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Abstract
Noting a strong imperative to understand precipitation extremes, and that considerable uncertainty affects observational data 
sets, this paper compares the representation of extremes in a number of widely used daily gridded products, derived from rain 
gauge data, satellite retrieval and reanalysis for the conterminous United States. Analysis is based upon the concept of “tail 
dependence” arising in multivariate extreme value theory, and we infer the level of temporal dependence in the joint tail of 
the precipitation probability distribution for pairwise comparisons of products. In this way, we consider the range of products 
more like an ensemble and examine the relationships between members, and do not attempt to define, or compare products 
to, some ground truth. Linear correlation between products is also computed. Considerable discrepancy between groups of 
products, both annually and seasonally, is linked to source data and complex terrain. In particular, products based on rain 
gauge data showed remarkable similarity, but differed considerably, showing almost total loss of extremal dependence during 
DJF in mountainous regions, when compared with satellite products. Additionally, simulated re-forecasts revealed reason-
able temporal agreement with large scale generated extremes. The diversity and extent of discrepancies identified across all 
products raises important questions about their use, and we urge caution, particularly for products derived from satellite data.

Keywords  Precipitation · Extremes · Gridded products · Extreme value theory · Tail dependence · Comparison

1  Introduction

There is huge research interest in observational records of 
precipitation that spans environmental and hydrological 
modeling, climate change and resource and risk management 
(Groisman et al. 1999; Krishnamurthy and Shukla 2000; 
Alexander et al. 2006; Schar et al. 2016). Understanding 
variation in precipitation—particularly the extremes—is 
critical for resource and emergency management, especially 
in the face of droughts and floods in a changing climate. The 
quality of the observational record is therefore also critical.

Obtaining a complete spatio-temporal record of precipita-
tion is, however, not straightforward. Typically, networks of 

ground-based instruments providing in-situ measurements 
have the longest observational records although since the 
1980s these have been augmented by a range of satellite 
based radar platforms. Ground based radar is also a valuable 
measuring system for some applications. Further details of 
various observational approaches are described, for example, 
by Michaelides et al. (2009) and Tapiador et al. (2012). No 
single measurement approach yet provides a reliable and 
complete spatio-temporal record, which in part motivates 
the need for quality controlled compiled data sets. The two 
broad categories of measurement system used for large scale 
observations, rain gauge networks and satellite based radar, 
each suffers from its own set of limitations. Rain gauges can 
provide an accurate and continuous record at a single loca-
tion, although they may be affected by a variety of errors, 
including undercatch (Groisman and Legates 1994; Chvila 
et al. 2005; Kochendorfer et al. 2017). They may also suf-
fer from variance in management quality (Viney and Bates 
2004) and discontinuity due to changes in equipment or 
location (Leeper et al. 2015). Rain gauges tend to be fairly 
abundant in developed countries (Menne et al. 2012; Yatagai 
et al. 2012) but nonetheless the biggest, and most obvious 
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problem is the lack of spatial coverage. This can be exac-
erbated by the inaccessibility of remote or hostile terrain. 
Much of the western US, for example, is characterized by 
complex topography. The observational data must therefore 
be interpolated in some way (Thornton et al. 1997; Xie et al. 
2007; Hofstra et al. 2008; Zolina et al. 2014), often involving 
spatial methods related to kriging (Cressie 1993). Interpo-
lated values at unobserved locations are therefore subject 
to uncertainty from measurement error and the interpola-
tion method, both of which can be a strong function of oro-
graphic variability and regional atmospheric characteristics 
(Roe 2005; Lundquist et al. 2010; Boers et al. 2016). Over 
more recent decades satellite-born radar has been able to 
provide spatially and temporally continuous observations 
across the globe (Maggioni et al. 2016). Continuous cover-
age is desirable, but difficulties are introduced because pre-
cipitation is not measured directly but inferred from micro-
wave and infrared radar measurements, thus adding another 
layer of data processing that is subject to uncertainty and 
error (Iguchi et al. 2009; Tapiador et al. 2012). Nonetheless, 
these measurements are valuable where ground based obser-
vations are sparse, and they have received much attention in 
the research community (Behrangi et al. 2011; Jiang et al. 
2012; Xue et al. 2013; Blacutt et al. 2015; Miao et al. 2015; 
Conti et al. 2014; Ma et al. 2016).

In order to make data access more practical, and also to 
incorporate post-processing of the raw observations, a large 
number of geographically gridded precipitation products 
(referred to hereafter as “products”) have been developed. 
Global products may cover only the land surface (Adler et al. 
2003; Fick and Hijmans 2017; Schneider et al. 2017) but 
depend on satellite retrieval for complete coverage (Joyce 
et al. 2004; Huffman et al. 2007; Ashouri et al. 2015; Xie 
et al. 2017). Regional products are typically more diverse 
(and numerous) (Chen et al. 2008; Xie et al. 2007; Thornton 
et al. 1997; Livneh et al. 2013; Haylock et al. 2008; Auer 
et al. 2007; Herrera et al. 2016; Rauthe et al. 2013; Yatagai 
et al. 2012; Greene et al. 2008), and may incorporate some 
combination of direct measurement and radar. Applications 
of these products are extensive and diverse including direct 
studies of the data (Lambert et al. 2004), numerical model 
validation (Gervais et al. 2014a) and model input (Xue et al. 
2013; Dalhaus and Finger 2016). Clearly gridded products 
are a key element in the evaluation of climate models that 
generate output on similar grids (Wehner 2013; Chen et al. 
2013b; Sunyer et al. 2013; Kotlarski et al. 2014; Mehran 
et al. 2014; Gervais et al. 2014a). This alleviates the need 
to process gridded model output into a point format for 
comparison with a gauge network, although a transforma-
tion from point-to-grid, or vice-versa is required, and simi-
lar uncertainties are introduced in either case. In addition 
to observational products, reanalysis data, generated via 
the assimilation of observations into numerical weather 

forecasts, provide another source of precipitation data for 
comparison (Mesinger et al. 2006; Rienecker et al. 2011; 
Dee et al. 2011).

