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1. Introduction 
Downscaled weather, climate and hydrology data from multiple climate scenarios are needed to 
translate global climate model (GCM) climate projections to spatial and temporal details that are 
relevant to decision makers—to understand historical variation and future projected changes and 
variation of temperature, precipitation, and other variables over California’s complex terrain, from 
coast to interior. 
 
Users must contend with a growing accumulation of global climate models—multiple models, 
most providing simulations for multiple future scenarios.  This collection of models contains range 
of variability within and across models, and thus the uncertainty that arises from different model 
constructs, from different scenarios of future climate drivers (e.g. emissions, aerosols, land use, 
land cover, etc.), and from various forms of climate variability. Additionally, many GCMs provide 
an ensemble of model simulations for a given scenario, which are useful to disentangle the role of 
unpredictable and chaotic natural climate variations from trends produced by anthropogenic 
greenhouse gases and aerosols.  To investigate the range of regional climate changes and impacts 
that are contained in the growing set of climate projections requires regional downscaling 
techniques that are on one hand sophisticated enough to represent complex regional climate 
structure, including extreme events, and on the other hand are sufficiently efficient so that the 
computational load is not prohibitive.  
 
Ongoing research funded by CEC under the EPIC program (EPC-16-063) aims to develop 
downscaling techniques, exploiting hybrid dynamical-statistical elements, to provide improved 
resolution of California’s highly varying (space and time) meteorological conditions including 
winds and coastal cloudiness and how they are affected by aerosols.  Also included in this research 
is exploratory modeling of selected hydrological systems including surface and ground water 
systems. 

 
This white paper, a report on work to-date undertaken under project EPC-16-063, will describe 
development of downscaling and hydrologic modeling techniques applied to California weather, 
climate and hydrologic phenomena.  The following elements are included: statistical and 
dynamical downscaling of meteorological variables; hybrid techniques using both statistical and 
dynamical methods to obtain better downscaling results than would otherwise be possible, 
hydrological modeling including surface and ground water components, and ground water 
modeling of selected aquifers.  Some complementary elements are also presented, which inform 
or stem from these downscaling and hydrologic modeling approaches.  These include observed 
datasets, and an assessment of variables of interest to California decision makers that can be 
expected from dynamical and statistical downscaling.  Finally, we report on “lessons learned”, 
including opportunities and challenges.   
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2. Statistical Downscaling 
Statistical downscaling exploits statistical relationships between local climate variables (e.g., 
precipitation, surface air temperature) and regional or large-scale predictors (e.g. general 
circulation modeled precipitation and temperature, or atmospheric pressure fields).  By applying 
these statistical relationships to the output of global climate model simulations, more spatially-
resolved local climate characteristics can be inferred.  Further capabilities of the Localized 
Constructed Analogues (LOCA) technique are being developed under the present project to 
provide improved spatial and temporal resolution and new vector wind downscaling of 
California’s highly varying (space and time) meteorological conditions.  Furthermore, for 
example, California’s investor-owned utilities (IOUs) often use only relatively few meteorological 
stations to characterize temperature variability in their service areas and would like the simulations 
of the historical period to be as close as possible (in the statistical sense) to the historical data for 
these stations.  The need for fidelity with historical observations—including statistical properties 
of means, overall variation and properties of extreme events—must be considered in developing 
downscaled climate data. 
  
Statistical downscaling is computationally efficient, but relies upon variability and patterns from 
a selected period of time, existing codes that have been developed for a small subset of climate 
variables, and an extensive training dataset.  Statistical techniques operate under the assumption 
that some statistical properties of the training dataset are valid for the period (often future period) 
that is being downscaled. Which exact properties are assumed unchanging in the future depends 
on the method, and is usually referred to as the “stationarity assumption” of the method.  The 
training datasets are usually a collection or rendition of historical observations, but could also be 
formed from dynamical model output from either a historical or a future period, an approach that 
is particularly useful when direct observations are lacking.  Some well-used historical training 
datasets (see Section 6) have continuous gridded observations (or samples) and broad spatial 
coverage.  These datasets have had monthly, daily and in some cases sub-daily time sampling.   
 
 
2.1  Localized Constructed Analogs (LOCA) Downscaling 
Localized constructed analogs (LOCA) is a statistical downscaling technique (Pierce et al. 2014; 
Pierce and Cayan 2015) that uses past history to add improved fine-scale detail to global climate 
models.  David Pierce et al. at Scripps Institution of Oceanography, UCSD has developed and used 
LOCA to downscale 32 global climate models from the CMIP5 archive at a 1/16th degree spatial 
resolution (http://loca.ucsd.edu/).  LOCA downscaling was implemented over various spatial 
domains, contingent on available historical training data for given variables of interest, ranging 
from the California region to most of North America from central Mexico through Southern 
Canada.  For the California Fourth Climate Change Assessment generation of LOCA, the historical 
period was 1950-2005, along with two future scenarios: RCP 4.5 and RCP 8.5 over the period 
2006-2100 (although some models stop in 2099).  Variables produced for the California Fourth 
Climate Change Assessment were daily values of minimum and maximum temperature, 
precipitation, humidity, wind speed, and downward short wave radiation. 
 
The LOCA method is a statistical scheme that produces downscaled estimates suitable for 
hydrological simulations using a multi-scale spatial matching scheme to pick appropriate analog 

http://loca.ucsd.edu/
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days from observations. First, a pool of candidate observed analog days is chosen by matching the 
model field to be downscaled to observed days over the region that is positively correlated with 
the point being downscaled, which leads to a natural independence of the downscaling results to 
the extent of the domain being downscaled. Then the one candidate analog day that best matches 
in the local area around the grid cell being downscaled is the single analog day used there.  Most 
grid cells are downscaled using only the single locally selected analog day, but locations whose 
neighboring cells identify a different analog day use a weighted combination of the center and 
adjacent analog days to reduce edge discontinuities.  By contrast, existing constructed analog 
methods typically use a weighted average of the same 30 analog days for the entire domain. By 
greatly reducing this averaging across analog cases, LOCA produces better estimates of extreme 
days, constructs a more realistic depiction of the spatial coherence of the downscaled field, and 
reduces the problem of producing too many light-precipitation days.  The methods, algorithms, 
and validation of LOCA are available in a series of publications (Pierce et al. 2014, Pierce et al. 
2015, Pierce and Cayan 2015, Pierce et al. 2018). Interested readers should consult those works 
for details of how the method works, which will not be repeated here. 
 
In the EPC-16-063 research presented here, increased spatial and temporal resolution of LOCA 
downscaling is developed and tested, as an advance on previous work.  Hourly temporal resolution 
applications are included, applied to temperature, humidity and winds.  Increased spatial 
resolution, to 3km resolution from the former 6km resolution is developed.  Downscaling of vector 
winds, not just wind speed, is also achieved.  As described below, the introduction of fine scale 
dynamical model reanalysis results provides vital training datasets that enable these developments, 
resulting from the EPC-16-063 research effort. 
 
Although the LOCA method is more computationally expensive than existing constructed analog 
techniques, LOCA is still practical for downscaling numerous climate model simulations with 
limited computational resources.  Because LOCA is not resource limited, LOCA downscaling can 
afford to be conducted over many global climate models (GCMs), including outliers. Because of 
its high cost, WRF dynamical downscaling should be limited to the minimum expected to faithfully 
reproduce the range of expected climate variability. Analysis shows that 6 downscaled members 
should be considered a minimum to downscale for regional modeling purposes (Pierce et al. 2009), 
ideally selected from different GCMs to reduce the multi-model averaged error. Beyond this 
minimum, we consider that 10 downscaled members will create an ensemble whose mean and 
standard deviation may be expected to reasonably estimate the full suite of projections, if the GCM 
projections are chosen carefully.  
 
 
2.2  LOCA: Sub-Daily Resolution – Hourly Temperature 
Some applications require sub-daily information, such as hourly temperatures for energy 
applications, hourly winds for wildfire analysis, and hourly solar insolation for photovoltaic 
analyses. Up to now the California assessments have been focused on daily data, but in this recent 
work, conducted under EPC-16-063, we have been pushing the analysis to the sub-daily time 
resolution to address these issues. 
 
