DOCKETED	
Docket Number:	07-AFC-09C
Project Title:	Canyon Power Plant - Compliance
TN #:	231810
Document Title:	Canyon Power Plant Annual Compliance Report 2019
Description:	Annual Compliance Report
Filer:	Bertha A Hernandez
Organization:	City of Anaheim
Submitter Role:	Public Agency
Submission Date:	1/30/2020 4:23:26 PM
Docketed Date:	1/30/2020

Annual Compliance Report

City of Anaheim Canyon Power Plant

Anaheim, California

SCAQMD Facility ID: 153992

CEC Permit Number: 800-2010-001-CMF

Docket Number: 07-AFC-9C

2019

Period Range January 1, 2019 through December 31, 2019

Review and Certification

I have reviewed both technically and editorially all details, calculations, results conclusions and other appropriate written material contained herein and hereby certify that to the best of my knowledge the material presented is true, accurate and complete.

I certify that the information contained in this report is true, accurate, and complete.

Ronald Hoffard	Generation Plant Manager
Name	Title
RHIL	1/30/2020
Signature	Date

Canyon Power Plant

Annual Compliance Report

Table of Contents

Acronyms and Abbreviations

Facility Description

List of Attachments

Compliance Matrix	Attachment	1
Facility Operational Status	. Attachment	2
CEC Approved Post Certification Changes	. Attachment	3
Missed Submittal Deadlines	. Attachment	4
Permit Filings and Permits Issued 2016 Year	. Attachment	5
Projected Compliance Testing in 2017 Year	. Attachment	6
Additions to On-Site Compliance File	Attachment	7
Evaluation of the "Un-Planned" Facility Closure Plan	. Attachment	8
NOV's Issued 2016 Year	. Attachment	9
Condition HAZ-1	. Attachment	10
Condition HAZ-8	Attachment	11
Soil & Water Use Report-7	Attachment	12
Soil & Water Use Report-8	Attachment	13
Surface Treatment of Project Structures & Buildings (VIS-4)	Attachment	14
Landscape Screening (VIS-5)	Attachment	15
AQ-9 NH3 Slip Testing AQ-9	Attachment	16
AQ-14 & AQ-24 RTC Inventory	Attachment	17
AQ-17 NH3 Flow Meter Accuracy Reports	Attachment	18
AQ-18 SCR Inlet Temperature Sensor Calibration Reports	Attachment	19

AQ-19 SCR Differential Pressure Sensor Calibration Report	Attachment	20
WASTE-10 Cooling Tower Sludge Testing	Attachment	21

Acronyms and Abbreviations

BHP Break horse power
Btu British thermal unit

BACT Best available control technology
CARB California Air Resources Board
CFR Code of Federal Regulations

CO Carbon Monoxide CO₂ Carbon Dioxide COA City of Anaheim

CFR Code of Federal Regulations

CPP Canyon Power Plant CT Combustion turbine

DAHS Data acquisition and handling

TDS Total dissolved solids
DPF Diesel particulate filter

EPA Environmental Protection Agency

F. Fahrenheit

ICE Internal combustion engine

lbs/hr pounds per hour lb/lb-mol pound per pound mol

MW mega watts

MMBtu million British thermal units

mmcf million cubic feet

NH₃ ammonia

NO Nitrogen OxideNO_x Oxides of NitrogenNO₂ Nitrogen Dioxide

O₂ Oxygen

ppm parts per million

ppmc parts per million corrected to 15% O₂

RATA relative accuracy test audit ROG Reactive Organic Compounds

RTU remote terminal unit

scf standard cubic feet (standard temperature = 68 degrees F)

SCR selective catalytic reactor

SCAQMD South Coast Air Quality Management District unit The term unit refers to the boiler/steam turbine

VOC Volatile Organic Compounds

1.0 Facility Description:

The City of Anaheim's (COA) Canyon Power Plant (CPP) facility is located at 3071 Miraloma Avenue in Anaheim California.

The facility consists of four natural gas fired General Electric, Model LM6000PC Sprint, simple cycle combustion turbine with water injection. The gas turbine was designed with a maximum heat input of 479 MMBtu per hour with a 46 degree Fahrenheit (F.) inlet air temperature. The units are equipped with an inlet air chiller designed to maintain the gas turbine inlet temperature at 46 degrees F. at full load.

Each unit is capable of generating 50.95 megawatts.

Carbon Monoxide (CO) emission from the gas turbine are controlled by utilizing a CO oxidation catalyst located between the gas turbine and the selective catalytic reactor (SCR). The CO oxidation catalyst controls the unit's CO and volatile organic compounds (VOC) emissions. The catalyst is guaranteed to reduce the unit's CO emission rate to a maximum of 4 ppm corrected to 15% O₂ (ppmc) and the VOC to 2 ppmc, both emission rates are based on a one (1) hour averages, dry basis at 15% O₂. The CO catalyst system was designed and supplied by Englehard/BASF.

The NO_x emissions from the gas turbine are controlled by the utilizing two (2) independent systems or techniques in series. The first system utilized on this unit is the water injection system.

Water is injected into the combustor suppressing the flame temperature and reducing the 1-hour average NO_x concentration to approximately 25 ppmc at 15% oxygen prior to entry into the SCR.

The second NO_x control system utilized by the unit is the NH₃/SCR system. After passing through the CO catalyst, the exhaust gases pass through an ammonia injection grid on its way to the SCR. The ammonia (NH₃) used at this facility is in the form a 19% by weight solution of ammonium hydroxide.

The SCR catalyst utilized by the unit for NO_x control was provided by Cormetech. The reaction between the NH_3 and the SCR catalyst reduces the existing NO_x to elemental nitrogen and water, resulting in NO_x concentrations in the exhaust gas at no greater than 2.5 ppmv at 15% O2 on a 1-hour average. The ammonia slip must be maintained below 5 ppm at 15% O2. Each SCR is vented through a dedicated stack, which is 11.8 ft diameter and 86 ft high.

The facility is also equipped with an 1141 BHP diesel emergency internal combustion engine (ICE) (black start engine) will be used to start up the plant in the event of a loss of grid power.

The ICE, is a Caterpillar, Model C-27, rated at 1141 BHP and fired on ultra low sulfur diesel fuel. The ICE, will serve to provide power to the plant during blackout conditions. The engine is certified by the SCAQMD as an EPA Tier 2 engine on 12/31/2010. The engine is required to be permitted, rather than registered, because CPP is a RECLAIM/Title V facility.

The black start engine will be used only in emergency situations where grid power from the COA's 69 kV system is unavailable to start the CTs. The black start engine will provide power to the turbine starter motors and various other necessary pieces of support equipment to get one of the gas turbines started. Once one of the turbines has been started and providing power to the

grid, the black start engine will be shut down.

The SCAQMD's rules limit operation of an emergency ICE to 50 hours per year.

The black start engine incorporates a diesel particulate filter (DPF), which is required by LAER. The Caterpillar DPF is designed to control the particulate emissions from diesel engines. The DPF consists of 2 filters, each 15-inches diameter by 15-inches long. The DPF system has been verified by CARB under Executive Order DE-14-006-01 to reduce emissions of diesel particulate matter consistent with a Level 3 device (greater than or equal to 85 percent reduction), when used with ultra low sulfur diesel with 15 ppm or lower sulfur content. As the DPF is CARB verified, a source test is not required. With the DPF, the particulate matter emissions from the engine is reduced from 0.15 g/bhp-hr to 0.0225 g/bhp-hr.

The DPF consists of a catalyzed cordierite ceramic honeycomb with hundreds of parallel channels, is designed to reduce emissions of particulate, carbon monoxide and hydrocarbons. The catalyst on the ceramic walls oxidizes carbon monoxide into carbon dioxide, and hydrocarbons into water and carbon dioxide. The arrangement of the channels is such that the exhaust gases carrying the carbon particles are forced through the fine pores of the walls, which filter out the particles. As the carbon particles are collected on the ceramic walls, the backpressure on the engine will increase. When the temperature of the exhaust is equal to or greater than 300 °C (572 °F) for at least 30% of the duty cycle, the catalyst interacts with the collected particulates to burn the particulates into carbon dioxide and water vapor, which will pass through the DPF.

ATTACHMENT 1 COMPLIANCE MATRIX

ATTACHMENT 2 FACILITY OPERATIONAL STATUS REPORT

Overall Project Status

Canyon Power Plant construction was completed in August 2011. Units 3 and 4 were ready for commercial operation on July 27, 2011. Units 1 and 2 were ready for commercial operation on September 15, 2011. All four gas turbines completed commissioning and were in commercial operation for the entire compliance year 2018.

No changes to the operational status of the facility implemented or planned in 2019 year.

ATTACHMENT 3 CEC APPROVED POST CERTIFICATION CHANGES

No California Energy Commission (CEC) approved post certification changes and no Title V revisions to report for CY 2019

ATTACHMENT 4 MISSED SUBMITTAL DEADLINES

Canyon Power Plant submitted all required compliance reports on the due dates and no missed submittal deadlines for CY 2019

ATTACHMENT 5 PERMIT FILINGS AND PERMITS ISSUED DURING THE PERIOD

Canyon Power Plant had no permit filings and no permits issued for CY 2019

ATTACHMENT 6 PROJECTED COMPLIANCE TESTING FOR THE NEXT YEAR

Projected Environmental Compliance Testing schedule in CY 2020:

Compliance Test	Frequency	Scheduled Quarter
NH3 Slip Test	Annual	3Q; 4Q
RATA Test	Annual or Semi-Annual	3Q; 4Q
Cooling Tower TDS/PM10	Quarterly	All four Quarters
Cooling Tower Legionella	Quarterly	All four Quarters
Fuel H2S Test	Monthly	January through December
Fuel Flow Accuracy	Annual	2Q
SCR Differential Pressure	Annual	2Q
SCR Inlet Temperature	Annual	2Q
NH3 Flow Meter Calibration	Annual	2Q
Linearity/CGA Test	Quarterly	All four Quarters
Particulate Matter Source Test	Tri-ennual	3Q; 4Q

ATTACHMENT 7 ADDITIONS TO ON-SITE COMPLIANCE FILE

GENERAL PLANT

Cooling Tower Legionella test report Cooling Tower PM10 test reports Monthly Waste Water reports Monthly Potable water use reports Monthly Reclaim water use reports Monthly natural gas burn records Monthly natural H₂S gas test reports Refrigerant monitor calibration report RECLAIM RTC holdings records

CEC

Quarterly reports
Quarterly 1304 Report
Annual report
Potable water use records

CAISO

Certificate of Compliance

CARB

Greenhouse gas records Annual refrigerant report Annual SF6 use report

DIESEL ENGINE

Maintenance Reports
Fuel purchase records
Engine run-time records
HiBack calibration report
Engine tune up report

EIA

Annual/Monthly EIA 923 report Annual EIA 860 report

EPA

Part 98 Greenhouse Gas reports Certificate of Representation forms

RECLAIM

Daily submittals Monthly submittals Quarterly submittals SCAQMD QCER Forms SCAQMD 500-N Forms SCAQMD 500-SAM Forms
SCAQMD 500-ACC Form
SCAQMD APEP Form
SCAQMD AER Report
SCAQMD Rule 218 Semi-annual reports

SCAQMD

NOV & NTCs issued by the SCAQMD SCAQMD responses to 500-N forms

UNIT 1:

EPA

Quarterly Acid Rain report & feedback report Annual Form 500-ACC

Calibration Records
Fuel flow meter calibration report
Water flow meter calibration report
NH3 flow meter calibration report
SCR DP transducer calibration report
SCR inlet temperature transducer Cal report
SCR outlet temperature transducer Cal report

Calibration gas logs Linearity test reports Part 75 RATA test reports RECLAIM RATA test reports Rule 218 (CO) RATA test reports NH3 slip test reports

Tri-ennual compliance testing: VOC emissions; PM10 emissions; and ROG emissions

UNIT 2:

EPA

Quarterly Acid Rain report Quarterly Acid Rain report & feedback report Annual Form 500-ACC

Calibration Records

Fuel flow meter calibration report
Water flow meter calibration report
NH3 flow meter calibration report
SCR DP transducer calibration report
SCR inlet temperature transducer Cal report
SCR outlet temperature transducer Cal report

Calibration gas logs Linearity test reports Part 75 RATA test reports RECLAIM RATA test reports Rule 218 (CO) RATA test reports NH3 slip test reports

Tri-annual compliance testing: VOC emissions; PM10 emissions; and ROG emissions

UNIT 3:

EPA

Quarterly Acid Rain report Quarterly Acid Rain report & feedback report Annual Form 500-ACC

Calibration Records

Fuel flow meter calibration report
Water flow meter calibration report
NH3 flow meter calibration report
SCR DP transducer calibration report
SCR inlet temperature transducer Cal report
SCR outlet temperature transducer Cal report

Calibration gas logs Linearity test reports Part 75 RATA test reports RECLAIM RATA test reports Rule 218 (CO) RATA test reports NH3 slip test reports

Tri-ennual compliance testing: VOC emissions; PM10 emissions; and ROG emissions

UNIT 4:

EPA

Quarterly Acid Rain report & feedback report Annual Form 500-ACC

Calibration Records

Fuel flow meter calibration report
Water flow meter calibration report
NH3 flow meter calibration report
SCR DP transducer calibration report
SCR inlet temperature transducer Cal report
SCR outlet temperature transducer Cal report

Calibration gases logs Linearity test reports Part 75 RATA test reports RECLAIM RATA test reports Rule 218 (CO) RATA test reports NH3 slip test reports

Tri-ennual compliance testing: VOC emissions; PM10 emissions; and ROG emissions

ATTACHMENT 8 UN-PLANNED FACILITY CLOSURE PLAN REVIEW

An "Un-Planned Facility Closure Plan" was drafted and submitted to the California Energy Commission (CEC) in the First Quarter of 2014. At this time, no revisions or changes are required.

ATTACHMENT 9

Notice of Violation and Notice to Comply Issued in CY 2019

Notices of Violation Issued by the SCAQMD in the CY 2019

NONE

Notices to Comply Issued by the SCAQMD in the CY 2019

NONE

SCAQMD FORM 500-N Title V – Deviations, Emergencies & Breakdowns Submitted by Canyon Power Plant

South Coast Air Quality Management District

Form 500-N

Title V - Deviations, Emergencies & Breakdowns

Mail To: SCAQMD P.O. Box 4941 Diamond Bar, CA 91765-0941

> Tel: (909) 396-3385 www.aqmd.gov

*This written report is in addition to requirements to verbally report certain types of incidents. Verbal reports may be made by calling AQMD at 1-800-288-7664 (1-800-CUT-SMOG) or AQMD enforcement personnel.

Secti	ion I - Operator I	nformation				
1. Fac	cllity Name (Business I	Name of Operator That Appears On	Permit): 2.		D Facility ID (Availat	ble On Permit Or Invoice Issued By
С	anyon Power P	lant Unit #2 (D7)		AQMD):		153992
3. Add		3071 E. Miraloma Aver				
(wh	nere incident occurred)		Street Address			
		Anaheim	City		<u>CA</u>	92805
			City		State	Zip
	iling Address:		Street Address			10
,	,					
5. Pro	ovide the name, title, a	nd phone number of the person to	City o contact for further information:		State	Zip
	Ro	naldHoffard	Generation Plant Man	nager	(714	1) 765-4536
		Name	Title			Phone #
		of Breakdowns, Deviations	s, and Emergencies			
	s written notification i	s to report a(n):				
Ту	pe of Incident		Verbal Report Due*	Wri	tten Report Due	
a.	Emergency under	Rule 3002(g)	Within 1 hour of discovery		fithin 2 working days faceeded.	from when the emission limit was
b.	☐ Breakdown under:		F. D. I. 400 0 0004 14511 44			- Within 7 calendar days after
	Rule 430 (No	n-RECLAIM)	For Rules 430 & 2004 - Within 1 hour of discovery.			t, but no later than 30 days from unless a written extension is
	Rule 2004 (RI	•	For Dulo 349 Militain 34 hours on mouth hu		anted.	
	Rule 218 (Nor [See Rule 218		For Rule 218 – Within 24 hours or next bu day for failure/shutdown exceeding 24 hou		or Rule 218 - With req	quired semi-annual reports.
C.	Deviation with exc [See Title V Permit	ess emissions t, Section K, Condition No. 22B]	Within 72 hours of discovery of the deviation shorter reporting period if required by an applicable State or Federal Regulation.	ion or W	ithin 14 days of disco	very of the deviation.
d.	Other Deviation [See Title V Permit	, Section K, Condition Nos. 22D & 2	None 3]	W	ith required semi-ann	ual monitoring reports.
		Cros Strong	Paris Annual Control of Control o	00	10010040	44:00
2. The	incident was first dis	covered by: Greg Strong	Name or	n02	1/20/2019 Date	11:06
9 Th-	Insidentura Estua	Operator # 7		റാ	/20/2019	44.04
		orted by: Operator # 7 Nam	e of AQMD Staff Person	n02	Date	11:34
a. (Via Phone					
b. 4	C In Person		Notification No	umber (Requ	ıired):_549239	REVISED
4. Who	en did the incident act	ually occur? 02/20/20 Date	19 10:52 O AM			
	Received By:		Assigned By:		Inspector:	
	Date/Time Received:		Date/Time Assigned:		Date/Time Rece	eived Assignment:
AQMD	Date Delivered To Te	am:	Date Reviewed Inspector Report:		Date Inspected	Facility:
USE	Team:	Sector:	Breakdown/Deviation Notification No.		Date Completed	f Report:
	Recommended Action	n: Cancel Notification G	rant Relief Issue NOV No		Other:	
	Final Action:	Cancel Notification G	rant Relief Issue NOV No		Other:	

5	Has the incident stopped? a. Yes, on	. 02/20/2019		I:00	b. O No
V .	The the moracit stopped 2. (2. 165, on	Date	- T	ime C PM	5. C 7 NO
6.	What was the total duration of the incident?	0		08	
,	For equipment with an executive evals as	Days	Н	lours	
7.	For equipment with an operating cycle, as d when was the end of the operating cycle du	ring which the incident occurred?		Data	Time C AM
8.	Describe the incident and identify each piece equipment and attach additional pages as n	e of equipment (by permit, applicat ecessary.	ion, or device number) af	Date fected. Attach photos (v	
	During Unit #2 linearity testing the	Nox spiked up due to the te	est gas not purging t	from the system.	
9.	The incident may have resulted in a: a. X Violation of Permit Condition(s):	A99.1 NOx ppm > 2.5			
	b. Violation of AQMD Rule(s):				
10.	What was the probable cause of the inciden	t? Attach additional pages as nece	ssary.		
	SEE ATTACHMENT SUMMARY	/ itaan aaantana pagaa aa noo	oodiy.		
11.	Did the incident result in excess emissions?	No See Yes (Complete the	following and attach calcu	lations.)	
	VOCibs	⊠ NOx9.300	Sppm 🗆 sox	lbs	H2Slbs
	lbs	□ PMIŁ	os Other:		pollutant
12.	For RECLAIM facilities Subject to Rule 2004 when determining compliance with your annual subjects to Rule 2004	(i)(3) ONLY: If excess emissions of rual allocations?	NOx and/or SOx were re	ported in Item 11, do yo	u want these emissions to be counted
	a. C Yes, for: NOx SOx	b. C No, for: NOx S			
12	If box 12(b) above is checked, include all inform			-4to4>445	
13.	Describe the steps taken to correct the probavoid future incidents. Include photos of the	e failed equipment if available and a	cess emissions, equipme ttach additional pages as	nt repairs, etc.) and the necessary.	preventative measures employed to
	SEE ATTACHMENT SUMMARY				
14	Was the facility operating properly prior to t	ho incident?			
17.	a. • Yes b. • No, because:	ie ilicidealti.			
15.	Did the incident result from operator error, r	eglect or improper operation or ma	intenance procedures?		
	a. C Yes b. No, because:				
16.	Has the facility returned to compliance?				
	a. O No, because:				
	b. Yes (Attach evidence such as emission	s calculations, contemporaneous oper	ating logs or other credible	evidence.)	
Sec	ction III - Certification Statement				
I ce	rtify under penalty of law that based on inform other materials are true, accurate, and comp	nation and belief formed after reason	nable inquiry, the statem	ents and information in	this document and in all attachments
For	Title V Facilities ONLY: I also certify.u	nder penalty of law that that I am th	e responsible official for	this facility as defined in	AQMD Regulation XXX.
1. S	ignature of Responsible Official:		2. Title of Responsible		
	R Holl	_	GE	NERATION PLA	NT MANAGER
3. P	rint Name:		4. Date:	4/23/	19 0
	RONALD HOP	FARD		02/26/20	10 RA
5. P	hone#:		6. Fax #:		
	(714) 765-4	536			
7. A	ddress of Responsible Official:				
	3071 E. MIRALOMA		ANAHEIM	M CA	92805
Stree	et#	Ci	ly	State	Zip

AQMD 500N - Breakdown Date: 02/20/2019 Identify issue: Specialty Linearity Gas Regulator

Canyon Power Plant: Unit 2/ID# 153992

Notification: 549239

Question 8 - Describe the incident and identify each piece of equipment:

Unit 2 startup initiated at 0650 hours with a passing on-line Calibration performed at 0751 hours. Linearity/CGA testing began at 0816 hours, which required three different gas levels (low, mid, and high) to be introduced using calibration standard gases. The first gas, NOx low/CO low was introduced three times followed by O2/CO high linearity gas that resulted in a successful testing. The first of three samples of NOx high linearity gas was introduced at 1036 hours and at 1049 hours staff noticed inconsistent data. As the first NOx high sample gas completed purging, NOx spiked and caused a NOx ppm exceedance.

Question 10 - What was the probable cause of the incident?

The gas regulator on the NOx high gas cylinder failed to complete purging and caused the NOx ppm exceedance.

Question 13 - Describe the steps taken to correct the problem:

Unit 2 placed in maintenance to check and verify the CEMS analyzers and no issues found. Second, the NOx high cylinder gas regulator was tested and it was determined that the regulator did not function correctly. The gas regulator on the NOx high cylinder bottle was replaced with a new gas regulator and tested. A NOx high gas sample was introduced at 1409 hours and the NOx high gas test was successful.

Question 16 - Facility retuned to compliance?

Unit 2 came returned to compliance at 1100 hours on 2/20/2019.

2019	
2/20/	

2_COLOW 2_COLIOW	•									
6:30 70.92 Project Paper	•	Time	2_02	2_colow	2_COHIGH	2_NOXLOW	2_NOXHIGH	2_LOAD	2_GasFlow	2_NOX_CORR
6:30 2092 P 0.6 P 0.04 P 0.31 P 6:31 2093 P 0.47 P 0.6 P 0.04 P 0.31 P 6:32 2092 P 0.46 P 0.57 P 0.04 P 0.32 P 6:33 2092 P 0.47 P 0.57 P 0.04 P 0.32 P 6:34 2093 P 0.47 P 0.67 P 0.04 P 0.32 P 6:35 2093 P 0.44 P 0.67 P 0.03 P 0.31 P 6:37 2092 P 0.44 P 0.67 P 0.03 P 0.32 P 6:39 2093 P 0.44 P 0.6 P 0.03 P 0.32 P 6:40 2093 P 0.44 P 0.6 P 0.03 P 0.32 P 6:41 2093 P 0.44 P 0.6 P 0.03 P 0.32 P 6:42 2093 P 0.44 P 0.6 P 0.03 P 0.32 P 6:44 2093 P 0.44 P 0.6 P 0.03 P 0.32 P 6:44 2093 P 0.44 P 0.6 P 0.03 P 0.32				!						mdd
631 2039 P 0.46 P 0.59 P 0.04 P 0.36 P 632 2032 P 0.46 P 0.57 P 0.04 P 0.26 P 633 2032 P 0.46 P 0.57 P 0.04 P 0.32 P 634 2033 P 0.49 P 0.61 P 0.04 P 0.31 P 635 2033 P 0.44 P 0.61 P 0.03 P 0.31 P 638 2033 P 0.44 P 0.62 P 0.03 P 0.32 P 639 2033 P 0.44 P 0.62 P 0.03 P 0.32 P 640 2033 P 0.44 P 0.65 P 0.03 P 0.32 P 644 2033 P 0.44 P 0.65 P 0.03 P 0.32 P 644 2033 P 0.44 P 0.65 P 0.03 P 0.34 P 644 2032 P 0.44 P 0.65 P 0.03 P 0.34 P 644 2032 P 0.44 P 0.65 P 0.03 P 0.34 P 644 2032 P 0.44 P 0.65 P 0.03 P <td></td> <td>6:30</td> <td></td> <td></td> <td></td> <td></td> <td>31</td> <td>-0.02 P</td> <td>0.3 P</td> <td>0 P</td>		6:30					31	-0.02 P	0.3 P	0 P
632 2022 P 0.46 P 0.57 P 0.04 P 0.26 P 633 2032 P 0.47 P 0.59 P 0.04 P 0.13 P 634 2033 P 0.47 P 0.53 P 0.04 P 0.03 P 635 2033 P 0.47 P 0.61 P 0.03 P 0.32 P 636 2033 P 0.47 P 0.61 P 0.03 P 0.32 P 638 2033 P 0.47 P 0.61 P 0.03 P 0.32 P 639 2033 P 0.48 P 0.64 P 0.03 P 0.32 P 640 2033 P 0.48 P 0.65 P 0.03 P 0.32 P 641 2033 P 0.44 P 0.65 P 0.03 P 0.34 P 642 2033 P 0.44 P 0.65 P 0.03 P 0.34 P 644 2033 P 0.44 P 0.65 P 0.03 P 0.34 P 644 2039 P 0.44 P 0.65 P 0.03 P 0.34 P 644 2039 P 0.44 P 0.58 P 0.03 P <td></td> <td>6:31</td> <td></td> <td>0.46 P</td> <td>0.59 P</td> <td>0.04 P</td> <td></td> <td>-0.02 P</td> <td>0.3 P</td> <td>0 P</td>		6:31		0.46 P	0.59 P	0.04 P		-0.02 P	0.3 P	0 P
633 2022P 0.47P 0.59P 0.04P 0.31P 634 2033P 0.48P 0.62P 0.04P 0.32P 635 2033P 0.44P 0.61P 0.03P 0.32P 634 2033P 0.44P 0.61P 0.03P 0.32P 633 2033P 0.44P 0.64P 0.03P 0.32P 633 2033P 0.44P 0.64P 0.03P 0.32P 640 2033P 0.44P 0.52P 0.03P 0.32P 6441 2033P 0.44P 0.59P 0.03P 0.32P 6442 2033P 0.44P 0.59P 0.03P 0.34P 6443 2033P 0.44P 0.58P 0.03P 0.34P 6443 2033P 0.44P 0.58P 0.03P 0.34P 6444 2033P 0.44P 0.58P 0.03P 0.34P 6445 2033P 0.44P 0.58P 0.03P 0.34P 64		6:32		0.46 P	0.57 P	0.04 P	0.26 P	-0.02 P	0.3 P	0 0
6:34 2093 P 0.5 P 0.62 P 0.04 P 0.63 P 0.32 P 6:35 20.93 P 0.44 P 0.61 P 0.03 P 0.31 P 0.32 P 6:36 20.93 P 0.47 P 0.65 P 0.03 P 0.32 P 0.32 P 6:37 20.93 P 0.41 P 0.65 P 0.03 P 0.32 P 0.32 P 6:38 20.93 P 0.42 P 0.69 P 0.03 P 0.32 P 0.32 P 6:40 20.93 P 0.44 P 0.69 P 0.03 P 0.32 P 0.32 P 6:41 20.93 P 0.44 P 0.69 P 0.03 P 0.33 P 0.34 P 0.35 P 0.34 P 0.35 P 0.34 P 0.35 P 0.33 P 0.34 P 0.35 P 0.33 P 0.34 P 0.35 P 0.34 P <t< td=""><td></td><td>6:33</td><td></td><td>0.47 P</td><td>0.59 P</td><td>0.04 P</td><td>0.31 P</td><td>-0.02 P</td><td>0.3 P</td><td>0 P</td></t<>		6:33		0.47 P	0.59 P	0.04 P	0.31 P	-0.02 P	0.3 P	0 P
6:35 20.93 P 0.49 P 0.61 P 0.03 P 0.31 P 6:36 20.93 P 0.44 P 0.61 P 0.03 P 0.03 P 6:37 20.93 P 0.44 P 0.65 P 0.03 P 0.25 P 6:38 20.93 P 0.44 P 0.59 P 0.03 P 0.23 P 6:40 20.93 P 0.47 P 0.59 P 0.03 P 0.32 P 6:41 20.93 P 0.47 P 0.58 P 0.03 P 0.34 P 6:42 20.93 P 0.44 P 0.58 P 0.03 P 0.34 P 6:43 20.92 P 0.44 P 0.58 P 0.03 P 0.34 P 6:44 20.92 P 0.44 P 0.58 P 0.03 P 0.34 P 6:45 20.92 P 0.44 P 0.58 P 0.03 P 0.34 P 6:46 20.93 P 0.44 P 0.58 P 0.03 P 0.33 P 6:47 20.92 P 0.44 P 0.58 P 0.03 P 0.34 P 6:48 20.93 P 0.44 P 0.58 P </td <td></td> <td>6:34</td> <td></td> <td>0.5 P</td> <td>0.62 P</td> <td>0.04 P</td> <td>0.32 P</td> <td>-0.02 P</td> <td>0.3 P</td> <td>0 P</td>		6:34		0.5 P	0.62 P	0.04 P	0.32 P	-0.02 P	0.3 P	0 P
6:36 20.93 P 0.47 P 0.61 P 0.03 P 0.32 P 6:37 20.92 P 0.44 P 0.6 P 0.04 P 0.35 P 6:38 20.93 P 0.41 P 0.6 P 0.03 P 0.32 P 6:39 20.93 P 0.47 P 0.65 P 0.03 P 0.32 P 6:40 20.93 P 0.48 P 0.59 P 0.03 P 0.34 P 6:41 20.93 P 0.45 P 0.59 P 0.34 P 0.34 P 6:42 20.93 P 0.45 P 0.59 P 0.34 P 0.34 P 6:43 20.93 P 0.44 P 0.59 P 0.33 P 0.34 P 6:44 20.92 P 0.44 P 0.58 P 0.33 P 0.31 P 6:45 20.93 P 0.44 P 0.53 P 0.33 P 0.33 P 6:46 20.93 P 0.44 P 0.53 P 0.33 P 0.33 P 6:47 20.93 P 0.44 P 0.53 P 0.33 P 0.33 P 6:48 20.59 P 0.31 P 0.53 P <td></td> <td>6:35</td> <td></td> <td>0.49 P</td> <td>0.61 P</td> <td>0.03 P</td> <td>0.31 P</td> <td>-0.02 P</td> <td>0.3 P</td> <td>0 P</td>		6:35		0.49 P	0.61 P	0.03 P	0.31 P	-0.02 P	0.3 P	0 P
6:37 20.92 P 0.44 P 0.6 P 0.04 P 0.52 P 0.03 P 0.03 P 0.03 P 0.03 P 0.02 P 0.03 P 0.03 P 0.02 P 0.03 P 0.02 P 0.03 P <td></td> <td>98:9</td> <td>20.93 P</td> <td>0.47 P</td> <td>0.61 P</td> <td>0.03 P</td> <td></td> <td>-0.02 P</td> <td>0.3 P</td> <td>0 P</td>		98:9	20.93 P	0.47 P	0.61 P	0.03 P		-0.02 P	0.3 P	0 P
6:38 20.93 P 0.41 P 0.52 P 0.03 P 0.02 P 0.02 P 0.02 P 0.03 P 0.02 P 0.03 P </td <td></td> <td>6:37</td> <td></td> <td>0.44 P</td> <td>0.6 P</td> <td>0.04 P</td> <td></td> <td>-0.02 P</td> <td>0.3 P</td> <td>0 P</td>		6:37		0.44 P	0.6 P	0.04 P		-0.02 P	0.3 P	0 P
6:39 20.93 P 0.42 P 0.59 P 0.03 P 0.32 P 6:40 20.93 P 0.47 P 0.6 P 0.03 P 0.34 P 6:41 20.93 P 0.48 P 0.59 P 0.03 P 0.34 P 6:42 20.93 P 0.46 P 0.63 P 0.03 P 0.34 P 6:43 20.92 P 0.44 P 0.61 P 0.03 P 0.34 P 6:44 20.92 P 0.44 P 0.61 P 0.03 P 0.34 P 6:45 20.93 P 0.41 P 0.63 P 0.03 P 0.35 P 6:46 20.93 P 0.41 P 0.58 P 0.03 P 0.37 P 6:47 20.93 P 0.41 P 0.53 P 0.33 P 0.33 P 6:48 20.95 P 0.41 P 0.53 P 0.33 P 0.33 P 6:49 20.59 P 0.31 P 0.51 P 0.33 P 0.33 P 6:49 20.59 P 0.31 P 0.51 P 0.33 P 0.33 P 6:49 20.59 P 0.31 P 0.51 P <td></td> <td>6:38</td> <td></td> <td>0.41 P</td> <td>0.52 P</td> <td>0.03 P</td> <td></td> <td>-0.02 P</td> <td>0.3 P</td> <td>0 P</td>		6:38		0.41 P	0.52 P	0.03 P		-0.02 P	0.3 P	0 P
640 20.93 P 0.47 P 0.6 P 0.03 P 0.34 P 641 20.93 P 0.48 P 0.59 P 0.03 P 0.34 P 642 20.93 P 0.45 P 0.58 P 0.03 P 0.34 P 643 20.93 P 0.46 P 0.68 P 0.03 P 0.34 P 644 20.92 P 0.44 P 0.61 P 0.03 P 0.31 P 645 20.92 P 0.44 P 0.58 P 0.03 P 0.35 P 646 20.93 P 0.41 P 0.58 P 0.03 P 0.37 P 648 20.93 P 0.41 P 0.58 P 0.03 P 0.37 P 649 20.93 P 0.41 P 0.58 P 0.03 P 0.37 P 1 6.49 20.59 P 0.31 P 21.54 P 0.03 P 0.33 P 2 6.41 10.29 I 1.82 0.34 P 0.33 P 0.33 P 3 6.52 13.54 3.79 4.95 5.34 4 6.54 17.02 1		6:39	20.93 P	0.42 P	0.59 P	0.03 P		-0.02 P	0.3 P	0 P
641 20.93 P 0.48 P 0.59 P 0.03 P 0.34 P 643 20.93 P 0.45 P 0.58 P 0.03 P 0.34 P 643 20.93 P 0.46 P 0.6 P 0.03 P 0.31 P 644 20.92 P 0.44 P 0.61 P 0.03 P 0.31 P 645 20.92 P 0.43 P 0.65 P 0.03 P 0.35 P 646 20.92 P 0.44 P 0.65 P 0.03 P 0.35 P 647 20.93 P 0.41 P 0.58 P 0.03 P 0.32 P 648 20.95 P 0.41 P 0.58 P 0.03 P 0.32 P 649 20.95 P 0.41 P 0.58 P 0.03 P 0.32 P 649 20.95 P 0.41 P 0.58 P 0.03 P 0.33 P 649 20.95 P 0.41 P 0.58 P 0.03 P 0.33 P 1 6.64 1.02 P 0.44 P 0.03 P 0.33 P 1 6.52 18.52 2.54 34.9		6:40	20.93 P	0.47 P	0.6 P	0.03 P		-0.02 P	0.3 P	0 P
6:42 20.93 P 0.45 P 0.58 P 0.03 P 0.34 P 6:43 20.93 P 0.46 P 0.6 P 0.03 P 0.31 P 6:44 20.92 P 0.44 P 0.61 P 0.03 P 0.34 P 6:45 20.92 P 0.44 P 0.65 P 0.03 P 0.35 P 6:46 20.93 P 0.41 P 0.58 P 0.03 P 0.37 P 6:47 20.93 P 0.41 P 0.53 P 0.03 P 0.27 P 6:48 20.93 P 0.41 P 0.53 P 0.03 P 0.32 P 6:48 20.93 P 0.41 P 0.53 P 0.03 P 0.32 P 6:49 20.95 P 0.41 P 0.53 P 0.03 P 0.32 P 6:49 20.59 P 0.41 P 0.53 P 0.33 P 0.33 P 1 6:50 19.07 10.29 I 1.42 4.18 0.03 P 0.33 P 2 6:51 18.66 7.54 34.79 4.95 5.34 3 6:52		6:41	20.93 P	0.48 P	0.59 P	0.03 P		-0.02 P	0.3 P	0 P
643 20.93 P 0.46 P 0.6 P 0.03 P 0.31 P 644 20.92 P 0.44 P 0.61 P 0.03 P 0.36 P 645 20.92 P 0.44 P 0.65 P 0.03 P 0.36 P 646 20.93 P 0.41 P 0.58 P 0.03 P 0.37 P 647 20.93 P 0.41 P 0.53 P 0.03 P 0.27 P 648 20.95 P 0.41 P 0.53 P 0.03 P 0.37 P 1 648 20.95 P 0.41 P 0.03 P 0.03 P 0.37 P 2 648 20.95 P 0.31 P 21.54 P 0.03 P 0.37 P 3 649 20.95 P 0.31 P 0.37 P 0.38 P 0.38 P 4 6550 19.07 10.29 I 14.24 P 0.03 P 0.38 P 5 6551 18.65 3.74 B 3.78 B 10.29 I 14.31 I 6 6552 16.28 B 3.48 B 3.25 B 10.29 B 14.31 I		6:42	20.93 P	0.45 P	0.58 P	0.03 P	0.34 P	-0.02 P	0.3 P	0 P
6:44 20.02 P 0.44 P 0.61 P 0.03 P 0.36 P 6:45 20.92 P 0.43 P 0.56 P 0.03 P 0.3 P 6:46 20.93 P 0.41 P 0.58 P 0.03 P 0.27 P 6:47 20.93 P 0.41 P 0.53 P 0.03 P 0.32 P 6:48 20.95 P 0.31 P 21.54 P 0.03 P 0.33 P 1 6:49 20.59 P 0.31 P 21.54 P 0.03 P 0.33 P 2 6:49 20.59 P 0.31 P 21.54 P 0.03 P 0.33 P 3 6:50 19.07 10.29 I 182 0.14 0.38 4 6:51 18.66 7.54 34.79 4.95 5.34 5 6:51 18.66 7.54 3.78 10.29 14.76 6 6:53 17.02 3.74 3.78 10.29 14.31 7 6:56 15.72 2.76 2.85 7.94 7.65		6:43		0.46 P	0.6 P			-0.02 P	0.3 P	0 P
6.45 20.92 P 0.43 P 0.56 P 0.03 P 0.37 P 6.46 20.93 P 0.41 P 0.58 P 0.03 P 0.27 P 6.47 20.93 P 0.41 P 0.53 P 0.03 P 0.32 P 6.48 20.95 P 0.37 P 0.51 P 0.03 P 0.33 P 1 6.50 19.07 10.29 I 182 0.03 P 0.33 P 2 6.51 18.66 0.31 P 21.54 P 0.03 P 0.33 P 3 6.52 19.07 10.29 I 182 0.14 0.38 P 4 6.53 17.92 4.2 4.18 10.29 14.76 5 6.54 17.01 3.74 3.78 10.29 14.76 6 6.55 16.28 3.16 3.25 8.75 8.36 7 6.56 15.72 2.76 2.89 9.9 11.54 8 6.57 15.01 2.82 2.89 9.9 11.54 <t< td=""><td></td><td>6:44</td><td></td><td>0.44 P</td><td>0.61 P</td><td>0.03 P</td><td></td><td>-0.02 P</td><td>0.3 P</td><td>0 P</td></t<>		6:44		0.44 P	0.61 P	0.03 P		-0.02 P	0.3 P	0 P
6:46 20.93 P 0.41 P 0.58 P 0.03 P 0.27 P 6:47 20.93 P 0.41 P 0.53 P 0.03 P 0.32 P 6:48 20.95 P 0.37 P 0.51 P 0.03 P 0.33 P 1 6:49 20.59 P 0.31 P 21.54 P 0.03 P 0.33 P 2 6:51 18.66 7.54 34.79 4.95 5.34 3 6:52 18.52 5.2 5.15 10.29 14.76 4 6:53 17.92 4.2 4.95 5.34 5 6:54 17.01 3.74 3.78 10.29 14.76 6 6:55 16.28 4.2 4.18 10.29 14.31 7 6:56 15.72 2.76 2.85 9.9 14.31 8 6:57 15.01 2.85 2.89 9.9 11.54 9 6:58 14.84 3.16 3.26 10.29 10.29 10<		6:45		0.43 P	0.56 P	0.03 P		-0.01 P	0.3 P	0 P
6:47 20.93 P 0.41 P 0.53 P 0.03 P 0.32 P 6:48 20.95 P 0.31 P 21.54 P 0.03 P 0.33 P 1 6:49 20.59 P 0.31 P 21.54 P 0.03 P 0.33 P 2 6:51 19.07 10.29 I 182 0.14 0.38 3 6:52 18.66 7.54 34.79 4.95 5.34 4 6:53 17.92 4.2 5.15 10.29 14.76 5 6:54 17.01 3.74 3.49 4.95 5.34 6 6:55 16.28 4.2 4.18 10.29 14.76 7 6:56 15.01 3.74 3.78 10.29 14.31 8 6:57 16.28 2.85 7.94 7.65 9 6:58 14.84 3.16 3.26 10.29 13.86 10 6:59 14.83 3.12 3.28 10.29 13.86		6:46	20.93 P	0.41 P	0.58 P			-0.01 P	0.3 P	0 P
6:48 20.95 P 0.37 P 0.51 P 0.03 P 0.33 P 6:49 20.59 P 0.31 P 21.54 P 0.03 P 0.3 P 1 6:50 19.07 10.29 I 182 0.14 0.3 P 2 6:51 18.66 7.54 34.79 4.95 5.34 3 6:52 18.52 5.2 5.15 10.29 14.76 4 6:53 17.92 4.2 4.18 10.29 14.76 5 6:54 17.01 3.74 3.78 10.29 14.31 6 6:55 16.28 3.16 3.25 8.36 14.31 7 6:56 15.72 2.76 2.89 9.9 11.54 9 6:59 14.84 3.16 3.26 10.29 20.18 10 6:59 14.84 3.16 3.26 10.29 20.18 11 7:00 14.83 3.15 3.28 10.29 20.18		6:47	20.93 P	0.41 P	0.53 P			-0.02 P	0.2 P	0 P
1 6:49 20:59 P 0.31 P 21.54 P 0.03 P 0.3 P 1 6:50 19.07 10.29 I 182 0.14 0.38 2 6:51 18.66 7.54 34.79 4.95 5.34 3 6:52 18.52 5.15 10.29 14.76 4 6:53 17.92 4.2 4.95 5.34 5 18.52 5.2 5.15 14.76 14.76 6 6:54 17.01 3.74 4.18 10.29 14.71 7 6:55 16.28 3.16 2.85 7.94 7.65 8 6:57 15.01 2.82 2.89 9.9 11.54 9 6:58 14.84 3.16 3.26 10.29 20.18 10 6:59 14.83 3.52 3.58 10.29 21.33 11 7:00 14.83 3.52 3.58 10.29 21.34 12		6:48	20.95 P	0.37 P	0.51 P			-0.02 P	0.3 P	0 P
1 6:50 19.07 10.29 182 0.14 0.38 2 6:51 18.66 7.54 34.79 4.95 5.34 3 6:52 18.52 5.2 5.15 10.29 14.76 4 6:53 17.92 4.2 4.18 10.29 14.76 5 6:54 17.01 3.74 3.78 10.29 14.31 6 6:55 16.28 3.16 2.85 8.72 8.36 7 6:56 15.71 2.82 2.89 9.9 11.54 9 6:58 14.84 3.16 3.26 10.29 20.18 10 6:59 14.83 3.52 3.26 10.29 21.23 11 7:00 14.83 3.52 3.77 10.29 21.23 12 7:01 14.81 3.81 3.87 5.62 6.49 13 7:02 14.81 3.97 3.98 1.73 1.87 14 7:03 14.81 3.97 3.98 1.73		6:49		0.31 P	21.54 P			-0.02 P	16.7 P	0 P
6:51 18.66 7.54 34.79 4.95 5.34 6:52 18.52 5.1 10.29 14.76 6:53 17.92 4.1 10.29 14.76 6:54 17.01 3.74 3.78 10.29 14.31 6:55 16.28 3.16 2.85 8.72 8.36 6:56 15.72 2.76 2.85 7.94 7.65 6:57 15.01 2.82 2.89 9.9 11.54 6:58 14.84 3.16 3.26 10.29 20.18 6:59 14.83 3.52 3.58 10.29 23.86 7:00 14.82 3.77 10.29 21.23 7:01 14.81 3.81 3.87 5.62 6.49 7:02 14.81 3.97 3.98 1.73 1.87 7:04 14.82 4.16 4.16 1.49 1.49 7:04 14.82 4.16 4.16 1.49 1.49 7:04 14.82 4.16 4.16 1.49 1.4	rtup 1	6:50	19.07	10.29	182	0.14	0.38	-0.02	84.4	0.45
6:52 18.52 5.2 5.15 10.29 14.76 6:53 17.92 4.2 4.18 10.29 16.69 6:54 17.01 3.74 3.78 10.29 16.69 6:55 16.28 3.16 3.25 8.72 8.36 6:56 15.72 2.76 2.85 7.94 7.65 6:57 14.84 3.16 2.89 9.9 11.54 6:58 14.84 3.16 3.26 10.29 20.18 6:59 14.83 3.52 3.58 10.29 21.23 7:00 14.82 3.71 10.29 21.23 7:01 14.81 3.81 3.87 5.62 6.49 7:03 14.82 4.16 1.73 1.87 7:04 14.82 4.16 1.23 1.49 7:05 14.83 4.16 4.16 1.23 1.37 7:05 14.83 4.25 1.22 1.37 1.37	2	6:51	18.66	7.54	34.79	4.95	5.34	0.2	93.8	14.12
6:53 17:92 4.2 4.18 10.29 16.69 6:54 17.01 3.74 3.78 10.29 14.31 6:55 16.28 3.16 2.85 7.94 7.65 6:57 15.01 2.82 2.89 9.9 11.54 6:58 14.84 3.16 3.26 10.29 20.18 6:59 14.83 3.52 3.58 10.29 20.18 7:00 14.81 3.81 3.87 10.29 21.23 7:01 14.81 3.81 3.87 5.62 6.49 7:02 14.81 3.97 3.98 1.73 1.87 7:03 14.82 4.16 4.16 1.4 1.53 7:04 14.82 4.25 4.26 1.37 1.49 7:05 14.83 4.25 1.37 1.37	ന	6:52	18.52	5.2	5.15	10.29	14.76	3.53	114.3	36.59
6:54 17.01 3.74 3.78 10.29 14.31 6:55 16.28 3.16 3.25 8.72 8.36 6:56 15.72 2.76 2.85 7.94 7.65 6:57 15.01 2.82 2.89 9.9 11.54 6:58 14.84 3.16 3.26 10.29 20.18 6:59 14.83 3.52 3.58 10.29 23.86 7:01 14.81 3.81 3.87 5.62 6.49 7:02 14.81 3.97 3.98 1.73 1.87 7:03 14.82 4.14 4.16 1.4 1.53 7:04 14.82 4.25 4.25 1.32 1.49 7:05 14.83 4.25 4.27 1.22 1.37	4	6:53	17.92	4.2	4.18	10.29	16.69	12.59	176.2	33.04
6:55 16.28 3.16 3.25 8.72 8.36 6:56 15.72 2.76 2.85 7.94 7.65 6:57 15.01 2.82 2.89 9.9 11.54 6:58 14.84 3.16 3.26 10.29 20.18 6:59 14.83 3.52 3.77 10.29 23.86 7:01 14.81 3.81 3.87 5.62 6.49 7:02 14.81 3.97 3.98 1.73 1.87 7:03 14.82 4.14 4.16 1.4 1.53 7:04 14.82 4.25 4.25 1.32 1.49 7:05 14.83 4.25 4.25 1.32 1.49	5	6:54	17.01	3.74	3.78	10.29	14.31	22.64	247.4	21.7
6:56 15.72 2.76 2.85 7.94 7.65 6:57 15.01 2.82 2.89 9.9 11.54 6:58 14.84 3.16 3.26 10.29 20.18 6:59 14.83 3.52 3.58 10.29 23.86 7:00 14.82 3.72 3.77 10.29 21.23 7:01 14.81 3.81 3.87 5.62 6.49 7:02 14.81 3.97 3.98 1.73 1.87 7:03 14.82 4.14 4.16 1.4 1.53 7:04 14.82 4.25 4.25 1.32 1.49 7:05 14.83 4.25 4.25 1.37 1.37	9	6:55	16.28	3.16	3.25	8.72	8.36	32.31	316.8	10.92
6:57 15:01 2.82 2.89 9.9 11.54 6:58 14.84 3.16 3.26 10.29 20.18 6:59 14.83 3.52 3.58 10.29 23.86 7:00 14.81 3.81 3.87 5.62 6.49 7:02 14.81 3.97 3.98 1.73 1.87 7:03 14.82 4.14 4.16 1.4 1.53 7:04 14.82 4.25 4.22 1.37 1.37 7:05 14.83 4.25 4.22 1.37 1.37	7	95:9	15.72	2.76	2.85	7.94	7.65	42.83	400.8	9.04
6:58 14.84 3.16 3.26 10.29 20.18 6:59 14.83 3.52 3.58 23.86 7:00 14.82 3.72 3.77 10.29 21.23 7:01 14.81 3.81 3.87 5.62 6.49 7:02 14.81 3.97 3.98 1.73 1.87 7:03 14.82 4.14 4.16 1.4 1.53 7:04 14.82 4.25 4.22 1.32 1.49 7:05 14.83 4 4 4 1.22 1.37	∞	6:57	15.01	2.82	2.89	6.6	11.54	49.8	459.4	11.68
6:59 14.83 3.52 3.58 10.29 23.86 7:00 14.81 3.72 3.77 10.29 21.23 7:01 14.81 3.81 3.87 5.62 6.49 7:02 14.81 3.97 3.98 1.73 1.87 7:03 14.82 4.14 4.16 1.4 1.53 7:04 14.82 4.25 4.22 1.32 1.49 7:05 14.83 4 4 4 1.22 1.37	6	6:58	14.84	3.16	3.26	10.29	20.18	49.72	460.7	19.62
7:00 14.82 3.72 3.77 10.29 21.23 7:01 14.81 3.81 3.87 5.62 6.49 7:02 14.81 3.97 3.98 1.73 1.87 7:03 14.82 4.14 4.16 1.4 1.53 7:04 14.82 4.25 4.22 1.32 1.49 7:05 14.83 4 4 1.22 1.37	10	6:29	14.83	3.52	3.58	10.29	23.86	49.81	460.1	23.19
7:01 14.81 3.81 3.87 5.62 6.49 7:02 14.81 3.97 3.98 1.73 1.87 7:03 14.82 4.14 4.16 1.4 1.53 7:04 14.82 4.25 4.22 1.32 1.49 7:05 14.83 4 4 1.22 1.37	11	7:00	14.82	3.72	3.77	10.29	21.23	49.52	459.6	20.6
7:02 14.81 3.97 3.98 1.73 1.87 7:03 14.82 4.14 4.16 1.4 1.53 7:04 14.82 4.25 4.22 1.32 1.49 7:05 14.83 4 4 1.22 1.37	12	7:01	14.81	3.81	3.87	5.62	6.49	49.93	459.9	6.29
7:03 14.82 4.14 4.16 1.4 1.53 7:04 14.82 4.25 4.22 1.32 1.49 7:05 14.83 4 4 1.22 1.37	13	7:02	14.81	3.97	3.98	1.73	1.87	49.48	459.5	1.68
7:04 14.82 4.25 4.22 1.32 1.49 7:05 14.83 4 4 1.22 1.37	14	7:03	14.82	4.14	4.16	1.4	1.53	49.68	459.2	1.36
7:05 14.83 4 4 1.22 1.37	15	7:04	14.82	4.25	4.22	1.32	1.49	49.75	458.4	1.28
	16	7:05	14.83	4	4	1.22	1.37	49.57	457.3	1.19

2_NOX_CORR ppm	1.19	1.32	1.53	1.71	1.8	1.9	1.94	1.97	1.98	1.94	1.9	1.86	1.85	1.85	1.84	1.84	1.64	1.45	1.41	1.42	1.44	1.46	1.48	1.51	1.51	1.53	1.55	1.58	1.6	1.61	1.63	1.63	1.65	1.66	1.68	1.69	1.72
2_GasFlow kscfh	456.9	456.6	457	456.2	456.9	456.7	456.5	456.6	456.3	456.4	455.7	456.4	456.4	456.3	456.7	456.4	456.7	455.9	455.6	455.1	455.2	455.4	456	456.1	457	456.5	456.8	457	456.3	457	456.6	456.8	456.9	457	457.3	456.9	457.4
2_LOAD MW	49.87	49.59	49.75	49.76	49.76	49.62	49.63	49.81	49.79	49.57	49.77	49.71	49.8	49.59	50.06	49.83	49.75	49.73	49.87	49.69	49.74	49.69	49.84	50.01	49.7	49.49	49.79	49.69	49.74	49.63	49.41	49.69	49.64	49.83	49.74	49.82	49.58
2_NOXHIGH ppm	1.4	1.52	1.72	1.83	1.93	2.02	2.1	2.13	2.1	2.08	2.05	2.05	2.01	2.02	1.91	1.95	1.78	1.58	1.6	1.62	1.61	1.66	1.66	1.63	1.73	1.66	1.62	1.78	1.74	1.72	1.79	1.76	1.79	1.81	1.85	1.81	1.87
2_NOXLOW ppm	1.22	1.35	1.57	1.76	1.85	1.95	1.99	2.02	2.03	1.99	1.95	1.91	1.9	1.9	1.89	1.89	1.68	1.49	1.45	1.45	1.48	1.5	1.52	1.55	1.55	1.57	1.59	1.62	1.64	1.65	1.67	1.68	1.7	1.71	1.73	1.74	1.77
2_COHIGH ppm	3.39	2.64	2.21	2.16	2.12	2.11	2.06	2	2.04	2.1	2.07	2.08	2.03	2.01	2.03	2.2	2.51	2.62	2.59	2.51	2.45	2.52	2.5	2.5	2.58	2.62	2.6	2.61	2.61	2.63	2.62	2.61	2.6	2.58	2.59	2.62	2.62
2_COLOW ppm	3.32	2.58	2.12	2.05	2.03	2	1.98	1.95	1.95	1.99	1.98	1.99	1.98	1.95	1.96	2.14	2.41	2.54	2.5	2.44	2.43	2.4	2.42	2.45	2.51	2.5	2.5	2.5	2.53	2.54	2.56	2.53	2.48	2.48	2.5	2.51	2.49
2_02 %	14.84	14.85	14.84	14.84	14.84	14.84	14.85	14.85	14.85	14.84	14.85	14.85	14.85	14.85	14.84	14.84	14.85	14.84	14.84	14.85	14.84	14.84	14.84	14.85	14.84	14.84	14.84	14.85	14.85	14.84	14.84	14.83	14.83	14.84	14.83	14.83	14.82
Time	7:06	7:07	7:08	7:09	7:10	7:11	7:12	7:13	7:14	7:15	7:16	7:17	7:18	7:19	7:20	7:21	7:22	7:23	7:24	7:25	7:26	7:27	7:28	7:29	7:30	7:31	7:32	7:33	7:34	7:35	7:36	7:37	7:38	7:39	7:40	7:41	7:42
	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35																		

	ĺ																																				
2_NOX_CORR	1.75	1.76	1.78	1.79	1.8	1.8	1.8	1.8	0 0	O C	0 0	0 C	0 C	0 CZ	0 C	O C	0 CS	0 CS	0 0	00	0 CS	O 0	0 0	0 0	0 0	0 0	O 0	2.35	2.27	2.2	2.11	2.01	1.94	0 0	00	O C	0 0
2_GasFlow kscfh	457.1	457.2	457.9	457.3	457.6	457.3	457.4	457.4	457.6	458.2	458.4	458.5	458.9	458.7	458.3	458.9	458.7	458.2	458.6	458.6	457.9	458.5	457.1	458	458.3	458.5	457.7	458.2	458.1	458.7	458.2	458.3	458.7	457.9	457.9	457.8	457.6
2_LOAD MW	49.9	49.74	49.62	49.42	49.71	49.45	49.79	49.79	49.73	49.76	49.82	50.08	49.64	49.56	49.73	49.75	49.53	49.55	49.85	49.89	49.63	49.8	49.78	49.92	49.96	49.54	49.73	49.93	49.69	49.58	49.86	49.78	49.77	49.75	49.77	49.91	49.8
2_NOXHIGH	1.91	1.95	1.89	1.95	2.01	1.95	2.01	1.93	1.93 C	1.91 C	0.59 C	0.33 C	0.29 C	0.29 CZ	3.31 C	8.27 C	8.49 C	20.81 C	126.4 C	180.67 C	181.52 CS	149.35 C	17.56 C	3.97 C	2.95 C	2.8 C	2.68 C	2.52	2.44	2.29	2.29	2.23	2.08	2.02 C	3.82 C	3.99 C	2.51 C
2_NOXLOW	1.8	1.81	1.83	1.84	1.85	1.86	1.86	1.86	1.88 C	1.77 C	0.4 C	0.05 C	0.03 C	0.03 CZ	3.34 C	8.7 C	8.9 CS	8.9 CS	10.29 C	10.29 C	10.29 C	10.29 C	8.19 C	4 C	2.9 C	2.76 C	2.69 C	2.44	2.35	2.29	2.19	2.09	2.02	1.96 C	3.92 C	4.09 C	2.51 C
2_COHIGH	2.61	2.62	2.62	2.62	2.57	2.52	2.53	2.62	3.48 C	130.6 C	180.35 C	181.03 C	180.86 C	180.85 CZ	17.75 C	8.97 C	O 6	3.28 C	0.09 C	O C	0.03 CS	0.73 C	1.66 C	2.37 C	2.62 C	2.61 C	2.62 C	2.61	2.57	2.61	2.55	2.6	2.62	2.7 C	3.25 C	3.3 C	2.92 C
2_COLOW	2.5	2.5	2.49	2.5	2.47	2.44	2.46	2.49	3.45 C	10.29 CI	10.21 CI	9.16 C	9.2 CZ	9.2 CZ	0.01 C	-0.07 C	-0.05 CS	0.61 C	1.52 C	2.33 C	2.5 C	2.53 C	2.55 C	2.53	2.49	2.48	2.47	2.51	2.54	2.65 C	3.19 C	3.23 C	2.87 C				
2 <u>_</u> 02 %	14.83	14.83	14.82	14.82	14.82	14.82	14.81	14.82	17.13 C	22.42 C	22.43 C	22.43 C	22.43 C	22.43 CZ	0 C	-0.02 C	-0.02 C	-0.02 C	-0.02 C	-0.02 C	-0.02 CS	14.76 C	14.78 C	14.78 C	14.77 C	14.77 C	14.77 C	14.78	14.78	14.77	14.78	14.78	14.77	8.39 C	O C	-0.02 C	-0.02 C
Time	7:43	7:44	7:45	7:46	7:47	7:48	7:49	7:50	7:51	7:52	7:53	7:54	7:55	7:56	7:57	7:58	7:59	8:00	8:01	8:02	8:03	8:04	8:05	8:06	8:07	8:08	8:09	8:10	8:11	8:12	8:13	8:14	8:15	8:16	8:17	8:18	8:19
									On-line Cal																		End						Lin/CGA	NOx/CO Low			

		%	mdd	_ bbm	_ bpm	_ bpm	MM	kscfh	- mdd
	8:20	-0.02 C	2.42 C	2.51 C	2.49 C	2.57 C	49.66	458.3	00
	8:21	-0.01 C	2.42 CZ	2.58 C	2.49 CZ	2.55 C	49.7	458	0 CZ
	8:22	-0.03 C	3.26 C	3.33 C	3.63 C	3.6 C	49.96	458.1	O C
	8:23	-0.03 C	4.5 C	4.5 C	5.57 C	5.43 C	49.69	458	O C
	8:24	-0.02 C	5.47 C	5.47 C	2.6 C	5.41 C	49.52	458	O C
	8:25	-0.02 C	5.59 C	5.57 C	5.61 C	5.49 C	49.86	458.5	0 C
	8:26	-0.03 C	5.59 C	5.89 C	5.61 C	5.42 C	49.71	458.1	O C
	8:27	-0.03 C	7.14 C	7.04 C	8.66 C	8.28 C	49.93	458.1	O C
	8:28	-0.03 C	8.4 C	8.23 C	9.23 C	8.8 C	49.7	458.3	O 0
	8:29	-0.03 C	O 6	8.81 C	9.23 C	8.87 C	49.73	458.7	O 0
	8:30	6.01 C	9.02 CS	8.82 C	9.24 CS	8.82 C	49.81	458.5	0 CS
	8:31	14.74 C	3.06 C	3.11 C	8.57 C	8.14 C	49.72	458.2	O C
	8:32	14.75 C	2.48 C	2.56 C	2.44 C	2.45 C	49.75	458.6	O C
	8:33	14.75 C	2.47 C	2.56 C	2.05 C	2.31 C	49.76	458.2	0 C
	8:34	14.75	2.43	2.48	1.94	1.99	49.73	458	1.85
	8:35	14.74	2.37	2.4	1.89	1.99	49.83	457.8	1.81
	8:36	14.75	2.35	2.4	1.87	1.89	49.68	458	1.79
Lin/CGA	8:37	14.75	2.35	2.39	1.87	1.94	49.88	457.8	1.78
NOx/co L	8:38	4.68 C	2.32 C	2.38 C	1.86 C	1.98 C	49.76	458.1	O C
	8:39	-0.01 C	2.37 C	2.43 C	2.36 C	2.44 C	50.13	458.1	O 0
	8:40	-0.02 C	2.44 C	2.55 C	2.43 C	2.49 C	49.68	457.5	00
	8:41	-0.02 C	2.44 C	2.51 C	2.4 C	2.44 C	49.69	457.4	O C
	8:42	-0.03 C	2.4 CZ	2.47 C	2.39 CZ	2.43 C	49.73	457.8	ZO 0
	8:43	-0.03 C	2.4 CZ	2.75 C	2.39 CZ	2.53 C	49.91	458.2	0 CZ
	8:44	-0.03 C	3.7 C	3.73 C	4.38 C	4.3 C	49.75	457.9	O 0
	8:45	-0.03 C	4.94 C	4.92 C	2.6 C	5,45 C	49.52	458	0 C
	8:46	-0.03 C		5.49 C	5.62 C	5.45 C	49.32	457.2	O C
	8:47	-0.03 C	5.57 C	5.57 C	5.61 C	5.47 C	49.92	456.7	O C
	8:48	-0.04 C	6.44 C	6.32 C	6.44 C	6.23 C	49.6	455.6	O 0
	8:49	-0.04 C	7.7 C	7.57 C	9.12 C	8.75 C	49.83	456	O 0
	8:50	-0.04 C	8.77 C	8.58 C	9.2 C	8.8 C	49.62	455.4	O 0
	8:51	-0.04 C	8.98 CS	8.83 C	9.22 CS	8.84 C	49.51	456	0 CS
	8:52	12.61 C	8.98 CS	6.15 C	9.22 CS	8.83 C	49.55	456	0 CS
	8:53	14.71 C	2.21 C	2.3 C	5.45 C	5.28 C	50.07	457.4	O C
	8:54	14.73 C	2.04 C	2.12 C	2.34 C	2.4 C	49.76	456.7	O 0
	8:55	14.72	2.03	2.12	2.2	2.26	49.55	456.9	2.1
	8.56	14.72	2 04	2.1	2.13	2.2	10 64	457.0	200