While all of these products are valuable to the research 
community, their use motivates some important questions. 
Firstly, is uncertainty information available, and is it robust? 
Secondly, given the importance of precipitation extremes, 
how well are the extremes represented? This paper primarily 
focusses on addressing the second question by intercom-
paring a range of products. However, before describing 
our approach we briefly discuss the more general issue of 
uncertainty.

Stronger focus on uncertainty is a growing trend in grid-
ded product development (Woldemeskel et al. 2013; Zolina 
et al. 2014; Isotta et al. 2014; Daly et al. 2017). Some, par-
ticularly more recent products including GPCP (Adler et al. 
2003), the ensemble product of Newman et al. (2015) and 
Daymet (Thornton et al. 2016), explicitly make available 
uncertainty information. However, many do not do so (CPC, 
Livneh, PRISM, NARR), and even where such information 
is available its use is not always straightforward. Newman 
et al. (2015), for example, provide 100 ensemble members, 
each 16 GB in size, making its use far from convenient. 
For satellite products, rigorous uncertainty estimates are 
more difficult to obtain, being a function of many sources 
including data and processing algorithms that are subject 
to regular recalibration (Ashouri et al. 2015). The diversity 
of products available, their respective approaches to uncer-
tainty estimation (if any) and the absence of a comprehen-
sive analysis, leaves product selection a considerable chal-
lenge. Nonetheless, more limited case-by-case studies often 
intercompare one or more products, usually on a regional 
basis (McAfee et al. 2014; Salio et al. 2015). A few studies 
have attempted to address this issue more comprehensively 
(Behnke et al. 2016; Henn et al. 2017). In particular, Henn 
et al. (2017) examine six publicly available gridded prod-
ucts by evaluating measures including the mean and rela-
tive difference in annual total precipitation. Geographically, 
they focus on complex elevated terrain, where in general 
products are known to show discrepancy, and they reveal 
a range of systematic differences between products in all 
evaluation metrics. A limited comparison with independent 
observations (stream flow data) also suggests that uncer-
tainty derived from all products may be an underestimate 
and like other studies, they caution users to be critical when 
selecting a product for use. The apparent lack of a clearly 
identifiable ground truth product raises questions about 
how to proceed with performance evaluation and product 
intercomparison. An ensemble approach would seem natu-
ral, analogous to studies of numerical simulations (Gleckler 
et al. 2008; Sanderson et al. 2017), where member products 
can be treated equally or weighted according to prior infor-
mation, perhaps based upon some measure of performance. 
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Similar approaches have been applied in the creation of 
observational data sets (Beck et al. 2017) and evaluations 
of methodologies for describing precipitation over specific 
regions (Pena-Arancibia et al. 2013). However, our objective 
is not to investigate in detail the sources of uncertainty in 
individual products or identify the most accurate product on 
this basis. In some sense, available products in totality may 
be considered the “ground truth” and as such, in this paper 
we propose to examine relationships between them. With 
this in mind, we return to the question of the representation 
of extremes.

Extremes of precipitation have been studied in numerous 
cases (Groisman et al. 1999; Alexander et al. 2006; King 
et al. 2013; Miao et al. 2015; Gervais et al. 2014b; Con-
tractor et al. 2015; Behnke et al. 2016), most often where a 
gridded product is compared to some “truth”—usually direct 
measurements from high quality rain gauge data. The defini-
tion of extreme can include measures defined directly from 
an empirical probability distribution, such as quantiles, and 
more practical metrics such as number of consecutive wet 
days. The extremal measure is also a function of the duration 
of the available data which must be considered. While some 
rain gauge data exceeds 100 years, often data sets are around 
20–30 years in duration, limited by satellite records or drawn 
from managed observational networks that have been imple-
mented more recently. In practice, the definition of extreme 
can vary considerably. Zhang et al. (2011) discuss indices for 
extreme precipitation at length, in the context of examining 
long term trends in extremes and the attribution of extremes 
to anthropogenic influence. While cautioning the use of grid-
ded products for the study of extremes, they also discuss the 
problem of converting point observation data to grid cells 
(typically for comparison with numerical simulation output). 
This issue is also investigated by Gervais et al. (2014b) who 
explicitly quantify errors in extreme precipitation introduced 
by gridding methodology as a function of target resolution 
and station density. Choice of methodology is reported 
to contribute up to a 30% difference. They emphasise the 
importance of station density and in particular how this is a 
function of geographic location where terrain and physical 
processes are variable. Like Zhang et al. (2011) they also 
discuss the important issue of the relationship between point 
observation and an areal average—analysis must be applied 
consistently in order to correctly conserve quantities. Other 
studies examine the use of gridded products to investigate 
both mean and extremes (Behnke et al. 2016; Contractor 
et al. 2015; King et al. 2013). King et al. (2013) in particular 
investigate the efficacy of using a high resolution gridded 
product to analyse trends in extreme rainfall and conclude 
that while viable, caution must be adopted. They recommend 
that products be tested in order to identify areas of weakness, 
such as low station density, where interpolation methods 
tend to perform poorly.