There are two distinct approaches to sub-daily downscaling addressed here. For some historical 
reanalyses, such as MERRA-2 (Molod et al. 2015; Hinkelman 2019) and ERA5 (Hersbach et al. 
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2019), hourly data is already available, albeit on a coarse spatial grid (~30-50 km).  Likewise, 
some meteorological station observations are available at hourly resolution. When available, this 
hourly data can be made use of directly. For example, in the historical hourly wind downscaling, 
each hour of the day is downscaled using the hourly reanalyses and the hourly training data 
(described in more detail below). In other situations, primarily future model projections, the 
climate models saved only daily data, so that observed hourly data has to be combined with the 
daily model projections to produce projections of hourly temperature. This methodology that will 
now be described in the context of future hourly temperature projections at selected meteorological 
stations of relevance to California energy applications. 
 
Under the aforementioned ongoing CEC grant (EPC-16-063), the first thrust at sub-daily 
downscaling was hourly time resolution temperature, which enables investigation of energy-
related temperature extremes. There are existing techniques to disaggregate daily Tmin and Tmax 
to hourly values, but they have important limitations. For example, a common approach is to fit a 
climatologically determined diurnal cycle to the Tmin and Tmax values and then take the hourly 
values from this fitted curve. (For some applications, such as agricultural degree days, a triangle 
is often fitted instead of a sinusoid.) The drawback of this approach is that it discards important 
aspects of sub-daily variability. I.e., two days can have very different progressions of hourly 
temperature even though they have the same Tmin and Tmax. Our development here was to devise 
a better method of disaggregating daily Tmin and Tmax to hourly values that retains realistic sub-
daily variability, which can be of importance to energy industry stakeholders. 
 
To retain realistic sub-daily variability, we disaggregated future model projections of daily Tmin 
and Tmax to an hourly time step at 29 meteorological stations using an analog day matching 
technique similar to what the LOCA downscaling approach uses.  Besides having application to 
CEC and other energy utility concerns, this exercise provided opportunity to devise and test an 
hourly disaggregation technique that translates to other applications, e.g. hourly wind and humidity 
downscaling, which is described below in Section 4.1. 
 
The approach to generating hourly temperatures given that day’s Tmin and Tmax is as follows. 
First we construct the 3-day sequence of model Tmin and Tmax from the day before, the day of, 
and the day after the model day being disaggregated to hourly values. We then identify the best 
matching observed 3-day sequence of Tmin and Tmax in the training data set, subject to the 
constraint that the central matching analog day must be in a +/- 45 day-of-year window around the 
day-of-year being disaggregated. There are two reasons for using a 3 day sequence of Tmin-Tmax 
rather than matching only the day being disaggregated. 1) Matching on 6 values provides a better 
constraint than matching on 2 values. 2) The point of the exercise is to generate days with realistic 
transitions from one day to the next, which is better addressed by matching on the days before and 
after the day being disaggregated. A weighted RMSE was used to evaluate the quality of the match 
between the model Tmin/Tmax series and the historical observations. The weights are 1 for the 
central day, and 0.5 for the preceding and subsequent days. This emphasizes the match in the day 
being disaggregated, while still taking into consideration information from the previous and 
subsequent days. 
 
We compared our analog day approach to the more traditional method of using climatological 
diurnal cycles as described previously, which we call the “climatological curve” approach. The 
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climatological diurnal cycles for this more traditional method were chosen based on station, month, 
and quartile of the diurnal temperature range for the day being disaggregated. Our intent is to 
examine whether the analog day approach captures observed sub-daily variability that the 
traditional climatological curve approach discards. 
 
Example hourly sequences produced by the analog day method and the climatological curve 
method are shown in Figure 1A. By construction, the climatological curve approach (dotted red 
line) generates a smooth solution with very little variability in the afternoon and nighttime hours, 
which is unlike what is seen in the observations (solid black line). The analog matching approach 
(broken blue line) does capture realistic variability at all hours of the day.  
 
Figure 1: Examples of hourly temperature disaggregation at Bakersfield, CA. 

 

Time series of the original observed hourly temperature values (black), the analog day 
disaggregation (blue), and the disaggregation based on fitting climatological diurnal cycles 
(dotted red). B: Histograms of the fraction of time that each hour is the warmest (red) or coldest 
(blue) hour of the day, in winter (Dec-Jan-Feb), for the observations (top), analog day 
disaggregation (middle), and climatological diurnal cycle (bottom) methods. C: Multi-model 
ensemble average projected change in the number of hours either above (red and orange lines) or 
below (blue and green lines) the indicated temperature threshold in degrees F. The red and blue 
lines are for RCP 8.5; the orange and green lines are for RCP 4.5. The purple dot and whisker 
show the observed mean value and 95% confidence interval from 2000-2018. 
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A comparison between the original hourly observations and cross-validated disaggregations from 
the analog matching technique and climatological curve technique is shown in Figure 1B. As 
expected from the way the methods are constructed, an analog approach captures the observed 
variability extremely well. Histograms of the fraction of time that each hour is the warmest (red) 
or coldest (blue) hour of the day, in winter (Dec-Jan-Feb), for the observations (top), analog day 
disaggregation (middle), and climatological diurnal cycle (bottom) methods.  In comparison to the 
analogue approach, the climatological curve approach severely underestimates variability on time 
scales shorter than a day, reaching a deficit in variance spectral power of nearly two orders of 
magnitude at the highest frequencies.  Based on these and other analyses presented in the full CEC 
report on the hourly temperature downscaling (Pierce and Cayan, 2019), we conclude that the 
analog day matching approach to disaggregating daily Tmin/Tmax to hourly values does a much 
better job of capturing sub-daily variability than does the more traditional approaches.  Application 
of the analogue method to projected climate scenarios is shown in Figure 1C, which illustrates the 
multi-model.  Multi-model ensemble average projected change in the number of hours either above 
(red and orange lines) or below (blue and green lines) the indicated temperature threshold in 
degrees F. The red and blue lines are for RCP 8.5; the orange and green lines are for RCP 4.5. The 
purple dot and whisker show the observed mean value and 95% confidence interval from 2000-
2018. These plots clearly indicate the simulated rise in frequency of “hot” hours, the decrease in 
the frequency of “cold” hours, and the marked divergence, in about 2040, of the upward (hot hour) 
trajectory or downward (cold hour) trajectory of the RCP8.5 scenario relative to that of the RCP4.5 
scenario. Overall, the hourly disaggregation technique developed under the EPC-16-063 program 
achieves its goals of generating hourly future projected temperature values that match observations 
over the historical period, correctly replicate the global climate model projected trends, and 
preserve realistic variability on sub-daily time scales. 
 
 

3. Dynamical Reanalysis  
 
3.1  Global and Regional Reanalyses—Drivers of Fine Scale Models 
Historical reanalysis using a dynamical model offers a way to develop a more complete, 
dynamically consistent set of observed records needed to investigate mechanisms controlling 
various forms of variability, including extreme events.  Global and regional reanalyses results, 
which capture the larger scale atmospheric environment, are used as input to finer scale 
(downscaled) dynamical and statistical models. Recent reanalyses (e.g. ERA5 global  (hourly, 
~31km spatial resolution, 1979--present) from the European Center for Medium Range 
Forecasting,  MERRA-2 global  (hourly, 0.5° × 0.625° grid, 1980-present)  from the NASA 
Goddard Space Flight Center) and NARR (Mesinger et al. 2006) regional over CONUS (3-hourly, 
32km, 1979-present) from NOAA NCEP are available over the relatively modern satellite era.  
Although spatial resolution provided by the two global reanalyses has become finer than was 
available just a few years ago, the 30-50km gridding is still too coarse to capture important 
structure over California’s complex coast and interior landscape.  In this research we conducted 
dynamical downscaling experiments to replicate historical climate conditions aimed at simulating 
coastal low cloud (CLC) including marine stratocumulus clouds (MSc), stratus and fog, along and 
over the California coast, along with wind and humidity over the California region.   
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3.2  Dynamical Model Downscaling  
Dynamical downscaling involves running high-resolution climate models on regional domain 
(usually a limited sub-domain).  Regional dynamical models typically employ low-resolution 
climate model output as boundary conditions.  These models use physical principles to reproduce 
local climates, but are computationally intensive.  Often, regional dynamical models are 
customized to better replicate certain physical variables (e.g. coastal stratus clouds) by tailoring 
model structure and physical parameterizations.  Like all methods, dynamical model output 
contains biases, which often are more than minor incremental offsets.  Spatial resolution can be 
refined by nesting successively smaller domains inside larger coarser domain simulations.  
Regional dynamical models are generally more computationally expensive than statistical 
methods, but produce a full set of atmospheric variables that are dynamically consistent and can 
be sampled over high temporal resolution.  Dynamical models generate a high volume dataset, 
they are usually confined to a limited set of climate model scenarios and sometimes a restricted 
period of time. 
 
