eriod | |--------------------------------------|-----------------|-----------------|------------------|-------------------| | Activity | CO ₂ | CH ₄ | N ₂ O | CO ₂ e | | Project Construction Emissions | | | | | | On-Site Combustion Emissions | | | | | | Construction Equipment - On-road | 5,749.3 | 0.1 | 0.1 | 5,781.3 | | Construction Equipment - Off-road | 9,143.5 | 1.6 | 0.2 | 9,243.2 | | Worker Vehicles | 271.9 | 0.0 | 0.0 | 275.4 | | Delivery Trucks | 388.2 | 0.0 | 0.0 | 390.0 | | Linear Combustion Emissions | 2,682.5 | 0.3 | 0.0 | 2,701.6 | | Subtotal of Project Emissions | 18,235.3 | 2.0 | 0.4 | 18,391.6 | | Off-Site On-Road Emissions | • | | | • | | Off-Site Combustion Emissions | | | | | | Worker Vehicles | 15,381.0 | 3.6 | 1.8 | 16,023.5 | | Delivery Trucks | 5,841.8 | 0.3 | 0.2 | 5,903.8 | | Subtotal of Off-Site Emissions | 21,222.8 | 3.9 | 2.0 | 21,927.3 | | Total Maximum Daily Emissions (tons) | 39,458.2 | 5.9 | 2.4 | 40,318.8 | | Estimated Emissions of GHG I
(me | Pollutants, Ent
tric tonnes) | ire Const | ruction P | eriod | |--|---------------------------------|-----------------|------------------|-------------------| | Activity | CO ₂ | CH ₄ | N ₂ O | CO ₂ e | | Project Construction Emissions | | | | | | On-Site Combustion Emissions | | | | | | Construction Equipment - On-road | 5,215.7 | 0.1 | 0.1 | 5,244.7 | | Construction Equipment - Off-road | 8,294.8 | 1.4 | 0.2 | 8,385.2 | | Worker Vehicles | 246.6 | 0.0 | 0.0 | 249.9 | | Delivery Trucks | 352.2 | 0.0 | 0.0 | 353.8 | | Linear Combustion Emissions | 2,433.5 | 0.3 | 0.0 | 2,450.9 | | Subtotal of Project Emissions | 16,542.8 | 1.8 | 0.3 | 16,684.5 | | Off-Site On-Road Emissions | | | | | | Off-Site Combustion Emissions | | | | | | Worker Vehicles | 13,953.4 | 3.3 | 1.7 | 14,536.2 | | Delivery Trucks | 5,299.6 | 0.2 | 0.2 | 5,355.8 | | Subtotal of Off-Site Emissions | 19,253.0 | 3.5 | 1.8 | 19,892.1 | | Total Maximum Daily Emissions (tonnes) | 35,795.8 | 5.3 | 2.2 | 36,576.6 | | CO | MONTHLY | / EMISSI | IONS (II | bs/dav) |) |---|---------|----------|----------|---------|-----|-----|-----|-----|------|------|-----|-----|----|------|------|-------|-----|----|----|------|-------|------|------|-----|-------|-------|----|----|------|------|------|-----|-----|-----|-----|-----|------|------|------|-----|----| | CONSTRUCTION VEHICLES | 1 2 | | 4 | | | 7 | 8 | 9 1 | 0 11 | 12 | 13 | 14 | 15 | 16 1 | 7 18 | 19 | 20 | 21 | 22 | 23 2 | 24 25 | 5 26 | 27 | 28 | 29 30 | 31 | 32 | 33 | 34 3 | 5 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 4 | 4 45 | 46 | 47 | 48 | | On-Road Vehicles | 18 cy fill mat'l haul truck | 0 | 0 13 | 13 | 26 | 26 | 26 | 26 | 13 | 13 1 | 3 13 | 7 | 7 | 7 | 7 | 7 | 7 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 4 | 1 4 | 4 | 4 | 1 | 1 | 1 | 0 | 0 | 0 0 | 0 | 0 | | Bus | 3 | 3 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 7 7 | 7 | 7 | 7 | 7 | 9 | 9 9 | 13 | 13 | 13 | 13 | 18 | 18 1 | 18 | 18 | 18 | 18 18 | 18 | 18 | 18 | 18 1 | 3 16 | 16 | 13 | 13 | 7 | 7 | 4 | 4 | 3 3 | 3 | 1 | | Concrete Pumper Truck | 0 | 0 0 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 4 | 4 | 4 | 3 | 3 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 0 | 1 | 1 | 1 1 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Dump Truck | 4 | 5 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 3 3 | 3 | 3 | 3 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 : | 3 4 | 4 | 4 | 3 | 1 | 1 | 1 | 1 | 1 0 | 0 | 0 | | Diesel Tractor (Yard Dog) | 0 | 0 0 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 6 | 6 | 6 | 6 | 6 | 12 1 | 12 12 | 12 | 12 | 12 | 12 | 15 | 15 1 | 5 15 | 15 | 15 | 15 15 | 15 | 15 | 15 | 15 | 6 | 6 | 6 | 6 | 6 | 6 | 0 | 0 | 0 0 | 0 | 0 | | Service Truck - 1 ton | 3 | 3 3 | 5 | 5 | 5 | 5 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 1 | - 1 | 1 | | Pile Driver Truck | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0
| 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 |) 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Truck - Fuel/Lube | 1 | 1 1 | - 1 | 1 | 1 | 1 | 1 | 4 | 1 | 1 1 | 1 | 1 | 1 | 4 | 4 | 1 1 | 1 | 1 | 4 | 1 | 1 | 4 | 1 1 | 1 | 1 | 1 1 | 1 | 4 | 4 | 1 | 1 1 | 1 | 1 | 4 | 1 | 1 | 4 | 1 | 1 1 | 0 | 0 | | Tractor Truck 5th Wheel | ò | | | | | | | | | | | | | | | | | | | , | | | | , | | | | | | | | | | | | , | , | | | 0 | 0 | | Trucks - Pickup 3/4 ton | | 3 3 | | U | | | | | | 0 0 | - 0 | - 0 | | | | | | | | | | | | - 0 | | 0 0 | | | | | | | | | | | | | 0 0 | 0 | | | | | | 3 | 3 | 4 | 4 | 5 | 10 | 10 1 | 0 10 | 16 | 16 | 16 | 16 | 16 1 | 16 16 | 16 | 16 | 16 | 16 | 16 | 16 1 | 16 | 16 | 16 | 16 16 | 16 | 16 | 16 | 16 1 | 16 | 16 | 16 | 16 | 16 | 16 | 10 | 10 | 6 6 | ь | | | Trucks - 3 ton | 1 | | 1 | 1 | 3 | 3 | 3 | 5 | 5 | 5 5 | 8 | 8 | 8 | 8 | 8 | 8 8 | - 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 8 | 8 | 8 | 8 | 5 4 | 4 | 4 | 4 | 3 | 3 | 3 | 1 | 1 | 1 1 | 0 | 0 | | Truck - Water | 7 | 7 7 | 7 | 7 | 7 | 4 | 4 | 4 | 4 | 4 4 | 4 | 4 | 4 | 4 | 4 | 4 4 | - 4 | 4 | 4 | 4 | 3 | 4 : | 3 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 : | 3 3 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 1 | 1 | 1 | | Off Road Vehicles | Air Compressor 185 CFM | 3 | 3 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 4 | 4 | 8 | 8 | 8 | 10 1 | 10 10 | 13 | 13 | 13 | 13 | 15 | 15 1 | 5 15 | 15 | 15 | 15 15 | 15 | 15 | 15 | 15 1 | 10 | 10 | 8 | 8 | 8 | 8 | 5 | 5 | 5 3 | 3 | 1 | | Air Compressor 750 CFM | 0 | 0 0 | 0 | 2 | 2 | 2 | 2 | 3 | 3 | 3 3 | 3 | 3 | 3 | 6 | 6 | 6 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 3 3 | 3 | 3 | 2 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 | 2 | | Articulating Boom Platform | | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 |) n | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 |) n | 0 | o | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Bob cat loader | ō | 0 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 8 | 6 | 6 | 6 | 6 | 6 | 6 4 | | 4 | 4 | 4 | 4 | 0 |) 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | , , | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 0 | 0 | 0 | | Bulldozer D10R | 17 1 | 7 17 | 11 | 11 | 11 | 11 | 11 | 11 | 6 | 6 0 | 0 | n | n | n | ñ | 0 0 | | 0 | 0 | 0 | 0 | 0 | | n | 0 | 0 0 | n | 0 | n | 0 | | | r. | 0 | n | 0 | n | 0 | 0 0 | 0 | ů. | | Buildozer DfOR
Buildozer DfC | 17 1 | 0 1/ | | 6 | 6 | 6 | 6 | 6 | 6 | 3 2 | 9 | 3 | 3 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | ň | | 3 | 3 | 3 3 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Concrete Trowel Machine | | 0 0 | 9 | 0 | - 1 | 1 | 1 | 4 | 1 | 1 4 | 3 | 4 | 1 | 4 | 1 | 1 4 | - 4 | 1 | 1 | 4 | 4 | 1 | | 4 | 0 | 0 0 | 0 | 0 | 0 | 0 1 | | | 1 | 1 | 4 | 1 | 0 | 0 | 0 0 | 0 | 0 | | Concrete Vibrators | 0 | 0 0 | 0 | U | | | | | 1 | 1 1 | 1 | 1 | | 1 | | . 1 | . 1 | | | 1 | | | 1 1 | 1 | 0 | 0 0 | U | 0 | 0 | 0 1 | , 1 | 1 | | | 1 | 1 | 0 | 0 | 0 0 | Û | 0 | | | | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 (|) 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Cranes - Mobile 35 ton | 0 | 0 0 | 0 | 0 | 0 | 2 | 2 | 2 | 6 | 6 6 | 6 | 11 | 11 | 11 | 11 1 | 11 11 | 11 | 11 | 11 | 11 | 11 | 11 1 | 1 8 | 8 | 8 | 8 8 | 8 | 8 | 8 | 3 : | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 2 | 2 | 2 | | Cranes - Mobile 45 ton | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 4 | 4 | 4 | 4 | 4 | 4 | 4 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 4 4 | 4 | 4 | 4 | 4 4 | 1 4 | 4 | 4 | 4 | 2 | 2 | 0 | 0 | 0 0 | 0 | 0 | | Crane - Mobile 65 ton | | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 2 | 2 | 4 | 8 | 10 | 10 1 | 10 12 | 12 | 12 | 12 | 12 | 12 | 12 1 | 12 | 12 | 12 | 12 10 | 10 | 8 | 4 | 4 4 | 1 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 0 | 0 | 0 | | Cranes 100 / 150 ton cap Diesel Powered Welder Excavator - Backhoe/loader | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 1 | 3 | 3 | 4 | 4 | 5 | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 5 | 5 | 3 | 3 1 | 1 | 1 | 1 | 1 : | 1 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Diesel Powered Welder | 0 | 0 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 4 | 4 | 4 5 | 5 | 5 | 5 | 5 | 7 | 7 | 7 | 7 | 7 | 7 7 | 7 | 4 | 4 | 4 | 1 4 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 1 | 1 | 1 | | Excavator - Backhoe/loader | 3 | 3 5 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 3 | 3 | 3 | 3 | 3 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 : | 3 3 | 3 | 3 | 2 | 2 | 2 | 0 | 0 | 0 0 | 0 | 0 | | | 56 5 | 6 56 | 56 | 32 | 32 | 16 | 'n | 0 | n | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | | n | n | 0 0 | 0 | n | 0 | 0 1 |) 0 | | | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Excavator - Earth Scraper 637
Excavator - loader | | 4 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 4 | 2 | 2 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | | 2 | 2 | 2 2 | 0 | | 0 | 0 | , , | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Excavator - Motor Grader (CAT140H) | | 3 3 | | * | * | * | * | ~ | ^ | | | - | | 0 | 0 | 0 0 | | 0 | | | 0 | 0 | | 2 | 2 | 2 2 | 0 | | 0 | 0 | | | | 2 | 2 | 2 | 0 | 0 | 0 0 | 0 | 0 | | Excavator - Wotor Grader (CAT140H) Excavator - Trencher (CAT320) | 0 | 3 3 | 3 | 9 | 9 | 0 | 0 | U | U | | U | U | U | U | U | | | U | U | U | U | | , , | 3 | 3 | 3 3 | | U | U | | | | | 3 | 3 | 3 | U | | | | | | | | 0 0 | U | U | - / | - / | - / | | | / / | | | | / | 0 | 0 0 | | U | U | U | U | 0 | , , | 0 | U | 0 0 | 0 | U | U | 0 1 | , , | U | U | U | 0 | 0 | U | U | 0 0 | U | U | | Fired Heaters (2,000 BTU) | 0 | 0 0 | 0 | - 1 | - 1 | 1 | - 1 | 1 | 1 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 . | 2 2 | 2 | 2 | 2 2 | 2 | 1 | 1 | 1 | 1 1 | - 1 | - 1 | - 1 | 1 | 1 | 1 | 1 | 1 1 | 0 | 0 | | Forklift | | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 4 | 4 4 | - 4 | 4 | 4 | 4 | 4 | 4 . | 4 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 : | 3 3 | 3 | 3 | 3 | 3 | 3 | 1 | 1 | 1 1 | - 1 | 1 | | Fusion Welder | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Heavy Haul / 600 tn Crane | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 4 4 | - 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Heavy Haul / 1,000 tn Crane | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 4 | 4 | 4 | 4 | 4 | 4 | 0 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Light Plants | 0 | 0 1 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 2 2 | 3 | 3 | 3 | 3 | 5 | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 5 | 5 | 5 | 5 5 | 3 | 3 | 3 | 3 : | 3 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 1 | 1 | 1 | | Man lifts - telescoping | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 5 | 5 | 5 9 | 9 | 9 | 9 | 9 | 9 | 9 9 | 14 | 14 | 14 | 14 | 19 | 19 1 | 19 | 19 | 19 | 19 19 | 19 | 19 | 19 | 19 1 | 1 14 | 14 | 9 | 9 | 9 | 9 | 5 | 5 | 5 5 | 2 | 2 | | Man lift - scissor | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | n | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 0 | | 0 | 0 | 0 1 |) (| | | 0 | n | 0 | 0 | 0 | 0 0 | 0 | 0 | | Portable Compaction Roller | 0 | 0 12 | 12 | 12 | 12 | 12 | 12 | - | - | | - | - | - | - | - | | - | - | - | - | - | 0 | | 0 | - | | - | - | - | 0 | , , | | - | - | 2 | 2 | 0 | 0 | 0 0 | 0 | 0 | | | 0 | 0 12 | 12 | 12 | 12 | 12 | 12 | 5 | 5 | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 5 | | | | 5 | 5 | 0 | | U | 5 | 5 5 | 5 | 5 | 5 | 0 1 | | 5 | 5 | 5 | - 2 | - 2 | | 0 | | 0 | 0 | | Portable Compaction - Vibratory Plate | | 0 0 | U | 0 | 0 | U | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 0 | 0 | 0 1 | | 0 | U | 0 0 | 0 | U | 0 | 0 1 | | U | | 0 | 0 | U | 0 | 0 | 0 0 | 0 | 0 | | Portable Compaction - Ram | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 (|) 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Pumps | 1 | 1 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | | Portable Power Generators | | 8 8 | 8 | 12 | 12 | 12 | 12 | 12 | 20 2 | 0 20 | 20 | 20 | 20 | 31 | 31 3 | 31 31 | 31 | 31 | 31 | 41 | 41 | 41 4 | 41 | 41 | 41 4 | 11 41 | 41 | 41 | 41 | 41 3 | 31 | 31 | 31 | 20 | 20 | 20 | 20 | 20 2 | 0 10 | 10 | 10 | | Truck Crane - Greater than 300 ton | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 2 | 2 | 2 | 2 | 2 | 5 | 5 7 | 7 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 7 7 | 5 | 5 | 5 | 2 | 2 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Truck Crane - Greater than 200 ton | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 1 | 1 | 1 | 1 1 | 3 | 3 | 3 | 4 | 4 | 4 . | 4 | 4 | 4 | 3 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Vibratory Roller Ingersol-Rand 20 ton | 8 | 8 8 | 8 | . 8 | 8 | 8 | 8 | 8 | 5 | 5 5 | - 5 | 5 | 3 | 3 | 3 | 3 (| | n | n | 0 | 0 | 0 | | 5 | 5 | 5 5 | 0 | n | n | 0 1 | | 3 | 3 | 3 | 3 | 0 | n | 0 | 0 0 | 0 | 0 | | WORKER VEHICLES | | | | | _ | | | | | | | | | | | | _ | | _ | | | | , , | | | | | | | | , , | | | | | | | | | _ | | | Personal commuting vehicles DELIVERY TRUCKS | 0 | 0 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 1 | 2 | 2 | 2 | 3 | 3 | 3 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 6 | 6 | 6 | 6 6 | 6 | 6 | 6 | 6 | 5 5 | 5 | 4 | 3 | 3 | 2 | 1 | 1 | 1 1 | 1 | 1 | | Light delivery truck (e.g. Fed-Ex) | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | | Heavy delivery truck (e.g. flat beds carrying | | | 0 | | | 0 | , | | | | | | , | | | | | | 0 | J | | | | 0 | • | | | | | | , , | | | | J | - | | • | | 0 | | | construction eqp) | | 2 2 | 2 | | | | | 2 | | | | | | | | | | | | | | 2 | , , | | | | | | | | | | | | | | | | | 2 | 2 | | | 2 | | | | 2 | 2 | 2 | | | 2 2 | 0 | 0 | 2 | 2 | | 2 2 | | 0 | 2 | 2 | | 2 | | 2 | | 2 2 | 2 | 2 | 2 | 0 1 | 2 2 | 2 | 2 | 0 | 2 | - 2 | 2 | 2 | 2 2 | | | | Import fill trucks | 10 1 | | | | 10 | 10 | 0 | | 0 | υ 0 | | | | | | | | | | |
| | 219 | 0 | | | 0 | 0 | U | |) 0 | 0 | 0 | | 0 | 109 | 65 | 65 6 | 0 0 | | | | ONSITE TOTAL (lbs/day) | Month | - 1 | 2 | 3 | - 4 | - 5 | 6 | 7 | 8 | 0 | 10 | 11 | 12 1 | 13 : | 14 1 | 5 16 | 5 1 | 7 18 | 2 10 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 20 | 30 | 31 1 | 22 | 33 1 | 24 3 | 5 36 | 37 | . 35 | 30 | | 0 4: | 1 43 | 2 4 | 3 4 | 44 / | 45 4 | 46 | 47 4 | 8 49 | |------|---|------|------|------|------|-----|-----|-------|------|-----|-----|-----|-------|------|-------|------|--------------|-------|--------------|---------------|---------------|----------------|-------|--------------|-----|-----|-----|-----|-----|-----|----------|-----|------|-------|----------------|------------|------|----------------|-----------|-------|------|------------|------------|------|-------|-----|-------|------| | | WORKER VEHICLES | | | | | | | | | | -10 | | | | | | | | | | | | | | | | | | | - | <u> </u> | | | , , | | - 0, | | | | - | | | | | | - | | | | | Personal commuting vehicles | | 7 12 | 16 | 3 20 | 30 | 38 | 8 45 | 60 | 67 | 80 | 100 | 112 1 | 132 | 155 1 | 87 2 | 11 2 | 30 2 | 14 2 | 57 27 | 72 28 | 6 320 | 34/ | 4 370 | 303 | 308 | 437 | 468 | 483 | 486 | 491 | 484 | 479 | 458 | 133 4 | 20 35 | 31 3 | 80 3 | 13 3 | 255 2 | n2 1 | 137 1 | 110 1 | 100 | 100 | 101 | 86 | 79 5 | | | DELIVERY TRUCKS | | | - 10 | | | | , 40 | , 00 | 0, | | 100 | | · OL | .00 . | o, | | .00 2 | | | | 0 020 | , 04- | | 000 | 000 | 407 | 400 | 400 | 400 | 401 | 101 | 410 | | | .0 00 | ,, , | 00 0 | | 200 2 | | | | 100 | 100 | 101 | - | - | | | Light delivery truck (e.g. Fed-Ex) | | 1 1 | - | 1 1 | - 1 | - 1 | 1 1 | 1 | - 1 | - 1 | - 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | | 1 1 | - 1 | - 1 | - 1 | - 1 | - 1 | - 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | | | Heavy delivery truck (e.g. flat beds carrying | construction eqp) | - 16 | - 16 | - 16 | - 15 | 15 | 15 | 5 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 1 | 15 1 | 5 15 | 5 15 | E 16 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 16 | 15 1 | 16 | 16 | 15 | 16 | 15 | 15 | 15 | 15 | 15 | 16 | 15 | 15 1 | | | Import fill trucks | | 6 46 | | | | | | | | 0 | 0 | | 0 | | | | | | | | 0 0 | | 0 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | 0 | 10 | 0 | 0 | | | 0 | | | LINEARS | 40 | 9 40 | 40 | 9 40 | 40 | 40 | 9 40 | | U | U | U | U | U | U | U | U | U | U | U | U | 0 0 | , (| 0 0 | U | | | | | | | ON ROAD | Dump Truck | , | 0 0 | | | | | | | ^ | | | , | | 0 | | 0 | 0 | 0 | 0 | 0 | | . , | | | | ^ | 0 | ^ | | | 0 | ^ | 0 | ^ | 0 | 0 | ^ | | 0 | 0 | ^ | | ^ | _ | _ | _ | _ | | | Service Truck (MHD-DSL) | |) (| | | | | | | 0 | 0 | 2 | 2 | 0 | ٥ | 0 | 0 | ۰ | ٥ | • | • | 3 3 | , , | | 0 | | | | |) (| | | | | | | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 4 | | | U | U | | U | 0 | U | U | U | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | U | | | 0 | | | Pipe Haul Truck and Trailer (HHDT-DSL) | | | | | | | | | U | U | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 3 3 | | | 0 | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 | 0 | 0 | 0 | U | 0 | | | 3/4 Ton Pickup (MHD-DSL) | | 0 0 | |) (| 0 | | 0 | 0 | 0 | 0 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 1 | 10 1 | 0 10 |) (| 0 0 | | | Truck - water | (| 0 0 | |) (| 0 | | 0 0 | 0 | 0 | 0 | 3 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 3 | 3 (| 0 0 | | | OFF ROAD | Air Compressor (185 CFM) | , | 0 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 3 | 3 | 5 | 5 | 8 | 8 | 8 | 8 | 5 | 5 | 3 3 | 3 (| 0 0 | | | Bore Machine (Hydraulic) | (| 0 0 | | 0 | 0 | | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 0 |) (| 0 0 | | | 12 Ton Hydra Crane | (| 0 0 | | 0 | 0 0 | | 0 0 | 0 0 | 0 | 0 | 3 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 5 5 | 5 (| 0 0 | | | Backhoe/loader | (| 0 0 | | 0 | 0 0 | | 0 0 | 0 0 | 0 | 0 | 10 | 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 1 | 16 1 | 0 10 |) (| 0 0 | | | Excavator - Trencher | (| 0 0 | | 0 | 0 0 | | 0 0 | 0 0 | 0 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 (| 0 0 | | | Forklift | (| 0 0 | | 0 0 | 0 0 | | 0 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 1 | 1 (| 0 0 | | | Welding Generator | | 0 0 | | 0 0 | 0 | | 0 | 0 | 0 | 0 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 1 | 16 1 | 6 16 | 3 (| 0 0 | | | 3 to 5 Ton AC Roller | | 0 0 | | 0 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 (| 0 0 | | | Pipe Bending Machine | | | |) (| 0 | | 0 | 0 | 0 | 0 | 3 | 3 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 3 | 3 0 |) (| 0 0 | | E | RAIL | | | | | | | | | _ | _ | | | | | | | | | | | | | | | | | | _ | | | | | | _ | | | | | | | - | | _ | | | _ | _ | | , in | AIR COMPRESSOR 185 | - |) (| | | | | | | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 0 |) (| n n | 0 | | . 7 | BOOM TRUCK 12 TON | , | | | , , | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 0 | , , | 0 0 | | 0 | | 正 | CAT 325 BACKHOE | |) (| | , , | , , | | , , | , , | 0 | 0 | 0 | 0 | 3 | 3 | 'n | 'n | 'n | 0 | 0 | 0 | 0 0 | , , | 0 0 | | 0 | CAT 323 BACKHOE | |) (| | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 0 | , , | 0 0 | | | CAT DOZER D-6 | |) (| | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 4 | 0 | 0 | 0 | 0 0 | | | | | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | CAT MODEL 12 MOTOR GRADER | | | | | | | | | 0 | 0 | U | U | 9 | 9 | | 0 | 4 | U | U | 0 | | | | U | U | | | 0 | U | U | U | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | U | | | U | | | CAT MODEL 12 MOTOR GRADER
CAT ROLLER-COMPACTOR 563 | | , , | | | | | | | 0 | 0 | 0 | 0 | 6 | ь | 3 | 3 | 3 | 0 | 0 | 0 | 0 0 | | | 0 | 0 | U | 0 | 0 | 0 | 0 | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | U | U | 0 | 0 | 5 | 5 | 2 | U | 0 | 0 | 0 | 0 | 0 0 | , , | | 0 | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 | U | 0 | 0 | U | 0 | | | CAT RUBBER TIRE LOADER 966 | | 0 0 | |) (| 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | CAT SCRAPER 615 | | 0 0 | | 0 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | CRANE-ROUGH TERRAIN 45T | (| | |) (| 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | GENSET 5KW | , | 0 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | JOHN DEERE TRACTOR 9400 | | 0 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | PICK-UP CRAFT | (| | | 0 | 0 | | 0 0 | 0 | 0 | 0 | 0 | 0 | 10 | 10 | 10 | 10 | 10 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | PICK-UP OVERHEAD | | 0 0 | | 0 | 0 | | 0 0 | 0 | 0 | 0 | 0 | 0 | 7 | 22 | 22 | 18 | 18 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | RAIL BALLAST REGULATOR | (| 0 0 | | 0 | 0 0 | | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | RAIL CLIP MACHINE | (| | | 0 | 0 | | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | RAIL MOVER-SHUTTLE WAGON | | 0 0 | | 0 | 0 | | 0 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 4 | 4 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | RAIL TAMPER | (| 0 0 | | 0 | 0 0 | | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | RAIL WELDER | | 0 0 | | 0 | 0 0 | | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | RAMEX WALK BEHIND COMPACTOR | | 0 0 | | 0 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | TRI-AXLE DUMP TRUCK | | 0 0 | | 0 | 0 | | 0 0 | 0 | 0 | 0 | 0 | 0 | 5 | 8 | 3 | 0 | 0 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | TRUCK FLATBED 14 FOOT | i | 0 0 | | 0 0 | 0 | | 0 |) 0 | ō | ō | ō | 0 | 1 | 1 | 4 | 4 | 4 | 0 | 0 | 0 | 0 0 |) (| 0 0 | ō | ō | ō | ō | ō | ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | TRUCK TRACTOR | |) (| , , |) (|) 0 | | 0 0 |) 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 0 |) (| 0 0 | 0 | 0 | 0 | 0 | ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | WATER TRUCK, 4M ON-ROAD | · |) (| |) (| 0 0 | | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 0 |) (| 0 0 | | | WELDING MACHINE 350 AMP | |) (| | , , | | | | , , | 0 | 0 | 0 | n | 'n | 'n | ń | ń | 'n | 0 | 0 | 0 | 0 0 | | - 0
n n | 0 | 0 | 0 | n | 0 | n | n | n | 0 | n | ñ | 0 | 0 | 0 | ñ | n | ñ | 0 | n | 0 | n | n | 0 | 0 | | | LINEARS TOTAL (Ibs/day) | | 0 0 | | | . 0 | | | | 0 | 0 | 56 | GE 4 | 142 | 162 1 | EE 1 | E1 1 | EE (| 24 | 11 6 | | 0 65 | | 0 0 | 0 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | • | 0 | | 0 | | | | | | | , 0 | | - 0 | 9 107 | | 00 | 00 | 115 | 407 4 | 143 | 102 1 | 00 0 | 51 1
26 2 | 46 0 | 94 :
50 2 | 91 E
73 28 | 36 6
38 30 | 9 65 | 5 359 | 0 0
9 385 | 408 | 413 | 453 | 484 | 499 | 501 | 506 | 499 | 495 | 473 · | 0
149 4 | U
35 39 | | U
R4 3: | U
29 2 | 770 2 | 47 4 | U
153 1 | U
125 1 | 125 | 125 1 | 117 | | 94 | | | OFFSITE VEHICLES TOTAL (lbs/day) | 1 335
4 612 | | | | | | | | | | | | | 149 4
524 5 | | | 54 3:
51 4: | | 100 3 | | | | | | | 138 1 | | | | TOTAL PROJECT (lbs/day) | 213 | 690 | | | | | | | | | | | | | | | | - According to schedules provided by Fluor, Linear construction (except rail) takes place in months 11-22. According to schedules provided by Fluor, Rail construction occurs in months 13-17. | The second secon | | |--|-------------------------------| | Fig. 1. September | 44 45 46 47 48 | | Part | 0 0 0 0 0 | | Dumphlane | 858 572 572 572 286 | | Description | 0 0 0 0 0 | | Sewer-Infort- 150 | 286 286 0 0 0 | | Part Down Flock | 0 0 0 0 0 | | Teal-Perfection Perfection | 286 286 286 286 286 | | Tractor Process Services 1. Part of the Process Services | 0 0 0 0 0 | | Tracks - Policy 344 mm | 136 136 136 0 0 | | Track-Yame 1431 1431 1431 1431 1431 1431 1431 14 | 0 0 0 0 0 | | Truck - Water (1-51) (-52) 1,531 1 | 2,041 1,360 1,360 1,360 1,360 | | Off Read Value 1 Alt Congress (11 CFM | 286 286 286 0 0 | | A Compression 18 CPM | 286 286 286 286 286 | | A Compressor PIOC M | | | Articularing Brown Parliame O O O O O O O O O | 427 427 214 214 107 | | Bio-Casterinate PIOR | 225 225 225 225 225 | | ## Pinkferent FURNAL Files 1.544 1 | 0 0 0 0 0 | | Balteere DCC | 0 0 0 0 0 | | Convert Vibrations | 0 0 0 0 0 | | Converse Vibrations | 0 0 0 0 0 | | Cares-Mobile 55 ten 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 | | Carriers - Modele Selson 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 | | Common Number Numbe | 431 431 215 215 215 | | Part Clares (10) 150 brace 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 | | Disease Powerweeks 1 | 345 345 0 0 0 | | Processor Contract | 0 0 0 0 0 | | Exercise Companies of Superson Companies Compa | 254 254 254 152 152 | | Excellent - Cheer (CAT1494) | 0 0 0 0 0 | | Execution - Control (CAT1464) Society CAT14641 CAT1464 | 0 0 0 0 0 | | Exception - Terrether (CAVIZE) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 | | First Heater (2,200 ST1) 0 0 0 0 327 327 327 327 327 327 328 48 49 409 409 409 409 409 409 409 409 409 | 0 0 0 0 0 | | Fortish | 164 164 164 82 82 | | Fasish Webster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 164 164 164 82 82 | | Heavy-Head #600 No Clares | 88 88 88 44 44 | |