As discussed earlier, in contrast to these other studies, in 
this paper we examine the representation of precipitation 
extremes in gridded products without attempting to define 
a ground truth. We intercompare a range of widely used 
products for the CONUS in a pairwise approach using meth-
ods from bivariate extreme value theory. More specifically, 
between pairs of products we infer empirically the level of 
asymptotic dependence—dependence in the extremes. Our 
analysis is related to that used in weather forecast scoring 
and verification (Stephenson et al. 2008). The approach 
examines relationships between products consistently, 
revealing key similarities and differences which can guide 
further exploration and analysis. A wide ranging intercom-
parison of this type thus reveals information that is less clear 
when analysis is limited to a small number of products or 
focusses closely on the details of a single methodology. In 
addition to the observational products, we also include in the 
analysis a simulated re-forecast data set that provides useful 
insight into modeling issues. As far as we are aware this is 
the first study to make use of extreme value theory in this 
way with respect to observational data sets.

The structure of this paper is as follows. In Sect. 2, we 
describe the gridded products used in the analysis. Section 3 
describes our methodology including relevant aspects of 
extreme value theory. Our results are presented in Sect. 4 
with following discussion in Sect. 5, and conclusions in 
Sect. 6.

2 � Datasets

Our study area is the CONUS for which there are numer-
ous gridded products available. All products used provide 
daily precipitation totals at native spatial resolutions rang-
ing from approximately 1–25 km. The ten products and 
one simulation data set examined in this paper are listed in 
Table 1. For the analysis, products were (re-)gridded to the 
native grid for the (Climate Prediction Center) CPC data 
set, which is rectilinear at 1∕4◦ × 1∕4◦ . A bilinear interpo-
lation method was applied to those products provided on a 
rectilinear grid (Maurer, Livneh, ERA, ILIAD), otherwise 
the area-conservative method of the Earth System Mod-
eling Framework (Hill et al. 2004) was employed. TRMM, 
CMPORPH, PERSIANN and CPC all use coincident grids 
by default. We conducted a pairwise analysis that required 
time series of equal length, therefore the length of each 
paired data set was constrained by the mutually latest start 
and earliest end dates. This is not problematic for our extre-
mal analysis methodology because it is not dependent on 
time series length, but shorter series, and hence fewer data, 
result in greater uncertainty (see Sect. 3.1 for more details). 
It is beyond the scope of this work to go into the details 
of the gridding methodology for each product, which are 
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numerous; however, we briefly summarize. The CPC uni-
fied gauge-based analysis of daily precipitation over CONUS 
is based upon an optimal interpolation approach following 
(Gandin and Hardin 1965). The Maurer and Livneh data 
sets, the latter being a revised and lengthened version of the 
former, employ a variant of an inverse distance and direc-
tional weighting scheme (Shepard 1968). The resulting grids 
for both of these approaches are calibrated against PRISM 
monthly climatological values. The PRISM (Precipitation-
Elevation Regressions on Independent Slopes Model) prod-
uct itself is generated from the PRISM algorithm that, in 
common with CPC, uses a linear regression approach com-
bining gauge data by weighting based upon factors such 
as location, elevation, coastal proximity, topographic facet 
orientation and others. Daymet uses a different approach 
based upon spatial convolution, described by Thornton 
et al. (1997). Source data for the gauge-based products is 
varied but there is considerable overlap. Both the CPC and 
Livneh products incorporate daily totals from the National 
Oceanic and Atmospheric Administration (NOAA) coopera-
tive observer stations. The Global Historical Climatology 
Network-Daily (GHCN-D) dataset (Menne et al. 2012), or 
subsets thereof (subject to quality control, for example), are 
often used. It would be reasonable to expect that these prod-
ucts are highly correlated noting the often common input 
data and similar interpolation schemes.

Satellite based products also vary considerably in terms 
of their source data and processing algorithms. They have 
gone through many revisions, which incorporate data from 
different instruments and satellites. See e.g. Maggioni et al. 
(2016), Huffman et al. (2007), Joyce et al. (2004), Chen 
et al. (2013a) and Xie et al. (2017). PERSIANN is somewhat 
unique here in that it combines both rain gauge and satel-
lite data. Reanalysis data, derived principally from simu-
lated weather forecasts, may incorporate both rain gauge 

and satellite precipitation, along with a range of other cli-
matic variables, through a data assimilation scheme. With 
relevance to this study, the NARR (Mesinger et al. 2006) 
assimilates principally CPC (rain gauge) precipitation data 
over land, and satellite-derived data over coastal and oceanic 
regions, whereas the ERA global product (Dee et al. 2011) 
assimilates only from satellites. In particular they discuss 
difficulties, such as excessive tropical rainfall, when deriving 
precipitation rates from satellite observed infrared radiances, 
covered also by Uppala et al. (2005).

The InitiaLIzed-ensemble, Analyze, and Develop 
(ILIAD) framework (O’Brien et al. 2016) was used to gen-
erate a five year time series of re-forecasts in order to com-
pare observed and simulated weather events across multiple 
resolutions. It employs the Community Earth System Model 
(CESM), initialized by the US National Center for Environ-
mental Protection (NCEP) reanalysis data set. Since each 
day is initialised from reanalysis, the simulated state of the 
atmosphere is constrained to remain close to the observed 
state. The output data set used here comprises a 5 year time 
series of the 4th-day forecast. Note that 5 years is substan-
tially shorter in duration than the other data sets considered 
in this study, which gives rise to a higher variance in the sta-
tistical estimates that we generate (see Sect. 3). The detailed 
analysis of simulation output is not within the scope of this 
study but the inclusion of a simulated data set provides a 
useful comparison.