	ľ																																				
2_NOX_CORR	1.98	1.95	1.91	1.89	00	O 0	O 0	0 C	0 0	0 CZ	0 C	O 0	0 C	O 0	0 C	0 C	O 0	0 CS	0 CS	O C	O 0	2.41	2.4	2.37	O 0	O C	O C	O C	0 CZ	O C	O C	0 C	O C	O C	0 CS	0 CS	0 C
2_GasFlow kscfh	457.8	457.8	457.7	458.1	454.9	455.9	455.9	455.9	456.8	456.2	456.4	456.6	457.1	458.1	458.4	457.9	458.2	458.2	458.1	458	457.6	457.3	457.2	456.8	457.3	456.8	456.7	456.7	456.7	456.4	456.7	456.5	456.8	456.2	456	457.3	456.7
2_LOAD MW	49.64	49.94	49.8	49.7	49.52	49.57	49.6	49.6	20	49.82	49.51	49.64	49.73	49.42	49.8	49.72	49.99	49.77	49.7	49.68	49.92	49.7	49.74	49.45	49.66	49.64	49.82	49.48	49.52	49.77	49.73	49.83	49.75	49.66	49.54	49.9	49.63
2_NOXHIGH	2.23	2.12	2.04	2.07	2.04 C	2.04 C	2.18 C	2.4 C	2.41 C	2.45 C	3.85 C	5.35 C	5.41 C	5.44 C	5.67 C	8.35 C	8.77 C	8.81 C	8.86 C	6.74 C	2.71 C	2.54	2.59	2.55	2.41 C	2.29 C	0.56 C	0.31 C	0.28 C	0.32 C	0.37 C	0.35 C	0.32 C	0.33 C	0.27 C	0.32 C	1.19 C
2_NOXLOW 2	2.07	2.04	2.01	1.98	1.95 C	1.97 C	2.17 C	2.36 C	2.39 C	2.39 CZ	3.89 C	5.5 C	5.58 C	5.58 C	5.58 C	8.66 C	9.22 C	9.24 CS	9.24 CS	6.97 C	2.67 C	2.54	2.53	2.49	2.38 C	2.18 C	0.34 C	0.07 C	0.06 C	0.05 C	0.04 C	0.04 C	0.03 C	0.03 C	0.03 C	0.02 C	1.02 C
2_COHIGH	2.11	2.11	2.1	2.09	2.12 C	2.22 C	2.39 C	2.58 C	2.62 C	2.65 C	3.33 C	4.46 C	5.4 C	5.44 C	5.89 C	7.14 C	8.38 C	8.87 C	7.39 C	2.25 C	1.86 C	1.8	1.74	1.81	2.93 C	38.76 C	50.32 C	49.83 C	49.91 CZ	109.48 C	111.04 C	111.32 C	111.32 C	181.76 C	181.99 CS	181.99 CS	8.93 C
2_COLOW	2.05	2.04	2.02	2.03	2.04 C	2.13 C	2.32 C	2.48 C	2.52 C	2.5 CZ	3.29 C	4.47 C	5.4 C	5.51 C	5.51 C	7.26 C	8.55 C	8.99 CS	8.99 CS	2.13 C	1.74 C	1.66	1.65	1.68	3.12 C	10.29 CI	10.29 CI	6.28 CI									
2_02 %	14.72	14.72	14.7	14.71	9.96 C	0 C	-0.02 C	-0.02 C	-0.03 C	-0.04 C	-0.03 C	-0.04 C	9.25 C	14.67 C	14.67 C	14.68	14.68	14.7	11.31 C	6.24 C	6.24 C	6.23 C	6.23 CZ	13.73 C	13.74 C	13.73 C	13.73 C	22.4 C	22.4 CS	22.4 CS	14.72 C						
Time	8:57	8:58	8:59	00:6	9:01	9:02	9:03	9:04	9:05	90:6	9:07	80:6	60:6	9:10	9:11	9:12	9:13	9:14	9:15	9:16	9:17	9:18	9:19	9:50	9:21	9:22	9:23	9:24	9:25	9:56	9:27	9:58	9:59	9:30	9:31	9:32	9:33
				Lin/CGA	NOx/CO L																End			Lin/CGA	сон/02												

					MW	kscfh	
14.71 C 14.7	1.77 C	1.9 C	2.09 C	2.2 C	49.48	457.4	0 C
14.69	1.81	1.93	2.15	2.25	49.89	457.5	2.14
14.7	1.79	1.91	2.14	2.3	49.76	457.7	2.04
13.16 C	2.84 C	2.93 C	2.05 C	2.15 C	49.85	457.4	0 0
6.26 C	10.29 CI	36.74 C	2.02 C	2.09 C	49.51	457.4	0 0
6.23 C	10.29 CI	50.31 C	0.43 C	0.7 C	49.62	457.8	0 C
6.23 C	10.29 CI	50.93 C	0.04 C	0.28 C	49.94	457.1	O C
6.23 CZ	10.29 CI	50.87 CZ	0.03 C	0.31 C	49.85	457.9	D CZ
13.72 C	10.29 CI	102.16 C	0.02 C	0.24 C	49.46	457.1	0 0
13.73 C	10.29 CI	111.2 C	0.01 C	0.26 C	49.92	456.9	O 0
13.73 C	10.29 CI	111.15 C	0.01 C	0.25 C	49.75	457.3	O C
13.73 C	10.29 CI	111.15 C	0.01 C	0.28 C	49.87	457.1	O 0
22.39 C	10.29 CI	179.9 C	0.01 C	0.2 C	49.65	456.8	O C
22.4 C	10.29 CI	180.12 C	0.01 C	0.22 C	49.9	457.3	0 0
22.39 CS	10.29 CI	180.45 CS	0.01 C	0.27 C	49.88	457	0 CS
14.7 C	9.48 CI	41.59 C	0.36 C	0.62 C	49.97	456.3	O C
14.69 C	2.42 C	2.48 C	1.64 C	1.75 C	49.82	456.9	O 0
14.7 C	2.04 C	2.15 C	2.13 C	2.28 C	49.76	456.6	00
14.69	1.88	1.99	2.02	2.04	49.68	456.8	1.92
14.69	1.77	1.92	2.03	2.14	49.72	456.7	1.93
14.68	1.69	1.79	2.07	2.22	49.65	457.2	1.96
14.68	1.69	1.78	2.07	2.23	49.59	457.9	1.96
14.68	1.76	1.91	2.07	2.16	49.69	457.9	1.96
14.67 C	1.75 C	1.87 C	2.03 C	2.06 C	49.72	457.3	O 0
8.36 C	7.97 CI	23.34 C	2.01 C	2.11 C	49.88	457.7	O 0
6.24 C	10.29 CI	50.07 C	1.05 C	1.28 C	49.62	457.1	O 0
6.24 C	10.29 CI	50.62 C	0.04 C	0.25 C	49.72	458.2	O 0
6.23 CZ	10.29 CI	50.48 CZ	0.03 C	0.23 C	49.76	457.4	D CZ
6.23 CZ	10.29 CI	50.48 CZ	0.02 C	0.21 C	49.91	458.1	D CZ
13.73 C	10.29 CI	112.35 C	0.01 C	0.2 C	49.79	457.3	O 0
13.73 C	10.29 CI	112.53 C	0.01 C	0.25 C	49.62	457.9	O 0
13.73 C	10.29 CI	112.53 C	0 C	0.24 C	49.86	457.9	0 C
22.39 C	10.29 CI	179.9 C	0 C	0.27 C	49.83	458.2	0 C
22.38 C	10.29 CI	180.58 C	0.01 C	0.23 C	49.67	457.7	0 C
22.37 CS	10.29 CI	180.88 CS	0.01 C	0.24 C	49.82	458.3	SO 0
22.37 CS	9.87 CI	180.88 CS	0.13 C	0.36 C	49.73	458.3	O CS

	ĺ																																			
2_NOX_CORR	00	0 0	1.94	1.93	1.94	O 0	0 0	0 0	O C	ZD 0	O 0	0 0	O 0	O 0	00	0 0	0 CS	O 0	O 0	O 0	00	0 C	4.03	2.42	2.26	0 0	0 C	00	0 C	0 CZ	0 C	O C	O C	0 C	0 C	0 0
2_GasFlow kscfh	457.6	457.3	457.4	458.1	457.7	457.3	457.5	457.6	457.1	457.2	457.1	456.8	457.7	456.8	458	457.9	457.4	457.7	456.7	457.4	457.2	458.2	458.4	458	457.4	458.3	458.1	457.1	456.9	457.5	457.3	457.3	457.3	457.7	456.9	457.6
2_LOAD	49.86	50.03	49.75	49.67	49.67	49.84	49.75	49.56	50.22	50.11	49.98	49.92	49.77	49.61	49.7	49.61	49.81	49.96	49.83	49.83	49.53	49.7	49.55	49.9	49.57	49.72	49.64	49.67	49.81	49.81	49.55	49.8	49.95	49.86	49.68	49.73
2_NOXHIGH	1.53 C	2.03 C	2.12	2.03	2.19	2.06 C	2.09 C	31.48 C	50.03 C	50.43 CZ	45.59 C	11.47 C	2.82 C	2.82 C	119.97 C	180.91 C	181.87 CS	164.62 C	39.08 C	6.1 C	5.11 C	4.68 C	4.18	2.53	2.39	2.41 C	7.25 C	47.57 C	51.61 C	51.59 CZ	84.41 C	110.07 C	111.02 C	111.02 C	118.93 C	123.58 C
2_NOXLOW	1.44 C	1.9 C	2.05	2.04	2.05	2 C	1.99 C	10.29 C	10.29 C	10.29 C	10.29 C	7.22 C	2.79 C	5.14 C	10.29 C	10.29 C	10.29 C	10.29 C	9.26 C	6.29 C	5.24 C	4.91 C	4.26	2.56	2.39	2.28 C	6.27 C	10.29 C	10.29 C	10.29 C	10.29 C	10.29 C	10.29 C	10.29 C	10.29 C	10.29 C
2_COHIGH ppm	2.86 C	1.88 C	1.89	1.88	1.91	1.87 C	4.91 C	0.24 C	0.06 C	0.08 C	0.61 C	1.37 C	1.91 C	1.88 C	1.38 C	0.63 C	0.14 C	0.45 C	1.12 C	1.76 C	2.15 C	2.34 C	2.23	2.01	1.97	1.77 C	1.7 C	1.11 C	0.43 C	0.06 C	0.09 C	0.15 C	0.13 C	0.14 C	0.14 C	0.15 C
2_COLOW	2.77 C	1.79 C	1.73	1.73	1.75	1.75 C	4.95 C	0.13 C	-0.02 C	0.01 C	0.51 C	1.26 C	1.81 C	1.79 C	1.25 C	0.51 C	0.02 C	0.33 C	0.99 C	1.65 C	2.07 C	2.26 C	2.14	1.94	1.86	1.67 C	1.59 C	1 C	0.31 C	-0.01 C	0 C	0.01 C	0.02 C	0.01 C	O 0	0.01 C
2_02	14.67 C	14.68 C	14.68	14.67	14.67	14.65 C	0.11 C	-0.02 C	-0.02 C	5.3 C	14.64 C	14.66 C	14.5 C	0.06 C	-0.02 C	-0.02 C	4.88 C	14.47 C	14.48 C	14.5 C	14.51 C	14.52 C	14.67	14.67	14.66	8.86 C	0 C	-0.02 C	-0.02 C	-0.02 C	-0.02 C	-0.02 C	-0.02 C	-0.02 C	-0.03 C	-0.03 C
Time	10:11	10:12	10:13	10:14	10:15	10:16	10:17	10:18	10:19	10:20	10:21	10:22	10:23	10:24	10:25	10:26	10:27	10:28	10:29	10:30	10:31	10:32	10:33	10:34	10:35	10:36	10:37	10:38	10:39	10:40	10:41	10:42	10:43	10:44	10:45	10:46
		End			Lin/CGA	NOXH																End			Lin/CGA	NOx H										

	Time	2_02	2_COLOW	2_COHIGH	2_NOXLOW	2_NOXHIGH	2_LOAD	2_GasFlow	2_NOX_CORR
		%	mdd	mdd	mdd	mdd	MW	kscfh	mdd
Regulator issue	10:47	-0.03 C	0.01 C	0.13 C	10.29 C	123.77 CS	49.67	457.7	SD 0
	10:48	-0.03 C	0 C	0.13 C	10.29 C	119.32 C	49.81	457.8	0 0
	10:49	-0.02 C	-0.01 C	0.07 C	10.29 C	112.87 C	49.74	457.5	O C
	10:50	-0.03 C	-0.02 C	0.06 C	10.29 C	112.82 C	49.77	457.9	00
End	10:51	-0.03 C	-0.03 C	0.07 C	10.29 C	112.78 C	49.68	457.3	00
	10:52	7.9	0.05	0.13	10.29	112.8	49.6	457.3	51.19
	10:53	14.58	0.76	0.91	10.29	82.68	49.99	458.5	77.19
	10:54	14.59	1.77	1.86	5.88	6.87	49.76	459.7	6.54
	10:55	14.59	2.52	2.58	3.61	3.62	49.65	460.2	3.38
	10:56	14.6	2.43	2.5	3.31	3.26	49.97	458.5	3.1
	10:57	14.58	2.39	2.44	3.16	3.13	49.97	459	2.95
	10:58	14.6	2.45	2.54	3.14	3.17	49.91	458.7	2.94
	10:59	14.57	2.47	2.54	3.08	3.06	49.84	459.8	2.87

11.8 ppm Exceedance
2.5 ppm Limit
9.3 ppm Over limit

Customer Name:										
	CITY OF ANAHEIM	AHEIM		Report Start	2/20/2019 0:00					
Unit ID	D7			Report End	2/20/2019 23:59	0				
Category	CANYON POWER PLANT	ER PLANT		Date Generated	Generated: 2/21/2019 07:14	1/2019 07-14				
NOx Avail		445.4	e/e			F1 - 10 01012				
Flow Avail		452.6	de							
Total NOx Mass		58.57	115							
						The state of the s				
Date/Time	NOx Valid Quadrants	NOx Calibration/ Maintenance	Average of Valid blas adjusted NOx ppm quadrants	Stack Flow Valid Quadrants	Stack Flow Calibration/ Maintenance	Valid bias adjusted stack flow	Average of valid NOx lb/hr quadrants	Missing data Procedure	Daily Total	
2/20/2019 0:00	4	0								
2/20/2019 1:00	4			4	0	0	0			
2/20/2019 2:00	4		C	4			0			
2/20/2019 3:00	4	1	c	4 4	1 -					
2/20/2019 4:00	4	0	0	4	10	0 0	0			
2/20/2019 5:00	4	0	0	4	0	0	0			
	4	0	2.45	4	0	3260	3.81			
2/20/2019 7:00	4	1	2.13	4	1	14402	3.66			
	4	Н	2.07	4	1	14240	3.52			
2 20 2019 9:00	4	1	2.18	4	1	14080	3.67			
2/20/2019 10:00	4	1	8161	4	1	13598	13.02		8.63 ppm =	13 02 1hg
2/20/2019 11:00	2	1	3.74	2	1	13917	5.89	1N LBS/HR		
2/20/2019 12:00	2	1	3.74	2	1	13917	5.89	П		<
2/20/2019 13:00	4	1	1.91	4	1	13996	3.2	ATT (COOT ATT	V=(13 02#2 E)/0 63	-4L 00 C = C3 B/
2/20/2019 14:00	4	1	2.2	4	-	13993	3 68		(C. 4: 40. CT) - w	10.5 = 5.0V
2/20/2019 15:00	4	1	1.73	4	-	13813	2 87		13 02-3 77 -	o of 15c and property and 15c o
2/20/2019 16:00	4	0	1.02	4	C	משטטר	1 22			STOTE
2/20/2019 17:00	4	0	1.35	4		10072	1 63			
2/20/2019 18:00	4	0	1.36	4		10001	1.02			
2/20/2019 19:00	4	0	1.35	4		10002	1,61			
2/20/2019 20:00	4	0	1.35	4	0	9972	1 61			
2/20/2019 21:00	4	0	1.38	4	0	9819	1,61			
2/20/2019 22:00	4	0	0.13	4	0	1162	0.07			
2/20/2019 23:00	4	0	c	V						

Airgas Specialty Gases Airgas USA, LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number:

PGVP Number:

E02NI99E15A0093

Gas Code:

Laboratory:

CC147621

124 - Los Angeles (SAP) - CA

B32018

NO, NOX, BALN

Reference Number: 48-401148253-1

Cylinder Volume:

144.3 CF **2015 PSIG**

Cylinder Pressure: Valve Outlet:

660

Certification Date:

Mar 21, 2018

Expiration Date: Mar 21, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

		ANALY	TICAL RES	ULTS	~
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
NOX	110.0 PPM	110.2 PPM	G1	+/- 0.9% NIST Traceable	03/14/2018, 03/21/2018
NITRIC OXIDE NITROGEN	110.0 PPM Balance	110.0 PPM	G1	+/- 1.0% NIST Traceable	03/14/2018, 03/21/2018

			CALIBRATION STANDARDS		
Type	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date
NTRM	13010425	KAL004033	97.6 PPM NITRIC OXIDE/NITROGEN	+/- 0.8%	May 09, 2019
PRM	12367	APEX1099237	9.82 PPM NITROGEN DIOXIDE/AIR	+/- 2.0%	Jun 02, 2017
GMIS	0224201602	CC500997	5.100 PPM NITROGEN DIOXIDE/NITROGEN	+/- 2.0%	Feb 24, 2019
The SRM	PRM or RGM noted a	hove is only in reference to	the GMIS used in the assay and not part of the analysis		·

	ANALYTICAL EQUIP	MENT
Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration
Nicolet 6700 AHR0801551 NO	FTIR	Mar 01, 2018
Nicolet 6700 AHR0801551 NO2	FTIR	Mar 16, 2018

Triad Data Available Upon Request

In service: 2/20/19

Approved for Release

Page 1 of 48-401148253-1

South Coast

South Coast Air Quality Management District

Form 500-N

Title V - Deviations, Emergencies & Breakdowns

*This written report is in addition to requirements to verbally report certain types of incidents. Verbal reports may be made by calling AQMD at 1-800-288-7664 (1-800-CUT-SMOG) or AQMD enforcement personnel.

Mail To: SCAQMD P.O. Box 4941 Diamond Bar, CA 91765-0941

> Tel: (909) 396-3385 www.aqmd.gov

Sect	ion I - Operator	Information			
1. Fa	cility Name (Business	Name of Operator That Appears Or			ble On Permit Or Invoice Issued By
<u></u>	ANYON POWE	R PLANT Unit 2 (D7)	AQM	ID): 	153992
	dress:	3071 E. Miraloma Ave			
(wt	nere incident occurred)		Street Address		
		Anaheim	0"	CA	92806
			City	State	Zip
	iling Address: different from Item 3)		Street Address		,
5. Pro	ovide the name, title, a	and phone number of the person	City to contact for further information:	State	Zip
	Ro	onald Hoffard	Generation Plant Manage	r (714	4) 765-4536
		Name	Title		Phone #
		of Breakdowns, Deviation	s, and Emergencies		
1. Thi	s written notification	is to report a(n):			
Ту	pe of Incident		Verbal Report Due*	Written Report Due	
a.	Emergency under	Rule 3002(g)	Within 1 hour of discovery	Within 2 working days exceeded.	from when the emission limit was
b.	▼ Breakdown under	•	For Pulse 400 0 0004 1454 in 4 have of		- Within 7 calendar days after
	Rule 430 (No	•	For Rules 430 & 2004 - Within 1 hour of discovery.		d, but no later than 30 days from , unless a written extension is
	Rule 2004 (R	•	For Rule 218 – Within 24 hours or next business	granted.	
	Rule 218 (No [See Rule 21		day for failure/shutdown exceeding 24 hours		quired semi-annual reports.
C.	Deviation with exc [See Title V Perm	ess emissions it, Section K, Condition No. 22B]	Within 72 hours of discovery of the deviation or shorter reporting period if required by an applicable State or Federal Regulation.	Within 14 days of disco	overy of the deviation.
d.	Other Deviation [See Title V Permi	it, Section K, Condition Nos. 22D &	None 23]	With required semi-ann	nual monitoring reports.
2. The	incident was first dis	covered by: GREG STRO		04/08/2019	09:00
			Name	Date	Time C PM
3. The	incident was first rep	oorted by: OPERATOR #5	on	04/08/2019	09:17
	Via Phone	Nai	me of AQMD Staff Person	Date	Time C PM
b.	n Person		Notification Number	(Required): 556458	
4. Wh	en did the incident ac	tually occur? 04/07/20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	Received By:		Assigned By:	Inspector:	
	Date/Time Received	:	Date/Time Assigned:	Date/Time Rec	eived Assignment:
AQMD	Date Delivered To To	eam:	Date Reviewed Inspector Report:	Date Inspected	Facility:
USE	Team:	Sector:	Breakdown/Deviation Notification No.	Date Complete	d Report:
	Recommended Actio	n: Cancel Notification (Grant Relief Issue NOV No	Other:	
	Final Action:	Cancel Notification	Grant Relief Issue NOV No	Other:	9:

5.	Has the incident stopped? a. Yes,	on:04/07/20	019	08:05	O AM	b. O No	
		Date		Time	⊙ PM		
6.	What was the total duration of the inciden	nt?Days		1.03 Hours			
7.	For equipment with an operating cycle, as	defined in Rule 430 (b)(3)(A),		riours			_
	when was the end of the operating cycle of	during which the incident occu	rred?	Date		Time	— CAM
8.	Describe the incident and identify each pi equipment and attach additional pages as See attachment #1	ece of equipment (by permit, a s necessary.	pplication, or	device number) affected.	Attach photos (w	hen available) of the	affected
9.	The incident may have resulted in a:						
	a. Violation of Permit Condition(s):	D12.1					
	b. Violation of AQMD Rule(s):						
10.	What was the probable cause of the incide See attachment #1	ent? Attach additional pages a	s necessary.				
11.	Did the incident result in excess emission	s? No C Yes (Comp	lete the followi	ng and attach calculations.)		
	☐ VOClbs	□ NOx	lbs	□ SOx	ibs	☐ H2S	lbs
	COlbs	□ PM	lbs	☐ Other:	lbs		pollutant
12.	For RECLAIM facilities Subject to Rule 200 when determining compliance with your at	04 (i)(3) ONLY: If excess emiss	ions of NOx a			want these emission	
	a. (a) Yes, for: NOx SOx	b. C No, for: NOx	∏sox				
	If box 12(b) above is checked, include all info	· · · —	_	as applicable.			
13.	Describe the steps taken to correct the pro avoid future incidents. Include photos of the	oblem (i.e., steps taken to mitig he failed equipment if available	ate excess en and attach a	nissions, equipment repai ditional pages as necess	rs, etc.) and the paary.	reventative measure	s employed to
	See attachment #1						
14.	Was the facility operating properly prior to	the incident?					
	a. • Yes b. O No, because:						
15.	Did the incident result from operator error,	neglect or improper operation	or maintenar	ce procedures?			
	a. C Yes b. O No, because:						
16.	Has the facility returned to compliance?						
	a. O No, because:						
	b.	ons calculations, contemporaneou	us operating log	gs or other credible evidenc	e.)		
Sec	ction III - Certification Statement		1				
l ce	rtify under penalty of law that based on info other materials are true, accurate, and com	rmation and belief formed after	r reasonable i	nquiry, the statements an	d information in th	nis document and in	all attachments
For	Title V Facilities ONLY: I also certify	under penalty of law that that i	i am the respo	nsible official for this fac	ility as defined in A	AQMD Regulation XX	CX.
1. S	ignature of Responsible Official			le of Responsible Official			
	R 1411-2			INTEGRATI	ED RESOUR	RCES MANAG	ER
3. P	rint Name:		4. Da	te:			
	RONALD HO	FFARD			04/12/2019	9	
5. P	hone#:		6. Fa				
	(714) 765-4	1536					
7. A	ddress of Responsible Official:						
	3071 E. MIRALOMA	A AVENUE		Anaheim	CA	9280	06
Stree	et#		City		State	Zip	

AQMD 500N Episode Date: 04/07/2019

Identify Issue: CEMS fuel flow failed to register

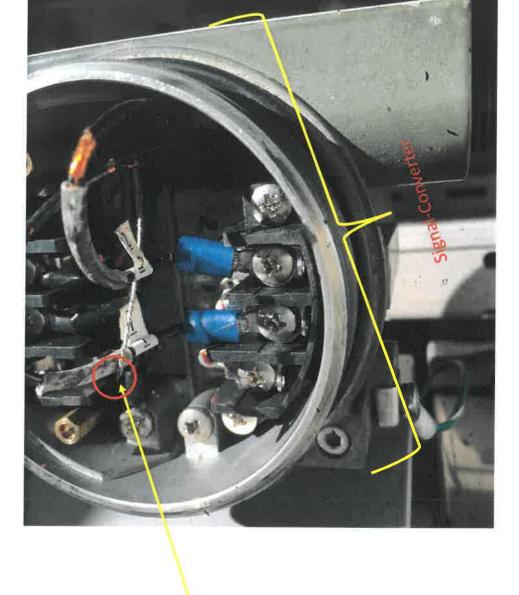
Canyon Power Plant: Unit 2/ID# 153992

Notification: 556458

Question 8 - Describe the incident and identify each piece of equipment:

Unit 2 dispatched at 1815 hours on April 7, 2019. During the start-up period, Unit 2 experienced an ammonia flow control valve failure to open. The Operator Technician placed the ammonia controls in manual operation and continued operation with emissions in compliance and no further incidents. During troubleshooting for ammonia valve failure to automatically open, it was discovered that there had been a loss of fuel meter data transmission to the Unit 2 control computer. Fuel flow data is the permissive that causes automatic opening of the ammonia flow control valve. The fuel flow meter is a device listed in the SCAQMD Permit to Operate, which was subsequently reported to SCAQMD as a breakdown.

Question 10 - What was the probable cause of the incident?


Staff identified a broken wire inside the fuel meter signal-converter, which prevented transmission of fuel flow data to Unit 2 controls and the CEMS (see pic #2).

Question 13 - Describe the steps taken to correct the problem:

The broken wire and connection in fuel flow transmitter (FT-6246) Signal-Converter was repaired and the unit fuel flow transmitter was successfully tested on April 8, 2019.

Question 16 - Facility retuned to compliance?

Unit 2 was shutdown on April 7, 2019 at 2005 hours. The troubleshooting and repairs to Unit 2 occurred on April 8, 2019 and the unit successfully tested at 1035 hours. The test results showed the CEMS registering the correct fuel flow.

Shielding wire broken

Canyon Power Plant ID#153992 4/7/19

South Coast Air Quality Form 500-N Title V - Dev

South Coast Air Quality Management District

Title V - Deviations, Emergencies & Breakdowns

*This written report is in addition to requirements to verbally report certain types of incidents. Verbal reports may be made by calling AQMD at 1-800-288-7664 (1-800-CUT-SMOG) or AQMD enforcement personnel.

Mail To: SCAQMD P.O. Box 4941 Diamond Bar, CA 91765-0941

> Tel: (909) 396-3385 www.aqmd.gov

Sec	tion I - Operator I	Information				4 11	
		Name of Operator That Appears Or	Permit):	/alid AQMD Facility	y ID (Availa	able On Permit Or Ir	voice Issued
(ANYON POWE	R PLANT		AQMD):		153992	
2 1	idress:	3071 E. Miraloma Ave	nuo.				
	here incident occurred)	- I I I I I I I I I I I I I I I I I I I	Street Address				
		Anaheim			CA	92806	
			City		State	Zip	
	ailing Address:						
(II	different from Item 3)		Street Address				
. Pro	ovide the name, title, a	nd phone number of the person (City to contact for further information:		State	Zip	
	Ro	nald Hoffard	Generation Plant Mana	ger	(714	4) 765-4536	
		Name	Title			Phone #	
		of Breakdowns, Deviation	s, and Emergencies				
	is written notification is	s to report a(n):					
Ту	pe of Incident		Verbal Report Due*	Written Repo	ort Due		
a.	Emergency under	Rule 3002(g)	Within 1 hour of discovery	Within 2 wo exceeded.	rking days t	from when the emis	sion limit wa
b.	Breakdown under:		For Pulso 420 0 0004 14501 41	For Rules 4	30 & 2004 -	- Within 7 calendar	days after
	Rule 430 (Non	,	For Rules 430 & 2004 - Within 1 hour of discovery.	breakdown start of the b	is corrected oreakdown.	f, but no later than 3 unless a written ex	30 days fron tension is
	Rule 2004 (RE	•	For Rule 218 – Within 24 hours or next busing	granted.	,		
	Rule 218 (Non [See Rule 218	(f)(3)]	day for failure/shutdown exceeding 24 hours		8 - With req	quired semi-annual	eports.
C.	Deviation with exce [See Title V Permit,	ess emissions Section K, Condition No. 22B]	Within 72 hours of discovery of the deviation shorter reporting period if required by an applicable State or Federal Regulation.	or Within 14 da	ys of disco	very of the deviation	n.
d.	Other Deviation	Section / Condition No. 200 a.c.	None	With require	d semi-ann	ual monitoring repo	rts.
	foce title A Lettilli	Section K, Condition Nos. 22D & 2	3)				
The	incident was first disc	overed by: Greg Strong	On	09/07/20	19	06:25	O AM
			Name	Date		Time	● PM
Γhe	incident was first repo	orted by: Voicemail left at		09/07/20	19	06:52	O AM
a. (Via Phone	Nam	e of AQMD Staff Person	Date		Time	PM
). (O in Person		Notification Numb	per (Required): 57	78653		
∕∕he	en did the incident actu	ally occur? 09/07/20	19 06:25 O AM				
1	Received By:		Assigned By:	Inspe	ector:		
	Date/Time Received:		Date/Time Assigned:	Date/	Time Rece	ived Assignment:	
MD	Date Delivered To Tea	m:	Date Reviewed Inspector Report:	Date	Inspected F	acility:	
LY	Team:	Sector:	Breakdown/Deviation Notification No.	Date	Completed	Report:	
	Recommended Action:	Cancel Notification G	rant Relief Issue NOV No	Oth	ier:		
	Final Action:	Cancel Notification G	rant Relief Issue NOV No.	Oth			

5.	Has the incident stopped? a. @	Yes, on:	09/07/2019	(06:25	O AM	b. O No	
6.	What was the total duration of the	incident?	Date		Time	● PM		
			Days		Hours			
7.	For equipment with an operating c when was the end of the operating	ycle, as defined cycle during wh	in Rule 430 (b)(3)(A), ich the incident occurred?				_	O AM
8.	Describe the incident and identify of equipment and attach additional parameters. SEE SUMMARY ATTACHI	ages as necessa	uipment (by permit, applica ry.	tion, or device number) :	Date affected. Attach	photos (w	Time when available) of th	O DU
9.	The incident may have resulted in a							
	b. Violation of AQMD Rule(s):		2012(c)(3)(C)					
10.	What was the probable cause of the SEE SUMMARY ATTACH	e incident? Atta		essary.				
11.	Did the incident result in excess em	nissions?	lo O Yes (Complete the	e following and attach calc	ulations.)			
	□ VOClbs	s 🔲 NO)x	os 🔲 SOx 🔙		_lbs	☐ H2S	lbs
	☐ COlbs	s 🔲 PA	1I	os Other:		lbs		nollutant
14. 15.	Describe the steps taken to correct avoid future incidents. Include photo SEE SUMMARY ATTACHE Was the facility operating properly pa. Yes	orior to the incidence: rerror, neglect of use: proper lace?	ent? ent? r improper operation or mai Dack-up continuous	intenance procedures?	s necessary.	and the p	reventative measur	es employed to
	tion III - Certification Statem		ions, contemporaneous opera	ating logs or other credible	evidence.)			
l cer and For	tify under penalty of law that based of other materials are true, accurate, an little V Facilities ONLY:	on information and complete.	nd belief formed after reaso					
1. Si	gnature of Responsible Official			2. Title of Responsible	Official:			
	1 Hoffe			GE	NERATION	I PLAN	IT MANAGER	
3. Pr	int Name: RONALD	HOFFARD		4. Date:	0/1	9		
_				1/6	0//	/		
. Ph	one #:			6. Fax #:	0//	/		
	one#: (714) 7	'65-4536		6. Fax #:	0//	/		
	one #: (714) 7 dress of Responsible Official: 3071 E. MIRA	'65-4536		6. Fax #:	1 A	CA	928	06

SCAQMD Form 500-N Deviation Date: 09/07/2019

Identify issue: DAHS Computer server failed Canyon Power Plant: Unit 1-4/ID# 153992

Notification: 578653

Question 8 - Describe the incident and identify each piece of equipment:

On September 7, 2019 Greg Strong, Canyon Technician, was called to operate Canyon's turbine at approximately 1400 hrs. An on-line passing Calibration was performed at approximately 1500 hrs for all four units. At 1825 hrs, Greg heard beeping sounds coming from the DAHS computer followed by a computer lock up and terminal failure. The technician attempted to reboot the DAHS computer to no avail. The four units were immediately shut down and placed in forced outage for the duration of the DAHS loss.

All analyzers in the CEMS shack that monitor each of the turbines were in working condition and were not affected by the DAHS computer crashing.

On Monday, September 9, 2019, the DAHS software vendor CEMTEK KVB-Enertec was contacted to assist with repairing or replacing Canyon's DAHS computer. A new computer arrived on Tuesday, September 10, 2019, however, the old computer was unable to operate and the vendor could not access the data to reconfigure the new computer. In-house testing was performed but the old computer was not able to reboot. The old computer was delivered to an outside company for recovery of the data from the drives.

Question 10 – What was the probable cause of the incident?

The probable cause was due to a cache controller RAID malfunction.

Question 13 – Describe the steps taken to correct the problem:

The software vendor KVB-Enertec was contacted to assist with the repairing or replacing of the DAHS computer. A new computer was received on Tuesday, September 10, 2019 and installed. The old computer was delivered to a facility to recover data from internal drives since the computer was not operable with the RAID 5 cache malfunction. The new computer was successfully reconfigured with the recovered data.

Question 16 – Facility retuned to compliance.

The DAHS computer returned to compliance on Friday, September 13, 2019 at 1130 hrs. All daily RTUs were submitted to SCAQMD. The four units operated on September 14, 2019 without issue.

South Coast Air Quality Management District

Form 500-N

Title V - Deviations, Emergencies & Breakdowns

Mail To: SCAQMD P.O. Box 4941 Diamond Bar, CA 91765-0941

*This written report is in addition to requirements to verbally report certain types of incidents. Verbal reports may be made by calling AQMD at 1-800-288-7664 (1-800-CUT-SMOG) or AQMD enforcement personnel.

s may be made by Tel: (909) 396-3385

www.aqmd.gov

Sec	tion I - Operator	Information					
1. Fa	acility Name (Business	Name of Operator That Appears On Pe	•		lity ID (Availab	ole On Permit Or Invoice Issued	Ву
2	CANYON POWE	R PLANT Unit 4 (D19)	AQ	MD):		153992	
1	ddress:	3071 E. Miraloma Avenu					
(W	here incident occurred)	Amalanton	Street Address		0.4		
		Anaheim	City		CA State	92806 Zip	→ 2
ļ			Oity		State	Ζιμ	
	ailing Address: different from Item 3)		Street Address				-:
	,						
5. Pr	ovide the name, title, a	and phone number of the person to o	City contact for further information:		State	Zip	=:
	Ro	onald Hoffard	Generation Plant Manage	er	(714) 765-4536	
		Name	Title			Phone #	
		of Breakdowns, Deviations,	and Emergencies				
	nis written notification	is to report a(n):					
T)	ype of Incident		Verbal Report Due*	Written R	eport Due		
a.	. Emergency under	Rule 3002(g)	Within 1 hour of discovery	Within 2 exceede		rom when the emission limit wa	s
b.	. 🗷 Breakdown under	•	For Dulas 420 9 0004 Milkin 4 hours			Within 7 calendar days after	
	Rule 430 (No	,	For Rules 430 & 2004 - Within 1 hour of discovery.			, but no later than 30 days from unless a written extension is	
	X Rule 2004 (R		For Rule 218 Within 24 hours or next busines	granted.			
	Rule 218 (No [See Rule 21		day for failure/shutdown exceeding 24 hours		218 - With req	uired semi-annual reports.	1
C.	Deviation with exc See Title V Permi	ess emissions it, Section K, Condition No. 22B]	Within 72 hours of discovery of the deviation or shorter reporting period if required by an applicable State or Federal Regulation.	r Within 14	l days of disco	very of the deviation.	
d.	Other Deviation [See Title V Permi	it, Section K, Condition Nos. 22D & 23]	None	With requ	uired semi-ann	ual monitoring reports.	-
2. The	e incident was first dis	covered by: _Jeffrey Hacker	on	10/16/2	2019	04:55 O AM	-
		,	Name	Dat	е	Time	
3. The	e incident was first rep	ported by: Voicemail left at 1	800-CUT-SMOG (Op#8) on	10/16/2	2019	05:19OAM	
a.	Via Phone	Name	of AQMD Staff Person	Dat	e	Time	
b.	O In Person		Notification Number	er (Required):	583951		_
4. Wh	nen did the incident ac	tually occur?10/16/201	9 04:55 ○ AM Time ● PM				
	Received By:		Assigned By:	In	spector:		٦
	Date/Time Received		Date/Time Assigned:	D	ate/Time Rece	ived Assignment:	
AQME		eam:	Date Reviewed Inspector Report:	D	ate Inspected I	Facility:	
USE		Sector:	Breakdown/Deviation Notification No.	D	ate Completed	Report:	
	Recommended Actio	n: Cancel Notification Gra	nt Relief Issue NOV No		Other:		
	Final Action:	Cancel Notification Gra	nt Relief Issue NOV No		Other:		

5.	Has the incident stopped? a. • Yes, or	n:10/16/2019		05:00 Time	O AM	b. O No	
6.	What was the total duration of the incident	1?		06			
		Days		- Hours	MIN		
7.	For equipment with an operating cycle, as when was the end of the operating cycle d		? <u>,</u>	Date		Time	O AM
8.	Describe the incident and identify each pie equipment and attach additional pages as		ation, or devic		Attach photos (wi		
	See attached summary						
9.	The incident may have resulted in a:	4004110					
	a. X Violation of Permit Condition(s):	A99.1 NOx ppm > 2.5					
	b. Violation of AQMD Rule(s):						
10.	What was the probable cause of the incide See attached summary	nt? Attach additional pages as ne	cessary.				
11.	Did the incident result in excess emissions	? O No • Yes (Complete	the following and	d attach calculations.)		
	☐ VOClbs	⊠ NOx1.170	_lbs	SOx =	lbs	☐ H2S	lbs
	COlbs	☐ PM	_lbs	Other:	lbs		pollutant
12.	For RECLAIM facilities Subject to Rule 200 when determining compliance with your an	4 (i)(3) ONLY: If excess emissions inual allocations?	of NOx and/or	SOx were reported	in Item 11, do you	want these emission	ns to be counted
	a. Yes, for: NOx SOx	b. O No, for: NOx	SOx				
40	If box 12(b) above is checked, include all infor					- 41	
13.	Describe the steps taken to correct the pro avoid future incidents. Include photos of the					reventative measur	es employed to
	See attached summary						
14.	Was the facility operating properly prior to	the incident?					
	a. • Yes b. O No, because:						
15.	Did the incident result from operator error,						
	a. O Yes b. O No, because:	Quarterly maintenance is	performed	to stack sam	ple cooler		
16.	Has the facility returned to compliance?						
	a. O No, because:						
	b. • Yes (Attach evidence such as emission	ns calculations, contemporaneous op	erating logs or o	other credible evidend	e.)		
Sec	ction III - Certification Statement						
	rtify under penalty of law that based on info other materials are true, accurate, and com		sonable inquir	y, the statements ar	id information in ti	nis document and i	n all attachments
For	Title V Facilities ONLY: I also certify	under penalty of law that that I am	the responsibl	e official for this fac	cility as defined in	AQMD Regulation >	OXX.
1. S	ignature of Responsible Official:		2. Title of	Responsible Officia	l:		
	K Hope			GENER	ATION PLAN	IT MANAGEF	R
3. P	rint Name:		4. Date:	1-1	1	3	
	RONALD HO	FFARD		10/2	1/19	7	
5. P	hone#:		6. Fax #:				
	(714) 765-4	ł536					
7. A	ddress of Responsible Official:						
	3071 E. Miralon			Anaheim	CA	928	306
Stree	et#		City		State	Zip	

AQMD 500N Episode Date: 10/16/19

Identify issue: Unit 4 Stack NOx Sample Cooler tubing disconnected

Canyon Power Plant: Unit 1/ID# 153992

Notification: 583951

Question 8 - Describe the incident and identify each piece of equipment:

Unit 4 initiated operation on 10/16/19 at 1053 am (DAHS time) to conduct RATA source testing. Unit 4 operated within the required NOx, CO and ROG permit limits until minute 1654 when the NOx ppm spiked from 2.17ppm to 20.31 in two seconds. The operators received a Unit 4 stack sample flow alarm at 1657 and proceeded to Unit 4 CEMS shack to verify the issue. The operator found that one of four sample cooler impingers had disconnected from the sample cooler. The tubing was immediately connected to the impinger and the unit returned to compliance by minute 1700 with a NOx ppm of 2.53ppm. Unit 4 continued in compliance until the unit was shut-down at 2103 hours (see attached minute data).

Question 10 - What was the probable cause of the incident?

An analyzer sample cooler tube attached to the impinger became disconnected.

Question 13 - Describe the steps taken to correct the problem:

New tubing connectors and impingers were installed, in addition, a backing plate will be installed to secure and prevent tubing from disconnecting.

Question 16 - Facility retuned to compliance?

Unit 4 returned to compliance on 10/16/19 at 1700 hours.

JAHS MINUTE DATA

4 NOXC 1H	opm/hr	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2 78	2.78
4 H2O FLOW	k#/hr status	ų,	24.6	24.8	24.8	24.9	24.7	24.6	24.7	24.7	24.6	24,6	24.6	24.6	24.6	24.6	24.6	24.6	24.6	24.6	24.7	24.7	24.6	24.7	24.6	24.6	24.6	24.6	24.6	24.6	24.6	24.6	24.6	24.6	24.6	24.6	24.6	24.6	24.7	24.7	24.7	24.7	24.7	25	24.6	24.6
	status																																													
4_NH3_Flow	#/hr	79.26	81.39	82.57	82.42	81.55	80.92	80.91	80.86	81.35	81.42	81.21	80.9	80.88	80.89	80.97	80.98	80.99	81.03	80.98	81.05	81.03	81.15	81.14	81.38	81.47	81.46	81.42	81.41	81.35	81.4	81,45	81.39	81.44	81.38	81.42	81.33	81.45	81.38	81.38	81.42	81.28	81.67	81.58	81.98	81.91
_	status																																													
4_GasFlow	kscfh	461.4	461.1	461.8	461.5	462.1	461.8	461.3	461.5	461.3	461.4	460.9	460.6	460.9	460.8	460.9	460.9	460	460.9	460.5	461.4	461.5	460.6	461.6	460.8	461.2	461.5	461.3	461	461.1	461.1	460.9	460.7	461.1	460.8	461.3	461.1	461.3	461.8	461.7	462.1	461.7	462,4	462.4	462.8	462.1
	status																																													
4_LOAD	MM	50.19	50.19	50.17	50.26	20'09	50.28	50.35	50.22	50.09	50.33	50.06	50.11	50.08	20.06	50.16	50.1	50.24	50.08	50.04	50.31	50.21	50.23	49.96	50.04	50.13	50.01	50.1	50.21	50.27	50.19	50.23	50.17	50.21	50.2	50.17	50.24	50.09	50.24	50.23	50.08	50.09	50.03	50.17	50.18	50.05
~	status																																													
4_NOX_CORR	mdd	2.45	2.54	2.55	2.44	2.21	2.09	2.12	2.29	2.39	2.38	2.32	2.28	2.29	2.33	2.34	2.33	2.33	2.33	2.35	2.35	2.36	2.37	2.39	2.38	2.35	2.34	2.33	2.31	2.31	2.31	2.28	2.28	2.27	2.28	2.29	2.29	2.29	2.28	2.29	2.29	2.31	2.33	2.37	2.39	2.33
	status																																													
4_NOXPPM	mdd	2.69	2.79	2.8	2.68	2.43	2.29	2.33	2.51	2.62	2.61	2.54	2.5	2.51	2.55	2.56	2.55	2.55	2.56	2.57	2.58	2.59	2.6	2.62	2.61	2.58	2.57	2.55	2.53	2.53	2.53	2.5	2.5	2.49	2.5	2.51	2.51	2.51	2.5	2.51	2.52	2.54	2.58	2.63	2.65	2.57
Time 4		15:44	15:45	15:46	15:47	15:48	15:49	15:50	15:51	15:52	15:53	15:54	15:55	15:56	15:57	15:58	15:59	16:00	16:01	16:02	16:03	16:04	16:05	16:06	16:07	16:08	16:09	16:10	16:11	16:12	16:13	16:14	16:15	16:16	16:17	16:18	16:19	16:20	16:21	16:22	16:23	16:24	16:25	16:26	16:27	16:28

CANYON POWER PLANT ID # 153992

4	
)	
•	+
	7
	_

43	Time	4_NOXPPM		4_NOX_CORR		4_LOAD	•	4_GasFlow	4	4_NH3_Flow	4,	4_H2O_FLOW	_	4_NOxC_1H
		mdd	status	ppm	status	×	status	kscfh	status	#/hr	status	k#/hr	status	ppm/hr
	16:29	2.6		2.35		50.14		463		82.04		24.7		2.78
	16:30	2.71		2.45		50.2		462.2		82.2		24.6		2.78
	16:31	2.69		2.43		50.19		462.9		82.51		24.6		2.78
	16:32	2.7		2.44		50.27		462.3		82.63		24.6		2.78
	16:33	2.7		2.45		50.23		461.7		83.3		24.6		2 78
	16:34	2.65		2.4		50.32		462.1		84.1		24.6		2.78
	16:35	2.53		2.3		50.5		462.1		83.99		24.7		2.78
	16:36	2.39		2.17		50.13		462.4		84.05		24.7		2.78
	16:37	2.29		2.09		50.2		462.1		81.13		24.7		2.78
	16:38	2.3		2.09		50.27		462.1		81.1		24.6		2.78
	16:39	2.42		2.2		50.27		462.2		81.12		24.7		2 78
	16:40	2.54		2.31		50.19		462		81.04		24.8		2 78
	16:41	2.53		2.3		50.24		461.9		81.07		24.8		2.78
	16:42	2.49		2.26		50.08		462.9		81.02		24.9		2 78
	16:43	2.46		2.24		50.04		462.2		81.07		24.7		2.78
	16:44	2.44		2.22		50.17		461.9		81.08		24.8		2.78
	16:45	2.47		2.25		50.23		461.9		81.1		24.7		2.78
	16:46	2.48		2.26		50.19		462.4		80.98		24.7		2.78
	16:47	2.45		2.23		50.34		462.3		81.08		24.8		2.78
	16:48	2.44		2.22		50.19		462.3		81.02		24.8		2.78
	16:49	2.44		2.23		50.26		462		81.02		24.7		2.78
	16:50	2.43		2.22		50.16		462		80.99		24.8		2.78
	16:51	2.41		2.19		50.32		462.5		80.96		24.8		2.78
	16:52	2.4		2.19		50.07		462.7		81.07		24.8		2.78
	16:53	2.41		2.19		50.22		462.6		96.08		24.8		2.78
	16:54	2.45		2.17		50.2		463		80.81		24.8		2.78
The stack sample cooler one of the	16:55	11.32		9.65		50.25		462.4		80.68		24.8		2.78
tubes to the impinger disconnected	16:56	22.75		20.31		20.06		462.9		80.5		24.9		2.78
	16:57	2.96		5.38		50.22		462.9		80.37		24.7		2.78
The tubing connected to impinger NOx	16:58	2.82		2.55		50.2		463		80.49		24.7		2.78
ppm returned to compliance	16:59	2.85		2.58	2.78	50.17		462		81.09		25		2.78
	17:00	2.8		2.53		50.1		464.6		84.2		25.3		2.15
	17:01	1.98		1.79		50.15		462.2		84.32		24.6		2.15
	17:02	4.7		2.17		50.05		462.8		84.38		24.6		2.15
	17:03	2.44		2.21		50.23		462.2		84.61		24.7		2.15
	17:04	2.41		2.18		50.25		463.2		84.79		24.7		2.15
	17:05	2.37		2.15		50.03		462.8		84.79		24.8		2.15
	17:06	2.3		5.09		50.05		462.7		84.79		24.8		2.15
	17:07	2.24		2.03		50.26		462.8		84.28		24.8		2.15
	17:08	2.21		2.01		50.21		462.7		84.17		24.7		2.15
	17:09	2.23		2.03		50.26		462.5		84.12		24.8		2.15
	17:10	2.25		2.05		50.08		462.2		84.18		24.6		2.15
	17:11	2.25		2.05		50.13		462.6		84.24		24.7		2.15
	17:12	2.25		2.05		50.32		462.5		84.17		24.8		2.15
	17:13	2.23		2.03		50.13		462.2		84.26		24.8		2.15

CANYON POWER PLANT ID # 153992

15-MIN DATA

														The same of the same of	100	AND DESCRIPTION OF	MACHER CO.																			
i				HOW DOME SHOW THE PAYOR	0	2156	100	The state of the s		Name of Street	i			And the party of t	THE PERSON NAMED IN POST OFFICE AND POST OF THE PERSON NAMED IN POST OF THE PERSON NAM	22 4 05 a 1 1 2 1 KH	P. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																			
Average of PD (SCP/MSD)		8710	8710	6710	9710	8710	8710	1710	2462	83.10	0710	0710	8710	8710	0110	87.0		0110	8710	0110	0110	0770	8710	8710	8710	8710	8710	8710	8710	8710	8710	8710	8710	8710	8710	-8710
Average of HRV (BTG/SCF)		1050	1050	1050	1050	1050	1050	1050	VEN	2	1050	0001	1050	1050	1050	1050	0001	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050
Average of Fuel flow (kecf/hr)		462.7	461.8	. 9	461	461.8	462.2	462.5	46.5 7	645	4K1 R	461.7	461.8	461.9	461 7	462.1	1 600	462.1	461.9	462.1	459 4	750	459.1	363.9	25	0	0	0	0	0	0	0	0	0		
Average of		14.42	14.42	14.43	14.43	14,41	14.4	14.36	14.4	14.62	14.42	14 42	14.43	14.43	14.44	14.41	1/1/20	14.39	14.4	14.41	14.45	14 45	14.46	15.27	20.04	20.88	20.89	20.9	20.91	20.91	20.91	20.91	20.91	20.9	20.91	20.91
MOK (11b/hr)		4.06	4.12	CT.	4.17	4.13	4.09	8.48	3.74	3.83	3 92	3 61	3.86	4.03	4.03	2	3 92	4.02	3.98	4.36	2.9	2.68	2.95	2.48	0.18	0	0	0	0	٥	0	0	0		0	0
Stack flow Blas Adjusted blas stack flow factor (kecf/hr)	0.00	13548	T2027	130.0	13619	13601	13592	3517	13606	13678	13622	13619	13643	13646	13661	13610	1356R	13568	13583	13610	13614	13602	13626	12355	5556	0	0	0	0	0	0	0	0	0	0	0
Stack flow bias factor	,	- 1			4	1	1						_	1	-		-	1		г	1	-	1	1	1	1	1	1	1	1	1	1	-	1	1	1
Average of Valid stack flow minutes	(ABCK/BK)	13670	13022	2074	13019	13601	13592	13517	13696	13628	13622	13619	13643	13646	13661	13610	13568	13568	13583	13610	13614	13602	13626	12355	5556	0	0	0	0	0	0	0	0	0	0	0
bins adjusted Now ppm	2 49	2 53	5.55		4.30	2.54	2.52	5.25		2.35	2.41	2.4	2.37	2.47	2.47	5.55	2.42	2.48	2.45	2.68	1.78	1.65	1.81	1.68	0.27	0	0	0	0	0	0	0	0	0	0	0
MOK DOM bias factor							7				1	1	1	1	1	-1	1	1	1	1	1	1	1	1	E .	-	-		-	1	-	1	1		1	1
Average of Valid Range adjusted MOM	2.49	2.53	2.55	22.5	V u c	2.34	2.57	2.25	2.3	2.35	2.41	2.4	2.37	2.47	2.47	2.55	2.42	2.48	2.45	99.5	17.78	1.65	1.81	1.68	0.27	٥	0	0	0	0	0	0	0	0	0	0
Valid NOX Valid Stack Valid Runge Dyn minutes flow minutes adjusted NOX	15	15	10	1		7.7	TP	779	1.5	5	15	15	15	15	15	15	15	15	6	m	15	15	15	15	15	15	12	CT.	15	15	12	15	15	13	12	15
Valid MOx ppm minutes	15	15	15	2	12	24	CT	C	62	(C)	15	15	15	15	15	1.5	15	15	6	3	12	15	15	15	15	12	1	CT	15	15	CT	15	51	15	15	1.5
Date / Time	10/16/2019 15:15	10/16/2019 15:30	10/16/2019 15:45	10 16 2019 16 00	10/16/2019 16:15	10/15/2010 15:10	10.1612019 10:30		10/16/2019-17:00	10/16/2019 17:15	10/16/2019 17:30	10/16/2019 17:45	10/16/2019 18:00	10/16/2019 18:15	10/16/2019 18:30	10/16/2019 18:45	10/16/2019 19:00	10/16/2019 19:15	10/16/2019 19:30	10/16/2019 19:45	10/16/2019 20:00	10/16/2019 20:15	10/16/2019 20:30	10/16/2019 20:45	10/16/2019 21:00	10/16/2019 21:15	10/16/2019 21:30	10/16/2019 21:45	10/16/2019 22:00	10/16/2019 22:15	10/16/2019 22:30	10/16/2019 22:45	10/16/2019 23:00	10/16/2019 23:15	10/16/2019 23:30	10/16/2019 23:45

CANYON POWER PLANT ID # 153992 U4

HOURLY DATA

																											3.22 nnm = 5.22 lbs			x=(5.22*2.5)/3.22=4.05.136		5.22-4.05 = 1.17 lbs excess emissions	ı	
									Daily Total																									42 47
									Missing data																									
			11:31					Arrangement of		quadrants	o	0	0	0	0	0	0	o	0	0	2.28	5.23	4	4.11	4.05	4.09	5.22	3.85	4.02	4.07	2.75	0.05	0	
	0:00	23:59	/2019					Average of	Valid bias adjusted	stack	0	0	0	0	0	0	0	0	0	0	2890	13826	13661	13646	13637	13635	13582	13619	13640	13582	13299	1389	0	c
ort (Ver: 2.2)	10/16/2019 0:								Stack Flow Calibration/	Maintenance	0	0	1	0	0	0	1	0	0	0	0	П	0	0	0	0	0	0	0	1	0	0	0	c
SCAQMD Reclaim Audit Report (Ver: 2.2)	Report Start	End	anerated	Т					Stack Flow Valid Quadrants		4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4	7	4	4	4	7	4
SCAOMD R				ф	эÞ	lb		Average of	Valid bias adjusted NOx	ppm quadrants	0	0	0	0	0	0	0	0	0	0	1.65	3.16	2.45	2.52	2.48	2.51	3.22	2.37	2.47	2.51	1.73	0.07	0	0
	PHEIM		POWER PLANT	437.8	438.9	43.72			NOx Calibration/	maintenance	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0
	CITY OF ANAHEIM	D19	CANYON POW	43	43	43			Now Valid		4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	Customer Name:	Unit ID	Category	Now Avail	Flow Avail	Total Nox Mass			Date/Time		10/16/2019 0:00	10/16/2019 1:00	10/16/2019 2:00	10/16/2019 3:00	10/16/2019 4:00	10/16/2019 5:00	10/16/2019 6:00	10/16/2019 7:00				10/16/2019 11:00			10/16/2019 14:00	10/16/2019 15:00	10/16/2019 16:00			10/16/2019 19:00		10/16/2019 21:00	10/16/2019 22:00	10/16/2019 23:00

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 10

CONDITION HAZ-1

List of Hazardous Materials contained at the facility:

- Aqua Ammonia 19%
- Batteries
- Bromine
- Calibration gases for the CEMS
- CO₂
- Diesel Fuel
- Fire suppression chemicals
- Florescent light bulbs
- Freon for the chiller systems R-123
- Gas Turbine oil
- Gas compressor oil
- Reagents for the water treatment system
- SF6 in switch gear
- Anti-scalent RL 9007
- Sodium Hydroxide
- ChemTreat BL124
- Microbiocide ChemTreat CL2156
- Closed System Buffer Formula 6150
- ChemTreat CL6855
- 12.5% Sodium Hypochlorite Solution
- RL 1125
- Simple Green
- ChemTreat CL41
- ChemTreat CL6855
- Formula 2530LT
- Conntect 5000
- Powerback Concentrate with Anti-Foam Agent

	Location Information					(hemical Identification			Fire Code Hazaro	Class Information	
1a*	201	202	203	204	205	206	207*	208	209	210a	210b	215
CERSID	ChemicalLocation	CLConfidential	MapNumber	GridNumber	ChemicalName	TradeSecret	CommonName	EHS	CASNumber	PFCodeHazardClass	SFCodeHazardClass	LargestContainer
10445230	RO WATER TREATMENT	N	1	E-1, F-1		N	ANTISCALENT RL 9007	N				350
10445230	AMMONIA STORAGE TANK		1	D-3		N	AQUA AMMONIA (19%)	N			31	10000
10445230	BENEATH BACK-UP GENERATOR	N	1	D-4		N	DIESEL FUEL	N			!	500
10445230	IN TURBINE ENGINES and DRUM STORAGE AREA	N	1	B5, F3-6		N	MOBIL JET OIL II	N		3	3	150
10445230	ELECTRIC GENERATORS AND DRUM STORAGE AREA	N	1	B5, F3-6		N	MOBIL DTE LIGHT OIL	N		4	ļ	500
10445230	HYDRAULIC STARTERS AND DRUM STORAGE AREA	N	1	B5, F3-6			MOBIL DTE 25 OIL	N		4	ļ.	55
10445230	NATURAL GAS COMPRESSORS AND DRUM STORAGE AREA	N	1	B5, F1-G1		N	MOBIL PEGASUS 805 OIL	N		4	ļ.	55
10445230	IN TRANSFORMERS	N	1	G 3-6,			MINERAL OIL	N		4	l.	5680
10445230	RO WATER TREATMENT	Υ	1	D2	SODIUM HYDROXIDE		CAUSTIC SODA 50%	N			;	330
10445230	NEAR COOLING TOWER AND IN DRUM STORAGE AREA	N	1	D-2		N	BIOCIDE (CHEMTREAT CL41)	N				330
10445230	NEAR COOLING TOWER AND IN DRUM STORAGE AREA		1	B5, E2		N	SODIUM HYPOCHLORITE SOLUTION	N		į.	5	330
10445230	WAREHOUSE AND NEAR EXHAUST TOWERS	N				N	CALIBRATION GAS	N				150
10445230	DRUM STORAGE AREA		1	B5	PROPANE		PROPANE	N	74-98-6	8	3	290
10445230	SUBSTATION BUILDING	N	1	D7, E7	SULFUR HEXAFLUORIDE	N	SF6	N	2551-62-4			2400
10445230	IN FIRE FIGHTING EQUIPMENT - VARIOUS AREAS	N	1	C5, D4, F1, G1	CARBON DIOXIDE	N	CO2	N	124-38-9			437
10445230	Chiller Enclosure		1	E-2	Freon R-123	N	Freon	N	306-83-2			920
10445230	WATER TREATMENT	N	1	E-1		N	MICROBIOCIDE CL206 CHEMTREAT	N				120
10445230	WATER TREATMENT	N				N	ChemTreat BL 124	N		Į.	;	320
10445230	WATER TREATMENT	N				N	ChemTreat CL 2156	N			;	320
10445230	WATER TREATMENT	N				N	ChemTreat CL6855	N			;	320
10445230	DRUM STORAGE AREA					N	Simple Green	N				55

2/21/2019 about:blank

Print Cancel

				Year of Filin	g: 2018				Su	bmitte	d Date: 02/2	1/2019	
Compan	y Profile		***************************************	30001130413076161316131611116111	0160161641	***************************************	MIDH4F7447 DA4444 LMAIDH4B44444	***************************************		***************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***********
Compar	ny Name :		City of	Anaheim		Federal tax	ID:	**	****970				
Contact	Person De	etails	TAN BAME I SAN FANDA MAKAT ISTA ÇAŞÇAMSIĞAŞ	0000 34001 bbill 2004 (novel årsensebæld se			***************************************	E					
Person N	lame :		Mr. Ro	nald Hoffard (Generation Ma	anager)							
Phone :			Contac	et: 7147654536	3								
Email :			rhoffar	d@anaheim.n	et								
Mailing /	Address Ir	formation	. 41.01071+0[39793] 2994 (31794 https://www.com.com			************************		***************************************	\$407676161616161616161616161616				
		1541 15 15 15 15 15 15 15 15 15 15 15 15 15		ast Miraloma / im, 92806	Ave.								
Billing A	ddress Inf	formation			••••••••••••••••••••••••••••••••••••••	***************************************	***************************************				. 3000 FT. 17 3200 E E E E E E E E E E E E E E E E E E	ÇOÇU ELM KATO KAM KEŞAK SAMŞ ŞAM	*********
# 1704 WELT THE EMPLOYER	***************************************	**************************************		ast Miraloma / im, 92806 im	Ave.		04 T 040 P 1404 P 999 E 140 P 794 E 99999 MAG 9 HAD	1474+2300) 63 635 C Lawre marareara	***************************************	***************************************		***************************************	
Facility F	Profile	···(1)	***************************************	***************************************	***************************************		***************************************	[*********	***************************************				
Facility N	ame :	***************************************	Canyor	n Power Plant		Federal tax	ID :	**	****970			***************************************	
	Person De			***************************************								***************************************	
Person N	ame :	****************	Mr. Ro	nald Hoffard (Generation Ma	ınager)	***************************************				***************************************),, bet 1444
Phone :			Contac	t: 7147654536	1								
Email :			rhoffar	d@anaheim.n	et								
Mailing A	\ddress In	formation	######################################			***************************************							
# #16##################################	Mbi a rbeikberfüldeber			ast Miraloma / m, 92806	Ave.	***************************************	4 3 4 4 4 5 5 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	***************************************		*****************	, p		
Billing A	ddress Inf	ormation	M-1 E-1-0-1 2016 1 2016 1 21 0 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PM \$50006309636464505035074450	**************************************								
				ast Miraloma A m, 92806 m	Ave.								PP-144-0-4-PP-T-N
Refrigera	ition Syste	m Listing	#17**1***1*****************************	***************************************		***************************************		***************************************		***************************************			
Number	System ID	Full Charge (lbs)	Refrigerant Type	Installation Date	Temperature Class	Equipment Type	Manufacturer	Operational Status	Model	Model Year	Serial Number	Location	Floo Plan (Y/N
1	CH-100	5200.00	R-123	05/12/2011	Medium	Chiller	Trane	Normal Operation	CDHF3000	2011	L10A00350	North side of facility, in dedicated chiller	
												enclosure.	
2	CH-200	5200.00	R-123	05/12/2011	Medium	Chiller		Normal Operation	CDHF3000	2011	L10B00882	of facility	

Leak detection System

enclosure

Number	ALD ID	Refrigeration System ID	Installation Date	ALD Type	Detection Limit		Concentration Monitor Type		Number of Sensors	Туре		Location of Sensors/Inlets
	301- IRF A	CH-100CH- 200	05/12/2011	Concentration Monitor (Direct System)	10.00	100	0	Honeywell		Infra red	Vulcain/honeywell	1 foot above floor

Refrigeration System Inspection and Servicing

Number		System		Date	Date	Number	Refrigerant	Cause	Service	Date	Date of	Purpose of	Technician	Certificate	Certificate
	Date	ID	Detected?		Leak Repaired	of Days	Added	of Leak	Provided	of	Follow-	Added	Name	#	Туре
				Detected	Kepaired		(lbs)	Leak		VT	upvi	Refrigerant			
1	01/22/2018	CH-200	No			0	0.00								
	01/24/2018					0	0.00								
3	01/26/2018	CH-200	No			0	0.00								
4	01/29/2018	CH-200	No			0	0.00								
	01/29/2018				1	0	0.00								
6	01/29/2018	CH-100	No			0	0.00								
7	01/30/2018	CH-200	No			0	0.00								
8	01/31/2018	CH-200	No			0	0.00								
	07/18/2018					0	0.00								
	07/31/2018					0	0.00								
	08/02/2018					0	0.00								
12	11/27/2018	CH-200	No			0	0.00								

Leak Detection System Inspection and Servicing

Numbe	Service Date	ALD ID	Service Type	Description of Service
1	09/10/2018	301-IRF A	Calibration	Performed calibration test on Ref. monitor and calibrated both sensors

Refrigerant Purchase Information

Type	Total Purchased (lbs.)	Total Charged (lbs.)	Total Recovered (lbs.)	Total Stored (lbs.)	Total Shipped (lbs.)
R-123	0.00	0.00	0.00	0.00	0.00

Comment

Submitted By: Ronald Hoffard

2/21/2019 Welcome-RMP

Online Payment Receipt

Invoice No: 115527

Dated: 2019-02-21

Invoice For Year: 2018

Payment Amount: \$370.00

ARB Reference Code: RMP

Transaction Time: 02/21/2019 03:12:43 PM

Payment Transaction Id: 210219E3C-BED05555-8EF4-4E53-A66C-40E7876DA65F

Payment Result: APPROVAL

Payment Approval Code: 021645

2/21/2019

California Environmental Protection Agency **OD Air Resources Board**

Phone: (916) 324-2517 Email: rmp@arb.ca.gov URL: www.arb.ca.gov/rmp/rmp.htm

Invoice Detail

ARB REFERENCE CODE: RMP Invoice No: 115527 Invoice For Year: 2018

Dated: 02/21/2019

Ci	ty of Anaheim			
#	Facility Name	Amount Due(\$)	Exemption	Total (\$)
1	Canyon Power Plant (CIT003-001)	370.00	0	370.00
TC	OTAL CHARGES			370.00

Please return a copy on the invoice with your payment to the address below. "Checks should be made payable to the California Air Resources Board.
If required for your company records, the CARB Federal Tax ID is 68-0288069. A \$10 service fee may apply for returned checks."