Regional dynamical downscaling resulting from a “one-size-fits-all” model configuration may 
have limitations. Although the Weather Research and Forecasting (WRF) mesoscale numerical 
weather model (Skamarock et al. 2008) has become a commonly deployed dynamical downscaling 
tool, each WRF application must use a tailored configuration to reproduce target processes with 
the best accuracy possible. There are well-documented WRF configurations for hurricanes, severe 
convection, fire weather, air pollution meteorology, wind resource forecasting, and atmospheric 
rivers. Each application requires trade-offs in model parameters that reduce biases in the targeted 
variables but can increase biases in others. In this case, we conduct dynamical downscaling 
experiments to replicate historical climate conditions using a configuration of WRF that is aimed 
at simulating marine stratocumulus clouds (MSc) along and over the California coast.  We call this 
model “WRF-CA-CLC”, where the acronym CLC stands for “Coastal Low Clouds”.  We 
conducted experiments to test WRF-CA-CLC configurations and their sub-grid physical process 
models, including different boundary layer configurations (mixing/advection, convection, and 
model vertical resolution), and how they affect cloudiness and, secondarily, winds.  These 
experiments and the configuration parameters tested can be found in Table 1.   Key findings that 
emerged are described in Sections 3.2 - 3.4.   
 
 
3.3  Inland Penetration of Marine Stratocumulus in WRF 
MSc cover large areas of the North Pacific Ocean offshore CA during the summer months, but 
the extent of their inland migration is both not-well-characterized and critical for understanding 
energy supply and demand. Figure 2 shows the intra-seasonal extent of albedo by GOES satellite 
observations and WRF-CA-CLC v0 (see Table 1) simulations. Albedo is a measure of the 
reflection of sunlight by the combined effects of the atmosphere and the earth’s surface. For the 
region and season studied here, albedo is driven primarily by the presence of bright MSc over 
dark surfaces. Figure 2 shows the mean coverage of clouds, but also displays the daily variability 
of cloud coverage extent through the coefficient of variability. While WRF-CA-CLC is able to 
simulate inland penetrating clouds, this analysis indicates fine grain improvements to target in 
further model development. Such improvements may be critical for understanding fluctuating 
patterns in energy demand and anticipating solar energy resources on a regional scale (this 
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analysis was performed by Dr. Martin’s undergraduate intern Alexis Harris, who participated in 
the Portland State University (PSU) Center for Climate and Aerosol Research (CCAR) REU 
program during June – Aug, 2019; see http://web.pdx.edu/~anmarti2/Talks.html ). 

Figure 2. Mean daily summer season (May – Sept) albedo (%)  

 

From Left) WRF-CA-MSc v0 and Right) GOES. Black line indicates where coefficient of variability 
(𝝈𝝈/𝝁𝝁) exceeds 1.0.  

 
3.4  Intra-seasonal Variability of Saturation Simulated in the 
Coastal Boundary Layer 
The mechanisms responsible for moistening the subtropical marine boundary layer during 
extensive MSc episodes are well-documented (Wood 2012; Clemesha et al. 2017). Less well-
documented is the vertically resolved intra-seasonal variability in boundary layer, moisture and 
clouds. Figure 3 shows an analysis emerging from the active period created by comparing WRF-
CA-CLC simulations to daily balloon-borne soundings, collected by National Weather Service 
observers and obtained from the University of Wyoming at 
http://weather.uwyo.edu/upperair/sounding.html.  The analysis period was the typical MSc season, 
May – Sept, 2010. Both simulations and sounding observations are valid for cloudy mornings near 
00 UTC and drawn from three CA locations near the coast: Oakland, Miramar, and Vandenburg 
Air Force Base. Three configurations of WRF-CA-CLC from Table 1 are shown, to investigate 
effects of different model boundary layer parameterizations on clouds.  The center panel in Figure 
3 shows that all WRF-CA-CLC versions overestimate the daily variability of saturation in the 
lowest atmospheric layers but underestimate saturation near the surface at pressures below 950 
hPa. Crucially, these model disparities occur near the average top of the cloud layer, meaning all 
configurations regularly produce much too dry boundary layers below the marine stratocumulus 
cloud deck. The far-right panel shows that in these critical layers with pressure greater than 950 
hPa,  The total water mixing ratio is biased low in all versions of the model. In the far-left panel, 
the cloud water mixing ratio variability shows that model configurations with the Total Energy – 
Mass Flux (TEMF)  boundary layer often produce much more cloud in lower atmospheric layers, 
despite the low bias in total water content. 

https://urldefense.com/v3/__http:/web.pdx.edu/*anmarti2/Talks.html__;fg!!Mih3wA!QD0AGrEbNdi8Bkzhs8GAVd4x8IYSWc40AUfZv23KvcMoBtmn6bl7h343BcSdJHc$
http://weather.uwyo.edu/upperair/sounding.html
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Figure 3: Profiles of Observed and WRF-CA-CLC Simulated Cloud Properties 

 

Morning (12 UTC) lower tropospheric profiles during summer 2010 simulations of Left) cloud liquid 
water (g m^-3) from WRF-CA-CLC versions v0, v4, v4L for all coastal national weather service 
sounding sites (NKX, VBG, OAK) where GOES albedo at 15 UTC indicated cloudy conditions. 
Horizontal lines drawn between lower/upper 10% values. Center) As in left panel, except profiles of 
saturation deficit: Qt – Qs (g kg-1). Observed values calculated from NWS sounding temperature 
and dewpoint. Bold black line indicates observational mean profile. Thin black vertical line indicates 
saturation. Where the quantity approaches saturation, there is water available to condense clouds. 
Right) As in center panel, but for total water mixing ratio (Qt - g kg-1). A threshold albedo equal 0.3 
was used to detect cloudy conditions. Approximately 220 observations is maximum number in any 
vertical layer. 

 
3.5  Simulated MSc are Limited by Boundary Layer Turbulent Mass 
Fluxes 
Figure 4 shows the accuracy of MSc presence by two configurations of WRF-CA-CLC by 
comparison to GOES satellite observations of albedo. In the mean, v4, a version of WRF-CA-CLC 
including the TEMF boundary layer model, is far more accurate than v0, the WRF-CA-CLC 
baseline version. This is true for all configurations using the TEMF boundary layer model 
compared to all other versions. The TEMF model allows more vigorous development of turbulent 
mass fluxes, especially near boundary layer top where the other boundary layer models tested do 
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not allow prognostic treatment of turbulent mass fluxes. Combined with the above result, this 
indicates that MSc in WRF-CA-CLC simulations are limited by turbulent mass fluxes in marginal 
saturation environments. This result, along with the intra-seasonal variability result above, are 
being developed for a peer-reviewed manuscript (Martin et al., in-prep.).  

Figure 4: July 2010 mean albedo at 15Z (7 PST) from WRF v0, and WRF v4 vs 
GOES observations. 

  

These different parameterizations had significant influence on marine cloudiness, and ultimately 
the model version (v4 in our tests, Table 1) was selected on the basis of producing greater marine 
cloudiness than the others, which were strongly biased towards unrealistically clear conditions.   

Table 1: WRF-CA-CLC Sensitivity tests.  

   

Columns refer to parameterized processes a,b,c where the prognostic BL Variables turbulent kinetic 
energy (TKE) and total energy and mass flux (TEMF) are used, Mixing and advection (Mix/Advect) 
of cloud hydrometeors in the boundary layer, and shallow convection and turned on or off. Green 
highlighting shows tests that were performed for May – Nov, 2010.  
 
Turning to the characteristics of modeled near-surface winds, the variants of the model produced 
relatively small differences in winds, as compared to those observed from a relatively dense 
network of weather stations deployed over San Diego County by San Diego Gas and Electric 
(examples shown below in Figures 10 and 11).  And, modeled winds can be adjusted via bias 
correction, but how well this performs and the degree to which this can be applied uniformly over 
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a broad region are still open questions, largely owing to temporally-limited, spatially spotty, and 
poor quality wind observations.   
 
Additionally, a crucial factor in the degree of fidelity of the dynamical downscaled historical 
results is the choice of the large scale model that is used as boundary conditions for the fine scale 
WRF simulation.  A comparison between downwelling solar radiation from different atmospheric 
reanalyses (Figure 5) makes this point—the ERA5 reanalysis produces patterns of marine and 
coastal cloud that are far superior to those from the NARR and MERRA-2  Reanalyses, as gaged 
by their comparison to observed cloud albedo from GOES data. 

Figure 5: Daily averaged surface downwelling solar radiation (W/m2) over 
the West coast of the U.S. from (left to right) GOES satellite observations, 

MERRA2 reanalysis, ERA5 reanalysis, and the NARR reanalysis.  