3 � Methodology

Our investigation examines variability in the correspondence 
of extreme precipitation events by analysing pairs of grid-
ded data products. Comparison of data sets often involves 
summary measures such as correlation. While correlation is 

Table 1   Gridded precipitation 
products and data sets assessed 
over the CONUS

Letters of the fourth column designate (G)auge data, (S)atellite data, (C)ombined sources (e.g. both gauge 
and satellite), (R)eanalysis and (M)odel output

Product name (reference) Original resolution First-last (total) years Data type

CPC (http://www.esrl.noaa.gov/psd/data/gridd​
ed/data.unifi​ed.daily​.conus​.html)

1∕4◦ 1950–2017 (68) G

Maurer (Maurer et al. 2002) 1∕8◦ 1950–1999 (50) G
Livneh (Livneh et al. 2013) 1∕16◦ 1950–2011 (62) G
PRISM (Daly et al. 2008) 4 km ( ∼ 1∕25◦) 1981–2017 (37) G
Daymet (http://dayme​t.ornl.gov/overv​iew.html) 1 km ( ∼ 1∕100◦) 1980–2017 (38) G
TRMM V7 (Huffman et al. 2007) 1∕4◦ 1998–2017 (20) S
CMORPH 1.0 (Xie et al. 2007) 1∕4◦ 1998–2017 (20) S
PERSIANN-CDR (Ashouri et al. 2015) 1∕4◦ 1983–2017 (35) C
NARR (Mesinger et al. 2006) 1∕4◦ 1979–2015 (37) R
ERA-Interim (Dee et al. 2011) 1∕4◦ 1979–2015 (37) R
ILIAD CESM (O’Brien et al. 2016) 0.28◦ 2005–2009 (5) M

http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html
http://daymet.ornl.gov/overview.html
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influenced by the extremes, it is a summary of the whole of 
the data and is of much less use in making statements about 
the extremes in particular. Our approach employs methods 
derived from extreme value theory that share a connection 
with weather forecast verification, where two data sets—
the prediction and observation—are compared statistically 
(discussed further at the end of this section and in Sect. 5). 
In contrast to that example we focus on comparing pairs of 
data sets where both are representations of reality. We do not 
therefore define a “ground truth” against which comparisons 
can be made nor do we attempt to determine the quality or 
accuracy of any individual data set in an absolute sense. 
However, our approach focusses on the extremes, and by 
considering each data set as an ensemble member we build 
a picture of the structure of the representation of extremes 
within the ensemble.

In the remainder of the section we provide a summary of 
the statistical methods employed.

3.1 � Extreme value theory

Extreme value theory provides a framework for studying the 
upper (or lower) tail of a probability distribution. There is 
an extensive literature covering this topic and the reader is 
directed to Coles (2001), Weller et al. (2012) and references 
therein for in-depth discussion. Davison and Huser (2015) 
provide an up-to-date review of the use of extreme value 
theory in current research topics.

In weather and climate research it is common to see anal-
ysis of the lower order moments of a population distribution 
but perhaps less so of the tails of the distribution. We there-
fore start by emphasising the important distinction between 
the two regimes. Gaussian distributed data exhibit exponen-
tially decaying tails and so the probability of samples from 
such a population lying much beyond three standard devia-
tions becomes vanishingly small. However, many physical 
variables, such as precipitation or the height of ocean waves 
exhibit probability distributions with tails that decay more 
slowly. Observations lying many standard deviations from 
the mean may occur with appreciable probability. Given a 
population characterized by a heavy-tailed distribution, the 
observation of a new extreme event could have a substantial 
influence on estimates of further extremes. Accurate estima-
tion of the behavior of the tail is crucial to, for example, esti-
mates of return times for high magnitude weather extremes 
upon which the safe design of infrastructure relies. Extreme 
value theory therefore provides us a statistical framework in 
which we can study extremes.

Univariate extreme value theory is often employed 
to investigate the properties of climate extremes (Weh-
ner 2013; Timmermans et al. 2017). Typically a param-
eterized extreme value probability distribution is fitted 
to the extremes of the data set using a block-maxima or 

peaks-over-a-high-threshold method (Coles 2001; Davi-
son and Smith 1990). The fitted model can then be used 
for statistical inference about extremal properties, such 
as long return times. However, this paper presents a dif-
ferent kind of application by making use of methods from 
bivariate extreme value theory. The approach is similar in 
concept to an analysis of the correlation between two data 
sets. For the extremes of data however, correlation is inap-
propriate because it considers the totality of the data. In 
fact, a particularly important topic in multivariate extreme 
value theory is how to model the possible range of classes of 
extremal dependence. More specifically, two general cases 
exist: asymptotic dependence and asymptotic independence. 
In practice, the two cases can be difficult to distinguish for-
mally but it is important to understand the difference and 
the implication of each regime. For correlated variables, 
if one underestimates the correlation, the joint probability 
of two events will be underestimated. In the same way, a 
mischaracterization of extremal dependence can lead to an 
underestimate of the joint probability of extremes. To use a 
practical example, if one were designing coastal defenses, 
knowledge of the joint probability of high waves and heavy 
rainfall—both related to flooding—would be critical. Robust 
inference for the asymptotic behavior between wave height 
and rainfall would therefore be required. We refer the reader 
to Coles (2001) (chapter 8), Ledford and Tawn (1996) and 
Wadsworth et al. (2017), for further details about bivariate 
extreme value theory beyond what we cover below. Suppose 
(X, Y) is a pair of random variables whose joint tail behavior 
we wish to characterize. Because X and Y can have different 
behavior and more specifically can become extreme at very 
different values, it is typical to account for marginal behav-
ior before characterizing extremal dependence. This is not 
too different from correlation which accounts for marginal 
behavior by accounting for the variance of each variable. 
Let FX(x) = P(X ≤ x) be the cumulative distribution function 
(cdf) of X and similarly for Y. It is well known that apply-
ing the cdf to the random variable results in a Uniform[0,1] 
random variable; that is P(FX(X) ≤ q) = q for 0 ≤ q ≤ 1 . A 
parameter that describes extremal dependence is,

which has the straightforward interpretation of the prob-
ability that X is at its most extreme levels given that Y is 
at its most extreme levels. � is a measure of the strength of 
dependence in the asymptotic dependent setting, and asymp-
totic independence corresponds to � = 0 . If X and Y are 
independent then they are also asymptotically independent. 
However the converse is not true; if (X, Y) are Gaussian with 
correlation 𝜌 < 1 , they are asymptotically independent.