Air Resources Board

Attn: Accounting

P.O. Box 1436

1001 I St., Floor 20

Sacramento, CA 95812-1436

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 11

CONDITION HAZ-8

In the annual compliance report, the project owner shall include the following statements:

"All current project employee and appropriate contractor background investigations have been performed and that updated certification statements have been appended to the operations security plan".

All current project employee and appropriate contractor background investigations have been performed and that updated certification statements have been appended to the operations security plan.

"The operations security plan includes all current hazardous materials transport vendor certifications for security plans and employee background investigations".

The operations security plan includes all current hazardous materials transport vendor certifications for security plans and employee background investigations.

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 12 SOIL & WATER USE REPORT-7

Monthly Water Reading Reports

Company: City of Anaheim/Canyon Power Plant

Plant Location: 3071 E. Miraloma Ave. City/State/Zip: Anaheim, CA 92806

Recycle Water Usage

1/1/2019

1/1/2018

12/31/2018

12/31/2019

Period Start:

Period End:

Period Start:

Period End:

Annual	Annual	Monthly	Monthly Average Acre Feet	Monthly	Monthly	Monthly	Monthly	Average
Total	Total	Average		Minimum	Minimum	Maximum	Maximum	Gallons
Gallons	Acre Feet	Gallons		Gallons	Acre Feet	Gallons	Acre Feet	Per Day
19.563.004	60.04	1.630.250	5.00	1,003,135	3.08	2,457,344	7.54	53.895

Company: City of Anaheim/Canyon Power Plant

Plant Location: 3071 E. Miraloma Ave.

City/State/Zip: Anaheim, CA 92806

Potable Water Usage

Annual	Annual	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly	Average
Total	Total	Average	Average	Minimum	Minimum	Maximum	Maximum	Gallons
Gallons	Acre Feet	Per Day						
106,201	0.33	4.425	0.01	0.00	0.00	13.600	0.04	146

Annual Data

•	Recycle	Water	Portable	Water
	Annual	Annual	Annual	Annual
	Total	Total	Total	Total
	Acre Feet	Gallons	Acre Feet	Gallons
2017	73.21	23,854,364	0.41	134,469
2018	73.09	23,817,912	6.99	2,277,132
2019	60.04	19,563,004	0.33	106,201
Average	68.78	22,411,760	2.58	839,267
Min	60.04	19,563,004	0.33	106,201
Max	73.21	23,854,364	6.99	2,277,132

Company:City of AnaheimPeriod Start:1/1/2019Plant Location:3071 E. Miraloma Ave.Period End:12/31/2019

City/State/Zip: Anaheim, CA 92806

Recycled Water Usage

Date	Start Cubic-ft	End Cubic-ft	Total Cubic-ft	Month	Daily	Month Acre-ft
				gal	gal	
1/1/2019	17,633,900.00	17,768,000	134,100.00	1,003,135.05	32,359.20	3.08
2/1/2019	17,768,000.00	18,096,500	328,500.00	2,457,344.25	87,762.29	7.54
3/1/2019	18,096,500.00	18,256,800	160,300.00	1,199,124.15	38,681.42	3.68
4/1/2019	18,256,800.00	18,496,700	239,900.00	1,794,571.95	59,819.07	5.51
5/1/2019	18,496,700.00	18,631,100	134,400.00	1,005,379.20	32,431.59	3.09
6/1/2019	18,631,100.00	18,851,600	220,500.00	1,649,450.25	54,981.68	5.06
7/1/2019	18,851,600.00	19,127,500	275,900.00	2,063,869.95	66,576.45	6.33
8/1/2019	19,127,500.00	19,422,000	294,500.00	2,203,007.25	71,064.75	6.76
9/1/2019	19,422,000.00	19,697,900	275,900.00	2,063,869.95	68,795.67	6.33
10/1/2019	19,697,900.00	19,887,600	189,700.00	1,419,050.85	45,775.83	4.35
11/1/2019	19,887,600.00	20,044,500	156,900.00	1,173,690.45	39,123.02	3.60
12/1/2019	20,044,500.00	20,249,100	204,600.00	1,530,510.30	49,371.30	4.70
	-	Annual Total:	2,615,200.00	19,563,003.60		60.04
		Average:	217,933.33	1,630,250.30	53,895.19	5.00
	M	lonthly Minimum:	134,100.00	1,003,135.05		3.08
	М	onthly Maximum:	328,500.00	2,457,344.25		7.54

Company:City of AnaheimPeriod Start:1/1/2019Plant Location:3071 E. Miraloma Ave.Period End:12/31/2019City/State/Zip:Anaheim, CA 92806

Potable Water Usage

HCF-1

	Start	End	Total	Month	Daily	Month
Date	Cubic-ft	Cubic-ft	Cubic-ft	gal	gal	Acre-ft
1/1/2019	828,400.00	828,500	100.00	748.05	24.13	0.00
2/1/2019	828,500.00	828,500	0.00	0.00	0.00	0.00
3/1/2019	828,500.00	828,500	0.00	0.00	0.00	0.00
4/1/2019	828,500.00	828,500	0.00	0.00	0.00	0.00
5/1/2019	828,500.00	828,500	0.00	0.00	0.00	0.00
6/1/2019	828,500.00	828,500	0.00	0.00	0.00	0.00
7/1/2019	828,500.00	828,500	0.00	0.00	0.00	0.00
8/1/2019	828,500.00	828,500	0.00	0.00	0.00	0.00
9/1/2019	828,500.00	828,500	0.00	0.00	0.00	0.00
10/1/2019	828,500.00	828,600	100.00	748.05	24.13	0.00
11/1/2019	828,600.00	828,600	0.00	0.00	0.00	0.00
12/1/2019	828,600.00	828,600	0.00	0.00	0.00	0.00
	_	Annual Total:	200.00	1,496.10		0.00
		Average:	16.67	124.68	4.02	0.00
		Monthly Minimum:	0.00	0.00		0.00
		Monthly Maximum:	100.00	748.05		0.00

HCF-2

	Start	End	Total	Month	Daily	Month
Date	Cubic-ft	Cubic-ft	Cubic-ft	gal	gal	Acre-ft
1/1/2019	211,862.00	211,865.00	3.00	22.44	0.72	0.00
2/1/2019	211,865.00	213,250.00	1,385.00	10,360.49	370.02	0.03
3/1/2019	213,250.00	214,093.00	843.00	6,306.06	203.42	0.02
4/1/2019	214,093.00	215,436.00	1,343.00	10,046.31	334.88	0.03
5/1/2019	215,436.00	217,045.00	1,609.00	12,036.12	388.26	0.04
6/1/2019	217,045.00	218,312.00	1,267.00	9,477.79	315.93	0.03
7/1/2019	218,312.00	219,116.00	804.00	6,014.32	194.01	0.02
8/1/2019	219,116.00	220,349.00	1,233.00	9,223.46	297.53	0.03
9/1/2019	220,349.00	221,967.00	1,618.00	12,103.45	403.45	0.04
10/1/2019	221,967.00	223,785.00	1,818.00	13,599.55	438.70	0.04
11/1/2019	223,785.00	225,321.00	1,536.00	11,490.05	383.00	0.04
12/1/2019	225,321.00	225,859.00	538.00	4,024.51	129.82	0.01
	-	Annual Total:	13,997.00	104,704.56		0.32
		Average:	1,166.42	8,725.38	288.31	0.03
		Monthly Minimum:	3.00	22.44		0.00
		Monthly Maximum:	1,818.00	13,599.55		0.04

Summary for both meters

Annual Total:	14,197.00	106,200.66		0.33
Average:	591.54	4425.03	146.17	0.01
Monthly Minimum:	0.00	0.00		0.00
Monthly Maximum:	1,818.00	13,599.55		0.04

OCWD/Anaheim Distribution & Sale of GWRS Water Supplied

TO Anaheim Public Utilities Dept.
Attn: Al Shaikh
201 S. Anaheim Blvd. Suite #601
Anaheim, CA 92805

CUSTOMER ID: 20250

RATE: \$552 / AF

ACCOUNT: 1001.41500

AGMT NO: 6075

METER ID: 21024735

UNIT: GALLONS

MULTIPLIER: X1000

FISCAL YEAR: 2018-2019

READ DATE: 2/28/2019

LOCATION:		CANYON POWER PLANT (CPP)					
MONTH:	JULY 2018	AUGUST 2018	SEPT 2018	OCT 2018	NOV 2018	DEC 2018	
(1) Beginning Read	136,971	141,149	145,803	145,803	147,896	150,051	
(2) Ending Read	141,149	145,803	145,803	147,896	150,051	151,312	
Total Units (Gallons x1000)	4,178,000	4,654,000	0	2,093,000	2,155,000	1,261,000	
Total Acre Feet	12.82	14.29	0.00	6.42	6.63	3.90	
AMOUNT DUE:	\$7,076.64	\$7,888.08	\$0.00	\$3,543.84	\$3,659.76	\$2,152.80	

LOCATION:		CANYON POWER PLANT (CPP)						
MONTH:	JAN 2019	FEB 2019	MAR 2019	APR 2019	MAY 2019	JUNE 2019		
(1) Beginning Read	151,312	152,312	154,774	156,113	157,901	159,043		
(2) Ending Read	152,312	154,774	156,113	157,901	159,043	160,867		
Total Units (Gallons x1000)	1,000,000	2,462,000	1,339,000	1,788,000	1,142,000	1,824,000		
Total Acre Feet	3.07	7.56	4.11	5.49	3.51	5.60		
AMOUNT DUE:	\$1,694.64	\$4,173.12	\$2,268.72	\$3,030.48	\$1,937.52	\$3,091.20		

OCWD/Anaheim Distribution & Sale of GWRS Water Supplied

TO Anaheim Public Utilities Dept.

Attn: Al Shaikh

201 S. Anaheim Blvd. Suite #601

Anaheim, CA 92805

CUSTOMER ID: 20250

RATE: \$602 / AF

UNIT: GALLONS

ACCOUNT: 1001.41500

AGMT NO: 6075

FISCAL YEAR: 2019-2020

READ DATE: 12/31/2019

LOCATION:		CANYON POWER PLANT (CPP)					
MONTH:	JULY 2019	AUGUST 2019	SEPT 2019	OCT 2019	NOV 2019	DEC 2019	
(1) Beginning Read	160,867	162,779	164,926	166,194	168,196	169,901	
(2) Ending Read	162,779	164,926	166,194	168,196	169,901	172,311	
Total Units (Gallons x1000)	1,912,000	2,147,000	1,268,000	2,002,000	1,705,000	2,410,000	
Total Acre Feet	5.87	6.59	3.89	6.15	5.23	7.40	
AMOUNT DUE:	\$3,533.74	\$3,967.18	\$2,341.78	\$3,702.30	\$3,148.46	\$4,448.78	

LOCATION:		CANYON POWER PLANT (CPP)					
MONTH:	JAN 2020	FEB 2020	MAR 2020	APR 2020	MAY 2020	JUNE 2020	
(1) Beginning Read							
(2) Ending Read							
Total Units (Gallons x1000)							
Total Acre Feet							
AMOUNT DUE:							

Wastewater Flow Meter Calibration Report

January 14, 2019

Ms. Mila Kleinbergs Source Control Program Orange County Sanitation Districts 10844 Ellis Avenue Fountain Valley, CA 92708

Subject:

Effluent Flow Meter Hydraulic Calibration Report

Facility:

City of Anaheim Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806 I.W. Permit No. 1-600296

Dear Ms. Kleinbergs,

Enclosed is our report on the effluent flow meter hydraulic calibration completed at the subject facility on January 10, 2019. The calibration was conducted in accordance with requirements of the Orange County Sanitation District, and the meter was determined to be operating within \pm 5% accuracy limits for the entire range tested.

If you have any questions regarding this calibration report, please contact me directly, or Bertha A. Hernandez, Environmental Services Specialist.

Sincerely

Robert J. MacDonald, P.E., CPP President & Principal Engineer

enclosures

CC:

Bertha A Hernandez, Environmental Services Specialist

WASTEWATER FLOW METER HYDRAULIC CALIBRATION

PREPARED BY

FOR

City of Anaheim Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806

I.W. Permit No. 1-600296

January 10, 2019

EFFLUENT FLOW METER CALIBRATION REPORT

Company Name: City	y of Anaheim]	Permit No.:	1-600296
Discharge Address:	3071 E. Miraloma Ave.	Anaheim, CA 92806	5	
Mailing Address:	201 S. Anaheim Blvd. Su	nite 1101 Anaheim, (CA 92805	
Meter Location		n Form (page 3) to id Attach sketch)	dentify locat	ion]
Effluent Meter 1	Description			
Open Channel				
A. Flume:	В.	Weir.		C. Other
Parshall Flur	ne	V-notch		Description:
Palmer-Bow	lus Flume	Rectangular		
Trapezoidal		Trapezoidal		
Other, Specif	fy:	Other, Specify:		
In-line X Magnetic Propeller Ultrasonic Other, Sp	c pecify:			
Effluent Meter I	Jescription	C1	. 4	
Primary Element Size: 4"		Secondary Elem Manufacturer:	nent N/A	
Manufacturer: Badg	ger er Series 2000	Recorder's 1009 Totalizer Units:	% span =	N/A GPM 1 Gallons per Count
Sampling Signal Cont	act Closure Frequency: 1 Wastewater Discharge F	closure perN/A	gallons	discharged.
Average 20	00 GPM			
Peak 30	00 GPM			

EFFLUENT FLOW METER CALIBRATION REPORT

5. Calibration Results

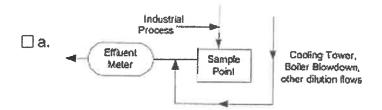
Type of Calibration: X Hydraulic Instrument

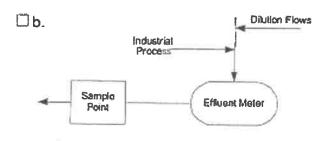
on System		Existing		Erro	r (%)	
Total Discharge Gallons	Primary Element's Head	Flow Ra	te, GPM Recorder	Total Discharge Gallons	Recorder	Totalizer
970		289.76		978		0.8%
813		251.11		816		0.4%
732		206.07		741		1.2%
501		152.73		499		-0.4%
388		109.82		393		1.3%
	Total Discharge Gallons 970 813 732 501	Total Discharge Gallons Primary Element's Head 970 813 732 501	Total Discharge Gallons Primary Element's Head Indicator 970 289.76 813 251.11 732 206.07 501 152.73	Total Discharge Gallons Primary Element's Head Flow Rate, GPM 970 289.76 813 251.11 732 206.07 501 152.73	Total Discharge Gallons Primary Element's Head Flow Rate, GPM Indicator Total Discharge Gallons 970 289.76 978 813 251.11 816 732 206.07 741 501 152.73 499	Total Discharge Gallons Primary Element's Head Flow Rate, GPM Indicator Total Discharge Gallons Recorder 970 289.76 978 813 251.11 816 732 206.07 741 501 152.73 499

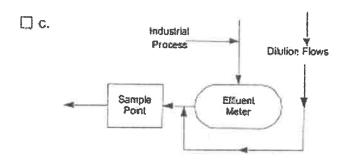
A copy of all data collected and of any calculations performed must be attached to this form.

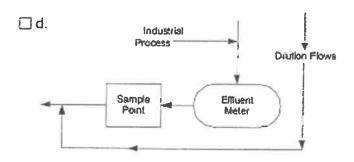
6. Method of Calibration Results (attach additional sheets if necessary)

Hydraulic: (For in line flow meters describe calibration/simulator system)

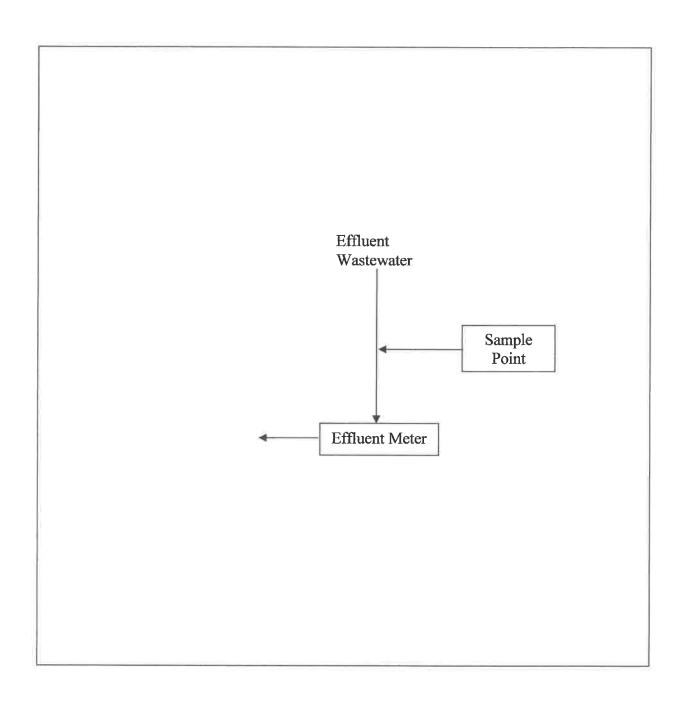

Various flow rates were achieved using 150' of 2.5" fire hose from a local hydrant to the test meter. A 2" Halliburton turbine was used to measure the water flow. At each rate tested, the meter totalizer was timed using an electronic stopwatch for a number of counts. The accumulated volume was then compared to the actual volume to determine the totalizer accuracy.


Instrument:


7. Corrective Measures (describe condition of flow meter prior to calibration and state if any adjustments were made):


No corrective measures were required.

EFFLUENT FLOW METER LOCATION FORM



Other

Please provide a schematic of the location of the effluent flow meter

Attachment:

Effluent Flow Meter Location

EFFLUENT FLOW METER MAINTENANCE RECORDS

Company Name: City of Anaheim	Permit No.: 1-600296
Discharge Address: 3071 E. Miraloma Ave., Anaheim, CA 92806	
Mailing Address: 201 S. Anaheim Blvd., Suite 1101, Anaheim, C	A 92805
Name of Responsible Person: Bertha A Hernandez	Telephone No. 714-765-4536
Recorder's 100% span = N/A GPM Totalizer:	1 Gallons per Count
Type of Flow Meter: 4" Badger Meter Series 2000	
Recorder Chart Change Frequency: Daily Weekly	Monthly (not applicable)

		REGULAR CLEANING MAINTENANCE		
Primary Element Cleaned	Level Measuring Equipment Cleaned	Other (describe)	Date	Ву
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	02/11/15	Yip / Paz
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	02/11/16	Yip / Paz
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	02/09/17	Yip / Paz
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/10/18	Yip / Vitug
N/A	N/A	Hydraulic Calibration by Flowtrace Division of The Conservtech Group	01/10/19	Paz / Gomez

CERTIFICATION OF CALIBRATION CHECK

(Certification of Test Results by a California Registered Professional Engineer)

I hereby certify that I am knowledgeable in the field of wastewater flow measurement and that I have supervised the calibration of the flow monitoring system as described on the previous page, and also have reviewed and approved all details of the method of calibration. I consider the calibration method and procedures used to be technically sound, and assume professional responsibility for the validity and accuracy of the results reported.

(Signature)

Robert J. MacDonald, P.E. (Full Name – Please Print or Type)

M29874 Expires 6/30/20 (California Professional Engineering Certification No.) Mechanical (Engineering Discipline)

(Date)

CERTIFICATION OF TEST RESULTS BY
AN ADMINISTRATIVE OFFICIAL OF THE COMPANY

City of Anaheim1-600296(Company Name)(Permit No.)

I hereby certify that the flow monitoring system certified as properly calibrated above is so arranged and operated, so as to accurately measure and record the industrial wastewater flow to the sewer system.

(Signature)

(Full Name – Please Print or Type)

GENERATION PLANT MANAGER

(Administrative Position in Company)

1/25/19 (Date)

Appendix:

Calculations Sheet Field Calibration Data Calibration Certificate

Wastewater Flowmeter Calibration

	∀ lō						T	
al n	(I - A) / A OR Indicator	0.7%	0.3%	1.3%	-0.4%	%6:0-		
oe ter M2000 FT GPM 300	/C (H-A)/A (I PERCENT ERROR zer Chart In	ı	i	a t	!	1		
ELEMENT: 4" Pipe EQUATION: n/a K FACTOR: n/a RANGE (dist.): n/a ALIZER (start): 72712915 FALIZER (end): 72712915 : 200 PK Q: 300 : 200 PK Q: 300	(F - C) / C PERC Totalizer	0.8%	0.4%	1.2%	-0.4%	1.3%		
ELEMENT: INSTRUMENT: EQUATION: K FACTOR: K FACTOR: RANGE (dist.): RANGE (GPM): TOTALIZER (end): TOTALIZER (end): REC. (100%) GPM: REC. (100%) GPM: REC. (100%) GPM:	INDICATOR D (ft.) Q (gpm)	289.76	251.11	206.07	152.73	109.82		
IN RATE: TOTA TOTA AVE. RATE: SAMPLER:	INDIC HEAD (ft.)	1	ı	ı	es es	ŀ		
	G x ** Q (gpm)	1	1	1	1	ı		
R(S):	G G CHART	ı	ı	ı	-	ı		
DATE: 01/10/19 INSTRUMENTATION HYDRAULIC CALIBRATION ENGINEER(S): PAZ / GOMEZ TEST EQUIPMENT: 2" Turbine Meter	D - E 0) V (gal)	978	816	741	499	393		
01/ LIC FION FION JIPIN 2" 7		11	11	Н	11	11		
DATE: 01/10/19 INSTRUMENTATION HYDRAULIC CALIBRATION ENGIN PAZ / GON TEST EQUIPMENT: 2" Turbin	- E = TALIZER (x1000)	14172	15586	16850	18000	18928		
	- TO	-	1	1	1	ı		
	D TO	15150	16402	17591	18499	19321		
805	V (gal)	970	813	732	501	388		
A 922	н	Ш	II	11	И	н		
Power Plant aheim, CA 92806 601, Anaheim, CA 9: Bertha A Hernandez 714-765-7481 1-600296 F14M828	SYSTEM x Time	3.37	3.25	3.60	3.27	3.50		
Power Pland CA and Bertha A 1-600296		×	×	×	×			
n - Canyon ADDRESS: ma Ave. An RESS: n Bivd. Ste	TEST Q(gpm)	287.8	250.3	203.4	153.3	110.8		
COMPANY: City of Anaheim - Canyon Power Plant DISCHARGE ADDRESS: 3071 E. Miraloma Ave. Anaheim, CA 92806 MAILING ADDRESS: 201 S. Anaheim Blvd. Ste 601, Anaheim, CA 92805 CONTACT: Bertha A Hernandez TELEPHONE: 714-765-7481 I.W.: 1-600296 Cilent-Job #: F14M828	CALCULATION HEAD (ft.)	ı	1	ŀ	!	ŧ		

The Conservtech Group / Flowtrace Division | 5885 Rickenbacker Road | Commerce | California | 90040 phone: 323-867-9044 | fax: 323-867-9045

					Totalizer:										
MAX =	1		GPM		Finish:		72719388	0	Client:	Client: City of Anaheim - Canyon Power Plant	aheim -	Canyon	Power Pla	ant	
AVG =	700	0			Start:		72712915		Date:	1/10/19	19	IW#:	1-60	1-600296	
PK =	300	0			Diff.		6 473			Element: 4" Pipe	4" Pipe				
Sampler:					MULT:		7			Instrument: 4" Badger Meter M2000	4" Badg	er Meter	M2000		
Contac	Contact Closure =	N/A	gailons/pulse	onise	Total:		6, 413	gallons		Recorder:					
			Calibr	ated Flow	Calibrated Flows and Data	_			Į ¥	Meter		Recorder	_	Totalizer	izer
Tur	Turbine		Man	Manometer - inches	nches		Duration	Total	W.C.	Flow	Rea	Reading	Error	Total	Error
cycles	mdb	+	1	٥	W.C.	mdg	min	ga	.i.	mdg	%	mdb	%	gal	%
	287.8						3.37	970		289.16				87.12	0
	250.3						2.25	813		25 .11				900	ó
	203.4						3.60	732		206.07				=======================================	1.2
	152.3						2.27	501		152.13				409	٠٥.٩
	110.8						3.50	388		104.92				393	1.3
Calibrati	Calibration Type						Notes:	Se :	2.6					12400	
	(I) (I)	$ \times $	Instrumentation Hydraulic	entation c				9	91192	0	3:12		in the second	15586	3:15
Hydraulii X X X X X X X X X X X X X X X X X X		sed: leter, 1", leter, 2", leter, 2", leter, 4",	Haliburto To You Tec Haliburto XO Tech Haliburto	n, Thread chnologies n, flanged nologies, n, flanged	**Meter Used: Turbine Meter, 1", Haliburton, Threaded Turbine Meter, 1.5", XO Technologies, 150# Flange Turbine Meter, 2", Haliburton, flanged Turbine Meter, 4", XO Technologies, 150# Flange Turbine Meter, 4", Haliburton, flanged Other:	ge Ja		1	168501	1 A A A A A A A A A A A A A A A A A A A	6.	6 (B)		18 4 aa 18000 18000	3:15

CERTIFICATE OF CALIBRATION

CUSTOMER:

NOTES:

CONSERVTECH, COMMERCE, CA

VSR NUMBER:

INST. MANUFACTURER:

INST. DESCRIPTION: MODEL NUMBER:

SERIAL NUMBER:

RATED UNCERTAINTY: **UNCERTAINTY GIVEN:**

2BF3677

9075

+/- .5% R.D.

HALLIBURTON

458.99101 (2")

TURBINE METER

TOTAL measurement uncertainty +/- 151% RD K=2 CERTIFICATE FILE #:

** CALIBRATED WITH DMC. SENSOR COIL **

CALIBRATION DATE:

CALIBRATION DUE:

PROCEDURE:

CALIBRATION FLUID:

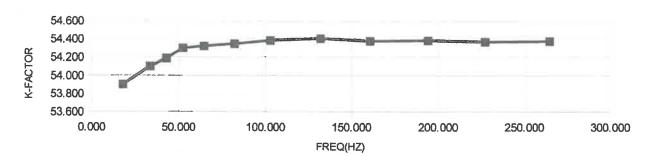
ARRIVAL CONDITIONS: RETURNED CONDITIONS:

AMBIENT CONDITIONS:

WITHIN MFG. SPEC. WITHIN MFG. SPEC.

07/20/17

07/20/18


H20 @ 70F

763mmHGA 48%RH 68°F

NAVAIR17-20MG-01

420148.2017

TEST POINT	INDICATED	DM.STD.	ACTUAL
NUMBER	UUT	ACTUAL	K-FACTOR
	FREQ(HZ)	GPM	PULIGAL.
1	18.006	20.044	53.898
2	33.579	37.241	54.099
3	42.935	47.541	54.187
4	52.375	57.875	54.299
5	64,475	71.215	54.321
6	82.011	90.545	54,345
7	102.912	113.545	54.382
8	131.972	145.552	54.402
9	160.632	177.252	54.374
10	194.098	214.152	54.382
11	227.135	250.662	54.369
12	264.758	292.152	54.374

STANDARDS USED:

A710 (SERAFIN VOLUME PROVER 0-100GPM) */022% BY VOLUME CMC +/2% RD FLOW TRACE# 1446135470,1453296155	DUE	01/16/18
A350 (PLATFORM SCALE & TANK: 10,000LBS/ 50-2800GPM) +/07LBS +/- BY MASS TRACE# 1446135470,1453296155	DUE	12/09/17
A14 (VOLUME PROVER 5-50GPM)+/02% BY VOLUME CMC +/151% RD FLOW TRACE# 1446135470,1453296155	DUE	12/07/17

All instruments used in the performance of the shown calibration have traceability to the National Institute of Standards and Technology (NIST). The uncertainty ratio between the calibration standards (DM.STD.) used and the unit under test (UUT) is a minimum of 4:1, unless otherwise noted. Calibration has been performed per the shown procedure number, in accordance with ISO 10012:2003, ISO 17025:2005, ANSI/NCSL-Z-540.3, and/or MIL-STD-45662A. Test methods: API2530-92 & ASME MFC-3M-1989.

> Dick Munns Company • 11133 Winners Circle • Los Alamitos, CA 90720 Phone (714) 827-1215 • Fax (714) 827-0823

lead except, in full, without approval by DICK MUNNS COMPANY. The data shown applies only to the instrument being calibrated and under the stated conditions of calibration This Calibration Certificate shall not be

Date:

pproved By:

Calibration Technician:

Page 1 of /

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 13 SOIL & WATER REPORTS-8

OCSD Wastewater Quality Semi-Annual Monitoring Reports

Address	ee Start Time	Time	Prints	Result	Note
OCSD	04-18 16:08	00:06:47	008/008	OK	

Note

MR:Timer TX. POL:Polling, ORG:Original Size Setting, FME:Frame Erase TX, PG:Page Separation TX, MIX:Mixed Original TX, CALL:Manual TX, CSRC:CSRC; WD:Forward, PC:PC-FAX, BND:Double-Sided Binding Direction, Sp:Special Original, CODE:F-COde, RTX:Re-TX, RLY:Relay, MEX:Confidential, BUL:Bulletin, SIP:SIP Fax, BADR:TD Address Fay: T_CIV:TOTEPTO MEX:Confidential, BUL:Bulletin, SIP:SIP Fax

Result OK: Communication OK, S-OK: Stop Communication, PW-OFF: Power Switch OFF, TEL: RX from TEL, NG: Other Error, Cont: Continue, No Ans: No Answer, Refuse: Receipt Refused, Busy: Busy, Nemory Full, LOVR:Receiving length Over, POVR:Receiving page Over, FII:File Error, DC:Decode Error, MDN:MDN Response Error, PINT:Compulsory Memory Document Print, DEL:Compulsory Memory Document Delete, SEND:Compulsory Memory Document Send.

CITY OF ANAHEIM

PULIC UTILITIES DEPARTMENT

Environmental Services
Letter of Transmittal

Descript	tion Self-Monitoring Form for City of
Form OCSD	Salf Manifesian Form for City of
Plant (Permit	No. 1-600296).
our action our review	For your files For your information Hand Delivery
81 or <u>bherna</u> ittal.	ndez@anaheim.net if you have
	our review

Ву:

Bertha A Hernandez, Environmental Services Specialist

CITY OF ANAHEIM

PULIC UTILITIES DEPARTMENT

Environmental Services Letter of Transmittal

То:	Orang Resor 10844	urce Prote	y Sanitation District ection Division	Date: Project	04/28/2019 Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806
				Subject:	Semi-Annual Self-Monitoring
We a	re send	ling you:			
Co	py of C	riginal		Description	on
	1 Completed Semi-Annual I Anaheim Canyon Power I				self-Monitoring Form for City of No. 1-600296).
These	e are tra	As requi	ested For you	ur action ur review	For your files For your information
Via:	:	US Mail	X FAX # 8 of pgs. (714) 593-7799		Hand Delivery
Rema	arks:	Please any que	contact me at (714) 765-748 estions regarding this submit	31 or <u>bhernan</u> tal.	dez@anaheim.net if you have
			Donier	The state of the s	

By:

Bertha A Hernandez, Environmental Services Specialist

March 14, 2019

Ronald Hoffard, GENERATION PLANT MANAGER City of Anaheim, Canyon Power Plant 3071 E Miraloma Ave. Anaheim, CA 92806

Subject: REMINDER TO CONDUCT SELF-MONITORING

Permit No. 1-600296 (previously listed as)

Please be reminded that Self-Monitoring must be conducted between **April 01, 2019 -- April 16, 2019** in accordance with your company's permit requirements. Self-Monitoring must be conducted during a production day in accordance with the guidelines detailed in your company's permit.

It is your responsibility to comply with the requirements set forth in your company's permit. Failure to comply with all the directives, conditions, and requirements of the permit may result in enforcement action against your company.

If your company's permit shows a self-monitoring requirement for total toxic organics (TTOs) and your company has received a waiver from this self-monitoring, you are now required to submit a signed TTOs SMR form to us to comply with the TTO waiver requirements of the U.S. Environmental Protection Agency. Please indicate in the "Sample Comments" that you have received a TTOs self-monitoring waiver from us.

For permittees that have monthly as well as quarterly and/or semi-annual self-monitoring requirements, the forms may list more than the SMR constituents required for the monthly self-monitoring. We ask that you adhere to your permit's self-monitoring requirements and sample only for the constituent(s) required on a monthly basis, except when the quarterly and semi-annual self-monitoring are also required in the same month, in which case all constituents listed on the form must be analyzed for as specified in your permit.

Finally, for those who are required to submit meter readings, a list of the meter readings submitted within the last year is attached to the SMR form for your reference and comparison to current readings.

Thank you for your patience and cooperation. If you have any questions, please contact Mila Kleinbergs at 714-593-7408.

Mila Kleinbergs Senior Engineer

SMR No.: S-121862

SMR Type: Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296 (previously)

Sampling Dates:	04/01/20	019 to 04/16/20	19	Submit B	y Date:	04/30/2	2019			
Sample Start Date:	04/	08/2019	•	Sample E	ind Date:	04	109/20	19		
Sample Start Time:		0930 AN	7	Sample E	nd Time:		1000 A	m		===
Sampling Point Location	on: S	Sampling Structu	re located	in the center of the	e site	105				
Contact Person:	RONALL) HOFFAR	D	Contact F	Phone:	(714)	765- G	1536		
				Contact E	Email:	RHOFI	FARDE	ANAHE	iM. NO	5T
No Discharge										
Water Meter Readings	s: (If this is	s a batch discha	rge, enter	volume only)						
Location		Meter Type	Meter II	D Stop Readi	ng Start	Reading	Volume	Units	Digits	In
Center of site adjacent to the clarifier/vault	final	Effluent Flow Meter	EM-1-6002	16362506	5 7630	22767	39 139	G	9	
Composite			11	•				•		
Sample Results: (If co	onstituent	is not detected o	or is less th	nan detection limit,	enter as rep	oorted in t	he lab results	i.)		
										_
Constituent		Result	Units	EPA Method						
Constituent BOD T		Result N D	Units mg/L	EPA Method SM 5210B						

To Submit Data - Fax: (714) 593-7799 or

Mail: Orange County Sanitation District, Resource

Protection Division, 10844 Ellis Avenue, Fountain Valley,

CA, 92708-7018

Sample Comments:

Questions: Contact Melissa Soriano at 714-593-7448 PB

SMR No.: S-121862

SMR Type: Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296 (previously)

This form must be completely filled out and Laboratory Analysis Report and Chain of Custody must be attached.

Please check if composite sample was obtained using an automatic sampling device: () Yes () No

In accordance with 40 CFR 403.12, the results presented herein must be verified and signed under penalty of perjury by: (i) a responsible corporate officer; (ii) general partner or proprietor; or (iii) a representative who has responsibility for the overall operation of the permitted facility, who has been authorized by the corporate officer, general partner or proprietor to sign such reports, and such authorization has been made in writing and submitted to the District.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and implications (40 C.F.R. § 403.6(a)(2)(ii) (2005)]

Signature (Ronald Hoffard)

GENERATION PLANT MANAGER

Date

Print Namo

To Submit Data - Fax: (714) 593-7799 or

Mail: Orange County Sanitation District, Resource

Protection Division, 10844 Ellis Avenue, Fountain Valley,

CA, 92708-7018

Questions: Contact Melissa Soriano at 714-593-7448 PB

SMR No.: S-121862

SMR Type: Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296 (previously)

Sample Location: Compliance

<u>Equipment</u> <u>Reading</u>

Meter Type Event ID <u>Name</u> Start - End Date <u>Vol</u> <u>End</u> <u>Start</u> **EFFLUENT** EM-1-600296 49556 **GPD** 121861 10/1/2018 - 10/2/2018 68740935 Gallon 68688798 Gallon **EFFLUENT** EM-1-600296 121860 4/2/2018 - 4/3/2018 74880 **GPD** 61898932 Gallon 61824052 Gallon

To Submit Data - Fax: (714) 593-7799 or

Mail: Orange County Sanitation District, Resource

Protection Division, 10844 Ellis Avenue, Fountain Valley,

CA, 92708-7018

Questions: Contact Melissa Soriano at 714-593-7448 PB

TRUESDAIL LABORATORIES, INC.

EXCELLENCE IN INDEPENDENT TESTING

Established 1931

REPORT

3337 MICHELSON DRIVE, SUITE CN 750
IRVINE, CA 92612
(714) 730-6239 • FAX (714) 730-6462
www.truesdail.com

Work Order No.: 19D0146

Printed: 04/18/2019

Client: City of Anaheim - Canyon Water Power Plant

3071 E Miraloma Ave Anaheim, CA 92806

Attention: Bertha Hernandez

Project Name: Canyon Power Plant Semi-Annually Wastewater

Project Number: Canyon Power Plant

P.O. Number: MA-106-491110 (exp 8/31/18)

CASE NARRATIVE

Date & Time Installed: 04/08/2019; 09:30 AM Date & Time Removed: 04/09/2019; 10:00 AM

Flow Start Number: 76322767 GAL Flow Stop Number: 76362506 GAL

Total Flow, GPD: 39739

SAMPLE RECEIPT SUMMARY

Sample ID	Laboratory ID	Matrix	Туре	Date Sampled	Date Received
1-600296 Composite	19D0146-01	Wastewater	Composite	04/09/2019 10:00	04/09/2019 15:05

DEFINITIONS

Symbol	Definition
С	GGA recovery was less than the method acceptance limit.
DF	Dilution Factor
MDL	Method Detection Limit
ND	Not Detected
RL	Reporting Limit

Respectfully yours,

Shelly Brady

Customer Service Manager

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of Truesdail Laboratories, Inc., and must be reproduced in its entirety.

Page 1 of 3

Client: City of Anaheim - Canyon Water Powe

Project Name:

Canyon Power Plant Semi-Annually Wastewater

Project Number:

Canyon Power Plant

Printed: 04/18/2019

1-600296 Composite 19D0146-01 (Wastewater)

Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method	Notes
		ALS	Trues	dail					
Wet Chemistry									
Total Dissolved Solids	86.0	12.5	mg/L	1	1904389	04/17/2019 17:33	ADD	SM 2540 C	
Total Suspended Solids	ND	2.50	mg/L	1	1904278	04/11/2019 12:00	KKL	SM 2540 D	
General Chemistry									
Biochemical Oxygen Demand	ND	2.00	mg/L	1	1904306	04/15/2019 16:45	SMC	SM 5210B - 5 Day	С

CHAIN OF CUSTODY

I RUESDAIL LABORATORIES, INC.

3337 Michelson Drive, Suite CN750, Irvine, CA 92612 (714) 730-6239 - FAX (714) 730-6462

9	HODS
10	MET
0	

AT •

PAGE: 1

4/8 - 4/9/19

DATE:

TURNAROUND TIME Normal TAT

			_
COMMENTS Ronald Hoffard Semi-Annually	3 24 = 8.31 Town= 22.36	SAMPLE CONTAINERS SAMPLE CONDITIONS: RECEIVED Cool S. Warm	SPECIAL REQUIREMENTS: SAFANJA S PRO PRO 3 of 3
		<u> </u>	_
		(Enter following line items on invoice):	
TSS	×		
TDS	×		Date/ Time Date/ Time
4) 666-2410 Power Authority DESCRIPTION	COMP	Record 4	Company/ Agency Da Company/ Agency Da Company/ Agency Da
nald Hoffard Tex e. California Pu	10:00	Istody Si	
City of Anaheim, Canyon Power Plant Victor Carnaggio/Ronald Hoffard (714) 765-4260/4536 FAX (71 3071 E. Miraloma Ave. Anaheim, CA 92806 Bill/Ship To: Southern California Public GNATURE) CAA BANDON ELID. DATE TIME	4-4-18	Chain of CL	Received Signature Relinquished Signature Received Signature
City of A Company City of A Contact Victor C Contact (714) 76 Code 3071 E. Code Anahein Bill/Ship Bill/Ship SAMPLE I.D.	52-2-758	Ch Relin	S. Relini

P 1 10/17/2019 15:47 Serial No. A7PY011022705 TC: 38339

Addressee	Start Time	Time	Prints	Result	Note	
OCSD	10-17 15:40	00:06:48	008/008	ОК		

Note

TMR:Timer TX, POL:Polling, ORG:Original Size Setting, FME:Frame Erase TX,
DPG:Page Separation TX, MIX:Mixed Original TX, CALL:Manual TX, CSRC:CSRC,
FWD:FOrward, PC:PC-FAX, BNp:Double-Sided Binding Direction, Sp:Special Original,
FCDDE:F-Code, RTX:Re-TX, RLY:Relay, MBX:Confidential, BUL:Bulletin, SIP:SIP Fax,
TPADR:TD Address Fax, T-FAY:Threath

Result OK: Communication OK, S-OK: Stop Communication, PW-OFF: Power Switch OFF, TEL: RX from TEL, NG: Other Error, Cont: Continue, No Answer, Refuse: Receipt Refused, Busy: Busy, M-Full: Memory Full. LOVR: Receiving length Over, POVR: Receiving page Over, FIL: File Error, DC: Decode Error, MDN: MDN Response Error, DSN: Response Error, PRINT: Compulsory Memory Document Print DEL: Compulsory Memory Document Send.

CITY OF ANAHEIM

PULIC UTILITIES DEPARTMENT Environmental Services Letter of Transmittal

:	Ms. Mila Kleinbergs Orange County Sanitation District		Date:	10/17/2019
	10844 Ellis Av	esource Protection Division 1844 Ellis Avenue puntain Valley, CA 92708-7018		Canyon Power Plant 3071 E. Miraloma Ave. Anaheim, CA 92806
			Subject:	Semi-Annual Self-Monitoring
э а	re sending you:			
Со	py of Original		Descript	ion
	1	Completed Semi-Annua Anaheim Canyon Powe	al Form OCSD :	Self-Monitoring Form for City of
3 S6	1 As requi	ested	your action your review	For your files For your information
:	1 As requ	ested For	your action	For your files

By: Bertha A Hemandez, Environmental Services Specialist

CITY OF ANAHEIM

PULIC UTILITIES DEPARTMENT

Environmental Services Letter of Transmittal

							
То:	Oran		ty Sanitation District	Date:	10/17/20	19	
10;	1084	4 Ellis Av	tection Division venue ey, CA 92708-7018	Project	3071 E. M	Power Plant Miraloma Ave. , CA 92806	
				Subject:	Semi-Anr	nual Self-Monitoring	
We a	re sen	ding you:					
Co	py of C	Original		Descripti	on		
	1 Completed Semi-Annual F Anaheim Canyon Power F						
These	e are tr	ansmitted	d:				
	1	As requ	uested For	our action		For your files	
		For app	proval	our review		For your information	
Via:	/ia: US Mail X FAX # 8 of pgs. Hand Delivery (714) 593-7799						
Rema	ırks:	Please contact me at (714) 765-7481 or bhernandez@anaheim.net if you have any questions regarding this submittal.					

By: Bertha A Hernandez, Environmental Services Specialist

September 15, 2019

Ronald Hoffard, GENERATION PLANT MANAGER City of Anaheim, Canyon Power Plant 3071 E Miraloma Ave. Anaheim, CA 92806

Subject: REMINDER TO CONDUCT SELF-MONITORING
Permit No. 1-600296 (previously listed as 1-600296)

Please be reminded that Self-Monitoring must be conducted between **October 01**, **2019** -- **October 16**, **2019** in accordance with your company's permit requirements. Self-Monitoring must be conducted during a production day in accordance with the guidelines detailed in your company's permit.

It is your responsibility to comply with the requirements set forth in your company's permit. Failure to comply with all the directives, conditions, and requirements of the permit may result in enforcement action against your company.

If your company's permit shows a self-monitoring requirement for total toxic organics (TTOs) and your company has received a waiver from this self-monitoring, you are now required to submit a signed TTOs SMR form to us to comply with the TTO waiver requirements of the U.S. Environmental Protection Agency. Please indicate in the "Sample Comments" that you have received a TTOs self-monitoring waiver from us.

For permittees that have monthly as well as quarterly and/or semi-annual self-monitoring requirements, the forms may list more than the SMR constituents required for the monthly self-monitoring. We ask that you adhere to your permit's self-monitoring requirements and sample only for the constituent(s) required on a monthly basis, except when the quarterly and semi-annual self-monitoring are also required in the same month, in which case all constituents listed on the form must be analyzed for as specified in your permit.

Finally, for those who are required to submit meter readings, a list of the meter readings submitted within the last year is attached to the SMR form for your reference and comparison to current readings.

Thank you for your patience and cooperation. If you have any questions, please contact Mila Kleinbergs at 714-593-7408.

Mila Kleinbergs Senior Engineer

SMR No.: S-145451

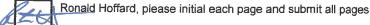
SMR Type: Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

						Permit I	No. 1-60029	6 (previous	ly 1-6002	96)
Sampling Dates: Sample Start Date: Sample Start Time:	ample Start Date: 10 (07/ 2019		S	Submit By Date: 10/31/2019 Sample End Date: 10 / 08 / 2019 Sample End Time: 12:30 pm				_		
Sampling Point Location		mpling Structur		the center	r of the site		- 1			= 2
Contact Person: No Discharge Water Meter Readings:		LO HOF		Co	ontact Phor ontact Ema	011-	765- FARD @	4-53) ANA+	GM.	_ <u>\</u> Y
Location	1	Meter Type	Meter ID	1	Reading	Start Reading	Volume	Units	Digits	 10
Center of site adjacent to the clarifier/vault	final	Effluent Flow Meter	EM-1-60029	-		82165784		G	9	_
Composite Sample Results: (If co	nstituent i	s not detected o	or is less tha	EPA	n limit, ente	er as reported in th	e lab results)		_
BOD T		6.76		Method 54 - 52	InR					
TSS		ND		M-29						
Sample Comments:										

To Submit Data - Fax: (714) 593-7799 or


Mail: Orange County Sanitation District, Resource

Protection Division, 10844 Ellis Avenue, Fountain Valley,

CA, 92708-7018

Questions: Contact Isabel Melendez at 714-593-7313

SMR No.: S-145451

SMR Type: Standard

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

Permit No. 1-600296 (previously 1-600296)

This form must be completely filled out and Laboratory Analysis Report and Chain of Custody must be attached.

Please check if composite sample was obtained using an automatic sampling device: (X) Yes () No

In accordance with 40 CFR 403.12, the results presented herein must be verified and signed under penalty of perjury by: (i) a responsible corporate officer; (ii) general partner or proprietor; or (iii) a representative who has responsibility for the overall operation of the permitted facility, who has been authorized by the corporate officer, general partner or proprietor to sign such reports, and such authorization has been made in writing and submitted to the District.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.[40 C.F.R. § 403.6(a)(2)(ii) (2005)]

Signature (Ronald Hoffard)

GENERATION PLANT MANAGER

To Submit Data - Fax: (714) 593-7799 or

Mail: Orange County Sanitation District, Resource

Protection Division, 10844 Ellis Avenue, Fountain Valley,

CA, 92708-7018

Questions: Contact Isabel Melendez at 714-593-7313

Ronald Hoffard, please initial each page and submit all pages

SMR No.: S-145451

49556

SMR Type: Standard

GPD

City of Anaheim, Canyon Power Plant

General Pretreatment Regulations For Existing And New Sources Of Pollution

68740935 Gallon

Permit No. 1-600296 (previously 1-600296)

68688798 Gallon

Sample Location	on: Compliance						
	Equipment			Re	eading		
Meter Type	Name	Event ID	Start - End Date	End	Start	<u>Vol</u>	
EFFLUENT	EM-1-600296	145450	4/8/2019 - 4/9/2019	76362506 Gailon	76322767 Gallon	38928	GPD
EFFLUENT	EM-1-600296	121861	10/1/2018 - 10/2/2018	68740935 Gallon	68688798 Gallon	49556	GPD

To Submit Data - Fax: (714) 593-7799 or

Mail: Orange County Sanitation District, Resource

Protection Division, 10844 Ellis Avenue, Fountain Valley,

CA, 92708-7018

Questions: Contact Isabel Melendez at 714-593-7313

Ronald Hoffard, please initial each page and submit all pages

ALS - Truesdail Laboratories 3337 Michelson Drive, Suite CN750 Irvine, CA 92612 <u>T</u> +1 714 730 6239

Report

Client: City of Anaheim - Canyon Water Power Plant

Work Order No.: 19J0112

3071 E Miraloma Ave Anaheim, CA 92806

Printed: 10/17/2019

Anaheim, CA 92806

Attention: Bertha Hernandez

Project Name: Canyon Power Plant Semi-Annually Wastewater

Project Number: Canyon Power Plant

P.O. Number: MA-106-491110 (exp 8/31/18)

CASE NARRATIVE

Date & Time Installed: Date & Time Removed:

10/7/19; 12:30 PM 10/8/19; 12:30 PM

Flow Start Number:

Flow Stop Number:

82165784 GAL 82189068 GAL

Total Flow, GPD:

23284

SAMPLE RECEIPT SUMMARY

Sample ID	Laboratory ID	Matrix	Type	Date Sampled	Date Received
1-600296 Composite	19J0112-01	Wastewater	Composite	10/08/2019 12:30	10/08/2019 15:44

DEFINITIONS

Symbol	Definition
C	Blank unseeded oxygen depletion exceeded the method acceptance limit of 0.2 mg/L.
DF	Dilution Factor
MDL	Method Detection Limit
ND	Not Detected
RL	Reporting Limit

Respectfully yours,

Joseph Bryan Harding For Shelly Brady

Customer Service Manager

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of ALS-Truesdail Laboratories, Inc., and must be reproduced in its entirety

Page 1 of 3

Client: City of Anaheim - Canyon Water Power Pl

Project Name:

Canyon Power Plant Semi-Annually Wastewater

Project Number:

Canyon Power Plant

Printed: 10/17/2019

1-600296 Composite 19J0112-01 (Wastewater)

Analyte	Result	RL	Units	DF	Batch	Analyzed	Analyst	Method I	Note:					
ALS Truesdail														
Wet Chemistry														
Total Dissolved Solids	128	25.0	mg/L	1	1910324	10/16/2019 16	5:13 VHD	SM 2540 C						
Total Suspended Solids	ND	2.63	mg/L	1	1910323	10/16/2019 00	:00 SMC	SM 2540 D						
General Chemistry														
Biochemical Oxygen Demand	6.76	2.00	mg/L	1	1910216	10/14/2019 12	:45 SMC	SM 5210B - 5 Day	С					

This report applies to the sample(s), or product(s), investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed. This report shall not be reproduced without the written consent of ALS-Truesdail Laboratories, Inc., and must be reproduced in its entirety.

Page 2 of 3

Page 3 of 3

TRU 333

ESDAIL LABORATORIES, INC.

TRUESDAIL LABORATORIES, INC.
3337 Michelson Drive, Suite CN750, Irvine, CA 92612
(714) 730-6239 - FAX (714) 730-6462

4	
3	
n	
7	í

X TURNAROUND TIME Normal TA1
DATE: 10/7-10/8/19 PAGE: 1 OF

				-	_	_		T	1.	T	T	T	T			Т	7		_	_		_	_	_	
	COMMENTS	PO# Ronald Hoffard		Semi-Annually	ਮਜ ਼		ION	3 ONS 8.73	Lower 78.3 F								CONTAINERS	SAMPLE COUDITIONS:	RECEIVED	Coot Marin			Yes	SPECIAL REQUIREMENTS:	
								1				1					Me	n .						is	_
											ļ														
																S-IN	· (and								
METHODS					_										+	LABORATORY SAMPLE LOG-IN (Enter following line items on invoice):									
MET																ORY SAIN	0								
														+		LABORA1 (Enter folk		Γ				T	П	П	T
						_	BOI	×						1			T	_	100	7	7		T		1
1	SQT SST								\dashv					+	-			1	Date/ Time		Date/ Time		Date/ Time	Date/ Time	1
ŀ					lostry			×					•			cord		150	Date.	N I	Date		Date	Date	
		FAX (714) 666-2410			nne van		DESCRIPTION	COMP								ure Re		19	Agency	Agency	Agency		Agency	Agency	10000
1	lant	(714)		die Die	T PINCE		۵									gnat		10-8-01	Company/ Age rcy	Company/ Agency	Company/ Agency		Company/ Agency	Company/ Agency	Company Agency
	Power P Hoffard	FAX		formin D.	1	100	TIME	12:30								dy Si		N	0	1	10	1	υ	10	10
	anyon	98	j.	S La	6	Les DAMO		14	1					1		usto	1	1	a n						
	City of Anaheim, Canyon Power Plant Victor Carnaggio/Ronald Hoffard	(714) 765-4260/ 4536	Anaheim CA 92806	Bill/Ship To: Southern California Bukita Barnes A. A.	\	107	DATE	62-01								Chain of Custody Signature Reco	0	0	elinquisned Signature	Received Signature	Relinquished Signature		Received Signature	Relinquished Signature	Received Signature
	COMPANY City of AJ	PHONE (714) 76:		Bill/Ship	OF TANCES OF COMMAN	SAMPLES (SIGNATURE)	SAMPLE I.D.	52-2-758								Cha	1	1	2.	Receiv	i G	4.	S. Receiv	Relinquir 6.	9

OC Sanitation District No Violations or Corrective Actions to report for CY 2019

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 14

VIS-4

VIS-4: Surface Treatment of Project Structures and Buildings

Condition of Certification VIS-4 requires a status report of the surface treatment maintenance for the structures and buildings in the Annual Compliance Report. The report shall specify the following:

1. The condition of surfaces of all structures and buildings at the end of the reporting year 2018:

- a. Butler Building (Administrative and Warehouse)
- b. Main Electrical Enclosure (MEE)
- c. Balance of Plan (BOPEE)
- d. Substation Building
- e. Chiller
- f. RO Skid (open wall with roof sheet metal covering)
 - i. The exterior building material is fabricated sheet metal. The colors and finishes do not create excessive glare and consistent with local policies and ordinances. All structure and buildings visual inspection showed no trouble items and all are in good working order.
- g. Gas Turbines (4 identical units)

2. Maintenance activities that occurred in CY 2019:

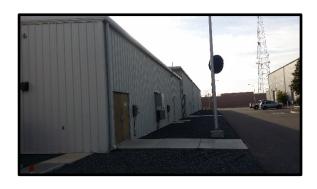
- a. May Planned Outage
 - i. Semi-annual maintenance performed
- b. December Planned Outage
 - i. Semi-annual maintenance performed

3. Schedule maintenance activities for CY 2020:

- a. May 2019 Planned Outage
 - i. Semi-annual maintenance
- b. December 2019 Planned Outage
 - i. Semi-annual maintenance

Status report regarding condition of Structures and Buildings

The photographs below shows the surface treatment of project structures and buildings. All buildings comply with condition VIS-4.


Warehouse Building (1/28/20)

Administrative Building (1/28/20)

Main Electrical Enclosure Building (1/28/20)

Substation Building (1/28/20)

Chiller Building (1/28/20)

RO Skid Structure (1/28/20)

Balance of Plant Building (1/28/20)

LM 6000 Turbines (1/28/20)

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 15 LANDSCAPE SCREENING

VIS-5: Landscape Screening

Condition of Certification VIS-5 requires a status report in the Annual Compliance Report regarding landscape maintenance activities. At the Canyon Power Plant the landscape maintenance activities were performed according to the contract and consistent with policies and requirements of the City of Anaheim plan and zoning ordinance.

The contracted company performed the following landscape maintenance activities:

Contracted Landscape Services – Landscape West Mgmt. Service, Inc. (Period: Jan 1, through December 31, 2019)

Activity Type	Frequency
Weed Control	2x/wk.
Landscape areas	
Hardscape areas	
Gravel areas	1x/Mo
Fertilization	As needed
Shrubs	
Ground cover	
Trees	
Pest Control	As needed
Rodents	
Irrigation Maintenance	2x/wk.
Inspect all Sprinklers/Systems	
Trees	As needed
Canopy Trees	
Maintenance/Clean-Up	2x/wk.
Ground Cover and Shrubs	
Trash & Litter at Landscape area	
Trash & Litter at enclosed gravel areas	
Monthly Inspection	

The photographs below taken by staff on 1/28/20 of the landscape maintenance demonstrating compliance pursuant VIS-5 condition:

Landscaping - Exterior Plants

Miraloma Avenue, south wall

Miraloma Avenue, south wall

Miraloma Avenue, south wall

East-wall ivy

Landscaping - Interior Plant

Administration Building

Administration and Warehouse Building

Warehouse Building

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 16

AQ-9 NH3 SLIP TESTING

TEST REPORT FOR AMMONIA SLIP TEST AT CANYON POWER PLANT UNIT 1 FACILITY ID: 153992, DEVICE ID: D1

Prepared For:

Canyon Power Plant

3071 E. Mira Loma Avenue Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District

21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 282-8240

Sean Donovan

Test Date: July 23, 2019
Production Date: August 22, 2019

Report Number: W002AS-543377-RT-221

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature: _	Sem Dum	_ Date:	8/21/2019
Name: _	Sean Donovan	_ Title:	Client Project Manager
appropriate wr the presented	itten materials contained herei	n. I herel , and coi	calculations, results, conclusions, and other by certify that, to the best of my knowledge informs to the requirements of the Montrose
Signature: _	Michel Chanta	_ Date:	8/21/2019
Name:	Mike Chowsanitphon	Title:	Reporting Manager

TABLE OF CONTENTS

SECTION	<u>PAGE</u>
1.0 INTRODUCTION AND SUMMARY	5
2.0 UNIT AND CEMS DESCRIPTION	6 7
3.0 TEST DESCRIPTION	8
4.0 TEST RESULTS AND OVERVIEW4.1 TEST RESULTS	
APPENDIX A RAW DATAA.1 SAMPLE DATA SHEETSA.2 LABORATORY DATAA.3 QA/QC DATA	11 14
APPENDIX B FACILITY CEMS DATA	24
APPENDIX C CALCULATIONS	30
APPENDIX D QUALITY ASSURANCE	38 44
APPENDIX E APPLICABLE PERMIT SECTIONS	49
LIST OF TABLES	
TABLE 1-1 AMMONIA SLIP TEST RESULTS SUMMARY	5
TABLE 4-1 AMMONIA SLIP TEST RESULTS	9
LIST OF FIGURES	
FIGURE 2-1 LINIT BLOCK DIAGRAM	6

1.0 INTRODUCTION AND SUMMARY

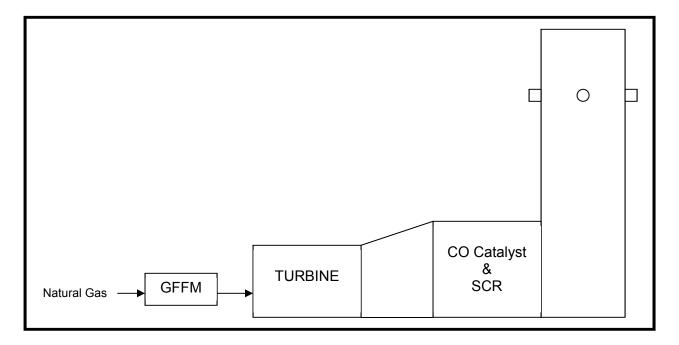
Montrose Air Quality Services, LLC (MAQS), was contracted the Canyon Power Plant to perform an ammonia slip test at Unit 1 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on July 23, 2019. The test was performed by Sean Donovan, Henry Lee, and Robert Howard. Sean Donovan was the on-site qualified individual for MAQS. Bertha Hernandez coordinated the test for Canyon Power Plant.