Heavy- | 0 0 0 0 | | Light-Planes 22 82 164 227 655 655 655 227 237 491 491 605 655 659 120 327 327 491 491 605 655 659 120 329 409 409 409 409 409 409 409 409 409 40 | 0 0 0 0 | | Marithinterscepting 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 409 409 327 327 164 | | Manifit-recissor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 405 405 405 108 108 | | Pursable Companion Notes 0 0 1,964 1,084 1,864 1 | 0 0 0 0 0 | | Purtable Compantion - Name | 0 0 0 0 | | Purtable Compandion - Ram 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 | | Purps 246 246 246 491 491 491 491 491 491 491 491 491 491 | 0 0 0 0 | | Truck Crane - Greater than 300 ton 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 164 164 164 164 164 | | Truck Chare- Gender throat 201 to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.264 2.264 1.132 1.132 1.132 | | Truck Chare- Gender throat 201 to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 | | Vibratory Roller Ingersol-Rand 20 ton 1,394 1,39 | 0 0 0 0 0 | | MODULE NEWS TE | 0 0 0 0 0 | | | | | Personal commuting vehicles 15 25 34 44 65 82 98 131 146 175 218 243 288 338 407 460 502 533 561 594 623 697 749 806 857 867 964 1,021 1,054 1,060 1,071 1,055 1,045 998 945 915 832 805 683 555 440 299 239 | 238 238 221 187 171 | | DELIVERY TRUCKS | | | Light delivery truck (e.g., Fed-Ex) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 6 6 6 6 6 | | Heavy delivery truck (e.g. flat bedes carrying | | | | 424 424 424 424 424 | | Import fill trucks 2,035 | 0 0 0 0 0 | | ONSITE TOTAL (Ibaday) 31,956 32,884 37,738 37,663 36,386 39,086 33,359 27,289 25,281 24,850 25,280 26,589 27,276 28,924 30,028 31,002 33,671 34,758 34,786 38,170 38,973 38,475 40,030 42,856 41,839 40,061 38,414 41,373 40,983 38,992 36,812 33,288 32,852 31,299 28,576 26,047 25,906 27,086 25,338 21,353 18,073 17,467 10,114 10 | 0,113 9,147 6,855 5,875 5,303 | | | | Month | 1 | 2 | 3 | - 4 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 13 | 3 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 : |
24 | 25 2 | 6 27 | 28 | 29 | 30 | 31 | 32 3 | 3 34 | 35 | 36 | 37 31 | 8 3 | 19 40 | 41 | 42 | 43 | 44 4 | 45 46 | 47 | 48 | 49 | |------|---|----------|-------|--------|--------|--------|---------|----------|---------|----------|--------|----------|-------------|-----------|-----------|-------------|----------|---------|---------|--------|----------|--------|----------|----------|----------|------------|------------|-----------|---------|-----------|---------|------------|----------|--------|-----------|------------|---------|-----------|-----------|--------|----------|------------|------------|-----------|--------|--------| | | WORKER VEHICLES | anovatri | | • | 30 | ٠, | | | - 50 | 50 | J, J. | | | | | | | | | | | | | Personal commuting vehicles | | 937 | 1.441 | 1.934 | 2.407 | 7 3 66 | 4 4 62 | 0 552 | 0 7.415 | 0.245 | 9.927 1 | 2 2 1 0 1 2 | 762 161 | 000 10 11 | 7 23.02 | 8 26 019 | 29 207 | 20 127 | 31 720 | 22.615 | 25 250 | 20 447 4 | 2.401 45 | 5 600 46 | 0 405 401 | 167 53 04 | 7 57.764 | 50 641 | 59 975 | 60 565 | 50 688 50 | 42 55 48 | 52.466 | 51 705 A | 7.061 45.5 | 525 204 | 644 21 40 | 7 24 884 | 16 020 | 12 512 | 12 /00 12 | 400 12.47 | 70 10 594 | 0.000 | 7 3 10 | | | DELIVERY TRUCKS | | 007 | 1,441 | 1,004 | 2,401 | , 5,00 | ,02 | .5 5,52 | ,,415 | 0,245 | 0,027 | 2,010 10 | ,102 10,0 | 10,12 | ., 20,02 | 20,015 | 20,001 | 50,157 | 51,125 | 00,010 | 00,200 | JJ,441 4 | 2,401 42 | 3,000 40 | 0,400 40,1 | 30,34 | 1 01,10 | 33,041 | 55,575 | 00,000 | 33,000 33, | 42 50,40 | 00,400 | 01,100 4 | ,001 40,0 | ,,,,,, | 014 01,40 | 24,004 | 10,323 | 10,010 | 10,400 10, | 100 12,411 | 3 10,004 | 3,030 | 7,010 | | | Light delivery truck (e.g. Fed-Ex) | | 457 | 457 | 457 | 457 | 7 45 | 17 45 | 7 45 | 7 457 | 457 | 457 | 457 | 457 4 | 157 45 | 7 45 | 7 457 | 457 | 457 | 457 | 457 | 457 | 457 | 457 | 457 | 457 | 157 45 | 7 457 | 457 | 457 | 457 | 457 | 57 45 | 457 | 457 | 457 4 | 157 4 | 457 45 | 7 457 | 457 | 457 | 457 | 457 45 | 57 457 | 7 457 | 457 | | | Heavy delivery truck (e.g. flat beds carrying | | 407 | 401 | 407 | 401 | , 40 | ,, 45 | , 45 | , 40, | 407 | 401 | 407 | 40, | -57 | ,, 40 | | 401 | 407 | 407 | 407 | 401 | 401 | 401 | 401 | 457 | -00 | 401 | 401 | 451 | 451 | 401 | | 401 | 407 | 401 | | 401 40 | ,, 45, | 407 | 401 | 407 | 107 40 | , 40, | 401 | 401 | | | construction eap) | | 7.182 | 7 192 | 7.182 | 7.182 | 2 7 18 | 32 7.18 | 2 718 | 2 7 182 | 7 182 | 7 182 | 7.182 7 | 182 7.1 | 182 7 18 | 2 718 | 2 7 182 | 7 182 | 7 182 | 7 182 | 7 182 | 7.182 | 7 182 | 7 182 7 | 7.182 | 7.182 7. | 182 7.18 | 2 7 182 | 7 182 | 7 182 | 7.182 | 7 182 7 | 82 718 | 7.182 | 7 102 | 7 182 7 1 | 182 7 | 182 7 18 | 7 182 | 7 182 | 7 102 | 7 182 7 | 192 716 | 82 7.182 | 7 102 | 7 192 | | | Import fill trucks | | 2.394 | | | | | | 4 22.39 | | | 0 | 0 | 0 | | 0 | 0 0 | 7,102 | 7,102 | 7,102 | 0 | 0 | 0 | 0 | 0 | 0 | 0 7,10 | 0 0 | | 0 | 0 | 0 | 0 1 | 1 0 | 0 | 0 | 0 | | 0 0 | 1,102 | 0 | 0 | 0 1 | 0 0 | | | | | LINEARS | | | | | | 4 11,00 | | - 11,00 | , , | | | | | | | | | | | | | | | ON ROAD | Dump Truck | | 0 | 0 | 0 | | n | 0 | 0 | | | 0 | 1 144 1 | 144 17 | 717 171 | 7 171 | 7 1 717 | 1 717 | 1.717 | 1 717 | 1 717 | 1 144 | 1 144 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 0 | 0 0 | - | | | Service Truck (MHD-DSL) | | 0 | 0 | 0 | , | n | 0 | 0 | 0 0 | | 0 | | | | 2 57 | | 959 | 858 | 959 | 959 | 050 | 858 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 ' | 0 0 | 0 0 | | | | Pipe Haul Truck and Trailer (HHDT-DSL) | | 0 | 0 | 0 | , | n | 0 | 0 | 0 0 | | 0 | | | 358 BF | | | 572 | 572 | 572 | 572 | 572 | 572 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 ' | 0 0 | 0 0 | | | | 3/4 Ton Pickup (MHD-DSL) | | 0 | | | , | | | | | | | | | 360 134 | | | 2.041 | 2 041 | 2 041 | | | 2 041 | | | | 0 | 0 0 | | 0 | | | | | | | | | 0 0 | | | | | 0 0 | 0 0 | | | | Truck - water | | 0 | 0 | 0 | , | n | 0 | 0 | 0 (| | 0 | | | 144 1 14 | | | 1 144 | 1 144 | 1 144 | 1 144 | 572 | 572 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 1 | 0 0 | 0 0 | 0 | | | OFF ROAD | | 0 | | | | U | | 0 | | | | 5/2 | 0/2 1,1 | 1,14 | 1,14 | 4 1,144 | 1,144 | 1,144 | 1,144 | 1,144 | 012 | 012 | | 0 | | 0 | 0 0 | | | | 0 | 0 | , , | 0 | | 0 | U | 0 0 | | 0 | | - | 0 0 | _ | | | | Air Compressor (185 CFM) | | 0 | 0 | 0 | - | n | 0 | 0 | 0 0 | | 0 | 214 | 214 4 | 127 43 | 7 64 | 1 641 | 641 | 641 | 427 | 427 | 214 | 214 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 1 0 | - 0 | | | Bore Machine (Hydraulic) | | 0 | 0 | | , | 0 | 0 | 0 | | | 0 | | | | 0 23 | 222 | 233 | 222 | 222 | | | | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 0 | | 0 | | | 12 Ton Hydra Crane | | 0 | 0 | 0 | , | n | 0 | 0 | 0 0 | | 0 | 064 1 | 927 16 | 227 280 | 1 200 | 1 2 801 | 2 8 9 1 | 2 8 9 1 | 2 801 | 2 801 | 1 927 | 1 927 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 ' | 0 0 | | 0 | | | Backhoe/loader | | 0 | 0 | 0 | , | n | 0 | 0 | 0 0 | | 0 | 1442 1 | 442 24 | 103 2.00 | 2.40 | 2 403 | 2.403 | 2,001 | 2.403 | 2.403 | 1.442 | 1.442 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 ' | 0 0 | | 0 | | | Excavator - Trencher | | 0 | 0 | 0 | , | n | 0 | 0 | 0 0 | | 0 | 0 | 427 4 | 127 45 | 7 42 | 7 427 | 427 | 427 | 427 | 427 | 427 | 427 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 ' | 0 0 | | 0 | | | Forkift | | 0 | 0 | | , | n | 0 | 0 | 0 0 | | 0 | 00 | 00 1 | 176 17 | 16 17 | 8 176 | 176 | 176 | 176 | 176 | 176 | 00 | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 0 | | 0 | | | Welding Generator | | 0 | 0 | 0 | , | n | 0 | 0 | 0 (| | 0 | 1811 1 | 00 1 | 1/0 1/ | 1 1 1 1 1 1 | 1 1 911 | 1 911 | 1 911 | 1 811 | 1 011 | 1 811 | 1 811 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 1 | 0 0 | | 0 | | | 3 to 5 Ton AC Roller | | 0 | 0 | 0 | , | n | 0 | 0 | 0 0 | | 0 | | 299 2 | 200 20 | 10 20 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 ' | 0 0 | | 0 | | ш | Pipe Bending Machine | | 0 | 0 | 0 | , | n | 0 | 0 | 0 0 | | 0 | 247 | 247 6 | 104 60 | M 60 | 4 694 | 604 | 604 | 604 | 247 | 247 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 ' | 0 0 | 0 0 | 0 | | | RAIL | , , | | | | | | | | | | | | ď | | 55 | AIR COMPRESSOR 185 | | 0 | 0 | 0 | | n | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 21 | 4 21 | 4 214 | 214 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 0 | 0 0 | - | | - 77 | BOOM TRUCK 12 TON | | 0 | 0 | 0 | , | n | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 2 | 0 20 | 8 286 | 200 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 ' | 0 0 | | 0 | | 正 | CAT 325 BACKHOE | | 0 | 0 | 0 | , | n | 0 | 0 | 0 (| | 0 | 0 | 0 4 | 171 41 | 1 | 0 0 | - 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 0 | 1 0 | 0 | | 0 | CAT 330 BACKHOE | | 0 | | | | 0 | 0 | 0 | | | 0 | | 0 | | 0 70 | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 0 | | | | 0 | 0 0 | 0 0 | - | | | CAT DOZER D-6 | | 0 | 0 | 0 | , | n | 0 | 0 | 0 0 | | 0 | 0 | 0 14 | 120 1.45 | 10 | 0 0 | 714 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 ' | 0 0 | | 0 | | | CAT MODEL 12 MOTOR GRADER | | 0 | 0 | 0 | , | n | 0 | 0 | 0 (| | 0 | 0 | 0 5 | NS1 84 | 1 43 | 1 431 | 431 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 0 | 1 0 | 0 | | | CAT ROLLER-COMPACTOR 563 | | 0 | 0 | 0 | | n | 0 | 0 | 0 0 | | 0 | 0 | 0 6 | 378 63 | 18 33 | 9 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 0 | 1 0 | 0 | | | CAT RUBBER TIRE LOADER 966 | | 0 | | | | 0 | 0 | 0 | | | 0 | | 0 | | 0 160 | 9 1 609 | 1.609 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | | | | 0 | 0 | 0 | 0 0 | | | | 0 | 0 0 | 0 0 | | | | CAT SCRAPER 615 | | 0 | 0 | 0 | , | n | 0 | 0 | 0 (| | 0 | 0 | 0 27 | M3 136 | 11 | 0 0,00 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 0 | 1 0 | 0 | | | CRANE-ROUGH TERRAIN 45T | | 0 | 0 | 0 | | n | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 34 | 15 34 | 5 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 0 | 1 0 | 0 | | | GENSET 5KW | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 | 0 | ō | 0 | 0 30 | 12 15 | 1 0 | 0 | 0 | ō | ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | ō | 0 | 0 0 | J 0 | 0 | | | JOHN DEERE TRACTOR 9400 | | 0 | 0 | 0 | | n | 0 | 0 1 | 0 0 | | 0 | 0 | 0 16 | 302 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 0 | 1 0 | 0 | | | PICK-UP CRAFT | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 | 0 | ō | 0 4.7 | 25 4.72 | 5 4.72 | 5 4.725 | 4.725 | 0 | ō | ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | ō | 0 | 0 0 | J 0 | 0 | | | PICK-UP OVERHEAD | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 1.3 | 320 3.95 | 9 3.95 | 9 3.299 | 3.299 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | J 0 | 0 | | | RAIL BALLAST REGULATOR | | 0 | 0 | 0 | Ċ | 0 | 0 | 0 | 0 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 660 | 660 | 0 | 0 | ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | | | RAIL CLIP MACHINE | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 173 | 173 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | J O | 0 | | | RAIL MOVER-SHUTTLE WAGON | | 0 | 0 | 0 | · · | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 66 | 0 660 | 660 | 0 | 0 | ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | | | RAIL TAMPER | | 0 | 0 | 0 | Ċ | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 660 | 660 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | | | RAIL WELDER | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 101 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | | | RAMEX WALK BEHIND COMPACTOR | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 1 | 19 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 . | 0 0 | J 0 | 0 | | | TRI-AXLE DUMP TRUCK | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 1,1 | 144 1,71 | 7 57 | 2 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | | | TRUCK FLATBED 14 FOOT | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 2 | 286 28 | 6 85 | 858 | 858 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | | | TRUCK TRACTOR | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 1,11 | 6 1,116 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 0 | J 0 | 0 | | | WATER TRUCK, 4M ON-ROAD | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 2 | 286 28 | 16 28 | 5 286 | 286 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 . | 0 0 | J 0 | 0 | | | WELDING MACHINE 350 AMP | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 51 5 | 1 5 | 1 51 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | | | LINEARS TOTAL (Ibs/day) | | 0 | 0 | 0 | (| 0 | 0 | 0 | 0 (| 0 | 0 | 9,373 11 | ,062 29,4 | 131 31,50 | 2 31,62 | 30,352 | 30,581 | 15,906 | 15,692 | 15,113 | 11,830 | 11,395 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 0 | . 0 | | | | OFFSITE VEHICLES TOTAL (lbs/day) | | 0,870 | | 31,966 | | 9 33,69 | | 2 35,55 | | | | | | | | 5 33,658 | | | | | | | 0,040 53 | | 6,134 56,3 | | | | | | 67,327 66, | | | | | | | | | | | | | | | | | TOTAL PROJECT (lbs/day) | 6 | 2 826 | 64 158 | 69 705 | 70 192 | 3 70 08 | 22 72 74 | 00 00 | 3 42 345 | 41 144 | 42.416 5 | 5 611 SC | 032 906 | SEA 97.10 | 2 0231 | 8 05 312 | 100 200 | 00 444 | 90 947 | 04 539 0 | 03 602 | 08 058 0 | 030.01 | 5 705 07 | 7 772 06 | 767 100 00 | 0 108 777 | 109 262 | 108 208 4 | 105.016 | 100 615 00 | M2 05/2 | 193.09 | 05.474 00 | 807 90 3 | 260 714 | 824 80 30 | 00 50 506 | 42.026 | 21 266 3 | 21 241 20 | 274 26 07 | /2 24 000 | 22.640 | 19 900 | Notes: According to schedules provided by Fluor, Linear construction (except rail) takes place in months 11-22. According to schedules provided by Fluor, Rail construction occurs in months 13-17. | | CH₄ | MON | THLY E | MISSIC | ONS (lb: | s/day) |---------|---|-----|--------|--------|----------|---------|----------------|-----|---------|-------|-----|------|------------------|---------------|-----|-----|-----|----------------|--------|-----|------|------------|------------|-----|------|-------|--------|-------|-----|-----|-----|------|-----|-----|-------|--------|-------|-----|-----|-------|--------------------|-------| | | CONSTRUCTION VEHICLES | 1 | 2 | 3 | 4 | 5 6 | 7 | 8 | 9 10 | 11 | 12 | 13 1 | 4 15 | 16 | 17 | 18 | 19 | 20 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 2 | 29 30 | 31 | 32 | 33 | 34 | 35 | 36 : | 37 | 38 | 39 40 | 41 | 42 | 43 | 44 | 45 4 | 6 47 | 48 49 | | | On-Road Vehicles | 18 cy fill mat'l haul truck | | 0.0 | | | 0.1 0. | | | 0.1 0. | | 0.1 | | 0.0 0. | | | 0.0 | | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Bus | | | | | 0.0 | | | 0.0 | | 0.0 | | 0.0 0. | | | | 0.0 | 0.1 0 | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 0.1 0 | | | 0.1 | 0.1 | 0.1 | | | 0.1 | 0.1 0 | | | | 0.0 | 0.0 | 0.0 | | | | Concrete Pumper Truck | | 0.0 | | | 0.0 | | | 0.0 | | 0.0 | | 0.0 0. | | | | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | .0 0.0 | | | 0.0 | 0.0 | 0.0 | | | | Dump Truck | | 0.0 | | 0.0 | | | | 0.0 | | 0.0 | 0.0 | 0.0 0. | | | | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | | | 0.0 | 0.0 | 0.0 | | | | Diesel Tractor (Yard Dog) | | 0.0 | | | 0.0 0.0 | | | 0.0 0.0 | | 0.0 | 0.0 | 0.0 0. | | | | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0. | | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | Service Truck - 1 ton | | 0.0 | | | 0.0 0.0 | | | 0.0 | | 0.0 | 0.0 | 0.0 0. | 0.0 | | | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 0 | .0 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | Pile Driver Truck | | 0.0 | | | 0.0 0.0 | | | 0.0 0.0 | | 0.0 | | 0.0 0. | | | | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 0 | .0 0.0 | | | 0.0 | 0.0 | 0.0 | | | | Truck - Fuel/Lube | | 0.0 | | 0.0 | | | | 0.0 | | 0.0 | 0.0 | 0.0 0. | | | | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 0 | .0 0.0 | | | 0.0 | 0.0 | 0.0 | | | | Tractor Truck 5th Wheel | | 0.0 | | | 0.0 0.0 | | | 0.0 | | 0.0 | 0.0 | 0.0 0. | | | | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | | Trucks - Pickup 3/4 ton | | 0.0 | | 0.0 | | | | 0.0 | | 0.0 | 0.0 | 0.0 0. | | | | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | .0 0.0 | | | 0.0 | 0.0 | 0.0 | | | | Trucks - 3 ton | | | | | 0.0 0.0 | | | 0.0 | | 0.0 | | 0.0 0. | | | | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | | .0 0. | | 0.0 | 0.0 | 0.0 | | | | | .0 0.0 | | | | 0.0 | 0.0 | | | | Truck - Water | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | | Off Road Vehicles | Air Compressor 185 CFM | | 0.1 | | | 0.1 0. | | | | | 0.1 | | 0.3 0. | | | | | 0.4 0 | | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | | 0.5 | | | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.3 0 | | 0.0 | 0.2 | 0.2 | 0.2 | 0.1 | | | | Air Compressor 750 CFM | | 0.0 | | | 0.0 | | | 0.1 0. | | 0.1 | | 0.1 0. | | | | | 0.2 0 | | | 0.2 | 0.2 | 0.2 | 0.2 | | 0.2 0 | | | 0.1 | 0.0 | 0.0 | | 0.0 | | 0.0 | .0 0.0 | | | 0.0 | 0.0 | 0.0 | | | | Articulating Boom Platform | | 0.0 | | 0.0 | | | | 0.0 0.0 | | 0.0 | | 0.0 0. | | | | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Bob cat loader
Bulldozer D10R | | 0.0 | | | 0.1 0.1 | | | 0.2 0.3 | | 0.2 | 0.2 | 0.2 0. | | | | 0.1 | 0.1 0 | .1 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 0 | . 0. | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Bulldozer D10R
Bulldozer D6C | | 0.4 | | | 0.3 0. | | | 0.3 0. | | 0.0 | 0.0 | 0.0 0.
0.1 0 | | | | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 0. | 1 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 (| 0.0 | | | | Concrete Trowel Machine | | 0.2 | | | 0.1 0.1 | | | 0.1 0.1 | | 0.1 | 0.1 | 0.1 0. | 0.0 | | | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 (| 0.0 | | | | Concrete Vibrators | | 0.0 | | 0.0 | 0.0 0.1 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | | | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Cranes - Mobile 35 ton | | 0.0 | | | 0.0 0.0 | 0.0 | 0.0 | 0.0 0.0 | 1 0.0 | 0.0 | 0.0 | 0.0 U.
0.2 O | | | | 0.0 | 0.0 0 | 2 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 2 0 | 2 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 1 0 | 1 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | | | | Cranes - Mobile 45 ton | | 0.0 | | | 0.0 0.0 | 0.0 | 0.0 | 0.0 0. | | 0.1 | 0.1 | 0.2 0. | 1 0.2 | | | | 0.2 0 | | | 0.2 | 0.2 | 0.2 | 0.2 | | 0.2 0 | | - 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0. | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | | | | Crane - Mobile 45 ton | | 0.0 | | | 0.0 0.0 | | | 0.0 0.0 | | 0.1 | | 0.1 0. | | | | | 0.2 0 | | | 0.2 | 0.2 | 0.2 | 0.2 | | 0.2 0 | | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | ш | Cranes 100 / 150 ton cap | | 0.0 | | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.1 0. | 1 0.1 | 0.2 | 0.2 | | 0.2 0 | | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 0 | 1 0 | 0.2 | 0.2 |
0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | ΙË | Diesel Powered Welder | | 0.0 | | 0.0 | 0.0 0.0 | 1 0.0 | 0.0 | 0.0 0.0 | 1 0.1 | 0.0 | 0.1 | 0.1 0. | 1 0.1 | 0.1 | 0.1 | | 0.2 0 | 2 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 2 0 | 2 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 1 0 | 1 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | | ON-SITE | Excavator - Backhoe/loader | | 0.1 | 0.1 | 0.1 | 01 0 | 1 01 | 0.1 | 0.1 0 | 1 01 | 0.1 | 0.1 | 01 0 | 1 01 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | ź | Excavator - Earth Scraper 637 | | 1 13 | 1.3 | 1.3 | 0.8 0. | 8 0.4 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0 | Excavator - loader | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0. | 1 0.1 | 0.1 | 0.1 0. | 1 0.1 | 0.1 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | | Excavator - Motor Grader (CAT140H) | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 0.3 | 2 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 0 | .1 0. | 1 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0.: | 1 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | | Excavator - Trencher (CAT320) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 0.2 | 0.2 | 0.2 0.3 | 2 0.2 | 0.2 | 0.2 | 0.2 0. | 2 0.2 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | | Fired Heaters (2,000 BTU) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | | Forklift | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0. | 1 0.1 | 0.1 | 0.1 0.1 | 1 0.1 | 0.1 | 0.1 | 0.1 0. | 1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0. | 1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0.: | 1 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | | Fusion Welder | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Heavy Haul / 600 tn Crane | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 0 | .1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Heavy Haul / 1,000 tn Crane | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 0 | .1 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Light Plants | | 0.0 | | | 0.1 0. | 1 0.1 | 0.1 | 0.0 0.0 | | 0.1 | 0.1 | 0.1 0. | 1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0. | 1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Man lifts - telescoping | | 0.0 | | | 0.0 0.0 | 0.0 | 0.0 | 0.1 0. | 1 0.1 | 0.3 | 0.3 | 0.3 0. | 3 0.3 | 0.3 | 0.3 | 0.3 | 0.4 0 | 4 0.4 | 0.4 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | .6 0 | 6 0.6 | 0.6 | 0.6 | 0.6 | 0.4 | 0.4 | 0.4 | 0.3 0 | .3 0.3 | 3 0.3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | | | Man lift - scissor | | 0.0 | | | 0.0 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Portable Compaction Roller | | 0.0 | | | 0.3 0.: | | | 0.1 0. | 1 0.1 | 0.1 | 0.1 | 0.1 0. | 1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 0 | .1 0. | 1 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 0 | .1 0.: | 1 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Portable Compaction - Vibratory Plate | | 0.0 | | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Portable Compaction - Ram
Pumps | | 0.0 | | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | | 0.0 | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | Pumps
Portable Power Generators | | 0.0 | | 0.1 | 0.1 0.1 | 1 0.1
4 0.4 | 0.1 | 0.1 0.1 | | 0.1 | 0.1 | 0.1 0. | 1 U.1
6 10 | | | | 1.0 1 | | | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 13 1 | 3 1 | 3 13 | 0.0 | 0.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 0.0 | | | | Portable Power Generators Truck Crane - Greater than 300 ton | | 0.3 | | | 0.4 0.4 | | | 0.4 0.0 | | 0.6 | 0.6 | 0.6 0.
0.1 0. | | | | | 1.0 1
0.2 0 | | | 0.2 | 1.3
0.2 | 1.3
0.2 | 0.2 | | | .3 1. | | 1.3 | 1.3 | 1.3 | | | 1.0 | 1.0 0 | .6 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 1.3 0.3
1.0 0.0 | | | | Truck Crane - Greater than 300 ton Truck Crane - Greater than 200 ton | | 0.0 | | 0.0 | | | | 0.0 0.0 | | 0.1 | | 0.1 U.
0.0 O | | | | | 0.2 0 | | | 0.2 | 0.2 | 0.2 | 0.2 | | 0.2 0 | | | 0.1 | 0.1 | 0.1 | | | | | 0 0.0 | | | 0.0 | 0.0 (| 0.0 | | | | Vibratory Roller Ingersol-Rand 20 ton | | | | | | | | 0.0 0.0 | | | | 0.0 0.