(1)

𝜒 = lim
q→1

P(FX(X) > q ∣ FY (Y) > q) = lim
q→1

P(FX(X) > q,FY (Y) > q)

P(FY (Y) > q)
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Since � is defined as a limit, it is challenging to esti-
mate. One wants to limit one’s attention to only the very 
largest observations of each variable, and at the same 
time one needs to have an adequate number of observa-
tions to perform estimation. Standard practice is to define 
𝜒̂(q) = P̂(FX(X) > q ∣ FY (Y) > q) where P̂ denotes an esti-
mated probability, and obtain estimates of 𝜒̂(q) for increas-
ing values of q approaching 1. We estimate 𝜒̂(q) using the 
chiplot function in R’s evd library, which uses an esti-
mator provided by Coles et al. (1999). This estimator uses a 
copula approach which takes advantage of symmetry arising 
from the fact that the denominator in the right-most expres-
sion in (1) can be replaced by P(FX(X) > q).

We now demonstrate the use of � when examining extre-
mal dependence in some synthetic bivariate data sampled 
from two different families of distributions. We illustrate 
asymptotic independence by analyzing bivariate Gaussian 
random variables. To illustrate asymptotic dependence, we 
simulate data from a bivariate logistic distribution (see Coles 
2001) which has a distribution function given by,

For this distribution, the true (that is the limit as q → 0 ) 
value of � = 2 − 2� . Samples of size n = 1e4 are shown in 
Fig. 1a–d and their corresponding “ �-plots” in Fig. 1e–h. 
Empirical density contours, derived from kernel density 
estimation, have been added for purposes of comparison. 
Firstly, samples are drawn from two bivariate Gaussian dis-
tributions defined such that correlation � = 0.60, 0.95 , shown 
in Fig. 1a, b respectively. In both cases we draw attention to 
the lack of points in the upper right quadrant of the figures, 
much greater than the mean, consistent with the exponential 
decay of probability density. This is also clear from the lack 
of samples anywhere far from the joint 0.99 quantile line. 
Even in cases of strong correlation, asymptotic independ-
ence implies that the dependence between jointly Gaussian 
random variables weakens (in the sense of � ) as one looks 
further and further into the tail. This reinforces the need to 
consider extremes in a rather different way to the lower order 
moments. Samples from the logistic bivariate extreme value 
distribution (2) for � = 0.3, 0.75 are shown in Fig. 1c, d. In 
contrast to the Gaussian cases we now see sampled points 
lying in the upper right quadrant far beyond the joint 0.99 
quantile contour, indicative of a heavy joint tail. The differ-
ence in strength of dependence is clear from the more tightly 
constrained tail in Fig. 1d.

Figure 1e–h show 𝜒̂(q) plotted against quantile, q, which 
provides a means of quantifying the strength of depend-
ence, under the assumption of asymptotic dependence. If 
𝜒̂(q) tends to zero in the limit of the data then we can assume 
� = 0 and that the data are asymptotically independent. Note 
that the expression for the confidence intervals, which is 

(2)
P(X ≤ x,Y ≤ y) = exp[−(x−1∕𝛼 + y−1∕𝛼)𝛼], x > 0, y > 0.

proportional to � and the square root of the sample size, is 
derived using the delta method (see Coles et al. 1999). On 
inspection, a degree of interpretation is required, particularly 
noting that the 95% confidence limits (dashed lines) grow 
as the data becomes sparse towards the limit. The sample 
size n = 1e4 is approximately equivalent to 30 years of daily 
observations. In Fig. 1e, f we might have reason to suspect 
asymptotic independence, since the trend appears to have a 
negative gradient although even for highly correlated Gauss-
ian data, the confidence limits bound a constant trend in � 
even into the high quantiles. Figure 1g, h suggest a more 
stable trend. For comparison, samples of size n = 3e3 ( ∼ 
9 years) and n = 1e5 ( ∼ 275 years) for both Gaussian and 
bivariate logistic distributions are shown in Figure S1 (in the 
supplementary information). In cases where only 10 years of 
observations are available (with fewer, in the ILIAD data set, 
having been used in this study), the large estimation uncer-
tainty should dictate caution. The challenge of determining 
asymptotic dependence or independence is an active area of 
statistical research and lies beyond the scope of this paper. 
For purposes here, it is important to have an understanding 
of these two regimes and, most importantly, to know that 
familiar measures of dependence have no value in describing 
extremal dependence.

To motivate studying extremal dependence we ear-
lier spoke of the need to estimate the probability of joint 
exceedances, such as with our coastal defense example. 
In this work, we will use � for an entirely different and 
novel purpose: to compare extremes between observational 
data sets. It stands to reason that two observational data 
sets should exhibit asymptotic dependence since both are 
based on observations of the same weather, and therefore 
should exhibit extreme behavior at the same time. While � 
has not previously been used to compare extremes between 
observational data sets, examples of similar studies of tail 
dependence have been presented in the literature. Weller 
et al. (2012) used � to compare observations to model out-
put, and Stephenson et al. (2008) used a related measure for 
weather forecast verification. Kuhn et al. (2007) also evalu-
ated tail dependence in an investigation of spatial precipita-
tion extremes in South America.