  

Each row shows one day, as per the panel title. Days are selected based upon having a strong 
land/sea contrast in values along the coast of Southern California. So, for instance, blue areas 
indicate heavy marine stratus clouds (low surface solar radiation), red colors indicate clear 
conditions (high surface solar radiation). 
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Daily averaged surface downwelling solar radiation (W/m2) over the West coast of the U.S. from 
(left to right) GOES satellite observations, MERRA2 reanalysis, ERA5 reanalysis, and the NARR 
reanalysis. Each row shows one day, as per the panel title. Days are selected based upon having a 
strong land/sea contrast in values along the coast of Southern California. So, for instance, blue 
areas indicate heavy marine stratus clouds (low surface solar radiation), red colors indicate clear 
conditions (high surface solar radiation). Here we note that ERA5 is a very new (~mid-2019) 
dataset, and dynamical downscaling using ERA5 as WRF boundary conditions is still nascent, 
both to the community and to this project. Future dynamical downscaling of MSc over coastal 
regions of CA may benefit from using ERA5 as boundary conditions, rather than NARR (current). 
Further tests to verify this are proceeding.  
 
 

4. Hybrid Dynamical-Statistical Downscaling 
Hybrid downscaling exploits the ability and output of dynamical downscaling in capturing fine 
scale atmospheric features, combining a dynamical model’s high spatial and temporal resolution 
datasets with the bias correction and computational savings of a statistical model.  This technique 
can be applied to downscaling multiple GCMs and also to ‘backcast” historical climate using a 
global atmospheric model reanalysis.  Importantly, the efficiency of the hybrid technique allows 
us to downscale multiple emission scenarios and multiple time periods.  For example, the ~40-yr, 
3 km spatial resolution vector wind dataset constructed here via hybrid downscaling techniques is 
generated using a 15-yr high resolution WRF model run as training data. Simply extending the 
WRF model run to 40 years rather than using the hybrid approach would have been prohibitively 
expensive. 
 
 
4.1 Application of Hybrid Downscaling to Hourly Wind and 
Humidity 
Following the temperature downscaling described above in section 2.2, the next cut at sub-daily 
resolution downscaling is vector winds and humidity at hourly resolution.  Previously, wind speed, 
but not wind direction was downscaled using the LOCA technique.  Vector wind downscaling 
required an extension of LOCA downscaling to consider vector fields along with an auxiliary 
variable, sea level pressure (SLP), used because of SLP’s key role in representing regional 
circulation patterns and in generating pressure gradients that drive wind.  Specifically, U, V, and 
SLP are jointly downscaled by LOCA, then the wind speed from the downscaled U and V fields 
is computed and biased corrected to the training data’s wind speed field. This approach helps 
preserve the correct relationships between U and V in the downscaled data while still having wind 
speed distributions that agree with the training data. 
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Figure 6: Climatology of annual mean wind speed from several reanalyses 
observational datasets indicates the broad range of magnitudes, somewhat 

disparate spatial patterns exists between different products. 

 

As with the temperature downscaling described above, the LOCA technique is extended to hourly 
time resolution by virtue of the availability of hourly training data from the dynamical model and 
global reanalysis being downscaled.  Surface and near-surface winds are only sparsely measured, 
and those locations where winds are measured usually provide only limited time histories which 
are often contaminated with spurious measurement errors, which reinforces the need for regional 
modeled wind products (Guzman-Morales et al. 2016).  Our understanding of wind structure over 
California and surrounding regions is muddied by lack of quality surface observations, and 
differences that are presented by different model results.  For example, the climatology of annual 
mean wind speed from several reanalyses and observational datasets (Figure 6) indicates the broad 
range of magnitudes and disparate spatial patterns exists between different products. Here, for a 
training dataset for the LOCA statistical downscaling scheme, we employ a regional high spatial 
resolution wind record from a fine scale atmospheric model, making this a hybrid downscaling 
approach.  Here we employ the numerical model wind dataset from a WRF regional atmospheric 
model run by Tim Brown and colleagues at the Desert Research Institute (DRI) which has strong 
correspondence to topographic features (Figure 6, lower rhs) and is being used by the wildfire 
prevention and management community (Brown et. al 2016; Sapsis et al.. 2016).  The DRI-WRF 
product is analyzed onto a 3km spatial grid, and provides hourly temporal resolution. The DRI-
WRF training data was bias corrected by the DRI-WRF providers to available RAWS observations 
by computing errors between the observed and model winds at grid cells that contain RAWS 
stations, then interpolating the errors between station locations using an inverse distance weighting 
approach. Errors are computed separately for each season and hour of day to account for the 
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seasonal and diurnal variability of wind and its possible misrepresentation in the WRF model 
output. 

Figure 7: LOCA downscaled winds and relative humidity for three Santa Ana 
events.  

 

A comparison of winds and relative humidity (RH) in individual strong Santa Ana events in 
10/22/2007, 10/26/2003 and 12/06/2017 at 0Z universal time produced by LOCA downscaled ERA5 
reanalysis with that from DRI-WRF. Downscaled results determined from portions of training 
dataset that do not include these cases.  Colors show RH anomaly (%) from long term average, 
while arrows show the vector wind speed (m/s) and direction. 
 
In downscaling the vector winds with LOCA (Figures 7-9) it was found that a full multivariate 
downscaling process including vector winds, sea level pressure, and relative humidity 
simultaneously in the analog selection process did not represent the relative humidity fields as well 
as when relative humidity was downscaled individually.  Adding more predictor fields to the 
LOCA process makes it progressively harder for closely matching analog days to be found, so 
there is a tradeoff between how many predictor fields are selected and the quality of the final 
downscaled field. We therefore changed the process so that SLP and vector wind are downscaled 
together (SLP being retained because of the important role of pressure gradients in determining 
the wind field), but relative humidity is downscaled separately.  Note that the fields are all still 
connected through the physics of the driving GCM (both MERRA-2 and ERA5 were downscaled 
over their available time period, beginning 1980 and 1979, respectively).  The temporal 
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consistency of different downscaled variables is vital to capturing phenomena that inflict 
compound impacts.   
 
Figure 8: A comparison of seasonal wind speeds in the training data (marked 

observations here) and LOCA downscaled data set.  

  

Top row is winter (Dec-Jan-Feb), lower row is summer (Jun-Jul-Aug). In each row, the left two 
columns show the mean wind speed (m/s), while the right two columns show extreme (99.9th 
percentile) values. All analyzed data is hourly taken at 4 PM local standard time. 

Figure 9: A comparison of an individual strong Delta Breeze event  and 
Sundowner wind, LOCA vs. WRF training data  
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A comparison of an individual strong Delta Breeze event (top row, 2017/06/11 at 1 PM local standard 
time) and Sundowner wind event (bottom row, 2009/04/15 at 9 PM local standard time) in the DRI-
WRF training data (marked Observations here), from the ERA5 reanalysis, and the ERA5 reanalysis 
downscaled with LOCA. Downscaled results determined from portions of training dataset that do 
not include these cases. Colors show wind speed in m/s, while arrows show the vector wind speed 
and direction. 
 
 
 
4.2 Bias Correction 
Even state-of-the-art high resolution simulations, such as the WRF runs that will be completed as 
part of this effort, have significant biases in the simulated output fields. This will be addressed 
using bias correction, which combines information from the WRF simulations with historically 
observed data to reduce the biases in the model output,  resulting in a more realistic final data set.  
 
A necessity in bias correcting winds and other variables is the availability of observational data 
over a time period that has sufficient representation of variability from daily extremes to 
interannual fluctuations.  An observational dataset, becoming increasingly useful, is the weather 
data collected by public utilities; Figures 10 and 11 compare dynamical modeled winds from 
WRF-CA-CLC v4 against observed winds from the San Diego Gas and Electric (SDG&E) weather 
stations in the San Diego County region, illustrating relatively good agreement over a longer period 
and also over a shorter period during a Santa Ana wind event.  Systematic bias in the modeled 
winds appears to exist.  Biases are generally positive (modeled winds exceed observed SDGE 
winds), and these overestimated speeds are largest in desert regions east of the local coastal 
mountains (Laguna Range) and to a lesser extent over the coastal regions.  General agreement by 
month is best over the crest and on the western slopes of the coastal topography (Figure 10).  For 
the Santa Ana wind event considered at a mountain crest location (Julian), the overestimation bias 
is strongest in the early afternoon and evening as well as in the longer temporal persistence of the 
modeled Santa Ana wind event (Figure 11).  This being a short sample, bias assessment and 
correction will need to be carried out over many more events. Results from the short modeling 
experiment carried out here are sufficient to indicate that modeled winds are not exceedingly 
sensitive to the details of the WRF physics package chosen, certainly much less so than is the case 
for coastal stratus clouds. 
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Figure 10: Wind speed mean difference (WRF v4-SDGE obs) for Aug – Nov 
2010. 