0.1 0. | | | | | 0.0 0 | | | 0.1 | 0.1 | 0.1 | 0.1 | | 0.1 0 | | | | 0.0 | 0.0 | | | | | .0 0.0 | | | | 0.0 0 | | 0.0 0 | | | WORKER VEHICLES | 0.1 | 0.1 | 0.1 | 0.1 | U. 1 U. | . 0.1 | 0.1 | 0.1 0. | 0.1 | 0.1 | 0.1 | U. 1 U. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0. | 1 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 (| 0.0 | 0.0 0 | | | Personal commuting vehicles | 0.0 | 0.0 | 0.0 | 0.0 | 00 00 | 0 00 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0 | 1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 0 | | | DELIVERY TRUCKS | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.1 | 0.0 | 0.0 | 0.0 0.1 | 0.0 | 5.0 | 5.5 | 0.0 0. | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 0 | 0.1 | 0.1 | J. I | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0 | . 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 0.1 | . 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | | Light delivery truck (e.g. Fed-Ex) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0 0 0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 0 | | | Heavy delivery truck (e.g. flat beds carrying | 0.0 | . 5.0 | 0 | | 0. | _ 0.0 | 2.0 | 0. | - 0.0 | 2.0 | | 0. | - 0.0 | 0.0 | 5.0 | | 0 | 0.0 | 0.0 | 3.0 | 0 | 2.0 | 0 | | | | _ 0.0 | 5.0 | 2.0 | | | | | 0 | | - 0.0 | 3.0 | 2.0 | | 0.0 | | | | construction eqp) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0 0 0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 0 | | | Import fill trucks | | | | | 0.0 0.0 | | | | | 0.0 | | 0.0 0. | | | | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | | 0.0 | 0.0 | | | | | | .0 0.1 | | | | 0.0 | | 0.0 0 | | | ONSITE TOTAL (lbs/day) | 0.6 0 | | | | 2.0 | 2.0 | 0 | | 0. | | 0 | | | | | 0. | _ 0., | 0.1 | 5.0 | | | | | 3.0 | | | | | | - | - 4.0 | 5.0 | | | | | | | | | | | | 0., | 2.0 | | | Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 5 | 3 0 | 10 | 11 | 12 | 13 | 14 1 | 5 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 3 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 A | 1 42 | 2 43 | 44 | 45 | 46 4 | 7 4 | 40 | |----|---|---|--------|-----|-----|-----|-----|-------|---------|-------|-----|-----|------|--------|--------|--------|--------|------|------|------|------|------|------|------|------|------|------|------|------|--------|---------|--------|------|------|------|------|--------|--------|--------|--------|-------|-----|------|-------|--------| | | WORKER VEHICLES | | | | | | | | | | | | | . / | . 10 | ., | ,,, | .,, | | ~- | | | | | | | | | | | . 33 | 54 | | | ٠, | | 30 | 4 | . 42 | | | | | . 40 | 3 | | | Personal commuting vehicles | 0 | 2 02 | 0.6 | 0.6 | 0.0 | 1.1 | 12 1 | 7 10 | 2 2 2 | 2.0 | 2.2 | 20 | 46 6 | 4 6 | 1 6 | 7 7 1 | 7.6 | 7.0 | 0.2 | 0.2 | 10.0 | 10.7 | 11.4 | 116 | 12.7 | 126 | 14.1 | 14.4 | 142 1 | 1 12 | 0 122 | 12.6 | 12.2 | 11.1 | 10.7 | 0.1 | 74 6 | 0 4 | 0 22 | 22 | 3.2 | 20 | 25 2 | 2 17 | | | DELIVERY TRUCKS | | 0.3 | 3.3 | 0.0 | 0.0 | | | 1.0 | 2.3 | 2.0 | 0.2 | 0.0 | 4.0 | 0. | . 0.1 | 7.1 | 1.5 | 1.0 | 0.0 | 5.5 | 10.0 | 10.7 | 11.4 | 0 | 141 | 10.0 | 14.1 | | 14.0 | 13. | 5 13.3 | 12.0 | 12.2 | | 10.7 | 5.1 | 7.4 3 | 4. | .0 3.2 | . J.Z | 0.2 | 2.0 | 2.0 2 | U 1.7 | | | Light delivery truck (e.g. Fed-Ex) | 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0.0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 00 0 | 0.00 | | |
Heavy delivery truck (e.g. flat beds carrying | | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ,.o o. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | construction eap) | 0 | 3 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 03 0 | 13 03 | 3 03 | 0.3 | 0.3 | 0.3 | 03 0 | 3 0 | 3 01 | 3 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 3 0 | 3 03 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 0 | 3 0 | 3 03 | . 03 | 0.3 | 0.3 | n 3 n | 3 03 | | | Import fill trucks | | .1 1.1 | | | | | | | | | | | 0.0 0 | | | 0.0 | | 0.0 | | | 0.0 | | 0.0 | 0.0 | | 0.0 | | | | 0.0 0. | | | 0.0 | 0.0 | 0.0 | | | 0.0 | | | | 0.0 | | | | | LINEARS | | | | | | | | J.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.O 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0. | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | ON ROAD | Dump Truck | 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0.0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 00 0 | 0 0 | | | Service Truck (MHD-DSL) | | 0.0 | | | | | | 0.0 | | | 0.0 | | 0.0 0 | | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 | | | 0.0 | | | 0 0 | | | Pipe Haul Truck and Trailer (HHDT-DSL) | | 0.0 | | | | | | 0.0 | | | 0.0 | | | 0 0 | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 | | | 0.0 | | | 0 0 | | | 3/4 Ton Pickup (MHD-DSL) | | 0.0 | | | | | | 0.0 0.0 | | | 0.0 | | | 1 0 | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 0. | | | 0.0 | 0.0 | 0.0 | | | 0.0 | | | 0.0 | | | 0.0 | | | Truck - water | | 0.0 | | | | | | | | | | | 0.0 0 | | | | | | | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | | | | 0.0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | | 0 0 | | | OFF ROAD | | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.O 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | r.0 0. | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | | | Air Compressor (185 CFM) | 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 00 00 | 0.0 | 0.1 | 0.1 | 0.2 | 02 0 | 3 0 | 3 03 | 3 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 00 0 | 0 0 | | | Bore Machine (Hydraulic) | | 0.0 | | 0.0 | | | | 0.0 0.0 | | 0.1 | 0.1 | | | 0 0 | | | | | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 0. | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | | | | | | .0 0.1 | | | 12 Ton Hydra Crane | | 0.0 | | | | 0.0 | | 0.0 | | 0.0 | 0.0 | | | 2 0 | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 | | | | | | 0 0 | | | Backhoe/loader | 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.3 | 0.3 0 | 3 0 | | | 0.3 | 0.3 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | | | Excavator - Trencher | | .0 0.0 | | | 0.0 | | | 0.0 | | 0.0 | 0.1 | | 0.0 0 | | | | | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0 0.0 | 0.0 | 0.0 | | | .0 0.0 | | | Forklift | | 0 0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 0 | 1 0 | 1 0 | 1 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | | 0 00 | | | Welding Generator | 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.5 | 0.5 0 | 5 0 | 5 0.5 | 5 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 3 to 5 Ton AC Roller | | .0 0.0 | | | | | | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 0 | .1 0. | 1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.1 | | ш | Pipe Bending Machine | | .0 0.0 | | | | | | | | | | | 0.2 0 | | | 0.2 | | 0.1 | | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 | | 0.0 | | | | 0.0 | | | RAIL | | | | | | | | | | | | | | | | | | - | - | | | | SП | AIR COMPRESSOR 185 | 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 0 | 1 0 | 1 0 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | ĭ | BOOM TRUCK 12 TON | 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | | 0.0 | | Œ. | CAT 325 BACKHOE | 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | 0 | CAT 330 BACKHOE | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | CAT DOZER D-6 | | .0 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 0 | .0 0. | 0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | | .0 0.0 | | | CAT MODEL 12 MOTOR GRADER | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 0 | .1 0. | 1 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | CAT ROLLER-COMPACTOR 563 | Ó | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 0 | .1 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | CAT RUBBER TIRE LOADER 966 | 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .1 0. | 1 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | CAT SCRAPER 615 | Ó | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.1 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | CRANE-ROUGH TERRAIN 45T | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | GENSET 5KW | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | JOHN DEERE TRACTOR 9400 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | PICK-UP CRAFT | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 0 | .2 0. | 2 0.2 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | PICK-UP OVERHEAD | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.3 0 | .3 0. | 3 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | RAIL BALLAST REGULATOR | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 1 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | RAIL CLIP MACHINE | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | RAIL MOVER-SHUTTLE WAGON | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .1 0. | 1 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | |
RAIL TAMPER | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 1 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | RAIL WELDER | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | RAMEX WALK BEHIND COMPACTOR | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 0. | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | | .0 0.0 | | | TRI-AXLE DUMP TRUCK | | 0.0 | | | | 0.0 | | 0.0 | | 0.0 | 0.0 | | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 0. | | | 0.0 | 0.0 | 0.0 | | | 0.0 | .0 0.0 | | 0.0 | | | .0 0.0 | | | TRUCK FLATBED 14 FOOT | | 0.0 | | | | | | 0.0 | | 0.0 | 0.0 | | 0.0 | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 0. | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | | | .0 0. | | | TRUCK TRACTOR | | 0.0 | | 0.0 | | | | 0.0 | | 0.0 | 0.0 | | | .1 0. | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 0. | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | | | .0 0. | | | WATER TRUCK, 4M ON-ROAD | | 0.0 | | | | | | 0.0 | | 0.0 | 0.0 | | | .0 0. | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | | | .0 0. | | | WELDING MACHINE 350 AMP | | 0.0 | | | 0.0 | | | 0.0 | | 0.0 | 0.0 | | 0.0 | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 0. | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | | .0 0. | | | LINEARS TOTAL (lbs/day) | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 1.4 | 2.9 | 3.2 3 | .1 3. | 0 3.1 | 1.9 | 1.8 | 1.7 | 1.4 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | | | OFFSITE VEHICLES TOTAL (lbs/day) | | .6 1.8 | | | | | | | | | 3.6 | | 4.9 5 | | | 7.5 | | | | | | | | | | | | | | 1.4 14. | | | | | | 9.5 | | | | | 3.5 | | | | | | TOTAL PROJECT (lbs/day) | 4 | 4 4.7 | 5.2 | 5.3 | 5.5 | 5.9 | 5.6 4 | 1.7 4.9 | 5.4 | 7.2 | 7.9 | 10.0 | 1.2 12 | .1 13. | 2 13.8 | 3 13.2 | 13.6 | 14.3 | 14.5 | 15.3 | 15.1 | 16.1 | 16.6 | 16.6 | 17.6 | 18.8 | 19.2 | 19.0 | 19.0 1 | 3.4 18. | 1 17.4 | 16.4 | 15.6 | 14.4 | 14.2 | 12.3 1 | 10.1 8 | .3 6. | .4 4.9 | 4.9 | 4.9 | 4.1 | 3.5 3 | .3 2.5 | ## Notes: - According to schedules provided by Fluor, Linear construction (except rail) takes place in months 11-22. According to schedules provided by Fluor, Rail construction occurs in months 13-17. | The first white whether the provided provided whether the provided whether the provided provided whether the provided pr | | N ₂ O | MONTHLY EMISSIONS (Ibe/day) | | |--|---|------------------------------------|---|--------| | He system with materiax of the system of the attract of the system th | | CONSTRUCTION VEHICLES | | 49 | | Ba' Correct Marcel Track 100 0 0 0 0 0 0 0 0 | | | | | | Demonstrage Track | | | | | | Deel Fractic (Feel Loss) Deel Fractic (Feel Loss) Deel Rotative Los | | | | | | Description Contract (Parce Disp) (Parc | | | | | | Serious Track - 1 ton | | | | | | Pis Chree Track | | | | | | Trusk-FineLabe | | | | | | Tracter Track Shr/Meel | | | | | | Trucks - Picks p3 Ne Ne 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | Trucks - Storf | | | | | | Truck- Valeer Off Sear Verbilles Ve | | | | | | Off Note Services 1985 CFM | | | | | | Air Compressor 196 CFM | | | | .0.0 | | ## Compresses 756 CFM ## Actionalising Boan Platform ## Compresses 756 CFM ## Actionalising Boan Platform ## Compresses 756 CFM ## Actionalising Boan Platform Platf | | | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0 00 | | Articularing Boom Platform O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | Biol-card lesider Bid-discore TOIR | | | | | | Bulldoore POIR | | | | | | Bull-docker DEC | | | | | | Concrete Troward Machine 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | Concrete Victorians On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | Crames -Mobile 458 from 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | Crame-Nebelle 65 ton | | | | | | ## Crames 100 1 150 fon casp Map Crames 100 1 150 fon casp O | | Cranes - Mobile 45 ton | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0.0 | | Exception - Motor Grader (CAT-140H) | | Crane - Mobile 65 ton | | | | Exception - Motor Grader (CAT-140H) | ш | Cranes 100 / 150 ton cap | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0.0 | | Exception - Motor Grader (CAT-140H) | E | Diesel Powered Welder | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 | | Exception - Motor Grader (CAT-140H) | ý | Excavator - Backhoe/loader | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 | | Executior - Motor Grader (CAT 140H) 0.0 0. | Ż | Excavator - Earth Scraper 637 | 0.3 0.3 0.3 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 | | Exception—Frencher (CATS20) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | Fired Heaters (2.00 BTU) | | | | | | Forkitf | | | | | | Fusion Welder | | | | | | Heavy-Haul / 1,000 in Crane | | | | | | Here-yi-Hau/I 1,000 h Crane | | | | | | Light Plants 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | Man life - Beliescoping 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | Man lift - seissor | | | | | | Portable Compastion Foller 00 00 00 00 00 00 00 00 00 00 00 00 00 | | | | | | Portable Compastion - Vibratory Piete | | | | | | Portable Compaction - Farm 00 00 00 00 00 00 00 00 00 00 00 00 00 | | | | | | Pumps | | | | | | Portable Prover Generators | | | | | | Truck Crame - Greater than 300 lon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | Trusk Crane - Greater than 200 ton 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | | | | Vibriatory Rolling Hageriach Rand 20 lon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | WORKER VEHICLES 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | .0 0.0 | | Personal communifing websiteds 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | | | | _ 0.0 | | DELIVERY TRUCKS | | | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0 0 0 | | | | | | . 5.0 | | ■
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ | | Light delivery truck (e.g. Fed-Ex) | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 | | Heavy delivery truck (e.g., flat beds carrying | | | | | | construction eqp) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | construction eqp) | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 | | Import fill trucks 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | Import fill trucks | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 | | ONSITE TOTAL (lbs/day) 0.6 0.6 0.7 0.7 0.7 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.7 0.7 0.7 0.6 0.5 0.5 0.6 0.5 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 | | ONSITE TOTAL (lbs/day) | 0.6 0.6 0.7 0.7 0.7 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 | 1 0.1 | | | Month | - 1 | 2 | 3 | - 4 | - 5 | 6 | 7 | 8 | • | 10 | 11 | 12 | 13 1 | 14 | 15 : | 6 1 | 7 1 | 3 10 | 20 | 21 | 22 | 23 | 24 | 25 : | 26 2 | 7 28 | 20 | 30 | 31 | 32 | 33 3 | 4 34 | 36 | 37 | 38 | 30 | 40 | 41 | 42 | 43 | 44 | 45 A | 6 47 | 48 | -40 | |------|--|-----|-------|-------|------|-------|-------|-------|-----|-----|-----|-----|-----|------|-----|------|-----|-------|-------|-------|-----|-----|-----|-----|------|------|-----------------|-------|-----|-----|-----|-----------------|-------|--------|-------|-----|-----|-----|-----|-----|-----|-----|-------|---------|-------|-------| | | WORKER VEHICLES | | | 3 | | | | | | | | | | | - | | , | , 16 | , 19 | 20 | 21 | 22 | 23 | | | 2 | . 20 | 2.5 | 30 | ٠, | | 55 3 | - 3 | 30 | 3/ | 30 | | | / | | | | -v 4 | - 4/ | 40 | -43 | | | Personal commuting vehicles | 0 | 1 0: | 2 02 | 2 0 | 3 04 | 1 0.5 | 5 07 | 0.9 | 1.0 | 12 | 1.5 | 16 | 19 | 2.3 | 27 | 3.1 | 34 3 | 6 3 | 8 40 | 42 | 4.7 | 5.0 | 5.4 | 5.8 | 5.8 | 5.4 6.9 | 9 71 | 7.1 | 72 | 7.1 | 70 6 | 67 6 | 3 6: | 2 56 | 5.4 | 46 | 3.7 | 3.0 | 2.0 | 16 | 16 | 16 1 | 15 1 | 3 1 | 2 01 | | | DELIVERY TRUCKS | - | | | | | | | - | Light delivery truck (e.g. Fed-Ex) | 0. | 0 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | | | Heavy delivery truck (e.g. flat beds carrying | construction eqp) | 0. | 2 0.3 | 2 0.2 | 2 0. | 2 0.2 | 2 0.2 | 2 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 0 | .2 0. | 2 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 0.2 | 2 0.2 | 0.2 | 0.2 | 0.2 | 0.2 (| 0.2 0 | 2 0.2 | 2 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 0.3 | 2 0. | 2 0.7 | | | Import fill trucks | 0. | 7 0.3 | 7 0.7 | 7 0. | 7 0.7 | 7 0.7 | 7 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | | | LINEARS | ON ROAD | Dump Truck | | 0.0 | | | | | 0.0 | | | 0.0 | 0.0 | | | | | | | .0 0. | | | | 0.0 | 0.0 | | | 0.0 | | | | | | 0.0 | | | | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Service Truck (MHD-DSL) | | 0.0 | | | 0.0 | | | 0.0 | | 0.0 | 0.0 | | | | | | | .0 0. | | | | | 0.0 | | | 0.0 | | | | | | 0.0 | | | | | 0.0 | | 0.0 | | 0.0 | | 0.0 | | | | | Pipe Haul Truck and Trailer (HHDT-DSL) | | 0.0 | | | | | 0.0 | | | 0.0 | | | | | | | | .0 0. | | | | | | | | 0.0 | | | | | | | .0 0.0 | | | | | | | | | | 0.0 | | | | | 3/4 Ton Pickup (MHD-DSL) | | 0.0 | | | | 0.0 | | | | 0.0 | 0.0 | | | | | | 0.1 0 | | | | | 0.0 | | | | 0.0 | | | | | | 0.0 | | | | | 0.0 | | | | | | 0.0 | | | | | Truck - water | 0. | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | | | OFF ROAD | Air Compressor (185 CFM) | | 0.0 | | | 0.0 | | | | | 0.0 | 0.0 | | | | | | | .0 0. | | | | 0.0 | | | | 0.0 | | | | | | 0.0 | | | | | 0.0 | 0.0 | | | | | 0.0 | | | | | Bore Machine (Hydraulic) | | 0.0 | | | 0.0 | | | | | 0.0 | 0.0 | | | | | | | .0 0. | | | | 0.0 | 0.0 | | | 0.0 | | | | | | 0.0 | | | | | 0.0 | | 0.0 | | | | 0.0 0. | | | | | 12 Ton Hydra Crane | | 0.0 | | | | 0.0 | | | | 0.0 | 0.0 | | | | 0.1 | 0.1 | 0.1 0 | .1 0. | 1 0.1 | | | 0.0 | 0.0 | | | 0.0 | | | 0.0 | | | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | Backhoe/loader | | 0.0 | | | | | | | | 0.0 | 0.0 | 0.0 | | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0. | 1 0.1 | 0.0 | | 0.0 | 0.0 | | | 0.0 | | | 0.0 | | | 0.0 | | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | | | | Excavator - Trencher | | 0.0 | | | 0.0 | | | | | 0.0 | 0.0 | | | | | | 0.0 | .0 0. | | | | 0.0 | 0.0 | | | 0.0 0.0 | | | 0.0 | | | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | | | | Forklift | | 0 0.0 | | | 0 0.0 | 0.0 | | | | 0.0 | 0.0 | | | | | | | 0 0. | | | | 0.0 | 0.0 | | | 0.0 0.0 | | | 0.0 | | | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | | | | Welding Generator | 0.0 | 0.0 | 0.0 | | | | | | 3 to 5 Ton AC Roller
Pipe Bending Machine | | | | | | | 0.0 | | | 0.0 | | | | | | | | .0 0. | | | | | | | | 0.0 0.0 | | | | | | 0.0 O | 0.0 | | | | | | | | | | 0.0 0. | | | | ш | RAIL | 0. | U U.I | J U.C | 0 0. | 0 0.0 | J U.C | J U.U | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | U.U U | .0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.U U. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.U U | .0 0.1 | J U.U | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.U U. | .0 0. |) 0.0 | | SITE | AIR COMPRESSOR 185 | | 0 0 | | | 0 00 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 (| 0.0 | 0 0 | 0 00 | | .,, | BOOM TRUCK 12 TON | | 0 0.0 | | | | | | | | 0.0 | 0.0 | | | | | | | 0 0 | | | | 0.0 | 0.0 | | | 0.0 0.0 | | | 0.0 | | | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 0. | | | | 111 | CAT 325 BACKHOE | | 0 0.0 | | | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 0 | 0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | | | 0 | CAT 330 BACKHOE | | 0 0.1 | | | | | | | | 0.0 | 0.0 | 0.0 | | | | | | 0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | | | | CAT DOZER D-6 | | 0 0.0 | | | | | | | | 0.0 | 0.0 | | | | | | | 0 0 | | | | 0.0 | 0.0 | | | 0.0 0.0 | | | 0.0 | | | | 0 0.1 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | | | | CAT MODEL 12 MOTOR GRADER | | 0 0.0 | | | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 0 | 0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | CAT ROLLER-COMPACTOR 563 | | 0 0.0 | | | | | | | | 0.0 | 0.0 | | | | | | | 0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | CAT RUBBER TIRE LOADER 966 | 0 | 0 00 | 0.0 | 0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | | | CAT SCRAPER 615 | 0. | 0 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0 0.0 | | | CRANE-ROUGH TERRAIN 45T | 0. | 0 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | .0 0. | 0.0 | | | GENSET 5KW | 0. | 0 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0 0. | 0.0 | | | JOHN DEERE TRACTOR 9400 | 0. | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | | | PICK-UP CRAFT | 0. | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | | | PICK-UP OVERHEAD | 0. | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0 | 0.0 | 0.0 | .0 0. | 0.0 | | | RAIL BALLAST REGULATOR | 0. | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | | RAIL CLIP MACHINE | | 0.0 | | | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 | .0 0. | | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | RAIL MOVER-SHUTTLE WAGON | | 0.0 | | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 | .0 0. | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | RAIL TAMPER | | 0.0 | | | | 0.0 | | | | 0.0 | 0.0 | | | | | | | .0 0. | | | | 0.0 | 0.0 | | | 0.0 | | | 0.0 | | | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | RAIL WELDER | | 0.0 | | | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | | | | | .0 0. | | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | | | 0.0 | 0.0 | 0.0 | | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | RAMEX WALK BEHIND COMPACTOR | | 0.0 | | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 | .0 0. | | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | | | 0.0 | 0.0 | 0.0 | | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | TRI-AXLE DUMP TRUCK | | 0.0 | | | | | | | | 0.0 | 0.0 | | | | | | | .0 0. | | | | 0.0 | 0.0 | | | 0.0 | | | 0.0 | | | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | TRUCK FLATBED 14 FOOT | | 0.0 | | | | | | | | 0.0 | 0.0 | | | | | | | .0 0. | | | | 0.0 | 0.0 | | | 0.0 | | | 0.0 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | TRUCK TRACTOR | | 0.0 | | | | | | | | 0.0 | 0.0 | | | | | | | .0 0. | | | | 0.0 | 0.0 | | | 0.0 | | | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | | | | WATER TRUCK, 4M ON-ROAD | | 0.0 | | | 0.0 | | | | | 0.0 | 0.0 | | | | | | | .0 0. | | | | | | | | 0.0 | | | | | | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | WELDING MACHINE 350 AMP | | 0.0 | | | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | .0 0. | | | | 0.0 | 0.0 | | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | LINEARS TOTAL (lbs/day) | | 0.0 | | | | | | | 0.0 | 0.0 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | | 0.4 0 | .4 0. | | | | 0.0 | 0.0 | | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | U 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | | OFFSITE VEHICLES TOTAL (lbs/day) TOTAL PROJECT (lbs/day) | 5.6 7. 5 | TOTAL PROJECT (IDS/day) | 1. | 0 1. | 1.8 | ŏ 1. | 9 2.0 | 2.2 | 2.2 | 1.7 | 1.7 | 1.9 | 2.4 | 2.7 | 3.1 | 3.5 | 4.0 | 4.4 | 4.7 4 | .9 5. | 1 5.4 | 5.6 | 6.1 | 6.2 | 0.6 | 6.9 | 7.0 | 7.5 8.0 | 8.2 | 8.2 | 8.2 | 8.0 | 8.0 | r.b 7 | .2 6.1 | 9 6.4 | 6.2 | 5.4 | 4.4 | 3.6 | 2.6 | 2.1 | 2.1 | 2.0 1 | 1.9 1. | b 1. | 1.7 | ## Notes: - According to schedules provided by Fluor, Linear construction (except rail) takes place in months 11-22. According to schedules provided by Fluor, Rail construction occurs in months 13-17. | | NO _x | MONTH | ILY EI | MISSIC | ONS (IL | s/day) |---------|--|---------|--------|--------|---------|--------|-----|-----|-----|-----|-------|--------|------|-------|-----|----------|----------|----------|----------|----------|------|--------------|--------------|------|----------|----------|-----|-------------|--------------|------|----------|-------|------------|-------|-------|-------|-----|-----|-----|----|-----|---------|------|------|-------| | | CONSTRUCTION VEHICLES On-Road Vehicles | 1 | | | | | | 7 | 8 | 9 | 10 1 | 11 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 2 | 21 2 | 2 23 | 24 | 25 | 26 | 27 | 28 | 29 30 | 31 | 32 | 33 | 34 3 | 5 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 4 | 46 4 | 17 4 | 8 49 | | | 18 cy fill mat'i haul truck | 0 | 0 | 28 | 28 | 57 | 57 | 57 | 57 | 28 | 28 | 28 2 | 8 1 | 1 14 | 14 | 14 | 14 | 14 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 9 | 9 9 | 9 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Bus | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 9 | 9 | 9 | 14 1 | 4 1 | 4 14 | 14 | 14 | 20 | 20 | 20 | 28 | 28 | 28 2 | B 40 | 40 | 40 | 40 | 40 | 40 4 | 0 40 | 40 | 40 | 40 | 40 3 | 34 3 | 4 34 | 28 | 28 | 14 | 14 | 9 | 9 | 6 | 6 | | 3 3 | | | Concrete Pumper Truck Dump Truck | 0 | 11 | 0 | 0 | 0 | 6 | 6 | 6 | 6 | 6 | 6 | 6 (| 5 9 | 9 | 9 | 6 | 6 | 6 | 6 | 6 | 0 ! | 0 0 | 0 | 0 | 0 | 3 | 3 | 3 3 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Diesel Tractor (Yard Dog) | 0 | - 11 | - 11 | 9 | 0 | 6 | 8 | 6 | 6 | 6 | 6 4 | 3 1 | 3 13 | 13 | 13 | 26 | 26 | 26 | 26 | 26 | 0 1 | 8 32 | 7 32 | 32 | 32 | 32 | 32 1 | 0 0 | 9 32 | 32 | 32 | 32 1 | 13 1 | 9 t | 1 13 | 13 | 13 | 13 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Service Truck - 1 ton | 6 | 6 | 6 | 11 | 11 | 11 | 11 | 6 | 6 | 6 | 6 | 6 1 | 6 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 6 | 6 | 6 | 6 | 6 | 6 | 6 6 | 6 | 6 | 6 | 6 | 6 | 6 6 | 6 6 | 6 | 6 | 6 | 3 | 3 | 3 | 3 | 3 | 3 3 | | | Pile Driver Truck | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Truck - Fuel/Lube | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 2 | 2 | 2 | 2 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 2 | 1 | 1 | 1 | 1 | - 1 | 1 | 1 | 0 | 0 0 | | | Tractor Truck 5th Wheel | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Trucks - Pickup 3/4 ton
Trucks - 3 ton | 6 | 6 | 6 | 6 | 6 | 7 | 8 | 9 | 17 | 17 | 17 1 | 7 2 | 9 29 | | 29
17 | 29
17 | 29
17 | 29
17 | 29
17 | 29 : | 29 2
17 1 | 9 29
7 17 | 29 | 29
17 | 29
17 | 17 | 29 2 | 9 29 | 29 | 29
17 | 17 | 29 2
11 | 29 2 | 9 29 | 9 29 | 29 | 29 | 29 | 17 | 17 | 11 | 11 | | 11 6 | | | Truck - Water | | 14 | 14 | 14 | 14 | 14 | 0 | 0 | 0 | 11 | | 9 1 | | | | 17 | 9 | 17 | | | | 9 6 | | 6 | 6 | 6 | | 6 6 | | 6 | 6 | | 6 | 9 E | , , | 6 | 6 | 6 | | 3 | 3 | 3 | 3 | | | | Off Road Vehicles | | | | | | | | | _ | | | | | | | | | | | | | | | ŭ | | | | | | | | | | | | | · | ŭ | | | | | | | | | Air Compressor 185 CFM | 2 | | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 : | 3 7 | 7 | 7 | 9 | 9 | 9 | 11 | 11 | 11 1 | | | 13 | 13 | 13 | 13 | 3 13 | 13 | 13 | 13 | 13 | 9 | 9 9 | 7 | 7 | 7 | 7 | 4 | 4 | 4 | 2 | 2 | 1 1 | | | Air Compressor 750 CFM | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 3 | 5 | 5 | 5 | 5 | 5 5 | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 1 | 0 10 | 10 | 10 | 10 | 10 | 10 | 5 5 | 5 | 5 | 3 | 3 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | 3 3 | | | Articulating Boom Platform