3.2 � Approach

Having described measures for the assessment of observa-
tional data extremes we now address their application to 
precipitation products. Our objective is to infer extremal 
dependence between pairs of data sets. Gridded products 
generally provide complete spatial and temporal coverage 
within their designated domain (occasionally exceptions 
to this occur—we found a corrupt day of data in 1952 in 
CPC, and a few data gaps largely outside the CONUS in 
all satellite products). Thus, when undertaking a pairwise 
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Fig. 1   Samples drawn from 
parameterized bivariate distri-
butions (a–d) and correspond-
ing computation of 𝜒̂(q) with 
95% confidence intervals (e–h)
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analysis, each spatial grid cell provides a bivariate distri-
bution from which we can infer extremal dependence using 
the methods described in Sect. 3.1. Since 𝜒̂(q) is exhibits 
high variability for q near 1, and to reduce the 𝜒̂(q) plot 
to a single number for comparison between products, we 
compute 𝜒̂(q) , averaged over an interval at a high quantile. 
Specifically,

Equation (3) therefore captures correspondence in the high 
quantiles but attempts to minimize the effect of uncertainty 
as data becomes sparse.

We apply (3) to the complete continuous bivariate time 
series formed by each pair of products, where the length 
of the time series is dictated by the coincidence of mutual 
start and end dates. As such, some data is discarded in all 
analyses since no pair of products coincide for their entire 
record. The longest period of coincidence is between CPC 
and Livneh (62 years) with the shortest being comparisons 
with Iliad (5 years). We have also considered seasonality 
based on winter (DJF) and summer (JJA) months. In these 
cases 𝜒̂∗ is computed only for the continuous time series 
of those months during each year. Given all products aim 
to capture the historical record, we anticipate good agree-
ment between the products and that asymptotic depend-
ence will be strong.

We emphasize here a few important aspects of our 
analysis. Only temporal dependence is evaluated, and 
we treat geographic location marginally (i.e. treating 
grid cells independently). Furthermore, use of (3) does 
not account for differences in (temporal) marginal behav-
ior, obviated by the use of a copula based estimator that 
involves transformation of the (two) input precipitation 
data sets to uniform marginal distributions. We can thus 
say nothing about the differences in shape of the marginal 
distributions, or their tails, between products, such as the 
absolute magnitude of the extremes, however, many stud-
ies typically undertake such analysis, and our approach is 
complimentary in that sense.

Another relevant issue is that of possible non-station-
arity in one or both time series. In studies of precipitation 
climatology, non-stationarity of the climate system, such 
as that induced by human influence, is typically of interest 
and trends in both mean and extremes with regional vari-
ation have been identified for the CONUS (Kunkel et al. 
2013; Easterling et al. 2017). If extremal dependence is a 
function of such trends, then extremal analysis could be 
affected, in particular because some comparisons are con-
ducted over different time periods due to the availability 
of data. However, a temporal trend due to climate change 
should not affect � as it measures whether extremes occur 

(3)𝜒̂∗ ∶=
∑

0.90<q≤0.95

𝜒̂(q),

concurrently, which can be separated from marginal 
behavior. Furthermore, climate change induced trends 
over the observation periods we have available are small. 
We explore these issues further, in Sect. 4.4 and in the 
supplementary information (Text S1 and Figures S4, S5).

3.3 � Computational aspects

� is very cheap to compute for a bivariate daily time series 
over many decades, using the evd for R (https​://cran.r-
proje​ct.org/web/packa​ges/evd), for example. However, 
when working with gridded data sets in high dimension this 
becomes fairly expensive. We employed a high performance 
computing platform running R in parallel using pbdR (Ost-
rouchov et al. 2012) to perform the analysis. Each analysis 
took between approximately one and two hours on 32 pro-
cessing cores.

4 � Results

4.1 � Temporal considerations

We begin by highlighting how inconsistent handling of 
observation timing can introduce artifacts and errors into 
gridded data sets. We found that comparisons between the 
Maurer, Livneh and CPC data sets (those derived explicitly 
from rain gauges) revealed temporal inconsistencies on the 
daily time scale. In particular, when comparing Maurer and 
CPC, it is easily seen that a lag has been introduced. Figure 2 
shows scatter plots for two different locations: California 
(lon. − 121.2, lat. 39.8); Kansas (lon. − 99.3, lat. 37.2). 
Figure 2a shows strong correlation throughout the range of 
the data for California (this trend is fairly consistent for the 
west coast). However, Fig. 2b shows very poor correlation 
in Kansas. In fact, the structure of the data is indicative of a 
data set plotted against a lag of itself. We can recover much 
higher correlation by simply lagging the Maurer data by one 
day (c). This suggests that the Maurer data set introduced a 
temporal lag that is a function of location. This appears to 
be consistent with Maurer et al. (2002) who state that “Daily 
precipitation totals were assigned to each day based on the 
time of observation for the gauge.”. Although no discussion 
about the validity of this approach, or its potential impact 
is provided, we suspect that this timing adjustment may be 
responsible for the apparent discrepancy we see in Fig. 2. 
The potential (deleterious) impact of inconsistent observa-
tion timing has been reported in different settings (Holder 
et al. 2006; Oyler and Nicholas 2017). Interestingly, we find 
further temporal conflicts when comparing the Maurer and 
Livneh data sets. Figure 3a shows a comparison of data in 
California where correlation throughout the range of the data 
is fairly high. In Montana, Fig. 3b, correlation is extremely 

https://cran.r-project.org/web/packages/evd
https://cran.r-project.org/web/packages/evd
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high suggesting the use of common observations, possibly 
due to a limited number of rain gauges in this region. When 
we consider Kansas however, evidence of temporal conflict 
is again found. In fact, this case is more interesting because 
there appear to be data at different lags. Specifically, we can 
see what looks like both a strong correlation in some of the 
data (points on the 1:1 line) and a lagged correlation (dis-
persed points closer to the axes), very similar to that seen 
in Fig. 2b. This suggests that the timing of the observations 
has been adjusted with respect to the Maurer product (such 
that multiday storms are apportioned differently) and/or that 
observations from a new source have been included (noting 
that while Livneh is a temporal extension to Maurer, the 
comparison here necessarily spans only the duration of the 
Maurer product, 1950–1999). In either case, the scatter evi-
dent in Fig. 3c suggests an inconsistency in how observation 
timing was handled.