 

Wind speed mean difference (WRF-v4-SDGE obs) for Aug – Nov 2010. Differences are shown for the 
complete period (most left column) and for Oct and Nov (subsequent two columns). SDGE 10min-
resolution observations are averaged to 3hrs to match WRF output resolution. 

Figure 11: WRFv4 simulation of Santa Ana wind that occurred on 13 
November 2010. 

 

The 3-hr wind speed from WRFv4 tends to exceed that observed by SDGE weather stations. WRF 
simulated wind directions quite closely reproduce the reversed East-to-Wind that occurs during 
Santa Ana events. 
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In both dynamical and statistical models, the ideal bias correction procedure would jointly adjust 
multiple variables using a full multi-variate approach. E.g. a model may not produce uniform 
biases in T and P in simulating warm and cool precipitation events. The existing LOCA bias 
correction scheme (Pierce et al. 2015) addresses this using conditional bias correction; for 
example, the bias correction of temperature is conditional upon the presence or absence of 
precipitation so that the differing impacts of snow and rain are better captured in the final result.  
Although under the ongoing EPC-16-063 project, a multi-variate bias correction technique has 
been developed, this come at a significant price in much more computational demand, by about a 
factor of 30.  There is no clear path forward in regards to reducing the large time demands of the 
multi-variate bias correction. Since it is an iterative process, we must accept that there may be no 
way around this, and we will have to evaluate whether the 30-fold increase in time needed to do 
this form of multivariate bias correction is worthwhile and acceptable given our need to process 
all of California for multiple models, ensemble members, and scenarios.  This might largely be 
determined by how many models, ensemble members, and emissions scenarios are desired in 
forthcoming CMIP6 downscaling effort. 
 
 

5. State of the Art Hydrologic Modeling Approaches 
Modelers, policymakers, and stakeholders have an ongoing and growing need for high-resolution 
and detailed information about hydrological flows and the temporal-spatial distribution of water 
in a watershed. This need reflects the growing importance of coupling research with detailed long-
term predictions and projections for ecological systems and the environment, agricultural 
development, and food security under future climate change.  Assessments of the effects of climate 
variability and climate change in regions such as California also requires information on soil 
moisture and groundwater fluctuations, which are related to streamflow and reservoir 
management. 
 
5.1  SHUD, the Simulator for Hydrologic Unstructured Domain 
The Simulator for Hydrologic Unstructured Domains (SHUD - pronounced “SHOULD”; 
https://www.geosci-model-dev-discuss.net/gmd-2019-354/) is a multi-process, multi-scale 
integrated hydrologic model using the semi-discrete Finite Volume Method.  The SHUD modeling 
system is useful for rapid, reproducible, and automated hydrologic modeling. As a descendant of 
the Penn State Integrated Hydrologic Model (PIHM), SHUD builds upon over 15 years of past 
hydrologic modeling experience.  SHUD is a robust, integrated modeling system with the potential 
for providing scientists with new insights into surface and groundwater hydrology.  It is expected 
that SHUD will enable a deeper understanding of water in California, particularly through future 
efforts targeting integrating scientific principles with water management infrastructure.   
 
In the present study, SHUD has been configured and employed for modeling of surface and 
groundwater in several domains of various sizes: in the Wagon Creek and the Catchments 
Attributes and Meteorology for Large-sample Studies (CAMELS) watersheds, over the 
Sacramento River watershed from the highlands to the delta, and over the entire state of California.  
With its ability to work across scales, SHUD enables hydrology to be studied in many possible 
contexts, such as the behavior of water in regions of rough topography, in light of water resource 
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and stormwater management, and in conjunction with related fields such as limnology, agriculture, 
geochemistry, geomorphology, water quality, and ecology, climatic and land-use change.  
Whereas many existing hydrologic modeling systems are unable to deal with California’s rough 
topography and significant topographic variation, SHUD has been designed with this relatively 
extreme regime in mind. In general, SHUD is a valuable scientific tool for modeling and 
understanding hydrologic action and response. 

Figure 12: The basic calculation schemes in SHUD model. 

  

 

SHUD integrates overland flow, snow accumulation/melting, evapotranspiration, subsurface and 
groundwater flow, and river routing, while using a robust and realistic strategy for capturing the 
physical processes in a watershed. SHUD incorporates one-dimensional unsaturated flow, two-
dimensional groundwater flow, and river channels connected with hillslopes via overland flow and 
baseflow (Figure 12).  SHUD design is based on a concise representation of hydrodynamics of a 
watershed and river basin, which allows for interactions among major physical processes operating 
simultaneously, but with the flexibility to add or drop constitutive relations between states and 
processes depending on the objectives of the numerical experiment. SHUD is a distributed 
hydrological model in which the domain is discretized using an unstructured triangular irregular 
network (e.g., Delaunay triangles) generated with constraints (geometric and parametric). A local 
prismatic control volume is formed by the vertical projection of the Delaunay triangles forming 
each layer of the model. Given a set of constraints (river network, watershed boundary, elevation, 
and hydraulic properties), an “optimized mesh” is generated. The “optimized mesh” enables 
hydrologic processes on the unstructured mesh to be calculated efficiently, stably and rationally 
(Farthing and Ogden, 2017; Vanderstraeten and Keunings, 1995; Kumar et al., 2009). River 
volume cells are also prismatic, with trapezoidal or rectangular cross-section, and maintain a 
topological relationship with the Delaunay triangles. 
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Figure 13: The hydrograph in Cache Creek (simulation versus observation) in 
the calibration (2001-07-01 to 2003-06-30) and validation periods (2003-07-

01 to 2007-06-30). 

 
 

Figure 14: SHUD Model domain built for Central Valley. The number of cells is 
~12500 and equivalent resolution is about 12 km2 (3.5 * 3.5km). 

  

Performance of SHUD in simulating historical variability in particular sub-basins was good, as 
judged against observed streamflow variations (Figure 13).  SHUD configurations were also 
developed for the Central Valley (Figure 14) and the entire state of California. To realize good 
model performance in a variety of settings, both open and closed boundary conditions were 
implemented (which is needed, for instance, because the state boundary is not a watershed 
boundary).  Calibration on the Sacramento Watershed was slow, partly because computing 
resources were limited.  In addition, due to the large area, the model, particularly groundwater, 
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required a very long spin-up period.  Because of the number of elements and resolution required 
in such a vast region, the model’s current OpenMP parallelization strategy may need to be 
hybridized with MPI.  Nonetheless, a functional configuration of the model was found and is being 
explored to better understand California’s hydrologic system. 
 
 
5.2  Machine Learning Approach to Hydrologic Modeling 
Using a novel data-driven approach, we have demonstrated the utility of temporal convolutional 
neural networks (TCNNs) for streamflow prediction and projection in California. Specifically, this 
machine learning (ML) based approach was used to capture the functional relationship between 
input fields and streamflow using training data derived from CAMELS, which provides daily 
precipitation, temperature, solar radiation and streamflow from 1980 to 2014. This prototype 
system used daily data from the 20 basins in California with consistently high-quality observations 
over the entirety of the study period. The TCNN model was trained separately for each basin with 
a single RTX 2080Ti GPU, requiring around 44 seconds per basin.  The final trained model could 
then ingest a time series of input fields and produce a corresponding streamflow time series in 
seconds. This model was then compared with alternatives using linear regression, ANN, GRU and 
LSTM; an analysis of the resulting historical streamflow time series over a separate testing period 
showed that the TCNN model achieves comparable or superior performance to the GRU and 
LSTM systems, while requiring a shorter training time.   
 
The trained model further showed evidence of capturing relevant physical processes, including 
groundwater and snow dynamics.  It also exhibited stability under climate change, producing 
reasonable results even under extreme forcing. The trained model was then used for producing 
streamflow projections under climate change by taking the LOCA (Localized Constructed 
Analogs) dataset as input.  In particular, precipitation, temperature and solar radiation at daily 
timescales was used from four global climate models (CanESM2, MIROC5, HadGEM2-ES and 
CNRM-CM5) that were selected for use in the Fourth California Climate Change Assessment 
(Pierce et al. 2018). Work is currently underway to compare the quality of these projections against 
analogous results produced using the SHUD model discussed in the previous section.  If 
comparable performance is observed, then the ML approach would provide a rapid statistically-
based method for downscaling meteorological inputs for streamflow prediction and projection. 
  