The test consisted of duplicate ammonia tests performed at 50 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to $15\% O_2$.

TABLE 1-1
AMMONIA SLIP TEST RESULTS SUMMARY

Parameter	Units	Result ⁽¹⁾	Limit
NH ₃	ppm	1.9	
NH ₃	ppmc	1.7	5

⁽¹⁾ Maximum of duplicate runs, as required by SCAQMD Method 207.1


Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.

2.0 UNIT AND CEMS DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46 degrees Fahrenheit, with water injection. The units are equipped with a CO catalyst and Selective Catalytic Reduction (SCR) system for NO_x control. Figure 2-1 presents a block diagram of the unit.

FIGURE 2-1 UNIT BLOCK DIAGRAM

Stack Inside Diameter: 11 feet, 8 inches

Distance from Upstream Disturbance: 23 feet, 4 inches (2.0 Diameters)

Distance from Stack Exit: 16 feet, 6 inches (1.4 Diameters)

2.2 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 50 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.3 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack location. Each test was performed over a 60 minute interval. The sample gas was drawn through a glass probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by Ion Specific Electrode analysis.

Stack O_2 and NO_x concentrations and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O_2 .

4.0 **TEST RESULTS AND OVERVIEW**

4.1 **TEST RESULTS**

The results of the test are summarized in Table 4-1. The results show that the ammonia slip was 1.7 ppm @ 15% O₂ which is less than the permitted limit of 5 ppm @ 15% O₂.

TABLE 4-1 AMMONIA SLIP TEST RESULTS CANYON POWER PLANT UNIT 1 JULY 23, 2019

Parameter	Units	Run 1	Run 2	Average	Maximum ⁽¹⁾	Limit
Test		1-NH₃-U1	2-NH ₃ -U1			
Date		7/23/2019	7/23/2019			
Time		0700/0806	0834/0940			
O ₂ ⁽²⁾	%	14.43	14.41	14.42		
Stack Flow(2)	dscfm @ T _{ref}	227,992	227,992	227,992		
$NO_{x}^{(2)}$	ppmc	2.4	2.3	2.3		2.5
NH ₃	ppm	1.9	1.8	1.9	1.9	
NH₃	ppmc	1.7	1.7	1.7	1.7	5
NH₃	lb/hr	1.2	1.1	1.1	1.2	
NH ₃	lb/MMBtu	0.002	0.002	0.002	0.002	
NH ₃	lb/MMSCF	2.5	2.4	2.4	2.5	

⁽¹⁾ Maximum of duplicate test runs, as required by SCAQMD Method 207.1 (2) From facility CEMS

APPENDIX A RAW DATA

Appendix A.1 Sample Data Sheets

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

otal in. 149. in. Hg. S POST SAMPLER RANGE SAMPLE CUSTODIAN SAMPLE CUSTODIAN ~ 130/0 59.62 340 91455 POST-TEST LEAK RATE: : 40.005 CFM@ Le, OUT CFM@ A N NIA A V PITOT LEAK CHECK - PRE-CHAIN OF CUSTODY: S AMBIENT TEMPERATURE: BAROMETRIC PRESSURE: NOZZLE ID NO/ MATERIAL PROBE ID NOMATERIAL: PITOT TUBE COEFF, Cp. FILTER NO/TYPE: ASSUMED MOISTURE: NOZZLE DIAMETER: PROBE LENGTH: 5/12 0.005/ - Canyon 2 METER Yd: 1.51.1 STACK AREA, FT² 106.90 TRAVERSE POINTS, MINIPOINT. 19-WCS Probe Condition, pre/post test: 799 9 1-NH3-41 Silica Gel Expanded, Y/N:_ RH INL Filter Condition after Test; 1.745 7123/19 SC001 101 METER AH@: I. T X AP: OPERATOR: METER BOX NO: Check Weight: LOCATION AH= N/A RUN NO: CLENT

mp. #Contents Post-Test - Pre-Test = Difference	H2504 922-7 723.0	42504 777.4 772.1	MT 653.4 652.8	SG 919.9 909.2	74001		
Imp. #C	·	ا پہ	8	5-	7	1	H

P. static	in. H ₂ O	41/14						- -					_					
Õ	%																	
Vacuum	in. Hg.	~	3	7		65)	3	n		4)	n	~	,	2	W	n	,	
Meter Temp, °F	Ont	7,	75	22	Į	77	7 2	94	i	7.0	4	77	١	18	5.5	20	1	
Meter Te	먑	7.3	74	35	l	7 1	7.9	3	l	1 -2	80	80	,	5/10	79	3.1	,	
Imp. Out	Temp, °F	3-5	26	3 4	-	8.8	5-6	5.5		ارا الح	5.5	5-60	1	58	9.0	5.5	ì	
Filter	Тетр, °Е	11/1	1														-	
Probe	Temp, °F	414															1	
Stack	Temp, °F	114]							_	_						4	
H∇	in. H ₂ O	1.5	5.1	1.5	1	1.5	1,5	1.5	1	5-1	7.	7.5	\	1.5	1.5	1.5	1	
ΔP	in. H ₂ O	N.1.2			:													
Meter	Volume, ft3	631.700	1 35 13 5	138 , 375	441.356	6.11.856	13.260	528, 35 9	1752-152-03-1	152.034	655.495	UZ71850 1712	1.55-234	662.339	165.730	\$21.899	677. 486	
	Time	00±0	Sata	0710	1715	_ ₹,50	2775		0752	07.34	1134	1 1 1 2	07 49	5751	42.52	[1783	軟	
	Point	5	7	-	PL	2	1	_	5	2	-2	~	40	3	7	-	PC	Average:

12 of 54

7-23-14

A.

Comments: 🗶 O <u>やっ</u>い

Master Document Storage\Forms\Datasheets\Field Datasheets

AND MONTROSE

DARD		467.5	H280- 1385 +51.6	F.089 2: 289 ING	SL 9384 929.3	Hyo less			4 2 40
- STAN	fmp. # 0	- ,	c/	₩	5	얼		Total:	
WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD	AMBIENT TEMPERATURE: こそらら BAROMETRIC PRESSURE: 2年65	ASSUMED MOISTURE: 12º%. PITOT TUBE COEFF, Cp: ~.{A}	PROBE ID NO/MATERIAL:	NOZZLE ID NO/ MATERIAL:	NOZZŁE DIAMETER:	ATE: 4	AN	SAMPLER 2H SAMPLE CUSTODIAN SO	
WE	S	DATE: 3 /23/19 RUN NO: 2 - พะเร-นา	2	METER BOX NO: パーツレン METER ΔH@: ト・マリ S	METER Yd: 1-011 STACK AREA, FT?: 106-90	TRAVERSE POINTS, MIN/POINT: 57/12	Gel	Fitter Condition after Test: 시스 Check Weight: 난숙이 이 15권이 교	

		Meter	ΔР	H∇	Stack	Probe	Filter	Imb. Out	Meter Te	amp, °F	Vacuum	Õ	P. static
Point	Time	Volume, ft3	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	ln Out	Ont	in. Hg.	%	in. H ₂ O
gui "-	0834	673.6c0	W1 7	.',	V1. 37	N-14	what	2.8	28.	- A	n		
2	1.8.2.1	\$18.3F4		1.5	,	, ,	-).i.	18	%0	4		
~	1,480	£ \$0.445		1.3				5.3	125	80	~		
7,5	०४ पद	1283.562		1				1	1	([
3	1530	293.589		1.5				χ, X	22	2	מן		
7	9550	\$40.783		, ,				\$1,1	7,70	53	~		
~	1000	008, 00 d		1.5				5-4	45	જન	~		
7.5	0406	693.678		l				1	i	į	l		
							-						
ı.	3000	693.678		5.1				ئر ب	24	2%	~		
Ļ	0413	547.095		5.1				در ما	مر	31	٣.		
_	5110	25h-0-1		۲۰,۱				56	40	8.6	3		
۲	0423	721.62		1				,	ì	ì	,		
بر	~260	753.122		1.5	-			5.8	40	-3c cX:	m		
٠.4	0820	071.TO		5-1				5.8	96	مد	6		
	9850	503.01		5.1				5.5	4	88			
ENS	END 0440	213.318		1	1	1	7)	1	1	,		
Average:	-												
₩.	₩	754.9	30	21/2/16									
	163.			2 2 2 2 1 1									

Master Document Storage\Forms\Datasheets\Field Datasheets

Appendix A.2 Laboratory Data

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS

7/23/2019 Project #: 002AS - 543377 District Method: SCAQMD 207.1 Sample Date: Client/Location: SCPPA - Canyon Calibration Date: Analysis Date: 7/29/2019 Calibration Curve: $\sqrt{z-56.2679x+86.8429}$ Analyst's Initials: Test #'s:

Sample	Electrode Potential (mV)	TV (ml)	Conc. µg NHa — N/ml	Cavg (μg NHs – N / ml)	µg NH₃/ sample	Comments/Temp/pH
Standard Check: 28 µg NHs/ml	2.1	1	28.469	28,469		Percent Recovery:
Repeat 28 µg NHs/mi	2.1		28.469		{	T=22°C
1- NH3	69.7	640.2	1.969	1.969	1532.149	T=22°C PH62
Repent 1-NH3	64.7		1.969			T-27°C
2 - NH3 Repeat 2 - NH3	759	755.0	1.54]	1.563	1434.087	T-22°C pH22
Repeat 2 - NH3	15.2		1.584	_		T 22°C
spike 2-NH3	10.1		20 152	20.794	~	T=22°C
Report Spike 2-NH3	10.0		20.835			T-275C
28 Mg NH3/ml Report 28 Mg NH3/ml	2.4		28,133	28.189		7-27 - 101% recover
Report 28 Mg N43/ml	2.3		28.145		~_	T-226
Reasent blank	178.0		0.027	0.027	<u></u>	T=27°C
Reagent blank Repeat 0. IN HISOY Reagent blank	178.5	_	0.027	_		T 27 %
Field black	171.0		0.036	0.036		T 22°C
Repeat Field blank	171.4		0.035	,		TIZZ
DI HO blank	176.3	_	0.029	0.024		T-224
Repeat DI HLO blank	710		0,029		~	T=22°C
28 Mg NHolml	2.3		28.245	28.245		T=22°C 1019/orecive
Reprict 28 ugNHalm	2-3		28.245			T=22°C

Total volume of samples and standards used: Notes:

100m

Volume of pH adjusting ISA used in mi: Absorbing solution: 0.1N H2SO4

Conc. (μ g NHs - N / ml) = 10 (P-B)M Calculations:

P = electrode potential, B = y-intercept and M = slope

Cavg = average result of duplicate analyses (µg NH₃ -- N / ml) = (C1+C2)/2

μg NH₃ / sample = Cavg* 17.03/ 14.01 * TV

mg / sample = μg /sample ÷ 1000

ppm NH₂ = mg NH₃/sample x 1/Vmstd x 1/454000 x SV/17 x 10⁶

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION

Project Number: 002AS-543377

Client/ Location: SCPPA-Canyon Power Plant

Sample Location: Unit 1

 District Method:
 \$CAQMD 207.1

 Sample Date:
 7/23/2019

 Analysis Date:
 7/29/2019

 Analyst's Initials:
 KC

 Calibration Curve Slope
 -58.2679

 Y-intercept
 86.8429

 R²
 1.0000

probe 9

Sample	P	Conc.	C avg as N	TV	C avg as NH ₃	μg NH ₃ /
	mV	μg NH ₃ /ml as N		(ml)		sample
28 ug NH ₃ / ml as N	2.1	28.469				
Repeat 28 ug NH ₃ /ml as N	2.1	28.469	28.469	NA	34.605	NA
1-NH3	69.7	1.969				
Repeat 2- NH3	69.7	1.969	1.969	640.2	2.393	15 <u>32</u> .14 <u>9</u>
2-NH₃	75.9	1.541				
Repeat 2- NH ₃	75.2	1.584	1.563	755	1.899	1434.087
spike 2-NH₃	10.1	20.752				
Repeat 2-NH3 spike	10.0	20.835	20.794	NA NA	25.276	NA
28 NH ₃ /ml as N	2.4	28.133				
Repeat 28 ug NH₃/ml as N	2.3	28.245	28.189	NA	34.285	NA
Reagent Blank	178.0	0.027				
Repeat Reagent Blank	178.5	0.027	0.027	NA	0.033	NA
Field Blank	171.0	0.036			T	
Repeat Field Blank	1 <u>71.4</u>	0.035	0.036	NA	0.043	NA
DI H2O Blank	176.3	0.029				
Repeat DI H2O Blank	176.8	0.029	0.029	NA.	0.035	NA _
28 NH ₃ /ml as N	2.3	28.245		-		
Repeat 28 ug NH₃/mi as N	2.3	28.245	28.245	NA	34.333	NA

Notes:

Measured Concentration of Ammonia (C) in μg NH $_3$ / ml as N C=10 $^{(P\text{-B})\text{/M}}$

P = electrode potential (mV), M=slope and B=intercept

Average Measured Ammonia Concentration (Cavg) = (C1 + C2)/2

where C1, C2 results from duplicate analyses (μg NH₃/ml as N)

Cavg (μ g NH₃/ml as NH₃) = Cavg (μ g NH₃/ ml as N) * 17.03/ 14.01

μg NH₃ / sample = Cavg (μg NH₃/ml as NH₃) * TV

Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate.

All solutions turned blue and remained blue with ISA unless otherwise indicated.

Sample PH and Temperatures can be found on the laboratory datasheet.

Maximum samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL

Project Number: 002AS-543377

Client/ Location: SCPPA-Canyon Power Plant

Sample Location: Unit 1

District Method: SCAQMD 207.1

Sample Date: 7/23/2019 Analysis Date: 7/29/2019

Analyst's Initials: KC

Sample	% recovery	RPD	RPA
		%	%
28 ug NH3 / ml as N			
epeat 28 ug NH3/ml as	N <u>A</u>	0.00	1.674
1-NH3			-
Repeat 2- NH3	NA	0.00	NA
2-NH3			
Repeat 2- NH3	NA	-2.77	NA
spike 2-NH3			
Repeat 2-NH3 spike	100.16	-0.40	NA NA
28 NH3/ml as N			
epeat 28 ug NH3/ml as	NA	-0.40	0.674
Reagent Blank			
Repeat Reagent Blank	NA	1.98	NA_
Field Blank			
Repeat Field Blank	NA	1.58	NA
DI H2O Blank	<u> </u>		
Repeat DI H2O Blank	NA	1.98	_NA
28 NH3/ml as N			
epeat 28 ug NH3/ml as	NA	0.00	0.873

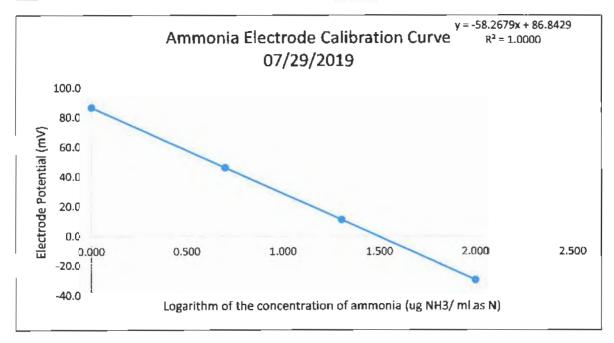
Notes:

spike: 100 ml sample + 2 ml (1000 µg NH₃ / ml as N)

Matrix Spike Percent Recovery (%R)

%R = (C spike*0.104 - Csample*0.102)/2 *100

Cspike = average result of matrix spike (µg NH₃/ ml as N)


Relative Percent Difference (RPD) = (C1-C2)/ Cavg *100 (must be 5% or less)

Relative Percent Accuracy (RPA) (must be 10% or less)

RPA = (Cavg-theoretical value of standard)/ theoretical value of standard * 100

AMMONIA ELECTRODE CALIBRATION CURVE

NH ₃ concentration	log NH ₃ concentration	Electrode potential	Sample Temperature	Room Temperature
(μg NH ₃ / ml as N)	_	(mV)	(C)	(C)
1	0.000	86.8	22.1	22
5	0.699	46.2	22	22
20	1.301	11.0	22.7	22
100	2.000	-29.7	22.8	22

probe	9
slope	-58,2679
y-intercept	86.8429

Concentration (μg NH ₃ / ml as N)	Value LR line	Difference	% Difference
1	1.0017	0.0017	0.1698
5	4.9833	-0.0167	-0.3338
20	20.0274	0.0274	0.1368
100	100.0279	0.0279	0.0279

Calculation:

Regression Line: P=M*log(μg of NH₃/ ml as N)+B

Measured Concentration of Ammonia (C) in μg / mt NH $_3$ as N: $\,$ C=10 $^{(P-B)\prime M}$

where P = electrode potential, M= slope (must be -57±3) and B= intercept

All standards were prepared in $0.04N\ H_2SO_4$ and allowed to equilibrate to room temperature.

Appendix A.3 QA/QC Data

2/1/2019

Darte

0.568

Q@dH=1:

Orifice Method - Triplicate Runs/Four Calibration Points
English Meter Box Units, English K Factor
Misbania Anatequipment\text{Text} Equipment\text{Calibrations} To Sas Meters\text{19-wcs}20f9\text{9} semi annual cal 19wcs 2-1-19.xts\text{4WCS} File Models\text{19-wcs}20f9\text{9} semi annual cal 19wcs 2-1-19.xts\text{4WCS} File Models\text{16-wcs} APE \$22 Series Meter box Calibration
Revised. 48/2055

c-5000 ID #: 19-wcs Date: 2/1/2019 Bar. Pressure; 26/98 (in. Hg) Performed By: R. Howard Meter Senal #:

				1	1	1	ī -	_	t	₁ –	_	_			_	_	_	_
İ	llure	Average	(deg F)	96.0	56.0	56.0		58.0	58.0	59.0		57.0	57.0	57.0		56.0	56.0	56.0
	Ambient Temperature	Final	(deg F)	56.0	56.0	560		58.0	580	58.0		57.0	57.0	57.0		56.0	56.0	56.0
_	_	Initial	(deg F)	56.0	560	58.0		580	58.0	58,0		67.0	57.0	67.0		58.0	26.0	98.0
DINGS	Actual	Vacu⊔m	(in Hg)	15.0	15.0	15.0		14.0	14.0	14.0		12.0	12.0	12.0		11.5	11.5	11.5
CRITICAL ORIFICE READINGS	K' Onifice	Coefficient	(see above)	0.1553	0.1553	0,1553		0.3465	0.3465	0.3465		0.5888	0.5888	0.5888	!	0.8202	0.8202	0.8202
CRITIC	Orifice	Serial	(number)	33	33	33		48	48	48		63	S	83		7.3	73	22
	Final Temps.	Outlet	(deg F)	57.0	58.0	58.0		59.0	59.0	59.0		0.08	0.09	61.0		58.0	58.0	58.C
	Final	Inlet	(deg F)	55.0	56.0	57.0		60.0	610	61.0		55.0	650	65.0		62.0	64.0	65.0
NGS	Initial Temps.	Outlet	(deg F)	56.0	57.0	58.0		58.0	59.0	59.0		59.0	60.0	90.0		57.0	58.0	58.0
DRY GAS METER READINGS	Initial	inlet	(deg F)	55.0	55.0	56.0		0.09	60.0	61.5		62.0	650	65.0		009	62.0	640
DRY GAS M	Volume	Tolai	(cn #)	5,190	5.187	5.186		5.275	5.276	5.274		5.305	6 322	5.312		5.198	5.195	5,200
	Volume	Final	(cn tt)	709 690	714.877	720.063	! 	751.275	756.551	761.825		767.505	772.827	778,139		734,596	739.891	745,091
	Volume	Initial	(cm ft)	704.500	709.690	714,877		746.000	751.275	758.551		762.200	767,505			729.500	734,696	739,891
		Time	(min)	25 00	28.00	26.00		12.00	12.00	12.00		7.00	7 00	7.00		5.00	909	5 00
		둉	(in H2O)	0.13	0.13	5.13		0.61	0.61	0.61		1,90	1.96	1.80		3.50	3.50	3.50

#E VOLUME Y TTED NOMINAL Y d) Vcr Value (cu.ft) (number) 6.200 1.001 6.200 1.003 7 Average 1.003 7 (number) 7	VOLUME NOMINAL NOMINAL (Cu ft) 5.200 5.200 5.200 5.200 5.365 5.365 5.365 5.365	Y Value (mumber) 1.001 1.003 1.005 1.005 1.003 1.019 1.019 1.019 1.019	dH(@Value (in H2O) 1.783 1.779 1.778 1.780 1.681 1.680 1.680	Run Oni 0.95 < Y Ymax	min 0.9	Average dH@ - dH@ av
NOMINAL Y Ver Value (cu ff) (number) 5.200 1.001 5.200 1.003 5.200 1.005 6.200 1.005 7.005 7.005 7.005 7.005	NOMINAL Ver (cu ft) 5.200 5.200 5.200 5.200 5.200 5.305 5.385 5.385	Y Value (number) 1.001 1.003 1.005 1.003 1.019 1.019 1.019	ан(д Value (in H2O) 1.783 1.779 1.779 1.780 1.681 1.679 1.679 1.670 1.680			dH@ - dH@ av
(cu ft) (number) 5.200 (.001 5.200 (.001 5.200 (.002 5.200 (.003 5.200 (.003 5.200 (.003 5.385 (.003	Ver (cu ft) 5.200 5.200 5.200 5.200 5.200 5.200 5.385 5.385 5.385 5.385	Value (number) 1.001 1.002 1.003 1.003 1.003 1.003 1.003 1.003 1.009 1.019 1.019 1.019 1.005	(in H2C) (1.783 1.783 1.779 1.779 1.681 1.679 1.679 1.680			dH@ - dH@ av
(cu ft) (number) 5.200 1.001 5.200 1.003 5.200 1.005 Average 1.005 5.365 1.018	(cu ft) 5.200 5.200 5.200 5.200 5.200 5.385 5.385 5.385 5.385	(number) 1.001 1.002 1.003 1.003 1.003 1.018 1.019 1.019 1.019	(in H2O) 1,783 1,779 1,778 1,788 1,681 1,679 1,680 1,680			
5.200 1.001 5.200 1.003 5.200 1.005 Average 1.003 5.385 1.018		1,001 1,003 1,005 1,003 1,019 1,019 1,019 1,019	1,783 1,779 1,778 1,780 1,681 1,680 1,680 1,680			< 0.155?
5.200 1.003 5.200 1.005 Average 1.005 5.385 1.018	!	1,003 1,005 1,005 1,003 1,019 1,019 1,019 1,005	1,779 1,778 1,780 1,679 1,679 1,680 1,680			
5.200 1.005 Average 1.003 5.385 1.018		1,005 1,003 1,018 1,019 1,019 1,005	1,778 1,780 1,681 1,679 1,670 1,680			
Average 1.003		1,003 1,019 1,019 1,019 1,005	1,780 1,681 1,679 1,679 1,680			
5.355 1.018		1.018 1.020 1.020 1.019	1681 1679 1679 1680		Pass Pass	Pass
		1.019 1.020 1.019 1.005	1.679 1.679 1.680			
1.019		1.020 1.019 1.005	1.680 1.680 1.806			
5.365 1.020		1.019	1.680	P		_
1.019	5,313	1.005	1.806		Pass Pass	Pass
5,313 1,005			an an an an a	Pass		
	5.313	1.004	1.604	Pass		
	5.313	1:007	1.802	Pass		
Average 1.005	Average	1.005	1.804	P	Pass Pass	Pass
153.3 5.281 1.014 1	5,281	1.014	1.718	Pags		
153.3 5.281 1.017 1	5.281	1,017	1.716	Pass		
153.3 5.281 1.017 1	5.281	1.017	1.716	Pass		-
Average 1.016	Average	1.018	1.717	-R	Pass Pass	Pass

SIGNED: Signature on File

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 19-WCS

Readout Description: Control Box

Date: 7/2/2019

Performed By: JG/DA/RH/JS

Calibrated Thermocouple ID: TC-CAL T1 Reference Thermometer ID: 242196 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 242167

T/C			T/C - F	Readout			Reference 1	hermometer		Diffe	erence	
I.D.	Readout		c	F			•	F				
TC-CAL	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (^c R)	
T3 (O)L)	19-WCS	350	350	350	350	358	358	358	358	8.0	1.0%	Pass
T2 (Boiling H ₂ O)	19-WCS	210	210	210	210	212	212	212	212	2.0	0.3%	Pass
T1 (Ice/Water)	19-WCS	36	36	36	36	32	32	32	32	4.0	0.8%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

		•	T/C - F	Readout			T/C S	ource		Diffe	rence	1
	T/C Source			,Ł				'F				1
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	S/N 106970	657	657	657	657	650	650	650	650	7.0	0.6%	Pass
T3 (~370 F)	S/N 106970	369	369	369	369	370	370	370	370	1.0	0.1%	Pass
T2 (~212 F)	S/N 106970	210	210	210	210	212	212	212	212	2.0	0.3%	Pass
T1 (~32 F)	S/N 106970	29	29	29	29	32	32	32	32	3.0	0.6%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

WIN MONTROSE

- STANDARD
L SAMPLING SYSTEM DATA AND WORKSHEET
STEM DATA AN
SAMPLING SY
WET CHEMICAL
5

Imp. #Contents P	-	1 1th 304		2 H 2504	,	S MI		<u>ک</u> ر		CR H20	,			Total:
AMBIENT TEMPERATURE: ~ ^ ~ ~ 。	BAROMETRIC PRESSURE: 25.65	ASSUMED MOISTURE: 12°10	PITOT TUBE COEFF, Cp:	PROBE ID NO/MATERIAL: 514.35	PROBE LENGTH:	NOZZLE ID NO/MATERIAL: 1010	NOZZLE DIAMETER: ~ 1/A	FILTER NO/TYPE: ~ 1/A	PRE-TEST LEAK RATE: : Za.ovS CFM@ 12 in. Hg.	POST-TEST LEAK RATE: : <△·□·· H CFM@ 13 in. Hg.	PITOT LEAK CHECK - PRE: ~/~ POST: ~/~	CHAIN OF CUSTODY: SAMPLE CUSTODIAN SO	SAMPLER	SAMPLE CUSTODIAN SID
O CLIENT: SCPP 4 - Canyan	LOCATION: OARTH	S DATE: 7/23/19	G RUNNO: FR-WH3	_	₩ETER BOX NO: 19-WeS	WETER AH@: 1.745	WETER Yd: 1-011	T STACK AREA, FT2. 106.90	TRAVERSE POINTS, MIN/POINT		Probe Condition, pre/post test:	Silica Gel Expanded, Y/N:	Filter Condition after Test: ~ 1.4	Check Weight: 499.9 / 520.0

Volume, ft³ in, H₂O in, H₂O Temp, °F Temp, °F Temp, °F Temp, °F In Out in Hȝ. %				Meter	ΔD	Нδ	Stack	Probe	Filter	Imp. Out	Meter To	emp, °F	Vacuum	02	P. static
	ď	oint	Time	Volume, ft ³	in. H ₂ 0	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	ដ	Ont	in. Hg.	%	in. H ₂ O
														· 	
				7											
			1												
			_										 \ 	\	
			-					2				1			
	1														
Average:															
Average:															
Average:															
Average:															
Average:														ĺ	
Average:															
Average:															
	A	erage:													
	ပိ	Comments:	į.												

Page 1 of 1

Master Document Storage\Forms\Datasheets\Field Datasheets

Date of last revision 2/14/2017

CHAIN OF CUSTODY

: 7/23/2019	: RH/HL	SD :	DATE DUE: 7/30/2019	Yes	COMMENTS							DATE/FIME	7/10/19 8:00,			Chain of Custody - DS834001 - Excel
TEST DATE(S): 7/23/2019	SAMPLER(S): RH/HL	PROJECT MANAGER:	DATE DUE	COMPLIANCE TEST?: Yes	SAMPLER	RH/HL	SD	SD	RHML			/ED BY				Chain c
PROJECT #: W002AS-543377					CONTAINERS	4			-			RECEIVED BY	20117.			
					SAMPLE DESCRIPTION	Probe, Line, Impingers	7100e, Line, Impligers 0.1 N H₂SO₄	DI H2O	Probe, Line, Impingers			DATE/TIME	7-25-19/ 1440		7.1 (ISE)	9/1/2017
CLIENT: SCPPA - Canyon Power Plant	U1	Stack	TEST METHOD(S): SCAQMD 207.1	No	Ш		Reagent Blank	Reagent Blank	Field Blank			34	2als		NH ₃ by SCAQMD 207.1 (ISE)	Date of Last Revision 9/1/2017
CLIENT:	LOCATION: U1	SAMPLE LOCATION: Stack	ETHOD(S):	EQUIRED?:	TIME	0700/0806	0834/0340					RELEASED BY	lower /		RED:	ROSE
	1	SAMPLEL	TEST MI	OUTSIDE LAB REQUIRED?:	DATE	7/23/2019	7/23/2019	7/23/2019	7/23/2019				Robert 1100		ANALYSIS REQUIRED:	MONTROSE
WOO)2AS	8-543	3377-	·RT-2	221					23	of 54					

APPENDIX B FACILITY CEMS DATA

Average Values Report Generated: 7/23/2019 09:17

Company: City Of Anaheim Plant: 3071 Miraloma Ave. City/St: Anaheim, CA, 928 Source: unit1	iim vve., 92806								Perio Per	Period Start: 7/23/2019 07:01 Period End: 7/23/2019 08:06 Validation Type: 1/1 min Averaging Period: 1 min Type: Block Avg	7/23/2019 07:01 7/23/2019 08:06 m Type: 1/1 min g Period: 1 min Type: Block Avg
Period Start:	Average 1_02	Average 1_NOXPPM DDM	Average 1_NOX_CORR DOM	Average 1_MOX_LBHR #/hr	Average 1_MOX_LAMM #/MBTO	Average l_gasFlow kecfh	Average 1_LOAD MW	Average 1_STACRFLW kecfm	Average 1_COPPM DGM	Average 1_co_corr pon	Average 1_CO_LBBR #/hr
11	14,44	2.64	IO.		600.0	470.1		231.8	3.10	Ni I	(m)
07/23/2019 07:02	14,45	2.60	2.38	4.44	600.0	470.3	49.75	232.3	3.02	2.76	3.06
	14.43	20.03	2.33	4.46	600.0	471.4	49.80	232.1	3.00	2.74	3.03
	4.	LID.	2.37	4.45	0.009	471.3	49,81	232.4	2.96	2.70	3.02
	14.42	2.58	2.35	4.46	0.009	472.2	49.88	232.1	2.90	2.64	2.93
	14,44	0 . G	2.37	4.44	600.0	469.5	49.66	231.5	2.89	2.64	2.91
07/23/2019 07:08	14.44	יי טיר טיר	2.37	4.45	\$000,00 000000	471.0	40.78	2333.3	3.07	2.80	3. t.
	14.44	2,50	2.33	4.45	0.009	470.7	49.77	232.1	3.28	3.00	3.37
	14,43	2,55	2.33	4.45	0.009	471.1	49.82	232.0	3.05	2,78	3.07
	14.44	2,59	2.37	4.45	0.000	470.5	49.82	232.0	3.02	2.76	3.06
	14.43	2.61	100	4.46	0.009	471.7	49,84	232.3	3,30	3.01	3.37
07/23/2019 07:14 07/23/2019 07:15	14.42	2.62	9 60	4,46	600.0	472.0	0.04	232.0	3.30	3,00	3.32
	14.42	2,64	2.40	4.46	0.009	471.8	49.87	231.9	3.18	2,90	
	14.42	2.66	2.43	4.46	00.00	471.4	49.82	231.8	3.19	2.90	3.22
	14.43	2.65	2.42	4.45	0.009	470.8	49.76	231.8	3.17	2.89	3.21
	14.45	2.62	2.40	4.44	0.009	469.9	49.68	232.1	4. G	2.87	3.16
07/23/2019 07:20	14.44	75.5	2.0	44.0	800.0	470.3	27.04	231.9	90.5	67.7	3.11
	14.45	2.50	2.29	יינו היינו היינו	0.00	470.3	49.75	232.3	04.6	3.02	٠.
	14.45	2.49	2.28	3.95	0.008	470.3	49.76	232.3	3.34	3.06	3.41
	14.44	2.50	2.28	3.94	0.008	469.0	49.70	231.3	3.16	2.89	3.20
	14.46	2.50	2.29	60° 60	0.008	468.2	49.65	231,6	3.13	2.87	3.15
07/23/2019 07:26	14.45	2,47	2.26	3,74	0.008	469.3	49.76	231.8	3.24	20.40	3.25
	14.43	2.47	2.25	19. E	0.008	469.8	49.81	231.3	3.31	3.02	. m
	14.44	2,52	2.30	3.94	0.008	469.2	49.77	231,4	3.13	2.86	
	14.44	2.56	2.34	4.44	0.009	470.0	49.81	231.8	3.07	2.80	3.11
	14.43	23.55	23.33	4.45	0.000	470,6	49.90	231.7	3.08	2.81	
07/23/2019 07:32	14.42	2,58	22.35	4 4 4 5	600.0	470.8	. 8. 0. 4 . 6. 0. 4	231.4	2.34	. N. C.	75.97 Fa c
	14.43	2.65	2.42	4.44	600.0	469.9	49.79	231.4	2.79	2.54	
	14.44	2.64	2.41	4.45	60000	470.6	49.89	232.1	2.75	2.51	2.77
	14.42	2.64	2.40	4.45	600.0	470.4	49.89	231.2	2.75	2.50	2.77
	14.42	2.66	2.42	4.44	600.0	470.0	49.82	231,1	2.82	2.57	2.86
07/23/2019 07:38	14.45	2.69	2.46	4.42	600.0	468.2	49.68	231.2	2.78	2.54	2.80
	14.44	2.60	0.5	4.43	600.0	467.0	49.19	231.1	A . C.	0.0	
	14.45	2.58	2.36	4.44	0.009	469.8	49,85	232.0	3.47	3.17	3.50
	14,43	2.55	2.32	4.44	600.0	470.3	19.88	231.2	3.42	3.11	3.46
	14.42	2.60	2.37	4.45	0.009	470.7	49.92	231.4	3.08	2.80	3.11
	14.42	2.66	24. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	4. «	0.009	470.9	40.00	231.5	3.00	2,73	3.02
07/23/2019 07:45	14.42	2 . 0	4 4	4.45	00.0	470.7	49.93	231.0	2,75	2.50	25.32
	14.42	2.70	4	4.44	0.009	469.7	49.80	230.9	2.69	2.45	2.71
	14,44	2.69	2.46	4.43	0.009	468.5	49.72	231.0	2,70	4	2.71
07/23/2019 07:49	14.43	2.64	2.41	4.44	0.009	470.1	49.87	231.5	2.72	2,48	2.76

Babcock & Wilcox Power Generation Group MetDAHS

	Average	Average	Average	Average	Average	Average	Average	Average	Average	Average	Average
	1_02	1_MOXPPM	1 MOX CORR	1 NOX LBHR	1 NOX LBMM	1 GadFlow	1_LOAD	1 STACKPLW	1_COPPM	1 CO CORR	1_CO_LBHR
Period Start;		Didi	ppm	#/DI	D.T.FIW / A	KBCLD	MIN	Kacım	mdd	mdd	#/ HT
07/23/2019 07:50	14,42	2.63	2.39	4.45	600.0	470.4	49.87	231.2	2.76	2.51	2.77
07/23/2019 07:51	14.42	2.69	2.45	4,44	0.009	470.3	49.89	231.2	2.77	2.52	2.81
07/23/2019 07:52	14.41	2.69	2.45	4.45	600.0	470.9	49.87	231.1	2.92	2.65	2.97
07/23/2019 07:53	14.42	2.53	2.30	3.95	0.008	470.3	49.85	231.2	3,10	2.82	3.11
07/23/2019 07:54	14.42	2.45	2.23	3.95	0.008	470.1	49.78	231.1	3.16	2,98	3.21
07/23/2019 07:55	14.44	2.47	2.26	3.93	0.008	468.3	49.68	230.9	3.08	2.81	3.10
07/23/2019 07:56	14.43	2,44	2.23	3.95	0.008	470.5	49.85	231.7	3.23	2.95	3.26
07/23/2019 07:57	14.40	2.43	2.21	3.95	0.008	470.7	49.83	230.7	3.49	3.17	3.51
07/23/2019 07:58	24.42	2.49	2.27	3,95	0.008	470,1	49.84	231.1	3.68	3.35	3.70
07/23/2019 07:59	14.42	2.53	2,30	3.95	0.008	470,1	49.85	231.1	3.51	3.20	3.55
07/23/2019 08:00	14.41	2,52	2.29	3.95	0.008	470.3	49.87	230.8	3.29	2.99	3.31
07/23/2019 08:01	14.42	2.53	2,30	3.95	0.008	470.1	49.83	231.1	3.10	2.82	3.11
07/23/2019 08:02	14.42	2.53	2.30	3.94	0.008	469.1	49.78	230.6	3.09	2.81	3.10
07/23/2019 08:03	14.43	2.51	2.29	3.93	0.008	468.0	49.71	230,4	3.31	3.02	3.34
07/23/2019 08:04	14.44	2.46	2.25	3.94	0,008	468.6	49.75	231,1	3.77	3,44	3.79
07/23/2019 08:05	14.44	2,41	2.20	3.94	0.008	469.1	49.79	231.4	4.11	3.75	4.14
07/23/2019 08:06	14.42	2.41	2.19	3.96	0.008	470.9	49.91	231.5	4.07	3.71	4.10
Daily Average*	14,43	2.57	2,35	4.27	600.0	470.2	49.81	231.5	3.13	2.85	3.16
Maximum.*	14.46	2.70	2.46	4.46	600.0	472,2	49.93	232,4	4.11	3.75	4.14
	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019
	7:25	7:47	7:48	7:17	7:52	7:06	7:45	7:05	8:05	8:02	8:05
Minimim.*	14,40	2.41	2,19	3.93	0.008	467.8	49.65	230.4	2.69	2.45	2.71
	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019
	7:57	8:06	8:06	8:03	8:06	7:40	7:25	8:03	7:47	7:47	7:48

* Does not include Invalid Averaging Periods ("N/A")

Version 47.0

Average Values Report Generated: 7/23/2019 10:52

Average 1_Co_LBHR _#/br	3.27	3.07	3.11	3.31	3.50	3.56	3.47	(A) (A)		4 50	3.61	3.41	3.47	3.62	79.6	18.80 18.80	3.91	3.70	3.61	3.67	3.46	3.61	3,91	4.07	3,96	3.71	3.62	3.57	3,96	4.06	3.96	3.65	3.75	4 to 0	4.10	3.65	3.56	3.42	3,47	יחיים
Average 1_CO_CORR ppm	€N	2.78	æ	2.97	3.16	3.21	3.11	3.00	24 L	3.25	. 2	3.10	3.14	9.70	900	o m	3,54	3.36	3.26	3.31	3.10	3.25	3.53	3,69	3,04 4.04	3,33	3.26	3,22	3.55	3.65	3.55		3.38	4.0.4	3.71		7	3.10	3.12	2 0
Average 1_COPPM ppm		3.05	3.08	3.26	3.46	3.52	3.43	3.31	3.28	66.6	3.57	3.40		99.50 60.00	מייני ני	3.76	3.88	3.68	3.57	10 C	3.41	3.57	3.88	4.01	4 or c	3,66	3.53	ម ព្រ.	3.91	4.01	3.90	3.64	3.71	4.22	4.07	3.64	3.50	3.40	ω. 4. υ. Ε. υ.	; -
Average 1_STACKFLW kscfm	231.6	231.6	231.9	231.5	231,4	232.0	231.5	1337.3	231.5	230.9	231.7	231.2	232.1	231.4	1.102	231.5	232.1	231.5	232.2	232.2	231.6	231.8	231.9	231,9	231.7	231.8	232.3	231.3	231.5	231.7	231.9	231.1	231.2	22. L.C	231.6	231.6	231.7	231.9	231.9	32.0
Average 1_LOAD MW	49.89	7	49.68	49.70	Ģ.	9	6	O O	49.82	o co	ത	49.70	49.79	40.00	00.CH	4 40.00	7.		49.72	49.88	49.78	49.78	49.81	49.85	49.80	49.75	49.84	49.89	, co	49.77	49.77	49.68	40.69	24.04	49.67	49.69	49.71	19.83	49.88	9 0
Average 1_Gasflow kscfh	472.6	471.1	470.3	470.2	470.0	471.2	472.4	471.9	471.7	471.9	471.2	470.3	471,4	472.2	4.0.0	470.3	471.4	470.1	470.8	472.4	471.1	471.5	471.8	472.5	471.3	471.4	472.5	472.7	471.6	471.3	471.7	470.1	469.6	470 5	470.3	470.3	470.6	471.7	472.5	
Average 1_NOX_LBMM #/MBTU	0.008	600.0	0.008	0.008	800.0	0.008	0.008	0.008	800.0	0.008	0.003	0.008	0.008	0.008	800.0	0.008	0.008	0.008	900.0	800.0	800.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	600.0	0.009	600.0	0.009	600.0	500 0	00.00	0.009	0.009	0.000	0.009	0000
Average 1_NOK_LBHR #/hr	3.97		3,95		3.95	3,96	3.97	396.6	3.96	3.96	3.96	3,95		3.97	מיים ר	ກ ເກ ດີ ເກ	3.96		3.95	3.97		4.46	4.46		4.40		4.46	4.47		4.45	4,46	•	44.4						4,46	
Average 1_NOX_CORR ppm	2.27	2.31	2.29	2.23	2.19	2.19	27.2	. S.	2.27	2.25	2.28	2.27	2.23	2.21	22.40	2,13	2,14	2.14	2.16	2.14	2.26	2,36	2.38	2.37	2.40	· ~	2.35	C) (2.45	2.45	2.44	2.43	2,42	2 4	i w	2,33	m I	1	22.35	•
Average 1_NOXPPH DEM	2.50	2.54	2.51	2.45	2.40	2.40	2,41	2.46	2.50	2.43	2.50	2.49	2.45	2,43	4,4	2.39	2.35	2.35	2.36	2,3	2.48	2.59	2.61	2.61	2.64	2,61	2.58	2.59	2.69	2.69	2.68	2.67	2.65	2	2.57	2.56	ψ. I	2.55	2,59	00.00
Average 1_02 %	14.40	14.43	14,44	14,43	14.43	14.43	14.40	14.40	14.41	14,41	14.42	14.42	14.43	14.40	0#.#T	14.43	14.43	14.43	14.44	14.42	14.40	14.42	14.42	14.41	14.41	14.42	14,42	14.39	14.41	14.42	14,42	14.42	14.43	14.42	14.4	14.43	14.43	14.42	14.41	14.42
Period Start:	07/23/2019 08:35		07/23/2019 08:37	07/23/2019 08:38	07/23/2019 08:39				07/23/2019 08:43						01/23/2019 08:50					07/23/2019 08:56					07/23/2019 09:02			07/23/2019 09:06					07/23/2019 09:12						07/23/2019 09:19	

Version 47.0

	Average	Average	Average	Average	Average	Average		Average	Average	Average	Average
Derical Atent.	1 02	1_NOXPPM	1 NOX CORR	1_NOX_LBBR	1 NOX LEMM	1_GasFlow kecfb	1_LOAD	1_STACKFLW kscfm	1_COPPM	1_CO_CORR	1_CO_LBHR #/hr
07/23/2019 09:24	14.40	2.70	2.45	4,46	0.009	471.9	49.85	231.3	3.22	2.92	3.27
07/23/2019 09:25	14.41	2.73	2,48	4.46	0.009	471.5	49.85	231.5	3.31	3.01	3.37
07/23/2019 09:26	14.40	2.72	2.47	4.46	0.003	472.1	49.91	231.4	3.41	3.10	3.42
	14.40	2.71	2.46	4.45	600.0	470.9	49.75	230.8	3.60	3.27	3.61
07/23/2019 09:28	14.42	2.71	2.47	4.45	600.0	470.8	49.76	231.4	3.67	3.34	3.71
07/23/2019 09:29	14.41	2.67	2.43	4.45	600.0	470.8	49.76	231.1	3,55	3.23	3.56
07/23/2019 09:30	14.41	2.66	2.42	4,45	0.009	470.6	49.75	231.0	3.31	3.01	3,36
07/23/2019 09:31	14,41	2.68	2.44	4,46	0.003	471.7	49.87	231.5	3.39	3,08	3.42
07/23/2019 09:32	14.39	2.69	2,44	4.46	600.0	472.5	49.90	231.2	3,46	3.14	3.47
07/23/2019 09:33	14.39	2,74	2.48	4.46	600.0	471.8	49.87	230.9	3.40	3.08	3.42
07/23/2019 09:34	14.39	2.78	2.52	4.47	0.009	472,7	49.91	231.3	3.20	2.90	3,23
. 07/23/2019 09:35	14.40	2.67	2.42	4,45	0.009	470.9	49.68	230.8	3.10	2.81	3.11
07/23/2019 09:36	14.42	2.47	2.25	3,95	0.008	469.8	49.65	231.0	3.17	2.89	3.21
07/23/2019 09:37	14.41	2.30	2.09	3.95	0.008	470.0	49.68	230.7	3.33	3.03	3.36
07/23/2019 09:38	14.42	2.27	2.07	3.96	0.008	471.2	49.79	231.7	3,39	3.09	3.41
07/23/2019 09:39	14.39	2.36	2,14	3.96	0.008	471.1	49.77	230.6	3,35	3.04	3,36
07/23/2019 09:40	14.41	2.47	2.25	3.95	0.008	470.6	49.76	231.0	3.29	2.99	3.31
Daily Average*	14.41	2.55	2.32	4.24	0.009	471.3	49.78	231.5	3.53	3.21	3.56
Maximum*	14.44	2.78	2.52	4.47	0.009	472.7	49.91	232.3	4.44	4.04	4.50
	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019
	8:55	9:34	9:34	9:34	9:35	9:34	9:34	9:02	9:14	9:14	9:14
Minimm*	14.39	2.27	2.07	3.95	0.008	469.6	49.65	230.6	3,05	2.78	3.07
	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019	07/23/2019
	9:39	9:38	9:38	9:40	9:40	9:12	9:36	9:39	8:36	8:36	8:36

W002AS-543377-RT-221

* Does not include Invalid Averaging Periods ("N/A")

Page 2

APPENDIX C CALCULATIONS

Appendix C.1 General Emissions Calculations

Southern California Public Power Authority - Canyon 3Q19 Unit 1 NH_3

GENERAL EMISSION CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \%CO_2 + 0.32 * \%O_2 + 0.28 * \%N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$Ps = Pbar + \frac{Psg}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_{m} * (P_{bar} + \frac{\Delta H}{13.6}) * \frac{T_{ref}}{T_{m}} * Y_{d}$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{lc} * \frac{T_{ref}}{528 ° R}$$

C. Moisture content, dimensionless

$$\mathsf{B}_{\mathsf{wo}} = \frac{\mathsf{V}_{\mathsf{wstd}}}{(\mathsf{V}_{\mathsf{mstd}} + \mathsf{V}_{\mathsf{wstd}})}$$

III. Stack gas volumetric flow rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1-B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Southern California Public Power Authority - Canyon 3Q19 Unit $1\ NH_3$

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, lb/MMBtu

$$\frac{lb}{MMBtu} = \frac{ppm * MW_i * F}{SV * 10^6} * \frac{20.9}{20.9 - \%O_2}$$

VI. Percent Isokinetic

$$I = \frac{17.32 \text{ x T}_{s} \text{ (V}_{m}\text{std)}}{\text{(1-Bwo) 0 x Vs x Ps x Dn2}} \text{ x } \frac{520^{\circ}\text{R}}{\text{T}_{ref}}$$

- VII. Particulate emissions
 - (a) Grain loading, gr/dscf $C = 0.01543 (M_n/V_{m std})$
 - (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
 - (c) Mass emissions, lb/hr $M = C \times Qsd \times (60 \text{ min/hr})/(7000 \text{ gr/lb})$
 - (d) Particulate emission factor

Ib/10⁶ Btu = Cx
$$\frac{1 \text{ lb}}{7000 \text{ gr}}$$
 x F x $\frac{20.9}{20.9 - \% O_2}$

Nomenclature:

 A_s = stack area, ft²

B_{wo} = flue gas moisture content, dimensionless

C_{12%CO2} = particulate grain loading, gr/dscf corrected to 12% CO₂

C = particulate grain loading, gr/dscf C_p = pitot calibration factor, dimensionless

Dn = nozzle diameter, in.

F = fuel F-Factor, dscf/MMBtu @ 0% O₂ H = orifice differential pressure, iwg

I = % isokinetics

 M_n = mass of collected particulate, mg M_i = mass emission rate of specie i, lb/hr MW = molecular weight of flue gas, lb/lb-mole

 M_{wi} = molecular weight of specie i:

SO₂: 64 NO_x: 46 CO: 28 HC: 16

0 = sample time, min.

 ΔP = average velocity head, iwg = $(\sqrt{\Delta P})^2$ P_{bar} = barometric pressure, inches Hg P_{s} = stack absolute pressure, inches Hg

P_{sg} = stack static pressure, iwb

Q = wet stack flow rate at actual conditions, wacfm

 Q_{sd} = dry standard stack flow rate, dscfm

SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole

 T_m = meter temperature, °R T_{ref} = reference temperature, °R T_s = stack temperature, °R V_s = stack gas velocity, ft/sec

V_{lc} = volume of liquid collected in impingers, ml

V_m = uncorrected dry meter volume, dcf

V_{mstd} = dry meter volume at standard conditions, dscf V_{wstd} = volume of water vapor at standard conditions, scf

Y_d = meter calibration coefficient

Appendix C.2 Spreadsheet Summaries

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U1

Identifier	Description	Units	Equation	Value
Α	Reference Temperature	F		60
В	Reference Temperature	R	A + 460	520
C	Meter Calibration Factor (Yd)			1.011
D	Barometric Pressure	" Hg		29.65
E	Meter Volume	acf		40.786
F	Meter Temperature	F		76.9
G	Meter Temperature	R	F + 460	536.9
Н	Delta H	" H₂O		1.5
ı	Meter Volume (standard)	dscf	0.03342 * E * (D + H/13.6) * B/G * C	39.721
J	Liquid Collected	grams		116.3
K	Water vapor volume	scf	0.0472 * J * B/528	5.406
L	Moisture Content		K/(K + I)	0.120
M	Gas Constant	ft-lbf/lb-mole-R		1545.33
N	Specific Molar Volume	SCF/lb-mole	385.3 * B / 528	379.5
0	F-Factor	dscf/MMBtu		8,710
Р	HHV	Btu/SCF		1,050
Q	Mass Conversion Factor	lb/ug		2.2046E-09
R	O ₂ Correction Factor		~~	15
S	Stack Flow Rate @ 68 F	dscfm		231,500
Т	Stack Flow Rate @ Tref	dscfm	S * B/528	227,992
U	Mass NH ₃	ug		1,532
V	Mass NH ₃	lb	U*Q	3.38E-06
W	MW of NH ₃	lb/lb-mole	_	17.03
×	NH ₃	ppm	(V * N *10°)/(I * W)	1.9
Υ	Flue Gas O ₂	%		14.43
Z	NH ₃	рртс	X * (20.9 - R)/(20.9 - Y)	1.7
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10 ⁶)	1.2
AB	NH ₃	lb/MMBtu	(X * W * O)/(385.3 * 10 ^b) * 20.9/(20.9 - Y)	0.002
AC	NH ₃	lb/MMSCF	AB * P	2.5

Note:

⁽¹⁾ Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility	Canyon		Parameter		NH ₃
Unit	U1		Fuel		
Sample Location	Stack				SD
Test Number	1-NH3-U1	2-NH3-U1	Average	Maximum	Limit
Reference Temperature (°F)	60	60			
Test Date	7/23/2019	7/23/2019			
Test Method	SCAQMD 207 1	SCAQMD 207.1			
Sample Train	19-WCS	19-WCS			
Meter Calibration Factor	1.011	1.011			
Stack Area (ft ²)	106.90	106.90			
Sample Time (Minutes)		60			
Barometric Pressure ("Hg)		29.65			
Start/Stop Time	0700/0806	0834/0940			
Meter Volume (acf)		40.216			
Meter Temperature (°F)	76.9	84.8			
Meter Pressure (iwg)		1.5		}	
Liquid Volume (ml)	116.3	115.5			
Stack O ₂ (%)	14.43	14.41	14.42	(from facility CE	MS)
Unit Load (MW)	50	50	49.8		
Standard Sample Volume (SCF)	39.721	38.598			
Moisture Fraction	0.120	0.122			
Stack Flow Rate (dscfm, 68 °F)		231,500	231,500	(from facility CE	MS)
Stack Flow Rate (@ Tref)	227,992	227,992	227,992		
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH ₃ (fb/lb-mole)	17.03	17.03			
Specific Molar Volume (ft3/lb-mole)	379.5	379.5			
F-Factor (dscf/MMBtu)	8,710	8,710			
HHV(Btu/SCF)	1,050	1,050			
Mass Conversion (lb/ug)	2.2046E-09	2.2046E-09			
O ₂ Correction Factor (%)	15	15			
Mass NH ₃ (ug)	1,532	1,434			
Mass NH ₃ (lb)	3.38E-06	3.16E-06			
NH ₃ (ppmv, flue gas)	1.9	1.8	1.9	1.9	
NH ₃ (ppmv @ O ₂ Correction Factor)	1.7	1.7	1.7	1.7	5
NH ₃ (lb/hr)	1.2	1.1	1.1	1.2	
NH ₃ (lb/MMBtu)	0.002	0.002	0.002	0.002	
NH ₃ (lb/MMSCF)	2.5	2.4	2.4	2.5	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

Assignment of an Internal QA Officer: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

Knowledge of Current Test Methods: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, will be present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- · Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)

The following safety measures will be followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	Steam clean Leak check
Mobil Van Sampling System	1. Absence of leaks	Depends on nature of use	 Chang filters Change gas dryer Leak check Check for system contamination
Sampling lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	+/- 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	+/- 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	+/- 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	+/- 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	+/- 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for ΔH@	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	+/- 1.5%

Note: Calibration requirements will be used that meet applicable regulatory agency requirements.

Appendix D.2 SCAQMD and STAC Certifications

October 30, 2018

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice Reference #96LA1220

Dear Mr. Peterson:

We have reviewed your renewal letter under the South Coast Air Quality Management District's Laboratory Approval Program (SCAQMD LAP). We are pleased to inform you that your firm is approved for the period beginning October 30, 2018, and ending September 30, 2019 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

SCAQMD Methods 1-4

SCAQMD Methods 5.1, 5.2, 5.3, 6.1

SCAQMD Methods 10.1 and 100.1

SCAQMD Methods 25.1 and 25.3 (Sampling)

USEPA CTM-030 and ASTM D6522-00

SCAQMD Rule 1121/1146.2 Protocol

SCAQMD Rule 1420/1420.1/1420.2 – (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for SCAQMD Rule 1121/ 1146.2 Protocols includes satellite facilities located at:

McKenna Boiler

1510 North Spring Street

Los Angeles, CA 90012

Noritz America Corp.

11160 Grace Avenue

Fountain Valley, CA 92708

Ajax Boiler, Inc. 2701 S. Harbor Blvd.

Santa Ana, CA 92704

Thank you for participating in the SCAQMD LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov.

Sincerely,

Dipankar Sarkar

Program Supervisor Source Test Engineering

D. Sakan

DS:GK/gk

Attachment

181030 LapRenewalRev.doc

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASIM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

President and CEO For the Accreditation Council Certificate Number 3925.01

Presented this 5th day of March 2018.

Valid to February 29, 2020

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

Appendix D.3 Individual QI Certificate

CERTIFICATE OF COMPLETION

Sean Donovan

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Method 207.1

Certificate Number: 002-2016-06

DATE OF ISSUE:

11/30/16

DATE OF EXPIRATION:

Tate Strickler, Accreditation Director

11/30/21

APPENDIX E APPLICABLE PERMIT SECTIONS

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

 Section D
 Page: 2

 Facility ID: 153992
 153992

 Revision #: 3
 3

 Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions * And Requirements	Conditions
Process 1: POWER GENE	RATION				
GAS TURBINE, NO. 1, NATURAL GAS, GENERAL ELECTRIC, MODEL LM6000PC SPRINT, SIMPLE CYCLE, 479 MMBTU/HR AT 46 DEG F, WITH INLET CHILLING, WITH WATER INJECTION WITH A/N: 555828	DI	СЗ	NOX: MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 6-3-2011]; NOX: 25 PPMV NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5) [RULE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5C) [RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2) -Offset, 12-6-2002]; PM10: 1) LBS/HR NATURAL GAS (5B) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; SO2: (9) [40CFR 72 - Acld Rain Provisions, 11-24-1997]; SOX: 0.06 LBS/MMBTU NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 12-6-2002]	A63.1, A99.1, A99.2, A99.3, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1, I298.1, K40.1
GENERATOR, 50.95 MW					

•	(1) (1A) (1H) Denotes RECLATM emission factor	
	(3)	Denotes RECLAIM concentration limit	(

(5) (5A) (5B) Denotes command and control emission limit

(7) Denotes NSR applicability limit
 (9) See App B for Emission Limits

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit
 (6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)
(10) See section J for NESHAP/MACT requirements

* ReM/002A6 15486 77thR Te22 10 determine the monitoring, 50001k54ing and reporting requirements for this device.

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Facility ID: 153992 Revision #: November 06, 2015

FACILITY PERMIT TO OPERATE **CANYON POWER PLANT**

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process I. POWER GENE	RATION				
CO OXIDATION CATALYST, NO. 1, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476654	G	D1 C4			
SELECTIVE CATALYTIC REDUCTION, NO. 1, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH: 18 FT WITH A/N: 476654 AMMONIA INJECTION	C4	C3 S6		NH3: 5 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]	A195.4, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 1, HEIGHT: 86 FT; DIAMETER: 11 FT 8 IN A/N: 555828	S6	C4			

(5) (5A) (5B) Denotes command and control emission limit

Denotes NSR applicability limit

Denotes RECLAIM concentration limit

(7)(9) See App B for Emission Limits (2) (2A) (2B) Denotes RECLAIM emission rate

Denotes BACT emission limit (4)

Denotes air toxic control rule limit (6)

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(10)See section J for NESHAP/MACT requirements

determine the monitoring, recordkeeping and reporting requirements for this device, 51 of 54

⁽I) (1A) (1B) Denotes RECLAIM emission factor

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Page: 29
Facility ID: 153992
Revision #: 3
Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition: C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 9-7-2012; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-10-2010; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart IIII, 1-30-2013]

[Devices subject to this condition : D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location
NH3 emissions	District method 207.1	1 hour	Outlet of the SCR
	and 5.3 or EPA method	ı	serving this equipment
	17		

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Facility ID:

age: 30 153992

Revision #: 3
Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

The test(s) shall be conducted at least quarterly during the first twelve months of operation and at least annually thereafter. The AQMD shall be notified of the date and time of the test at least 10 days prior to the test.

If the turbine is not in operation during one calendar year, then no testing is required during that calendar year.

The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using District Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted and the results submitted to the District within 60 days after the test date.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

[RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1)-BACT, 12-6-2002]

[Devices subject to this condition: D1, D7, D13, D19]

D29.3 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Sampling Time	Test Location
SOX emissions	AQMD Laboratory	Not Applicable	Fuel sample
	Method 307-91		
VOC emissions	District Method 25.3	1 hour	Outlet of the SCR
	•	,	serving this equipment
PM emissions	District method 5.1	4 hours	Outlet of the SCR
	1	,	serving this equipment

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. Sean Donovan
Title: Client Project Manager

Region: West

E-Mail: <u>SDonovan@montrose-env.com</u>

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

E-Mail: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

TEST REPORT FOR AMMONIA SLIP TEST AT CANYON POWER PLANT UNIT 2 FACILITY ID: 153992, DEVICE ID: D7

Prepared For:

Canyon Power Plant 3071 E. Mira Loma Avenue Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC 1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 282-8240

Sean Donovan

Test Date: July 25, 2019
Production Date: August 22, 2019

Report Number: W002AS-543378-RT-222

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	Sem Dum	_ Date:	8/22/2019
Name:	Sean Donovan	_ Title:	Client Project Manager
appropriate wr the presented	ritten materials contained herei	n. I herel , and cor	alculations, results, conclusions, and othe by certify that, to the best of my knowledge offorms to the requirements of the Montrose
Signature:	Michal Chanta	_ Date:	8/22/2019
Name [.]	Michael Chowsanitohon	Title [.]	Reporting Manager

TABLE OF CONTENTS

SECTION	<u>PAGE</u>
1.0 INTRODUCTION AND SUMMARY	5
2.0 UNIT AND CEMS DESCRIPTION	6 7
3.0 TEST DESCRIPTION	8
4.0 TEST RESULTS AND OVERVIEW4.1 TEST RESULTS	
APPENDIX A RAW DATAA.1 SAMPLE DATA SHEETSA.2 LABORATORY DATAA.3 QA/QC DATA	11 14
APPENDIX B FACILITY CEMS DATA	24
APPENDIX C CALCULATIONS	30
APPENDIX D QUALITY ASSURANCE	38 44
APPENDIX E APPLICABLE PERMIT SECTIONS	49
LIST OF TABLES	
TABLE 1-1 AMMONIA SLIP TEST RESULTS SUMMARY	5
TABLE 4-1 AMMONIA SLIP TEST RESULTS	9
LIST OF FIGURES	
FIGURE 2-1 LINIT BLOCK DIACRAM	6

1.0 INTRODUCTION AND SUMMARY

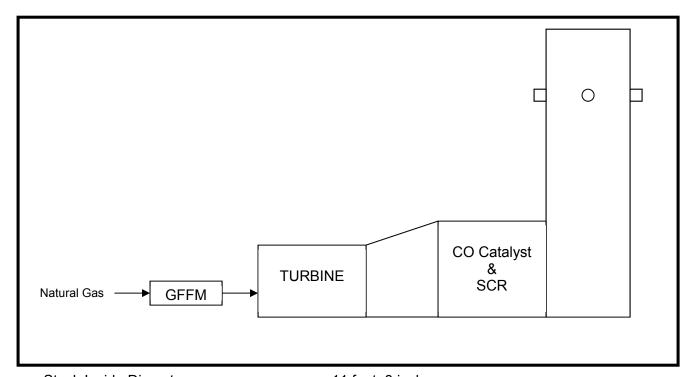
Montrose Air Quality Services, LLC (MAQS) was contracted by the Canyon Power Plant to perform an ammonia slip test at Unit 2 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on July 25, 2019. The test was performed by Sean Donovan, Henry Lee, and Robert Howard. Sean Donovan was the on-site qualified individual for MAQS. Bertha Hernandez coordinated the test for Canyon Power Plant.