Bob cat loader | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Bulldozer D10R | 40 | 40 | 40 | 26 | 26 | 26 | 26 | 26 | 26 | 13 | 13 | 0 1 | o o | | 0 | 0 | 0 | 0 | 0 | n | 0 1 | n n | | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 1 | 1 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Bulldozer D6C | 14 | 14 | 14 | 14 | 9 | 9 | 9 | 9 | 9 | 9 | 5 | 5 | 5 5 | 5 | ő | ō | ō | ō | 0 | 0 | 0 | 0 0 | 0 | o | ō | 5 | 5 | 5 5 | . 0 | 0 | ō | 0 | 0 | 0 0 | 0 | 0 | 0 | o | 0 | ő | 0 | ō | ō | 0 0 | | | Concrete Trowel Machine | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 : | 1 1 | 1 1 | 1 | 1 | 1 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 1 1 | 1 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Concrete Vibrators | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Cranes - Mobile 35 ton
Cranes - Mobile 45 ton | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 9 | 9 | 9 ! | 9 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 1 | 7 17 | 17 | 17 | 12 | 12 | 12 ' | 2 12 | 12 | 12 | 12 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 2 | 2 2 | | | Crane - Mobile 45 ton | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 7 | 13 | 17 | 17 | 17 | 20 | 20 | 20 . | 0 2 | o 10 | 1 20 | 20 | 20 | 20 | 20 1 | / /
IO 17 | 17 | 13 | 7 | 7 | 7 | 7 : | , , | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 0 | | ш | Cranes 100 / 150 ton cap | 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | o | 0 | 4 | 4 ! | 9 9 | 13 | 13 | 17 | 17 | 17 | 17 | 17 | 17 1 | 7 17 | 17 | 17 | 17 | 17 | 9 | 9 4 | 4 | 4 | 4 | 4 | 4 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | E | Diesel Powered Welder | 0 | 0 | 0 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 5 | 5 | 7 | 7 | 7 | 9 | 9 | 9 | 9 | 9 12 | 12 | 12 | 12 | 12 | 12 | 2 12 | 12 | 7 | 7 | 7 | 7 | 7 5 | 5 5 | 5 | 5 | 5 | 2 | 2 | 2 | 2 | 1 | 1 1 | | ON-SITE | Excavator - Backhoe/loader | 4 | 4 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 4 4 | 4 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 4 | 4 4 | 4 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 0 | | Z | Excavator - Earth Scraper 637
Excavator - loader | 131 | 131 | 131 | 131 | 75 | 75 | 37 | 0 | 0 | 0 | 0 | 0 1 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 ! | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | Excavator - loader
Excavator - Motor Grader (CAT140H) | 0 | 4 | 4 | 4 | 12 | 12 | 6 | 6 | 6 | 6 | 6 | 0 1 | 3 3 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | | | 0 | 0 | 3 | 3 | 4 4 | | 0 | 0 | 0 | 0 | 0 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | |
Excavator - Trencher (CAT320) | 0 | 0 | 0 | 0 | 0 | 11 | 11 | 11 | 11 | 11 | 11 1 | 1 1 | 1 11 | 11 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 (| , , | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Fired Heaters (2,000 BTU) | ō | ō | ō | 0 | 3 | 3 | 3 | 3 | 2 | 2 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 2 | 2 | 2 | 1 | 1 1 | 1 1 | - 1 | - 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | | | Forklift | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 0 | 0 0 | | | Fusion Welder | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Heavy Haul / 600 tn Crane
Heavy Haul / 1,000 tn Crane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 0 | . 0 | 0 | 0 | 11 | 11 | 11 | 11 | 11 1 | 1 11 | 111 | 11 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Light Plants | 1 | 1 | 1 | 3 | 5 | 5 | 5 | 5 | 3 | 3 | 4 | 4 | 5 5 | . 6 | 6 | | 0 | 9 | | | | | | 9 | | 9 | 0 | 0 0 | | 6 | 6 | 6 | 6 | 6 6 | | . 6 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1 1 | | | Man lifts - telescoping | ò | ò | ò | 0 | ō | ō | 0 | ō | 5 | 5 | 5 | 9 ! | 9 9 | 9 | 9 | 9 | 9 | 9 | 14 | 14 | 14 1 | 4 19 | 19 | 19 | 19 | 19 | 19 | 9 19 | 19 | 19 | 19 | 19 1 | 14 1 | 4 14 | 9 | 9 | 9 | 9 | 5 | 5 | 5 | 5 | 2 | 2 2 | | | Man lift - scissor | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Portable Compaction Roller | 0 | 0 | 18 | 18 | 18 | 18 | 18 | 18 | 7 | 7 | 7 | 7 | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 7 | . 0 | 0 | 0 | 0 | 7 | 7 7 | 7 | 7 | 7 | 0 | 0 | 0 7 | 7 | 7 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Portable Compaction - Vibratory Plate
Portable Compaction - Ram | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 : | 1 1 | . 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | 1 1 | 1 1 | . 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Pumps | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 1 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 2 | , , | 2 | 2 | 2 | 2 | 2 2 | , , | 2 | 2 | 2 | 2 | 2 2 | , , | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 1 | | | Portable Power Generators | 9 | 9 | 9 | 9 | 13 | 13 | 13 | 13 | 13 | 22 | 22 2 | 2 2 | 2 22 | 22 | 32 | 32 | 32 | 32 | 32 | 32 | 32 4 | 3 43 | 43 | 43 | 43 | 43 | 43 4 | 3 43 | 43 | 43 | 43 | 43 3 | 32 3 | 2 32 | 32 | 22 | 22 | 22 | 22 | 22 | 22 | 11 | 11 | 11 4 | | | Truck Crane - Greater than 300 ton | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 (| 6 6 | 6 | 6 | 12 | 12 | 18 | 18 | 24 | 24 2 | | | 24 | 24 | 24 | 24 | 8 18 | 12 | 12 | 12 | 6 | 6 | 6 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 0 | | | Truck Crane - Greater than 200 ton | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 | 4 | 4 | 4 | 4 | 4 | 9 | 9 | 9 1 | | | 13 | 13 | 13 | 13 | 9 (| 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 0 | | | Vibratory Roller Ingersol-Rand 20 ton
WORKER VEHICLES | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 9 | 9 | 9 ! | 9 9 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 1 | 0 0 | 0 | 0 | 0 | 9 | 9 | 9 9 | 0 | 0 | 0 | 0 | 0 | 0 4 | 4 | - 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Personal commuting vehicles | P | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 1 | 1 1 | 1 | - 1 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| | | DELIVERY TRUCKS | , | | | , | , | , | | | | | - | • | . 0 | | | | _ | | | | - ' | . 0 | . , | , | | | - | | | - | _ | - | - | - (| . 0 | | , | , | | | | | | | | | Light delivery truck (e.g. Fed-Ex) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Heavy delivery truck (e.g. flat beds carrying | construction eqp) | 5
24 | 5 | 5 | | 5 | 5 | 5 | 5 | 5 | 5 | | 5 | 5 5 | | 5 | 5 | 5 | 5 | 5 | | 5 | | | 5 | 5 | 5 | 5 | 5 5 | | 5 | 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 | | 5 | 5 5 | | | Import fill trucks ONSITE TOTAL (lbs/day) | | | | 24 | 24 | 24 | 24 | 0 | 0 | 0 | | 0 1 | | | | | 0 | 0 | 0 | | | 0 0 | | 0 | 0 | 0 | 0
378 35 | 0 (| | 200 | | | | 0 (| 0 224 | | | 163 | 94 | 94 | 0
85 | | | 0 0 | | | UNSITE TOTAL (IDS/039) | 298 | 305 | ათნ | აბბ | 348 | 3/6 | 324 | 203 | 292 | 240 2 | 252 25 | 3 25 | 9 2/5 | 284 | ∠96 | 314 | 323 | 321 | 351 3 | 300 | 2 36 | b 390 | 381 | 367 | 352 | 301 | 310 3 | 0 346 | 307 | 298 | 209 2 | 100 Z | 00 23 | o 250 | 234 | 198 | 168 | 163 | 94 | 94 | 00 | 03 | 34 | +3 3t | | Month | | 2 | 3 | - | - 5 | 6 | 7 | 8 | | 10 1 | 1 1 | 2 40 | 14 | 15 | 16 | 17 | 18 | 10 ' | 20 2 | 1 25 | 22 | 24 | 25 | 26 | 27 3 | 28 2 | 3 30 | 31 | 32 | 33 | 34 | 25 2 | 6 2 | 7 20 | 30 | 40 | 41 | 42 | 43 | 44 | 45 4 | 6 17 | 7 48 | 40 | |---|-----|------|-----|-----|-----|-----|-----|-----|-------|-------|------|--------|-------|-------|------|------|------|-------|-------|-------|-------|------|-----|-----|-------|-------|-----------------|-----|-----|-----|-------|-------|------|-------|-------|------|-----|-----|-----|-----|-------|-------|--------|------| | WORKER VEHICLES | | | 3 | - | | • | | | - | 10 7 | | E 13 | 14 | 15 | 10 | | 10 | 10 4 | 20 2 | , 24 | | 24 | 23 | 20 | 21 2 | 20 2 | , 30 | 31 | 32 | 33 | 34 . | . 3 | 0 3. | , 30 | 39 | 40 | 47 | 42 | 40 | ** | 40 41 | 0 4/ | 40 | 49 | | Personal commuting vehicles | - 1 | 1 1 | 2 | 2 | 4 | 4 | 5 | 7 | 8 | 10 | 12 | 13 1 | 6 1 | 22 | 25 | 28 | 29 | 31 | 33 | 34 3 | 18 41 | 44 | 47 | 48 | 52 | 56 | 58 58 | 59 | 58 | 57 | 55 | 52 | 50 4 | 46 4 | 4 37 | 7 30 | 24 | 16 | 13 | 13 | 13 | 12 1 | 10 9 | | | DELIVERY TRUCKS | | | | | | | _ | - | | | - | | | | | | | | | | | أحا | | | Light delivery truck (e.g. Fed-Ex) | | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | 5 | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 5 | 5 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 5 | | | Heavy delivery truck (e.g. flat beds carrying | construction eqp) | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 7 | 4 7 | 1 74 | 74 | 74 | 74 | 74 | 74 | 74 7 | 4 74 | 1 74 | 74 | 74 | 74 | 74 | 74 74 | 74 | 74 | 74 | 74 | 74 | 74 | 74 7 | 4 74 | 1 74 | 74 | 74 | 74 | 74 | 74 | 74 7 | 74 74 | 1 7/ | | Import fill trucks | | | | 229 | | | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | | | 0 0 | | | 0 | | | 0 0 | | | | 0 | | | | 0 0 | | | | | 0 | | 0 | 0 0 | | | LINEARS | | , ,, | LLU | 220 | LLU | LLU | LLU | | | | | | | , , | · | | | | | | | , , | | | | | | | | | | | | | • | , , | Ŭ | | | | | | | i | | ON ROAD | Dump Truck | - | | | | 0 | 0 | 0 | 0 | 0 | n | 11 | 11 1 | 7 1 | 7 17 | 17 | 17 | 17 | 17 | 17 | 11 1 | 1 0 | | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | n | 0 | 0 (| | 0 | 0 | 0 | 0 | 0 | n | 0 0 | | | Service Truck (MHD-DSL) | , | | | | | 0 | | 0 | 0 | 0 | | | | | | | | | | | | , , | | 0 | 0 | 0 | 0 0 | | | 0 | | 0 | 0 | 0 | | | | 0 | | 0 | 0 | | 0 0 | | | Pipe Haul Truck and Trailer (HHDT-DSL) | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 1 | | | | | | | 6 | | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | 0 0 | | | 3/4 Ton Pickup (MHD-DSL) | | | | | | | | 0 | | 0 | 44 | | | | - 44 | 17 | 47 | 17 | 47 | | 7 6 | | | | 0 | | 0 0 | | | | | 0 | | 0 | | | | | | 0 | 0 | | 0 0 | | | Truck - water | | , , | | | | 0 | 0 | 0 | 0 | 0 | | | 1 1 | 1 11 | 11 | 11 | 11 | | 11 | 17 1 | | | 0 | 0 | 0 | 0 | 0 0 | | 0 | U | 0 | 0 | 0 | 0 | | | | U | 0 | 0 | 0 | | 0 0 | | | OFF ROAD | | , , | | | U | U | U | U | U | U | 0 | 0 1 | | | - 11 | - 11 | - 11 | - 11 | 11 | 0 | 0 (| , , | U | U | U | U | 0 0 | | U | U | U | U | U | U | | , , | U | U | U | U | U | U | 0 0 | | | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | - | - | - | | - | | | Air Compressor (185 CFM) | 0 | | . 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 4 | 1 7 | 7 | 7 | 7 | 4 | 4 | 2 | 2 (| 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 0 | | | Bore Machine (Hydraulic) | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 |) 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 0 |) 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | 12 Ton Hydra Crane | C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 17 1 | 7 2 | 3 26 | 26 | 26 | 26 | 26 | 26 | 17 1 | 7 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Backhoe/loader | C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 13 2 | 1 2 | 1 21 | 21 | 21 | 21 | 21 | 21 | 13 1 | 3 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Excavator - Trencher | | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 1 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 (| 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Forklift | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 : | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | / 0 | | Welding Generator | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 17 1 | 7 1 | 7 17 | 17 | 17 | 17 | 17 | 17 | 17 1 | 7 (| 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | 3 to 5 Ton AC Roller | 0
| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 (| 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | / | | Pipe Bending Machine | | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 3 | 3 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | Pipe Bending Machine RAIL AIR COMPRESSOR 185 | AIR COMPRESSOR 185 | | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 : | 2 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |) (| | BOOM TRUCK 12 TON
CAT 325 BACKHOE | | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |) (| | CAT 325 BACKHOE | | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |) (| | CAT 330 BACKHOE | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 |) 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | o | 0 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 |) (| | CAT DOZER D-6 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 5 1 | 5 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | CAT MODEL 12 MOTOR GRADER | | 0 | | 0 | 0 | 0 | 0 | 0 | ō | 0 | 0 | 0 | 9 | 9 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | ō | 0 | 0 | 0 0 | | 0 | 0 | ō | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | CAT ROLLER-COMPACTOR 563 | - | | | | | 0 | | 0 | 0 | n | 0 | 0 | 7 | 7 4 | 'n | n | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | n | 0 | 0 | 0 | 0 (| | | 0 | 0 | 0 | 0 | n | 0 0 | | | CAT RUBBER TIRE LOADER 966 | č | , , | | | ň | 0 | n | n | n | n | n | n | 'n | 13 | 13 | 13 | n | n | n | n | 0 0 | , , | n | n | n | n | 0 0 | | 0 | n | n | n | n | n | 0 0 | , , | n | n | n | n | n | n | 0 0 | | | CAT SCRAPER 615 | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 2 | 7 1 | | | | 0 | | 0 | 0 | 0 0 | , , | | 0 | 0 | 0 | 0 0 | | | 0 | | 0 | 0 | 0 | | | | 0 | | 0 | 0 | 0 | 0 0 | | | CRANE-ROUGH TERRAIN 45T | | | | | | 0 | | 0 | 0 | 0 | 0 | 0 2 | 0 1 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | , , | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | GENSET 5KW | | | | | | | | 0 | | 0 | 0 | 0 | | , , | | | 0 | | 0 | | 0 0 | | | | 0 | | 0 0 | | | | | 0 | | 0 | | | | | | 0 | 0 | 0 | 0 0 | | | JOHN DEERE TRACTOR 9400 | | | | | | | | 0 | | 0 | 0 | 0 4 | | , , | | | 0 | | 0 | | 0 0 | | | | 0 | | 0 0 | | | | | 0 | | 0 | | | | | | 0 | 0 | 0 | 0 0 | | | PICK-UP CRAFT | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 0 | | - 0 | - 0 | U | 0 | 0 | 0 | 0 0 | | | 0 | 0 | 0 | 0 0 | | 0 | U | 0 | 0 | 0 | 0 | | | | U | 0 | 0 | 0 | 0 | 0 0 | | | PICK-UP OVERHEAD | | | | | | | | | U | U | 0 | 0 2 | 0 2 | 20 | 20 | 20 | U | | 0 | U | | | | U | U | | 0 0 | | | U | | U | | | | | | U | U | | | | 0 (| | | RAIL BALLAST REGULATOR | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 3 | 30 | 25 | 25 | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| | | RAIL BALLAST REGULATOR
RAIL CLIP MACHINE | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | | 5 | 5 | 0 | 0 | 0 | 0 | 0 (| | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| | | | | 0 | . 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | RAIL MOVER-SHUTTLE WAGON | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 |) 5 | 5 | 5 | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| | 0 | 0 | 0 | 0 | 0 | 0 | | | | RAIL TAMPER | | 0 | . 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 5 | 5 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | RAIL WELDER | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 1 | . 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 0 | . 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | U | υ (| . 0 | 0 | 0 | 0 | 0 | 0 | U | 0 0 | | | RAMEX WALK BEHIND COMPACTOR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | TRI-AXLE DUMP TRUCK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 1 | 1 1 | 7 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | TRUCK FLATBED 14 FOOT | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | , , | | TRUCK TRACTOR | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (|) 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| , , | | WATER TRUCK, 4M ON-ROAD | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | WELDING MACHINE 350 AMP | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | LINEARS TOTAL (lbs/day) | | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 87 1 | 03 25 | | | 254 | 259 | | 145 1 | | 09 10 | 15 (| 0 | 0 | 0 | 0 | 0 | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 0 | | | OFFSITE VEHICLES TOTAL (lbs/day) | | | | | | | 313 | | | | | | | 7 101 | | | | | | | | | 125 | | | | 36 136 | | | | | | | | | 109 | | | 91 | | | | 88 88 | | | TOTAL PROJECT (lbs/dav) | coc | 614 | 665 | 665 | 650 | 688 | 637 | 340 | 220 5 | 328 4 | 20 4 | -0 -00 | 10 CA | 7 054 | 652 | 670 | E70 | E7E 0 | 202 5 | 70 57 | 4 400 | E42 | 500 | 402 | 400 0 | E4E E | 14 403 | 477 | 442 | 424 | 422 1 | 002 2 | 67 2 | 62 27 | 2 250 | 207 | 270 | 250 | 105 | 105 | 170 1 | E2 44 | 12 120 | 121 | According to schedules provided by Fluor, Linear construction (except rail) takes place in months 11-22. According to schedules provided by Fluor, Rail construction occurs in months 13-17. | PM ₁₀ - Combustion | MONTHLY E | EMISSIC | NS (lbs/ | /day) |---|-----------|---------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|---------|---------|---------|---------|---------|----------|---------|-------|-------|-------|-------|---------|----------------------|---------|-------|-------|-------|----------|---------|----------------|--------|---------|--------|---------|-------|------|----------|---------|-----|-----| | CONSTRUCTION VEHICLES | 1 : | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 1 | 7 1 | 8 19 | 9 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 2 | 8 29 | 30 | 31 | 32 | 33 | 34 3 | 5 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 45 | 46 | 47 | , | | On-Road Vehicles | 18 cv fill mat'l haul truck | 0.00 | 0.00 | 1.77 | 1.77 | 3.53 | 3.53 | 3.53 | 3.53 | 1.77 | 1.77 | 1.77 | 1.77 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 0 | 0 88 | 00 0 | 00 00 | 0 00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0 | 53 0 | 53 0.5 | 53 0.53 | 3 0.1 | 8 0.18 | 0.18 | 0.00 | 0.00 0.0 | 0 0 00 | 0.0 | 00 | | Bus | | | 0.35 | 0.35 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 124 1 | 1.24 1. | .24 1. | .77 1.7 | 7 177 | 1.77 | 2.47 | 2.47 | 2.47 | 2.47 | 247 24 | 7 247 | 2 47 | 2.47 | 2.47 | 247 | 47 2 | 12 2 | 12 2.1 | 12 1.77 | 7 17 | 7 0.88 | 0.88 | 0.53 | 0.53 0.5 | 35 0.35 | | | | Concrete Pumper Truck | | | | 0.00 | 0.00 | 0.35 | 0.35 | | 0.35 | | 0.35 | 0.35 | | | | | | | | .35 0.3 | | | 0.00 | 0.00 | 0.00 | | 118 01 | | | 0.00 | | | | 00 0. | | | | | | | 0.00 0.0 | | 0.0 | | | Dump Truck | | | 0.71 | 0.53 | 0.53 | 0.53 | 0.53 | | 0.53 | 0.53 | 0.35 | 0.35 | | | | | | | | .00 0.0 | | | 0.00 | 0.00 | 0.00 | | 0.35 0.3 | | | 0.35 | 0.35 | | | 35 0. | | | | | | | 0.18 0.1 | | | | | | | | | | | | | | | | | | 0.35 | | | 0.00 | | | | | | 0.00 | | | | | | | | | | | | | | | 3 0.3 | 5 0.18 | | | 0.18 0.1 | 18 0.00 | | | | Diesel Tractor (Yard Dog) | | | 0.00 | 0.00 | 0.00 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.80 | 0.80 | | 0.80 | 0.80 | | | .60 1. | .60 1.6 | | 1.60 | 2.00 | 2.00 | 2.00 | | 2.00 2.0 | | | 2.00 | 2.00 | | | 80 0. | | | 0.8 | 0.80 | 0.80 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | | | Service Truck - 1 ton | | | 0.35 | 0.71 | 0.71 | 0.71 | 0.71 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | | | | | | | | .35 0.3 | | | 0.35 | 0.35 | 0.35 | | 0.35 0.3 | | | 0.35 | | | | 35 0. | | | | | | | 0.18 0.1 | 18 0.18 | | | | Pile Driver Truck | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 0. | .00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0. | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | JÜ | | Truck - Fuel/Lube | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 0 | .14 0. | .14 0.14 | 4 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 0.1 | 4 0.14 | 0.14 | 0.14 | 0.14 | 0.14 (| 1.14 0. | 14 0. | 14 0.1 | 14 0.14 | 4 0.0 | 7 0.07 | 0.07 | 0.07 | 0.07 0.0 | 0.07 |
0.0 | JO. | | Tractor Truck 5th Wheel | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0. | .00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0. | 00 0. | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | JO | | Trucks - Pickup 3/4 ton | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.41 | 0.48 | 0.55 | 1.03 | 1.03 | 1.03 | 1.03 | 1 72 | 1 72 | 1.72 | 1.72 | 1.72 1 | 1.72 1 | 72 1 | .72 1.73 | 2 172 | 1.72 | 1.72 | 1.72 | 1.72 | 1.72 | 1.72 1.7 | 2 172 | 1.72 | 1.72 | 1.72 | 1.72 | .72 1. | 72 1. | 72 1.7 | 72 1.72 | 2 17 | 2 1.72 | 1.72 | 1.03 | 1.03 0.6 | 99 0 69 | 0.6 | 49 | | Trucks - 3 ton | | | | 0.18 | 0.18 | 0.35 | 0.35 | 0.35 | 0.71 | 0.71 | 0.71 | 0.71 | 1.06 | | | 1.06 | | | | .06 1.0 | | | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 1.0 | | | 1.06 | 1.06 | | | 53 0. | | | | | | | 0.18 0.1 | 10 0.10 | 0.0 | 200 | | Truck - Water | | | | 0.18 | 0.18 | 0.33 | 0.53 | | 0.53 | | | | | | | | | | | .53 0.5 | | | 0.35 | 0.53 | | | 0.35 0.3 | | | 0.35 | | | 1.35 0. | | | | | | | | 0.18 0.1 | | | | | | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | 0.53 | U.53 L | J.53 U | 1.53 0. | .53 U.5. | 3 0.53 | 0.53 | 0.35 | 0.53 | 0.35 | 0.35 | J.35 U. | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 1.35 U. | 35 U. | 35 0.2 | 35 0.35 | 5 U.S | D U.30 | 0.35 | 0.18 | 0.18 0.1 | 18 0.18 | 0.1 | .8 | | Off Road Vehicles | А | | Air Compressor 185 CFM | | | | 0.23 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | | | | | | | | .15 1.1 | | | 1.37 | 1.37 | 1.37 | | 1.37 1.3 | | 1.37 | 1.37 | 1.37 | | | 92 0. | | | | | | | 0.46 0.4 | | | | | Air Compressor 750 CFM | | | | 0.00 | 0.24 | 0.24 | 0.24 | | 0.48 | | 0.48 | | | | | | | | | .95 0.9 | | | 0.95 | 0.95 | 0.95 | | 0.95 0.9 | | | 0.48 | | | | 24 0. | | | | | | | 0.24 0.2 | | | | | Articulating Boom Platform | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | .00 0.0 | | | 0.00 | 0.00 | 0.00 | | 0.00 | | | 0.00 | 0.00 | | | 00 0. | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | | 0.00 0.0 | 0.00 | 0.0 | 0t | | Bob cat loader | 0.00 | 0.00 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 0 | 1.31 0. | .31 0.3 | 1 0.31 | 0.31 | 0.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0. | 16 0. | 16 0.1 | 16 0.16 | 6 0.1 | 6 0.16 | 0.16 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | JO | | Bulldozer D10R | 1.54 | 1.54 | 1.54 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 0.51 | 0.51 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0. | .00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0. | 00 n | 0.0 | 00 000 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | JO | | Bulldozer D6C | | | 1 19 | 1 19 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.40 | 0.40 | 0.40 | | | | | | | 00 0.0 | | | 0.00 | 0.00 | 0.00 | | 0.40 0.4 | | | 0.00 | 0.00 | | | 00 0 | | | | | | | 0.00 0.0 | | | | | Concrete Trowel Machine | | | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 | 0.00 | 0.12 | 0.12 | 0.12 | 0.12 | | | | | 0.12 0 | | 12 0.1 | | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 112 0. | 0 0.40 | | 0.00 | 0.00 | | | 00 0 | | | | | | | 0.00 0.0 | | | | | | | | 0.00 | 0.00 | 0.00 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | | | 0.00 | | | 0.00 0 | | 00 0.0 | | 0.12 | 0.12 | 0.12 | 0.12 | | 0.00 0.0 | | | 0.00 | 0.00 | | | 00 0. | | | | | | | 0.00 0.0 | | | | | Concrete Vibrators | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | | | | | | | | | | | | 0.00 | | | | | | 1.06 | | | | 00 0.
42 0. | | | | | | | | | | | | Cranes - Mobile 35 ton | | | | | | | | | | 0.85 | 0.85 | | 0.85 | 1.48 | | 1.48 | | | .48 1. | .48 1.4 | | 1.48 | 1.48 | 1.48 | 1.48 | | 1.06 1.0 | | | | 1.06 | | | | | | | | | | 0.42 0.4 | 2 0.21 | | | | Cranes - Mobile 45 ton | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | | 0.38 | 1.76 0. | .76 0.70 | | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 0.7 | | | 0.38 | 0.38 | | | 38 0. | | | | | | 0.00 | 0.00 0.0 | 0.00 | 0.0 | | | Crane - Mobile 65 ton | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 | 0.19 | 0.38 | 0.76 | 0.95 | | | .15 1. | .15 1.11 | 5 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | | 1.15 1.1 | 5 1.15 | 0.95 | 0.95 | 0.76 | | | 38 0. | | | 9 0.1 | 9 0.19 | 0.19 | 0.19 | 0.19 0.1 | 19 0.00 | 0.0 | JÛ | | Cranes 100 / 150 ton cap | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.15 | 0.30 | 0.30 | 0.45 | 0.45 | 0.60 0 | 0.60 | 1.60 0. | .60 0.6 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 0.3 | 0.30 | 0.15 | 0.15 | 0.15 | 0.15 | .15 0. | 15 0. | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | JO | | Diesel Powered Welder | 0.00 | 0.00 | 0.00 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.45 | 0.45 | 0.45 0 | 1.60 0. | .60 0.6 | 0.60 | 0.60 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 0.7 | 5 0.75 | 0.75 | 0.75 | 0.45 | 0.45 | .45 0. | 45 0. | 45 0.3 | 30 0.30 | 0 0.3 | 0.30 | 0.30 | 0.15 | 0.15 0.1 | 15 0.15 | 0.0 | J9 | | Excavator - Backhoe/loader | | | 0.53 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.35 | | | | | | | 118 0 | 18 0.1 | | 0.18 | 0.18 | 0.00 | 0.00 | | 0.00 | | | 0.00 | 0.00 | | | 35 0 | | | | | | | 0.00 0.0 | 0 0 00 | | | | Excavator - Earth Scraper 637 | | | 5.08 | 5.08 | 2.90 | 2.90 | 1.45 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | 0.00 | 100 0 | 00 0.0 | | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 | 0.00 | | | 00 0 | | | | | | | 0.00 0.0 | | | | | Excavator - loader | | | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | | | | | | | 100 0 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 0.2 | | | 0.00 | 0.00 | | | 00 0. | | | | | | | 0.00 0.0 | | | | | | | | 0.57 | | 0.57 | | 0.57 | 0.57 | | | 0.57 | 0.00 | | | | | | | | | | | | 0.00 | | | | | | | | | | | | | | | | | | 0.00 | | | | Excavator - Motor Grader (CAT140H) | | | | 0.39 | 1.16 | 1.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | .00 0.0 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.39 0.3 | | | 0.00 | 0.00 | | | | | | | | | | 0.00 0.0 | 0.00 | 0.0 | | | Excavator - Trencher (CAT320) | | | 0.00 | 0.00 | 0.00 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | | | | | | | | .00 0.0 | | | 0.00 | 0.00 | 0.00 | | 0.00 | | | 0.00 | 0.00 | | | | 0.0 | | | | | | 0.00 0.0 | | | | | Fired Heaters (2,000 BTU) | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.10 | 0.10 | 0.10 | 0.08 | 0.08 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 (| 0.13 | 1.13 0. | .13 0.13 | 3 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 0.1 | 3 0.13 | 0.13 | 0.13 | 0.08 | 0.08 | .08 0. | 05 0. | 0.0 | 0.05 | 6 0.0 | 5 0.05 | 0.05 | 0.05 | 0.05 0.0 | 0.05 | 0.0 | J3 | | Forklift | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 0.31 (| 0.31 | .31 0. | .31 0.3 | 1 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.23 0.2 | 3 0.23 | 0.23 | 0.23 | 0.23 | 0.23 | 1.23 0. | 23 0. | 23 0.2 | 23 0.23 | 3 0.2 | 3 0.23 | 0.23 | 0.08 | 0.08 0.0 | 0.08 | 0.0 | 34 | | Fusion Welder | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0. | .00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0. | 00 0. | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | JO | | Heavy Haul / 600 tn Crane | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 38 0 | 138 0 | 38 0.3 | 8 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0 | 00 0 | 00 00 | 0.00 | 0 0.0 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | 10 | | Heavy Haul / 1.000 tn Crane | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 | 38 0.3 | 9 0.39 | 0.20 | 0.38 | 0.38 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0 | 00 0 | 0.0 | 0.00 | 0 00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | 20 | | Light Plants | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | 135 0 | 35 0.3 | | 0.35 | 0.36 | 0.36 | 0.00 | | 0.35 0.0 | | | 0.00 | 0.00 | | | 25 0. | | | | | | | 0.13 0.1 | | | | | | | | 0.05 | 0.10 | 0.20 | 0.20 | 0.20 | 0.20 | 0.10 | 0.10 | 0.15 | 0.15 | | | | | | | | 27 12 | | | 1.69 | 1.60 | 1.69 | | J.35 U.3 | | | 1.69 | 1.69 | | | 25 U.