The TCNN model is relatively general and can be easily applied to any other basin. Since the 
model is trained separately for each basin, a rapid ensemble projection over the entire state would 
also be possible with GPU acceleration. 
 
 
5.3  Integrated Surface Water-Ground Water Modeling 
A version of the ParFlow.CLM model (an integrated groundwater-land surface model (Kollet and 
Maxwell, 2008)) has been configured and validated for the Kaweah River watershed in the 
Southern Sierra Nevada and Central Valley California, covering an area of 12,276 km2 (Figure 
15). ParFlow.CLM simulates variably saturated subsurface flow using the 3D Richards’ equation 
and it is coupled to the Common Land Model (CLM 3.0) to solve water and energy budgets at the 
land surface at an hourly time step. After validating the model against a range of in situ 
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(streamflow) and remotely sensed observations (evapotranspiration and snow water equivalent), 
we assess the impact of uncertainty in model forcing datasets, focusing on the precipitation and air 
temperature uncertainty. Gridded precipitation and air temperature datasets are used as historical 
records for downscaling climate projections, but they suffer from high levels of uncertainty 
themselves. We perform simulations of the Kaweah River watershed using precipitation and air 
temperature from four common gridded products, NLDAS-2, PRISM, Daymet, and Gridmet.  

Figure 15: (a) Location of the study domain within the state of California. (b) 
Digital elevation model used to generate slope parameters for the 

ParFlow.CLM model. 

 
The watershed boundary and stream network derived from the 4-directional routing scheme used 
within ParFlow.CLM are shown as well as locations of urban development. 
 
To quantify the impact of uncertainty in meteorological forcings on the simulated water budget, 
we calculate the relative uncertainty of model forcing data and simulated hydrologic fluxes using 
the three-cornered hat (3CH) method (Premoli & Tavella, 1993).  
We recognize that this is not a total measure of uncertainty because it does not account for the 
uncertainty created by the model structure and parameters. However, this is a measure of model 
output uncertainty caused specifically by the uncertainty in precipitation inputs. We first calculate 
the uncertainty (Figure 16) in basin averaged time series of precipitation (P), streamflow (Q), ET, 
SWE, soil moisture (ϴ), and potential groundwater recharge (R). We find that the datasets with the 
highest uncertainty in P do not result in the highest uncertainty for all output variables. It is 
particularly interesting to note that although the Gridmet forcing has the highest uncertainty in P, 
it has the lowest uncertainty in Q. Hydrologic models are typically calibrated and validated using 
only streamflow estimates. Our results suggest that this may not be an adequate approach if 
scientists are interested in the rest of the water budget where the Gridmet dataset has higher 
uncertainty (ET, ϴ, or R). We also calculate the spatially distributed uncertainty in each of the 
simulated water balance components. We demonstrate that although the highest uncertainty in 
precipitation inputs is at the highest elevations of the Sierra Nevada, the highest uncertainty in 
simulated fluxes is found in the mid elevation regions along the transition zone between the Sierra 
Nevada range and the Central Valley. We attribute this transformation of uncertainty to the impact 
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of topography (Schreiner-McGraw and Ajami, in review). Quantifying uncertainty of simulated 
hydrologic fluxes caused by climate forcing is important as these gridded climate products are 
used to train or validate downscaled climate projections for climate change impact studies.  
 
Figure 16: Uncertainty in domain average time series of multiple hydrologic 

variables.  
 

 
For each variable the uncertainty has been normalized by the dataset with the largest uncertainty 
to allow different variables to be displayed on the same chart. 
 
Quantifying groundwater response time and recovery to climate change and droughts is one of the 
main objectives of this CEC project, and has important implications for groundwater management 
under sustainable groundwater management act (SGMA) in California and energy use for 
groundwater pumping. Our focus is on utilizing groundwater observations as well as idealized 
simulation domains to quantify these impacts while developing new metrics to quantify 
groundwater response time to droughts. To explore the groundwater response time to climate 
change, we utilize droughts as examples of meteorological changes imposed on the hydrologic 
system.  A key challenge is associating observed changes in groundwater levels with 
corresponding observed changes in precipitation that caused the groundwater drought. Through 
this project we utilize precipitation observations from the PRISM dataset and groundwater level 
data from the Climate Response Network to test the efficacy of different drought classification 
methods on quantifying the groundwater response time to droughts. We find that previously used 
lagged-correlation between the standardized precipitation index (SPI) and the standardized 
groundwater index (SGI) is a reliable method (Bloomfield and Marchant, 2013) to quantify the 
impacts of aquifer properties on the response time, while other metrics are required to understand 
the impact of precipitation properties on groundwater drought (Schreiner-McGraw and Ajami, In 
prep.). In addition to the observational experiment, we develop synthetic numerical experiments 
using an integrated groundwater-land surface model, ParFlow.CLM, forced by synthetic climate 
realizations, to test drought classification metrics for groundwater. The model allows us to 
precisely quantify changes in groundwater storage to ensure that drought classification metrics are 
reliable (Schreiner-McGraw et al., in prep.).  
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So far in this project we have evaluated how uncertainty in the precipitation datasets propagates 
through a process-based hydrologic model resulting in uncertainty in the simulated hydrologic 
outputs. Next, we are investigating how combined uncertainty in precipitation and air temperature 
forcings impact simulated hydrologic fluxes in the Kaweah River watershed. Additionally, we plan 
to test the model for the larger Tulare Basin watershed. We focused on the Kaweah watershed 
(Figure 15) while learning how to implement this modeling approach and developing an approach 
with reasonable simulation times. We have determined the correct parameter sets that facilitate the 
rapid simulation of Kaweah watershed and we will expand this to the larger Tulare Basin region 
to test the feasibility of running a larger area using our limited high performance computational 
resources. Now that we have been able to improve our run-time limitations for the Kaweah River 
study basin using ParFlow,CLM, we will complete our simulations before the end of this CEC 
project. The model has a horizontal resolution of 1 km with the subsurface thickness of 622 m. 
This means that the model has the potential to simulate the impacts of groundwater pumping and 
irrigation on surface water-groundwater exchange.  

After validating the model, we calculate the uncertainty of model outputs using the 3CH method. 
We recognize that this is not a total measure of uncertainty because it does not account for the 
uncertainty created by the model structure and parameters. However, this is a measure of model 
outputs uncertainty caused specifically by the uncertainty in precipitation inputs. We first calculate 
the uncertainty in basin averaged time series of precipitation (P), streamflow (Q), ET, SWE, soil 
moisture (ϴ), and potential groundwater recharge (R), shown in Figure 16.  We find that the 
datasets with the highest uncertainty in P do not result in the highest uncertainty for all output 
variables. It is particularly interesting to note that although the Gridmet forcing has the highest 
uncertainty in P, it has the lowest uncertainty in Q. Hydrologic models are typically calibrated and 
validated using only streamflow estimates. Our results suggest that this may not be an adequate 
approach if scientists are interested in the rest of the water budget where the Gridmet dataset has 
higher uncertainty (ET, ϴ, or R). 
 
Although the ParFlow.CLM modeling approach is computationally expensive relative to simpler 
hydrologic models commonly applied for climate change impact assessment, there are important 
advantages. Utilizing a process-based integrated modeling approach to simulate the climate change 
impacts on water resources has the advantage that the model performance is not tied to historical 
conditions. By representing the processes via which water moves through a landscape, changes in 
the meteorological conditions will be propagated through the system via physically-based 
equations describing shallow surface water and subsurface flow, rather than empirical methods 
derived from the statistical analysis of historic data. The second advantage of our approach is that 
we use a 3D representation of groundwater coupled with a land surface model. This allows us to 
study the impacts of hydrologic connectivity between the Sierra Nevada mountains, where most 
of the precipitation falls, and the Central Valley aquifer, where most of the water is used. 
Furthermore, it is possible to assess the impacts of pumping, irrigation and snowmelt processes in 
a fully integrated manner.   
 
For the Kaweah River watershed, we use a domain that is 99x124x15 pixels and simulate this with 
35 computational nodes. The slowest simulations take 12 hours of simulation time (~420 CPU 
hours) per year of simulation. Assuming that climate projections require 2,500 years of simulation 
time (25 GCMs with 100 years of data), this would require ~1 million CPU hours. This equates to 
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about 1 month of run time on 1,500 computational nodes. Therefore, this approach is feasible for 
the entirety of California if we have sufficient computational resources. A tradeoff could be 
achieved by using less than 25 scenarios of 100-year duration. If we ran 100 years of simulation 
for a historical period and 3 projected climates (representing low, median and high) precipitation 
projections, we would need less computational resources.  
 