The test consisted of duplicate ammonia tests performed at 50 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to $15\% O_2$.

TABLE 1-1
AMMONIA SLIP TEST RESULTS SUMMARY
CANYON POWER PLANT UNIT 2
JULY 25, 2019

Parameter	Units	Result ⁽¹⁾	Limit
NH₃	ppm	2.1	
NH ₃	ppmc	2.0	5

⁽¹⁾ Maximum of duplicate runs, as required by SCAQMD Method 207.1


Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.

2.0 UNIT AND CEMS DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46 degrees Fahrenheit, with water injection. The units are equipped with a CO catalyst and Selective Catalytic Reduction (SCR) system for NO_x control. Figure 2-1 presents a block diagram of the unit.

FIGURE 2-1
UNIT BLOCK DIAGRAM
CANYON POWER PLANT

Stack Inside Diameter:

11 feet, 8 inches

Distance from Upstream Disturbance:

23 feet, 4 inches (2.0 Diameters)

Distance from Stack Exit:

16 feet, 6 inches (1.4 Diameters)

2.2 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 50 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.3 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack location. Each test was performed over a 60 minute interval. The sample gas was drawn through a glass probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by Ion Specific Electrode analysis.

Stack O_2 and NO_x concentrations and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O_2 .

4.0 **TEST RESULTS AND OVERVIEW**

4.1 **TEST RESULTS**

The results of the test are summarized in Table 4-1. The results show that the ammonia slip was 2.0 ppm @ 15% O₂ which is less than the permitted limit of 5 ppm @ 15% O₂.

TABLE 4-1 AMMONIA SLIP TEST RESULTS CANYON POWER PLANT UNIT 2 JULY 25, 2019

Parameter	Units	Run 1	Run 2	Average	Maximum ⁽¹⁾	Limit
Test		1-NH ₃ -U2	2-NH ₃ -U2			
Date		7/25/2019	7/25/2019			
Time		0746/0852	1140/1246			
$O_2^{(2)}$	%	14.66	14.63	14.65		
Stack Flow(2)	dscfm @ T _{ref}	231,538	232,227	231,883		
$NO_{x}^{(2)}$	ppmc	2.3	2.4	2.3		2.5
NH ₃	ppm	2.1	1.8	2.0	2.1	
NH ₃	ppmc	2.0	1.7	1.9	2.0	5
NH_3	lb/hr	1.3	1.1	1.2	1.3	
NH ₃	lb/MMBtu	0.003	0.002	0.003	0.003	
NH ₃	lb/MMSCF	2.8	2.5	2.7	2.8	

⁽¹⁾ Maximum of duplicate test runs, as required by SCAQMD Method 207.1 (2) From facility CEMS

APPENDIX A RAW DATA

Appendix A.1 Sample Data Sheets

SON INCOME

2
₹
ž
۲
တ
Ė
벁
동
쏬
NORK
AND WORKS
불
۲
DATA,
à
2
Ë
SYSTEM
S
ž
긌
Ž
S
4
MICA
S
CHEMIC
7
WET (

Contents Post-Test - Pre-Test = Difference

42504 944.0 729.6 H2504 751.1 747.6

MT 656.2 653.4

931.8 919.9

S

hтр. #		-	,	2		n	:	5		2				Total:
AMBIENT TEMPERATURE: ~80	BAROMETRIC PRESSURE: 2-9.66	ASSUMED MOISTURE: (2°%)	PITOT TUBE COEFF, Cp: ✓ / A	PROBE ID NO/MATERIAL:	PROBE LENGTH:	NOZZLE ID NO/ MATERIAL: ~ /A	NOZZLE DIAMETER: ₩//A	FILTER NO/TYPE: NI/A	PRE-TEST LEAK RATE: 10005 CFM@ 14 in. Hg.	POST-TEST LEAK RATE: : ♦००० 5 CFM@ 14 in. Hg.	PITOT LEAK CHECK - PRE: / POST: /	CHAIN OF CUSTODY: SAMPLE CUSTODIAN 50	SAMPLER	SAMPLE CUSTODIAN SD
CLIENT: SCRP - CANGES		9 DATE: ₹ (2 € / 1€	9 RUN NO: 1-NH3-U2	C OPERATOR: Qtt/HC		₩ METER △H@: I- 구석중	WETER Yd: 1.011	STACK AREA, FT2: 106.90	-	· d∇X — H∇ 2	Probe Condition, pre/post test;	Silica Gel Expanded, Y/N:	Fifter Condition after Test:	Check Weight: 499.9 / 500 0

LR HZO WONL		Total:
E: .ce.ues/ CFM@ !4 in. Hg.	SAMPLE CUSTODIAN SP SAMPLER RM	SAMPLE CUSTODIAN 52

		Meter	ΔP	ΗV	Stack	Probe	Filter	Imp. Out	Meter Temp, °F	эщр, °₽	Vacuum	°C	P. static
Point	Time	Volume, ft3	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Тетр, °F	Temp, °F	드	Ont	in. Hg.	%	in. H ₂ 0
2	7htg	0.00.05%	41.7	0.2	11/10	44	14/14	58	7	1	Ļ		41.4
7	1540	14.17.5×	-	0.2	_			44	1.4	-	15		
	9.5±0	\$18.00×		2.0				47	124	Ā	5		_
26	1080	901.973		ŕ				į	١	l	1		
	0503	401.935		0.7				ائ ^ر م	7.4	7	`^		
	Sona	01.2.50%		2.0				20%	13	٦٠/	2		
	5/180	409 . 7.4LU		2.0				٨٨	73	± 1	۲,		
76	2180	713.682		1				l	ì	[l		
3	ن ٦٨٥	513.682		2.0				\	זר	7	ر _م ا		
-(52.50	017.620		2.0				25	716	71	-×-		_
	0830	921535		2.0				Sh	76	7	P		
1	5830	41,11,476		١				١	ı	١	1		
	ተረዳሪ	h hh:526	-	0.2				2.5	## -	73	,۲,		
	344	429.356		0.2				ŀŀ	4	7.	√		
	1h20	433.256		2.0	-			તન	7.4	4	-5-		_
605	2530		0	١	-			١	,	1	\		-4
Average:													

Comments:

Page \ of \

Master Document Storage\Forms\Datasheets\Field Datasheets

Date of last revision 2/14/2017

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

1 H H G S S S S S S S S S S S S S S S S S	HI.	اق
29.66 29.66 29.66 25.60 \$5 5.60 \$5 5.60 \$5 7 7 7 7 7 7 7 7 7 80 \$13 80 \$10 80 br>80 \$10 80 \$10 80 \$10 80 \$10 80 \$10 80 \$10 80 \$10 80 \$10 80 \$10 8	Filter	Temp, °F
PE: 29 66 PE: 29 66 PE: 29 66 PE: 29 66 PE: 20 05 05 SAMPLE CUSTODIAN SAMPLE CUSTODIAN	Probe	Temp, °F
AMBIENT TEMPERATURE: 24,46 ASSUMED MOISTURE: 24,46 ASSUMED MOISTURE: 24,46 PROBE LENGTH: 2,44 PROBE LENGTH: 2,44 NOZZLE DIAMETER! NOZZLE DIAMETER: 10,055 FILTER NO/TYPE: 40,055 PRE-TEST LEAK RATE: 10,055 PRE-TEST LEAK RATE: 20,055 CHAIN OF CUSTODIAN SAMPLE CUSTODIAN SP SAMPLE CUSTODIAN SP	Stack	Temp, °F
AMBIENT BAROME ASSUME PITOT TI PROBE I NOZZLE NOZZLE FILTER P PRE-TES POST-TE PITOT LE	H∇	in. H ₂ O
1; 5/12 V/V	ď∇	in. H ₂ O
84 - Can 2143-02 21144-02 19-04 19-04 19-06-9 19-06	Meter	Volume, ft ³
CLIENT: SCRRA- LOCATION: SCRRA- DATE: 7125/14 RUN NO: 2-2-243- DPERATOR: R-1/4 WETER BOX NO: 14-1 WETER Yd: 1-0-1 STACK AREA, FT2-10-1 STACK AREA, FT3-10-1		Time
CLIENT: DATE: TO POTE: TO POERATOR: METER BOX N METER YG: STACK AREA, TRAVERSE PO AH= X Probe Condition Silica Gel Expa		Point

Post-Test - Pre-Test = Difference	926.2 741.2	7746 755.2	617.3 656.2	862-5 843.2	100 MC		
Imp. #Contents	H250-	H, 504	M	36	H 20		Potal:
<u>m</u>	~	۲۱	9	2	9	1	Ę

in. Hg. in. Hg.

Point Time Volume, ft ³ in. H ₂ O in. H ₂ O Temp, °F Tem	AP AH	Stack	Probe	Filter	Imp. Out	Meter T	Meter Temp, °F	Vacuum	°	P. static
1140 \$80.700 4 11 2.0 4 11 140 8 61.140 8 11.140		Temb, °F	Temp, *F	Temp, °F	Temp, °F	ln	Ont	in. Hg.	%	in. H ₂ O
1150 38.71/C 2.0 1150 38.71/C 2.0 1150 38.45/C 2.0 1150 38.45/C 2.0 1151 42.45/C		3.11.00	1. 14	1/2	5.00	83	ک	2		
115° 38.465 2.0 115° 44.265 2.0 115° 44.535 2.0 1211 5.4535 2.0	2-0		-		5,1	\$1.1	83	.5-		
1155 44.24 1155 44.535 20.5 0.5 0.5 0.5 0.5 0.5 0.5 0	2.0			- :	5-1	88	83	5		
11.1 42.44 12.1 46.465 12.1 4	(1	1	1	l		
2.5 C.2 C.5 H. 121 C.2 C.2 C.2 C.2 L.21 L.21 C.2 C.2 C.2 C.2 L.21 L.21 C.2	7.0				ρυ Ή	ሏ	Z	5		
0.2 0.535 To 1121 0.2 0.2 0.535 0.2 0.2 0.535 1211 0.2 0.2 0.5 145 1221 0.2 0.2 0.5 145 1231 0.2 0.2 0.5 145 1231 0.2 0.2 0.5 145 1231 0.2 0.2 0.5 145 1231 0.2 0.2 0.5 145 1231 0.2 0.5 145 0.3 0.5 145 0.4 0.5 15 0.5 0.5 145 0.7 0.5 145 0.7 0.5 145 0.7 0.5 145 0.7 0.5 145 0.7 0.5 145 0.7 0.5 145 0.7 0.5 145 0.7 0.5 145 0.7 0.5 145 0.7 0.5 145 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	2.0			_	وا	84	87	r (
1211	2.0				53	85	X	J		
1214 54.535 2.0 1214 58.475 2.0 1224 67.580 2.0 1231 65.47 7.0 1231 67.07 7.0 1231 67.07 7.0 1231 67.07 7.0 1231 67.07 7.0					ļ	Ì	١)		
12.14 54.535 2.0 12.14 58.475 2.0 12.14 62.15 2.0 12.1 12.1 12.1 12.1 12.1 12.1 12.1 12.1										
2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3	2.0				15.	25	25	2		
C.2 67.5% 12.1 62.14 62.14 62.1 60.2 6.2 64.5% 12.1 62.1 64.3% 12.1 62.1 64.3% 12.1 64.3	2.0				6.5	88	83	7		
C.2 C.2 S&L-44 121 C.2	ن				50	38	86	2		
0.2 585-45 1231 6-185 421 2.0 2.2 2.0 421 421 421 421 421	l				l	ι	i	Ì		
0.2 0.540 de 121 2.0 de 121 2.0 de 121 de 12	0. 4				ام! مر	es.	2	7-		
0.2 288.45 desi	0.2		i		53	۵	۴	J		
11246 78,404	2.0				56	47	4.	7		
		4		-₩	ĺ	ĺ	١			
Average:										_

Date of last revision 2/14/2017

Comments:

Page _ of _

Master Document Storage\Forms\Datasheets\Field Datasheets

Appendix A.2 Laboratory Data

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS

Project #: 002AS - 543377	District Method: SCAQMD 207.1	Sample Date:	1/25/2019
Client/Location: SCPPA - Canyon	District Method: SCAQMD 207.1 Awar flant Calibration Date: 7 /2 9 / 20 / 9	Analysis Date:	7/29/2019
Sample Location: Unit 2	Calibration Curve: 1 = -58. 2679 x + 8	6.8429 Analyst's Initia	ils: KC
Test #s: 1, 2 - NH3	R2: 1.0000		

Sample	Electrode Potential (mV)	TV (ml)	Conc. µg NHs — N/ml	Cavg (µg NHs – N / ml)	ug NHa/ sample	Comments/ Temp/pH
Standard Check: 28 µg NHs/ml	2.4	į	28.133	28.137		Percent Recovery:
Repeat 28 µg NH₃/ml	2.3		28.245			T=22°C
1- NH3	63.8	665.3	2.486	2.452	1982.867	T=22°C PHC2
Repeat 1-NH3	£4.5		2.418			T=22°C
2-NH3	65.1	598.3	2.361	2.347	1707.196	T=22° P112
2-NH3 Repeat 2-NH3	65.4		2.333			T=22°C
spike 2-NH3	8.6		22.020	21.933		T=22°c
Reprot Spike 2-NH3	8,8		21.846			T=220c 101/2 revover
28 Mg NH3/ml Repeal 28 Mg NH3/ml 0.IN H2504 Reagent blank Repead 0.IN H2504	2.3		28.245	28.300	_	T=22°C
Report 28 Mg N43/m/	2.2		28.356			T=22°C
0.1N H2504 Reagent blank	178.0	·	0.027	0.027		T=22°
Repeat 0. IN HISOY Reagent blank	178.5		0.027		(T=22°C
Field blank	171.0		0.036	0.036	}	-T=27%
Repent Field blank	171.4		0.035)	T=32°C
DI Hro blank	176.3		0.029	0.029	-	T=22°C
Repent	176.8	~	0.029	 .	_	T=22°C
28 Mg NH3/ml	2.3		28,245	28,245		T=22°C 101% reval
Repeat 28 ugNHslin	2-3		28.245			T=27°C

Notes:

Total volume of samples and standards used: 100 m | Volume of oH adjusting ISA used in mi: 2 m |

Volume of pH adjusting ISA used in mi: Absorbing solution: 0 IN H2 SUY

Calculations:

Conc. (µg NHs - N / ml) = 10 (P-B)M

P = electrode potential, B = y-intercept and M = slope

Cavg = average result of duplicate analyses (µg NH3 - N / ml) = (C1+C2)/2

μg NHs / sample = Cavg* 17.03/ 14.01 * TV

mg / sample = µg /sample + 1000

ppm NHs = mg NHs/sample x 1/Vmstd x 1/454000 x SV/17 x 108

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION

Project Number: 002AS-543377

Client/ Location: SCPPA-Canyon Power Plant

1.0000

Sample Location: Unit 2

 District Method:
 SCAQMD 207.1

 Sample Date:
 7/25/2019

 Analysis Date:
 7/29/2019

 Analyst's Initials:
 KC

 Calibration Curve Slope
 -58.2679

 Y-intercept
 86.8429

probe 9

 \mathbb{R}^2

PIOOOO						
Sample	Р	Conc.	C avg as N	TV	C avg as NH ₃	μg NH ₃ /
	mV	μg NH ₃ /ml as N		(ml)		sample
28 ug NH ₃ / mt as N	2.4	28.133		_		
Repeat 28 ug NH ₃ /ml as N	2.3	28.245	28.189	NA	34.265	NA
1-NH3	63.8	2.486				
Repeat 2- NH3	64.5	2.418	2.452	6 <u>65.3</u>	2.980	1982.869
2-NH ₃	65.1	2.361				
Repeat 2- NH ₃	65.4	2.333	2.347	598.3	2.853	1707.196
spíke 2-NH ₃	8.6	22.020				
Repeat 2-NH3 spike	8.8	21.846	21.933	NA	26.661	NA
28 NH₃/mi as N	2.3	28.245				_
Repeat 28 ug NH ₃ /mì as N	2.2	28.356	28.300	NA	34.401	NA
Reagent Blank	178.0	0.027				
Repeat Reagent Blank	178.5	0.027	0.027	NA	0.033	NA
Field Blank	171.0	0.036				
Repeat Field Blank	171.4	0.035	0.036	NA	0.043	NA
DI H2O Blank	176.3	0.029			T T	
Repeat Di H2O Blank	176.8	0.029	0.029	NA	0.035	NA
28 NH ₃ /ml as N	2.3	28.245				
Repeat 28 ug NH ₃ /ml as N	2.3	28,245	28.245	NA	34.333	NA

Notes:

Measured Concentration of Ammonia (C) in μg NH $_3$ / mI as N C=10 $^{(P-B)\prime M}$

P = electrode potential (mV), M=slope and B=intercept

Average Measured Ammonia Concentration (Cavg) = (C1 + C2)/2

where C1, C2 results from duplicate analyses (μg NH₃/ml as N)

Cavg (μ g NH₃/ml as NH₃) = Cavg (μ g NH₃/ ml as N) * 17.03/ 14.01

μg NH₃ / sample = Cavg (μg NH₃/ml as NH₃) * TV

Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate.

All solutions turned blue and remained blue with ISA unless otherwise indicated.

Sample PH and Temperatures can be found on the laboratory datasheet.

Maximum samples (including blanks) between 26 ug/ml check standard is 5 samples analyzed in duplicate.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL

Project Number: 002AS-543377

Client/ Location: SCPPA-Canyon Power Plant

Sample Location: Unit 2

District Method: SCAQMD 207.1 Sample Date: 7/25/2019 Analysis Date: 7/29/2019

Analyst's Initials: KC

Sample	% recovery	RPD	RPA
		%	%
28 ug NH3 / ml as N			
epeat 28 ug NH3/ml as	NA	-0.40	0.674
1-NH3			
Repeat 2- NH3	NA _	2.77	NA
2-NH3	_		
Repeat 2- NH3	NA	1.19	NA
spike 2-NH3			
Repeat 2-NH3 spike	102.08	0.79	NA_
28 NH3/ml as N			
epeat 28 ug NH3/ml as	NA	-0.40	1.073
Reagent Blank			
Repeat Reagent Blank	NΑ	1.98	NA
Field Blank			
Repeat Field Blank	NA	1.58	NA
DI H2O Blank	_		
Repeat DI H2O Blank	NA	1.98	NA
28 NH3/ml as N			
epeat 28 ug NH3/ml_as	NA	0.00	0.873

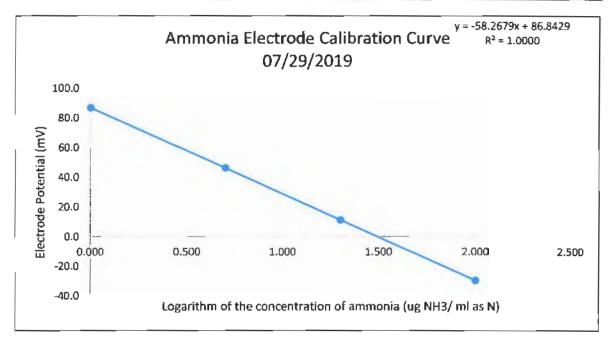
Notes:

spike: 100 ml sample + 2 ml (1000 μg NH₃ / ml as N)

Matrix Spike Percent Recovery (%R)

%R = (C spike*0.104 - Csample*0.102)/2 *100

Cspike = average result of matrix spike (μg NH₃/ ml as N)


Relative Percent Difference (RPD) = (C1-C2)/ Cavg *100 (must be 5% or less)

Relative Percent Accuracy (RPA) (must be 10% or less)

RPA = (Cavg-theoretical value of standard)/ theoretical value of standard * 100

AMMONIA ELECTRODE CALIBRATION CURVE

NH ₃ concentration	log NH ₃ concentration	Electrode potential	Sample Temperature	Room Temperature
(μg NH ₃ / ml as N)		(mV)	(C)	(C)
1	0.000	86.8	22.1	22
5	0.699	46.2	22	22
20	1.301	11.0	22.7	22
100	2.000	-29.7	22.8	22

probe	9
slope	-58.2679
y-intercept	86.8429

Concentration	Value LR line	Difference	% Difference
(μg NH ₃ / ml as N)			
1	1.0017	0.0017	0.1698
5	4.9833	-0.0167	-0.3338
20	20.0274	0.0274	0.1368
100	100.0279	0.0279	0.0279

Calculation:

Regression Line: P=M*log(μg of NH₃/ ml as N)+B

Measured Concentration of Ammonia (C) in μg / ml NH $_3$ as N: $\,C \! = \! 10^{(P \! - \! B) \! / \! M}$

where P = electrode potential, M= slope (must be -57±3) and B= intercept

All standards were prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

Appendix A.3 QA/QC Data

2/1/2019

Date:

0.568

Q @ dH = 1:

Orifice Method - Tripkicate Runs/Four Calibration Points
English Meter Box Units, English K. Factor
Hisbanie MisSanta AnalEquipment\(\)Test Equipment\(\)Calibrations\(\)Dry Gae Meters\(\)19-wcs\(\)2018\(\)(semi annual cal 19wcs 2-1-19.xlsx\)]WCS
File Modified From APEX 522 Series Meter box Calibration
Revised: 4/02005

c-5000

Date: 19-ycs

Date: 21/2019

Bar Pressure: 25.98 (in. Hg)

Performed By: R. Howard

Mater Serial #:

(deg F) 56.0 56.0 56.0 Average 58.0 58.0 57.0 57.0 57.0 56.0 56.0 56.0 Ambient Temperature (deg F) 35.0 56.0 58.0 57.0 57.0 57.0 56.0 56.0 55.0 (deg F) 56.0 56.0 56.0 Initial 56.0 56.0 56.0 580 580 580 57.0 57.0 57.0 Actual Vacuum (jin Hg) 12.0 12.0 12.0 14.0 11.5 15.0 CRITICAL ORIFICE READINGS K' Onifice Coefficient (see above) 0,1553 0.3465 0.3465 0.3465 0.1553 0.5888 0.5888 0.5888 0.8202 0.8202 0.8202 Orifice Serial# (number) 48 48 33 33 8 8 8 2 3 23 (deg F) Oullet 59,0 58.0 58.0 58.0 58.0 58.0 58.0 59.0 0.09 Final Temps. (deg F) 67.0 Intet 62.0 64.0 65.0 55.0 55.0 57.0 81.0 65.0 65.0 (deg F) 56.0 57.0 58.0 Outlet 58.0 59.0 59.0 60.0 60.0 57.0 58.0 58.0 Initia: Temps. DRY GAS METER READINGS (deg F) 55.0 55.0 56.0 60.0 62.0 65.0 65.0 60.0 62.0 64.0 Volume Total (cu (l) 5.190 5.187 5.188 5.275 5.276 5.274 5.305 5.322 5.312 5.196 5.195 5.200 (curft) 705 690 714.877 720,063 751.275 756.551 767,505 772,827 734.696 739.891 745.091 761,825 Fina 745,000 751,275 755,551 762.200 767.505 772.827 (cu.ft) 704.500 709.590 714,877 729.500 734.896 739.991 Initial Time (min) 26.00 26.00 26.00 12.00 12.00 2.00 3.05 5.00 dH (in H2O) 0.13 0.13 0.61 1.90 3.50 3.50

PRY GAS METER	DC.	ORIFICE			DRY GAS METER	ORIFICE				
				ð	CALIBRATION FACTOR	CALIBRATION FACTOR	Individual	Individual	Orifice	Orifice
VOLUME	VOLUME	VOLUME	VOLUME	VOLUME			Run	Orifice	Average	Average
CORRECTED	CORRECTED	CORRECTED	CORRECTED	NOMINAL	>	@HP			1	1
Vm(std)	Vm(std)	Vcr(std)	Vcr(std)	κc	Vafue	Value	0.95 < Y	Ymax - Ymin	0.98 < Y/Yd	dH@ - dH@ av
(cu ff)	(liters)	(CR (C)	(liters)	(cn ft)	(unmper)	(in H2O,	< 1.05?	< 0.010?	< 1.02?	< 0.1557
5,323	150.8	6.329	150.9	5.200	1.001	1.783	Pass			
5.313	150.5	5.329	150.9	5.200	1.003	1,779	Pass			
5.304	150.2	5.329	150.9	5.200	1.005	1.778	Pass			
				Average	1.003	1.780		Pass	Pass	Pass
5.381	152.4	5.477	155,1	5.365	1.018	1.581	Pass			
5.376	152.3	5.477	155.1	5.365	1.019	1.679	Pass			
5,372	152.1	5.477	155.1	5.365	1.020	1.679	Pass			
				Average	1.019	1.680		Pass	Pass	Pass
5.405	153.1	5.434	153.9	5,313	1.005	1.808	Pass			
5.412	153.3	5.434	153.9	5.313	1.00A	1.804	Pass			
5.399	152.9	5.434	153.9	5,313	1.007	1.902	Pass			
				Average	1.005	1.804		Passa	Pass	Pass
5.337	151,2	5.412	153.3	5.281	1.014	1.718	Pass			
5.324	150.8	5.412	153.3	5.281	1.017	1,716	pass			
5.321	150.7	5.412	153.3	5.281	1.017	1.716	Pass			
				Average	1.018	1.717		Pass	Pass	Pass
				Average Yd:	1.011	dH@: 1.745				

SIGNED: Signature on File

20 of 54

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 19-WCS

Readout Description: Control Box

Date: 7/2/2019

Performed By: JG/DA/RH/JS

Calibrated Thermocouple ID: TC-CAL T1 Reference Thermometer ID: 242196 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 242167

T/C			T/C - F	Readout			Reference T	hermometer		Diffe	erence]
1.D.	Readout	°F					٥	F				
TC-CAL	(.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (OIL)	19-WC\$	350	350	350	350	358	358	358	358	8.0	1.0%	Pass
T2 (Boiling H ₂ O)	19-WCS	210	210	210	210	212	212	212	212	2.0	0.3%	Pass
T1 (Ice/Water)	19-WCS	36	36	36	36	32	32	32	32_	4.0	0.8%	Pass

1) Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

			T/C ~ f	Readout			T/C S	ource		Diffe	1	
	T/C Source			F				F				
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	S/N 106970	657	657	657	657	650	650	650	650	7.0	0.6%	Pass
T3 (~370 F)	S/N 106970	369	369	369	369	370	370	370	370	1.0	0.1%	Pass
T2 (~212 F)	S/N 106970	210	210	210	210	212	212	212	212	2,0	0.3%	Pass
T1 (~32 F)	S/N 106970	29	29	29	29	32	32	32	32	3.0	0.8%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (cR)

²⁾ Pass if all Differences are less than 1.5% (°R)

SON NOW SEE

4RD
STAND/
_1
AND WORKSHEE
AND
DATA
IG SYSTEM
LING
SAMPLING
WET CHEMICAL
WET

Imp. #Contents Post-Test - Pre-Test = Difference		1 142304 853.0 751.6		2 HISO, 776,0 777,7		5 MT 6839 6839		y Sur 906-9		UR H20 100				Total:
AMBIENT TEMPERATURE: ~ (40°	BAROMETRIC PRESSURE: 2.4.6.5	ASSUMED MOISTURE: 12,10	PITOT TUBE COEFF, Cp:	PROBE ID NO/MATERIAL: 3te. > 5	PROBE LENGTH:	NOZZLE ID NO/ MATERIAL:	NOZZLE DIAMETER: × (A	FILTER NO/TYPE: 1/4	PRE-TEST LEAK RATE:: 40,005 CFM@ 12 in. Hg.	POST-TEST LEAK RATE: くんいく CFM@ 13 in. Hg.	PITOT LEAK CHECK - PRE: ~ \ A POST: ~ \ A	CHAIN OF CUSTODY: SAMPLE CUSTODIAN SD	SAMPLER	SAMPLE CUSTODIAN SC
O CLIENT: SCRP 4 - CANYON	A LOCATION: UNIT 1	O DATE: 4123 (19	_	C OPERATOR: RH	25 METER BOX NO: [9-~ 5	® METER △H@: 1.745	METER Yd: 1-011	T STACK AREA, FT2. 106 40	TRAVERSE POINTS, MIN/POINT:	, , , , , , , , , , , , , , , , , , ,	Probe Condition, pre/post test:	Silica Gel Expanded, Y/N:	Fifter Condition after Test: PV/3	Check Weight: 459.9 / 520.0

	Meter Volume, ft ³	ΔP in. H₂O	∆H in. H₂O	Stack Temp, °F	Probe Temp, °F	Filter Temp, °F	Imp. Out Temp, °F	Mete	r Temp, ° — Ou		Meter Temp, °F Vacuum O ₂
										╌	,
					; 						
	7										
	\.										
	7										
									Г		
						\			-		
-					2				1		
				2				\			
	\										
	\ .					\			-		
									_		
									_		
									\vdash		
Average:									_		

CHAIN OF CUSTODY

7/25/2019	RH/HL	SD	8/1/2019	Yes	COMMENTS			DATE/TIME	7/26/19, Biwan		Chain of Custody - DS834001 - Excel Master Document Storage\Forms\Datasheets\Lab Forms
TEST DATE(S): 7/25/2019	SAMPLER(S): RH/HL	PROJECT MANAGER: SD	DATE DUE: 8/1/2019	COMPLIANCE TEST?: Yes	SAMPLER	RH/HL		ED BY			Chain of laster Document Storag
PROJECT #: W002AS-543377					CONTAINERS			RECEIVED BY			2
					SAMPLE DESCRIPTION	Probe, Line, Impingers Probe, Line, Impingers		DATE/TIME	Ohh1 / 61-52-2	77.1 (ISE)	n 9/1/2017
CLIENT: SCPPA - Canyon Power Plant	U2	Stack	TEST METHOD(S): SCAQMD 207.1	No	TEST#	1-NH3-U2 2-NH3-U2		BY	11.473	NH ₃ by SCAQMD 207.1	Date of Last Revision 9/1/2017
CLIENT:	LOCATION: U2	SAMPLE LOCATION: Stack	(ETHOD(S):	EQUIRED?:	TIME	0746/0852 1140/1246		RELEASED BY		IRED:	ROSE
		SAMPLE	TEST N	OUTSIDE LAB REQUIRED?:	DATE	7/25/2019			120-45 J. 144	ANALYSIS REQUIRED:	MONTROSE ALR
W00)2AS	S-543	3378	-RT-2	222		23 of 54				

APPENDIX B FACILITY CEMS DATA

Average Values Report Generated: 7/25/2019 09:12

Babcock & Wilcox Power Generation Group MetDANS $^{\circ}$

Average 2_CO_LBHR #/hr	3.74	3.83	3.79	3.78	3,78	3.78	3.88	4.12	4.21	4.12	3.70	3,34	3.44	3.59	3.73	3.87	3.97	3.92	3.92	4.01	4.17	4.16	4.02	3.97	4.1I	4.05	4.00	4.00	3. G	3.61	3.62	3.66	3.57	3.52	 	3.52	3,47	3,62	3.67	3.53	51.n
Average 2_CO_CORR ppm	3.44	3.50	3.50	3.46	3.46	3.46	3.58	3.78	3.90	3.78	04.0	3.08	3,17	3.28	3.43	3.57	3.64	3,62	3,64	3.75	3.84	3.85	3.71	3.65	6 C		3.72	3.70	3.34	3,34	3.36	3.37	٠	3.28	2000			Ψ.	m.	3.28	ተ •
Average 2_coppM ppm	3.65	3.71	3.71	3.66	3.67	3.67	3.79	4.00	4.13	4.00	20.0	3.26	3.36	3.47	3.63	3.78	3.85	3.83	3.64	20.00	4.07	4.08	3.92	3.85	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	3.98	3.93	3.91	4 s.	3.53	3.55	3,56	3.49	4.47	3.46	3,42	3.39	'n	3,59	3.47	30.0
Average 2_STACKFLW kecfm	235.4	235.3	235.4	235,5	235.2		235.2	235,3		235.2	0.00	238.7		235.7	235.2	235.2	235.2	235.1	235.6	925.0	235.3	235.0	235.5	235.7	234.8	234.0	234.4	234.3	0.450	234.6	234.8	234.5	234.6	234.2	2.44.C	234.7	234.3	234.7	234.4	234.5	4.402
Average 2_LOAD MW	49.70	•	φ.	49.95	49.50	50.00	49.70	49.88	49.90	49.72	40.04	97.64	49.73	49.81	49.74	49.89	٠ •	49.77	49.83	'nσ	49.65	49.91	49.81	49,55	49.83	49.74	49.71	49,66	4. 4 V Q	49.68	49.73	49.74	49.70	17.64	40.04	49.64	49.77	<u>ه</u>	49.96	49.67	po. 64
Average 2_GasFlow kscfh	462.5	461,7	462.6	462.1	461.4	461.2	461.4	461.7	461.1	461.4	461.3	461.3	461.6	461.6	461.5	460.8	460.B	461.3	461.4	400.4 460 B	461.6	461.1	461.3	460.9	460.7	459.1	459.0	458.9	459.0	458.8	459.1	459.2	459.6	4. V. A.	459.9		459.6	99	459.9	460.0	F. CC.
Average 2_NOX_LBMM #/MBTU	600.0	600.0	600.0	0.009	600.0	600.0	600.0	600.0	600.0	0.009	010.0	0.013	0.014	0.011	0.004	0.004	,	600.0	0000	600.0	00.00	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	800.0	800	800.0	0.008	0.008	0.008	0.008	000.0
Average 2_NOX_LBER #/hr	4.37	4,36	4.37	4.37	4.36	4.36	4.36		4.36	4.36	000	6.30	6.79	5.33					4.4 9.45			3.87	3.88	3.87	3.87	98.6	3.86	3.85	y w w w	3.85	3.86	3.86	3.86	20 m	2 2 2	3.86	3.86	3.86		90.0	00.0
Average 2_NOK_CORR Ppm	2,36	2.36	2.34	2.33	2.33	2.34	2.35	2,37	2.40	2,52	20.00	3.39	3,86	2.87	1,21	1.12	1.49	2.34	2.44	4.4.0	2.2.2	2.12	2.12	2.11	2.11	2.14	2.18	2.23	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.27	2.26	2.24	2.20	2.18	2 17	! -!	2,15	ᅻ.	Η.	2.17	
Average Z_MOXPPM ppm	2.50		2.48	2.47	2.47	2.48	2.49	2.51	2,54	2.67	0.00	1 61	4.10	3.04	1,28	1.18	1.58	2,48	27.58	, n, c	2.38	2.25	2.24	2.23	2.24	2.27	2.31	2,35	2.30	2.40	2.39	2.37	2,33	2.31	2 30	2.29	2.28	2.29	2.30	12.30	7.30
Average 2_02 8	14.64	14.65	14.64	14.65	14,65	14.65	14.65	14.65	14,65	14.65	14.66	14.66	14.64	14.66	14.65	14.66	14.66	14.65	14.66	79.6C	14.65	14.65	14.66	14.67	14,65	14,65	14.66	14.66	14.67	14.67	14.67	14.66	14,66	14.65	14.66	14.66	14,65	14.66	14.65	14,65	Co.#T
Period Start:	07/25/2019 07:47		07/25/2019 07:49	07/25/2019 07:50		07/25/2019 07:52	07/25/2019 07:53				02/25/2019 07:57					07/25/2019 08:03				01/25/2019 U8:0/					07/25/2019 08:13				07/25/2019 08:18					07/25/2019 08:24							26:00 6102/62/10

	Average 2 02	Average 2 NOXPPM	Average 2 NOX COBR	Average 2 NOX LBHR	Average 2 NOX LEMM	Average 2 GasFlow	Average 2 LOAD	Average 2 STACKFLW	Average 2_COPPM	Average 2_CO_CORR	Average 2_CO_LBER
Period Start:	l de		mdd	#/pr	#/MBTO	Kecfb	MW	kscfm	Digital	mdd	#/pr
07/25/2019 08:36	14.66	2.25	2.13	3.87	0.008	460.7	50.11	235.2	3.34	3.16	3.43
07/25/2019 08:37	14.66	2.24	2.12	3.87	0.008	460.6	49.66	235.1	3.39	3.21	3.48
07/25/2019 08:38	14.65	2.24	2,11	3.87	0.008	450.8	49.76	234.9	3.39	3.20	3.48
07/25/2019 08:39	14.67	2,25	2.13	3.87	0.008	460.9	49.49	235,7	3.37	3.19	3.48
07/25/2019 08:40	14.67	2,25	2.13	3.87	0.008	460.5	49.78	235.5	3.37	3.19	3.48
07/25/2019 08:41	14.67	2.28	2.16	3.87	0.008	460.7	49.72	235.6	3.39	3.21	3.48
07/25/2019 08:42	14.66	2.36	2.23	3,87	0,008	460.3	49.42	235.0	3.43	3.24	3.53
07/25/2019 08:43	14.67	2.43	2.30	3.87	0.008	460.8	49.79	235.6	3.42	3.24	3.53
07/25/2019 08:44	14.66	2.44	2.31	4.36	0.009	461,1	49,65	235.4	3.44	3.25	3.53
07/25/2019 08:45	14,65	2.44	2.30	3.87	0.008	460.9	49.78	234.9	3.47	3.28	3.53
07/25/2019 08:46	14.66	2.46	2.33	4.35	0.00	460.6	49.64	235.1	3,50	3.31	3.58
07/25/2019 08:47	14.67	2.44	2,31	4.35	0.009	460.8	49.76	235.6	3,48	3.30	3,58
07/25/2019 08:48	14.67	2.42	2.29	3.87	0.008	461.0	49.82	235.8	3.45	3.27	3.53
07/25/2019 08:49	14.67	2.41	2.28	3.87	0.008	461.0	49.78	235.8	3,47	3.29	3.58
07/25/2019 08:50	14.67	2.42	2.29	3.87	0.008	460.8	49.80	235.6	3.52	3.33	3.63
07/25/2019 08:51	14.67	2.43	2.30	3.87	0.008	460.8	49.71	235.6	3.70	3.50	3.82
07/25/2019 08:52	14.66	2.43	2.30	3.88	0.008	461.8	49.76	235.8	3.89	3.68	4.02
Daily Average*	14.66	2.40	2.27	4.05	B00.0	460.6	49.76	235.1	3.63	3.43	3.72
Maximum*	14.67	4.10	3.86	6.19	0.014	462.6	50,11	235.8	4.13	3.90	4.21
	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019
	8:51	8:00	8:00	8:00	8:00	7:49	8:36	8:52	7:55	7:55	7:55
Minimum*	14.64	1.18	1.12	1.94	400.0	458.4	49.42	234.0	3.26	3.08	3.34
	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019
	8.00	8.03	8.03	8.03	8.03	91.8	B:42	8:19	7:59	7:59	7.50

* Does not include Invalid Averaging Periods ("N/A")

Babcock & Wilcox Power Generation Group NethAH8®

1-NH3-U2

Average	Average	Average	_		Average	Average	_	Average	Average	
2_05 %	2 NOXPEN	2 NOX CORR.	2_MOX_LBAR #/hr	2_NOX_LEMMA #/MBTTU	2_GasFlow kecfh	MW	2_STACKFLW kecfm	2 COPPE	z_co_conta	Z CO LBHR #/hr
14,64	2.2	2.0		0.008		9.0	235.4	F. 73	ω t	30,00
14.63	2.18	2,05	 	800.0	462.9 462.9	49.63	2.55.2 2.25.2 2.25.2		4. 4. V	3.79
14.64	2.22		0 00	0.008	463.2	49.65	235,7	3.50	3,37	3.70
14.64	2.30		3.89	0.008	462.9	49.93	235.5	4.64	£4.€	3.74
14.64	2.32	0	3.88	0.008	462.4	49.60	235.3	Ţ.,	3.68	3.98
14.65	2.33	N	3.88	0.008	462.3	49.45	235.6	4.7.	ee. e	4.22
14.65	2.33	7	3.89	0.008	462.8	4.0 .0 .0 .0	235.9	11) 당	4.01	4.37
14.64	2,33	016	3.89	0.008	63	4.00	233.7		3 3 3	4. c
14,65	6.30	21.23	4.84	0.008	462.9	49.43	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1		2.0
14.64	2.50	1 0		00.00	463.1	49.73	235.7	7.		3.26
14.65	2.51		4.38	00.00	463.3	49.79	236.2		2.91	3.16
14.65	2.50	2	4.37	0.009	462.5	49.69	235.7	# C .		3.16
14.64	2,50	71	4.37	0.009	462.6	49.68	235.4	11 7	2.92	3.21
14.64	2.50	7	4.37	0.006	462.3	50.00	235.3		2.95	3.20
14.65	2,50	0.0	4.37	0.009	462.7	49.96	235.8	7	m 0 m	3.30
14.65	24. C	2,34	4.67	500.0	462.9	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		30.E	3,33
14.64	01.0	3 (3	. 4.	600.0	462.2	10.64	235.2	;	00.6	3.25
14.64	2.50	1 (1)	4.37	600.0	462.9	49.84	235.5	, r.	3.07	10°
14.64	2.49	N	4	600.0	462.1	49.61	235.2		3.10	3.40
14.64	2,50	C4	4.37	0.009	462.3	49.83	235.3	1 : i	3.16	3.45
14.64	22.52	2.38	4.37	600.0	462.B	49.57	235.5	. w .		3.69
14.64	4.00	10	7	600.0	462.9	49.73	235.15		1 CC	9 100
14.64	2.47	. (3)		600.0	463.7	50.01	236.0	1. 74	3.52	3.85
14.63	2,46	(1	4.38	600.0	464.0	49.77	235.8	3.34	3.71	4.04
14.62	2.47	61	4.39	600.0	464.5	49.79	235.6		3.62	6
14.63	LZ 4	Ni	ਹਾਂ ਵ	600.0	463.8	49.76	235.7	Tr	3.33	w to
14.63	2 . v		27. T	800.0	463.5	49.69	235.5	7	2.0.0	3.38
14.64	2.60	1 (3)	1 41	00.00	464.2	49,90	236.2	3.08	2.90	3.17
14.64	2.62	C	4	0.009	464.2	49.64	236.2		2.83	3.07
14.64	2.60	ſΊ	4	0.009	463.9	49.91	236.1	.7 T	2.82	3.07
14.64	2,60	C) I	ਜਾਂ '	0.00	464.0	49.78	236.1	2014	2.85	3,12
14.64	2.60			00.00	464.2	49.68	236.2	3.07	2	7.T.
14.63	7.0.2 7.7.7	N (* 4	500.0	464,7	49.86	236.3	- 4 - 4 - 4 - 1	76.2	1 1
14.63	0.00	1 (0.00	464.9	49.98	236.2	150 PM	2.97	
14.64	2,54	N	4	600.0	465.3	49.91	236.8		2.97	- 4
14.63	2.54	[7]	4	600.0	464.7	49.72	236.1		2.90	3.17
14.62	2,56	61	4	600.0	464.1	49.68	235,4	В	2.89	3.17
14.62	2.61	. 13	4	600.0	464.3	49.80	235.5	~	3.11	3.41
14.63	2.71	rv (4.	0.009	464.8	49.74	236.1	***	3.28	، ب
14.63	40.0	79.6	4 4 CX	0.010	464.9	49.74	236.2	7 C	3.10	5.37
14 63	20.00	2 0	*	2			4 - 2 - 2	4		+
22.44		C	4	0.010	465.1	49.98	236.3	.73	2.63	2,88

	Average	Average	Average		Average	Average	Average	Average	Average	Average	Average
Period Start:	2 -0 -	2_NOXPPM ppm	2 MOX CORR	2_NOX_LBHR #/br	2 NOX LBMM #/MBTU	2_GasFlow kecfh	2_ICAD	2 BIACKFLW Kacfm	2_COPPH Ppm	2_CO_CORR	2_CO_LBHR #/hr
07/25/2019 12:30	14.63	2.76	2.60	4.89	0.010	465.3	49.87	236.4	2.84	2.67	2.93
07/25/2019 12:31	14.61	2.82	2.65	4.88	0.010	464.6	49.95	235.3	2.85	2.67	2.93
07/25/2019 12:32	14.62	2.82	2.65	4.87	0.010	464.2	49.90	235.5	2.90	2.72	2.97
07/25/2019 12:33	14.63	2.82	2.65	4.89	0.010	465.2	49.73	236.4	2,98	2.80	3.08
07/25/2019 12:34	14.62	2.83	2.66	4.88	0.010	464.6	49.71	235.7	3.05	2.87	3.12
07/25/2019 12:35	14.63	2.77	2.61	4.88	0.010	464.4	49.63	235.9	3.03	2.85	3.12
07/25/2019 12:36	14.62	2.86	2.69	4.88	0.010	465.1	49.76	236.0	3.06	2.87	3.13
07/25/2019 12:37	14.63	2.87	2.70	4.87	0.010	463.8	49.87	235.7	3.03	2.85	3.12
07/25/2019 12:38	14.63	2.78	2.62	4.88	0.010	464.3	49.87	235.9	3.05	2.87	3.12
07/25/2019 12:39	14.63	2.83	2.66	4.88	0.010	464.6	49.67	236.0	3.15	2,96	3.22
07/25/2019 12:40	14.63	2.81	2.64	4.88	0.010	464.5	49.91	236.0	3.41	3.21	3.51
07/25/2019 12:41	14.63	2.78	2.62	4.88	0.010	465.1	49.69	236.3	3,34	3.14	3.47
07/25/2019 12:42	14.63	2,82	2.65	4.88	0.010	464.9	49.93	236.2	3.13	2.95	3.23
07/25/2019 12:43	14.63	2,66	2.50	4.39	600.0	464.7	49.88	236.1	3.00	2.82	3.07
07/25/2019 12:44	14.62	2.40	2,25	3,91	0.008	465.2	49.71	236.0	3.30	3.10	3.42
07/25/2019 12:45	14,62	2.07	1.94	3.42	0.007	464.9	49.73	235.8	3.52	3.31	3.61
07/25/2019 12:46	14.62	1,95	1.83	3.42	0.007	465.3	49.84	236.1	3.51	3.30	3.62
Daily Average*	14.63	2.55	2.40	4.40	0.009	463.8	49.78	235.8	3.31	3.12	3.40
Maximum*	14.65	2.87	2.70	4.89	0.010	465.3	50.01	236.8	4.25	4.01	4.37
	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019
	11:58	12:37	12:37	12:33	12:42	12;46	12:07	12:21	11;48	11:48	11:48
Minimum*	14,61	1.95	1.83	3.42	0,007	462.1	49.45	235.2	2.79	2.63	2.88
	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019	07/25/2019
	12.31	12:46	12:46	12:46	12:46	20,07	11:47	12:02	12:28	30.01	12.28

* Does not include Invalid Averaging Periods ("N/A")

APPENDIX C CALCULATIONS

Appendix C.1 General Emissions Calculations

Southern California Public Power Authority - Canyon 3Q19 Unit 2 NH₃

GENERAL EMISSION CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \%CO_2 + 0.32 * \%O_2 + 0.28 * \%N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$Ps = Pbar + \frac{Psg}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_{m} * (P_{bar} + \frac{\Delta H}{13.6}) * \frac{T_{ref}}{T_{m}} * Y_{d}$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{lc} * \frac{T_{ref}}{528 ° R}$$

C. Moisture content, dimensionless

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

III. Stack gas volumetric flow rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1-B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Southern California Public Power Authority - Canyon 3Q19 Unit $2NH_3$

IV. Gaseous Mass Emission Rates, Ib/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, lb/MMBtu

$$\frac{lb}{MMBtu} = \frac{ppm * MW_i * F}{SV * 10^6} * \frac{20.9}{20.9 - \%O_2}$$

VI. Percent Isokinetic

$$I = \frac{17.32 \text{ x T}_{s} \text{ (V}_{m}\text{std)}}{\text{(1-Bwo) 0 x Vs x Ps x Dn2}} \text{ x } \frac{520^{\circ}\text{R}}{\text{T}_{ref}}$$

- VII. Particulate emissions
 - (a) Grain loading, gr/dscf $C = 0.01543 (M_n/V_{m std})$
 - (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
 - (c) Mass emissions, lb/hr $M = C \times Qsd \times (60 \text{ min/hr})/(7000 \text{ gr/lb})$
 - (d) Particulate emission factor

Ib/10⁶ Btu = Cx
$$\frac{1 \text{ lb}}{7000 \text{ gr}}$$
 x F x $\frac{20.9}{20.9 - \% O_2}$

Nomenclature:

 A_s = stack area, ft²

B_{wo} = flue gas moisture content, dimensionless

C_{12%CO2} = particulate grain loading, gr/dscf corrected to 12% CO₂

C = particulate grain loading, gr/dscf C_D = pitot calibration factor, dimensionless

Dn = nozzle diameter, in.

F = fuel F-Factor, dscf/MMBtu @ 0% O₂ H = orifice differential pressure, iwg

I = % isokinetics

 M_n = mass of collected particulate, mg M_i = mass emission rate of specie i, lb/hr MW = molecular weight of flue gas, lb/lb-mole

 M_{wi} = molecular weight of specie i:

SO₂: 64 NO_x: 46 CO: 28 HC: 16

0 = sample time, min.

 ΔP = average velocity head, iwg = $(\sqrt{\Delta P})^2$ P_{bar} = barometric pressure, inches Hg P_{s} = stack absolute pressure, inches Hg

P_{sg} = stack static pressure, iwb

Q = wet stack flow rate at actual conditions, wacfm

Q_{sd} = dry standard stack flow rate, dscfm

SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole

 T_m = meter temperature, °R T_{ref} = reference temperature, °R T_s = stack temperature, °R V_s = stack gas velocity, ft/sec

V_{lc} = volume of liquid collected in impingers, ml

V_m = uncorrected dry meter volume, dcf

V_{mstd} = dry meter volume at standard conditions, dscf V_{wstd} = volume of water vapor at standard conditions, scf

Y_d = meter calibration coefficient

Appendix C.2 Spreadsheet Summaries

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U2

ldentifier	Description	Units	Equation	Value
Α	Reference Temperature	F		60
В	Reference Temperature	R	A + 460	520
C	Meter Calibration Factor (Yd)		_	1.011
D	Barometric Pressure	" Hg	_	29.66
Ε	Meter Volume	acf		47.104
F	Meter Temperature	F		72.9
G	Meter Temperature	R	F + 460	532.9
Н	Delta H	" H ₂ O	No. All	2.0
1	Meter Volume (standard)	dscf	0,03342 * E * (D + H/13,6) * B/G * C	46.291
J	Liquid Collected	grams		135.9
K	Water vapor volume	scf	0.0472 * J * B/528	6.317
L	Moisture Content		K/(K + I)	0.120
М	Gas Constant	ft-lbf/lb-mole-R		1545.33
N	Specific Molar Volume	SCF/lb-mole	385.3 * B / 528	379.5
0	F-Factor	dscf/MMBtu		8,710
Р	HHV	Btu/SCF		1,050
Q	Mass Conversion Factor	lb/ug		2.2046E-09
R	O ₂ Correction Factor			15
S	Stack Flow Rate @ 68 F	dscfm		235,100
T	Stack Flow Rate @ Tref	dscfm	S * B/528	231,538
U	Mass NH ₃	ug	TF.	1,983
V	Mass NH ₃	lþ	บ * Q	4.37E-06
W	MW of NH ₃	lb/lb-mole		17.03
X	NH ₃	ррт	(V * N *10°)/(I * W)	2.1
Y	Flue Gas O ₂	%	-	14.66
Z	NH_3	ppmc	X * (20.9 - R)/(20.9 - Y)	2.0
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10 ^b)	1.3
AB	NH ₃	lb/MMBtu	(X * W * O)/(385.3 * 10°) * 20.9/(20.9 - Y)	0.003
AC	NH ₃	Ib/MMSCF	AB*P	2.8

Note:

⁽¹⁾ Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility	Canyon		Parameter		NH ₃
Unit	•			***************************************	Natural gas
Sample Location				***************************************	SD
Test Number	1-NH3-U2	2-NH3-U2	Average	Maximum	Limit
Reference Temperature (°F)	60	60		-	
Test Date	7/25/2019	7/25/2019			
Test Method	SCAQMD 207.1	SCAQMD 207.1			
Sample Train	19-WCS	19-WCS			
Meter Calibration Factor	1.011	1.011			
Stack Area (ft ²)	106.90	106.90			
Sample Time (Minutes)	60	60			
Barometric Pressure ("Hg)	29.66	29.66			
Start/Stop Time	0746/0852	1140/1246			
Meter Volume (acf)	47.104	47.704			
Meter Temperature (°F)	1	85.1			
Meter Pressure (iwg)	[2.0			
Liquid Volume (ml)		134.8			
Stack O ₂ (%)		14.63	14.65	(from facility CE	MS)
Unit Load (MW)	50_	50	49.8		
Standard Sample Volume (SCF)	46.291	45.831			
Moisture Fraction		0.120		1	
Stack Flow Rate (dscfm, 68 °F)		235,800	235,450	(from facility CE	MS)
Stack Flow Rate (@ Tref)	231,538	232,227	231,883		
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH ₃ (lb/lb-mole)	17.03	17.03			
Specific Molar Volume (ft ³ /lb-mole)	379.5	379.5			
F-Factor (dscf/MMBtu)	8,710	8,710			
HHV(Btu/SCF)	1,050	1,050			
Mass Conversion (lb/ug)	2.2046E-09	2.2046E-09			
O ₂ Correction Factor (%)	15	15			
Mass NH ₃ (ug)	1,983	1,707			
Mass NH ₃ (lb)	4.37E-06	3.76E-06			
NH ₃ (ppmv, flue gas)	2.1	1.8	2.0	2.1	
NH ₃ (ppmv @ O ₂ Correction Factor)	2.0	1.7	1.9	2.0	5
NH ₃ (ib/hr)	1.3	1.1	1.2	1.3	
NH ₃ (lb/MMBtu)		0.002	0.003	0.003	
NH ₃ (lb/MMSCF)	2.8	2.5	2.7	2.8	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

Assignment of an Internal QA Officer: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

Knowledge of Current Test Methods: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, will be present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- · Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)

The following safety measures will be followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	1. Steam clean 2. Leak check
Mobil Van Sampling System	1. Absence of leaks	Depends on nature of use	 Chang filters Change gas dryer Leak check Check for system contamination
Sampling lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	+/- 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	+/- 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	+/- 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	+/- 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	+/- 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for Δ H@	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	+/- 1.5%

Note: Calibration requirements will be used that meet applicable regulatory agency requirements.

Appendix D.2 SCAQMD and STAC Certifications

October 30, 2018

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice Reference #96LA1220

Dear Mr. Peterson:

We have reviewed your renewal letter under the South Coast Air Quality Management District's Laboratory Approval Program (SCAQMD LAP). We are pleased to inform you that your firm is approved for the period beginning October 30, 2018, and ending September 30, 2019 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

SCAQMD Methods 1-4

SCAQMD Methods 5.1, 5.2, 5.3, 6.1

SCAQMD Methods 10.1 and 100.1

SCAQMD Methods 25.1 and 25.3 (Sampling)

USEPA CTM-030 and ASTM D6522-00

SCAQMD Rule 1121/1146.2 Protocol

SCAQMD Rule 1420/1420.1/1420.2 – (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for SCAQMD Rule 1121/ 1146.2 Protocols includes satellite facilities located at:

McKenna Boiler

Noritz America Corp.

Ajax Boiler, Inc.

1510 North Spring Street

11160 Grace Avenue

2701 S. Harbor Blvd.

Los Angeles, CA 90012

Fountain Valley, CA 92708

Santa Ana, CA 92704

Thank you for participating in the SCAQMD LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov.

Sincerely,

Dipankar Sarkar

Program Supervisor Source Test Engineering

D. Sakan

DS:GK/gk

Attachment

181030 LapRenewalRev.doc

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

President and CEO
For the Accreditation Council
Certificate Number 3925.01

Valid to February 29, 2020

Presented this 5th day of March 2018.

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

Appendix D.3 Individual QI Certificate

CERTIFICATE OF COMPLETION

Sean Donovan

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Method 207.1

Certificate Number: 002-2016-06

DA'TE OF ISSUE:

11/30/16

Tate Strickler, Accreditation Director

DATE OF EXPIRATION:

11/30/21

APPENDIX E APPLICABLE PERMIT SECTIONS

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Page: Facility ID: Revision #: November 06, 2015

FACILITY PERMIT TO OPERATE **CANYON POWER PLANT**

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions [*] And Requirements	Conditions
Process 1. POWICE GEND	RATEON		10 通言语语言		
GAS, GENERAL ELECTRIC, MODEL LM6000PC SPRINT, SIMPLE CYCLE, 479 MMBTU/HR AT 46 DEG F, WITH INLET CHILLING, WITH WATER INJECTION WITH A/N: 555829	D7	C9	NOX: MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 6-3-2011]; NOX: 25 PPMV NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; RULE 475. 8-7-1978]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5) [RULE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5C) [RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2) -Offset, 12-6-2002]; PM10: 11 LBS/HR NATURAL GAS (5B) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; SO2: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SOX: 0.06 LBS/MMHTU NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT; 12-6-2002]	A63.1, A99.1, A99.2, A99.3, A195.1, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1, 1298.2, K40.1
GENERATOR, 50.95 MW					

*	(I) (IA) (IB)	Denotes RECLAIM emission factor
	/35	Denotes RECLARA concentration lin

(5) (5A) (5B) Denotes command and control emission limit

(7) Denotes NSR applicability limit See App B for Emission Limits

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

Denotes air toxic control rule limit (6)

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.) See section J for NESHAP/MACT requirements

Reference Franks Franks of Shipper 222 determine the monitoring, spools stating and reporting requirements for this device.

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D 153992 Facility ID: Revision#:

November 06, 2015 Date:

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1: POWER GENE	RATION		在一种基础的		H 2
CO OXIDATION CATALYST, NO. 2, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476657	C9	D7 C10			
SELECTIVE CATALYTIC REDUCTION, NO. 2, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH: 18 FT WITH A/N: 476657 AMMONIA INJECTION	C10	C9 \$12		NH3: 5 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]	A195.5, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 2, HEIGHT: 86 FT; DIAMETER: 11 FT 8 IN A/N: 555829	S12	C10			

Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

See App B for Emission Limits

Denotes NSR applicability limit (7)

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6)Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(10)See section J for NESHAP/MACT requirements

d G of this nermit to determine the monitoring, recordkeeping and reporting requirements for this device. 3378-RT-222

^{(1) (1}A) (1B) Denotes RECLAIM emission factor

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section	5) [Page: 29
		153992
Facility	ID:	133992
Revision	ì #:	3
Date:	Novemb	er 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition: C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 9-7-2012; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-10-2010; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart HII, 1-30-2013]

[Devices subject to this condition: D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location
NH3 emissions	District method 207.1	1 hour	Outlet of the SCR
	and 5.3 or EPA method	ı	serving this equipment
	17		

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Facility ID:

age: 30 153992

Facility ID: Revision #:

Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

The test(s) shall be conducted at least quarterly during the first twelve months of operation and at least annually thereafter. The AQMD shall be notified of the date and time of the test at least 10 days prior to the test.

If the turbine is not in operation during one calendar year, then no testing is required during that calendar year.

The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using District Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted and the results submitted to the District within 60 days after the test date.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

[RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1)-BACT, 12-6-2002]

[Devices subject to this condition: D1, D7, D13, D19]

D29.3 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Sampling Time	Test Location
SOX emissions	AQMD Laboratory Method 307-91	Not Applicable	Fuel sample
VOC emissions	District Method 25.3	1 hour	Outlet of the SCR serving this equipment
PM emissions	District method 5.1	4 hours	Outlet of the SCR serving this equipment

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. Sean Donovan
Title: Client Project Manager

Region: West

E-Mail: <u>SDonovan@montrose-env.com</u>

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

E-Mail: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

TEST REPORT FOR AMMONIA SLIP TEST AT CANYON POWER PLANT UNIT 3 FACILITY ID: 153992, DEVICE ID: D13

Prepared For:

Canyon Power Plant 3071 E. Mira Loma Avenue Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC 1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 282-8240

Sean Donovan

Test Date: October 15, 2019
Production Date: October 30, 2019

Report Number: W002AS-543385-RT-501

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	Sem Dum	Date:	10/30/2019
Name:	Sean Donovan	_ Title:	Client Project Manager
appropriate writt the presented m	en materials contained herei	n. I herel , and coi	alculations, results, conclusions, and other by certify that, to the best of my knowledge, offorms to the requirements of the Montrose
Signature:	Michael Change	_ Date:	10/30/2019
Name:	Michael Chowsanitohon	Title [.]	Reporting Manager

TABLE OF CONTENTS

SECTION	<u>PAGE</u>
1.0 INTRODUCTION AND SUMMARY	5
2.0 UNIT AND CEMS DESCRIPTION	6 7
3.0 TEST DESCRIPTION	8
4.0 TEST RESULTS	9
APPENDIX A RAW DATAA.1 SAMPLE DATA SHEETSA.2 LABORATORY DATAA.3 QA/QC DATA	11 14
APPENDIX B FACILITY CEMS DATA	24
APPENDIX C CALCULATIONS	28
APPENDIX D QUALITY ASSURANCE	RY36 42
APPENDIX E APPLICABLE PERMIT SECTIONS	47
LIST OF TABLES	
TABLE 1-1 AMMONIA SLIP TEST RESULTS SUMMAI TABLE 4-1 AMMONIA SLIP TEST RESULTS	
LIST OF FIGURES	
FIGURE 2-1 UNIT BLOCK DIAGRAM	6

1.0 INTRODUCTION AND SUMMARY

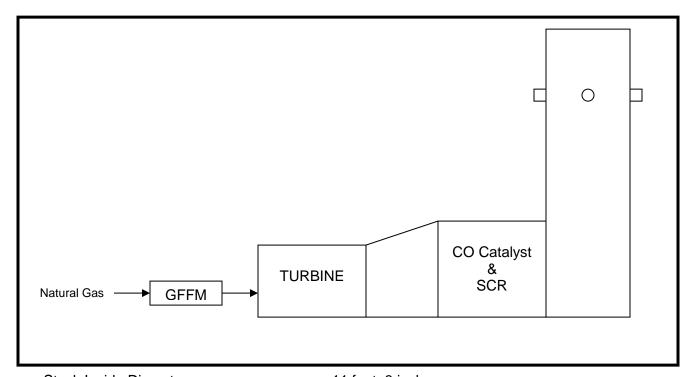
Montrose Air Quality Services, LLC (MAQS) was contracted the Canyon Power Plant to perform an ammonia slip test at Unit 3 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on October 15, 2019. The test was performed by Sean Donovan, Allen Dusky, and Henry Lee. Sean Donovan was the on-site Qualified Individual for MAQS. Ms. Bertha Hernandez coordinated the test for Canyon Power Plant.