27 1 | | | | | | | | | | | | Man lifts - telescoping | Man lift - scissor | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | .00 0.0 | | | 0.00 | 0.00 | 0.00 | | 0.00 | | | 0.00 | 0.00 | | | 00 0. | | | | | | | 0.00 0.0 | | | | | Portable Compaction Roller | | | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | | | 1.61 0. | .61 0.6 | | 0.61 | 0.61 | 0.00 | 0.00 | | 0.00 | 1 0.61 | 0.61 | 0.61 | 0.61 | 0.61 (| 0.00 | 00 0. | 0.0 | 31 0.61 | 1 0.6 | | | | 0.00 0.0 | 0.00 | | | | Portable Compaction - Vibratory Plate | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 1.03 0. | .03 0.03 | 3 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 0.0 | 2 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | .00 0. | 02 0. | 0.0 | 0.02 | 2 0.00 | 2 0.01 | 0.01 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | JO | | Portable Compaction - Ram | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0. | .00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0. | 0.0 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | JO | | Pumps | | | 0.08 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.08 0 | 108 0 | 08 0.00 | 8 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 0.0 | 8 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0 80 | 08 0 | 0.0 | 0.06 | 8 00 | 8 0.08 | 0.08 | 0.05 | 0.05 0.0 | 0.05 | 0.0 | 15 | | Portable Power Generators | | | 0.75 | 0.75 | 1 12 | 1 12 | 1.12 | 1 12 | 1 12 | 1.87 | 1.87 | 1.87 | 1.87 | 1.87 | 1.87 | 2.80 | 280 2 | 280 2 | 80 2 | 80 28 | 0.00 | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 3.7 | 4 3.74 | 3.74 | 3.74 | 3.74 | 3.74 | 174 2 | 80 2 | RO 2.6 | 80 280 | 0 18 | 7 1.87 | 1.87 | 1.87 | 1.87 1.8 | 7 0.92 | 0.0 | 2 | | Truck Crane - Greater than 300 ton | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | | | | | | | | .67 0.8 | | | 0.89 | 0.00 | 0.89 | 0.89 | 3.74 3.1
0.89 0.8 | | | 0.45 | | | | 80 Z.
22 0. | | | | | | | 0.00 0.0 | 0.89 | Truck Crane - Greater than 200 ton | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | .30 0.3 | | | 0.45 | 0.45 | 0.45 | | 0.45 0.4 | | | 0.00 | 0.00 | | | 00 0. | | | | | | | 0.00 0.0 | | | | | Vibratory Roller Ingersol-Rand 20 ton | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.47 | 0.47 | 0.47 | 0.47 | 0.47 | 0.24 | 0.24 | 0.24 (| 0.24 0 | .00 0. | .00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.47 0.4 | 7 0.47 | 0.47 | 0.00 | 0.00 | 0.00 (| 0.00 | 00 0. | 00 0.2 | 24 0.24 | 4 0.2 | 4 0.24 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | 0 | | WORKER VEHICLES | Personal commuting vehicles | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 (| 0.04 0 | 1.04 0. | .04 0.0 | 5 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 0.0 | 8 0.08 | 0.08 | 0.08 | 0.08 | 0.07 (| 0.07 | 07 0. | 0.0 | 0.05 | 6 0.0 | 4 0.03 | 0.02 | 0.02 | 0.02 0.0 | 0.02 | 0.0 | 11 | | DELIVERY TRUCKS | Light delivery truck (e.g. Fed-Ex) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 000 0 | 00 0 | 00 00 | 0 00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0 | 00 0 | 0.0 | 00 00 | 0 0 0 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.0 | 10 | | Heavy delivery truck (e.g. flat beds carrying | 0.00 | | | | 2.00 | 2.00 | 3.00 | 3.00 | 2.00 | 230 | 230 | 220 | | | | | | | | 0.0 | - 0.00 | 0.00 | 00 | 2.00 | 250 | | | _ 0.00 | 3.00 | 2.00 | 2.30 | | | 0. | 0.0 | 0.00 | - 0.0 | _ 0.00 | 0.00 | 2.30 | | 0.00 | 0.0 | - | | construction eap) | 0.31 | | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 31 0 | 31 0 | 31 0.3 | 1 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 0.3 | 1 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 31 0 | 31 0 | 31 02 | 31 0.31 | 1 03 | 1 0.31 | 0.31 | 0.31 | 0.31 0.3 | 1 031 | 0.3 | Import fill trucks ONSITE TOTAL (lbs/day) | | | 1.51 | 1.51 | 1.51 | 1.51 | 1.51 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | .00 0.0 | | | 0.00 | 0.00 | 0.00 | | 0.00 0.0 | | | 0.00 | 0.00 | | | 00 0. | | | | | | | 0.00 0.0 | | | | | | | | | 19.83 | 20.91 | 22.95 | 20.26 | 17.53 | 16.22 | 16.85 | 17.27 | 17.64 | 17.56 | 18.91 1 | 19.13 2 | 00.13 2 | 0.79 21 | 1.10 20 | 77 22 | 48 22.7 | 1 22.36 | 23.42 | 25.15 | 24.23 | 23.67 | 22.88 2 | 1.89 25.0 | 9 23.86 | 23.21 | 21.16 | 20.62 | 19.99 11 | 117 16 | | | | | 3 11.85 | 11.61 | 6.73 | 6.73 6.2 | 1 444 | 3.8 | | | | | | | _ | _ | _ | _ | _ | _ | _ | _ | | |-------------------|------------------------------------|-------|-------|------|-------|-------|---------|-------|-------|-------|-------|-------|-------|---------|---------|-------------------|--------|--------|-------|-------|-------|------|-------|------|-----------|-----------|---------|-------|-------|-------|--------|----------|-------|-------|-------|---------|-------|-----------|---------|---------|-----------|---------|------|-----------| | | Month | 1 | 2 | 3 | 4 | 5 | - 6 | | 8 | 9 | 10 | 11 | 12 | 13 1 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 . | 25 26 | 27 | 28 | 29 | 30 | 31 3 | 32 3. | 3 34 | 35 | 36 | 37 | 38 . | 39 4 | 40 41 | 42 | 43 | 44 4 | 5 46 | 47 | 48 49 | | | WORKER VEHICLES | mmuting vehicles | 0.07 | 0.12 | 0.16 | 0.21 | 0.31 | 0.39 | 0.46 | 0.62 | 0.69 | 0.83 | 1.03 | 1.15 | 1.36 1 | .60 1.1 | 92 2.1 | 8 2.3 | 7 2.52 | 2.65 | 2.81 | 2.95 | 3.30 | 3.54 | 3.81 | 4.05 4. | 10 4.5 | 1 4.83 | 4.99 | 5.01 | 5.06 | 4.99 4 | .94 4.72 | 4.47 | 4.33 | 3.93 | 3.81 | 3.23 | 2.63 2.0 | 36 1.42 | 12 1.13 | 1.13 1. | 13 1.04 | 0.88 | 0.81 0.61 | | | DELIVERY TRUCKS | y truck (e.g. Fed-Ex) | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 0 | .05 0.0 | 0.0 | 6 0.0 | 5 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 0. | 0.00 | 5 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | .05 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 0.0 | 0.05 | 0.05 | 0.05 0. | 0.05 | 0.05 | 0.05 0.05 | | | ery truck (e.g. flat beds carrying | construction e | | | | | | | | | | | | | | | .67 2.0 | | | | | | | | | | | | | | | | | .67 2.67 | | | | | | 2.67 2.6 | | | | | | 2.67 2.67 | | Import fill truck | | 8.31 | 8.31 | 8.31 | 8.31 | 8.31 | 8.31 | 8.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | .00 0. | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 0.00 | 0.00 | 0.00 0.00 | | | LINEARS | ON ROAD | Dump Truck | | | 0.00 | 0.00 | | | | | 0.00 | 0.00 | 0.00 | 0.71 | | | .06 1.0 | | | | | | | 0.71 | | | | 0.0 | | 0.00 | 0.00 | | | .00 0.00 | | 0.00 | | | | 0.00 0.0 | | | | | | 0.00 0.00 | | Service Truck | | 0.00 | 0.00 | 0.00 | | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.35 | | | .35 0.: | | | | | | 0.53 | 0.53 | 0.00 | | 0.00 0. | | | 0.00 | 0.00 | | | .00 0.00 | | 0.00 | 0.00 | | | 0.00 0.0 | | | | 0.00 | | 0.00 0.00 | | | ruck and Trailer (HHDT-DSL) | 0.00 | 0.00 | 0.00 | | | | | 0.00 | 0.00 | 0.00 | 0.53 | | | .53 0.1 | | | | | | 0.35 | 0.35 | 0.00 | | | 0.0 | | 0.00 | 0.00 | | | .00 0.00 | | 0.00 | 0.00 | | | 0.00 0.0 | | | | 0.00 | | 0.00 0.00 | | 3/4 Ton Pickup | rup (MHD-DSL) | 0.00 | 0.00 | 0.00 | | | | | 0.00 | 0.00 | 0.00 | 0.69 | 0.69 | 0.69 0 | .69 0.0 | 89 0.6 | 9 1.0 | 3 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 0.00 | 0.00 | | 0.0 | | 0.00 | 0.00 | | | .00 0.00 | | 0.00 | 0.00 | | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 0.00 | 0.00 | 0.00 0.00 | | Truck - water | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.35 | 0.35 | 0.71 0 | .71 0.1 | 71 0.7 | 1 0.7 | 1 0.71 | 0.71 | 0.71 | 0.35 | 0.35 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 0.00 | 0.00 | 0.00 0.00 | | OFF ROAD | Air Compresso | | | 0.00 | 0.00 | | | | | 0.00 | 0.00 | 0.00 | 0.23 | | | .46 0.0 | | | | | | | 0.23 | | | | 0.0 | | 0.00 | 0.00 | | | .00 0.00 | | 0.00 | 0.00 | | | 0.00 0.0 | | | | | | 0.00 0.00 | | Bore Machine | | 0.00 | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | .00 0. | | | | | | 0.00 | 0.00 | 0.00 | | | 0.0 | | 0.00 | 0.00 | | | .00 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 0.0 | | | 0.00 0. | 0.00 | | 0.00 0.00 | | 12 Ton Hydra | | 0.00 | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.30 | 0.60 | 0.60 0 | .90 0.1 | 90 0.9 | | | 0.90 | | 0.60 | 0.60 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 0.00 | | 0.00 0.00 | | Backhoe/loade | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.06 | 1.06 | 1.77 1 | .77 1.3 | 77 1.7 | 7 1.7 | 7 1.77 | 1.77 | 1.77 | 1.06 | 1.06 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 0.00 | 0.00 | 0.00 0.00 | | Excavator - Tre | Trencher | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.34 | 0.34 0 | .34 0.3 | 34 0.3 | 4 0.3 | 4 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 0.00 | 0.00 | 0.00 0.00 | | Forklift | | 0.00 | 0.00 | 0.00 | | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.08 | 0.08 | 0.15 0 | .15 0. | 15 0.1 | 5 0.1 | 5 0.15 | 0.15 | 0.15 | 0.15 | 0.08 | 0.00 | | | 0.0 | | 0.00 | 0.00 | | 0.00 | .00 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 0.00 | 0.00 | 0.00 0.00 | | Welding Gene | | 0.00 | 0.00 | 0.00 | | | | | 0.00 | 0.00 | 0.00 | 1.50 | | | .50 1.1 | | | | | | 1.50 | 1.50 | | | | 0.0 | | 0.00 | | | | .00 0.00 | | 0.00 | 0.00 | | | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 0.00 | | 0.00 0.00 | | 3 to 5 Ton AC | C Roller | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | .28 0.3 | | | 8 0.28 | | | | | | | 0.00 0. | | | 0.00 | | | 0.00 | .00 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 0.00 | 0.00 | 0.00 0.00 | | Pipe Bending | g Machine | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | 0.25 | 0.51 0 | .51 0.1 | 51 0.5 | 1 0.5 | 1 0.51 | 0.51 | 0.25 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 0.00 | 0.00 | 0.00 0.00 | | E RAIL | AIR COMPRES | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | .23 0.: | 23 0.2 | 3 0.2 | 3 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 0.00 | 0.00 | 0.00 0.00 | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0. | 18 0.1 | 8 0.1 | 8 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 0.00 | 0.00 | 0.00 0.00 | | CAT 325 BACK | CKHOE | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 0 | .20 0.0 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 00 0.00 | 0.00 | 0.00 0.00 | | CAT 330 BACK | CKHOE | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0. | 17 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 00 0.00 | 0.00 | 0.00 0.00 | | CAT DOZER D | RD-6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.84 0 | .84 0.0 | 0.0 | 0 0.4 | 2 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 00 0.00 | 0.00 | 0.00 0.00 | | CAT MODEL 1 | L 12 MOTOR GRADER | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.77 0 | .77 0.3 | 39 0.3 | 9 0.3 | 9 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 00.00 | 0.00 | 0.00 0.00 | | | R-COMPACTOR 563 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.61 0 | .61 0.: | 31 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 00 0.00 | 0.00 | 0.00 0.00 | | CAT RUBBER | ER TIRE LOADER 966 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.4 | 45 0.4 | 5 0.4 | 5 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 00 0.00 | 0.00 | 0.00 0.00 | | CAT SCRAPE | PER 615 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.04 0 | .52 0.0 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 00 0.00 | 0.00 | 0.00 0.00 | | CRANE-ROUG | UGH TERRAIN 45T | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 19 0 | 19 0.0 | 0 00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 00 00 | 00 0 | 0.00 0 | 00 0.00 | 0.00 | 0.00 0.00 | | GENSET 5KW | CW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .18 0.1 | 0.0 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 00 0.00 | 0.00 | 0.00 0.00 | | JOHN DEERE | RE TRACTOR 9400 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 0 | 00 0 | 00 00 | 0 00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 00 00 | 00 0 | 0.00 0 | 00 0.00 | 0.00 | 0.00 0.00 | | PICK-UP CRA | RAFT | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.91 0 | 91 0 | 91 0.9 | 1 0.9 | 1 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 00 00 | 00 0 | 0.00 0 | 00 0.00 | | 0.00 0.00 | | PICK-UP OVE | VERHEAD | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.52 1 | 56 11 | 56 1.3 | 0 13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 00 00 | 00 0 | 0.00 0 | 00 0.00 | 0.00 | 0.00 0.00 | | RAIL BALLAST | ST REGULATOR | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 01 | 00 02 | 6 02 | 6 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 00 00 | 00 0 | 0.00 0 | 00 0.00 | 0.00 | 0.00 0.00 | | RAIL CLIP MA | AACHINE | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 01 | 00 0.1 | 3 0.1 | 3 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 00 00 | 00 0 | 0.00 0 | 00 0.00 | 0.00 | 0.00 0.00 | | RAII MOVER | R-SHUTTLE WAGON | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0: | 26 0.2 | 6 02 | 6 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 00 00 | 00 0 | 0.00 0 | 00 0.00 | 0.00 | 0.00 0.00 | | RAIL TAMPER | | 0.00 | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | 00 0. | | | | | | 0.00 | 0.00 | 0.00 | | | 00 0.0 | 0.00 | 0.00 | 0.00 | | 0.00 | 00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 0.0 | | | | | | 0.00 0.00 | | RAIL WELDER | FR | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 01 | 00 00 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 00 00 | 00 0 | 0.00 0 | 00 0.00 | | 0.00 0.00 | | RAMEX WALK | LK BEHIND COMPACTOR | 0.00 | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 01 0.1 | | | | | | 0.00 | 0.00 | 0.00 | | | 00 0.0 | | 0.00 | 0.00 | | | 00 0.00 | 0.00 | 0.00 | 0.00 | | | 0.00 0.0 | | | 0.00 0. | 00 0.00 | | 0.00 0.00 | | TRI-AXI F DUI | | 0.00 | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.71 1 | 08 0 | 35 0.0 | 0 0.0 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 00 0.00 | | 0.00 0.00 | | | TBED 14 FOOT | 0.00 | 0.00 | 0.00 | | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.18 | 18 0 | 53 0.6 | | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0. | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 00.00 | 0.00 0. | 00 0.00 | | 0.00 0.00 | | TRUCK TRAC | | 0.00 | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 00 0 | 26 0.2 | 6 0.0 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 00 0.0 | | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 0.0 | | 0.00 | 0.00 0 | 00 0.00 | | 0.00 0.00 | | | JCK. 4M ON-ROAD | 0.00 | 0.00 | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 18 0 | 18 0.2 | | | | | 0.00 | 0.00 | 0.00 | | | 00 0.0 | | 0.00 | 0.00 | | 0.00 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 0.0 | | 0.00 | 0.00 0. | | | 0.00 0.00 | | | AACHINE 350 AMP | 0.00 | 0.00 | 0.00 | | 0.00 | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 03 0 | | | | | | 0.00 | 0.00 | 0.00 | | | 00 0.0 | | 0.00 | 0.00 | | | 0.00 | | 0.00 | 0.00 | | | 0.00 0.0 | | | | 00 0.00 | | 0.00 0.00 | | | OTAL (lbs/day) | | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | U.U.S U | 74 45 | DS U.U | 8 154 | | | | 7.39 | 7.00 | 0.00 | 0.00 | 0.00 0. | 00 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | .00 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 0.0 | 0.00 | 0.00 | 0.00 0. | 00 0.00 | | 0.00 0.00 | | | EHICLES TOTAL (lbs/day) | 11.09 | | | 11.23 | 11.33 | 11.41 | 11.49 | 3.33 | 3.40 | 3.54 | 3.74 | 3.86 | 4.08 4 | .71 15. | 50 14.9
64 4.8 | | | | | | 6.01 | | 6.53 | 6.77 6 | 82 7.2 | 2 7.54 | 7.70 | 7.73 | 7.78 | 7.70 7 | 66 7.44 | 7.18 | 7.04 | 6.65 | 6.52 | 5.94 | 5.34 4.7 | m 4.41 | 0.00 | 2.04 2 | 04 3.76 | | 3.52 3.33 | | | DJECT (lbs/day) | 9.17 16.6 | | | | | | | | | | 20.44 | 21.00 | W.70 | J1.07 | VZ.24 | . 54.30 | 07.70 | 24.00 | 10.02 | 20.40 | 21.00 | 40.4/ | N. 50 | .55 35. | 40.0 | V 41.3 | 30.24 | J3.02 | 07.00 | 55.70 | · · | 20.00 | J | 71.00 30. | -U 30. II | V UZ.43 | UL.75 | J1.J0 | www Z | W.W 20 |
21.40 | 23.33 | 40.41 | 20.22 | 27.01 2 | AAV I | J. 10.0 | ~ 10.7 | 10.01 | 10.07 10. | 0.10 | 1.41 | 0.00 | According to schedules provided by Fluor, Linear construction (except rail) takes place in months 11-22. According to schedules provided by Fluor, Rail construction occurs in months 13-17. | | PM _{2.5} - Combustion | MONTH | ILY EMIS | SSIONS | (lbs/day | 1) |-----|---|-------|----------|--------|----------|-----|------|-----|-------|---------|------|------|-----|------|------|-------|--------|--------|-------|------|------|-----|---------|--------|------|-----|----------|-------|------|---------|---------|------|-----|----------|--------|-------|-------|------|--------|---------|-------|---------| | | CONSTRUCTION VEHICLES | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 9 | 10 | 11 | 12 | 13 | 14 1 | 15 1 | 16 17 | 7 18 | 19 | 20 | 21 | 22 | 23 | 24 25 | 26 | 27 | 28 | 29 30 | 31 | 32 | 33 34 | 35 | 36 | 37 | 38 39 | 40 | 41 | 42 | 43 4 | 44 45 | 5 46 | 47 | 48 49 | | | On-Road Vehicles | 18 cv fill mat'l haul truck | 0.0 | 0.0 | 16 | 1.6 | 3.2 | 3.2 | 3.2 | 3.2 1 | 16 16 | 16 | 1.6 | 0.8 | 0.8 | 0.8 | 0.8 | 18 0 | 8 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.5 0 | 5 02 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 00 00 | | | Bus | 0.3 | | 0.3 | 0.3 | 0.5 | 0.5 | | | 0.5 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 1.1 1. | 1 1.1 | 1.6 | 1.6 | 1.6 | 1.6 | 2.2 2 | 2 2.2 | 2.2 | 2.2 | 2.2 2 | 2 2.2 | 2.2 | 2.2 | 2 2.2 | 1.9 | 1.9 | 1.9 1. | 6 1.6 | 0.8 | 0.8 | 0.5 | 0.5 0. | 0.3 | 3 0.3 | 0.2 0.2 | | | Concrete Pumper Truck | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.3 | 3 03 | 0.3 | 0.3 | 0.3 | 0.5 | 0.5 | 0.5 | 13 0 | 3 03 | 3 03 | 0.3 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.2 | 0.2 0. | 2 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 10 00 | 0.0 | 0.0 0.0 | | | Dump Truck | 0.5 | 0.6 | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.3 | 0.3 0. | 3 0.3 | 0.3 | 0.3 | .3 0.3 | 0.3 | 0.5 | 0.5 0. | 5 0.3 | 0.2 | 0.2 | 0.2 | 0.2 0. | 1.2 0.0 | 0.0 | 0.0 0.0 | | | Diesel Tractor (Yard Dog) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.4 | 04 04 | 0.4 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 4 1 | 4 14 | 1 14 | 1.4 | 1.4 | 1.4 | 18 1 | 8 18 | 1.8 | 1.8 | 18 1 | 8 18 | 1.8 | 18 1 | 8 18 | 0.7 | 0.7 | 0.7 0 | 7 07 | 0.7 | 0.7 | 0.0 | 0.0 | 10 00 | 0.0 | 0.0 0.0 | | | Service Truck - 1 ton | 0.3 | 0.3 | 0.3 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 0. | 3 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 0 | 3 0.3 | 0.3 | 0.3 | 0.3 0. | 3 0.3 | 0.3 | 0.3 | .3 0.3 | 0.3 | 0.3 | 0.3 0. | 3 0.3 | 0.3 | 0.3 | 0.2 | 0.2 0. | 1.2 0.2 | | 0.2 0.2 | | | Pile Driver Truck | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 00 | 0.0 | 0.0 0.0 | | | Truck - Fuel/Lube | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0. | 1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0.1 | 0.1 | 0.1 | 0.1 0. | 1 0.1 | 0.1 | 0.1 | .1 0.1 | 0.1 | 0.1 | 0.1 0. | 1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0. | 1.1 0.1 | 1 0.0 | 0.0 0.0 | | | Tractor Truck 5th Wheel | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 00 | 0.0 | 0.0 0.0 | | | Trucks - Pickun 3/4 ton | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 | 9 09 | 0.9 | 0.9 | 1.6 | 1.6 | 1.6 | 16 1 | 6 1 | 6 16 | 16 | 1.6 | 1.6 | 1.6 | 16 1 | 6 16 | 1.6 | 1.6 | 16 1 | 6 16 | 1.6 | 16 1 | 6 16 | 1.6 | 1.6 | 16 1 | 6 16 | 16 | 1.6 | 0.9 | 0.9 0 | 16 06 | 6 06 | 0.6 0.3 | | | Trucks - 3 ton | 0.2 | | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.6 | 0.6 | 0.6 | 1.0 | 1.0 | 1.0 | 10 1 | 1.0 1. | 0 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 1 | .0 1.0 | 1.0 | 1.0 | 1.0 1. | 0 1.0 | 1.0 | 10 1 | .0 0.6 | 0.5 | 0.5 | 0.5 0. | 5 0.3 | 0.3 | 0.3 | 0.2 | 0.2 0. | 0.2 | 2 0.0 | 0.0 0.0 | | | Truck - Water | | 0.8 | 0.8 | | | | | | 0.5 | | | | | | | 15 0 | | | | 0.5 | | | .5 0.3 | | 0.3 | 0.3 0. | | | | 3 03 | | | 0.3 0 | | | | | 0.2 0. | | | | | | Off Road Vehicles | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | | 0.0 | 0.0 | | | | | 0.0 | | 0.0 | | | | 0.0 | | | 0.0 | | | 0.0 | 0.0 | | | | 0.0 | 0.2 | 0.2 0. | | - | 0.1 | | | Air Compressor 185 CFM | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.6 | 0.6 | 06 0 | 18 0 | 8 08 | 3 11 | 1.1 | 1.1 | 1.1 | 1.3 1 | .3 1.3 | 1.3 | 13 | 1.3 1. | 3 13 | 13 | 13 1 | 3 13 | 0.8 | 0.8 | 0.8 0 | 6 06 | 0.6 | 0.6 | 0.4 | 0.4 0. | 0.4 0.2 | 2 0.2 | 0.1 0.1 | | | Air Compressor 750 CFM | 0.0 | | 0.0 | | | | | | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.9 | 0.9 0. | 9 0.0 | 0.9 | 0.9 | 0.9 | 0.9 | | .9 0.9 | | 0.9 | 0.9 0. | 4 04 | 0.4 | 0.4 | .2 0.2 | 0.2 | 0.2 | 0.2 0. | 2 0.2 | 0.2 | 0.2 | | 0.2 0. | | | | | | Articulating Boom Platform | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.4 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | | 0.0 0 | 0.0 | | 0.0 0.0 | | | Bob cat loader | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 | 0.6 | 16 06 | 0.6 | 0.6 | 0.0 | 0.4 | 0.4 | | 0.4 0. | | | 0.3 | 0.3 | 0.0 | 0.3 0 | .0 0.0 | | 0.0 | 0.0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 0. | 1 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | | | Bulldozer D10R | 1.4 | | 1.4 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 19 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 0.0 | | | Bulldozer D6C | 1.1 | | 1.1 | 1.1 | 0.7 | 0.7 | 0.7 | 0.5 | 7 0.7 | 0.0 | 0.4 | 0.4 | 0.4 | 0.4 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.4 | 0.0 0. | 4 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 10 0.0 | 0.0 | 0.0 0.0 | | | Concrete Trowel Machine | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 11 01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 11 0 | 1 0: | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0.1 | 0.1 | 0.1 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 0 | 1 0.1 | 0.1 | 0.1 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | | | Concrete Vibrators | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 0 | 10 0.0 | 0.0 | 0.0 0.0 | | | Cranes - Mobile 35 ton | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12 0.8 | 0.0 | 0.0 | 0.0 | 1.4 | 1.4 | 1.4 1 | 1.4 1. | 4 1/ | 1 14 | 1.4 | 1.4 | 1.4 | 1.4 1 | 4 14 | 1.0 | 1.0 | 1.0 1 | 0.0 | 1.0 | 10 1 | 0.0 | 0.4 | 0.4 | 0.0 0. | 4 0.4 | 0.0 | 0.0 | 0.4 | 0.0 0. | 14 0.2 | 2 0.2 | 0.2 0.2 | | | Cranes - Mobile 45 ton | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 14 0 | 4 07 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 0 | 7 07 | 0.7 | 0.7 | 0.7 0 | 4 0.4 | 0.4 | 0.4 | 4 0.4 | 0.4 | 0.4 | 0.4 0. | 4 0.4 | 0.4 | 0.4 | 0.4 | 0.4 0. | 10 0.2 | 0.0 | 0.0 0.0 | | | Crane - Mobile 65 ton | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.4 | 0.7 | 00 0 | 19 0 | 9 11 | 1.1 | 1.1 | 1.1 | 1.1 | 11 1 | 1 11 | 1.1 | 1.1 | 11 1 | 1 0.0 | 0.0 | 0.7 | 4 04 | 0.4 | 0.4 | 0.4 0 | 2 02 | 0.2 | 0.2 | 0.2 | 0.2 0 | 12 00 | 0.0 | 0.0 0.0 | | ш | Cranes 100 / 150 ton cap | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 16 0 | 6 06 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 0 | 6 06 | 0.6 | 0.6 | 0.3 0 | 3 0.1 | 0.5 | 0.7 | 11 0.1 | 0.4 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 0 | 10 0.0 | 0.0 | 0.0 0.0 | | F | Diesel Powered Welder | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 3 03 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 14 0 | 4 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 0 | 7 07 | 0.7 | 0.7 | 0.7 0 | 7 07 | 0.7 | 0.4 | 4 04 | 0.4 | 0.4 | 0.3 0 | 3 0.3 | 0.3 | 0.3 | 0.1 | 0.1 0 | 11 01 | 1 01 | 0.1 0.1 | | | Excavator - Backhoe/loader | 0.3 | 0.3 | 0.5 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 7 07 | 0.7 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 12 0 | 2 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 0 | 0 00 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.3 | 0.3 | 0.3 0 | 3 02 | 0.2 | 0.2 | 0.0 | 0.0 | 10 00 | 0.0 | 0.0 0.0 | | ż | Excavator - Earth Scraper 637 | 4.7 | 4.7 | 4.7 | 4.7 | 2.7 | 2.7 | 1.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | | N N | Excavator - loader | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.3 | 0.3 0. | 3 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 0. | 3 0.3 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 0.0 | | _ | Excavator - Motor Grader (CAT140H) | 0.0 | 0.4 | 0.4 | 0.4 | 1.1 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.4 | 0.4 0 | 4 04 | 0.0 | 0.0 | 0.0 | 0.7 | 0.7 | 0.7 0 | 7 0.4 | 0.4 | 0.4 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | | | Excavator - Trencher (CAT320) | 0.0 | | 0.0 | 0.0 | 0.0 | 0.9 | 0.9 | 0.9 | 9 09 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | |
 Fired Heaters (2.000 BTU) | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 1 01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1 0 | 1 0: | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0.1 | 0.1 | 0.1 | 1 01 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | | | Forklift | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 12 02 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 13 0 | 3 03 | 3 03 | 0.3 | 0.3 | 0.3 | 0.3 0 | 3 03 | 0.3 | 0.2 | 0.2 0 | 2 02 | 0.2 | 0.2 | 2 02 | 0.2 | 0.2 | 0.2 0 | 2 0.2 | 0.2 | 0.2 | 0.1 | 0.1 0 | 11 01 | 1 0.0 | 0.0 0.0 | | | Fusion Welder | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 10 0.0 | 0.0 | 0.0 0.0 | | | Heavy Haul / 600 tn Crane | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 3 03 | 3 03 | 0.3 | 0.3 | 0.3 | 0.3 0 | 3 03 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | | | Heavy Haul / 1,000 tn Crane | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 0 | 3 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | | | Light Plants | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 1 01 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 13 0 | 3 03 | 3 03 | 0.3 | 0.3 | 0.3 | 0.3 0 | 3 0.3 | 0.3 | 0.3 | 0.3 0 | 3 03 | 0.2 | 0.2 | 2 02 | 0.2 | 0.2 | 0.2 0 | 2 02 | 0.1 | 0.1 | 0.1 | 0.1 0 | 11 01 | 1 01 | 0.0 0.0 | | | Man lifts - telescoping | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 18 0 | 8 0.8 | 1 1 2 | 1.2 | 1.2 | 1.2 | 16 1 | 6 16 | 1.6 | 1.6 | 16 1 | 6 16 | 1.6 | 16 | 6 16 | 1.2 | 1.2 | 12 0 | 8 0.8 | 0.8 | 0.8 | 0.4 | 0.4 0 | 14 04 | 4 0.2 | 0.2 0.2 | | | Man lift - scissor | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 00 | 0.0 | 0.0 0.0 | | | Portable Compaction Roller | 0.0 | 0.0 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 14 (| 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 16 0 | 6 06 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 0 | 0 00 | 0.0 | 0.0 | 0.6 0 | 6 06 | 0.6 | 0.6 | 6 00 | 0.0 | 0.0 | 0.6 0 | 6 0.6 | 0.3 | 0.3 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | | | Portable Compaction - Vibratory Plate | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | | | Portable Compaction - Ram | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 10 0.0 | 0.0 | 0.0 0.0 | | | Pumps | 0.1 | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1 01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 11 0 | 1 0: | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0.1 | 0.1 | 0.1 | 1 01 | 0.1 | 0.1 | 0.1 0 | 1 0.1 | 0.1 | 0.1 | 0.0 | 0.0 0 | 10 00 | 0.0 | 0.0 0.0 | | | Portable Power Generators | 0.7 | | 0.7 | 0.7 | 1.0 | 1.0 | 1.0 | 10 1 | 0.1 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 26 2 | 6 2 | 6 26 | 26 | 2.6 | 2.6 | 3.4 | 3.4 3 | 4 34 | 3.4 | 3.4 | 3.4 3 | 4 34 | 3.4 | 3.4 | 4 34 | 2.6 | 2.6 | 26 2 | 6 17 | 1.7 | 1.7 | 1.7 | 17 1 | 7 0.0 | 9 0.0 | 0.9 0.3 | | | Truck Crane - Greater than 300 ton | 0.0 | | 0.0 | 0.0 | | | 0.0 | 0.0 | 0 00 | 0.0 | 0.2 | 0.2 | 0.2 | 0.2 | | 14 0 | | | 0.8 | 0.8 | | 0.4 0 | 8 0.9 | 0.4 | 0.4 | 0.4 0. | 6 0.6 | 0.4 | 0.4 | 14 0.2 | 0.2 | 0.2 | 0.2 0 | 2 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | | Truck Crane - Greater than 200 ton | 0.0 | | 0.0 | | | | | | 0.0 | 0.0 | | | | | | 0.1 0. | | | 0.3 | | | 0.4 0 | .4 0.4 | | 0.4 | 0.4 0. | 3 0.0 | 0.0 | 0.0 | 1.0 0.0 | 0.0 | | 0.0 0. | | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | | 0.0 0.0 | | | Vibratory Roller Ingersol-Rand 20 ton | | | | | | | | | 0.7 0.4 | | | | | | 0.2 | | | | | | | 0.0 | | | | 0.4 0. | | | 0.0 | | | | 0.2 0. | | | | | | | | | | | WORKER VEHICLES | 0.1 | 3.1 | 3.1 | 2.7 | | | | | 0.4 | 0.4 | 3.4 | | | | | 0. | _ 0.0 | . 0.0 | 3.0 | 0 | | | | 3.0 | | | . 0.4 | 3.0 | | 0.0 | 3.0 | | | _ 0.2 | . 0.2 | 3.0 | | | - | 3.0 | | | | Personal commuting vehicles | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.1 | 0.1 | 0.1 0 | 1 01 | 0.1 | 0.1 | 1 01 | 0.1 | 0.0 | 0.0 0. | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 0.0 | | | DELIVERY TRUCKS | 0.0 | 3.0 | 3.0 | 2.0 | | | | | 0.0 | 0.0 | 3.0 | 0 | | | | | - 0.0 | . 0.0 | 3.0 | 0 | | | | 5.1 | | | . 0.1 | 3.1 | | 0 | 3.1 | | | _ 0.0 | 0.0 | 3.0 | | | - | 3.0 | | | | Light delivery truck (e.g. Fed-Ex) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.00 | 0.0 | 0.0 0.0 | | | Heavy delivery truck (e.g. flat beds carrying | 0.0 | 3.0 | 3.0 | 2.0 | | | | | 0.0 | 0.0 | 3.0 | 2.0 | | | ' | | - 0.0 | . 0.0 | 3.0 | 0 | | | 0.0 | 3.0 | | | _ 0.0 | 3.0 | ' | 0.0 | 3.0 | | 0. | - 0.0 | 0.0 | 3.0 | | | 0.0 | 3.0 | 0.0 | | | construction eap) | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 0. | 3 0.3 | 3 03 | 0.3 | 0.3 | 0.3 | 0.3 0 | .3 0.3 | 0.3 | 0.3 | 0.3 0. | 3 0.3 | 0.3 | 0.3 | .3 0.3 | 0.3 | 0.3 | 0.3 0 | 3 03 | 0.3 | 0.3 | 0.3 | 0.3 0 | 13 03 | 3 03 | 03 03 | | | Import fill trucks | | 1.4 | 1.4 | | | | | | 0.0 | | | | | | | 0.0 | | | | | | | .0 0.0 | | | 0.0 0. | | | | 1.0 0.0 | | | 0.0 0. | | | | | 0.0 0. | | | | | | ONSITE TOTAL (lbs/day) | 3.2 2.3 | | | Onone rorne (ibarday) | 14.0 | .4.0 | | | | 20.0 | | | 13.4 | 73.0 | .3.1 | | | | U 10 | 15. | _ 15.0 | 20.5 | 23.7 | 20.4 | | 20.0 22 | 21.0 | 20.5 | / | LL.U Z1. | 21.2 | .3.3 | 10.0 10 | 10.5 | .5.0 | | 10.0 14. | 5 12.0 | 10.0 | . 3.0 | V. I | J., J. | 4.0 | 3.3 | J.L 2.3 | | | Month | | | | | _ | _ | | | | 10 11 | 40 | | | 45 | | | 40 | 40 | 20 | 24 | | | 0.5 | 00 | 0.7 | 20 | 20 | | | 22 | | 25 | 20 | 22 (| 20 00 | | | 40 | 40 | | - 40 | | | | |------|--|------|------|------|------|------|------|------|------|------|---------|--------|------|------|------|------|------|------|------|------|------|---------|-------|--------|------|------|------|------|---------|---------|------|------|------|------|--------|---------|----------|--------|------|-----|------|--------|--------|-------|-----| | | WORKER VEHICLES | | | 3 | - | - | | | | 9 | 10 11 | 12 | 13 | 14 | 15 | 10 | 1/ | 10 | 19 | 20 | 21 . | 2 23 | 24 | 25 | 20 | 21 | 28 | 29 . | 30 31 | 32 | 33 | 34 | 35 | 30 | 3/ 3 | 30 35 | 40 | -41 | 42 | 43 | 44 4 | 3 40 | -4/ | 40 | 49 | | | Personal commuting vehicles | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 0 | 5 06 | 0.7 | 0.8 | 1.0 | 1.1 | 12 | 1.3 | 1.4 | 1.5 | 1.5 | 17 1 | 9 2 | 0 21 | 22 | 24 | 2.5 | 26 | 26 2 | 7 26 | 2.6 | 2.5 | 2.3 | 2.3 | 21 | 20 1 | 7 1/ | 4 11 | 0.7 | 0.6 | 0.6 | 06 0 | 5 0.5 | 5 04 | 0.3 | | | DELIVERY TRUCKS | - | | | | | | | | | | | | | | | | | | | - | | | Light delivery truck (e.g. Fed-Ex) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | | | Heavy delivery truck (e.g. flat beds carrying | construction eap) | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 2 | 3 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 2 | 3 2. | 3 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 2 | .3 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 2 | 2.3 2.3 | 3 2.7 | 2.3 | 2.3 | 2.3 | 2.3 2 | .3 2.3 | 3 2.3 | 2.3 | | | Import fill trucks | 7.1 | 7.1 | 7.1 | 7.1 | 7.1 | 7.1 | 7.1 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | | | LINEARS | ON ROAD | Dump Truck | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 6 0.6 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6 | 0.6 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | | | Service Truck (MHD-DSL) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 3 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | | | | | Pipe Haul Truck and Trailer (HHDT-DSL) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 5 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
| 0.0 | .0 0.0 | 0.0 | 0.0 | | | 3/4 Ton Pickup (MHD-DSL) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 6 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | | | Truck - water | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 3 0.3 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 0.3 0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | | | OFF ROAD | Air Compressor (185 CFM) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 2 0.2 | 0.4 | 0.4 | 0.6 | 0.6 | 0.6 | 0.6 | 0.4 | 0.4 | 0.2 | 0.2 0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.O O.f | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | | | Bore Machine (Hydraulic) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | | | 12 Ton Hydra Crane | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 3 0.6 | 0.6 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.6 | 0.6 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.O 0.f | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | | | Backhoe/loader | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 1 | 0 1.0 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 | 1.0 | 1.0 0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | | | Excavator - Trencher | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | | | Forklift | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 0 0. | | | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.0 0.F | 0.0 | 0.0 | 0.0 | 0.0 | J.0 0. | .0 0.0 | | | | | Welding Generator | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 1 | | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | | 1.4 0 | 0 0. | | | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.0 0.r | 0.0 | 0.0 | 0.0 | 0.0 | J.O 0. | .0 0.0 | | | | | 3 to 5 Ton AC Roller | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | | | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | 0.3 | | | | | 0.0 | | | .0 0.0 | | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | | | | ш | Pipe Bending Machine | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 2 0.2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 | 0.2 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | | SITE | RAIL | ဟု | AIR COMPRESSOR 185 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | | | | | 0.2 | 0.2 | | 0.0 | | | 0.0 | | | | | 0.0 | | | .0 0.0 | | 0.0 | 0.0 | 0.0 | | 0.0 | ۱.0 0.۲ | J 0.0 | 0.0 | 0.0 | 0.0 | J.0 0. | .0 0.0 | | | | ı. | BOOM TRUCK 12 TON | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | | | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.0 0. | .0 0.0 | | | | -F- | CAT 325 BACKHOE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3 0.0 | 0.0 | 0.0 | 0.0 | J.0 0. | .0 0.0 | | | | _ | CAT 330 BACKHOE | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | J.O 0.C | J 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | | | | | CAT DOZER D-6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.8 | 0.8 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3 0.0 | 0.0 | 0.0 | 0.0 | J.0 0. | .0 0.0 | | | | | CAT MODEL 12 MOTOR GRADER
CAT ROLLER-COMPACTOR 563 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.7 | 0.7 | 0.4 | 0.4 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |) 0.0 | 0.0 | 0.0 | 0.0 | J.0 0. | .0 0.0 | | | | | CAT ROLLER-COMPACTOR 563
CAT RUBBER TIRE LOADER 966 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.6 | 0.6 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 0.0 |) 0.0 | 0.0 | 0.0 | 0.0 | J.O 0. | 0.0 | | 0.0 | | | CAT SCRAPER 615 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.4 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 3 0.0 | 0.0 | 0.0 | 0.0 | J.O 0. | 0.0 | | 0.0 | | | CRANE-ROUGH TERRAIN 45T | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 1.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | GENSET 5KW | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | | | | | JOHN DEERE TRACTOR 9400 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | | | | PICK-UP CRAFT | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | | | | | PICK-UP OVERHEAD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.6 | 1.4 | 1.4 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | | 0.0 | | | RAIL BALLAST REGULATOR | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.5 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | | | | | RAIL CLIP MACHINE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | | 0.0 | | | RAIL MOVER-SHUTTLE WAGON | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | | | | | RAIL TAMPER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | | | | | RAII WEIDER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | | | | | RAMEX WALK BEHIND COMPACTOR | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10 07 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | | | TRI-AXLE DUMP TRUCK | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.6 | 1.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | | | | | TRUCK FLATBED 14 FOOT | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.2 | 0.2 | 0.5 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 10 0/ | 0 00 | 0.0 | 0.0 | 0.0 | 00 0 | 0.0 | | 0.0 | | | TRUCK TRACTOR | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | | | | | WATER TRUCK, 4M ON-ROAD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | | | | WELDING MACHINE 350 AMP | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | | | | | LINEARS TOTAL (Ibs/day) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 5 | 5 6.4 | 14.0 | 15.3 | 14.3 | 13.7 | 14.1 | 9.0 | 8.8 | 8.5 | 6.7 | 6.4 0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | | | OFFSITE VEHICLES TOTAL (lbs/day) | 9.5 | | 9.5 | 9.6 | 9.6 | 9.7 | 9.7 | 2.6 | 2.7 | 2.8 2 | 9 2.9 | 3.0 | 3.2 | 3.3 | 3.5 | 3.6 | 3.6 | 3.7 | 3.8 | 3.9 | 4.0 4 | 2 4. | 3 4.4 | 4.5 | 4.7 | 4.9 | 4.9 | 4.9 5 | .0 4.9 | 4.9 | 4.8 | 4.7 | 4.6 | 4.4 | 4.3 4 | 4.0 3.7 | 7 3.4 | 3.1 | 2.9 | 2.9 | 2.9 2. | .9 2.8 | 8 2.7 | | | | TOTAL PROJECT (lbs/dav) | 23.5 | 24.1 | 27.4 | 27.7 | 28.7 | 30.6 | 28.2 | 18.6 | 17.5 | 18.1 24 | 1 25.4 | 33.0 | 35.7 | 35.1 | 35.5 | 36.7 | 31.9 | 31.5 | 32.8 | 31.3 | 30.9 25 | 6 27. | 3 26.6 | 26.1 | 25.6 | 27.6 | 27.8 | 26.7 26 | .1 24.2 | 23.7 | 23.0 | 21.2 | 19.6 | 19.5 2 | 20.3 18 | s.9 16.7 | 3 14.7 | 13.6 | 9.0 | 9.0 | 8.6 6 | 9 6.3 | 3 5.9 | 4.9 | - According to schedules provided by Fluor, Linear construction (except rail) takes place in months 11-22. According to schedules provided by Fluor, Rail construction occurs in months 13-17. | | SO ₂ | МС | NTHLY | EMISS | IONS (| lbs/day | () |---------|--|----|-------|-------|--------|---------|-----|-----|-----|-----|-------|-------|-------|-----|-----|-----|-----|-----|-----|------|------|-------|-------|-------|---------|-------|-----|-----|------|--------|-------|-----|-----|-----|-----|-----|------|------|------|------------|-------|-------|-------|-----|-----|-----| | c | CONSTRUCTION VEHICLES On-Road Vehicles | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 1 | 1 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 2 | 21 2 | 2 2 | 3 24 | 4 25 | 5 26 | 27 | 28 | 29 | 30 3 | 1 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 4 | 10 4 | 41 4 | 2 43 | 44 | 45 | 46 | 47 | 48 | 49 | | 18 | 8 cy fill mat'l haul truck | _ | .0 0. | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | .0 0. | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | 0.0 | | | Bus | | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Concrete Pumper Truck | | .0 0. | | | | | | | | 0.0 0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 0.0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | Jump Truck | | .0 0. | | | | | | | 0.0 | 0.0 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | Diesel Tractor (Yard Dog) | | .0 0. | | | | | | | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 0.0 | | | 0.0 | | 0.0 | | | 0.0 | 0.0 | 0.0 | | | | | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | Service Truck - 1 ton | | .0 0. | | | | | | | | 0.0 0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 0.0 | | | 0.0 | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | | | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | Pile Driver Truck | | .0 0. | | | | | | | 0.0 | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | | 0.0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | ruck - Fuel/Lube | | .0 0. | | | | | | 0.0 | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | ractor Truck 5th Wheel | | .0 0. | | | | | | | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | rucks - Pickup 3/4 ton | | .0 0. | | | | | | | | 0.0 0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 0.0 | | | 0.0 | 0.0 | 0.0 0. | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | rucks - 3 ton | | .0 0. | | | | | | | | 0.0 0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 0.0 | | | 0.0 | | 0.0 | | | 0.0 | 0.0 | 0.0 | | | | | | .0 0. | | | 0.0 | | | | | ruck - Water | | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Off Road Vehicles | | | | | | | | 0.0 | 0.0 | 00 0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0 0 | 0 0 | 0.00 | | | | 0.0 | 0 0 | 0 00 | 0.0 | | | | | | 0.0 | | | | 0 00 | | 0.0 | | 0.1 | | | Air Compressor 185 CFM | | .0 0. | | | | | | | | 0.0 0 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 (| | | 0.0 0.0 | | | 0.0 | |).U U. | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | J.U U | .0 0. | 0.0 | 0.0 | 0.0 | | | | | Articulating Boom Platform | | | | | | | | | 0.0 | 0.0 0 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 0.0 0.0 | | | 0.0 | |).U U. | | | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.U
0.0 | .0 0. | 0.0 | 0.0 | | | | | | Articulating Boom Platform
Bob cat loader | | .0 0. | | | | | | | 0.0 | 0.0 0 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 0 | | | 0.0 | | | 0.0 | 0.0 | 0.0 0. | | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | J.U 0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | sob cat loader
Sulldozer D10R | | .0 0. | | | | | | | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 0.0 | | | 0.0 | 0.0 | 0.0 0. | | | 0.0 | 0.0 | 0.0 | | | | 0.0 | 0.U
0.0 | 0 0. | 0.0 | 0.0 | 0.0 | | | | | Sulldozer D10R
Sulldozer D6C | | .0 0. | | | | | | | | 0.0 0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 0.0 0.0 | | | 0.0 | |).U U. | | | 0.0 | 0.0 | | | | | | | 0 0. | | | | | | | | Concrete Trowel Machine | | .0 0. | | | | | | | | 0.0 0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 0.0 | | | 0.0 | | 0.0 0. | | | 0.0 | 0.0 | 0.0 | | | | | | .0 0. | 0 0.0 | | 0.0 | | | | | Concrete Vibrators | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0 0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0 0. | 0 0.0 | 0.0 | 0.0 | | | | | Cranes - Mobile 35 ton | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0 0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | | | | | Cranes - Mobile 45 ton | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0 0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | | | | | Crane - Mobile 65 ton | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | | | | | Cranes 100 / 150 ton cap | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | | | | Ë | Diesel Powered Welder | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0 0.0 | 0.0 | 0.0 | | | | ON-SITE | xcavator - Backhoe/loader | | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | ŻΕ | xcavator - Earth Scraper 637 | | .1 0. | 1 0. | 1 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | O F | xcavator - loader | | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | F | xcavator - Motor Grader (CAT140H) | | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | F | xcavator - Trencher (CAT320) | | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | F | ired Heaters (2,000 BTU) | | .0 0. | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | orklift | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | usion Welder | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | leavy Haul / 600 tn Crane | | .0 0. | | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | Heavy Haul / 1,000 tn Crane | | .0 0. | | | | | | | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | ight Plants | | .0 0. | | | | | | | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | Man lifts - telescoping | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 0 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | 0.0 | | | 0.0 | 0.0 | 0.0 0. | 0.0 | | 0.0 | 0.0 | 0.0 | | | 0.0 | | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | Man lift - scissor
Portable Compaction Roller | | .0 0. | | | | | 0.0 | 0.0 | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | rortable Compaction Roller Portable Compaction - Vibratory Plate | | .0 0. | | | | | | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 (| | 1.0 0 | 0.0 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | rortable Compaction - Vibratory Plate
Portable Compaction - Ram | | .0 0. | | | | | | 0.0 | 0.0 | 0.0 0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 (| | 1.0 0 | 0.0 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | | | | | Pumps | | .0 0. | | | | | | | | 0.0 0 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 (| | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0 0.0 | | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0 0 | 0 0.0 | 0.0 | 0.0 | | | | | Portable Power Generators | | .0 0. | | | | | | | | | .0 0. | | | | 0.0 | 0.0 | | | | | | | | 0.1 0.1 | | 0.0 | 0.0 | 0.0 | 1 0 | | | 0.0 | 0.0 | | | | | | | 0 0 | 0 0.0 | 0.0 | | | | | | ruck Crane - Greater than 300 ton | | .0 0. | | 0.0 | | | | | | 0.0 0 | | | | | 0.0 | | | | | | | | | 0.0 | | | 0.0 | | 0.0 0. | | | 0.0 | | | | | | | | .0 0. | | | | | | | | ruck Crane - Greater than 200 ton | | .0 0. | | | | 0.0 | | | | 0.0 0 | | | | | 0.0 | 0.0 | | | | | | | | 0.0 | | | 0.0 | | 0.0 0. | | | | | | | | | | | .0 0. | | | 0.0 | | | | | /bratory Roller Ingersol-Rand 20 ton | | | | | | | | 0.0 | | | .0 0. | | | | | | | | | | | | | 0.0 | | | | | 0.0 0. | | | | | | | | | | | .0 0. | | | | | | | | WORKER VEHICLES | | | | - 0.0 | . 0.0 | 0.0 | 5.0 | 3.0 | 2.0 | | | . 0.0 | 0.0 | 3.0 | 2.0 | 2.0 | | | | - | | | | | . 0.0 | 5.0 | 2.0 | | | - 0.0 | 0.0 | 3.0 | 0 | | | | | | | | _ 0.0 | _ 0.0 | 0.0 | 0.0 | | | P | Personal commuting vehicles | | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | DELIVERY TRUCKS | | | | | | 2.0 | | | | | | | 2.0 | | | | | | | | | | | | | 2.3 | | | | | 0 | | | | | | | | | | | | | | | | L | ight delivery truck (e.g. Fed-Ex) | | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | H | leavy delivery truck (e.g. flat beds carrying | - | | co | onstruction eqp) | | .0 0. | | | | | | | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | 0.0 | | 0.0 | 0.0 | | 0.0 | | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | lr. | mport fill trucks | | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | NSITE TOTAL (lbs/day) | | | | | | 0.4 | 0.0 | 0.0 | 0.0 | 00 0 | | | | | | | | | | | | | | | | | 0.4 | 0.4 | | | 0.0 | | | | | | | | | | | | 0.4 | 0.4 | 0.0 | | | Month | 1 | - | 2 ; | 3 . | 4 : | 5 | 6 | 7 | 8 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 : | 22 | 23 | 24 2 | 25 2 | 5 27 | 28 | 29 | 30 | 31 | 32 | 13 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 / | 46 47 | 48 | 49 | |------|---|---|-------|------|-----|-----|-----|-----|-----|-------|------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|------|------|-------|--------|-------|-----|-----|-----|-------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|--------|------|--------| | | WORKER VEHICLES | - | | | | | | | | Personal commuting vehicles | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 0 | .1 0 | 1 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 0 | .5 0.6 | 6 0.6 | 0.6 | 0.6 | 0.6 | 0.6 0 | 5 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 0. | .1 0 | .1 0.1 | | | DELIVERY TRUCKS | Light delivery truck (e.g. Fed-Ex) | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | Heavy delivery truck (e.g. flat beds carrying | construction eap) | | 1 (| 1 (| 11 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0 | 1 0 1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1 0 | 1 0 1 | 1 01 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0 | 1 01 | | | Import fill trucks | | | | | | | | | 0.0 0 | | 0.0 | | | | | | | | | | | | | | | | .0 0.0 | | | | | 0.0 0 | | | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | LINEARS | ON ROAD | Dump Truck | | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 0 | | | Service Truck (MHD-DSL) | | | | | 0.0 | | | | 0.0 0 | | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0 | 0 0 0 | | | Pipe Haul Truck and Trailer (HHDT-DSL) | - | 0.0 | 10 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0 | 0 0 0 | | | 3/4 Ton Pickup (MHD-DSL) | | | 0.0 | | | | | | 0.0 0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | .0 0.0 | | | | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | Truck - water | | | | | | | | | 0.0 0 | | | | | | 0.0 | | 0.0 | | | | | | | | | | .0 0.0 | | | | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | OFF ROAD | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | 0.0 | | | Air Compressor (185 CFM) | - | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 0 | | | Bore Machine (Hydraulic) | | 1.0 | | | | | | 0.0 | 0.0 0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | 0 0.0 | | | 0.0 | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | 0.0 | | | 12 Ton Hydra Crane | | 1.0 | | | | | | | 0.0 0
 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | 0 0.0 | | | | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | 0.0 | | | 12 Ion Hydra Crane
Backhoe/loader | | 1.0 (| | | | | | 0.0 | | 0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | 0 0.0 | | | 0.0 | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | Excavator - Trencher | | 1.0 | | | | | | 0.0 | 0.0 0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | 0 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | 0.0 | | | Excavator - Trencher