The ParFlow.CLM modeling approach provides multiple benefits. The ParFlow,CLM model 
simulates the entire terrestrial hydrologic cycle from the top of the mountains to the deepest part 
of the aquifer system using a 3D discretization. Furthermore, the ParFlow.CLM is coupled to the 
WRF model. Such an integrated atmospheric-hydrologic modeling system (ParFlow.WRF) can 
provide an ideal platform for regional climate downscaling while embedding detailed hydrological 
processes in the modeling framework. However, a fully integrated climate-groundwater 
framework is computationally expensive at this moment.   
 
 

6. Observational Datasets 
Weather, climate and hydrologic observational datasets have been employed in this project to 
model and investigate historical fluctuations and extreme events.  The modeling and analysis in 
this project have used these data both as training and validation.  Several of these dataset contain 
a small number of variables, e.g. Livneh or PRISM precipitation and maximum and minimum 
temperature, which may be commonly observed over much of California.  However, as needs for 
downscaled data grow, datasets are required that include several climate variables, e.g. 
temperature, precipitation, winds, humidity, clouds or solar radiation.  Because climate varies over 
a range of time and spatial scales, these datasets should ideally include many samples over a 
sufficient time span to represent climate variability, including short period extremes and long 
period fluctuations. The following Tables identify and comment on several of the datasets that 
were used in EPC-16-063 or in previous related studies. 

Table 2: In situ observational datasets employed in EPC-16-063 or commonly 
employed in climate studies. (commonly used, for example, not comprehensive) 

Data Set Sampling Duration Coverage Quality 
COOP observer 
Temperature and 
Precipitation      

Daily Several decades Statewide, but 
irregular 

Uneven quality, 
use w/ care 

First order (Airport) 
meteorological 
observations 

Hourly Several decades Statewide, sparse, 
mostly airports 

Generally good, 
but some are 
contaminated by 
station or 
instrument 
relocation and 
instrumental 
changes 
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RAWS wind, 
humidity, other 
variables 

Hourly Few-decades Statewide in fire 
prone areas 

Uneven quality, 
Use with care 
 

SDGE and 
California other 
Utility station wind, 
humidity, 
barometric pressure 

 
 
Hourly 

 
 
Few to 10 years 

 
 
Regional 

 
 
Mostly good 

Ocean weather 
buoy meteorology 
and upper ocean  

Hourly 
 

Few decades Sparse locations 
near coast and 
offshore 

Mostly good 

Balloon-borne 
upper air 
observations 

Twice-
daily 

Several decades Few locations in CA Good, but time 
of observation 
has changed  

Snow course 
observations    

Monthly  Several decades Mountain locations 
that have seasonal 
snowpack 

Good 

Snow Sensor 
(California DWR) 
SNOTEL (Federal 
NRCS) and 
associated met 
observations 

Hourly Few decades Mountain locations 
that have seasonal 
snowpack 

Good  
but availability 
and quality 
varies 
depending time 
period and  
variable 

Stream gage 
observations     

Hourly-
daily 

Several decades Statewide Good 

GOES (remote 
sensed) cloud and 
irradiance imagery    

Half-
hourly 

Few decades West-wide Good 

 
 
6.1 Gridded Datasets and Reanalysis  
Most observed measures are not uniformly observed.  Historical records are spatially patchy, 
temporally limited, and often contain errors.  Thus, historical reanalyses are employed, using a 
dynamical model to develop a more complete, dynamically consistent set of observational records 
needed to investigate mechanisms controlling various forms of variability, including extreme 
events. 

Table 3:  Gridded Datasets employed in EPC-16-063 or commonly employed 
in climate studies 

Data Set Sampling Duration Coverage Quality 
Livneh Tmax, Tmin,  
Precipitation  

Daily Several decades CONUS Good 
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NLDAS-2 
meteorology, fluxes 

Daily and 
monthly 

Several decades CONUS Good 

PRISM   Precipitation 
temperature, dew point 
temperature 

Daily and 
monthly 

Several decades CONUS Good but PRISM 
cautions not to rely on 
trends 

Gridmet 
Precipitation, Tmax, 
Tmin, downward 
shortwave radiation, 
vapor pressure 

Daily  Several Decades CONUS Mixed.   Some 
variables are only 
sparsely measured and 
hence derived from 
regional model 
results. 

Daymet  
Precipitation, Tmax, 
Tmin,  
downward surface 
shortwave radiation, 

Daily Several Decades CONUS Mixed.   Some 
variables are only 
sparsely measured and 
hence derived from 
regional model 
results. 

ERA5 Reanalysis Hourly 1979-current 
   to be extended to  
   1950-near current  

Global Good 

NARR Reanalysis 3-hourly 1979-near 
present 

North 
America 
and 
adjacent 
oceans 

Good 

NCEP Reanalysis 6 hourly 1948-present 
(NCEP R2, and 
improved 
version, is 
1979-present) 

Global Ok 

MERRA-2 Reanalysis Hourly 1980-near 
present 

Global Good 

Margulis Snow 
Reanalysis 
daily snow water 
equivalent, snow 
covered area  

Daily 1985-2016 Sierra 
Nevada 

Good 

 
 
6.2 Climate and Hydrologic Variables Feasible to Downscale 
Using Dynamical, Statistical of Hydrologic Models  
How feasible it is to downscale a climate variable depends on a number of factors. At one extreme, 
a variable that is well observed, spatially coherent, has a predictable or systematic diurnal 
variation, and is realistically simulated by both GCMs and WRF is easily downscaled. 
Temperature is the obvious variable satisfying nearly all these criteria. At the other end are 
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variables that are poorly observed, have strong spatial and temporal variability, and are poorly 
simulated by both GCMs and WRF. Vector wind is an example of a problematic variable. Such 
variables can be downscaled by the statistical, dynamical, and hybrid approaches described herein, 
but with poor observations and questionable model simulations the correspondence of the 
downscaled fields to what actually happens on the ground cannot be very well known. The 
following table parses out the research team’s opinions, generated from this project as well as from 
prior experience, relating to the quality and feasibility for different variables.  

Table 4: Variables of Interest for Downscaling  

Variable Quality and Feasibility Remarks 
Temperature Good.  Observations are plentiful (although better for daily than 

hourly), spatial scales of temperature anomalies are large, the 
elevation dependence of temperature is strongly constrained, and 
GCMs agree in predicting a future warming trend.  However, 
traditional statistical downscaling miss feedbacks in some areas, 
such as high-elevation regions that lose year-round snow cover as 
temperatures warm. 

Precipitation  Ok.  Observations are plentiful but mostly daily (not hourly) and not 
uniformly distributed across the landscape, and, precipitation has 
high space-time variability that may not be inadequately captured by 
statistical or dynamical models.  Precipitation change in GCMs 
varies widely across GCMs and across ensemble members of same 
GCM, indicating that chaotic and unpredictable weather/climate 
fluctuations will play an important role in determining what actually 
happens in the state in the future 

Wind Problematic.  Observations are sparse and quality is problematic 
because of changes in site surroundings, location, and 
instrumentation.  Dynamical modeled winds may have closer 
agreement with observed wind gusts than with time averaged winds.  
Both global and regional dynamically modeled winds vary 
considerably from each other and from the available observations, 
suggesting that models generally simulate wind poorly and we have 
little basis for identifying good models.  

Humidity Ok.  Near surface atmospheric humidity is only sparsely observed, 
but has broad spatial scale (like temperature).  Dynamical model 
humidity appears to be ok in replicating sparse observations.   
Statistical downscaling performs reasonably well in replicating 
regional dynamical model structure, although there may be smaller 
scale features that statistical techniques miss.   

Solar Radiation Ok.  Satellite observations are available over the region, although 
for a more limited period than temperature and precipitation 
observations. Cross validation studies show that statistical 
downscaling performs well for this field, but model-observation 
comparisons show that GCMs and WRF have significant problems 
simulating cloudiness, especially marine and coastal stratus layers.  
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The quality of future downscaled projections will be hindered by 
GCM foibles in future projections of cloudiness, and dynamical (and 
therefore hybrid) downscaling approaches do not appear to alleviate 
this problem.  

ET Problematic. ET is rarely measured, especially over extensive 
periods of time. ET can be calculated but depends upon multiple 
variables, some of which are not themselves commonly observed or 
easily modeled. Furthermore, depends upon land surface cover.     