The test consisted of duplicate ammonia tests performed at 50 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to $15\% O_2$.

TABLE 1-1
AMMONIA SLIP TEST RESULTS SUMMARY
CANYON POWER PLANT UNIT 3
OCTOBER 15, 2019

Parameter	Units	Result ⁽¹⁾	Limit
NH₃	ppm	1.4	
NH_3	ppmc	1.3	5

⁽¹⁾ Maximum of duplicate runs, as required by SCAQMD Method 207.1


Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.

2.0 UNIT AND CEMS DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46°F, with water injection. The units are equipped with a CO catalyst and Selective Catalytic Reduction (SCR) system for NO_x control. Figure 2-1 presents a block diagram of the unit.

FIGURE 2-1 UNIT BLOCK DIAGRAM CANYON POWER PLANT

Stack Inside Diameter:

11 feet, 8 inches

Distance from Upstream Disturbance:

23 feet, 4 inches (2.0 Diameters)

Distance from Stack Exit:

16 feet, 6 inches (1.4 Diameters)

Southern California Public Power Authority - Canyon 4Q19 Unit 3 NH₃

2.2 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 50 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.3 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack location. Each test was performed over a 60 minute interval. The sample gas was drawn through a glass probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by Ion Specific Electrode analysis.

Stack NO_x and O_2 concentrations and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O_2 .

4.0 TEST RESULTS

The results of the test are summarized in Table 4-1. The results show that the maximum ammonia slip was 1.4 ppm @ $15\% O_2$ which is less than the permitted limit of 5 ppm @ $15\% O_2$.

TABLE 4-1 AMMONIA SLIP TEST RESULTS CANYON POWER PLANT UNIT 3 OCTOBER 15, 2019

Parameter	Units	Run 1	Run 2	Average	Maximum ⁽¹⁾	Limit
Test		1-NH₃-U3	2-NH₃-U3			
Date		10/15/2019	10/15/2019			
Time		1518/1624	1652/1758			
$O_2^{(2)}$	%	14.55	14.56	14.56		
Stack Flow(2)	dscfm @ T _{ref}	230,061	230,455	230,258		
$NO_x^{(2)}$	ppmc	2.3	2.3	2.3		2.5
NH₃	ppm	1.4	1.3	1.4	1.4	
NH_3	ppmc	1.3	1.2	1.3	1.3	5
NH_3	lb/hr	0.9	0.8	0.8	0.9	
NH₃	lb/MMBtu	0.002	0.002	0.002	0.002	
NH_3	lb/MMSCF	1.9	1.7	1.8	1.9	

⁽¹⁾ Maximum of duplicate test runs, as required by SCAQMD Method 207.1

⁽²⁾ From facility CEMS

APPENDIX A RAW DATA

Appendix A.1 Sample Data Sheets

end.	0- 0-
72	1 No. 1
trades.	5 22
L	
	Ċ.
	-

LING SYSTEM DATA AND WORKSHEET - STANDARD	
14	
1	
7	
=	
Z	
TANDARD	
\vdash	
in	
1	
ļ	
EET	
INI	
〒	
六	
47	
X	
17	
0	
\leq	
A AND WORKS	
2	
4	
Q.	
\vdash	
⋖	
-	
2	
Ш	
\vdash	
(1)	
5	
SYSTEM DA	
4,7	
O	
Z	
-	
1	
2	
«ď	
673	
40.0	
4	
O	
-	
2	
III	
Ŧ	
-	
V	
WET CHEMICAL SAMPLING	
LU .	
>	
>	

	imp. # Contents Post-Test - Pre-Test ≂ Difference		123ay 874.7 6815		1 H230y (35) 1X.		5 MT 627,7 6222		7 >6 951,2 956.9		C/2 H20 100				Total:
	AMBIENT TEMPERATURE: 78	BAROMETRIC PRESSURE: 29.90	ASSUMED MOISTURE: 12%	PITOT TUBE COEFF, Cp. ///	PROBE ID NO/MATERIAL: N.A. CILS	PROBE LENGTH: 2	NOZZLE ID NO/MATERIAL: N/A	ボ //4 NOZZLE DIAMETER: /火木	'' FILTER NO/TYPE: AVA	PRE-TEST LEAK RATE:: 40.005 CFM@ /2 in. Hg.	POST-TEST LEAK RATE: <a (2)<="" .="" 505.="" cfm="" td=""><td>PITOT LEAK CHECK - PRE: N.A POST: NA</td><td>CHAIN OF CUSTODY; SAMPLE CUSTODIAN HC</td><td>SAMPLER AD</td><td>SAMPLE CUSTODIAN 172</td>	PITOT LEAK CHECK - PRE: N.A POST: NA	CHAIN OF CUSTODY; SAMPLE CUSTODIAN HC	SAMPLER AD	SAMPLE CUSTODIAN 172
, I C	S CLIENT SCPPA	> LOCATION: CANJUM / LANT. 3	0 DATE: 10/1< /4 9	RUN NO: (= NH3-V3	OPERATOR: CR/AD	METER BOX NO. 73 %- 47.05	METER AH@: 1.642	D METER Yd: + 484 0.944 #2/0/	STACK AREA, FT2.	TRAVERSE POINTS, MINIPOINT: \$//2	Alta XAP ANA	I'm Probe Condition, pre/post test: K/A	Silica Gel Expanded, Y/N:	Filter Condition after Test:	Check Weight: 500.0 / 500.0

O ₂ P. static		×														7		
		ý]	₩.				2)	5			1	
emp, 'r	Out Out	200			l	16			1	16	-		1	. 16			1	
Meter T	ü	93			l	44			į	93			l	93			l	
Imp. Out	Temp, °F	58 73 90			1	56				55			١	55			1	
Filter	Temp, °F	X													N.			
Probe	Temp, °f.	χ													>			
Stack	Temp, 'F	χ.													7			
	in H ₂ O				١	1.5			١	(.5			1	5.				
ΔP	in, HzC	X													>			
Meter	Volume, ff	9/0.320		921.560	\$20.0%	921.560			932.70C	932 700			943.784	943 787			967.456	
	Time	× (8	1523	32	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3 1535	1540	ISMS				1602			7	619	1624	
	Point	M	2		T	3	N		Ш	M	ľη	-	114	Μ	Z		ш	Avarage.

Comments: #AD 10-15-19

Master Document Storago\Forms\Datasheets\Field Datasheets

Date of last revision 2/14/2017

W002AS-543385-RT-501

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET -- STANDARD

CLIENT: 5CFP A
LOCATION: Canypa / Unit 3
DATE: 0/15/19
RUN NO: 2 N/13 CS
OPERATOR: xt Av A
METER BOX NO: 38-wcs
METER Yd: 0.994
STACK AREA, FT?
TRAVERSE POINTS, MIN/POINT: 5/12
AH= 155 X AP:
Probe Condition, pre/post test: xt/A

500-0 / 500-0

N N

Silica Gel Expanded, Y/N: Filter Condition after Test:

Check Weight:

in. Hg. SAMPLER AD SAMPLE CUSTODIAN IT POST SAMPLE CUSTODIAN M SC. OCS CFM@ POST-TEST LEAK RATE: 140.005 CFM@ 16/45 34.80 AMBIENT TEMPERATURE: 74
BAROMETRIC PRESSURE: 3 NOZZLE ID NO/ MATERIAL: PHOT LEAK-CHECK-PRE ASSUMED MOISTURE: PITOT TUBE COEFF, Cp: PROBE ID NO/MATERIAL: PRE-TEST LEAK RATE: : NOZZLE DIAMETER: PROBE LENGTH: FILTER NO/TYPE:

tmp. #	Contents Po	ost-Test - P	Imp. #Contents Post-Test - Pre-Test = Difference
	HzSOY	891.2	648.6
α	42504	713.4	7/1.0
~	TW	5993	598.6
5-	56	4774	9.67.6
2	Hro	100	
ļ			
Total			

		Meter	ΔP	ΑA	Stack	Probe	Filter	Imp. Out	Meter T	emp, °F		ő	P. static
Point	Time	Volume, ft3	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	드	ont	in. Hg	%	in. H ₂ O
M	25%	956.500	X	1.5	X	×	X	\$3	40	982 /48			X
N	159										1		_
1 1	1702												
一日	707	12.136		1				1	-	1	1		
M		267.215		1.5				5.6	100	10 00	Ъ		
1/2	1714												
1	219												
K	1724	191.876		١				1	J	1	1		
1-	726	978.161		1.5				\$5	M 60	00	5		
12	73/												
-	136												
11	741	989.017		ı				1	1	1	Į		
W	743	489 017		5-)				5.7	55	80	ζ,		
2 17	148												
1 1	753												
III	E1758	118.666	,	1	-	>	,	ſ	1	1	1		7
													4
Average:													>

Comments: * = A) 10 - (5 - 19

Date of last revision 2/14/2017

Page 1 of 1

Master Document Storage\Forms\Datasheets\Field Datasheets

Appendix A.2 Laboratory Data

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS

Project # 002AS-543 85 Sample Date: 10/15/2019 District Method: SCAQMD 207.1 Calibration Date: 10 17 2019 Analysis Date: 10 17 2019 Client/Location: SCPPA Calibration Curve: Y= 58.1491x+ 93.499 Analyst's Initials: Sample Location: U3

Test#s: NH3-U3 R2: 1.0000

Sample	Potential (mV)	TV (ml)	Conc. µg NHa N / ml	Cavg (µg NH ₃ – N / ml)	μg NH₃/ sample	Comments	/ Temp/pH
Standard Check: 28 µg NHs/ml	93		27.893	-		Percent F	Recovery:
Repeat 28 µg NHa/ml	92		28.004	27.948	_	10	0.1
1-NH3-U3	TIFF	-	1867	-			
1-NH3-U3	0.37	541.7	1.845	1.850	1222.387	PH<2	23°C
2-NH3-U3	81.5	. —	1.607	-	1		
2-NH3-U3	0.18	557.0	1.001	1.004	1087.042	PH <2	23°C
Spike 2-NH-V3	1.01	1 1	20.819				
SPIKE 2-NH313	170		20.573	20.696	1	9	9.1
28 ppm NH	102	-	20.918				
28 ppm NH3	10.2	_	26.918	20.918	}	9	101
Field Blank	1999		0.015				
Field Blank	200.0	_	0.015	0.0149			
Reagent Blank	199.0	-	0 015	_ , =	1		
RECIPENT BLOOK	199.2	-	0.015	0.0152			
DI H2C BIGNY	2073	1.70	0.015	0.011			
DI H2C Blank	2073	-	0.011	0.0111			
28 ppm NH3	10.0	-	27.132	-	- -		
28 ppm NH3	10.0	-	27.132	27.132		9	1/

Notes:

Total volume of samples and standards used:

Volume of pH adjusting ISA used in mt:_ Absorbing solution: 0.1 N H2SC 4

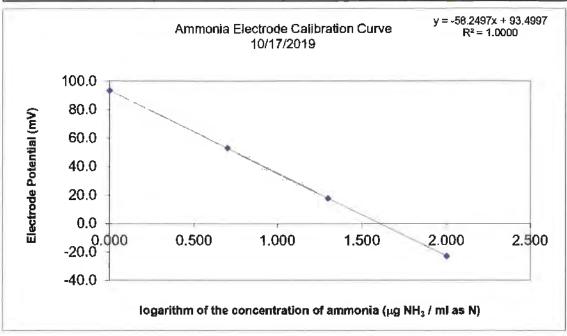
Calculations:

Conc. (µg NHs - N / ml) = 10 (P-B)M

P = electrode potential, B = y-intercept and M = slope

Cavg = average result of duplicate analyses (µg NH3 -- N / ml) = (C1+C2)/2

ug NHs/ sample = Cavg* 17.03/ 14.01 * TV


mg / sample = µg /sample + 1000

ppm NHs = mg NHs/sample x 1/Vmstd x 1/454000 x SV/17 x 106

AMMONIA ELECTRODE CALIBRATION CURVE

NH ₃ concentration	log NH ₃ concentration	Electrode potential	Sample Temperature	Room Temperature
(μg NH ₃ / ml as N)		(mV)	(C)	(C)
1	0.000	93.4	23	21
5	0.699	53,0	23	21
20	1.301	17.6	23	21
100	2.000	-23.0	23	21

slope y-intercept -58.2497 93.4997

Concentration (µg NH ₃ / ml as N)	Value LR line	Difference	% Difference
1	1.0039	0.0039	0,3949
5	4.9577	-0.0423	-0.8467
20	20,0912	0.0912	0.4560
100	100.0012	0.0012	0.0012

Calculation:

Regression Line: P=M*log(μg of NH₃/ ml as N)+B

Measured Concentration of Ammonia (C) in μg / ml NH $_3$ as N: $\,C{=}10^{(P{-}B)M}$

where P = electrode potential, M= slope (must be -57±3) and B⇒ intercept

All standards were prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION

Client/ Location: SCPPA Sample Location: Unit 3

District Method: SCAQMD 207.1
Sample Date: 10/15/2019
Analysis Date: 10/17/2019
Analysi's Initials: HS
Calibration Curve Slope 7-intercept 93.4997

 R^2

Sample	Р	Çonc.	C avg as N	ΤV	C avg as NH ₃	μg NH₃/
	m∨	μg NH₃ /m1 as N		(ml)	!	sample
28 ug NH ₃ / mlas N	9.3	27.893			T T	
repeat 28 ug NH₃/mI as N	9.2	28.004	27.948	NA	33.973	NA
1-NH3	77.7	1.867			1	
repeat 1- NH ₃	78.0	1.845	1.856	541.7	2.257	1222.387
2-NH ₃	81.5	1.607				
repeat 2- NH₃	81.6	1.601	1.604	557.6	1.950	1087.042
spike 2-NH ₃	16.7	20.819				
repeat spike	17.0	20.573	_ 20.696	NA	25.157	NA
28 NH ₃ /ml as N	10.2	26.918				
repeat 28 ug NH ₃ /ml as N	10.2	26,918	26.918	NA	32.721	NA
Field Blank	199.9	0.015				
repeat Field Blank	200.0	0.015	0.0149	NA	0.018	NA
Reagent Blank	199.6	0.015				
repeat Reagent Blank	199.2	0.015	0.0152	NA	0.018	NA
DI H2O Blank	207,3	0.011			T	
Repeat DI H2O Blank	207.3	0.011	0.0111	NA	0.014	NA
28 NH₃/ml as N	10.0	27.132		-	1	
repeat 28 ug NH ₃ /ml as N	10.0	27.132	27.132	NA	32,980	NA

Notes:

Measured Concentration of Ammonia (C) in μg NH₃ / ml as N C=10^{(P-B)/M}

P = electrode potential (mV), M=slope and B=intercept

Average Measured Ammonia Concentration (Cavg) = (C1 + C2)/2

where C1, C2 results from duplicate analyses (µg NH₃/ml as N)

Cavg (μ g NH $_{2}$ /ml as NH $_{3}$) = Cavg (μ g NH $_{2}$ / mt as N) * 17.03/ 14.01

μg NH₃ / sample = Cavg (μg NH₃/mi as NH₃) * TV

Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate.

All solutions turned blue and remained blue with ISA unless otherwise indicated.

Sample PH and Temperatures can be found on the laboratory datasheet.

Maximum samples (including blanks) between 26 ug/ml check standard is 5 samples analyzed in duplicate.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL

Client/ Location:

SCPPA

Sample Location:

Unit 3

District Method:

SCAQMD 207.1

Sample Date:

10/15/2019 10/17/2019

Analysis Date: Analyst's Initials:

HS

Sample	% recovery	RPD %	RPA %
28 ug NH ₃ / ml as N repeat 28 ug NH ₃ /ml as N	NA	-0.40	-0.185
1-NH3 repeat 1- NH3	NA	1.19	NA
2-NH3 repeat 2- NH3	NA	0.40	NA
spike 2-NH3 repeat spike	99.44	1.19	NA
28 NH ₃ /ml as N repeat 28 ug NH ₃ /mi as N	NA	0.00	-3.864
Field Blank repeat Field Blank	NA	0.40	NA
Reagent Blank repeat Reagent Blank	NA	-1.58	NA
Di H2O Blank Repeat DI H2O Blank	NA	0.00	NA
28 NH ₃ /ml as N repeat 28 ug NH ₃ /ml as N	NA	0.00	-3.101

Notes:

spike: 100 ml sampte + 2 ml (1000 µg NH₃ / ml as N)

Matrix Spike Percent Recovery (%R)

%R = (C spike*0.104 - Csample*0.102)/2 *100

Cspike = average result of matrix spike (µg NH₂/ ml as N)

Relative Percent Difference (RPD) = (C1-C2)/ Cavg *100

00 (must be 5% or less)

Relative Percent Accuracy (RPA)

(must be 10% or less)

RPA = (Cavg-theoretical value of standard)/ theoretical value of standard * 100

Appendix A.3 QA/QC Data

9/7/2019

Оате

1.642

Average Yd: 0.994

Q @ dH = 1: 0.585 dH@:

SEMI-ANNUAL DRY GAS METER/ORIFICE CALIBRATION

(in. Hg) Orifice Method - Triplicate Runs/Four Calibration Points

10 #: 38 wzs

English Meter Box Units, English KF Eactor

Fightsh Meter Box Units, English KF Eactor

File Manual Cal 38 wzs 97-18 xlsx]WC Date: 9772019

File Modified From: APEX 522 Series Meter box Calibration

Revised: 4/8/2005

Performed By: R. Howard

Meter Serial #:

	aure	Average	(deeg F)	80.0	80.0	80.0	80.0	80.0	90,0	80.0	80.0	80.0	80.0	80.0	80.0
	Ambient Temperaure	Final	(deg F)	90.0	80.0	90.0	80.0	80.0	90.0	90.0	80.0	80.0	80.0	80.0	80.0
	Ā	Initial	(deg F)	90.0	80.0	86.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0
OINGS	Actual	Vacuum	(in Hg)	18.0	18.0	18.0	£6.0	16,0	16.0	35.0	15,0	15.0	12.0	12.0	12.0
CRITICAL ORIFICE READINGS	K Orifice	Coefficient	(see above)	0 1551	0,1551	0.1551	0.3345	0.3345	0.3345	0.5915	0.5815	0.5915	0,7678	0,7678	0.7678
CRITICA	Orifice	Serial	(number)	33	33	33	48	48	48	63	53	63	73	73	73
	Final Temps.	Outlet	(deg F)	83,0	84.0	83.0	80.0	82.0	83.0	81,0	82.0	82.0	82.0	84.0	83.0
	Final	<u>=</u>	(deg F)	87.0	87.0	87.0	84.0	85.0	85.0	87.0	88.0	88.0	90.0	91.0	90.0
NGS	Initial Temps,	Outlet	(deg F)	83.0	83.0	84.0	80:08	80.0	82.0	81.0	81,0	82.0	81.0	82.0	84.0
TER READ	Initial	fulet	(deg F)	89.0	87.0	87.0	83.0	84.0	85.0	85.0	87.0	88.0	98.0	0.06	91.0
DRY GAS METER READINGS	Volume	Total	(cn ft)	5.374	5,377	5.370	5.347	5,343	5.362	5.536	5.534	5,538	5.097	5.094	5.100
	Volume	Final	(cn ti)	595,474	600,851	606.221	544,047	549.390	554,742	550,936	566.470	572.008	577.997	583.091	588.191
	Volume	Initia	्ट कि स्था	590,100	595.474	600.851	538,700	544.047	549.390	555.400	560.936	556,470	572.900	577.997	583,091
		Time	(min)	26.00	26,00	26.00	12.00	12.00	12.00	7.00	7.00	7,00	5.00	5.00	5.00
		£	(in H2O)	0.13	0.13	0.13	0.51	0.51	0.51	1.70	1.70	1.70	3.00	3.00	3.00

Onifore	Average)	dH@ - dH@ av	< 0.155?				Pass				Pass				Passa				Pass
Origina	Average)	0.98 < Y/Yd	< 1.027				Pass												
les divided	Orifice		Ymax - Ymin	< 0.010?				Pass												
lectivity	Run		0.95 < Y	< 1.05?	Pass	Pass	Pass													
ORIFICE CALIBRATION FACTOR	COLLEGE ROLL ACTOR	QH P	Value	(in H2O)	1,779	1,778	1,778	1.778	1.511	1,508	1.504	1,507	1,607	1.605	1.604	1.605	1.681	1.677	1.675	1.678
CALIBRATION FACTOR		> -	Value	(number)	666.0	0,998	0.999		0.991	0.993	0.994		0,988	0.990	0.990		0,995	0,998	766.0	
٥								Average												
	VOLUME	NOMINAL	Vor	(on ft)	5.314	5.314	5.314		5.287	5.287	5.287		5.455	5.455	5.455		5.058	5.058	5.058	
		CORRECTED	Ver(std)	(liters)	147.3	147.3	147.3		146.5	146.5	146.5		151.2	151.2	151.2		140.2	140.2	140.2	
ORIFICE	VOLUME	CORRECTED	Vcr(std)	(cn ft)	5,201	5.201	5.201		5.175	5.175	5.175		5.338	5.338	5,338		4.950	4.950	4.950	
	VOLUME	CORRECTED	Vm(std)	ilters	147.5	147.6	147.5		147.9	147.5	147.5		153.1	152.8	152.7		140.9	140.5	140.6	
RY GAS METER	VOLUME	CORRECTED	Vm(std)	(cn #)	5,208	5.213	5.207		5.223	5.209	5.208		5.406	5.394	5,393		4.977	4.960	4.964	

Signature on File SIGNED:

W002AS-543385-RT-501

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 38-WCS

Readout Description: Control Box

Date: 7/2/2019

Performed By: JG/DA/RH/JS

Calibrated Thermocouple ID: TC-CAL T1 Reference Thermometer ID: 242196 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 242167

T/C			T/C - F	teadout			Reference T	hermometer		Diffe	rence
I.D.	Readout			'F			e	F			
TC-CAL	1.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)
T3 (OIL)	38-WCS	358	358	358	358	358	358	358	358	0.0	0.0%
T2 (Boiling H ₂ O)	38-WCS	211	211	211	211	212	212	212	212	1.0	0.1%
T1 (Ice/Water)	38-WCS	32	32	32	32	32	32	32	32	0.0	0.0%

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

			T/C - F	Readout			T/C S	Source		Diffe	rence	1
	T/C Source)F			•	F		100		1
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	S/N 106970	653	653	653	653	650	650	650	650	3.0	0.3%	1 F
T3 (~370 F)	S/N 106970	378	378	378	378	370	370	370	370	8.0	1.0%	F
T2 (~212 F)	S/N 106970	214	214	214	214	212	212	212	212	2.0	0.3%	16
T1 (~32 F)	S/N 106970	33	33	33	33	32	32	32	32	1.0	0.2%	JE

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET - STANDARD

in. Hg. in. Hg. 000 20 AL AD POST: SAMPLE CUSTODIAN SAMPLE CUSTODIAN 000 29.80 K/Z 2 FILTER NO/TYPE: ハイキ PRE-TEST LEAK RATE:: ユロ・ロンド CFM@ POST-TEST LEAK RATE: 40-005 CFM@ X / 2 73 NOZZLE ID NO/ MATERIAL: BAROMETRIC PRESSURE: PITOT LEAK CHECK - PRE AMBIENT TEMPERATURE: PITOT TUBE COEFF, CP: PROBE ID NO/MATERIAL: PROBE LENGTH: ASSUMED MOISTURE: CHAIN OF CUSTODY: NOZZLE DIAMETER: NY 2 2 500.00 | 500.00 38-WCS TRAVERSE POINTS, MIN/POINT: STACK AREA, FT2: 106.90 AH= NJA X AP: Probe Condition, pre/post test: SCPPA 0.994 a Silica Gel Expanded, Y/N: Filter Condition after Test: CAMMON FB-NH 15/101 METER BOX NO: Check Weight: METER AH(6): OPERATOR: METER Yd: LOCATION: RUN NO: DATE

lπp	Imp. #Contents F	ost-Test - F	Post-Test - Pre-Test = Difference
-	Haszhi	821.1	3.615
7	Hzsoy	0-10-	700-9
~	7	6.809	609.3
5	56	859.3	1.458
31			
Total			

P. static	In. H2O								
ိုင်	%								
Vacuum	in Hg.								
Meter Temp, °F	Out								\
Meter	=								
Imp. Out	lemp, 'F								
Filter	emp, E								
Probe	-	1	1						
Stack	lemp, 'F			1	1				
AH.						1	1	1	
ΔP	in. H ₂ O			(()				1
Meter	Volume, ff					/) / !	0	
	Time							1	k
	Point								

Date of last revision 2/14/2017

Comments:

Average:

ਰੱ

Master Document Storage\Forms\Datasheets\Field Datasheets

W002AS-543385-RT-501

CHAIN OF CUSTODY

ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: Stack ATION: ATION ATION: AT	ATION: Stack ATION: ATION		CLIENT: SCPPA	SCPPA	I PROPI	PROJECT #: WUUZAS-543385	IEST DATE(S): 10/15/2019	81.07/01/01
SCAQMD 207.1 DATE DUE: 10/22/2019 IRED?: No	PROJECT MA		LOCATION:	U3			SAMPLER(S):	HL/AD
TEST # SAMPLE DESCRIPTION COMPLIANCE TEST?: Yes	IRED?: No	SAMPL	E LOCATION:	Stack			PROJECT MANAGER:	SD
TEST # SAMPLE DESCRIPTION CONTAINERS SAMPLER COMME	TEST # SAMPLE DESCRIPTION CONTAINERS SAMPLE 18/1624	TEST	METHOD(S):	SCAQMD 207.1			DATE DUE:	10/22/2019
18/16.24 TEST # SAMPLE DESCRIPTION CONTAINERS SAMPLER COMME 18/16.24 1-NH3-U3 Probe, Line, Impingers 1	SAMPLE DESCRIPTION CONTAINERS SAMPLE 18/1624	OUTSIDE LAB	REQUIRED?:	No		i	COMPLIANCE TEST?:	Yes
1-NH3-U3	1.4H3-U3 Probe, Line, Impingers 1 HJAL 1.4H3-U3 Probe, Impingers 1 HJAL 1.	DATE	TIME	TEST#	SAMPLE DESCRIPTION	CONTAINERS	SAMPLER	COMMENTS
Reagent Blank	Probe, Line, Impingers Probe, Impingers Probe	10/15/2019	1518/1624	1-NH3-U3	Probe, Line, Impingers		HLAD	
Reagent Blank	Reagent Blank DI H2O 1 SD Field Blank Probe, Line, Impingers 1 HL/AL HL/AL SED BY DATE/TIME DATE/TIME RECEIVED BY NH ₃ by SCAQMD 207.1 (ISE)	10/15/2019	1652/1758	Z-NH3-U3	Probe, Line, Impingers	- -	HUAD	
Reagent Blank Di HZO 1 SU HL/AD	ASED BY NH ₃ by SCAQMD 207.1 (ISE)	10/15/2018		Reagent Diank	V. IN 112504		6	
ASED BY DATE/TIME TO 16 19 10 10 10 10 10 10 10 10 10 10 10 10 10	ASED BY NH ₃ by SCAQMD 207.1 (ISE)	10/15/2019		Reagent Blank	DI HZO		28	
NHs by SCACMD 207.1 (ISE)	NH ₃ by SCAQMD 207.1 (ISE)	10/15/2019		Fleid Blank	Probe, Line, Impingers	-	DAU.	
NH ₃ by SCAQMD 207.1 (ISE)	NH ₃ by SCAQMD 207.1 (ISE)							
NH ₃ by SCACMD 207.1 (ISE)	NH3 by SCAQMD 207.1 (ISE)		RELEASED E	34	DATE/TIME	RECEIV	ED 8Y	DATE/TIME
NH ₃ by SCAQMD 207.1 (NH ₃ by SCAQMD 207.1 (ISE)		5000					100
NH ₃ by SCAQMD 207.1 (NH ₃ by SCAQMD 207.1 (ISE)							
		VALYSIS REQU	JIRED:	NH ₃ by SCAQMD 2	\sim			
							o alodo	Poor Cood Apoton

APPENDIX B FACILITY CEMS DATA

Period Stavt: 10/15/2019 19:19
Period Rad: 10/15/2019 16:24
V@lidation Type: 1/1 min
Averaging Period: 1 min
Type: Block Avg

Dabonck & Wilcox Power Generation Group $\operatorname{BetDAMS}^{\circ}$

Company: City Of Anallein Plant: 3071 Miraloma Ave., City/SL: Anaheim, CA, 92806 Source: unit3

Average 3_STACKFLW kScfm	234.2	234.9	235.5	235.0	234.9	233.7	232.4	232.0	231.8	232.8	235.0	235.4	236.4	235.7	233.9	233.1	231.6	232.6	233.6	234.1	235.3	236.5	235.6	234.1	232.5	232	231	233.4	234.0	234.7	234.B	233,4	233.0	23.12.	230,9	232.6	233.3	234.6	234.7	233.6	233.0	231.7	231.5	233.5	233.7	23.0	234.0	232.9	232.1	231.5	233.6	10/15/2019	15:35	230.9 10/15/2019	16:03
	49.92		49.86	20. LS	50.03	49.83	50.12	49.93	49.90	44.00.00.00.00.00.00.00.00.00.00.00.00.0	50.07	49.97	50.02	50.05	49.86		49.8B	50.05	49.91	50.05	50.02	30.01	50.01	49.90	50.08	49.99	50.07	49.79	49.68	49.87	20.00 20.00	50.02	20 C	49.99	50.00	100	ው ተ ሙ !	20.004	49.85	49.95	49.00	49.96	50,18	40.04	49.86	50.14	49.86	49.80	49.97	49.86	49.94	10/15/2019	16:14	49.65	16:29
Average 3_Gasrlow kscfh	465.3		165.0	464 8	465.2	465.1	404	455.4	454.9	465.4	465.4	454.9	455.3	465.1	464.9	464.6	464.5	465.1	464.9	465.2	465.3	465.5	465.1		4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	466.3	465.7	0,004 0,004	465.6	465,6	455.9	465.3	465.9	465.8	4655,2	465.1	465.8	465.8	465,6	465.7	465.4	465.4	465.1	465.4	465.0	465.0	465.0	0.594	454.8	465.1	465.3	10/15/2019	16:07	464.5 10/15/2019	15:39
3_NH3_Flow #/hx	75.35	75.34	75.41	75 47	75.42	75.45	75.33	75.49	75.33	75.54	75.45	75.47	75.38	75.46	75.43	75.37	75.41	75.39	75.41	75.33	75.58	75,29	75.34	75.37	75.40	75.38	75.32	75.25	75.23	75.17	71.27	75,13	75.18	£1.27	4. 5. 4. 4. 2. 2.	75.09	75.25	75,37	76.43	76,38	76.52	76.50	76.48	76.47	76.37	76.54	16.38	76.35	76.26	76.35	75.62	10/15/2019	16:08	10/15/2019	16:03
3 CO LIBHR	2.63	2.63	2,69	9.6	2.69	69.0	2.63	2.64	2.64	20.00	2.69	2.68	2.69	2.69	2,64	2.63	2,63	2.69	2.68	23.0	101 to	2.72	2.74	2.69	2.54	2.5	20.00	u . u	2.64	2.64	2.64	2.64	20.71 20.01	2.54	2.54	4.4.	2.54	2. V	2.54	2.54	2.54	2.59	45.54	n di n in n in	2.64	20,00	12. 13.	ตา เก	M W	2,64	3.63	10/15/2019		319	16:12
3_CO_CORR PP ^{III}	2.44	2.44	2.45	2.47	2.44	2.44	2.41	2.41	2.43	24.6	2,45	2.46	2,47	2.4	2.39	2.41	2.40	2,45	3.47	2.46	2,46	2.49	2.50	2.47	2.39	2.38	2.37	2,38	2.40	2.41	2.42	2.40	2 5	2.33	2.32	2,31	2.31	2.31	2.32	2.31	2.34	2.36	61.0	25.5	2.39	4. C.	2.3	2.36	2 37	2.43	2.40	02.15/201 02.02/31/01	15:47	2.31	36:10
	N	2.61	2.5	20.0	2.61	2.62	2.60	2.61	2.63	24 C	2.62	2.62	2.52	2.59	2.56	2.59	2,50	2.64	2.65	2.64	19. E	2.65	2.67	9	9 10	CI TI	20 6	2.57	2.58	2,58	2.59	2.58	70.0	3.5	25.52	2.49	2.49	2.42	2.48	2,49	2.53	2.56	2.59	2.55	75.57	2.50	2,54	2.54	2.56	2.63	2.58	10/15/2019	15:47	10/15/2019	T6:08
3 NOX LEMBA #/MSTU	C.308	0.008	600.0	600.0	0.008	0.038	0.00	0.008	900.0	0.008	0.008	0.008	900.0	0.00	0.003	00.00	BDD 0	0,003	0.008	0.008	900.0	0,008	0.000	00-008	800.0	00.00	600.0	600.0	0.003	0,009	600.0	0.000	00.00	0.009	0,009	0.003	0.009	600.0	0.009	0.003	0.008	0.008	0.008	0.008	0.008	800.0	0.003	00.00	00.00	C. 20B	0.008	10/15/2019	16:10	0,008 10/15/2019	16:24
3 NOX LBER #/hr	3.51	3.51	4, 4	4. 4.	3.91	19.6	3,90	3.91	3.90	E 6	16,6	3,90	3.91	4.40	4.39	4.39	96.8	3.91	3.90	3.91	14.5 19.5	. E.	3.91	16.6	4.40	4,40	4,40	4,40	4.40	4.40	4.40	40	4.40	4.40	4.40	4.40	4.40	4.40	4.40	4.50	3.91	3.91	16.6	16. C	19.6	E	3.91	3.31	3.93	3.91	4.12	10/15/2019	16:10	1.90	16:22
3_NOX_CORR DPm	2.26	2.28	2.31	2.31	3.30	2.28	1 12	2.26	2 C C C C C C C C C C C C C C C C C C C	22,25	2.30	2.30	22,23	2.32	2.33	2.32	2.30	2.26	2.26	2.27	2.23	2.28	2.26	27.26	2.31	2.33	200	1 10	2.35	3,32	0.00	8.0	d 100	2.38	2.40	2.45	24.6	2.47	2.43	2,3	2.27	2.21	2.17	3.21	3.20	0 50	2.2	2.22	2.30	2.16	2.30	10/15/2019	16:08	10/15/2019	16:24
3 NOIPEM PPA	2.43	2.44	2.46	2.46	2.46	2,45	2.45	2,45	2,44	2.43	2.45	2.45	2.43	2,47	3,50	2.50	2.43	3,44	2.43	2.44	24.0	2.43	2.41	2.42	5.51	2,53	2,52	2,53	2.52	2.43		2.52	N 20	2.50	2.61	2,64	3.64	2.64	2.60	2.51	2,46	2.40	2.35	2.38	2.36	WI WI WI	2.40	2,39	2 2 2	2.34	2.47	10/15/2019	16:08	10/15/2019	16:24
	14.57	14.59	16,61	14.63	14,59	14.56	14,53	14.51	14.51	14.53	14.59	14.61	14.63	14.61	14.57	14,55	14.51	14,53	14.56	14,57	14.50	14.63	14.61	14.57	14.50	14.43	14.48	14,54	14.56	14.58	14.58	14.55	14. U.S.	14.48	14.48	14.53	14.54	4.58	14.58	34,55	14.51	14.50	14.50	14.55	14.56	14.50	14.57	14.54	14.52	14.50	14.55	9102/31/01	15:35	10,15/2019	16:03
Period Start:	61:51 6102/51/01	10/15/2019 15:20	10/15/2019 15:21	10/15/2019 15:23	10/15/2019 15:24	20/15/2016 6102/21/02	10/15/2019 15:27	10/15/2019 15:28		10/15/2019 15:30	10/15/2019 15:32		10/15/2019 15:34	10/15/2019 15:36	10/15/2019 15:37	10/15/2019 15:38	10/15/2019 15:39	10/15/2019 15:41	10/15/2019 15:42	10/15/2019 15:43	10/.5/2019 15:59	10/:5/2019 15:46	10/15/2019 15:47	10/15/2010 15:48	10/15/2019 15:50		10/15/2019 15:52	10/15/2019 15:54	10/15/2019 15:55	10/15/2019 15:56	10/15/2019 15:58	10/15/2019 15:59			10/15/2019 16:03	10/15/2019 16:05		10/15/2019 16:09	10/15/2019 16:09	10/15/2019 16:10	10/15/2019 16:12		10/15/2019 16:14	10/15/2019 16:16	10/15/2019 16:17	10/15/2019 16:18	10/15/2019 16:30	12/97 6102/91/01	10/15/2019 16:23		Daily Average*			MINITER	

include invalid Averaging Periods ("M/A") 벍 * Docs

Page : of 1

Period Start: 10/19/2019 16:53
Period End: 10/19/2019 17:58
Validation Type: 1/1 min
Averaging Reviod: 1 min
Type: 3lock Avg

Debcock & Wilcox Power Generation Group NetDAMS $^{\mathrm{p}}$

Company: City Of Anaheim Plane: 3071 Miraloma Awe., City/St: Anaheim, CA, 92806 Source: unil3

Average 3_STACKFLM kgcfm	232.3	232.5	233.5	234.8	235.5	234.1	233.7	232.3	233.2	234.1	235.4	235.4	4000	233.4	232.8	233.3	234.0	335.6	234.0	233.6	232.7	232,8	233.4	235.4	234.9	233.2	252.7	233.0	233.9	235.1	235.0	223.7	233.8	232.9	2333.5	235.4	234.9	2000	233.2	233.2	233.4	235.4	236.1	234,6	233,9	233.6	234.4	235.45	234.0	236.3	10/15/2019	332,0	10/15/2015	
Accesses 3_LOAD	49.88	49.92	28.04	50.03	50.01	49.70	49.99	49.94	49,84	4 4 4 4	49,97	49.99	0.0	00.00			40°03	49.83	49.95	40,000	49.91	94.04	49.97		49.77	50.11		50.00		49.85 6.65	49.96		27. 24. 9. B. B.	42.94	24.00 00.044	49.98	49.81	40.04		49.38	49.87	49.93	50.00	49.31	49.79	49.84	48.44	50.02	49.92	50.11	72,75 72,71	49.70	10/15/2019 17:D0	
Average 3_GasFlow Macfa	465.1	465.7		465.5	465.3	465.1	465,8	465.9	466.3	465.3	465.5	466.3	465.4		466.2	466.5	465.7	466.0	465.7	465.6	465.3	465.5	465.2	466.1	465.2	465.6	165,3	466.0	465.1	465.6	465.5	465.1	465.2	465	4.24.4	465.4	465.3	465.2	464.9	464.8	462.3	465.5	465.3	464.5	465.4	454.0	465.0	4655	465.5	455.5	10/15/2019	454.5	10/15/2019	
Average 3 CO LEMBI #/MBTO	0.0056	0.0056	0.0055	0.0056	0.0057	0.0058	0.0058	0.0058	0.0058	0,0059	0.0059	0.0059	0.0058	0.0058	0.0058	9,0058	0.0058	0.0059	6500.0	0.0059	0.0058	0.0058	0.0058	0.0058	0.0058	0.0058	0.0058	0.0053	0.0057	0.0057	0.0057	0.0057	0.0057	0.0057	0.0058	0.0059	0.0060	0.0060	0.0059	0.0059	0.0059	0.0060	0.0061	0.0061	0.0060	6500.0	0.0061	0.0063	0.0058	0.0063	17:58	0.0055	10/15/2019	
Average 3_Co_tark	2.74	2.74	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.74	2.84	2.83	2,84	, N	2.84	8) 40 8) 40 7) 70	2,68	2.83	2,83	2,84	2.84	2.34	2.84	2,89	2,89	20. V. O. S. E.	2.83	2.84	W 6	2.84	2.63	4.61	8.83 8.83	58.78	2.79	2,79	2.79	2.78	2 78	2.79	20,00	12 12 12 12 12 12 12 12 12 12 12 12 12 1	58.5	2 6	2.58	c.i.	30 e0	2.93	2,98	2.93	2.93	20 E	2.98	9.09	19 E	3.08	10/15/2019	2,69	10/15/2019	
Average 3_CO_CORR	2,50	2.53	2,46	2,49	20.00	Z.60	2.60	2.60	2.60	2.63	2.52	2,51	0. to 10.	9 55	2,59	2.59	2.51	2.63	2.63	2.61	2,57	2.57	200	2.57	6.0	2.61	2.57	2,57	2.55	2.54	2,52	2.52	2.53	2.54	2.57	2.64	2.66	2 2 2	2.62	2.61	2.62	2.68	2.71	2.70	2.69	2,65	2.71	2.80	2.60	2.82	17:58	2.46	10/15/2019 16:56	
Average 3_COPPH from	2.70	17.73	2.65	2.67	2,71	2.79	2.80	2.82	2,81	2.81	2.80	2.79	61 6	2.75	2.80	2.80	2.80	2.81	2.83	18:0	2.78	2,78	27.78	2.74	2.77	20.00	2.78	2.78	2.74	2.72	2.70	2.1	2.5	2.74	2.17	2,82	2.84	9 8	2,83	18.5	2 2 2 2 2 2 2	2,86	2.BB	20 E	2,89	CA EX	2,90	2,98	2.79	3.00	17:58	2.65	10/15/2019	
Average 3_kOx_resor #/kerro	0.008	900.0	0.008	0.008	0.008	0.008	0.008	0.003	0.008	0.008	0.008	0.008	800.0	0.008	0.008	0.008	0.008	800.0	900.0	90.00			600.0		900.0	600.0	600.0	90.003		0.003	0.009	0.003	0.003	0.009	0,009	0.009	0.009	600.0	0.009	0.009	600.0	000.0	000.0	600.0	0.009	00.00	0.00%	600.0	600°D	600°D	10/15/2019	0.008	10/15/2019	
Average 3_MOX_LBHR #/br	3.91	18.6	16.6	3.93	16.5	3,91	19.61	3.91	3.92	e e	100	3.92	0.0	, m	3.92	3.93	on or	3,91	3.91	4.91	3.91	3.91	4,40	4.40	4.40	4,40	4,40	4.40	4.40	4.40	4.40	4.40	4 4	4.40	4,40	4.40	4.40	9.40	4,69	84.4	94.	4.40	4,40	04. e	4.40	4 4	4.39	4.40	18	4.40	10/15/2015	3.91	10/15/2019	
Average 3_NOX_CORR pbm	2.26	2.24	2.2	3.30	2.29	2.20	2.16	2.13	2.13	2,13	2.19	2.21	2 2 2	61.5	2.17	2.16	2.16	2.27	2.27	2.29	2,31	2,30	2.31	2 E	S. C.	4 60	2.33	7.0	10.0	2.40	2.4.2	2.42	2 C	2.37	20 E	20.0	2,33	100	2.32	2.37	2 6	2.33	2.34	2.33	2.33	2.36	2.35	3.34	2,29	2.43	17:34	2.13	10/15/2019 40:71	
Average 3_NOXPPH ppm	2.44	2,42	2.47	2,47	2,46	2.36	2,02	2.31	3.30	2.31	1 K	3.36	20 C	36.5	2,35	2.33	C C C	2,42	2,44	2.47	2.43	2.48	N C	2,52	2.51	2.51	22.52	02.20	121	2.57	2.60	2.60	2.53	35.50	2.5	2.50	2.49	2.47	2.50	2.55	2,53	2.49	2.49	2.50	2.50	2,54	2.52	2,50	2.46	2.60	10/15/2013	2.30	10/15/2019	
Average 3_02	14.52	14.52	14.55	14.57	14.60	14.57	14.55	14.51	14.53	14.55	14.60	14,59	14.57	4.4. 0.4.	14.52	14.53	14,56	14.60	14.56	14.55	14.53	14.53	28.65	14.60	14.59	40,40	14.53	10.0	14,56	€. 1. 4. 50 ° 50 ° 50 ° 50 ° 50 ° 50 ° 50 ° 50	14,59	14.56	14.54	14.53	14.55	14.60	14.59	14.35	14.55	14.55	14.55	14.50	14.62	14.55	14.56	14.55	14.58	14.6.	14.56	3	10/15/2019	14.51	10/15/2019	
Period Start:	10/15/2019 16:53	10/15/2019 16:54	10/15/2019 16:56	10/15/2019 16:57	10/15/2019 15:58	10/15/2019 17:00	10/15/2019 17:01		10/15/2019 17:04	10/15/2019 17:05	10/15/2019 17:07	10/15/2019 17:08	10/15/2019 17:09	10/15/2019 17:11	10/15/2019 17:12	10/15/2019 17:13	10/15/2019 17:14			10/15/2019 17:18	13/15/2019 17:20	10/15/2029 17:21	10/15/2019 17:22		10/15/2019 17:25	10/15/2019 17:27	10/15/2019 17:28	10/15/2019 17:29	10/15/2019 17:31	10/15/2019 17:32	10/15/2019 17:34	10/15/2019 17:35	10/15/2019 17:36	10/15/2019 17:38	10/15/2019 17:39	10/15/2019 17:41	10/15/2019 17:42	10/15/2019 17:43	10/15/2019 17:45	10/15/2019 17:46	10/15/2019 17:47	10/15/2019 17:49	10/15/2019 17:50	10/15/2019 17:51	10/15/2019 17:53	10/15/2019 17:54	10/15/2019 17:56	10/15/2019 17:57	Daily Average*			Minimum		

* Does not include Invalid Avaraging Periods ("M/A")

Page 1 of

APPENDIX C CALCULATIONS

Appendix C.1 General Emissions Calculations

Southern California Public Power Authority - Canyon 4Q19 Unit $3\ NH_3$

GENERAL EMISSION CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \%CO_2 + 0.32 * \%O_2 + 0.28 * \%N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$Ps = Pbar + \frac{Psg}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{met}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_{m} * (P_{bar} + \frac{\Delta H}{13.6}) * \frac{T_{ref}}{T_{m}} * Y_{d}$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{lc} * \frac{T_{ref}}{528 ° R}$$

C. Moisture content, dimensionless

$$\mathsf{B}_{\mathsf{wo}} = \frac{\mathsf{V}_{\mathsf{wstd}}}{(\mathsf{V}_{\mathsf{mstd}} + \mathsf{V}_{\mathsf{wstd}})}$$

III. Stack gas volumetric flow rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Southern California Public Power Authority - Canyon 4Q19 Unit $3\ NH_3$

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, lb/MMBtu

$$\frac{lb}{MMBtu} = \frac{ppm * MW_i * F}{SV * 10^6} * \frac{20.9}{20.9 - \%O_2}$$

VI. Percent Isokinetic

$$I = \frac{17.32 \text{ x T}_{s} \text{ (V}_{m}\text{std)}}{\text{(1-Bwo) } 0 \text{ x Vs x Ps x Dn2}} \text{ x } \frac{520^{\circ}\text{R}}{\text{T}_{ref}}$$

- VII. Particulate emissions
 - (a) Grain loading, gr/dscf $C = 0.01543 (M_n/V_{m std})$
 - (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
 - (c) Mass emissions, lb/hr $M = C \times Qsd \times (60 \text{ min/hr})/(7000 \text{ gr/lb})$
 - (d) Particulate emission factor

$$lb/10^6$$
 Btu = Cx $\frac{1 lb}{7000 gr}$ x F x $\frac{20.9}{20.9 - \% O_2}$

Nomenclature:

 A_s = stack area, ft^2

B_{wo} = flue gas moisture content, dimensionless

C_{12%CO2} = particulate grain loading, gr/dscf corrected to 12% CO₂

C = particulate grain loading, gr/dscf C_p = pitot calibration factor, dimensionless

Dn = nozzle diameter, in.

F = fuel F-Factor, dscf/MMBtu @ 0% O₂ H = orifice differential pressure, iwg

I = % isokinetics

 M_n = mass of collected particulate, mg M_i = mass emission rate of specie i, lb/hr MW = molecular weight of flue gas, lb/lb-mole

 M_{wi} = molecular weight of specie i:

SO₂: 64 NO_x: 46 CO: 28 HC: 16

0 = sample time, min.

 ΔP = average velocity head, iwg = $(\sqrt{\Delta P})^2$

P_{bar} = barometric pressure, inches Hg P_s = stack absolute pressure, inches Hg

P_{sg} = stack static pressure, iwb

Q = wet stack flow rate at actual conditions, wacfm

Q_{sd} = dry standard stack flow rate, dscfm

SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole

 T_m = meter temperature, °R T_{ref} = reference temperature, °R T_s = stack temperature, °R V_s = stack gas velocity, ft/sec

V_{lc} = volume of liquid collected in impingers, ml

V_m = uncorrected dry meter volume, dcf

V_{mstd} = dry meter volume at standard conditions, dscf V_{wstd} = volume of water vapor at standard conditions, scf

Y_d = meter calibration coefficient

Appendix C.2 Spreadsheet Summaries

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U3

ldentifier	Description	Units	Equation	Value
Α	Reference Temperature	F		60
В	Reference Temperature	R	A + 460	520
Ċ	Meter Calibration Factor (Yd)	A		0.994
D	Barometric Pressure	" Hg		29.80
Е	Meter Volume	acf	-	44.478
F	Meter Temperature	F		92.0
G	Meter Temperature	R	F + 460	552.0
Н	Delta H	" H₂O		1.5
1	Meter Volume (standard)	dscf	0.03342 * E * (D + H/13.6) * B/G * C	41.632
J	Liquid Collected	grams		111.0
K	Water vapor volume	scf	0.0472 * J * B/528	5.160
L	Moisture Content		K/(K + I)	0.110
М	Gas Constant	ft-lbf/lb-mole-R		1545.33
N	Specific Molar Volume	SCF/lb-mole	385.3 * B / 528	379.5
0	F-Factor	dscf/MMBtu		8,710
Р	HHV	Btu/SCF	-	1,050
Q	Mass Conversion Factor	lb/ug	-	2.2046E-0
R	O ₂ Correction Factor		_	15
S	Stack Flow Rate @ 68 F	dscfm	-	233,600
Т	Stack Flow Rate @ Tref	dscfm	S * B/528	230,061
U	Mass NH ₃	ug	···	1,222
V	Mass NH ₃	lb	U * Q	2.69E-06
W	MW of NH ₃	lb/lb-mole	_	17.03
X	NH ₃	ррт	(V * N *10 ^b)/(I * W)	1.4
Υ	Flue Gas O ₂	%		14.55
z	NH ₃	рртс	X * (20.9 - R)/(20.9 - Y)	1.3
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10°)	0.9
AB	NH ₃	ib/MMBtu	(X * W * O)/(385.3 * 10 ⁶) * 20.9/(20.9 - Y)	0.002
AC	NH ₃	lb/MMSCF	AB * P	1.9

Note:

⁽¹⁾ Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility	•				NH ₃
Unit					Natural gas
Sample Location		0.1410.110			SD
Test Number	1-NH3-U3	2-NH3-U3	Average	Maximum	Limit
Reference Temperature (°F)	60	60			
Test Date	10/15/2019	10/15/2019			
Test Method	SCAQMD 207 1	SCAQMD 207.1		1 1	
Sample Train	38-WCS	38-WCS			
Meter Calibration Factor	0.994	0.994			
Stack Area (ft²)	106.90	106.90			
Sample Time (Minutes)		60			
Barometric Pressure ("Hg)	29.80	29.80			
Start/Stop Time	1518/1624	1652/1758			
Meter Volume (acf)	44.478	43.311			
Meter Temperature (°F)	92.0	83.3			
Meter Pressure (iwg)		1.5			
Liquid Volume (ml)	111.0	105.7			
Stack O2 (%)		14.56	14.56	(from facility CE	MS)
Unit Load (MW)		50	49.9		
Standard Sample Volume (SCF)	41.632	41.188			
Moisture Fraction	0.110	0.107		i	
Stack Flow Rate (dscfm, 68 °F)	233,600	234,000	233,800	(from facility CE!	MS)
Stack Flow Rate (@ Tref)	230,061	230,455	230,258		
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH ₃ (lb/lb-mole)	17.03	17.03			
Specific Molar Volume (ft ³ /lb-mole)	379.5	379.5			
F-Factor (dscf/MMBtu)		8,710			
HHV(Btu/SCF)	1,050	1,050		1	
Mass Conversion (lb/ug)		2.2046E-09			
O ₂ Correction Factor (%)		15			
Mass NH ₃ (ug)		1,087			
Mass NH ₃ (lb)	2.69E-06	2.40E-06			
NH ₃ (ppmv, flue gas)	1.4	1.3	1,4	1.4	
NH ₃ (ppmv @ O ₂ Correction Factor)	1.3	1.2	1.3	1.3	5
NH ₃ (lb/hr)	0.9	0.8	0.8	0.9	
NH ₃ (lb/MMBtu)	0.002	0.002	0.002	0.002	
NH ₃ (lb/MMSCF)	1.9	1.7	1.8	1.9	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

Assignment of an Internal QA Officer: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, will be present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)

The following safety measures will be followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	Steam clean Leak check
Mobil Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	+/- 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	+/- 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	+/- 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	+/- 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	+/- 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for ΔH @	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	+/- 1.5%

Note: Calibration requirements will be used that meet applicable regulatory agency requirements.

Appendix D.2 SCAQMD and STAC Certifications

21865 Copley Drive, Diamond Bar, CA 91765-4178 (909) 396-2000 • www.aqmd.gov

September 6, 2019

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice

Reference # 96LA1220

Dear Mr. Peterson:

We have reviewed your renewal letter under the South Coast Air Quality Management District's Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2019, and ending September 30, 2020 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

 Methods 1-4
 Methods 5.1, 5.2, 5.3, 6.1

 Methods 10.1 and 100.1
 Methods 25.1 and 25.3 (Sampling)

 USEPA CTM-030 and ASTM D6522-00
 Rule 1121/1146.2 Protocol

Rule 1420/1420,1/1420.2 – (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna BoilerNoritz America Corp.Ajax Boiler, Inc.1510 North Spring Street11160 Grace Avenue2701 S. Harbor Blvd.Los Angeles, CA 90012Fountain Valley, CA 92708Santa Ana, CA 92704

Laundry Building of VA Greater Los Angeles Healthcare System 508 Constitution Avenue Los Angeles, CA 90049

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov.

Sincerely,

Dipankar Sarkar Program Supervisor Source Test Engineering

D. Sarken

DS:GK/gk Attachment

190906 LapRenewalRev.doc

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Presented this 5th day of March 2018.

President and CEO For the Accreditation Council Certificate Number 3925.01 Valid to February 29, 2020 This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

Appendix D.3 Individual QI Certificate

CERTIFICATE OF COMPLETION

Sean Donovan

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Method 207.1

Certificate Number: 002-2016-06

DATE OF ISSUE:

11/30/16

11/30/21

DATE OF EXPIRATION:

Tate Strickler, Accreditation Director

MONTROSE

APPENDIX E APPLICABLE PERMIT SECTIONS

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Facility ID:

ge: 6 153992

Revision #:

Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1. POWER GENE	RATION				
GAS TURBINE, NO. 3, NATURAL GAS, GENERAL ELECTRIC, MODEL LM6000PC SPRINT, SIMPLE CYCLE, 479 MMBTU/HR AT 46 DEG F, WITH INLET CHILLING, WITH WATER INJECTION WITH A/N: 555830	D13	C15	NOX: MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1903(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 6-3-2011]; NOX: 25 PPMV NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5) [RULE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5C) [RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2) -Offset, 12-6-2002]; PM10: 11 LBS/HR NATURAL GAS (5B) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; SO2: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SOX: 0.06 LBS/MMBTU NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 12-6-2002]	A63.1, A99.1, A99.2, A99.3, A195.1, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1, 1298.3, K40.1

	745 71 AS 7170	DOM: DECU	ATM emission factor
Tr.	CHICLASTIR	Lienotes K.E.C.	A DM emission tactor

(3) Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

(7) Denotes NSR applicability limit

(9) See App B for Emission Limits

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(10) See section J for NESHAP/MACT requirements

Reference and reporting requirements for this device.

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Pas Facility ID: Revision #:

Date: November 06, 2015

153992

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	ID No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process POWER GENE	The state of the s		是如學形態		
CO OXIDATION CATALYST, NO. 3, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476660	C15	D13 C16			
SELECTIVE CATALYTIC REDUCTION, NO. 3, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH: 18 FT WITH A/N: 476660 AMMONIA INJECTION	C16	C15 S18		NH3: 5 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]	A195.6, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 3, HEIGHT: 86 FT; DIAMETER: 11 FT 8 IN A/N: 555830	S18	C16			

(3) Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

(7) Denotes NSR applicability limit

(9) See App B for Emission Limits

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)
(10) See section J for NESHAP/MACT requirements

(10) See Section 7 for the State Average Tequirence

* Refer to Social F and \$36 this permit of determine the monitoring, recording and reporting requirements for this device.

 ^{(1) (1}A) (1B) Denotes RECLAIM emission factor

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

| Section D | Page: 29 | Facility ID: 153992 | Revision #: 3 | Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition: C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 9-7-2012; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-10-2010; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart HII, 1-30-2013]

[Devices subject to this condition: D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location
NH3 emissions	District method 207.1	1 hour	Outlet of the SCR
	and 5.3 or EPA method	•	serving this equipment

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

| Section D | Page: 30 | Facility ID: 153992 | Revision #: 3 | Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

The test(s) shall be conducted at least quarterly during the first twelve months of operation and at least annually thereafter. The AQMD shall be notified of the date and time of the test at least 10 days prior to the test.

If the turbine is not in operation during one calendar year, then no testing is required during that calendar year.

The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using District Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted and the results submitted to the District within 60 days after the test date.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

[RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1)-BACT, 12-6-2002]

[Devices subject to this condition : D1, D7, D13, D19]

D29.3 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Sampling Time	Test Location
SOX emissions	AQMD Laboratory Method 307-91	Not Applicable	Fuel sample
VOC emissions	District Method 25,3	1 hour	Outlet of the SCR serving this equipment
PM emissions	District method 5.1	4 hours	Outlet of the SCR serving this equipment

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. Sean Donovan
Title: Client Project Manager

Region: West

E-Mail: <u>SDonovan@montrose-env.com</u>

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

E-Mail: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

TEST REPORT FOR AMMONIA SLIP TEST AT CANYON POWER PLANT UNIT 4 FACILITY ID 153992, DEVICE ID D19

Prepared For:

Canyon Power Plant

3071 E. Mira Loma Avenue. Anaheim, California 92806

For Submittal To:

South Coast Air Quality Management District

21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

Sean M. Donovan

Test Date: June 11, 2019
Production Date: July 16, 2019

Report Number: W002AS-543226-RT-53

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	Sem Dum	Date:	7/16/2019
Name:	Sean Donovan	Title:	Client Project Manager
appropriate written the presented m	en materials contained her	ein. I hereby te, and confo	culations, results, conclusions, and other certify that, to the best of my knowledge, orms to the requirements of the Montrose
Signature:	MAH McC	Date:	7/16/2019
Name:	Matt McCune	Title:	Regional Vice President

TABLE OF CONTENTS

SECTION	<u>PAGE</u>
1.0 INTRODUCTION AND SUMMARY	5
2.0 UNIT AND CEMS DESCRIPTION	6 7
3.0 TEST DESCRIPTION	8
4.0 TEST RESULTS	9
APPENDIX A RAW DATAA.1 SAMPLE DATA SHEETSA.2 LABORATORY DATAA.3 QA/QC DATA	11 14
APPENDIX B FACILITY CEMS DATA	25
APPENDIX C CALCULATIONS C.1 GENERAL EMISSIONS CALCULATIONS C.2 SPREADSHEET SUMMARIES	29
APPENDIX D QUALITY ASSURANCED.1 AUALITY ASSURANCE PROGRAM SUMMAI D.2 SCAQMD AND STAC CERTIFICATIONSD.3 INDIVIDUAL QI CERTIFICATE	RY37 43
APPENDIX E APPLICABLE PERMIT SECTIONS	48
LIST OF TABLES	
TABLE 1-1 AMMONIA SLIP TEST RESULTS	5
TABLE 4-1 AMMONIA SLIP TEST RESULTS	9
LIST OF FIGURES	
FIGURE 2-1 UNIT BLOCK DIAGRAM	6

1.0 INTRODUCTION AND SUMMARY

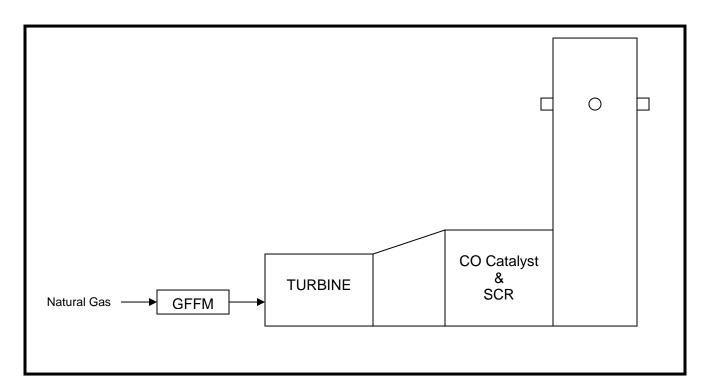
Montrose Air Quality Services, LLC (MAQS) was contracted the Canyon Power Plant to perform an ammonia slip test at Unit 4 as required by the facility Permit (Facility ID 153992) Condition Number D29.2. This report documents the results of the ammonia slip tests performed on June 11, 2019. The test was performed by John Groenenboom, Shannon Scrugham, and Luis Olivares. John Groenenboom was the on-site Qualified Individual for MAQS. Ms. Bertha Hernandez coordinated the test for Canyon Power Plant.