Forklift | | 1.0 | | | | | | | 0.0 0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | 0 0.0 | | | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | 0.0 | | | Welding Generator | | 1.0 | | | | | | | 0.0 0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | 0 0.0 | | | | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | 0.0 | | | 3 to 5 Ton AC Roller | 0.0 | | | | | 0.0 0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | | | | | 0.0 | | | | | | 0.0 | | 0.0 | | | | | | | | | | | | | | | | | | | 0.0 | 0.0 | | | | | | 0.0 | 0.0 0. | | | | ш | Pipe Bending Machine | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | SITE | RAIL | 4 | | | | | | | | | | | | | | | | | | 4 | | | 4 | | 4 | | | | | တှ | AIR COMPRESSOR 185 | | | | | | 0.0 | | | 0.0 | | | | | | 0.0 | 0.0 | 0.0 | | | | | | | | | | .0 0.0 | | | 0.0 | | 0.0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | H- | BOOM TRUCK 12 TON | | 0.0 | | | | | | | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | .0 0.0 | | | | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | ō | CAT 325 BACKHOE | | 0.0 | | | | 0.0 | | 0.0 | 0.0 0 | .0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | .0 0.0 | | | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | _ | CAT 330 BACKHOE | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | .0 0.0 | | | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | CAT DOZER D-6 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | CAT MODEL 12 MOTOR GRADER | | 0.0 | | | | 0.0 | | 0.0 | 0.0 | .0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | .0 0.0 | | | | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | CAT ROLLER-COMPACTOR 563 | | 0.0 | | | | | | | | .0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | .0 0.0 | | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | CAT RUBBER TIRE LOADER 966 | | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | .0 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | CAT SCRAPER 615 | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | 0.0 | | | 0.0 | .0 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | CRANE-ROUGH TERRAIN 45T | | 0.0 | | | | | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | GENSET 5KW | | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | JOHN DEERE TRACTOR 9400 | | 0.0 | | | | 0.0 | | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | .0 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | PICK-UP CRAFT | | 0.0 | | | | | | | | .0 0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | .0 0.0 | | | | | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | PICK-UP OVERHEAD | | 0.0 | | | | | | | 0.0 | .0 0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | .0 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | RAIL BALLAST REGULATOR | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | RAIL CLIP MACHINE | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | .0 0.0 | | | RAIL MOVER-SHUTTLE WAGON | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | RAIL TAMPER | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | RAIL WELDER | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | RAMEX WALK BEHIND COMPACTOR | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | TRI-AXLE DUMP TRUCK | C | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | TRUCK FLATBED 14 FOOT | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | TRUCK TRACTOR | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | WATER TRUCK, 4M ON-ROAD | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | WELDING MACHINE 350 AMP | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0 | .0 0.0 | | | LINEARS TOTAL (lbs/day) | | .0 (| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0 | 0 0.1 | 0.1 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0 | .0 0.0 | | | OFFSITE VEHICLES TOTAL (lbs/dav) | | .3 (| 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.1 0 | .2 0 | 2 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 0 | .6 0.6 | 6 0.6 | 0.6 | 0.7 | 0.6 | 0.6 0 | 6 0.6 | 0.6 | 0.5 | 0.5 | 0.4 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 0. | .2 0 | .2 0.1 | | | TOTAL PROJECT (lbs/day) | | 6 (| 16 (| 7 | 0.7 | 0.7 | 0.7 | 0.7 | 04 0 | 4 0 | 4 06 | 0.6 | 0.8 | 0.9 | 1.0 | 1.0 | 1.0 | 0.9 | 0.9 | 10 | 1.0 | 1.0 | 0.9 | 1.0 | 10 1 | 0 1 | 0 11 | 1 11 | 1.1 | 11 | 10 | 10 1 | 0 05 | 0.9 | 0.8 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 0. | | | - According to schedules provided by Fluor, Linear construction (except rail) takes place in months 11-22. According to schedules provided by Fluor, Rail construction occurs in months 13-17. | | ROG | MONT | HLY E | MISSION | IS (Ibs/d | day) |------------
---|------------|-------|---------|-----------|------|------|------|------|---------|--------------------|------|------|------|------|--------|--------------|--------|---------|------------|------|--------|---------------------|------|------|---------|--------|------|--------|----------|------|------|--------|----------------|---------|------|------|------|--------|---------|---------|----------| | | CONSTRUCTION VEHICLES | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 10 | 11 | 12 | 13 | 14 | 15 | 16 1 | 7 1 | 8 19 | 20 | 21 | 22 | 23 2 | 4 25 | 26 | 27 | 28 29 | 30 | 31 | 32 3 | 3 34 | 35 | 36 | 37 3 | 8 39 | 40 | 41 | 42 | 43 | 44 4 | 15 46 | 47 | 48 49 | | | On-Road Vehicles | 18 cy fill mat'l haul truck | 0.0 | | | | | 12.4 | 12.4 | 12.4 | 6.2 € | 6.2 | 6.2 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.9 | 1.9 | 1.9 1. | .9 0.6 | 0.6 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | 1 | Bus | 1.2 | | | | | 1.9 | 1.9 | 1.9 | 1.9 1 | 1.9 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | | | 4.3 4 | .3 6.2 | | 6.2 | | 8.7 8.7 | | 8.7 | 8.7 8 | .7 8.7 | 8.7 | 8.7 | 3.7 8.7 | 8.7 | 7.4 | 7.4 | 7.4 6 | .2 6.2 | 3.1 | 3.1 | 1.9 | 1.9 | 1.2 1. | 1.2 | 0.6 0.6 | | 1 | Concrete Pumper Truck | 0.0 | | | | | 1.2 | 1.2 | 1.2 | 1.2 1 | 1.2 1.2 | | 1.2 | 1.9 | 1.9 | 1.9 | 1.2 | 1.2 1 | .2 1.2 | 1.2 | 0.0 | | 0.0 0.0 | | 0.0 | 0.6 | .6 0.6 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | | Dump Truck | 1.9 | 2.5 | | | | 1.9 | 1.9 | 1.9 | 1.9 1 | 1.9 1.2 | | 1.2 | 1.2 | 1.2 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | | 0.0 0.0 | | 0.0 | 1.2 1 | .2 1.2 | 1.2 | | 1.2 1.2 | 1.2 | 1.2 | 1.9 | 1.9 1. | .9 1.2 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 0. | 0.0 | 0.0 0.0 | | | Diesel Tractor (Yard Dog) | 0.0 | | | | | | 1.4 | 1.4 | 1.4 1 | 1.4 1.4 | | 2.8 | 2.8 | 2.8 | | 5.6 | 5.6 5 | | 5.6 | 5.6 | | 7.0 7.0 | | 7.0 | 7.0 7 | .0 7.0 | 7.0 | | 7.0 7.0 | 7.0 | 2.8 | 2.8 | 2.8 2 | .8 2.8 | 2.8 | 2.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | 1 | Service Truck - 1 ton | 1.2 | | | | | | 2.5 | 1.2 | 1.2 1 | 1.2 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 1 | .2 1.2 | 1.2 | 1.2 | 1.2 | 1.2 1.2 | 1.2 | 1.2 | 1.2 1 | .2 1.2 | 1.2 | 1.2 | 1.2 1.2 | 1.2 | 1.2 | 1.2 | 1.2 1. | .2 1.2 | 1.2 | 1.2 | 0.6 | 0.6 | 0.6 0. | 0.6 | 0.6 0.6 | | 1 | Pile Driver Truck | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | | Truck - Fuel/Lube | 0.1 | | | 0.1 | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0. | .1 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0. | 0.1 | 0.0 0.0 | | | Tractor Truck 5th Wheel | 0.0 | | | | | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | | 0.0 0.0 | 0.0 | 0.0 | | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | | Trucks - Pickup 3/4 ton | 0.3 | | | | | | 0.4 | 0.5 | 0.9 | 0.9 | | 1.5 | 1.5 | 1.5 | | 1.5 | | .5 1.5 | 1.5 | 1.5 | | 1.5 1.5 | | 1.5 | | .5 1.5 | 1.5 | | 1.5 1.5 | 1.5 | 1.5 | 1.5 | 1.5 1. | | 1.5 | 1.5 | 0.9 | 0.9 | 0.6 0 | 0.6 | 0.6 0.3 | | | Trucks - 3 ton | 0.6 | | | | | | 1.2 | 1.2 | | 2.5 2.5 | | 3.7 | 3.7 | 3.7 | U.1 | 0.7 | | .7 3.7 | 3.7 | 3.7 | | 3.7 3.7 | | | 3.7 3 | | 3.7 | | 3.7 3.7 | 2.5 | 1.9 | 1.9 | 1.9 1 | | | 1.2 | 0.6 | 0.6 | 0.6 0 | 0.0 | 0.0 0.0 | | | Truck - Water | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 3.1 | 1.9 | 1.9 | 1.9 1 | 1.9 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 1 | .9 1.9 | 1.9 | 1.9 | 1.9 | 1.2 1.9 | 1.2 | 1.2 | 1.2 1 | .2 1.2 | 1.2 | 1.2 | 1.2 1.2 | 1.2 | 1.2 | 1.2 | 1.2 1. | .2 1.2 | 1.2 | 1.2 | 0.6 | 0.6 | 0.6 0 | 0.6 | 0.6 0.6 | | | Off Road Vehicles | Air Compressor 185 CFM | 1.0 | | | | | | 1.5 | 1.5 | | 1.5 1.5 | | | 2.9 | 2.9 | | | | 9 4.9 | 4.9
1.7 | 4.9 | | 5.9 5.9
17 17 | | | | 7 0.9 | 5.9 | | 5.9 5.9 | | 3.9 | | 3.9 2
0.4 0 | | | | 2.0 | 2.0 | | 1.0 1.0 | 0.5 0.5 | | | Air Compressor 750 CFM | 0.0 | | | | | | | 0.4 | 0.9 | 0.9 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 1./ | 1./ | 1./ 1 | ./ 1.7 | 1.7 | 1.7 | 1.7 | 1./ 1.7 | 1.7 | 1.7 | 1./ 1 | .7 0.9 | 0.9 | | 0.9 0.4 | 0.4 | 0.4 | 0.4 | 0.4 0. | | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 0. | 0.4 0.4 | | | | Articulating Boom Platform
Bob cat loader | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 1.3 | U.U 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .u 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 0.0 | | | Bulldozer D10R | 4.5 | | | | | 0.6 | 0.6 | 2.6 | 2.6 2 | 2.6 | 2.6 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 1 | .3 1.3 | 1.3 | 1.3 | 1.3 | 1.3 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 0. | .0 0.6 | 0.6 | 0.6 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 0.0 | | | Buildozer D10K
Buildozer D6C | 4.5
2.3 | | | | | | 1.5 | 3.0 | 3.0 1 | 1.5 1.5
1.5 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 0 | 8 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 0.0 | 0.0 0.0 | | | Concrete Trowel Machine | 0.0 | 0.0 | | | | 0.5 | 0.5 | 0.5 | 0.5 | 1.0 0.0 | 0.6 | 0.6 | 0.6 | 0.6 | 0.0 | 0.0 | | 5 0.5 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.5 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 0.0 | | | Concrete Vibrators | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 0.0 | | | Cranes - Mobile 35 ton | 0.0 | 0.0 | | | | 0.0 | 0.0 | 0.0 | 0.0 | 16 16 | 16 | 1.6 | 2.8 | 2.8 | 2.8 | 2.8 | 28 2 | 8 28 | 2.8 | 2.8 | 2.8 | 28 28 | 2.8 | 2.0 | 20 2 | 0.0 | 2.0 | 2.0 | 20 20 | 0.0 | 0.0 | 0.0 | 0.0 0. | 8 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 14 04 | 0.4 0.4 | | | Cranes - Mobile 35 ton | 0.0 | | | | | | 0.4 | 0.4 | 0.4 | 10 00 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 1 | 8 18 | 1.8 | 1.8 | 1.8 | 18 18 | 1.8 | 1.8 | 18 1 | 8 00 | 0.0 | 0.0 | 10 10 | 0.0 | 0.0 | 0.0 | 0.0 0. | a na | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.4 | 0.0 0.0 | | | Crane - Mobile 65 ton | 0.0 | | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 1.8 | 2.2 | 2.2 | 22 2 | 7 27 | 2.7 | 2.7 | 2.7 | 27 27 | 2.7 | 2.7 | 27 2 | 7 27 | 2.2 | 2.2 | 18 0.0 | 0.0 | 0.0 | 0.0 | n a n | 4 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 0 | 0.0 | 0.0 0.0 | | ш | Cranes 100 / 150 ton cap | 0.0 | | | | | | 0.0 | 0.0 | 0.0 (| 0.0 | 0.4 | 0.9 | 0.9 | 1.3 | 1.3 | 1.8 | 18 1 | 8 18 | 1.8 | 1.8 | 1.8 | 18 18 | 1.8 | 1.8 | 18 0 | 9 09 | 0.4 | 0.4 | 14 0.4 | 0.0 | 0.5 | 0.0 | 0.0 0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 0.0 | | F | Diesel Powered Welder | 0.0 | | | | 1.0 | 1.0 | 1.0 | 1.0 | 10 1 | 0 10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.5 | 1.5 | 15 2 | 0 20 | 2.0 | 2.0 | 2.0 | 24 24 | 2.4 | 24 | 24 2 | 4 24 | 2.4 | 24 | 15 15 | 1.5 | 1.5 | 1.5 | 10 1 | 0 10 | 1.0 | 1.0 | 0.5 | 0.5 | 0.5 0 | 0.5 0.3 | 0.3 0.2 | | <i>ত</i> ় | Excavator - Backhoe/loader | 0.6 | | | | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 1.3 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.3 | 0.3 0 | .3 0.3 | 0.3 | 0.3 | | 0.3 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.6 | 0.6 0. | .6 0.3 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 0.0 | | ż | Excavator - Earth Scraper 637 | 14.7 | 14.7 | 14.7 | 14.7 | 8.4 | 8.4 | 4.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 0.0 | | 0 | Excavator - loader | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 1.0 | 1.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.5 0 | .5 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 0. | .5 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 0.0 | | | Excavator - Motor Grader (CAT140H) | 0.0 | 0.7 | 0.7 | 0.7 | 2.2 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.7 0 | .7 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 1.4 | 1.4 | 1.4 1. | .4 0.7 | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | | Excavator - Trencher (CAT320) | 0.0 | | | 0.0 | 0.0 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | | Fired Heaters (2,000 BTU) | 0.0 | | | 0.0 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 0 | .5 0.5 | 0.5 | 0.5 | 0.5 | 0.5 0.5 | 0.5 | 0.5 | 0.5 0 | .5 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 0. | .2 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 0. | 0.2 0.1 | 0.1 0.1 | | | Forklift | 0.9 | 0.9 | | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 1.2 | 1.2 1 | .2 1.2 | 1.2 | 1.2 | 1.2 | 1.2 1.2 | 1.2 | 1.2 | 0.9 0 | .9 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 0. | .9 0.9 | 0.9 | 0.9 | 0.3 | 0.3 | 0.3 0. | 0.3 0.1 | 0.1 0.1 | | | Fusion Welder | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | 1 | Heavy Haul / 600 tn Crane | 0.0 | | | | | | 0.0 | 0.0 | 0.0 | 0.0 |
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 1 | .1 1.1 | 1.1 | 1.1 | 1.1 | 1.1 1.1 | 1.1 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | 1 | Heavy Haul / 1,000 tn Crane | 0.0 | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 1.1 | 1.1 | 1.1 | 1.1 | 1.1 1.1 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | 1 | Light Plants | 0.1 | | | | 0.8 | 0.8 | 0.8 | 0.8 | 0.4 (| 0.4 0.6 | 0.6 | 0.8 | 0.8 | 1.0 | 1.0 | 1.4 | 1.4 1 | .4 1.4 | 1.4 | 1.4 | 1.4 | 1.4 1.4 | 1.4 | 1.4 | 1.4 1 | .4 1.4 | 1.4 | 1.0 | 1.0 1.0 | 1.0 | 1.0 | 1.0 | 1.0 1 | .0 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 0 | 0.4 | 0.2 0.2 | | | Man lifts - telescoping | 0.0 | | | | | | 0.0 | 0.0 | 1.6 1 | 1.6 1.6 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 3 | .3 4.9 | 4.9 | 4.9 | 4.9 | 6.6 6.6 | 6.6 | 6.6 | 6.6 6 | 6.6 | 6.6 | 6.6 | 5.6 6.6 | 6.6 | 4.9 | 4.9 | 4.9 3. | .3 3.3 | 3.3 | 3.3 | 1.6 | 1.6 | 1.6 1. | .6 0.7 | 0.7 0.7 | | | Man lift - scissor | 0.0 | | | | | | 0.0 | 0.0 | 0.0 (| J.U 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | U.U 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | J.U 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 0.0 | | | Portable Compaction Roller
Portable Compaction - Vibratory Plate | 0.0 | 0.0 | | | | | 2.8 | 2.8 | 1.1 1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 1 | .1 1.1 | 1.1 | 1.1 | 1.1 | 1.1 0.0 | 0.0 | 0.0 | 0.0 1 | .1 1.1 | 1.1 | 1.1 | 1.1 1.1 | 0.0 | 0.0 | 0.0 | 1.1 1. | .1 1.1 | 0.6 | 0.6 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 0.0 | | 1 | Portable Compaction - Vibratory Hate
Portable Compaction - Ram | 0.0 | | | | | | 0.0 | 0.1 | 0.1 | J.1 U.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | .1 0.1 | 0.1 | 0.1 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.1 0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 0. | .1 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 0.0 | 0.0 0.0 | | 1 | Pumps | 0.0 | | | | | | 0.0 | 0.0 | 0.0 | 1.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 3 0.3 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | | 0.0 | 0.0 0 | 3 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 12 0.0 | 0.0 0.0 | | | Pumps
Portable Power Generators | 2.9 | | | | | | 4.3 | 4.3 | 4.3 7 | 7.2 7.2 | 7.2 | 7.2 | 7.2 | 7.2 | 10.7 1 | 0.6
0.7 1 | 0.3 U | | 10.7 | | | 0.3 0.3
4.3 14.3 | | 14.3 | 14.3 14 | | 14.3 | 14.3 | J.S U.S | 14.3 | 10.7 | 10.7 | 0.3 0. | .7 7.2 | 7.2 | | 7.2 | 7.2 | 72 2 | 3.6 3.6 | 3.6 1.4 | | 1 | Truck Crane - Greater than 300 ton | 0.0 | | | | | | 0.0 | 0.0 | | 0 00 | | 0.7 | 0.7 | 0.7 | | 13 | | 0 20 | 2.7 | 2.7 | 27 | 27 27 | | 2.7 | 27 2 | | 2.0 | | 13 13 | 0.7 | 0.7 | 0.7 | 0.7 0 | 7 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 0.0 | 0.0 0.0 | | 1 | Truck Crane - Greater than 200 ton | | 0.0 | | | | | 0.0 | 0.0 | | 0.0 | | 0.7 | 0.0 | 0.7 | | | | .4 0.9 | | 0.9 | | 1.3 1.3 | | 1.3 | | .3 0.9 | 0.0 | | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 0. | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 0.0 | | | Vibratory Roller Ingersol-Rand 20 ton | | | | | | | | | 1.6 1 | | | | | | | | | .0 0.0 | | | | 0.0 0.0 | | | | .1 1.1 | | | | | 0.0 | | 0.5 0. | | | | | 0.0 | 0.0 0 | | 0.0 0.0 | | | WORKER VEHICLES | Personal commuting vehicles | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 0 | 0.1 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 0 | .3 0.3 | 0.3 | 0.3 | 0.3 | 0.4 0.4 | 0.4 | 0.4 | 0.5 0 | .5 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 0. | .3 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 0. | .1 0.1 | 0.1 0.1 | | | DELIVERY TRUCKS | Light delivery truck (e.g. Fed-Ex) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 0.0 | | | Heavy delivery truck (e.g. flat beds carrying | construction eqp) | | 1.4 | | | | | 1.4 | | | 1.4 1.4 | | | 1.4 | 1.4 | | | 1.4 1 | | | | | 1.4 1.4 | | | 1.4 1 | | 1.4 | | 1.4 1.4 | | | | 1.4 1. | | | | | | 1.4 1. | | 1.4 1.4 | | | Import fill trucks | | | 6.5 | | | | | | | 0.0 | | | 0.0 | 0.0 | | | 0.0 0 | | | | | 0.0 0.0 | | | | .0 0.0 | | | 0.0 | | | | 0.0 | | | | | | | | 0.0 0.0 | | | ONSITE TOTAL (lbs/day) | 46.2 | 47.6 | 57.7 | 58.6 | 62.9 | 68.5 | 61.3 | 51.5 | 46.9 48 | 3.9 50.5 | 52.6 | 50.8 | 54.5 | 55.5 | 58.9 6 | 3.0 6 | 3.8 62 | .1 68.1 | 68.8 | 67.6 | 71.5 7 | 7.9 75.8 | 74.1 | 72.2 | 77.0 76 | 73.9 | 72.1 | 67.3 6 | 5.7 64.3 | 60.1 | 51.4 | 52.0 5 | 3.7 49. | .3 41.4 | 35.6 | 35.0 | 20.8 | 20.8 1 | 9.9 13. | .8 11.7 | 10.4 7.8 | | | Month | | | 2 | | 5 | 6 | | 8 |----|---|------|------|------|------|------|------|------|------|--------|---------|--------|-------|-------|-------|-------|-------|---------|---------|----------|--------|--------|------|------|------|---------|---------|------|------|---------|----------|-------|------|------|------|--------|--------|---------|--------|------|--------|---------------|--------|---------| | | WORKER VEHICLES | 1_ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 1 | U 11 | 12 | 13 | 14 | 15 | 16 | 1/ | 18 | 19 2 | 20 21 | 22 | 23 | 24 | 25 | 26 | 27 28 | 29 | 30 | 31 | 32 33 | 3 34 | 35 | 36 | 37 | 38 . | 39 4 | U 41 | 42 | 43 | 44 | 45 4 | <u> 36 47</u> | 1/ 48 | 49 | | | Personal commuting vehicles | 0.2 | 0.4 | 0.5 | 0.6 | 0.0 | 1.2 | 1.4 | 1.8 | 2.1 | 25 3 | 1 3/ | 4.1 | 4.8 | 5.7 | 6.5 | 7.1 | 7.5 | 7.0 | 84 8 | 8 9 | 8 10.6 | 11.4 | 12.1 | 12.2 | 13.5 14 | 4 14 0 | 15.0 | 15.1 | 14.0 1/ | 4.8 14 | 1 133 | 12.0 | 11.7 | 11.4 | 9.6 | 78 6 | 2 4 | 2 3.4 | 3.4 | 3.4 | 31 1 | 26 2 | 4 18 | | | DELIVERY TRUCKS | 0.2 | 0.4 | 0.0 | 0.0 | 0.0 | 1.2 | | 1.0 | 2 | 2.0 0. | | | 4.0 | 0.7 | 0.0 | | 1.0 | 1.0 | 0.4 | | 0 10.0 | | 12.1 | 14 | 10.0 14 | .4 14.5 | 10.0 | 10.1 | 14.5 | 1.0 | 10.0 | 12.0 | | | 5.0 | 7.0 0 | | 0.4 | 0.4 | 0.4 | | 2.0 2 | 7 1.0 | | | Light delivery truck (e.g. Fed-Ex) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 1 0 | 1 01 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 01 | 0.1 | 0.1 | 0.1 | 01 0 | 1 01 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 0 | 1 0 | 1 01 | 0.1 | 0.1 | 0.1 0 | 0.1 | 1 01 | | | Heavy delivery truck (e.g. flat beds carrying | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | 0.1 | 0.1 | 0.1 | 0.1 | | 0.1 | 0.1 | 0.1 | 0.1 | | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | 0.1 | 0.1 | 0.1 | 0.1 | | | | construction eap) | 33 | 33 | 3.3 | 33 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 33 3 | 3 33 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 3.3 | 33 3 | 3 3 | 3 33 | 3.3 | 3.3 | 3.3 | 33 3 | 3 33 | 3.3 | 3.3 | 3.3 | 3.3 3.3 | 3 33 | 3.3 | 3.3 | 3.3 | 3.3 | 33 3 | 3 3 | 3 33 | 3.3 | 3.3 | 33 ' | 33 3 | 3 33 | | | Import fill trucks | | | 10.3 | | | | | | | 0.0 0. | | | | 0.0 | 0.0 | 0.0 | | | | .0 0. | | | | | 0.0 0 | | | | | 0.0 | | 0.0 | | | | 0.0 0 | | | | | 0.0 0 | | 1.0 0.1 | | | LINEARS | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 10.3 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 0 | .0 0.0 | | | ON ROAD | Dump Truck | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 2 | 5 2.5 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 | 3.7 3 | 5 2 | 5 00 | 0.0 | 0.0 | 0.0 | 00 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 00 0 | 0 01 | 0 0 0 | 0.0 | 0.0 | 0.0 | 00 0 | .0 0. | | | Service Truck (MHD-DSI.) | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 2. | | | 12 | 12 | 12 | 1.9 | 1.9 | 1.9 | | 9 1 | | 0.0 | 0.0 | | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.0 | 0.0 | | | | 0.0 | | | Pipe Haul Truck and Trailer (HHDT-DSL) | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 1. | | | 1.2 | 1.2 | 1.2 | 1.9 | 1.9 | | | 2 1 | | 0.0 | 0.0 | | 0.0 0 | | | | | 0.0 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | | 0.0 | | | | 1.0 0. | | | 3/4 Ton Pickup (MHD-DSL) | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 1. | | | 0.6 | 1.9 | 0.6 | 0.9 | | 0.9 | | 9 0 | | 0.0 | 0.0 | | 0.0 0 | | 0.0 | | | 0.0 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 0 | 0 0.0 | | 0.0 | | | | 1.0 0.1 | | | 3/4 Ion Pickup (MHD-DSL) Truck - water | | 0.0 | | | 0.0 | 0.0 | 0.0 | | | 0.0 0. | | | | 2.5 | 2.5 | 2.5 | | | 2.5 1 | | | 0.0 | | | | .0 0.0 | | | | 0.0 0.0 | | 0.0 | 0.0 | | | | 0 0.0 | | | | | | 1.0 0.1 | | | OFF ROAD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 1. | 2 1.2 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 1 | .2 1. | 2 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | .0 0.1 | 0.0 | | | | | | | | | | | | | | | | | | 4 | | | | | Air Compressor (185 CFM) | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 1. | | | | 2.9 | 2.9 | 2.9 | | | | .0 1. | | 0.0 | | | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | | | | .0 0. | | | Bore Machine (Hydraulic) | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | | | 0.2 | 0.2 | 0.2 | | | | .0 0. | | 0.0 | 0.0 | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0. | 0.0 | 0.0 | 0.0 | | | 1.0 0. | | | 12 Ton Hydra Crane |
0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 9 1.8 | 1.8 | 2.7 | 2.7 | 2.7 | 2.7 | | | | .8 1. | 8 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | | | 1.0 0.1 | | | Backhoe/loader | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 1. | 9 1.9 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 1 | .9 1. | 9 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | | | 0.0 | | | Excavator - Trencher | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | .6 0. | 6 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | | | Forklift | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | | | .6 0. | | 0.0 | 0.0 | | 0.0 0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | | | Welding Generator | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 5. | | | 5.7 | 5.7 | 5.7 | 5.7 | | 5.7 | | .7 5. | | 0.0 | 0.0 | | 0.0 0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | | | 3 to 5 Ton AC Roller | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 0. | | | | 1.2 | 1.2 | 1.2 | | | | .2 1. | | 0.0 | | | 0.0 0 | | | | | 0.0 | | 0.0 | 0.0 | | | 0.0 | .0 0.0 | | | | | | 0.0 | | ш | Pipe Bending Machine | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 9 0.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 0.9 | .9 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | ES | RAIL | ~ | AIR COMPRESSOR 185 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | 0.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 0 | | 0.0 | | 4 | BOOM TRUCK 12 TON | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.6 | 0.6 | 0.6 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 r | 0.0 | 0.0 | | Ъ. | CAT 325 BACKHOE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | U | CAT 330 BACKHOE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 r | 0.0 | 0.0 | | | CAT DOZER D-6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 2.0 | 2.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 r | 0.0 | .0 0.0 | | | CAT MODEL 12 MOTOR GRADER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 1.4 | 1.4 | 0.7 | 0.7 | 0.7 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 f | 0.0 | .0 0.0 | | | CAT ROLLER-COMPACTOR 563 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 11 | 1.1 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 01 | 0.0 | 0.0 | 0.0 | 0.0 (| 00 0 | .0 0.0 | | | CAT RUBBER TIRE LOADER 966 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 0.0 | 0.0 | 1.4 | 1.4 | 1.4 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | .0 0.0 | | | CAT SCRAPER 615 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 3.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 01 | 0.0 | 0.0 | 0.0 | 0.0 (| 00 0 | 0.00 | | | CRANE-ROUGH TERRAIN 45T | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.4 | 0.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 01 | 0.0 | 0.0 | 0.0 | 0.0 (| 0.0 | .0 0.0 | | | GENSET 5KW | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 0.0 | 0.5 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 0 0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 01 | 0.0 | 0.0 | 0.0 | 0.0 (| 00 0 | .0 0.0 | | | JOHN DEERE TRACTOR 9400 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 00 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 01 | 0.0 | 0.0 | 0.0 | 0.0 (| | 1.0 0.0 | | | PICK-UP CRAFT | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 27 | 2.7 | 2.7 | 2.7 | 2.7 | 0.0 | 0.0 | 0.0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | n.n n | 0 0.0 | 0.0 | 0.0 | 0.0 | | | 1.0 0.0 | | | PICK-UP OVERHEAD | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 1 12 | 2.5 | 2.5 | 2.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0. | 0.0 | 0.0 | 0.0 | | | 1.0 0.0 | | | RAIL BALLAST REGULATOR | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.6 | 0.0 | 0.0 | 0.0 | 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.1 | 0.0 | 0.0 | 0.0 | | | 1.0 0.0 | | | RAIL CLIP MACHINE | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.1 | 0.0 | 0.0 | 0.0 | | | 1.0 0.0 | | | RAIL MOVER-SHUTTLE WAGON | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | 0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.1 | 0.0 | 0.0 | 0.0 | | | 1.0 0.0 | | | RAIL TAMPER | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0 0.1 | 0.0 | 0.0 | 0.0 | | | 1.0 0.0 | | | RAIL WELDER | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 (| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | | | 1.0 0.1 | | | RAMEX WALK BEHIND COMPACTOR | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | . 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | | | 1.0 0.1 | | | TRI-AXI F DUMP TRUCK | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 (| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | | | 1.0 0.0 | | | TRUCK FLATBED 14 FOOT | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 2.5 | 3./ | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 (| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | | | 1.0 0.0 | | | TRUCK TRACTOR | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.6 | 0.6 | 1.9 | 1.9 | 1.9 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 (| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | | | 1.0 0.0 | | | WATER TRUCK, 4M ON-ROAD | | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | 0.0 | 0.0 | 0.0 | 0.9 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | .0 0. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | U.U (| U.U U.U | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | 0.0 | 0.0 | 0.0 | | | | | | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | U.U 0. | υ 0.0 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.0 | 0.0 | | .0 0. | U 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | .u 0.0 | 0.0 | 0.0 | U.O (| U.U 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.1 | U 0.0 | 0.0 | 0.0 | | | .0 0. | | | WELDING MACHINE 350 AMP | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0. | | | 0.1 | 0.1 | 0.1 | 0.1 | | | | .0 0. | | 0.0 | | | 0.0 0 | | | 0.0 | | 0.0 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | U.U 0 | .u 0.i | U 0.0 | 0.0 | 0.0 | | | .0 0. | | | LINEARS TOTAL (Ibs/day) | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 18. | | 43.5 | | 45.8 | | | | | 27.1 21 | | | 0.0 | | | 0.0 0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0 | .0 0.0 | 0.0 | 0.0 | 0.0 | | | .0 0. | | | OFFSITE VEHICLES TOTAL (lbs/day) | | | 14.1 | 14.3 | | | 15.0 | | | 5.9 6. | | | | 9.1 | | | | | 11.8 12 | | | | | | 16.9 17 | | | | | B.1 17.5 | | 16.3 | | | | 1.2 9 | | | | | | | .8 5. | | | TOTAL PROJECT (lbs/day) | 60.1 | 61.6 | 71.8 | 72.9 | 77.5 | 83.3 | 76.4 | 56.8 |