Streamflow Ok. Runoff is ok, but must be routed through stream channel 
network, which is not routinely provided by macroscale 
hydrological models.  Additionally, these models don’t routinely 
represent human manipulations—many (most) streams are affected 
by dams and diversions. 

Snow water equivalent  Ok. Models such as ParFlow.CLM can provide good estimates using 
the energy balance approach. However, observations for validation 
is limited. Recent SWE and SCA products from Margulis across 
Sierra Nevada are used for validation.  

Groundwater level 
elevation 

Problematic. High resolution groundwater level observations across 
CA particularly in the mountain regions are not available. Models 
like ParFlow.CLM can estimate this information and incorporate the 
impact of pumping. Accurate estimates of groundwater levels are 
impacted by the lack of detailed subsurface characterization.  

Soil moisture Problematic. Soil Moisture is extremely heterogeneous and hard to 
measure and model.  Hydrologic models can estimate soil moisture 
using physically based approaches. However, model validation is 
limited given the limited availability of in situ observations and 
coarse resolution of remotely sensed products for catchment scale 
evaluations.  
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7. Lessons Learned (from EPC-16-063 and Related 
Studies) 
Increasingly, California’s utilities and other decision makers are finding needs for greater 
specificity in the climate and weather events that drive extreme impacts as well as deliver water 
and other vital resources to the State.  Here, we summarize some key findings that relate to 
effective climate model downscaling and hydrological modeling that have come into focus in our 
ongoing EPC-16-063 research, and also informed from prior studies such as Pierce, et al. 2018, 
which underpinned California’s Fourth Climate Change Assessment.  Realistic atmospheric 
downscaling and hydrological modeling is highly dependent upon data used to drive the models 
as well as the constructs of the models themselves.  Input data may be sets of direct observations, 
analyzed observations, and model generated data such as global and regional reanalyses.  
Atmospheric downscaling models may be either dynamical or statistical (or combinations thereof), 
and therefore carry different sorts of advantages and limitations.  Hydrologic models contain 
another set of techniques, advantages and drawbacks. Tradeoffs between model sophistication and 
model simplicity and efficiency arise because of limitations in computational resources.   Without 
going into great depth, these are some of the issues that are discussed below.  
 
 

• The quality of dynamical and statistical downscaling is dependent upon the availability of 
global or regional modeling output to provide large scale guidance on projected or 
historical patterns. and high resolution historical data for validation or for training 
statistical models, 

 
• Downscaling different variables may call into play different fine scale observation or 

regional dynamical model training datasets.  Observed training or validation data is 
represented with varying quality and uneven spatial and temporal coverage for different 
variables.  Observational datasets invariably contain some degree of sampling and 
instrumental errors. 

 
• Biases in statistical or dynamical model output occurs in all variables, but is usually 

addressed by bias correcting individual variables without consideration of other variables 
and their biases.  Full multi-variate bias correction schemes may provide a more consistent, 
more accurate representation of regional climate but are more than an order of magnitude 
more computationally expensive than the existing conditional bias correction methods and 
may not be affordable if large numbers of models, ensemble members, and emissions 
scenarios are desired. 

 
• Dynamical modeling of some phenomena (e.g. marine boundary layers and coastal clouds) 

is problematic with standard regional model codes. Further, the effects of influences such 
as aerosols on California’s coastal marine clouds is not well understood and new modeling 
and diagnostics study is required. 

 
• In conducting statistical downscaling, consideration of multiple variables may be useful in 

identifying the patterns employed in statistically downscaling individual variables. For 



   
 

31 
 

example, it was found that the addition of sea level pressure to regional wind patterns added 
skill when LOCA downscaling wind over the California region.  This underscores the value 
of the full suite of dynamically consistent atmospheric variables provided by atmospheric 
reanalyses or climate GCMs as parts of the statistical downscaling toolkit. 

 
• There are a number of less well used and well measured variables for which statistical 

downscaling procedures have not been developed.  A noteworthy example is a set of 
variables of interest to the wildfire prevention and management community that may be 
available from regional dynamical models but not from statistical downscaling techniques. 

 
• Regional dynamical model downscaling of high volumes of GCM simulations is not 

practical because of computational resource limitations.  Even statistical downscaling of 
the broad suite of CMIP6 simulations that is emerging will require substantial computer 
resources and data storage.  Procuring necessary computer resources for comprehensive 
hybrid dynamical/statistical downscaling is a critical requirement for such an effort.   

 
• Statistical downscaling schemes are most commonly run using historical training and 

historical analog datasets.  However, “stationarity”, wherein it is assumed that historical 
statistics will still apply to future periods which have undergone significant global climate 
changes, may not always hold up. Therefore it is worth considering a development under 
which regional dynamical downscaling is conducted on mid- and end-21st Century GCM 
output in order to produce alternative training data for statistical model downscaling within 
these future periods.    

 
• Global and regional reanalyses differ in their scale and quality of historical patterns, 

evolution.  Limited evidence suggests that finer scale global reanalyses, and those which 
more effectively assimilate remote sensed observations, may provide better large scale 
guidance in finer scale dynamical or statistical downscaling of historical patterns. 

 
• Even though the global atmospheric reanalysis variables may have amplitudes that are 

diluted in comparison to high resolution dynamical results, they may nonetheless provide 
patterns that are sufficient to produce quite accurate downscaled results. Downscaling wind 
over California using the ERA5 reanalysis is a noteworthy example. 

 
• Some observational datasets are relatively short or confined to a limited domain (e.g. 

SDGE winds and humidity), and thus may be inadequate for regionwide statistical 
downscaling training datasets. Nonetheless, such data may provide extremely valuable 
evaluation or calibration of downscaled methods and results. 

 
• Surface water and groundwater resources, which are often treated as separate systems in 

climate impact assessments, ideally should be treated as linked components of the same 
hydrologic system. 

 
• Like atmospheric models, different hydrologic models contain different kinds of physical 

representations and consequently different sets of uncertainties and errors.  Consequently, 
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it is desirable to include multiple hydrologic models as part of regional climate change 
projections to provide better understanding of projection uncertainties. 

 
• Landcover and irrigation practices are not commonly represented in most (any?) 

hydrologic models suited for climate assessment and will require further development. 
ParFlow.CLM has the irrigation scheme of CLM but further refinements are needed to 
represent irrigation types and scheduling relevant to California agriculture.  Further, 
hydrologic models that represent other human manipulations such as dams, diversions and 
managed flows affect the hydrology of many catchments in California but are not 
represented broadly across the California Landscape. 

 
• Routed runoff to drainage channels (to produce streamflow) is sought after from hydrologic 

model assessments.  However, stream channel flow and routing is not included in some 
hydrologic models. 

 
• Modeling groundwater, aquifer recharge and withdrawal is hampered by having to include 

important physical processes that operate on a very broad range of short to long timescales, 
necessitating large amounts of computational power.  Modeling groundwater variation and 
change statewide using integrated groundwater-land surface models is possible but require 
investments in computational resources  to include in the upcoming California Climate 
Change Assessment.  The benefits of such an approach is in capturing hydrologic processes 
from the atmosphere to the bottom of the aquifer, removing the need for implementing 
multiple hydrologic models to capture different aspects of the system.  
 

• Different global climate model simulations provided to the CMIP6 GCM archive have 
differing degrees of completeness in providing different future projected socioeconomic 
global changes (SSPs), numbers of ensemble members, spatial resolution and temporal 
sampling, and variables that are saved (Table 5).  Currently there are only about a dozen 
GCMs that offer a full suite of SSPs and variables that cover the historical past and the 21st 
Century, although additional model output is still being contributed. 
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Table 5: Current CMIP6 Data Status (data downloaded by David Pierce at 
SIO) 

 
 
The variables are across the top: 

o hurs = daily average surface relative humidity 
o hursmax, hursmin: daily min/max surface relative humidity 
o huss = surface specific humidity 
o pr = precipitation 
o ps = surface pressure 
o psl = sea level pressure 
o rlds = downward surface longwave radiation 
o rsds = downward surface shortwave radiation 
o tasmax, tasmin = daily min, max temp 
o uas, vas = surface (10 m) U, V 

For each set of 4 digits, for example "...." or "1111" or "22X4", the digits from left to right are 
for the historical, ssp245, ssp370, and ssp585 runs.  If there is a digit, it is the number of 
complete ensemble members I have downloaded. A period "." means there is no data 
downloaded. A lower case "x" means a single, incomplete ensemble member. An upper case 
"X" means multiple ensemble members, at leastone of which is incomplete. 
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