The test consisted of duplicate ammonia tests performed at 50 MW. The test program followed the procedures described in the initial compliance test protocol (MAQS document R038842). The results of the test are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 5 ppm corrected to $15\% O_2$.

TABLE 1-1 AMMONIA SLIP TEST RESULTS CANYON POWER PLANT UNIT 4 JUNE 11, 2019

Parameter	Units	Result ⁽¹⁾	Limit
NH₃	ppm	1.8	
NH ₃	ppmc	1.7	5

⁽¹⁾ Maximum of duplicate runs, as required by SCAQMD Method 207.1


Section 2 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3. Section 4 provides the results of each individual test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.

2.0 UNIT AND CEMS DESCRIPTION

2.1 UNIT DESCRIPTION

The City of Anaheim Canyon Power Plant is located at 3071 E. Mira Loma Avenue, Anaheim, California 92806. The facility consists of four identical generating units. Each unit consists of a natural gas fired, GE Model LM6000PC Sprint simple cycle, gas turbine. The units are natural gas fired with a rated heat input of 479 MMBtu per hour at 46 degrees Fahrenheit, with water injection. The units are equipped with a CO catalyst and Selective Catalytic Reduction (SCR) system for NO_x control. Figure 2-1 presents a block diagram of the unit.

FIGURE 2-1 UNIT BLOCK DIAGRAM CANYON POWER PLANT

Stack Inside Diameter: 11 feet, 8 inches

Distance from Upstream Disturbance: 23 feet, 4 inches (2.0 Diameters)
Distance from Stack Exit: 16 feet, 6 inches (1.4 Diameters)

2.2 TEST CONDITIONS

The tests were performed with the unit operating at an average load of 50 MW. Tests were performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the Canyon Power Plant operators.

2.3 SAMPLE LOCATION

The measurements were made from sample ports located on the exhaust stack. There are four sample ports equally spaced at this location. The stack inside diameter at the sample plane is 11 feet, 8 inches. The sample ports are located 23 feet, 4 inches (2.0 diameters) downstream of the nearest flow disturbance and 16 feet, 6 inches (1.4 diameters) from the stack exit.

3.0 TEST DESCRIPTION

Flue gas samples were collected non-isokinetically using a SCAQMD Method 207.1 sample train. The samples were collected using a 12-point traverse at the exhaust stack location. Each test was performed over a 60 minute interval. The sample gas was drawn through a glass probe, Teflon sample line, two impingers each containing 100 ml of 0.1N H₂SO₄, an empty impinger, an impinger containing silica gel, and a dry gas meter. The optional nozzle and filter were not used since the source is natural gas fired. The contents of the sample line and the first three impingers were recovered and analyzed by SCAQMD Method 207.1 for ammonia concentration by Ion Specific Electrode analysis.

Stack O_2 and NO_x concentrations and stack volumetric flow rate data were recorded from the Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 15% O_2 .

4.0 **TEST RESULTS**

The results of the test are summarized in Table 4-1. The results show that the maximum ammonia slip was 1.7 ppm @ 15% O₂ which is less than the permitted limit of 5 ppm @ 15% O₂.

TABLE 4-1 AMMONIA SLIP TEST RESULTS CANYON POWER PLANT UNIT 4 JUNE 11, 2019

Parameter	Units	Run 1	Run 2	Average	Maximum ⁽¹⁾	Limit
Test		1-NH₃-U4	2-NH ₃ -U4			
Date		6/11/2019	6/11/2019			
Time		1027/1133	1213/1319			
O ₂ ⁽²⁾	%	14.43	14.39	14.41		
Stack Flow(2)	dscfm @ T _{ref}	229,962	227,992	228,977		
$NO_x^{(2)}$	ppmc	2.3	2.1	2.2		2.5
NH_3	ppm	1.8	1.6	1.7	1.8	
NH_3	ppmc	1.7	1.4	1.6	1.7	5
NH₃	lb/hr	1.1	1.0	1.1	1.1	
NH_3	lb/MMBtu	0.002	0.002	0.002	0.002	
NH_3	lb/MMSCF	2.4	2.1	2.2	2.4	

⁽¹⁾ Maximum of duplicate test runs, as required by SCAQMD Method 207.1 (2) From facility CEMS

APPENDIX A RAW DATA

Appendix A.1 Sample Data Sheets

HAT A INICIA LINO 3L

7	AMBIENT TEMPERATURE: 87° Imp. # Contents BAROMETRIC PRESSURE: 2 4 15 ASSUMED MOISTURE: 2 4 15 PROBE ID NO/MATERIAL: 8 10 10 MA NOZZLE ID NO/ MATERIAL: 8 10 MA NOZZLE DIAMETRER: 20.005 CFM® 15 in. Hg. 10 10 MA PRE-TEST LEAK RATE: 20.005 CFM® 15 in. Hg. 10 MA PROST TEST LEAK RATE: 20.005 CFM® 15 in. Hg. 10 MA P	Imp. #Contents Post-Test - Pre-Test = Difference H_SQL 8806 701.5 2 H_SQL 731.1 727.0 3 nx7 660.4 659.7 4 x6 440.2 926.6 40.2 926.6
Probe Condition, pre/post test: よんか という	CHAIN OF CUSTODY: SAMPLE CUSTODIAN 1/2 SAMPLER 8/2 SAMPLER 8/2 SAMPLER 8/2 SAMPLER 8/2 SAMPLER 8/2 SAMPLE CUSTODIAN 1/2	Total:

		Meter	ΔP	Pγ	Stack	Probe	Filter	Imp. Out	Meter 7	remp, °F	Vacuum		P. static
Point	Time	Volume, ft ³	in. H ₂ O	in. H ₂ O	Temp, °F	Temp, °F	Temp, °F	Temp, °F	드	Ont	in. Hg.	%	in. H ₂ 0
1027 E UL	してる	187,580	4.2	5.1	12	(V) N	∀1 ₹	L 등 의원	9 89	ව (ප්)	30		[AT/FM
2 70	1032					,							
16	TE 01									I	 		
2 ha1 doxs	210												_
Si Co II	1044	199,875		5.1				ر ای	80 V	Z Z	3 O		
7 7	10401												
1	1.0501												-
21.00	1099												_
G 3 14.01	101	2 10 31C		1				Sa	96) 8	3-0		_
7	9911												
ر آ ت	11,1												
3015	1150												
5 3	8111	721.300		1.8		_		0,3	န္	2	3.0		
4	1123												
1	120												
(IND)	1.33	231.130	,		>-	٠	5						
Autoroac.													_

12 of 53

Master Document Storage\Forms\Datasheets\Field Datasheets

Date of fast revision 2/14/2017

Comments:

W002AS-543226-RT-53

M. U. M.C.IN. I. K.O.S.L.

			WEI	CHEMICAL	WEI CHEMICAL SAMPLING STSTEM DATA AND WORKSHEET - STANDAKD	STSTEM DA	I A AND WO	JARSHEEL	- O AN	DAKD			
CLIENT: LOCATION: DATE: COPERATOR: METER BOX METER Yd: STACK ARE TRAVERSE I AM= Probe Condition Gel Exiter Condition Check Weight	CLIENT: C Provided COLORION: COLORIO	3-17 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 15005	AMBIENT T BAROMETE ASSUMED PITOT TUB PROBE LEI NOZZLE ID NOZZLE DI FILTER NO, PRE-TEST POST-TEST CHAIN OF (AMBIENT TEMPERATURE: BAROMETRIC PRESSURE: ASSUMED MOISTURE: PROBE ID NO/MATERIAL: PROBE LENGTH: NOZZLE ID NO/ MATERIAL: NOZZLE DIAMETER: FILTER NO/TYPE: PRE-TEST LEAK RATE:: 20 POST-TEST LEAK RATE:: 20 PITOT LEAK CHECK - PRE: CHAIN OF CUSTODY: SA SA	AMPLE CAMPLE CAM	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	in. Hg.	Total:	Contents Hy XO(Hy XO(Hy XO(A X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Post-1	S73, 4678,6 684,3 678,8 644,9 640,6 818 7 862,3 6 100,0 -101,1	Difference
Point 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	233,500 233,600 253,600 253,600	7 H20	1.5 1.5 1.5 1.5	Temp, °F	Temp, °F	Temp. °F	Temp. °F Temp. °F (CO)	1	SS COUNTY	10. Hg. 3.0	5%	in. H ₂ O
- (PAS)	13.14	225,850				<u> </u>							

Master Document Storage\Forms\Datasheets\Field Datasheets

Date of last revision 2/14/2017

225,850

Comments: 556 11

Average:

Appendix A.2 Laboratory Data

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS

 Project #: 002AS - 543226
 District Method: SCAQMD 207.1
 Sample Date: 6/11/19

 Client/Location: SCPFA UT
 Calibration Date: 6/18/19
 Analysis Date: 6/18/19

 Sample Location: STACK
 Calibration Curve: Y=-57.6/16/7 + 85.066
 Analyst's Initials: KC

 Test #'s: 1, 2 - NH3
 R2: 0.9999

Sample	Electrode Potential (mV)	TV (ml)	Conc. µg NH3 — N / ml	Cavg (μg NH₃ – N / ml)	μg NH₃/ sample	Comments/ Temp/pH
Standard Check: 28 µg NH₃/ml	2.2		27.431	27.431		Percent Recovery:
Repeat 28 µg NH₃/ml	2.7		27.431			T=229
1-NH3	65.1	556	2.221	2.170	1480.346	T=27°C pHC2
repeat I-NH3	65.8		2.160			7=22°C
2-NH3	69.9	587	1.833	1.830	1305.518	T=22°C pH62
repeat 2-NH3	70,0		1.826			T=22°C
Spike 2-NH3	8.2		21.583	21.713		T=27°C
repeat spike 2 NHs	7.9		21.843			T=22°C
28 ug NH3/ml	2.5		27.104	27.433	~	7=27°C
repeat 28 Mg NHs/m	1.9		27.762			T= 22°C
Reagent blank	187,9		0.015	0.015		T=22°C
repent Reagent blank	190.0	<u> </u>	0.015			T=27°C
Field blank	181.0		0.022	0.022		T=228
repeat Field blank	180.9		0.022			T=32°C
DI HO blank	180.0		0.023	0.022		T=228
repeat DI Hab blank	180.5		0.022			T=22°C
28 ug NHs /ml	2.8		26.78/	26.888		T=22°
repeat 28 Mg NH3/n	2.6	~	26.996		_	T=22°C

Notes:

Total volume of samples and standards used: 100m # KC 6/18/19

Volume of pH adjusting ISA used in ml: 2,m1

Absorbing solution: 0.1N H&SOY

Calculations:

Conc. (µg NH₃ – N / ml) = 10 (P-B)/M

P = electrode potential, B = y-intercept and M = slope

Cavg = average result of duplicate analyses (µg NH₃ - N / ml) = (C1+C2)/2

μg NH₃ / sample = Cavg* 17.03/ 14.01 * TV

mg / sample = μg /sample + 1000

ppm NH₃ = mg NH₃/sample x 1/Vmstd x 1/454000 x SV/17 x 10⁶

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS CALCULATION

Project Number:

002AS-543226

Client/ Location:

SCPPA

Sample Location: District Method: U4

Sample Date:

SCAQMD 207.1 6/11/2019

Analysis Date: Analyst's Initials: 6/18/2019

Calibration Curve Slope

KC -57.6167 85.0667

Y-intercept R²

0.9999

Probe #9

Р TV C avg as NH₃ μg NH₃/ Sample Conc. C avg as N μg NH₃ /ml as N mV (ml)sample 28 ug NH₃ / ml as N 2.2 27.431 Repeat 28 ug NH₃/ml as N 27.431 NA 33.344 2.2 27.431 NA 1-NH3 65.1 2.221 2.190 556 2.662 Repeat 1- NH3 65.8 2.160 1480.346 $2-NH_3$ 69.9 1.833 1.830 Repeat 2- NH₃ 70.0 1.826 587 2.224 1305.518 21.583 spike 2-NH₃ 8.2 21,713 NA 21.843 Repeat 2-NH3 spike 26.393 7.9 NA 28 NH₂/ml as N 2.5 27.104 Repeat 28 ug NH₃/ml as N 1.9 27.762 27.433 NA 33.346 NA Reagent Blank 189.9 0.015 190.0 0.015 0.015 NA 0.018 NA Repeat Reagent Blank Field Blank 181.0 0.022 Repeat Field Blank 0.022 NA 180.9 0.022 0.026 NA 0 023 DI H2O Blank 180.0

0.022

26.781

26.996

0.022

26.888

NA

NA

0.027

32.685

NA

NA

Notes:

Repeat DI H2O Blank

28 NH₃/ml as N

Repeat 28 ug NH₃/ml as N

Measured Concentration of Ammonia (C) in μg NH $_3$ / ml as N C=10^{(P-B)M}

P = electrode potential (mV), M=slope and B=intercept

Average Measured Ammonia Concentration (Cavg) = (C1 + C2)/2

where C1, C2 results from duplicate analyses (μg NH₃/ml as N)

Cavg (μ g NH₃/ml as NH₃) = Cavg (μ g NH₃/ ml as N) * 17.03/ 14.01

μg NH₃ / sample = Cavg (μg NH₃/ml as NH₃) * TV

Used 100 ml of samples and standards with 2 ml ISA and constant stirring rate.

180.5

2.8

2.6

All solutions turned blue and remained blue with ISA unless otherwise indicated.

Sample PH and Temperatures can be found on the laboratory datasheet.

Maximum samples (including blanks) between 28 ug/ml check standard is 5 samples analyzed in duplicate.

AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS QUALITY CONTROL

Project Number: 002AS-543226

Client/ Location: SCPPA Sample Location: U4

District Method: SCAQMD 207.1 Sample Date: 6/11/2019 Analysis Date: 6/18/2019

Analyst's Initials: KC

Sample	% recovery	RPD	RPA
	7.01.0001017	%	%
28 ug NH3 / ml as N			
epeat 28 ug NH3/ml as	NA	0.00	-2.032
1-NH3		-	
Repeat 1- NH3	NA	2.80	NA
2-NH3			
Repeat 2- NH3	NA _	0.40	. NA
spike 2-NH3			
Repeat 2-NH3 spike	103.58	-1.20	NA
28 NH3/ml as N			
epeat 28 ug NH3/ml as	NA	-2.40	-2.025
Reagent Blank			
Repeat Reagent Blank	NA	0.40	NA
Field Blank			
Repeat Field Blank	NA NA	-0.40	NA
DI H2O Blank			
Repeat DI H2O Blank	NA	2.00	NA
28 NH3/ml as N			
epeat 28 ug NH3/ml as	NA	-0.80	-3.970

Notes:

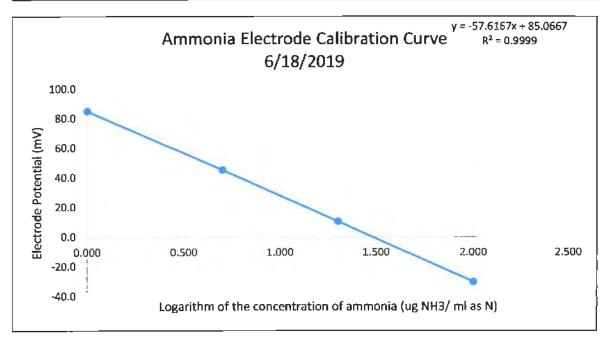
spike: 100 ml sample + 2 ml (1000 µg NH₃ / ml as N)

Matrix Spike Percent Recovery (%R)

%R = (C spike*0.104 - Csample*0.102)/2 *100

Cspike = average result of matrix spike (μg NH₃/ ml as N)

Relative Percent Difference (RPD) = (C1-C2)/ Cavg *100 (must be 5% or less)


Relative Percent Accuracy (RPA) (must be 10% or less)

RPA = (Cavg-theoretical value of standard)/ theoretical value of standard * 100

AMMONIA ELECTRODE CALIBRATION CURVE

Probe 9

Lione a				
			Sample	Room
NH ₃ concentration	log NH ₃ concentration	Electrode potential	Temperature	Temperature
(μg NH ₃ / ml as N)		(mV)	(C)	(C)
1	0.000	84.7	22	22
5	0.699	45.2	22	22
20	1.301	10.4	22	22
100	2.000	-30.5	22	22

slope y-intercept -57.6167 85.0667

Concentration (µg NH ₃ / ml as N)	Value LR line	Difference	% Difference
1	1.0148	0.0148	1.4765
5	4.9196	-0.0804	-1.6080
20	19.7661	-0.2339	-1.1695
100	101.3407	1.3407	1.3407

Calculation:

Regression Line: P=M*log(μg of NH₃/ ml as N)+B

Measured Concentration of Ammonia (C) in μg / ml NH $_3$ as N: $\,C \! = \! 10^{(P\text{-B})\text{/M}}$

where P = electrode potential, M= slope (must be -57±3) and B= intercept

All standards were prepared in 0.04N H₂SO₄ and allowed to equilibrate to room temperature.

Appendix A.3 QA/QC Data

SCAQMD METHOD 207.1 - AMMONIA DETERMINATION OF SAMPLE TIME

Source: Canyon U4 Date: 6/11/2019

Performed by: JG

Constants:		
	1,000	mg/gram
	454	grams/lb
	35.315	SCF/SCM
	379.5	SCF/lb-mole
		parts/million parts
MW_{NH3}	17.03	lb/lb-mole
MW_{N2}	14.01	lb/lb-mole
Variables:		
Target concentration	5	ppm @ O ₂ correction factor
O ₂ correction factor	15	% O ₂
Expected Flue Gas O ₂	14.5	% O ₂
F	2	Safety Factor
·	_	
Р	128.5	electrode potential corresponding to minimum value on calibration curve (mV)
В	128.83	y-intercept
М	-58.676	slope
V _r		Assumed liquid volume of probe rinse and first impinger (L)
Q @ dH = 1	0.55	cfm
a @ aii ,	0.00	
Calculated Values:		
Target concentration	5.4	ppm - raw
Target concentration		mg/dscm
C ₁	1.013	Lowest concentration on a calibration curve (mg NH3-N/L)
RL.	0.616	analytical mass reporting limit, mg
114	0,010	and the man reporting airing mg
PSV	0.316	Planned sample volume, cubic meters
PSV		Planned sample volume, cubic feet
VSR		achievable volumetric sampling rate (dscf/hr)
	-	
PST	20.3	Planned sample time, minutes (minimum)
	_	

Notes:

¹⁾ A minimum of 1 hour sample time is required for any mass per hour limits.

²⁾ Facility Permit or Rule may specify sample time

2/19/2019

Dare

1.624 0.589

⊕ ⊕ Q@dH=1:

1.005

Average Yd:

Model #: Model
Histories Missoria Anal Equipment Test Equipment Calibrations Ony Gas Meters 1/2-wos 2019 (Semi-Annual Meter Calibration 12 was 2-19-19 x4s) V Date:
Revised: 4/8/2005 Orifice Method - Triplicate Runs/Four Calibration Points

Average (deg F) 47.0 48.0 49.0 45.0 45.0 44.0 45.0 46.0 Ambient Temperature Final (deg F) 47.0 48.0 45.0 45.0 45.0 45.0 49.0 (deg F) 47.0 48.0 49.0 45.0 46.0 45.0 44.0 45.0 (j. Hg) c5000 12 wcs 2/19/2019 30.14 R. Howard Actual Vacuum (in Hg) 17.0 17.0 17.0 12.0 13.0 16.0 16.0 CRITICAL ORIFICE READINGS Bar. Pressure: Performed By: K Orifice Coefficient (see above) 0.1551 0.1551 0.5915 0.5915 0.5915 0.7678 0.7678 0.7678 0.3345 0.3345 0.3345 Orifice Serial# (number) 33 33 \$ \$ \$ € 8 8 8 8 8 2 2 3 Final Temps. et Outlet (deg F) 53.0 52.0 50.0 52.0 52.0 62.0 51.0 51.0 54.0 (deg F) 54.0 53.0 2 2 2 2 2 2 0 0 0 55.0 56.0 57.0 뺼 Initial Temps.

Net Curlier

F) (dog F) (dog F) (54.0 53.0 53.0 53.0 52.0 52.0 52.0 52.0 53.0 54.0 50.0 DRY GAS METER READINGS Inlet (dag F) 55.0 54.0 53.0 54.0 54.0 55.0 55.0 54.0 54.0 Volume Total (cu ft) 5.283 5.280 5.286 5.233 5.227 5.239 5,151 5,155 5,148 4.899 147.933 153.160 158.399 181,799 186,690 191,599 Volume Final (cu ft) 197.783 203.083 208.349 165,451 170,606 175,754 142,700 147,933 153,160 176.900 181.799 186.690 (cu ft) 192,500 197,783 203,063 160,300 165,451 170,606 Volume Initial Time (min) 26.00 28.00 28.00 12.00 12.00 12.00 7.00 5.00

i i	Average		dH® - dH® av	< 0.1557				Pads				Pass				Pass				Pass
į	e de la constante	1	0.98 < Y/Yd	< 1.02?				Pass				Pass				Pass				Pass
les desirellands	Origon		Ymax - Ymin	< 0.010?				Pass				Pass				Patts				Pass
locivibol	Run		0.95 < Y	< 1.05?	Pass	Pass	Pass		Pass	Pass	Pass		Pass	Pags	Pass		Pass	Pass	Pass	
ORIFICE CALIDDATION SACTOR		d H GB	Value	(in H2O)	1.486	1.492	1.495	1.491	1.623	1.625	1.626	1.626	1.678	1.679	1.669	1.674	1,708	1.706	1,705	1.706
DRY GAS METER		>-	Value	(untuper)	0.988	0.996	0.983	0.986	1,008	1.008	1.008	1.007	1.017	1.019	1.019	1.018	1.006	1.010	1.008	1.009
Č		NOMINAL	Vcr	(cn ft)	5,149	5,154	5.159	Average	5,108	5.113	5.113	Average	5.275	5.275	5.270	Average	4.891	4.896	4.896	Average
ORIFICE			Vcr(std)	(liters)	152.9	152.8	152.6		152.6	152.4	152.4		157.3	157.3	157.4		145.8	145.7	145.7	
	VOLUME	CORRECTED	Vcr(std)	(2mg)	5.400	5.394	5.389		5.386	5.383	5.383		5,553	5,553	5.559		5 149	5 144	5.144	
DRY GAS METER	VOLUME	CORRECTED	Vm(std)	(liters)	154.8	155.0	155.2		151.4	151,5	151.3		154.6	154.3	154.5		144.7	144.2	144.5	
DRY GA	ANTION	CORRECTED	Vm(std)	(an ft)	5.486	5,474	5.4480		5.346	5,350	5,343		5.458	5.449	5,456		5 108	5.092	5.104	

SIGNED

Signature on File

W002AS-543226-RT-53

dH (in H2O) 0.11 0.11

1.80

0.56

3.10

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 12-WCS

Readout Description: Control Box

Date: 12/31/2018

Performed By: JG/DA/RH/JS

Calibrated Thermocouple ID: TC-CAL T1 Reference Thermometer ID: 242196 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 242167

T/C			T/C - F	Readout			Reference T	hermometer		D	ifference	1
I.D.	Readout			,Ł			0	F				
TC-CAL	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (OIL)	12-WCS	355	355	355	355	358	358	358	358	3.0	0.4%	Pass
T2 (Boiling H₂O)	12-WCS	209	209	209	209	212	212	212	212	3.0	0.4%	Pass
T1 (lce/Water)	12-WCS	29	29	29	29	32	32	32	32	3.0	0.6%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

			T/C - F	Readout			T/C S	Source		Diffe	rence	1
	T/C Source	1	•	°F			•	F.				l .
l	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F_	%, (°R)	
T4 (~650 F)	S/N 106970	648	648	648	648	650	650	650	650	2.0	0.2%	Pass
T3 (~370 F)	S/N 106970	361	361	361	361	365	365	365	365	4.0	0.5%	Pass
T2 (~212 F)	S/N 106970	209	209	209	209	212	212	212	212	3.0	0.4%	Pass
T1 (~32 F)	S/N 106970	28	28	28	28	32	32	32	32	4.0	0.8%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

WET	WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET – STANDARD	ET – STANDARD
Ceryer Ceryer	AMBIENT TEMPERATURE: 90	Imp. # Contents Post-Test - Pre-Test = Diffe
OCATION: Change of	BAROMETRIC PRESSURE: 729, 75	
)ATE: (G/U// 9	ASSUMED MOISTURE:	178.568.0
RUN NO: (1/2/1/2)	PITOT TUBE COEFF, Cp:	
DPERATOR: 5 r	PROBE ID NO/MATERIAL: /U//- / / / (61)	2 H-504 679-2679.2
METER BOX NO: 12: 0.0 CS	PROBE LENGTH: 7 (/Ø	
METER AH®: [- 6 20	NOZZLE ID NO/ MATERIAL: ハゲ	3 Mr 6397 659.7
WETER Yd: (c. OC)	NOZZLE DIAMETER: ヘンノギ	
STACK AREA, FT2: (106.90)	FILTER NO/TYPE:	76 818.6 818.7
TRAVERSE POINTS, MIN/POINT:	PRE-TEST LEAK RATE:: 60 805 CFM@ 75 in. Hg.	
$\Delta H = X \Delta P$:	POST-TEST LEAK RATE:CFM@in. Hg,	(00)
Probe Condition, pre/post test:		
Silica Gel Expanded, Y/N:	CHAIN OF CUSTODY: SAMPLE CUSTODIAN 57.	
Filter Condition after Test:	SAMPLER	
Check Weight: LGG ROW. O	SAMPLE CUSTODIAN (C.	Total:

	in. H ₂ O	Stack Temp, °F	Probe Temp, °F	Filter Temp, °F	Imp. Out	Imp. Out Meter Temp, °F Temp, °F In Out	Out *	Vacuum in. Hg.	% O 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P. static in. H ₂ O
_										

Comments:

CHAIN OF CUSTODY

6/11/2019	SS/LO	ଅଟ :	DATE DUE: <u>6/18/2019</u>	Yes	COMMENTS								DATE/TIME	POSO 61/21/9				Chain of Custody - DS834001 - Excel Master Document Storage\Forms\Datasheets\Lab Forms
TEST DATE(S): 6/11/2019	SAMPLER(S): SS/LO	PROJECT MANAGER: JG	DATE DUE	COMPLIANCE TEST?: Yes	SAMPLER	SS/LO	SS/LO	JG	Эf	SS/LO			ED BY	Kenns				Chain c
PROJECT #: 002AS-543226					CONTAINERS			1	-	_			RECEIVED BY	Lin Noch			arrdy 5	2
PRC					SAMPLE DESCRIPTION	Probe, Line, Impingers	Probe, Line, Impingers	0.1 N H ₂ SO₄	DI H2O	Probe, Line, Impingers			DATE/TIME	(1) 12 14 OFBO		(ISE)	40 F WHOVE CALL	n 9/1/2017
SCPPA	U4	Stack	TEST METHOD(S): SCAQMD 207.1	No	TEST #		2-NH3-U4	Reagent Blank	Reagent Blank	Field Blank			37			NH ₃ by SCAQMD 207.1	Storad at	Date of Last Revision 9/1/2017
CLIENT: SCPPA	LOCATION: U4	SAMPLE LOCATION: Stack	(ETHOD(S):	EQUIRED?:	TIME	1027/1133	1213/1319						RELEASED BY			IRED:	3 were	ROSE
		SAMPLE	TESTM	OUTSIDE LAB REQUIRED?: No	DATE	6/11/2019	6/11/2019	6/11/2019	6/11/2019	6/11/2019		\				ANALYSIS REQUIRED:	Samples Were	MONTROSE STORY

APPENDIX B FACILITY CEMS DATA

For.t09

Sabbook & Wilcox Power Generation Group NetDABSK Average Values Report Version 60.0 Generated: 6/11/2019 13:08

Company: City Of Anaheim Plont: 3071 Miraloma Ave., City/St: Anaheim, GA, 92806 Source: unit4, unit4_inlot Period Start: 6/11/2019 10:27 Period End: 5/11/2019 11:33 Validation Type: 1/1 min Averaging Period: 1 min Type: Slock Avg

Page 1

Period Start	4_Flame_On l=ON	4_GasFlow kscfh	#/hr Flow	4_02 8	4_NOXPPM ppm	4 MCX CORR	4_STACKFLW ksctm	41_NOX_COR ppm	4_NH3SLIP ppm	4_1CAD MW	4_NOX_LBHR #/h≥
6/11/2019 10:27	1	472.4	81.37	14.44	2.50	2.29	232.9	17.95	9.54	49.98	3.97
6/11/2019 10:28	1	472.9	81.52	14.45	2.50	2.29	233.5	16.05	9.43	50.19	3.97
6/11/2019 10:29	1	472.6	61.40	14.45	2.51	2.30	233.4	15.08 17.96	9.38	50.17	3.97
6/11/2019 10:30	1	473.3	81.43 81.39	14.44	2.50	2.25	233.4	17.96	9.43	50.21	3.95
6/11/2019 10:31	1	473.2 473.5	91.44	14.44	2.49	2.27	233.5	13.04	9.39	50.24	3.95
6/11/2019 10:32	i	473.3	81.45	14.44	2.46	2.25	232.4	17.97	9.46	50.11	3.98
6/11/2019 10:34	î	473.3	81.45	14.44	2.42	2.21	233.4	17.91	9.43	50,10	3.95
6/11/2019 10:35	1	473.5	31.51	14.44	2.41	2.20	233.5	17.83	9.5€	\$0.21	3.98
6/11/2019 10:36	1	473.7	81.53	14.44	2 4 1	2.19	233.6	17.72	9.65	50.06	3.98
6/11/2019 10:27	1	473.9	80.32	14.44	2.36	2.16	233.7	17.75	9.21	50.45	3.98
6/11/2019 10:39	1	474.0	90.36	14.44	2.36	2.16	233.7	17.75	9.22	50.08 50.17	3,98
5/31/2019 10:39	1	474.1 473.8	80.43	14.45	2.43	2.22	234.2	17.63	9.43	50.08	3.96
6/11/2019 10:40 6/11/2019 10:41	1	474.0	80.32	24.44	2.47	2.26	233.7	17.57	9.49	50.12	3.98
6/11/2019 10:42	1	474.0	BC.22	14.44	2.45	2.24	233.7	T7.48	9.53	50.16	3.98
6/11/2019 10:43	ī	474.3	BC.30	14.44	2.44	2.23	233.9	17.42	9.58	50.20	3.98
6/11/2019 10:44	1	474.5	80.27	14.43	2.42	2.21	233.7	17.44	9.55	50.16	3.99
6/11/2019 10:45	1	473.8	80.25	14.43	2.42	2.21	233.3	17.51	9.52	50.13	3.98
6/11/2019 10:46	1	474.3	80.15	14.43	2.44	2.23	233.5	17.44	9.56	50.35	3.98
6/11/2019 10:47	Ť	474.4	80.33	14.44	2.45	2.24	233.9	17.33	9.69	50.25 50.15	9.98 3.98
6/11/2019 10:48	1	474.4	80.15	14.43	2.44	2.23	233.6 233.5	17.42	9.57	50.15	3.98
6/11/2019 10:49 6/11/2019 10:50	1	474.2	80.25	14.42	2.42	2,20	233.1	17.44	9.60	50.19	3.98
6/11/2019 10:51	î	474.0	80.20	14.43	2.44	2.23	233.4	17.44	9.58	50.19	3.98
6/11/2019 10:52	:	474.2	80.29	14.43	2.44	2.23	233.5	17.37	9.67	50.21	3.98
6/11/2019 10:53	- E	474.4	80.35	14-44	2.44	2.23	233.9	17.43	9.58	50.18	3.98
6/11/2019 10:54	:	474.2	80.33	14.43	2.42	2.21	233.5	17.35	9.6B	\$0.20	3.98
6/11/2019 10:55	<u>-</u>	474.3	80.27	14.43	2.41	2.20	233.5	17.47	9.53	50.13	3.98
6/11/2019 10:56	1	474.1	80.24	14.42	2.42	2.20	233.1	17.44 17.43	9.60 9.64	.50,08 .50,18	3.98
6/11/2019 10:57	1	474.3	80.41	14.43	2.43	2.22	233.5	17.36	9.65	5G.13	3.98
6/11/2019 10:58 6/11/2019 10:59	1	474.3	80.28 80.29	14.43	2.43	2.21	233.3	17.45	9.61	50.26	3.98
6/11/2019 10:59	1	473.8	60.34	14.43	2.45	2.23	233.3	17.35	9.73	50.10	3.38
6/11/2019 11:01	î	474.2	80.30	14.43	2.47	2.25	233.5	17.19	9.87	50.21	3.9B
6/11/2019 11:02	1	474.5	80.26	14.43	2.44	2.23	233.6	17.17	9.85	50.22	3.99
6/11/2019 11:03	1	473.8	80.23	14.42	2.41	2.19	232.9	17.30	9.74	50.23	3.98
6/11/2019 11:04	1	473.9	30.19	14.44	2.42	2.21	233.7	17.38	9.59	50.21	3.55
6/11/2019 11:05	1	473.5	80.10	14.44	2.44	2.23	233.5	17.31	9.67	50.15 50.11	3.98
6/11/2019 11:06	1	473.B	80.26 80.31	14.44	2.43	2.22	233.3	17.23	9.89	50.11	3.92
6/11/2019 11:07 6/11/2019 11:08	1	473.9 473.6	80.31	14.43	2.42	2.21	233.2	17.05	10.01	50.20	3.98
6/11/2019 11:09	1	474.0	80.31	14.44	2.43	2.19	233.7	17.15	9.83	50.09	3.98
6/_1/2019 11:10	1	574.5	80.28	14.44	2.38	2.17	234.0	17.30	9.62	50.02	3.99
6/11/2019 11:11	1	474.7	80.40	14.43	2.35	2.15	233.5	17.35	9.64	50.20	3.98
6/11/2019 11:12	1	474.3	BO. 47	14.44	2.37	2.15	233.9	17.44	9.52	50.25	3.90
6/11/2019 11:13	1	473.9	79.39	14.44	2.39	2.18	233.7	17.44	9.25	50.26	3.98
6/11/2019 11:14	1	474.6	79.2_	14.44	2.41	2.20	234.0	17.48	9.14	50.15	3.99
6/11/2019 11:15	1	474.0	79.27 79.23	14.42	2.49	2.27	233.0	17.35	9.43	50.16 50.01	3.98 4.48
6/11/2019 11:16 6/11/2019 11:17	1	474.4	79.23	14.42	2.54	2.31	233.2	17.15	9.25	50.13	4.48
6/11/2019 11:17	1	474.2	79.22	14.42	2.56	2.33	233.1	17.56	9.29	50.05	4.48
6/11/2019 11:19	1	474.3	79.26	14.42	2.57	2.34	233.2	17.63	9.23	50.10	4.48
8/11/2019 11:20	i	474.1	79.22	14.42	2.57	2.34	233.1	17.51	9.35	50.22	4.48
6/11/2019 11:21	1	474.3	79.14	14.42	2.56	2.33	233.2	17.48	9.33	50.22	4.48
6/11/20_9 11:22	1	474.5	79.22	14.43	2.56	2.33	233.6	17.60	9.20	50.15	4.48
6/11/2019 11:23	1	474.5	79.14	14.42	2.56	2.33	233.3	17.55	9.25	50.29	4,48
6/11/2019 11:24	i	474.3	79.17	14.43	2.55	2.33	233.5	17.50 17.62	9.29	50.18 50.26	4.4F
5/11/2019 11:23	1.	474.3	79.24	14.44	2.55	2.33	233.7	17.65	9.15	50.39	4.48
6/11/2019 11:26 6/11/2019 11:27	1	474.1	75.16	14.43	2.57	2.33	233.4	17.60	9.20	50.16	1.4B
6/11/2019 11:27	1	474.2	79.19	14.43	2.58	2.35	233.5	17.57	9.25	50.12	4.48
6/11/2019 11:29	î	474.2	79.22	14.43	2,58	2.35	233.5	17.54	9.29	50.19	1.48
6/11/2019 11:30	î	473.5	79.26	14.42	2.58	2.35	233.0	17.48	9.41	50.17	4.48
6/11/2019 11:31	î	473.5	79.21	14.42	2,58	2.35	233.C	17.44	9.44	50.18	4.48
6/11/2019 11:32	1	473.9	79,14	14.43	2.58	2.35	233.3	17.52	9.30	50.19	4.48
6/11/2019 11:33		173.6	79.12	14.42	2.60	2.37	232.8	17.45	9.46	50.17	4.48
Final Average		474.5		14.42 14.45	2.47				9.49	50.16	
		9/4/6	n1.55	14.40	£ . 60	2.15	232.6	17.05	9.14	49.98	3.97

*Free not include Invalid Averaging Periods ("N/A")

Font 03

Babcock & Wilcox Power Generation Group NetDAESS Average Values Report Version 60, Generated: 6/11/2019 15:40

Company: City Of Anabeim Plant: 3071 Micalona Ave., City/St: Anaheim, CA, 92806 Source: Unit4, unit4_inlet Period Start: 6/11/2019 12:13 Period End: 6/11/2019 13:19 Validation Type: 1/1 min Averaging Period: 1 min Type: Block Avg

Page 1

Period Start	4_Flame_On 1~ON	4_GasFlow kscfh	4_NH3_Flow #/hz	4_02	4_NOXPPM ppm	41_NOX PPM	4_STACKFTM kacfm	4 NOX CORR	*_NH3SLIP ppm	1_LOAF MW	4_NOK_LBHR
6/11/2019 12:13	1	474.3	80.40	14.25	2.17	19.07	230.7	1.95	9.91	50.27	3.49
6/11/2019 13:14	1	474.9	80.32	14.35	2.23	18.99	230.8	2.01	10.01	50.16	3.49
6/11/2019 12:15	3	474.2	80.23	14.35	2.31	19.05	230.6	2.08	10.02	50.26	3-90
6/11/2019 12:16	7	474.5	80.95	14.35	2.34	19.01	230.8	2.11	10.11	50.26	3.99
6/11/2019 12:17	1	474.0	80.24	14.35	2.34	19.01	230.9	2.11	10.06	50.16	3.99
6/11/2019 12:18 6/11/2019 12:19	T T	473.9	BO.20	14.36	2.32	18.87 18.87	230.8	2.09	10.14 9.94	50.17 50.26	3.98 3.98
6/11/2019 12:19	1	473.5	80.30	14.38	2.23	18.75	231.4	2.07	10.09	50.22	3.48
6/11/2019 12:21	1	473.8	80.29	14.38	2.20	18.76	231.5	1.99	10.03	50.28	3.48
6/11/2019 12:22	ī	473.7	79.92	14.38	2.2_	18.72	231.5	2.00	9.97	50.23	3.48
6/11/2019 12:23	1	473.6	79.13	14.37	2.23	18.68	231.1	2.01	9.83	50.14	3.48
6/11/2019 12:24	1	474.0	79.19	14.38	2.29	18.68	231.6	7.07	9.84	50.20	3.98
6/11/2019 12:25	1	474.1	79.17	14.36	2.35	18.64	231.6	2.13	9.92	50.15	3.98
6/11/2019 12:26	2	474.0	79.15	14.38	2.34	18.66	231.6	2.12	9.89	50.1R	3.98
6/11/2019 12:27	1.00	473.9	29.11	14.38	2.34	16.56	231.6	2,12	9.96	50.17	3.98
6/11/2019 12:28	- 22	473.9	79.17	14.39	2.32	15.68	231.9	2.10	9.BO	50.19	3.98
6/11/2019 32:29	1	473.6	79.17	14.39	2.31	15.64	231.9	2.09	9.83	50.18	3.98
6/11/2019 12:30	1	473.3 473.5	79.20 79.26	14.39	2.31	18.70 18.66	231.6	2.09	9.81	50.12 50.13	3.98
6/11/2019 12:31 6/11/2019 12:32	1	473. :	79.24	14.39	2.31	18.70	231.7 231.5	2.09	9.84	50.17	3.97
6/11/2019 12:33	1	173.3	79.34	4.39	2.32	18.76	231.6	2.10	9.82	50.28	3.99
6/11/2019 12:34	1	473.7	79.22	14.38	32	18.69	231.5	2.10	9.82	50.25	3.98
6/11/2019 12:35	1	473.1	79.24	14.39	2.34	18.70	231.5	2.12	9.87	50.25	3.97
6/11/2019 12:36	1	473.2	79.24	14.39	2.34	18.77	231.6	2.12	9.80	50.23	3,98
6/11/2019 12:37	ī	473.2	79.27	14.39	2.33	18.67	231.6	2.11	9.88	50.07	3.98
6/11/2019 12:38	1	473.4	79.2	14.38	2.31	18.64	231.3	2.09	9.93	56.32	3,98
6/11/2019 12:39	1	473.1	79.23	14.39	2.31	18.75	231.5	2.09	9.79	50.24	3,97
6/11/2019 12:40	1	473.3	79.26	14.39	2.32	18.75	231.6	2.10	9.80	50,11	3.98
6/01/2019 12:41	1	473.2	79.19	14.38	2.33	18.77	231.2	2.11	9.83	50.14	3.98
6/11/2019 12:42	1	473.4	70.48	14,38	2.33	18.79	231.3	2.11	9.59	50.23	3.98
6/11/2019 12:43	1	473.2	70.42	14.38	2.35	18.71	231.2	2.13	9.67	50.14	3.98
6/11/2019 12:44	1	473.2	70.38	14.39	2.41	18.78	231.6	2.18	9.60	50.12	3.98
6/11/2019 12:45	1	473.1	78.31	14.39	2.44	18.76	231.5	2,21	9.62	50.26	3.97
6/11/2019 12:46	1	472.7	76.27	14.39	2.44	18.69	231.3	2.21	S.68	50.10	3.97
6/11/2019 12:47 6/11/2019 12:48	1	473.2	78.28 78.29	14.39	2.43	18.02	231.6	2.20	9.53	50.21 50.06	3,98
6/11/2019 12:49	1	473.1	78.30	14.39	2.38	18.73	231.5	2.16	9.59	50.12	3.97
6/11/2019 12:50	1	473.3	78.25	14.39	2.38	18.72	231.5	2.16	9.51	50.17	3.98
6/11/2019 12:51	1	473.1	78.30	14.39	2.38	18.74	231.5	2.16	9.58	50.13	3.97
6/11/2019 12:52	î	473.2	78.35	14.39	2.37	18.73	231.6	2.15	9.50	50.34	3.98
6/11/2019 12:53	1	473.1	78.33	14.39	2.37	18.65	231.5	2.15	9.68	50.28	3.97
6/01/2019 12:54	1	473.0	78.31	14.39	2.37	18.67	231.5	2.15	9.64	50.16	3.97
6/11/2019 12:55		472.9	78.22	14.40	2.37	18.6€	231.7	2.15	9.57	50.22	3.97
6/11/2019 12:56	1	47 .9	78,23	14.39	2.40	18.70	231.4	2.18	9.62	50.23	3.97
6/11/2019 12:57	1	473.0	78.25	14.40	2.44	18.84	231.8	2.21	9.47	50.30	3.97
6/11/2019 12:58	1	473.1	78.29	14.39	2.45	18.85	231.5	2.22	9.54	50.21	3.97
6/11/2019 12:59	1	473.1	70.41	14.29	2.45	8.81 18.80	231.5	2.22	9.61	50.10 50.20	3.97
6/11/2019 13:03 6/11/2019 13:01	ī	473.0 473.2	78.39	14.39	2.43	18.89	231.8	2.20	9.47	50.28	3.98
6/11/2019 13:02	1	473.1	78.49	14.39	2.43	18.72	231.5	2.20	9.69	50.10	3.97
6/11/2019 13:03	1	473.3	78.40	14.39	2.42	18.70	231.6	2.19	9.66	50.23	3.98
6/11/2019 13:04	î	473.3	78.33	14.39	2,42	18.65	231.6	2.19	9.69	50.23	3.98
6/11/2019 13:05	1	473.3	78.41	14.39	2,42	18.72	231.6	2.19	9.65	50.16	3.98
6/11/2009 13:06	1	473.2	78.32	14.35	2.42	18.81	231.6	2.19	9.54	50.15	3,98
6/11/2019 13:07	1	473.2	78.31	14.39	2.42	18.80	231.6	2.19	9.55	50.25	3.98
6/11/2019 13:08	1	473.1	78.36	14.39	2.41	18.78	231.5	2.18	9.56	50.11	3.97
6/11/2019 13:09	1	473.1	78.40	14.46	2.41	10.71	231.9	2.19	9.60	50.17	3.97
6/11/2019 13:10	1	473.2	78.45	14.46	2.41	10.03	231.9	2.19	9.51	50.23	3.98
6/11/2019 13:11	1	473.5	78.44	14.39	2.4:	10.79	231.7	2.18	9.58	50.23	3.95
6/11/2019 13:12	1	473.2	78.49	14.39	2.4:	18.79	231.6	2.18	9.60	50.14	3.95
6/11/2019 13:13	7	473.1	78.42	14.39	2.42	18.77	231.5	2.19	9.62	50.08	3.97
6/11/2019 13:14		473.2	78.59	14.39	2.43	18.84	231.6	2.20	9.61	50.40	3.98
6/11/2019 13:15	-	473.8	78.39	14.39	2.42	18.77	231.9 231.6	2.19	9.63	50.31	3.98
6/11/2019 13:16 6/11/2019 13:17	7	473.2	78.53 78.42	14.39	2.41	18.75	231.5	2.18	9.63	50.19	3.98
6/11/2019 13:18		473.4	78.45	14.39	2.41	19.75	231.7	2.18	9.62	50.15	3.90
6/11/2019 13:19	î	473.1	78.58	14.39	2.40	18.73	231.5	2.18	9.70	50.31	3.97
Final Average* Maximum*		473.4 474.8		14.39	2.36	18.76 19.07			9.73 10.14	50.19 50.40	
Minimum	1	472.7	78.22	14.35	2.17	18.56	230.6	1.95	9.47	50.06	3.48
STITTED .	_	4124	10.00	14:00	4.11	1 (1 1 . +4)	250.0	2.73	2.4/	04.00	3.40

^{*}Does not include Invalld Averaging Periods ("M/A")

APPENDIX C CALCULATIONS

Appendix C.1 General Emissions Calculations

GENERAL EMISSION CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \%CO_2 + 0.32 * \%O_2 + 0.28 * \%N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$Ps = Pbar + \frac{Psg}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_{m} * (P_{bar} + \frac{\Delta H}{13.6}) * \frac{T_{ref}}{T_{m}} * Y_{d}$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{lc} * \frac{T_{ref}}{528 ° R}$$

C. Moisture content, dimensionless

$$\mathsf{B}_{\mathsf{wo}} = \frac{\mathsf{V}_{\mathsf{wstd}}}{(\mathsf{V}_{\mathsf{mstd}} + \mathsf{V}_{\mathsf{wstd}})}$$

III. Stack gas volumetric flow rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Southern California Public Power Authority 2Q19 Canyon Unit 4 NH₃

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Emission Rates, lb/MMBtu

$$\frac{lb}{MMBtu} = \frac{ppm * MW_i * F}{SV * 10^6} * \frac{20.9}{20.9 - \%O_2}$$

VI. Percent Isokinetic

$$I = \frac{17.32 \text{ x T}_{s} \text{ (V}_{m}\text{std)}}{\text{(1-Bwo) } 0 \text{ x Vs x Ps x Dn2}} \text{ x } \frac{520^{\circ}\text{R}}{\text{T}_{ref}}$$

- VII. Particulate emissions
 - (a) Grain loading, gr/dscf $C = 0.01543 (M_n/V_{m std})$
 - (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
 - (c) Mass emissions, lb/hr $M = C \times Qsd \times (60 \text{ min/hr})/(7000 \text{ gr/lb})$
 - (d) Particulate emission factor

Ib/10⁶ Btu = Cx
$$\frac{1 \text{ lb}}{7000 \text{ gr}}$$
 x F x $\frac{20.9}{20.9 - \% O_2}$

Southern California Public Power Authority 2Q19 Canyon Unit 4 NH₃

Nomenclature:

 A_s = stack area, ft^2

B_{wo} = flue gas moisture content, dimensionless

C_{12%CO2} = particulate grain loading, gr/dscf corrected to 12% CO₂

C = particulate grain loading, gr/dscf C_p = pitot calibration factor, dimensionless

Dn = nozzle diameter, in.

F = fuel F-Factor, dscf/MMBtu @ 0% O₂ H = orifice differential pressure, iwg

I = % isokinetics

 M_n = mass of collected particulate, mg M_i = mass emission rate of specie i, lb/hr MW = molecular weight of flue gas, lb/lb-mole

M_{wi} = molecular weight of specie i:

SO₂: 64 NO_x: 46 CO: 28 HC: 16

0 = sample time, min.

 ΔP = average velocity head, iwg = $(\sqrt{\Delta P})^2$

P_{bar} = barometric pressure, inches Hg P_s = stack absolute pressure, inches Hg

P_{sg} = stack static pressure, iwb

Q = wet stack flow rate at actual conditions, wacfm

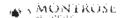
Q_{sd} = dry standard stack flow rate, dscfm

SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole

 T_m = meter temperature, °R T_{ref} = reference temperature, °R T_s = stack temperature, °R V_s = stack gas velocity, ft/sec

V_{lc} = volume of liquid collected in impingers, ml

V_m = uncorrected dry meter volume, dcf


V_{mstd} = dry meter volume at standard conditions, dscf V_{wstd} = volume of water vapor at standard conditions, scf

Y_d = meter calibration coefficient

Appendix C.2 Spreadsheet Summaries

SCAQMD 207.1 EXAMPLE CALCULATION TEST NUMBER: 1-NH3-U4

dentifier	Description	<u>U</u> nits	Equation	Value
Α	Reference Temperature	F		60
В	Reference Temperature	R	A + 460	520
Č	Meter Calibration Factor (Yd)	-		1.005
D	Barometric Pressure	" Hg		29.69
Ε	Meter Volume	acf		41.550
F	Meter Temperature	F		86.1
G	Meter Temperature	R	F + 460	546.1
Н	Delta H	" H ₂ O	-	1.5
- 1	Meter Volume (standard)	dscf	0.03342 * E * (D + H/13.6) * B/G * C	39.600
J	Liquid Collected	grams	·	107.5
K	Water vapor volume	scf	0.0472 * J * B/528	4.997
L	Moisture Content		K/(K + !)	0.112
M	Gas Constant	ft-lbf/lb-mole-R	<u></u>	1545.33
N	Specific Molar Volume	SCF/lb-mole	385.3 * B / 528	379.5
0	F-Factor	dscf/MMBtu		8,710
Р	HHV	Btu/SCF		1,050
Q	Mass Conversion Factor	lb/ug		2.2046E-0
R	O ₂ Correction Factor	**	-	15
S	Stack Flow Rate @ 68 F	dscfm		233,500
Т	Stack Flow Rate @ Tref	dscfm	S * B/528	229,962
U	Mass NH ₃	ug	-	1,480
V	Mass NH ₃	ib	U*Q	3.26E-06
W	MW of NH ₃	lb/lb-mole		17.03
Х	NH ₃	ppm	(V * N *10°)/(F * W)	1.8
Υ	Flue Gas O ₂	%		14.43
2	NH_3	ppmc	X * (20.9 - R)/(20.9 - Y)	1.7
AA	NH ₃	lb/hr	X * T * W * 60/(N * 10°)	1.1
AB	NH ₃	lb/MMBtu	(X * W * O)/(385.3 * 10 ⁶) * 20.9/(20.9 - Y)	0.002
AC	NH ₃	lb/MMSCF	AB*P	2.4

Note:

⁽¹⁾ Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

SCAQMD METHOD 207.1 DATA WORKSHEET AND SUMMARY

Facility	Canyon		Parameter		NH ₃
Unit	U4		Fuel		Natural gas
Sample Location					
Test Number	1-NH3-U4	2-NH3-U4	Average	Maximum	Limit
Reference Temperature (°F)	60	60			
Test Date	6/11/2019	6/11/2019			
Test Method	SCAQMD 207 1	SCAQMD 207 1			
Sample Train	12-WCS	12-WCS			
Meter Calibration Factor	1.005	1.005			
Stack Area (ft ²)	106.90	106.90			
Sample Time (Minutes)	60	60			
Barometric Pressure ("Hg)	29.75	29.75			
Start/Stop Time	1027/1133	1213/1319			
Meter Volume (acf)	41.550	42.550			
Meter Temperature (°F)	86.1	87.8			
Meter Pressure (iwg)	1.5	1.5			
Liquid Volume (ml)		112.0			
Stack O ₂ (%)	14.43	14.39	14.41	(from facility CE	MS)
Unit Load (MW)	50.2	50.2	50.2		
Standard Sample Volume (SCF)	39.680	40.509			
Moisture Fraction	0.112	0.114			
Stack Flow Rate (dscfm, 68 °F)	233,500	231,500	232,500	(from facility CE	MS)
Stack Flow Rate (@ Tref)	229,962	227,992	228,977		
Gas Constant (ft-lbf/lb-mole-R)	1545.33	1545.33			
Molecular Weight NH ₃ (lb/lb-mole)	17.03	17.03			
Specific Molar Volume (ft ³ /lb-mole)	379.5	379.5			
F-Factor (dscf/MMBtu)	8,710	8,710			
HHV(Btu/SCF)	1,050	1,050			
Mass Conversion (lb/ug)	2.2046E-09	2.2046E-09			
O ₂ Correction Factor (%)	15	15			
Mass NH ₃ (ug)	1,480	1,306			
Mass NH ₃ (lb)	3.26E-06	2.88E-06			
NH ₃ (ppmv, flue gas)	1.8	1.6	1.7	1.8	
NH ₃ (ppmv @ O ₂ Correction Factor)	1.7	1.4	1.6	1.7	5
NH ₃ (lb/hr)	1.1	1.0	1.1	1.1	
NH ₃ (lb/MMBtu)	0.002	0.002	0.002	0.002	
NH ₃ (lb/MMSCF)	2.4	2.1	2.2	2.4	

Note: SCAQMD Method 207.1 requires the higher of the duplicate runs be reported as the test result.

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

Assignment of an Internal QA Officer: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, will be present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)

The following safety measures will be followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	Steam clean Leak check
Mobil Van Sampling System	1. Absence of leaks	Depends on nature of use	 Chang filters Change gas dryer Leak check Check for system contamination
Sampling lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria	
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range	
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range	
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range	
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg	
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range	
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%	
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	+/- 5%	
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	+/- 5%	
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	+/- 0.1 inches Hg	
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	+/- 2%	
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	+/- 2% of semi-annual factor	
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$		
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	+/- 1.5%	

Note: Calibration requirements will be used that meet applicable regulatory agency requirements.

Appendix D.2 SCAQMD and STAC Certifications

October 30, 2018

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice Reference #96LA1220

Dear Mr. Peterson:

We have reviewed your renewal letter under the South Coast Air Quality Management District's Laboratory Approval Program (SCAQMD LAP). We are pleased to inform you that your firm is approved for the period beginning October 30, 2018, and ending September 30, 2019 for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

SCAQMD Methods 1-4

SCAQMD Methods 5.1, 5.2, 5.3, 6.1

SCAQMD Methods 10.1 and 100.1

SCAQMD Methods 25.1 and 25.3 (Sampling)

USEPA CTM-030 and ASTM D6522-00

SCAOMD Rule 1121/1146.2 Protocol

SCAQMD Rule 1420/1420.1/1420.2 – (Lead) Source and Ambient Sampling

Your LAP approval to perform nitrogen oxide emissions compliance testing for SCAQMD Rule 1121/ 1146.2 Protocols includes satellite facilities located at:

McKenna Boiler

Noritz America Corp.

1510 North Spring Street Los Angeles, CA 90012

11160 Grace Avenue

Fountain Valley, CA 92708

Ajax Boiler, Inc. 2701 S. Harbor Blvd.

Santa Ana, CA 92704

Thank you for participating in the SCAQMD LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Glenn Kasai. He may be reached by telephone at (909) 396-2271, or via e-mail at gkasai@aqmd.gov.

Sincerely,

Dipankar Sarkar

Program Supervisor Source Test Engineering

D. Sakar

DS:GK/gk

Attachment

181030 LapRenewalRev.doc

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Presented this 5th day of March 2018.

President and CEO For the Accreditation Council Certificate Number 3925.01 Valid to February 29, 2020 This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

Appendix D.3 Individual QI Certificate

CERTIFICATE OF COMPLETION

John Groenenboom

This document certifies that this individual has passed a comprehensive examination and is now a Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):

SCAQMD Method 207.1

Certificate Number: 002-2017-51

DATE OF ISSUE:

1/17/17

DATE OF EXPIRATION:

Tate Strickler, Accreditation Director

1/17/22

APPENDIX E APPLICABLE PERMIT SECTIONS

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Page: 8 Facility ID: 153992 Revision #: 3

Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
AUGRES E ESSOTABLICADAE	raken (o)				
GAS, GENERAL ELECTRIC, MODEL LM6000PC SPRINT, SIMPLE CYCLE, 479 MMBTU/HR AT 46 DEG F, WITH INLET CHILLING, WITH WATER INJECTION WITH A/N: 555831	D19	C21	NOX: MAJOR SOURCE**	CO: 4 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2002]; CO: 2000 PPMV NATURAL GAS (5) [RULE 407, 4-2-1982]; NOX: 2.5 PPMV NATURAL GAS (4) [RULE 2005, 6-3-2011]; NOX: 25 PPMV NATURAL GAS (8) [40CFR 60 Subpart KKKK, 7-6-2006]; PM10: 0.01 GRAINS/SCF NATURAL GAS (5A) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; PM10: 0.1 GRAINS/SCF NATURAL GAS (5) [RULE 409, 8-7-1981]; PM10: 1.67 LBS/HR NATURAL GAS (5) [RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2) -Offset, 12-6-2002]; PM10: 11 LBS/HR NATURAL GAS (5B) [RULE 475, 10-8-1976; RULE 475, 8-7-1978]; SO2: (9) [40CFR 72 - Acid Rain Provisions, 11-24-1997]; SOX: 0.06 LBS/MMBTU NATURAL GAS (8) [49CFR 60 Subpart KKKK, 7-6-2006]; VOC: 2 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT; 12-6-2002]	A63.1, A99.1, A99.2, A99.3, A195.1, A195.2, A195.3, A327.1, B61.1, D12.1, D29.2, D29.3, D82.1, D82.2, E193.1, H23.1, 1298.4, K40.1

(3) Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

See App B for Emission Limits

(7) Denotes NSR applicability limit

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(10) See section J for NESHAP/MACT requirements

** RefW/092ABI-543226hR Tous to determine the monitoring,49 on the 56 ing and reporting requirements for this device.

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

| Page |

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

Equipment	No.	Connected To	RECLAIM Source Type/ Monitoring Unit	Emissions* And Requirements	Conditions
Process 1: POWER GENE	RATIO				
CO OXIDATION CATALYST, NO. 4, BASF, 110 CUBIC FEET OF TOTAL CATALYST VOLUME A/N: 476663	C21	D19 C22			
SELECTIVE CATALYTIC REDUCTION, NO. 4, CORMETECH CMHT-21, 1012 CU.FT.; WIDTH: 2 FT 6 IN; HEIGHT: 25 FT 9 IN; LENGTH: 18 FT WITH A.N: 476663 AMMONIA INJECTION	C22	C21 S24		NH3: 5 PPMV NATURAL GAS (4) [RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1) -BACT, 12-6-2902]	A195.7, D12.2, D12.3, D12.4, E179.1, E179.2, E193.1
STACK, TURBINE NO. 4, HEIGHT: 86 FT; DIAMETER: 11 FT 8 IN A/N: 555831	\$24	C22			

(1) (1A) (1B) Denotes RECLAIM emission factor

(3) Denotes RECLAIM concentration limit

(5) (5A) (5B) Denotes command and control emission limit

(7) Denotes NSR applicability limit

See App B for Emission Limits

(2) (2A) (2B) Denotes RECLAIM emission rate

(4) Denotes BACT emission limit

(6) Denotes air toxic control rule limit

(8) (8A) (8B) Denotes 40 CFR limit (e.g. NSPS, NESHAPS, etc.)

(10) See section J for NESHAP/MACT requirements

Refer to section F and G of this permit to determine the monitoring, recordkeeping and reporting requirements for this device. W002AS-543226-RT-53 50 of 53

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

[Devices subject to this condition: C4, C10, C16, C22]

D12.5 The operator shall install and maintain a(n) non-resettable elapsed time meter to accurately indicate the elapsed operating time of the engine.

[RULE 1110.2, 2-1-2008; RULE 1110.2, 9-7-2012; RULE 1303(b)(2)-Offset, 5-10-1996; RULE 1303(b)(2)-Offset, 12-6-2002; RULE 1401, 9-10-2010; RULE 1470, 5-4-2012; RULE 2012, 5-6-2005; 40CFR 60 Subpart IIII, 1-30-2013]

[Devices subject to this condition : D25]

D29.2 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Averaging Time	Test Location-
NH3 emissions	District method 207.1	1 hour	Outlet of the SCR
	and 5.3 or EPA method		serving this equipment
	17		

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Facility ID:

ge: 50 153992

Revision #:

Date: November 06, 2015

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION D: FACILITY DESCRIPTION AND EQUIPMENT SPECIFIC CONDITIONS

The operator shall comply with the terms and conditions set forth below:

The test(s) shall be conducted at least quarterly during the first twelve months of operation and at least annually thereafter. The AQMD shall be notified of the date and time of the test at least 10 days prior to the test.

If the turbine is not in operation during one calendar year, then no testing is required during that calendar year.

The NOx concentration, as determined by the CEMS, shall be simultaneously recorded during the ammonia slip test. If the CEMS is inoperable, a test shall be conducted to determine the NOx emissions using District Method 100.1 measured over a 60 minute averaging time period.

The test shall be conducted and the results submitted to the District within 60 days after the test date.

The test shall be conducted to demonstrate compliance with the Rule 1303 concentration limit.

[RULE 1303(a)(1)-BACT, 5-10-1996; RULE 1303(a)(1)-BACT, 12-6-2002]

[Devices subject to this condition: D1, D7, D13, D19]

D29.3 The operator shall conduct source test(s) for the pollutant(s) identified below.