These findings motivate further consideration, in particu-
lar in the latter case where the source data may be temporally 
inconsistent. Where an analysis depends on daily data (e.g. a 
comparison of a daily hindcast with a gridded product), the 

choice of each of these data sets (Maurer, CPC and Livneh) 
would seem to be important. Alternatively, since heavy 
rainfall events often span multiple days, timing discrepan-
cies can be mitigated by applying an appropriate average. 
3- and 5-day averages are often used (Wehner et al. 2014; 
Lundquist et al. 2010) and we take a similar approach here. 
Figure 3 reveals that observation timing discrepancy has 
geographic dependence, however it would be onerous to 
implement an averaging scheme as a function of location, 
and so we apply a consistent average to the whole data set 
regardless (note that the average is applied consistently to 
both time series). Figure 4 shows the effect of moving aver-
ages on the Pearson correlation. Firstly, note that in Fig. 4a, 
where correlation is lowest, the effect of temporal misalign-
ment appears to reveal US state, and possibly time zone, 
boundaries. California stands out, and the border between 
New Mexico and Texas also appears to be visible. Note that 
the latter boundary also corresponds to a geographic change 
in time zone but the artifact is not apparent at all latitudes. 
Figure 4b shows that a two day average brings a substantial 
increase in correlation for most regions, most noticeably in 

Fig. 2   Scatter plots for CPC and Maurer data in California and Kansas (a, b) with a lag introduced into data in Kansas (c)

Fig. 3   Scatter plots for Maurer and Livneh data in California, Montana and Kansas



	 B. Timmermans et al.

1 3

the eastern US. This suggests that the majority of precipita-
tion events that contribute to the initial discrepancy are fully 
captured within a two day period, and the two data sets are 
converging to the same integrated total. Figure 4c, d show 
further smaller increases in correlation in most areas. It is 
however clear that some regions, mostly in the west, and in 
particular California, show a limited increase due to averag-
ing. In particular, those areas of low correlation that appear 
invariant under the averaging process indicate a more robust 
conflict between the data sets. “Hot spots” in light colors 
in the western US are examples of this. Poor precipitation 
estimates due to a lack of data, or inconsistent adjustment in 
elevated regions, in one or other product may be responsible. 
At this time we do not have an explanation for the apparently 
spurious data conflict in western Pennsylvania.

4.2 � Correlation and �‑statistics for CONUS

As for correlation, we initially calculated 𝜒̂∗ for CPC and 
Maurer to examine the effect of averaging, shown in Fig. 5. 
The length of averaging window (increasing with rows) 
was found to have a similar effect on 𝜒̂∗ to that of correla-
tion (seen in Fig. 4). In addition, an examination of how 
𝜒̂∗ is affected by “grid blocking” is shown in the second 
and third columns. This is akin to a spatial analogue to 
the possible removal of temporal artifacts by using a mov-
ing average (see also Weller et al. 2012). The principle 
is based on the idea that a peak value (due to a storm) 
might be spatially misaligned between products and a 
larger spatial domain may therefore capture the true event 
maximum. The dimensions of grid cells in the second and 
third columns are approximately 100 km and 250 km, 

respectively. Qualitatively, there appears to be little benefit 
in this approach—the general spatial pattern is maintained 
on the coarser grids, so in a sense it resembles the effect 
of an averaging process. We did not employ this approach 
further but it may be more relevant to an explicit spatial 
analysis, noting that the details are far from clear in this 
cursory inspection.

Using the 5-day average, we computed the (Pearson) 
correlation and 𝜒̂∗ for each pairwise comparison. Findings, 
in terms of both spatial pattern of dependence and product 
relationships are fairly consistent across both analyses so 
we focus here on results for 𝜒̂∗ , shown in Fig. 6. Corre-
lation analysis for all products is shown in Figure S2 in 
the supplementary information. The analysis is ordered 
by rows such that gauge-based products occupy the top 
three, followed by satellite, reanalysis and finally ILIAD. 
Note that the exclusion of Maurer here is in part due to 
it having been “superseded” by Livneh, and partly due to 
its lack of substantial temporal coincidence with TRMM, 
CMORPH and ILIAD (2, 2 and 0 years respectively). The 
gauge-based products show strong extremal dependence 
with each other, although clearly weaker for the satellite 
based products, particularly over complex terrain. Of the 
reanalysis products, NARR exhibits similar qualities to 
the gauge-based products, such as Livneh, although ERA 
seems to be consistently lower by ∼ 0.2. In fact, depend-
ence between ERA and TRMM, CMORPH and PER-
SIANN appears to be very low, suggesting that the data 
are asymptotically independent over large areas of the 
CONUS. The ILIAD simulation output also compares very 
poorly to most products. The only region showing con-
sistently high dependence across all data sets is the west 

Fig. 4   Correlation between CPC 
and Maurer over the CONUS 
for daily data and 2-, 3- and 
5-day averaging windows
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coast. This is consistent with the results for correlation and 
perhaps not surprising given the intense large scale events 
that dominate precipitation in that region.

The relative strengths of dependence between classes 
of products are clear from Fig. 6. There is little to distin-
guish between the rain gauge products, possibly including 
NARR, that are based upon many of the same underlying 
observations. Under close scrutiny however, comparisons 
with Livneh tend to show a more distinct pattern of disa-
greement in regions of elevated and irregular terrain such 
as the Rocky Mountains. Analysis involving satellite based 
products, particularly PERSIANN, tends to show smoother 
spatial features. However, arguably they show more variance 
in terms of comparisons with each other and with rain gauge 
products. TRMM and CMORPH for example, exhibit fairly 
strong dependence in the south east, but show strong conflict 
in the west, east of Sierra Nevada mountains. CMORPH 
tends to show the strongest east-west difference in all com-
parisons. Of the reanalysis, in general NARR compares 
more favourably to other products than ERA, particularly 
for the rain gauge products—likely attributable to the lack 
of assimilation of gauge observations in ERA.