52.4 5 | 4.8 75. | 1 80.2 | 101.8 | 110.0 | 110.4 | 112.8 | 117.8 | 104.0 1 | 01.6 10 | 07.0 102 | 4 101. | 1 85.5 | 92.7 | 91.3 | 89.7 | 39.1 94 | .8 95.0 | 92.2 | 90.6 | 85.6 83 | 3.8 81.8 | 76.8 | 67.7 | 67.1 | 68.4 | 62.3 5 | 2.6 45 | .2 42.1 | 6 27.6 | 27.6 | 26.7 2 | 20.3 17 | 7.7 16 | .2 13. | According to schedules provided by Fluor, Linear construction (except rail) takes place in months 11-22. According to schedules provided by Fluor, Rail construction occurs in months 13-17. | CO₂e | MONTHLY EMIS | SIONS (lbs/day) |) |---|--------------|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|------|--------|---------|--------|-----| | CONSTRUCTION VEHICLES On-Road Vehicles | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 1 | 19 | 20 | 21 | 22 | | 18 cy fill mat'l haul truck | 0 | 0 | 2,876 | 2,876 | 5,753 | 5,753 | 5,753 | 5,753 | 2,876 | 2,876 | 2.876 | 2,876 | 1,438 | 1,438 | 1,438 | 1,438 | 1.438 | 38 - | 438 | 0 | 0 | 0 | | | Bus | 575 | 575 | 575 | 575 | 863 | 863 | 863 | 863 | 863 | 863 | 1,438 | 1,438 | 1,438 | 1,438 | 1,438 | 1,438 | 2,013 | | 013 | 2,013 | 2,876 | 2,876 | - 1 | | Concrete Pumper Truck | 0 | 0 | 0 | 0 | 003 | 575 | 575 | 575 | 575 | 575 | 575 | 575 | 575 | 863 | 863 | 863 | 575 | | 575 | 575 | 575 | 575 | | | | 863 | 1.151 | 1,151 | 863 | 863 | 863 | 863 | 863 | 863 | 863 | 575 | 575 | 575 | 575 | 575 | 003 | 0 | | 0 | 5/5 | 5/5 | 5/5 | | | Dump Truck | 863 | 1,151 | 1,151 | | 863 | | | | | | | | | | | 4 005 | | | | 0 | 0 0 4 0 | 0 040 | | | Diesel Tractor (Yard Dog) | | | | 0 | | 652 | 652 | 652 | 652 | 652 | 652 | 1,305 | 1,305 | 1,305 | 1,305 | 1,305 | 2,610 | | 610 | 2,610 | 2,610 | 2,610 | | | Service Truck - 1 ton | 575 | 575 | 575 | 1,151 | 1,151 | 1,151 | 1,151 | 575 | 575 | 575 | 575 | 575 | 575 | 575 | 575 | 575 | 575 | | 575 | 575 | 575 | 575 | | | Pile Driver Truck | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | Truck - Fuel/Lube | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | 274 | | 274 | 274 | 274 | 274 | | | Tractor Truck 5th Wheel | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | Trucks - Pickup 3/4 ton | 684 | 684 | 684 | 684 | 684 | 821 | 958 | 1,095 | 2,053 | 2,053 | 2,053 | 2,053 | 3,422 | 3,422 | 3,422 | 3,422 | 3,422 | | 422 | 3,422 | 3,422 | 3,422 | | | Trucks - 3 ton | 288 | 288 | 288 | 288 | 288 | 575 | 575 | 575 | 1,151 | 1,151 | 1,151 | 1,151 | 1,726 | 1,726 | 1,726 | 1,726 | 1,726 | 26 ' | 726 | 1,726 | 1,726 | 1,726 | | | Truck - Water | 1,438 | 1,438 | 1,438 | 1,438 | 1,438 | 1,438 | 863 | 863 | 863 | 863 | 863 | 863 | 863 | 863 | 863 | 863 | 863 | 33 | 863 | 863 | 863 | 863 | | | Off Road Vehicles | Air Compressor 185 CFM | 217 | 217 | 217 | 217 | 326 | 326 | 326 | 326 | 326 | 326 | 326 | 326 | 326 | 651 | 651 | 651 | 869 | 39 | 869 | 869 | 1,086 | 1,086 | | | Air Compressor 750 CFM | 0 | 0 | 0 | 0 | 228 | 228 | 228 | 228 | 456 | 456 | 456 | 456 | 456 | 456 | 456 | 912 | 912 | | 912 | 912 | 912 | 912 | | | Articulating Boom Platform | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | Bob cat loader | 0 | 0 | 170 | 170 | 170 | 170 | 170 | 681 | 681 | 681 | 681 | 681 | 511 | 511 | 511 | 511 | 511 | | 511 | 340 | 340 | 340 | | | Bulldozer D10R | 4.624 | 4.624 | 4.624 | 3.082 | 3.082 | 3.082 | 3.082 | 3.082 | 3.082 | 1.541 | 1.541 | 001 | 0 | 311 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | Bulldozer DfC
Bulldozer DfC | 1,176 | 1,176 | 1,176 | 1.176 | 784 | 784 | 784 | 784 | 784 | 784 | 392 | 392 | 392 | 392 | 392 | 0 | 0 | - | 0 | 0 | 0 | 0 | | | | 1,176 | 1,176 | 1,176 | 1,176 | 784 | | | | | | | | | | | 444 | | | | 444 | | 444 | | | Concrete Trowel Machine | 0 | 0 | - | U | 0 | 141 | 141 | 141 | 141 | 141 | 141 | 141 | 141 | 141 | 141 | 141 | 141 | | 141 | 141 | 141 | 141 | | | Concrete Vibrators | U | U | 0 | U | 0 | 0 | | | 0 | | | 0 | | | | | 0 | | 0 | | | | | | Cranes - Mobile 35 ton | 0 | 0 | 0 | 0 | 0 | 0 | 218 | 218 | 218 | 872 | 872 | 872 | 872 | 1,526 | 1,526 | 1,526 | 1,526 | | 526 | 1,526 | 1,526 | 1,526 | | | Cranes - Mobile 45 ton | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 697 | 697 | 697 | 697 | 697 | 697 | 697 | | 697 | 1,395 | 1,395 | 1,395 | | | Crane - Mobile 65 ton | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 349 | 349 | 697 | 1,395 | 1,743 | 1,743 | | 743 | 2,092 | 2,092 | 2,092 | | | Cranes 100 / 150 ton cap | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 486 | 486 | 973 | 973 | 1,459 | 1,459 | 1,946 | | 946 | 1,946 | 1,946 | 1,946 | | | Diesel Powered Welder | 0 | 0 | 0 | 513 | 513 | 513 | 513 | 513 | 513 | 513 | 513 | 513 | 513 | 513 | 513 | 770 | 770 | 70 | 770 | 1,026 | 1,026 | 1,026 | | | Excavator - Backhoe/loader | 486 | 486 | 729 | 972 | 972 | 972 | 972 | 972 | 972 | 972 | 972 | 486 | 486 | 486 | 486 | 486 | 243 | 13 | 243 | 243 | 243 | 243 | | | Excavator - Earth Scraper 637 | 14,945 | 14,945 | 14,945 | 14,945 | 8,540 | 8,540 | 4.270 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Excavator - loader | 642 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | 321 | 321 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Excavator - Motor Grader (CAT140H) | 0 | 434 | 434 | 434 | 1.303 | 1.303 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Excavator - Trencher (CAT320) | 0 | 0 | 0 | 0 | 0 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 910 | 0 | 0 | 0 | 0 | 0 | 0 | | | Fired Heaters (2,000 BTU) | 0 | 0 | 0 | 0 | 330 | 330 | 330 | 330 | 248 | 248 | 413 | 413 | 413 | 413 | 413 | 413 | 413 | 13 | 413 | 413 | 413 | 413 | | | Forklift | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 358 | | 358 | 358 | 358 | 358 | | | Fusion Welder | 209 | 209 | 0 | 209 | 0 | 0 | 205 | 0 | 209 | 209 | 200 | 209 | 0 | 200 | 0 | 200 | 0 | | 0 | 330 | 0 | 0 | | | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | | 1.315 | 1.315 | 1,315 | | | Heavy Haul / 600 tn Crane | U | U | 0 | U | 0 | 0 | U | 0 | 0 | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | | 315 | 1,315 | | | | | Heavy Haul / 1,000 tn Crane | 83 | 83 | | | | | | | | | | | | | | | | | | | 1,315 | 1,315 | | | Light Plants | 83 | 83 | 165 | 330 | 661 | 661 | 661 | 661 | 330 | 330 | 496 | 496 | 661 | 661 | 826 | 826 | 1,156 | | 156 | 1,156 | 1,156 | 1,156 | | | Man lifts - telescoping | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 502 | 502 | 502 | 1,005 | 1,005 | 1,005 | 1,005 | 1,005 | 1,005 | | ,005 | 1,005 | 1,507 | 1,507 | | | Man lift - scissor | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | | Portable Compaction Roller | 0 | 0 | 1,712 | 1,712 | 1,712 | 1,712 | 1,712 | 1,712 | 685 | 685 | 685 | 685 | 685 | 685 | 685 | 685 | 685 | | 685 | 685 | 685 | 685 | | | Portable Compaction - Vibratory Plate | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | 113 | | 113 | 113 | 113 | 113 | | | Portable Compaction - Ram | 0 | | | Pumps | 248 | 248 | 248 | 496 | 496 | 496 | 496 | 496 | 496 | 496 | 496 | 496 | 496 | 496 | 496 | 496 | 496 | 96 | 248 | 248 | 248 | 248 | | | Portable Power Generators | 916 | 916 | 916 | 916 | 1,374 | 1,374 | 1,374 | 1,374 | 1,374 | 2,291 | 2,291 | 2,291 | 2,291 | 2,291 | 2,291 | 3,436 | 3,436 | 36 3 | 436 | 3,436 | 3,436 | 3,436 | | | Truck Crane - Greater than 300 ton | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 783 | 783 | 783 | 783 | 783 | 1.565 | 35 | 565 | 2.348 | 2.348 | 3,130 | | | Truck Crane - Greater than 200 ton | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o o | 0 | 0 | 0 | 486 | 486 | 486 | 36 | 486 | 486 | 973 | 973 | | | Vibratory Roller Ingersol-Rand 20 ton | 1.405 | 1.405 | 1.405 | 1.405 | 1.405 | 1.405 | 1.405 | 1.405 | 1.405 | 937 | 937 | 937 | 937 | 937 | 468 | 468 | 468 | | 468 | 0 | 0 | 0 | | | WORKER VEHICLES | 1,400 | .,400 | .,400 | .,400 | .,400 | .,400 | .,400 | .,400 | .,400 | 507 | 501 | 507 | 507 | 507 | 400 | 400 | 400 | | | | | | | | Personal commuting vehicles | 15 | 26 | 35 | 45 | 66 | 83 | 99 | 133 | 148 | 178 | 220 | 246 | 292 | 342 | 412 | 466 | 508 | 10 | 540 | 568 | 602 | 631 | | | | 15 | 20 | 30 | 40 | 00 | 63 | 99 | 133 | 146 | 1/8 | 220 | 240 | 292 | 342 | 412 | 400 | 308 | 70 | J40 | 300 | 002 | 031 | | | DELIVERY TRUCKS | | 6 | | 6 | | 6 | | | 6 | 6 | 6 | | | 6 | | 6 | _ | c | 0 | 6 | 6 | 6 | | | Light delivery truck (e.g. Fed-Ex) | 6 | 6 | 6 | ь | 6 | б | б | 6 | 6 | 6 | 6 | 6 | 6 | б | 6 | б | 6 | 0 | 6 | ь | ь | 6 | | | Heavy delivery truck (e.g. flat beds carrying | construction eqp) | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | | 426 | 426 | 426 | 426 | | | Import fill trucks | 2,044 | 2,044 | 2,044 | 2,044 | 2,044 | 2,044 | 2,044 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | ONSITE TOTAL (lbs/day) | 32.197 | 32,930 | 38.023 | 37.949 | 36.661 | 39.382 | 33,604 | 27,509 | 25,471 | 25.062 | 26,515 | 26.800 | 27.512 | 29,178 | 30,294 | 31.587 | 33,975 | 75 35 | .073 | 35.110 | 38.528 | 39,340 | | | | Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 18 | 19 | 20 | 21 | 22 | |----------|---|----------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|-----------|--------|------------|--------|--------|------------|----|--------|------------|--------|--------|-----------| | | WORKER VEHICLES | <u> </u> | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | Personal commuting vehicles | 872 | 1.501
| 2.014 | 2.601 | 3.817 | 4.822 | 5.751 | 7.725 | 8.589 | 10.342 | 12.824 | 14.337 | 16.989 | 19.926 | 23.987 | 27.106 | 29.583 | 83 | 31.396 | 33.055 | 35.019 | 36.722 | 41,095 | | | DELIVERY TRUCKS | 0,2 | 1,001 | 2,014 | 2,001 | 0,011 | 4,022 | 0,701 | 1,120 | 0,000 | 10,042 | 12,024 | 14,007 | 10,000 | 10,020 | 20,001 | 21,100 | 20,000 | | 01,000 | 00,000 | 00,010 | 00,722 | 41,000 | | | Light delivery truck (e.g. Fed-Ex) | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 465 | 65 | 465 | 465 | 465 | 465 | 465 | | | Heavy delivery truck (e.g. flat beds carrying | construction eqp) | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | 56 | 7,256 | 7,256 | 7,256 | 7,256 | 7,256 | | | Import fill trucks | 22.624 | 22.624 | 22.624 | 22.624 | 22.624 | 22.624 | 22.624 | 0 | 7,200 | 7,200 | 0 | 0 | 7,200 | 0 | 0 | 0 | 7,200 | | 0 | 7,200 | 0 | 7,200 | 000 | | | LINEARS | 22,024 | 22,024 | 22,024 | 22,024 | 22,024 | 22,024 | 22,024 | | | | | | | | | | | | | | | | , i | | | ON ROAD | Dump Truck | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,151 | 1,151 | 1,726 | 1,726 | 1,726 | 1,726 | 1,726 | 26 | 1,726 | 1,726 | 1,726 | 1,151 | 1,151 | | | Service Truck (MHD-DSL) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 575 | 575 | 575 | 575 | 575 | 575 | 863 | | 863 | 863 | 863 | 863 | 863 | | | Pipe Haul Truck and Trailer (HHDT-DSL) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 863 | 863 | 863 | 863 | 863 | 863 | 575 | | 575 | 575 | 575 | 575 | 575 | | | 3/4 Ton Pickup (MHD-DSL) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,376 | 1,376 | 1,376 | 1,376 | 1,376 | 1,376 | 2,064 | | 2,064 | 2,064 | 2,064 | 2,064 | 2,064 | | | Truck - water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 575 | 575 | 1,376 | 1,151 | 1,151 | 1,151 | 1,151 | | 1.151 | 1,151 | 1,151 | 575 | 575 | | | OFF ROAD | | | | | | | | | | | 3/3 | 3/3 | 1,151 | 1,101 | 1,101 | 1,151 | 1,131 | J1 | 1,101 | 1,131 | 1,101 | 3/3 | 3/3 | | | Air Compressor (185 CFM) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 217 | 217 | 434 | 434 | 651 | 651 | 651 | E4 | 651 | 434 | 434 | 217 | 217 | | | | 0 | 0 | 0 | · · | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 434 | 434 | 234 | 234 | 234 | | 234 | 234 | 434 | 0 | 0 | | | Bore Machine (Hydraulic) | 0 | J
O | 0 | 0 | U O | 0 | U | 0 | U | 0 | 973 | 1.946 | 1,946 | 2,919 | 2,919 | 2,919 | 2,919 | | 2,919 | 2.919 | 2,919 | 1.946 | 1,946 | | | 12 Ton Hydra Crane
Backhoe/loader | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,457 | 1,457 | 2,429 | 2,429 | 2,429 | 2,429 | 2,429 | | 2,429 | 2,429 | 2,429 | 1,457 | 1,457 | | | Excavator - Trencher | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,457 | 430 | 430 | 430 | 430 | 430 | 430 | | 430 | 430 | 430 | 430 | 430 | | | Excavator - I rencher
Forklift | 0 | 0 | U | U | 0 | U | U | U | 0 | U | 90 | 430
90 | | 430
179 | | | 430
179 | | | 430
179 | | | 430
90 | | | | 0 | 0 | U | U | 0 | U | U | U | 0 | U | | | 179 | | 179 | 179 | | | 179 | | 179 | 179 | | | | Welding Generator | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,832 | 1,832 | 1,832 | 1,832 | 1,832 | 1,832 | 1,832 | | 1,832 | 1,832 | 1,832 | 1,832 | 1,832 | | | 3 to 5 Ton AC Roller | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 303 | 303 | 303 | 303 | 303 | 303 | | 303 | 303 | 303 | 303 | 303 | | ш | Pipe Bending Machine | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 351 | 351 | 701 | 701 | 701 | 701 | 701 | 01 | 701 | 701 | 351 | 351 | 0 | | <u> </u> | RAIL | ဟု | AIR COMPRESSOR 185 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 217 | 217 | 217 | 217 | | 0 | 0 | 0 | 0 | 0 | | H- | BOOM TRUCK 12 TON | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 288 | 288 | 288 | 88 | 0 | 0 | 0 | 0 | 0 | | ö | CAT 325 BACKHOE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 472 | 472 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | _ | CAT 330 BACKHOE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 799 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | CAT DOZER D-6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,432 | 1,432 | 0 | 0 | 716 | | 0 | 0 | 0 | 0 | 0 | | | CAT MODEL 12 MOTOR GRADER | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 864 | 864 | 432 | 432 | 432 | 32 | 0 | 0 | 0 | 0 | 0 | | | CAT ROLLER-COMPACTOR 563 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 680 | 680 | 340 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | CAT RUBBER TIRE LOADER 966 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,610 | 1,610 | 1,610 | 10 | 0 | 0 | 0 | 0 | 0 | | | CAT SCRAPER 615 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,768 | 1,384 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | CRANE-ROUGH TERRAIN 45T | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 346 | 346 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | GENSET 5KW | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 303 | 151 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | JOHN DEERE TRACTOR 9400 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,604 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | PICK-UP CRAFT | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4,730 | 4,730 | 4,730 | 4,730 | 4,730 | | 0 | 0 | 0 | 0 | 0 | | | PICK-UP OVERHEAD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,322 | 3,965 | 3,965 | 3,304 | 3,304 | | 0 | 0 | 0 | 0 | 0 | | | RAIL BALLAST REGULATOR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 661 | 661 | | 0 | 0 | 0 | 0 | 0 | | | RAIL CLIP MACHINE | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 174 | 174 | | 0 | 0 | 0 | 0 | 0 | | | RAIL MOVER-SHUTTLE WAGON | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 661 | 661 | 661 | | 0 | 0 | 0 | 0 | 0 | | | RAIL TAMPER | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 661 | 661 | 61 | 0 | 0 | 0 | 0 | 0 | | | RAIL WELDER | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 102 | 51 | 51 | 0 | 0 | 0 | 0 | 0 | | | RAMEX WALK BEHIND COMPACTOR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | TRI-AXLE DUMP TRUCK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,151 | 1,726 | 575 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | TRUCK FLATBED 14 FOOT | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 288 | 288 | 863 | 863 | 863 | 63 | 0 | 0 | 0 | 0 | 0 | | | TRUCK TRACTOR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,117 | 1,117 | 0 | | 0 | 0 | 0 | 0 | 0 | | | WATER TRUCK, 4M ON-ROAD | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 288 | 288 | 288 | 288 | 288 | | 0 | 0 | 0 | 0 | 0 | | | WELDING MACHINE 350 AMP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 51 | 51 | 51 | 51 | 51 | 51 | 0 | 0 | 0 | 0 | 0 | | | LINEARS TOTAL (lbs/day) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9,460 | 11,166 | 29,595 | 31,683 | 31,804 | 30,529 | 30,765 | 65 | 16,058 | 15,841 | 15,256 | 11,944 | 11,503 | | | OFFSITE VEHICLES TOTAL (lbs/day) | 31,217 | 31,847 | 32,359 | 32,946 | 34,162 | 35,168 | 36,096 | 15,446 | 16,310 | 18,063 | 20,545 | 22,058 | 24,710 | 27,647 | 31,708 | 34,827 | 37,304 | 04 | 39,117 | 40,776 | 42,741 | 44,443 | 48,816 | | | TOTAL PROJECT (lbs/day) | 63,414 | 64,777 | 70,382 | 70,895 | 70,823 | 74,549 | 69,700 | 42,955 | 41,782 | 43,125 | 56,520 | 60,024 | 81,817 | 88,508 | 93,806 | 96,943 | 102,044 | 44 | 90,249 | 91,727 | 96,525 | 95,727 | 99,159 | According to schedules provided by Fluor, Linear construction (except rail) takes place in months 11-22. According to schedules provided by Fluor, Rail construction occurs in months 13-17. | $\overline{}$ | |----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|------------|------------|------------|------------|------------|---------------| | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | | 0
2,876 | 0
4,027 863
3,452 | 863
3,452 | 863
3,452 | 863
2,876 | 288
2,876 | 288
1,438 | 288
1,438 | 0
863 | 0
863 | 0
575 | 0
575 | 0
575 | 0
288 | 0
288 | | 0 | 0 | 0 | 0 | 0 | 288
575 | 288
575 | 288
575 | 288
575 | 0
575 | 0
575 | 0
575 | 0
575 | 0
575 | 0
863 | 0
863 | 0
863 | 0
575 | 0
288 | 0
288 | 0
288 | 0
288 | 0
288 | 0 | 0 | 0 | 0 | | 2,610
575 | 3,262
575 1,305
575 0
288 | 0
274 0
137 0 | 0 | 0 | | 0
3,422 0
2,053 | 0
2,053 | 0
1,369 | 0
1,369 | 0
1,369 | 0
1,369 | 0
684 | | 1,726
863 | 1,726
575 | 1,726
863 | 1,726
575 1,151
575 | 863
575 | 863
575 | 863
575 | 863
575 | 575
575 | 575
575 | 575
575 | 288
288 | 288
288 | 288
288 | 288
288 | 0
288 | 0
288 | 0
288 | | 1,086 | 1,303 | 1,303 | 1,303 | 1,303 | 1,303 | 1,303 | 1,303 | 1,303 | 1,303 | 1,303 | 1,303 | 1,303 | 869 | 869 | 869 | 651 | 651 | 651 | 651 | 434 | 434 | 434 | 217 | 217 | 109 | 109 | | 912
0 456
0 | 456
0 | 456
0 | 456
0 | 228
0 | 340
0 | 340
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 170
0 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0
141 | 0
141 | 0
141 | 0
141 | 0
141 | 392
141 | 392
0 | 392
0 | 392
0 | 0 | 0 | 0 | 0 | 0 | 0
141 | 0
141 | 0
141 | 0
141 | 0
141 | 0
141 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0
1,526 | 0
1,526 | 0
1,526 | 0
1,526 | 0
1,090 | 1,090 | 0
1,090 | 0
1,090 | 0
1,090 | 0
1,090 | 0
1,090 | 0
1,090 | 0
436 0
218 | 0
218 | 0
218 | 0
218 | | 1,395
2,092 697
2,092 | 697
1,743 | 697
1,743 |
697
1,395 | 697
697 | 697
697 | 697
697 | 697
697 | 697
697 | 697
349 | 697
349 | 349
349 | 349
349 | 0
349 | 0
349 | 0
349 | 0 | 0 | 0 | 0 | | 1,946
1,026 | 1,946
1,283 | 1,946
1,283 | 1,946
1,283 | 1,946
1,283 | 1,946
1,283 | 973
1,283 | 973
1,283 | 486
1,283 | 486
1,283 | 486
770 | 486
770 | 486
770 | 486
770 | 0
770 | 0
513 | 0
513 | 0
513 | 0
513 | 0
513 | 0
257 | 0
257 | 0
257 | 0
257 | 0
154 | 0
154 | 0
103 | | 243
0 | 243
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 486
0 | 486
0 | 486
0 | 486
0 | 243
0 | 243
0 | 243 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 321
434 | 321
434 | 321
434 | 321
434 | 0 | 0 | 0 | 0 | 0
869 | 0
869 | 321
869 | 321
869 | 321
434 | 0
434 | 0
434 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0
413 0
248 | 0
248 | 0
248 | 0
165 0
83 | 0
83 | 0 | | 358 | 358 | 358 | 358 | 358 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 269 | 90 | 90 | 90 | 90 | 45 | 45 | 45 | | 1,315
1,315 | 1,315
1,315 | 1,315
1,315 | 1,315 | 0 | | 1,156
1,507 | 1,156
2,009 826
2,009 | 826
2,009 | 826
2,009 | 826
2,009 | 826
1,507 | 826
1,507 | 826
1,507 | 826
1,005 | 826
1,005 | 413
1,005 | 413
1,005 | 413
502 | 413
502 | 413
502 | 330
502 | 330
201 | 165
201 | 165
201 | | 0 685 | 0 | 2,009 | 2,009 | 2,009 | 2,009 | 0 | 0 | 2,009
0
685 | 2,009
0
685 | 2,009
0
685 | 0 685 | 2,009 | 0 | 0 | 0 685 | 0 685 | 0 685 | 0 342 | 0 342 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 685
0 | 0 | 0 | 0 | 56 | 685
56 | 685
56 | 56
0 | 0 | 0 | 0 | 0 | 0
75
0 | 75
0 | 75
0 | 75
0 | 75
0 | 342
38 | 342
38 | 0 | ō | 0 | 0 | 0 | 0 | 0 | | 248 | 248 | 248 | 248 | 248 | 248 | 248 | 248 | 248 | 0
248 | 248 | 248 | 248 | 248 | 248 | 248 | 248 | 248 | 248 | 248 | 165 | 0
165 | 165 | 165 | 165 | 165 | 165 | | 4,581
3,130 4,581
2,348 | 4,581
2,348 | 4,581
1,565 | 4,581
1,565 | 4,581
1,565 | 4,581
783 | 3,436
783 | 3,436
783 | 3,436
783 | 3,436
783 | 2,291
0 | 2,291
0 | 2,291
0 | 2,291
0 | 2,291
0 | 2,291
0 | 1,145
0 | 1,145
0 | 1,145
0 | 458
0 | | 1,459
0 | 1,459
0 | 1,459
0 | 1,459
0 | 1,459
0 | 1,459
937 | 1,459
937 | 973
937 | 0
937 | 0 | 0 | 0 | 0 | 0 | 0 | 0
468 | 0
468 | 0
468 | 0
468 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 759 | 817 | 868 | 879 | 966 | 1,034 | 1,068 | 1,074 | 1,085 | 1,069 | 1,059 | 1,011 | 957 | 927 | 843 | 815 | 692 | 562 | 446 | 303 | 242 | 242 | 242 | 223 | 190 | 174 | 131 | | 6 | | 426
0 | 40,412 | 42,960 | 42,032 | 40,439 | 38,775 | 41,757 | 41,362 | 38,946 | 37,148 | 33,592 | 32,555 | 31,582 | 28,832 | 26,280 | 26,137 | 27,327 | 25,560 | 21,538 | 18,233 | 17,622 | 10,207 | 10,206 | 9,234 | 6,917 | 5,927 | 5,350 | 3,884 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | |-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|-------------|-------------|----------|-------------|-------------|--------| | 44,172 | 47,505 | 50,521 | 51,116 | 56,200 | 60,177 | 62,133 | 62,480 | 63,095 | 62,181 | 61,612 | 58,843 | 55,699 | 53,948 | 49,027 | 47,437 | 40,258 | 32,719 | 25,924 | 17,636 | 14,077 | 14,052 | 14,052 | 13,000 | 11,026 | 10,103 | 7,616 | | 465 | | 7,256 | | 0 | | 0 | | 0 | | ő | ő | ŏ | ő | ő | ő | ŏ | ő | ő | ő | ő | ő | ő | ő | ő | ő | ő | ő | ŏ | ő | ő | ő | ő | ő | ő | ő | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | | 0
51,893 | 0
55,226 | 0
58,242 | 0
58,838 | 0
63,921 | 0
67,898 | 0
69,854 | 0
70,201 | 0
70,816 | 69,903 | 0
69,333 | 0
66,564 | 0
63,420 | 0
61,669 | 0
56,748 | 0
55,158 | 0
47,979 | 0
40,440 | 0
33,645 | 0
25,358 | 0 21,799 | 0
21,773 | 0
21,773 | 0 20,722 | 0
18,747 | 0
17,824 | 15,337 | | 92.305 | 98.187 | 100.274 | 99.277 | 102.696 | 109.655 | 111,216 | 109.147 | 107.965 | 103.494 | 101.888 | 98,146 | 92.252 | 87.949 | 82.885 | 82,486 | 73,539 | 61,978 | 51,878 | 42,980 | 32.005 | 31,979 | 31,007 | 27,638 | 24.674 | 23,174 | 19,221 |