Pollutant(s) to be tested	Required Test Method(s)	Sampling Time	Test Location
SOX emissions	AQMD Laboratory Method 307-91	Not Applicable	Fuel sample
VOC emissions	District Method 25.3	1 hour	Outlet of the SCR serving this equipment
PM emissions	District method 5.1	4 hours	Outlet of the SCR serving this equipment

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. John Groenenboom Title: Client Project Manager

Region: Western

E-Mail: <u>JGroenenboom@montrose-env.com</u>

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: Western

E-Mail: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 17

AQ-14 & AQ-24 RTC INVENTORY

Title Page

Facility ID:

153992

Revision #: 14 Date: January 01, 2019

FACILITY PERMIT TO OPERATE

CANYON POWER PLANT 3071 E MIRALOMA AVE ANAHEIM, CA 92806

NOTICE

IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR A COPY THEREOF MUST BE KEPT AT THE LOCATION FOR WHICH IT IS ISSUED.

THIS PERMIT DOES NOT AUTHORIZE THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT SHALL NOT BE CONSTRUED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUTES OF ANY OTHER FEDERAL, STATE OR LOCAL GOVERNMENTAL AGENCIES.

Wayne Nastri

Executive Officer

Laki Tisopulos, Ph.D., P.E.

Deputy Executive Officer Engineering and Permitting

Table of Content

Facility ID:

Revision #: 14
Date: January 01, 2019

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

TABLE OF CONTENTS

Section	Description	Revision #	Date Issued
A	Facility Information	2	11/06/2015
В	RECLAIM Annual Emission Allocation	11	01/01/2019
C	Facility Plot Plan	TO BE DEVEL	LOPED
D	Facility Description and Equipment Specific Conditions	3	11/06/2015
E	Administrative Conditions	1	11/06/2015
F	RECLAIM Monitoring and Source Testing Requirements	<u>g</u> 1	11/06/2015
G	Recordkeeping and Reporting Requirements for RECLAIM Sources	1	11/06/2015
Н	Permit To Construct and Temporary Permit to Operate	3	11/06/2015
I	Compliance Plans & Schedules	1	11/06/2015
J	Air Toxics	1	11/06/2015
K	Title V Administration	1	11/06/2015
Appendix			
A	NOx and SOx Emitting Equipment Exemp	ot 1	11/06/2015
Α	From Written Permit Pursuant to Rule 219	д 1	11/00/2013
В	Rule Emission Limits	1	11/06/2015

Section B Page: 1 Facility ID: 153992 Revision #: 11 Date: January 01, 2019

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of NOx RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. Total NOx emission shall not exceed such annual allocations unless the operator obtains RTCs corresponding to the facility's increased emissions in compliance with Rules 2005 and 2007.

The level of Starting Allocation plus Non-Tradable Credits used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) - Trading Zone Restrictions is listed on the last page of this Section.

The following table lists the annual allocations that were issued to this facility and the amounts of RTCs held by this facility on the day of printing this Section.

RECLAIM POLLUTANT ANNUAL ALLOCATION (POUNDS)

Year Begin End (month/year)	Zone	NOx RTC Initially Allocated	NOx RTC ¹ Holding as of 01/01/2019 (pounds)	Non-Tradable Non-Usable RTCs (pounds)
7/2016 6/201	7 Coastal	0	3238	2548
1/2017 12/20	17 Coastal	0	6391	0
7/2017 6/201	8 Coastal	0	14377	0
1/2018 12/20	18 Coastal	0	42179	1648
7/2018 6/201	9 Coastal	0	18585	1292
1/2019 12/20	19 Coastal	0	40532	1648
7/2019 6/202	0 Coastal	0	17292	1292
1/2020 12/20	20 Coastal	0	37283	3248
7/2020 6/202	21 Coastal	0	14745	2548
1/2021 12/20	21 Coastal	0	33988	3295
7/2021 6/202	22 Coastal	0	12160	2585
1/2022 12/20	22 Coastal	0	27445	6543
7/2022 6/202	23 Coastal	0	7027	5133
1/2023 12/20	23 Coastal	0	27445	0
7/2023 6/202	24 Coastal	0	7027	0
1/2024 12/20	24 Coastal	0	27445	0
7/2024 6/202	25 Coastal	0	7027	0

Footnotes:

- This number may change due to pending trades, emissions reported under Quarterly Certification
 of Emissions Report (QCER) and Annual Permit Emission Program (APEP) Report required
 pursuant to Rule 2004, or deductions made pursuant to Rule 2010(b). The most recent total RTC
 information can be obtained from the District's RTC Listing.
- 2. The use of such credits is subject to restrictions set forth in paragraph (f)(1) of Rule 2002.

Section B Facility ID: Revision #:

Page: 2 153992 11

Date: January 01, 2019

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of NOx RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. Total NOx emission shall not exceed such annual allocations unless the operator obtains RTCs corresponding to the facility's increased emissions in compliance with Rules 2005 and 2007.

The level of Starting Allocation plus Non-Tradable Credits used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) - Trading Zone Restrictions is listed on the last page of this Section.

The following table lists the annual allocations that were issued to this facility and the amounts of RTCs held by this facility on the day of printing this Section.

RECLAIM POLLUTANT ANNUAL ALLOCATION (POUNDS)

Yea Begin (month/	End	Zone	NOx RTC Initially Allocated	NOx RTC ¹ Holding as of 01/01/2019 (pounds)	Non-Tradable Non-Usable RTCs (pounds)
1/2025	12/2025	Coastal	0	27445	0
7/2025	6/2026	Coastal	0	7027	0
1/2026	12/2026	Coastal	0	27445	0
7/2026	6/2027	Coastal	0	7027	0
1/2027	12/2027	Coastal	0	27445	0
7/2027	6/2028	Coastal	0	7027	0
1/2028	12/2028	Coastal	0	27445	0
7/2028	6/2029	Coastal	0	7027	0
1/2029	12/2029	Coastal	0	27445	0
7/2029	6/2030	Coastal	0	7027	0
1/2030	12/2030	Coastal	0	27445	0
7/2030	6/2031	Coastal	0	7027	0
1/2031	12/2031	Coastal	0	27445	0
7/2031	6/2032	Coastal	0	7027	0
1/2032	12/2032	Coastal	0	27445	0
7/2032	6/2033	Coastal	0	7027	0
1/2033	12/2033	Coastal	0	27445	0

Footnotes:

- This number may change due to pending trades, emissions reported under Quarterly Certification
 of Emissions Report (QCER) and Annual Permit Emission Program (APEP) Report required
 pursuant to Rule 2004, or deductions made pursuant to Rule 2010(b). The most recent total RTC
 information can be obtained from the District's RTC Listing.
- 2. The use of such credits is subject to restrictions set forth in paragraph (f)(1) of Rule 2002.

Section B Page: 3 Facility ID: 153992 Revision #: 11 Date: January 01, 2019

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of NOx RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. Total NOx emission shall not exceed such annual allocations unless the operator obtains RTCs corresponding to the facility's increased emissions in compliance with Rules 2005 and 2007.

The level of Starting Allocation plus Non-Tradable Credits used to determine compliance with Rule 2005(c)(4) and applicability of Rule 2005(e) - Trading Zone Restrictions is listed on the last page of this Section.

The following table lists the annual allocations that were issued to this facility and the amounts of RTCs held by this facility on the day of printing this Section.

RECLAIM POLLUTANT ANNUAL ALLOCATION (POUNDS)

Yea Begin (month/	ar End year)	Zone	NOx RTC Initially Allocated	NOx RTC ¹ Holding as of 01/01/2019 (pounds)	Non-Tradable Non-Usable RTCs (pounds)
7/2033	6/2034	Coastal	0	7027	0
1/2034	12/2034	Coastal	0	27445	0

Footnotes:

- This number may change due to pending trades, emissions reported under Quarterly Certification
 of Emissions Report (QCER) and Annual Permit Emission Program (APEP) Report required
 pursuant to Rule 2004, or deductions made pursuant to Rule 2010(b). The most recent total RTC
 information can be obtained from the District's RTC Listing.
- 2. The use of such credits is subject to restrictions set forth in paragraph (f)(1) of Rule 2002.

Section B Page: 4 Facility ID: 153992 Revision #: 1

Date: January 01, 2019

FACILITY PERMIT TO OPERATE CANYON POWER PLANT

SECTION B: RECLAIM ANNUAL EMISSION ALLOCATION

The annual allocation of RECLAIM Trading Credits (RTCs) for this facility is calculated pursuant to Rule 2002. If the facility submits a permit application to increase in an annual allocation to a level greater than the facility's starting Allocation plus Non-Tradable credits as listed below, the application will be evaluated for compliance with Rule 2005 (c)(4). Rule 2005 (e) - Trading Zone Restrictions applies if an annual allocation is increased to a level greater than the facility's Starting Allocation plus Non-Tradable Credits:

Year Begin End (month/year)

Zone

RTC Starting Allocation (pounds)

Non-Tradable Credits(NTC) (pounds)

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 18

AQ-17 NH3 FLOW METER ACCURACY REPORTS

729 EAST WILLOW STREET SIGNAL HILL, CALIFORNIA 90755 FAX (562) 426-7707 (562) 424-8533

CERT. NO. 4-198AF-19

CALIBRATION CERTIFICATION

MFG. SERIAL NO: MODEL: CMF025 FLOAT NO: . Left Data NCE - PROGRAMMING R	M313NQBUEZZZ
FLOAT NO:	See Remarks Calibrated @ customer's facility
Left Data	See Remarks Calibrated @ customer's facility
	Calibrated @ customer's facility
ï	
	ACTUAL
LBS/HR	
152.40	
133.92	
114.36	
96.00	
76.68	
57.78	
48.30	
38.70	
28.80	
0.00	
	D. Cal. Due: 8/29/21
Procedure No:	ISA:RP 16.6
certainty of the standards use not be reproduced, except in	and systems comply with MIL-STD 45662A, d in this calibration does not exceed 25% of full, without prior written approval of the
	152.40 133.92 114.36 96.00 76.68 57.78 48.30 38.70 28.80 0.00 One of Standards and Technology acertainty of the standards used to the reproduced, except in the standards used to the reproduced to the standards used to the reproduced to the standards used to the

RECALIBRATION DUE

CALIBRATION TECHNICIAN

4-9-19

CALIBRATION DATE

729 EAST WILLOW STREET SIGNAL HILL, CALIFORNIA 90755

(562) 424-8533

FAX (562) 426-7707

CERT. NO. 4-198AL-19

CALIBRATION CERTIFICATION

SUBMITTED BY: CITY OF ANAHEIM	
FLOWMETER SERIAL NO: .	MFG. SERIAL NO: 14136005
MANUFACTURER: MICRO MOTION	MODEL: CMF025M313NQBUEZZZ
TUBE NO: .	FLOAT NO: .
DATA IS: As Left , In Tolera	nce See Remarks Calibrated @ customer's facility
TRANSMITTER S/N: 14136005, CALIBRA ACCURACY ± 1% RATE	ED IN LBS/HR H2O @ 75°F. SP.GR. 1.0 FIRST CALIBRATION
INDICATED	ACTUAL
LB/H	LBS/HR
150.20	151.20
132.60	133.56
112.90	113.70
92.50	93.06
75.10	75.48
55.50	55.74
37.78	37.80
28.30	28.26
18.85	18.95
0.00	0.00

Flowmeter Certified with HOMER R. DULIN CO.

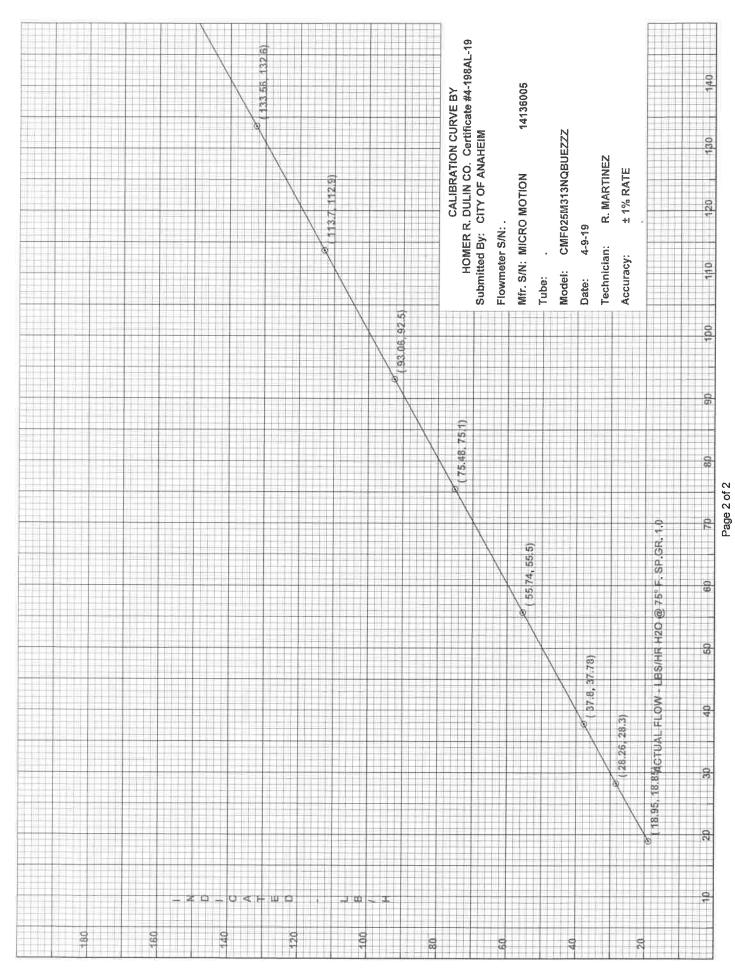
Equip. No. 116	05 Accuracy	0.005%	Equip. Cal. Date: 8/29/18	Cal. Due:	8/29/21
NIST Cert. No.	TEST# MS 15560		Procedure No:	ISA:RP 16.6	
ANSI/NCSL Z540	.3, ISO/IEC 17025, and IS	O 10012. The colle	nstitute of Standards and Technolo ective uncertainty of the standards u	sed in this calibration	does not exceed 25% of
		er test. This docum	ent may not be reproduced, except	in full, without prior w	ritten approval of the
Homer R. Dulin Co	o. Rev.1 Dated 8/19/14				
D O	No		Chinner No.		

. .

Shipper No.

4-9-19

4-9-20


RECALIBRATION DUE

CALIBRATION TECHNICIAN

CALIBRATION DATE

Page 1 of 2

729 EAST WILLOW STREET SIGNAL HILL, CALIFORNIA 90755

(562) 424-8533

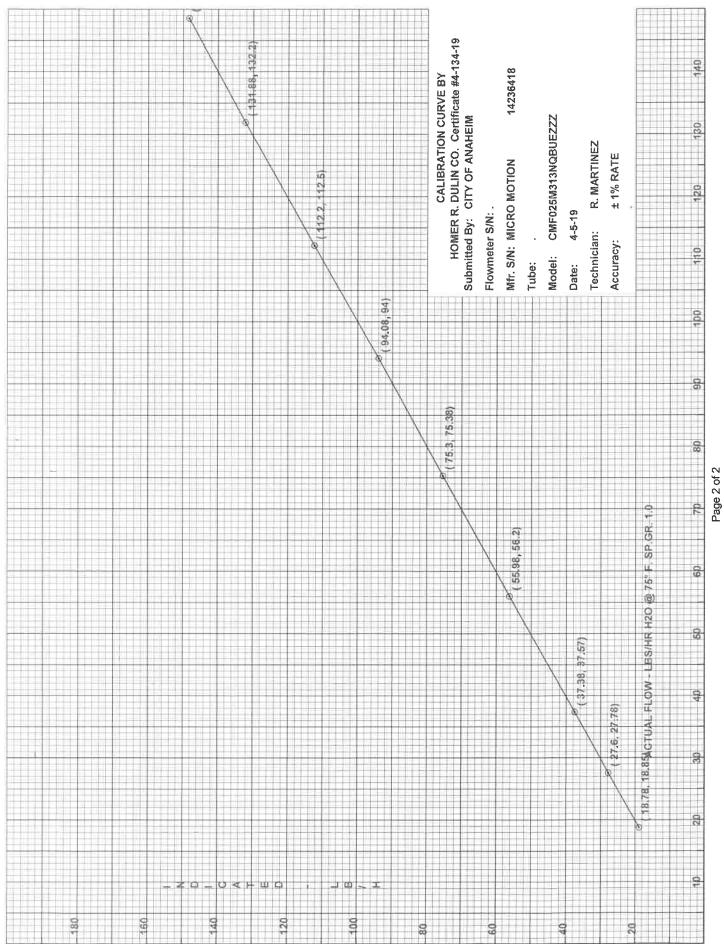
FAX (562) 426-7707

CERT. NO. 4-134-19

CALIBRATION CERTIFICATION

SUBMITTED BY: CITY OF ANAHEII	М	
FLOWMETER SERIAL NO: .	MFG. SERIAL NO:	14236418
MANUFACTURER: MICRO MOTION	MODEL: CMF025	5M313NQBUEZZZ
TUBE NO: .	FLOAT NO: .	
DATA IS: As Found/As Left ; In Toler REMARKS: DIRECT READING ELECTR @ 75°F. SP.GR. 1.0 FIRST CALIBRATION	RONIC INDICATOR TRANSMITTER S/N: 141:	See Remarks ✓ Calibrated @ customer's facility ☐ 38117, CALIBRATED IN LBS/HR H2O
ACCURACY ± 1% RATE		
INDICATED		ACTUAL
LB/H	LBS/HR	
148.30	148.56	
132.20	131.88	
112.50	112.20	
94.00	94.08	
75.38	75.30	
56.20	55.98	
37.57	37.38	
27.78 18.85	27.60	
0.00	18.78 0.00	
Flov Equip. No. 11605 Accuracy 0.	wmeter Certified with HOMER R. DULIN C 005% Equip. Cal. Date: 8/29/18	
NIST Cert. No. TEST# MS 15560	Procedure No:	ISA:RP 16.6
ANSI/NCSL Z540.3, ISO/IEC 17025, and ISO 10	to the National Institute of Standards and Technology 0012. The collective uncertainty of the standards usest. This document may not be reproduced, except in Shipper No.	ed in this calibration does not exceed 25% of

4-5-20


RECALIBRATION DUE

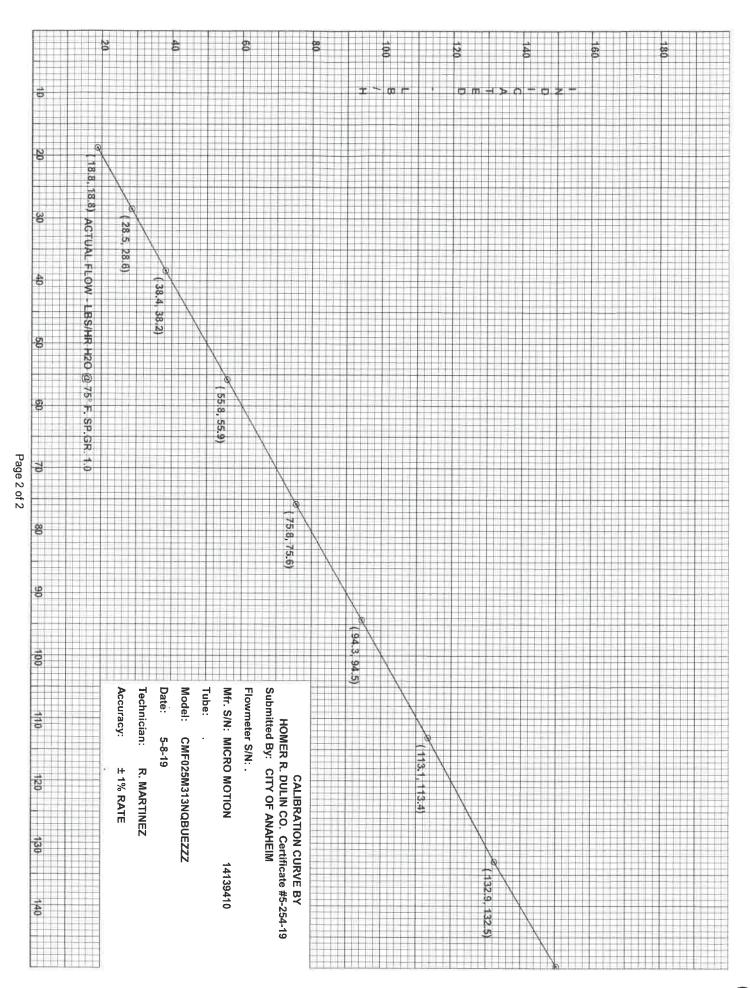
Page 1 of 2

4-5-19

CALIBRATION DATE

729 EAST WILLOW STREET

SIGNAL HILL, CALIFORNIA 90755


(562) 424-8533

FAX (562) 426-7707

CERT. NO. 5-254-19

CALIBRATION CERTIFICATION

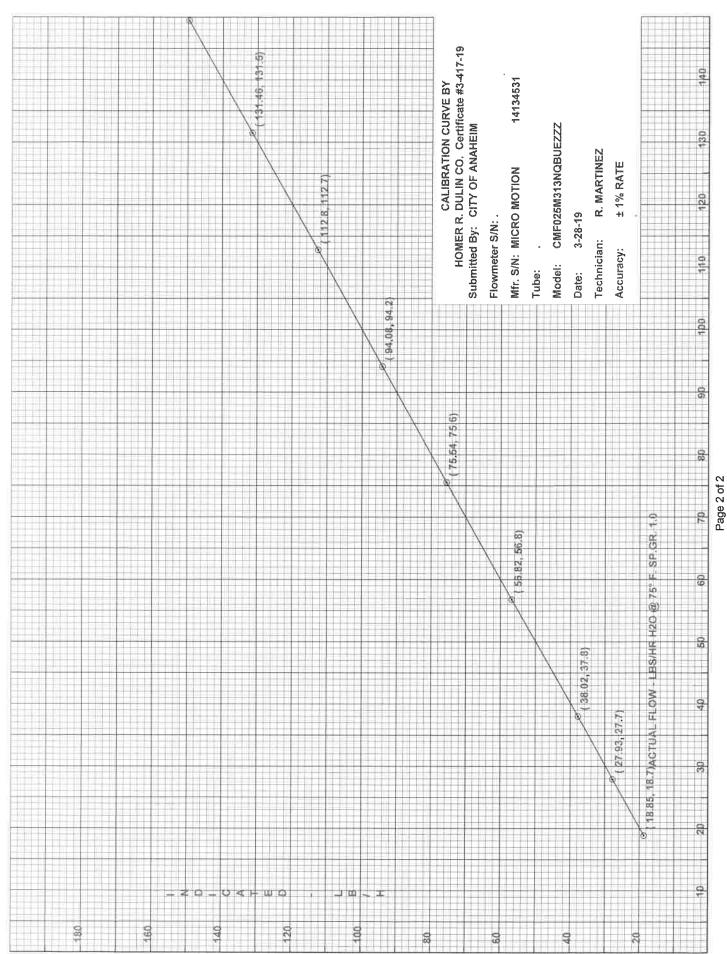
SUBMITTED BY: CITY O	F ANAHEIM			
FLOWMETER SERIAL NO	·	MFG. SERIAL NO: 14139410		
MANUFACTURER: MICRO	NOITOM C	MODEL: CMF025M313NQBUEZZZ		
TUBE NO:		FLOAT NO: .		
DATA IS: As Left REMARKS: NO AS FOUND INDICATOR TRANSMITTER S	; In Tolerance DATA - METER PROGRAMMI S/N: 14139410, CALIBRATED	ED PRIOR TO CALIB	See Remarks Calibrated @ customer's facility BRATION - DIRECT READING ELECTRONIC 5° F. SP.GR. 1.0 FIRST CALIBRATION	
ACCURACY ± 1% RATE			9	
INDI	CATED		ACTUAL	
LB/HR		LBS/HR		
150.4		149.7		
132.5		132.9		
113.4		113.1		
94.5		94.3		
75.6		75.8		
55.9		55.8		
38.2		38.4		
28.6		28.5		
18.8		18.8		
0.0		0.0		
Equip. No. <u>11605</u> Ac	Flowmeter Certified w	vith HOMER R. DUL quip. Cal. Date: <u>8</u> /29/		
NIST Cert. No. TEST# MS	15560	Procedure	No: ISA:RP 16.6	
ANSI/NCSL Z540.3, ISO/IEC 1702!	5, and ISO 10012. The collective unent under test. This document ma 19/14	ncertainty of the standar	nnology and systems comply with MIL-STD 45662A, rds used in this calibration does not exceed 25% of cept in full, without prior written approval of the	
5-8-19	5-8-20		R. MARTINEZOGELIO Martinez	
CALIBRATION DATE	RECALIBRATI Pa	ON DUE ge 1 of 2	CALIBRATION TECHNICIAN	

a

729 EAST WILLOW STREET SIGNAL HILL, CALIFORNIA 90755

SUBMITTED BY: CITY OF ANAHEIM

(562) 424-8533 FAX (562) 426-7707


CERT. NO. 3-417-19

CALIBRATION CERTIFICATION

FLOWMETER SERI	AL NO: .		MFG. SERIAL NO:	NO: 14134531		
MANUFACTURER:	MICRO MOTIO	NC	MODEL: CMF02	5M313NQBUEZZ	Z	
TUBE NO: .			FLOAT NO:			
	READING ELEC	CTRONIC INDICA	FOR TRANSMITTER S/N: 141 LB/HR INDICATED - FIRST C	34531, CALIBRATE	See Remarks ✓ ustomer's facility ☐ ED IN LBS/HR H2O	
ACCURACY ± 1% R	ATE					
	INDICATED			ACTUAL		
LB/H			LBS/HR			
149.70			149.46			
131.50			131.46			
112.70			112.80			
94.20			94.08			
75.60			75.54			
56.80			56.82			
37.80			38.02			
27.70			27.93	=======================================		
18.70			18.85			
0.00			0.00			
Equip. No. 11605	F Accuracy		ed with HOMER R. DULIN C Equip. Cal. Date: 8/29/18	CO. Cal. Due:	8/29/21	
NIST Cert. No. TES	T# MS 15560		Procedure No:	ISA:RP 16.6		
ANSI/NCSL Z540.3, ISO/I	EC 17025, and ISC e instrument under	0 10012. The collecti	titute of Standards and Technolog ve uncertainty of the standards us t may not be reproduced, except Shipper No	y and systems comply ed in this calibration of	does not exceed 25% of	
3-28-19		3-28-20	R	. MARTINEZ		
CALIBRATION DAT	Έ	RECALIBR		ALIBRATION TECH	HNICIAN	

Page 1 of 2

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 19

AQ-18 SCR INLET TEMPERATURE SENSOR CALIBRATION REPORTS

Calibration: SCR Inlet Temperature Unit 1 TE-403A-403D

Certificate Number: Position ID: 1-TE-403A

Printed: 2/1/2019 12:31:37 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U1/

Function U1 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date Interval

Reject If Error > 2 % of span 40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Device

1-TE-403A Device ID

Serial Number

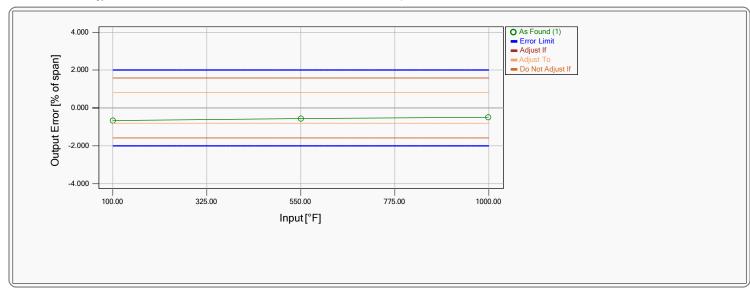
Manufacturer Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 2/1/2019 10:21:23 AM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

0

Maximum Error: -0.667 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.00	100.0	94.000	-0.667
550.0	550.00	550.0	545.000	-0.556
1000.0	999.99	1000.0	995.500	-0.499

Calibration Note:

Calibrated by: VINCENT NGUYEN

2/1/2019 10:21:23 AM

Page: 1/ 1

Certificate Number: Position ID: 1-TE-403B

Printed: 2/1/2019 12:31:37 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID
Plant CANYON/ERU/U1/

Device ID 1-TE-403B Serial Number

Manufacturer Rangeability

Device

Operating Operating Humidity

Function

Name U1 SCR INLET TEMP (ud)

Transfer Function Linear

Range 100 ... 1000 °F 100 ... 1000 °F

Calibration Event

Calibration time 2/1/2019 10:24:47 AM

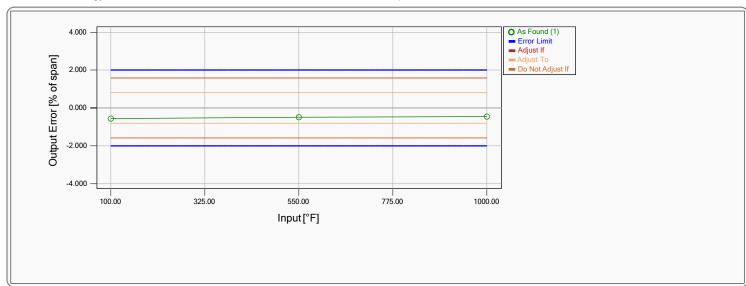
Next Calibration

Environment Environment

Calibration Procedure

Due Date Interval 0

Reject If Error > 2 % of span
Adjust To Error < 40 % of Reject If Error Classification


Calibration Strategy

Calibrators

 Input Calibrator
 MC6 : 605835
 Due Date: 4/12/2019

 Input Module
 TC-R-OUT/ TC1 : 65279
 Due Date: 4/13/2019

Output Calibrator Due Date:
Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.556 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.00	100.0	95.000	-0.556
550.0	550.00	550.0	545.500	-0.500
1000.0	1000.00	1000.0	996.000	-0.444

Calibration Note:

Calibrated by: VINCENT NGUYEN

2/1/2019 10:24:47 AM

Certificate Number: Position ID: 1-TE-403C

Printed: 2/1/2019 12:31:37 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID Plant CANYON/ERU/U1/

1-TE-403C Device ID Serial Number

Manufacturer Rangeability

Device

Operating Operating Humidity

Function

U1 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Event

Calibration time 2/1/2019 10:28:38 AM

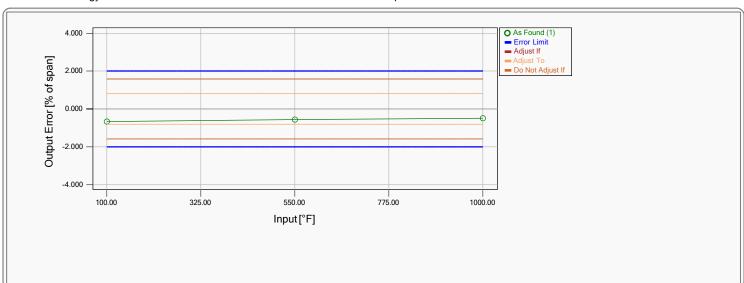
Next Calibration

Environment Environment

Calibration Procedure

Due Date Interval 0 2 % of span

40 % of Reject If Error Classification Adjust To Error <


Calibration Strategy

Reject If Error >

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date: **Output Module** Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.667 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.00	100.0	94.000	-0.667
550.0	550.01	550.0	545.000	-0.557
1000.0	1000.01	1000.0	995.500	-0.501
			•	

Calibration Note:

Calibrated by: VINCENT NGUYEN

2/1/2019 10:28:38 AM

Certificate Number: Position ID: 1-TE-403D

Device

Device ID

Serial Number

Manufacturer

Rangeability

Printed: 2/1/2019 12:31:37 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Operating Humidity

Position

Function

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID Plant

CANYON/ERU/U1/

Operating

U1 SCR INLET TEMP (ud) Calibration time Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Event 2/1/2019 10:32:11 AM

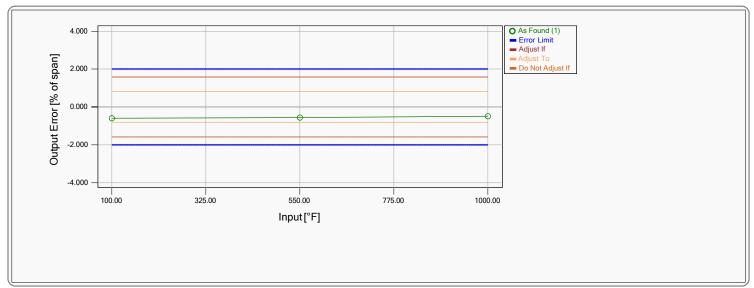
Environment Environment

1-TE-403D

Calibration Procedure

Due Date Interval 0

Reject If Error > 2 % of span 40 % of Reject If Error Classification Adjust To Error <


Calibration Strategy

Calibrators

Next Calibration

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date: **Output Module** Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.612 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.01	100.0	94.500	-0.612
550.0	550.01	550.0	545.000	-0.557
1000.0	1000.00	1000.0	995.500	-0.500

Calibration Note:

Calibrated by: VINCENT NGUYEN

2/1/2019 10:32:11 AM

Page: 1/ 1

Calibration: SCR Inlet Temperature Unit 2 TE-403A-403D

Certificate Number: Position ID: 2-TE-403A

Printed: 2/1/2019 12:32:35 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U2/

Function

U2 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date Interval 0

Reject If Error > 2 % of span 40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Device

2-TE-403A Device ID

Serial Number Manufacturer

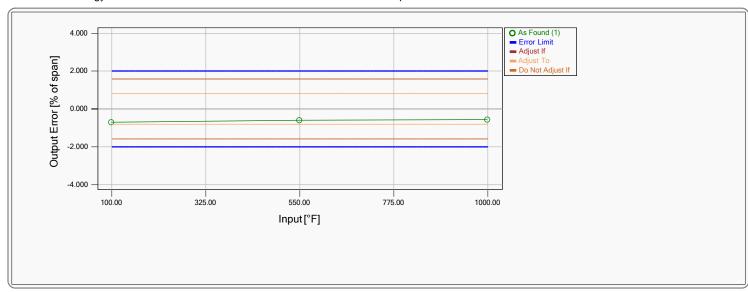
Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/31/2019 10:14:33 AM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

Mominal

PASSED, DO NOT ADJUST

Actual

Maximum Error: -0.720 % of span

	Input [°F]	Actual Input [°F]	Output [°F]	Output [°F]	Found Error [% of span]
	100.0	99.98~	100.0	93.500	-0.720~
	550.0	549.96	550.0	544.500	-0.607
	1000.0	999.97	1000.0	995.000	-0.552
I					
ı					

Mominal

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/31/2019 10:14:33 AM

Certificate Number: Position ID: 2-TE-403B

Printed: 2/1/2019 12:32:35 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U2/

Function

U2 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date Interval 0

Reject If Error > 2 % of span 40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Device

2-TE-403B Device ID

Serial Number

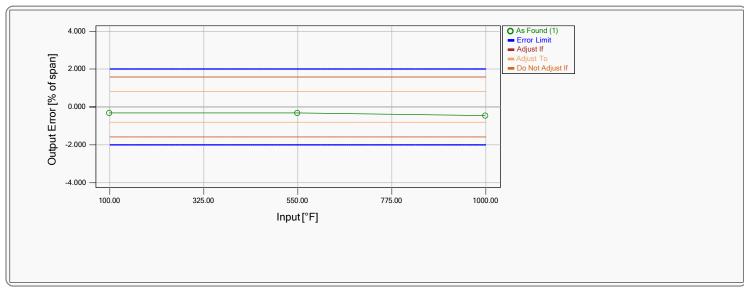
Manufacturer Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/31/2019 10:18:28 AM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.442 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	99.98	100.0	97.000	-0.331
550.0	549.98	550.0	547.000	-0.331
1000.0	999.98	1000.0	996.000	-0.442
	Input [°F] 100.0 550.0	Input [°F] 100.0 99.98 550.0 549.98	Input	Input [°F] Actual Input [°F] Output [°F] Output [°F] 100.0 99.98 100.0 97.000 550.0 549.98 550.0 547.000

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/31/2019 10:18:28 AM

Certificate Number: Position ID: 2-TE-403C

Printed: 2/1/2019 12:32:35 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position ID: 2-TE-40

Name SCR INLET TEMP
Work Order Number

Location NH3 INJ SKID
Plant CANYON/ERU/U2/

Device ID 2-TE-403C Serial Number

Manufacturer Rangeability

Device

Operating Operating Humidity

Function Calil
Name U2 SCR INLET TEMP (ud) Calibr

Transfer Function Linear

Range 100 ... 1000 °F 100 ... 1000 °F

Calibration Event

Calibration time 1/31/2019 10:22:35 AM

Next Calibration

Environment Environment

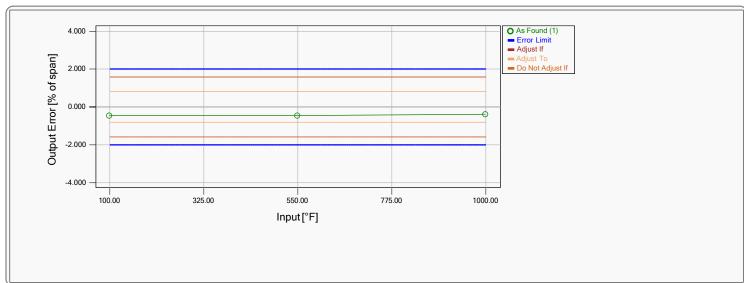
Calibration Procedure

Due Date Interval 0

Reject If Error > 2 % of span

Adjust To Error < 40 % of Reject If Error Classification

Calibration Strategy


Position

Calibrators

 Input Calibrator
 MC6 : 605835
 Due Date: 4/12/2019

 Input Module
 TC-R-OUT/ TC1 : 65279
 Due Date: 4/13/2019

Output Calibrator Due Date:
Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.443 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	99.99	100.0	96.000	-0.443
550.0	549.99	550.0	546.000	-0.443
1000.0	999.99	1000.0	996.500	-0.388

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/31/2019 10:22:35 AM

Certificate Number: Position ID: 2-TE-403D

Device

Device ID

Serial Number

Printed: 2/1/2019 12:32:35 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position SCR INLET TEMP Name

Work Order Number

Location Plant

NH3 INJ SKID Manufacturer CANYON/ERU/U2/ Rangeability

> Operating Operating Humidity

2-TE-403D

Function

U2 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Event

Calibration time 1/31/2019 10:26:02 AM

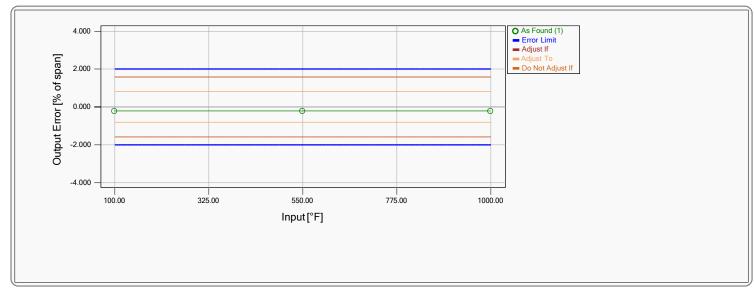
Next Calibration

Environment Environment

Calibration Procedure

Due Date Interval 0 2 % of span

40 % of Reject If Error Classification Adjust To Error <


Calibration Strategy

Reject If Error >

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date: **Output Module** Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.221 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	99.99	100.0	98.000	-0.221
550.0	549.99	550.0	548.000	-0.221
1000.0	999.99	1000.0	998.000	-0.221
	•			

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/31/2019 10:26:02 AM

Calibration: SCR Inlet Temperature Unit 3 TE-403A-403D

Certificate Number: Position ID: 3-TE-403A

Device

Device ID

Serial Number

Manufacturer

Rangeability Operating

Printed: 2/1/2019 12:33:24 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Operating Humidity

Position

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U3/

Function Calibration Event

U3 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure Due Date Interval 0

Reject If Error > 2 % of span

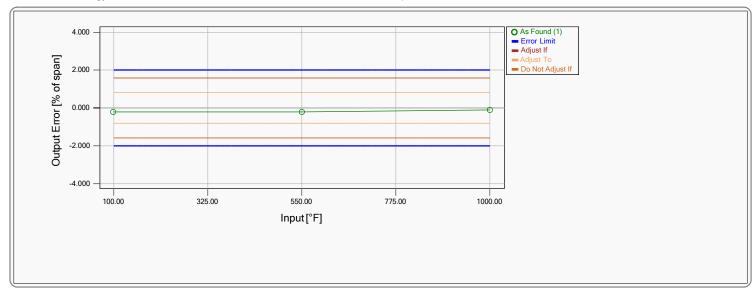
40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Calibration time 1/30/2019 12:19:42 PM

Next Calibration

Environment Environment


3-TE-403A

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.223 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	99.99	100.0	98.000	-0.221
550.0	550.01	550.0	548.000	-0.223
1000.0	1000.01	1000.0	999.000	-0.112
	•			

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/30/2019 12:19:42 PM

Certificate Number: Position ID: 3-TE-403B

Printed: 2/1/2019 12:33:24 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U3/

Function

U3 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date Interval 0 2 % of span

40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Reject If Error >

Device

3-TE-403B Device ID

Serial Number

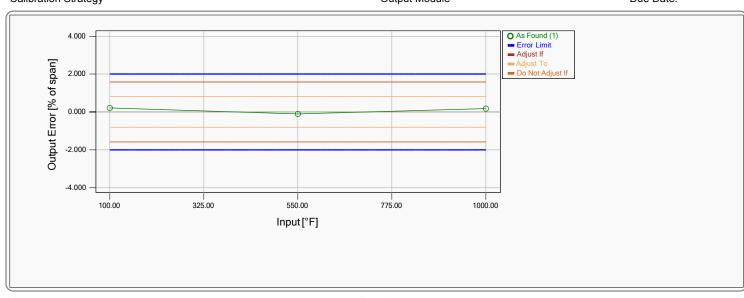
Manufacturer Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/30/2019 12:24:20 PM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: 0.221 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.01	100.0	102.000	0.221
550.0	550.01	550.0	549.000	-0.112
1000.0	1000.01	1000.0	1001.500	0.166

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/30/2019 12:24:20 PM

Page: 1/ 1

Certificate Number: Position ID: 3-TE-403C

Device

Device ID

Serial Number

Manufacturer

Printed: 2/1/2019 12:33:24 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Operating Humidity

Position

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U3/ Rangeability Operating

Calibration Event Calibration time 1/30/2019 12:31:44 PM

Next Calibration

Environment Environment

3-TE-403C

Function Name

Transfer Function Linear

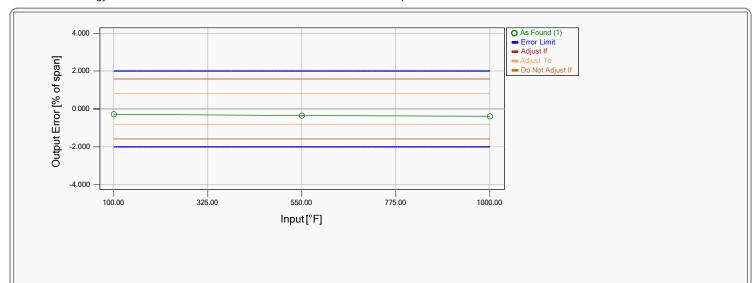
100 ... 1000 °F 100 ... 1000 °F Range

U3 SCR INLET TEMP (ud)

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date: **Output Module** Due Date:



Due Date Interval Reject If Error >

2 % of span Adjust To Error <

40 % of Reject If Error Classification

Calibration Strategy

1. As Found

PASSED, DO NOT ADJUST

0

Maximum Error: -0.391 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.03~	100.0	97.500	-0.281~
550.0	550.05~	550.0	547.000	-0.339~
1000.0	1000.02~	1000.0	996.500	-0.391~

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/30/2019 12:31:44 PM

Certificate Number: Position ID: 3-TE-403D

Printed: 2/1/2019 12:33:24 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U3/

Function U3 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date Interval 0 2 % of span

40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Reject If Error >

Device

3-TE-403D Device ID

Serial Number

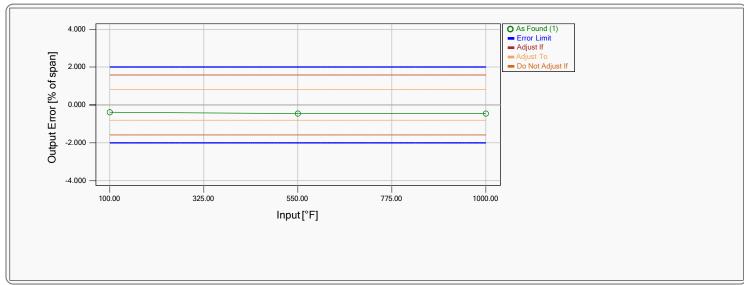
Manufacturer Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/30/2019 12:36:09 PM

Next Calibration


Environment Environment

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.450 % of span

Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
100.0	100.03~	100.0	96.500	-0.392~
550.0	550.05~	550.0	546.000	-0.450~
1000.0	1000.04~	1000.0	996.000	-0.449~
	•			

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/30/2019 12:36:09 PM

Calibration: SCR Inlet Temperature Unit 4 TE-403A-403D

Certificate Number: Position ID: 4-TE-403A

Printed: 2/1/2019 12:20:15 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U4/

Function

U4 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date Interval 0

Reject If Error > 1 % of span 40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Device

4-TE-403A Device ID

Serial Number

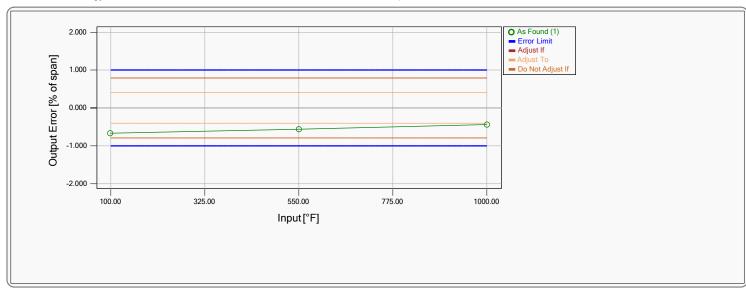
Manufacturer Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/29/2019 11:08:05 AM

Next Calibration


Environment Environment

Calibrators

Due Date: 4/12/2019 **Input Calibrator** MC6: 605835 Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date:

Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.666 % of span

	Input [°F]	Actual Input [°F]	Output [°F]	Output [°F]	Found Error [% of span]
	100.0	99.99	100.0	94.000	-0.666
	550.0	550.00	550.0	545.000	-0.556
	1000.0	1000.00	1000.0	996.000	-0.444
١					

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/29/2019 11:08:05 AM

Certificate Number: Position ID: 4-TE-403B

Printed: 2/1/2019 12:20:15 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U4/

Function
Name U4 SCR INLET TEMP (ud)

Transfer Function Linear

Range 100 ... 1000 °F 100 ... 1000 °F

Calibration Procedure

Due Date Interval 0

Reject If Error > 1 % of span
Adjust To Error < 40 % of Reject If Error Classification

Calibration Strategy

Device

Device ID 4-TE-403B

Serial Number

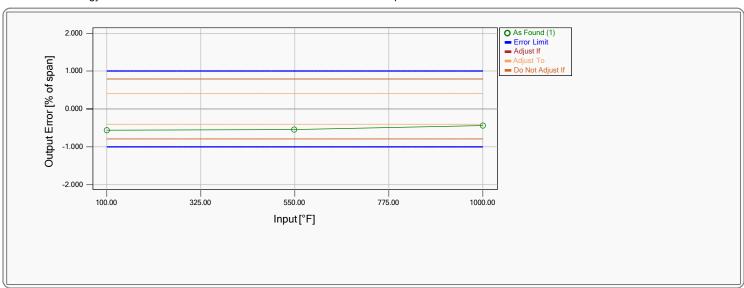
Manufacturer Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/29/2019 11:14:28 AM

Next Calibration


Environment Environment

Calibrators

 Input Calibrator
 MC6 : 605835
 Due Date: 4/12/2019

 Input Module
 TC-R-OUT/ TC1 : 65279
 Due Date: 4/13/2019

Output Calibrator Due Date:
Output Module Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -0.556 % of span

Input [°F]	Actual Input [°F]	Output [°F]	Output [°F]	Found Error [% of span]
100.0	100.00	100.0	95.000	-0.556
550.0	549.99	550.0	545.000	-0.554
1000.0	1000.00	1000.0	996.000	-0.444

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/29/2019 11:14:28 AM

Certificate Number: Position ID: 4-TE-403C

Device

Device ID

Serial Number

Manufacturer

Rangeability Operating

Printed: 2/1/2019 12:20:15 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Operating Humidity

Position

Function

Transfer Function

Name

Range

SCR INLET TEMP Name

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U4/

Calibration Event

U4 SCR INLET TEMP (ud) Calibration time 1/30/2019 10:07:32 AM

Next Calibration

100 ... 1000 °F

Environment Environment

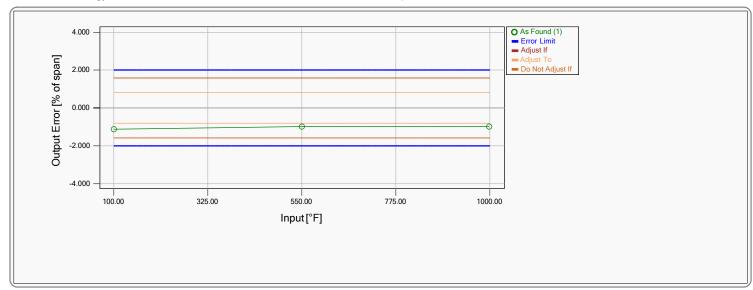
4-TE-403C

Calibration Procedure

Due Date Interval 0 2 % of span

Linear 100 ... 1000 °F

40 % of Reject If Error Classification Adjust To Error <


Calibration Strategy

Reject If Error >

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date: **Output Module** Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -1.111 % of span

	Nominal Input [°F]	Actual Input [°F]	Nominal Output [°F]	Actual Output [°F]	Found Error [% of span]
	100.0	100.00	100.0	90.000	-1.111
	550.0	550.00	550.0	541.000	-1.000
	1000.0	999.99	1000.0	991.000	-0.999
Г					

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/30/2019 10:07:32 AM

Certificate Number: Position ID: 4-TE-403D

Printed: 2/1/2019 12:20:15 PM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

SCR INLET TEMP

Work Order Number

Location NH3 INJ SKID

Plant CANYON/ERU/U4/

Function U4 SCR INLET TEMP (ud) Name

Transfer Function Linear

100 ... 1000 °F 100 ... 1000 °F Range

Calibration Procedure

Due Date Interval 0 2 % of span

40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Reject If Error >

Device

4-TE-403D Device ID

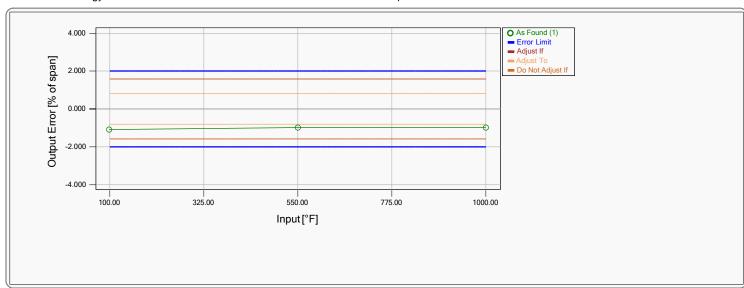
Serial Number Manufacturer

Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 1/30/2019 10:12:04 AM


Next Calibration

Environment Environment

Calibrators

Due Date: 4/12/2019 **Input Calibrator** MC6: 605835 Input Module TC-R-OUT/ TC1: 65279 Due Date: 4/13/2019

Output Calibrator Due Date: **Output Module** Due Date:

1. As Found

PASSED, DO NOT ADJUST

Maximum Error: -1.110 % of span

	Input [°F]	Actual Input [°F]	Output [°F]	Output [°F]	Found Error [% of span]
l	100.0	99.99	100.0	90.000	-1.110
l	550.0	550.00	550.0	541.000	-1.000
l	1000.0	1000.00	1000.0	991.000	-1.000
l					
ı					

Calibration Note:

Calibrated by: VINCENT NGUYEN

1/30/2019 10:12:04 AM

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 20

AQ-19 SCR DIFFERENTIAL PRESSURE SENSOR CALIBRATION REPORTS

Certificate Number: Position ID: 1-PDIT-4

Printed: 3/1/2019 11:31:32 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Function

Transfer Function

U1 SCR DP Name

Work Order Number

Location U1 ERU

Plant

Name

Range

Rangeability

Device

Device ID

Rosemount 3051C

Manufacturer

Serial Number

Operating Operating Humidity

Calibration Event

Calibration time 2/7/2019 9:16:37 AM

Next Calibration

Environment Environment

1-PDIT-4

393478

Calibration Procedure

Due Date Interval 0

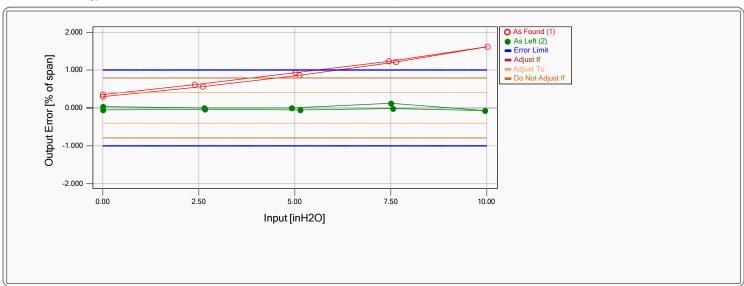
Linear

U1 SCR DP (ud)

0 ... 10 inH2O (G)

Reject If Error > 1 % of span Adjust To Error <

40 % of Reject If Error Classification


4 ... 20 mA

Calibration Strategy

Calibrators

MC6: 605835 **Input Calibrator** Due Date: 4/12/2019 Input Module P2C: 69381 Due Date: 4/12/2019 MC6: 605835 Due Date: 4/12/2019

Output Calibrator Output Module IN: 25613 Due Date: 4/12/2019

FAILED

1. As Found

Maximum Error: 1.626 % of span

Nominal Input [inH2O]	Actual Input [inH2O]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]
0.0000	0.01	4.0000	4.0717	0.348
2.500	2.41	8.000	7.9535	0.609
5.000	5.02	12.000	12.1812	0.933
7.500	7.45	16.000	16.1186	1.241
10.000	10.03	20.000	20.3082	1.626
7.500	7.65	16.000	16.4352	1.220
5.000	5.13	12.000	12.3472	0.870
2.500	2.61	8.000	8.2665	0.566
0.0000	0.00	4.0000	4.0468	0.293

2. As Left

PASSED, DO NOT ADJUST

Maximum Error: 0.116 % of span

maximum Energy of the pair					
Nominal Input [inH2O]	Actual Input [inH2O]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]	
0.0000	0.01	4.0000	4.0219	0.037	
2.500	2.65	8.000	8.2408	0.005	
5.000	4.93	12.000	11.8892	0.008	
7.500	7.50	16.000	16.0186	0.116	
10.000	9.95	20.000	19.9087	-0.071	
7.500	7.56	16.000	16.0925	-0.022	
5.000	5.14	12.000	12.2157	-0.052	
2.500	2.67	8.000	8.2669	-0.032	
0.0000	0.00	4.0000	3.9920	-0.050	

Calibration Note:

Calibrated by: VINCENT NGUYEN

2/7/2019 9:16:37 AM

Certificate Number: Position ID: 2-PDIT-4

Printed: 3/1/2019 11:36:49 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Function

Transfer Function

U2 CO CAT DP Name

Work Order Number

Location U1 ERU

Plant

Name

Range

Manufacturer Rosemount 3051C

Rangeability

Serial Number

Device

Device ID

Operating Operating Humidity

Calibration Event

Calibration time 2/6/2019 9:16:23 AM

Next Calibration

Environment Environment

2-PDIT-4

393483

Calibration Procedure

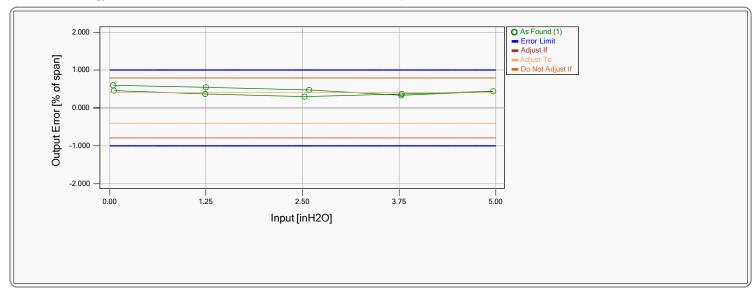
Due Date Reject If Error >

1 % of span

U2 CO CAT DP (ud)

0 ... 5 inH2O (G)

Linear


40 % of Reject If Error Classification

Interval

Adjust To Error < Calibration Strategy **Calibrators**

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module P2C: 69381 Due Date: 4/12/2019 **Output Calibrator** MC6: 605835 Due Date: 4/12/2019 **Output Module**

IN: 25613 Due Date: 4/12/2019

1. As Found

PASSED, DO NOT ADJUST

4 ... 20 mA

0

Maximum Error: 0.595 % of span

Nominal Input [inH2O]	Actual Input [inH2O]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]
0.0000	0.05	4.0000	4.2552	0.595
1.250	1.25	8.000	8.0883	0.552
2.500	2.59	12.000	12.3641	0.476
3.750	3.78	16.000	16.1500	0.338
5.0000	4.97	20.0000	19.9736	0.435
3.750	3.79	16.000	16.1874	0.371
2.500	2.53	12.000	12.1448	0.305
1.250	1.24	8.000	8.0282	0.376
0.0000	0.06	4.0000	4.2652	0.458

Calibration Note:

Calibrated by: VINCENT NGUYEN

2/6/2019 9:16:23 AM

Certificate Number: Position ID: 3-PDIT-4

Printed: 3/1/2019 11:39:09 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Function

Transfer Function

U3 SCR DP Name

Work Order Number

Location

Plant

Name

Range

Manufacturer Rosemount 3051C Rangeability

Serial Number

Device

Device ID

Operating Operating Humidity

Calibration Event

Calibration time 2/6/2019 10:47:44 AM

Next Calibration

Environment Environment

3-PDIT-4

393480

Calibration Procedure

Due Date Interval

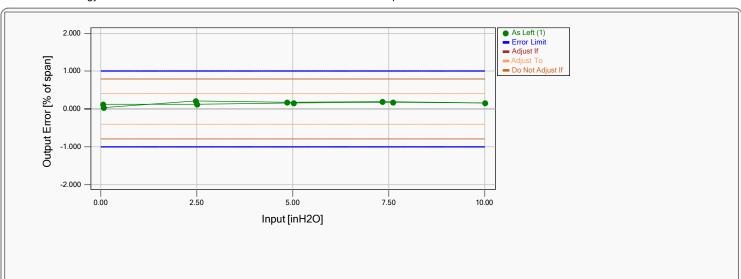
Linear

U3 ERU

U3 SCR DP (ud)

0 ... 10 inH2O (G)

1 % of span


40 % of Reject If Error Classification

Adjust To Error < Calibration Strategy

Reject If Error >

Calibrators

MC6: 605835 Due Date: 4/12/2019 **Input Calibrator** Input Module P2C: 69381 Due Date: 4/12/2019 **Output Calibrator** MC6: 605835 Due Date: 4/12/2019 **Output Module** IN: 25613 Due Date: 4/12/2019

1. As Left

PASSED, DO NOT ADJUST

4 ... 20 mA

0

Maximum Error: 0.208 % of span

Nominal Input [inH2O]	Actual Input [inH2O]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]
0.0000	0.07	4.0000	4.1178	0.036
2.500	2.47	8.000	7.9853	0.208
5.000	4.85	12.000	11.7892	0.183
7.500	7.34	16.000	15.7752	0.195
10.000	10.01	20.000	20.0406	0.154
7.500	7.61	16.000	16.2054	0.184
5.000	5.03	12.000	12.0740	0.163
2.500	2.51	8.000	8.0362	0.126
0.0000	0.06	4.0000	4.1164	0.128

Calibration Note:

Calibrated by: VINCENT NGUYEN

2/6/2019 10:47:44 AM

Certificate Number: Position ID: 4-PDIT-403

Printed: 3/1/2019 11:29:59 AM Printed by: vnguyen CMX Version: 2.11.214.0 (2.11)

Position

Name

U4 SCR DP

Work Order Number

Location U4 ERU

Plant CANYON/ERU/U4/

Function

U4 SCR DP (ud) Name

Transfer Function Linear

4 ... 20 mA Range 0 ... 10 inH2O (G)

Calibration Procedure

Due Date Interval

1 % of span 40 % of Reject If Error Classification Adjust To Error <

Calibration Strategy

Reject If Error >

Device

4-PDIT-403 Device ID Serial Number 393481

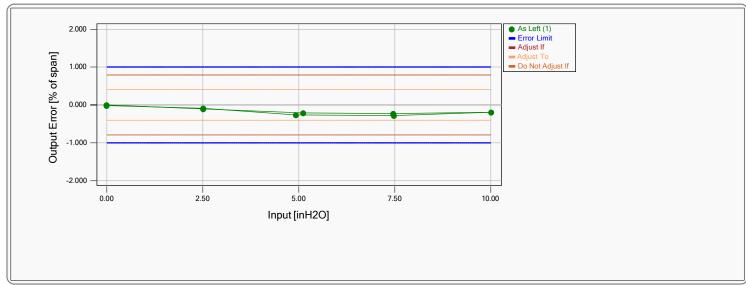
Manufacturer Rosemount 3051C

Rangeability

Operating Operating Humidity

Calibration Event

Calibration time 2/28/2019 10:05:25 AM


Next Calibration

Environment Environment

Calibrators

MC6: 605835 **Input Calibrator** Due Date: 4/12/2019 Input Module P2C: 69381 Due Date: 4/12/2019 **Output Calibrator** MC6: 605835 Due Date: 4/12/2019 **Output Module**

IN: 25613 Due Date: 4/12/2019

1. As Left

PASSED, DO NOT ADJUST

0

Maximum Error: -0.283 % of span

Nominal Input [inH2O]	Actual Input [inH2O]	Nominal Output [mA]	Actual Output [mA]	Found Error [% of span]
0.0000	-0.01	4.0000	3.9804	-0.023
2.500	2.51	8.000	8.0032	-0.080
5.000	4.92	12.000	11.8309	-0.257
7.500	7.47	16.000	15.9068	-0.283
10.000	10.00	20.000	19.9689	-0.194
7.500	7.46	16.000	15.8987	-0.233
5.000	5.11	12.000	12.1425	-0.209
2.500	2.50	8.000	7.9843	-0.098
0.0000	-0.01	4.0000	3.9849	0.006

Calibration Note:

Calibrated by: VINCENT NGUYEN

2/28/2019 10:05:25 AM

CANYON POWER PLANT ANNUAL COMPLIANCE REPORT

ATTACHMENT 21

WASTE-10 COOLING TOWER SLUDGE TESTING

No Sludge developed for CY 2019