Inconsistency originating from the treatment of elevated 
regions and between types of observation platforms are 
made clear when considering variation between analyses. 
Figure 7 shows the standard deviation of 𝜒̂∗ computed 
from all of the analyses excluding the ILIAD output 
(Fig. 7a), and only those involving gauge-based products 
(Fig. 7b). Note that the latter comprises a sample size of 
six only but serves to highlight the difference between the 
data types. In particular, the dominant source of variabil-
ity in the gauge-based products is on small scale and lies 
almost entirely over mountainous regions. However, this is 
small in absolute terms compared with the variance intro-
duced by the other products. In a, many regional features 
are visible, in particular small scale variability in the west 
and larger scale variability in the east. Individual loca-
tions showing high variance can be investigated on a case-
by-case basis. For example, the region just west of Salt 
Lake City (Utah)—the Great Salt Lake Desert—appears 
to be problematic. At an elevation of 1200 m, the region 
is fairly flat punctuated with a small number of moun-
tains. Annual precipitation is appreciable, ∼ 450 mm per 
year for Salt Lake City airport. However, a sparsity of rain 

Fig. 5   𝜒̂∗ for pairwise comparison of the CPC and Maurer products. 
3- and 5-day moving averages are applied in the second and third 
rows respectively. Analysis based on taking the maximum value 

within blocks of 4 × 4 and 10 × 10 native grid cells (at ∼ 25 km) is 
shown in the second and third columns, respectively
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gauges in that area, which spans in excess of 10,000 km2 , 
is likely to result in large uncertainties in interpolation 
that would affect the extremes in particular (Gervais et al. 
2014b). The highest value of the standard deviation in that 
particular region is ∼ 0.175. The values of 𝜒̂∗ for the six 
comparisons are in fact clustered into two groups: those 
compared with CPC and those compared with Livneh. Val-
ues for comparisons of CPC with PRISM and Daymet are 
respectively, 0.63 and 0.65, compared with 0.29 and 0.38 
for Livneh. Additionally, values for CPC vs Livneh and 

PRISM vs Daymet are 0.35 and 0.67. Livneh appears to be 
responsible for the majority of the variance, yielding low 
values of 𝜒̂∗ with each of the other products.

4.3 � Seasonality

We examined the effect of seasonality on 𝜒̂∗ based on win-
ter (DJF) and summer (JJA) months, shown in the bottom 
left and top right sections (respectively) of Fig. 8. Sea-
sonal decomposition reveals a strengthening of the spatial 
dependence pattern during DJF, with rather less change 

Fig. 6   𝜒̂∗ for pairwise comparisons of gridded products after applying a 5-day moving average

Fig. 7   Standard deviation of 𝜒̂∗ 
for all products (a) and gauge-
based products only (b)
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during JJA. This appears to reflect the differing strength 
in seasonal precipitation—the strongest events occur in 
winter and lower levels of precipitation that occur in sum-
mer are separated out. In JJA, the levels and spatial pat-
tern of dependence appear to closely resemble the annual 
analysis (Fig. 6). However, the results for DJF reveal other 
interesting points. Gauge based products show similarly 
with annual results, with slightly weaker dependence in 
the mountains, but comparisons with satellites deterio-
rate substantially. They all appear to exhibit zero depend-
ence in parts of the northern Rocky Mountains, but for 
CMORPH in particular, a large proportion of the west has 
no correspondence with any gauge based product. It turns 
out that for much of this region and time period CMORPH 
is zero, which in places results in spurious analysis out-
put, visible in Fig. 8 (bottom left) as dark streaks. This 
arises since only a few non-zero data points exist, and the 
estimator for � is close to one. Xie et al. (2017) describe 
the loss of winter time data due to post-processing, which 
appears to be responsible. For reference, we have included 
an example analysis from a single grid cell in Figure S3.

It is particularly important to recognise that the seasonal 
analysis reduces considerably the amount of data available. 
The ILIAD data set, for example, is reduced to approxi-
mately 450 days, and furthermore, depending on region and 
time period, many of those days may be zeros. Thus the 
estimation of 𝜒̂∗ is subject to very large uncertainty (con-
ceivably based on only a single event). Note that in areas 
showing no color, that affect analyses of ILIAD, CMORPH 
and to a lesser extent some other satellite based products and 
reanalysis, 𝜒̂∗ took on negative values due to a complete lack 
of dependence.

4.4 � Temporal non‑stationarity

As discussed briefly in Sect. 3.2, non-stationarity in pre-
cipitation time series is the subject of intense research, par-
ticularly with respect to extremes in the context of climate 
change. In some locations in the CONUS extremes may 
become more intense (Easterling et al. 2017). While such 
trends are small and essentially irrelevant to our analysis, it 
is interesting to separate the data record into different time 

Fig. 8   𝜒̂∗ for pairwise comparisons of gridded products during DJF (bottom left) and JJA (top right)
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periods and examine � between different products. This also 
helps to elucidate other inconsistencies in products, poten-
tially due to temporal changes in source observations, grid-
ding methodology and other factors.

To investigate this issue more fully, we have therefore 
computed 𝜒̂(q = 0.92) for CPC and Livneh for the two peri-
ods, 1950–1979 and 1980–2011. The difference, normalised 
by its associated standard error, SE0.92 , is shown in Fig. 9a, 
where we have removed data points that exhibit a difference 
of less than 2 SE0.92 . For comparison, we have done the same 
for CPC vs PRISM (1980–1998, 1999–2011) in b, and CPC 
vs TRMM (1998–2006, 2007– 2015) in c. In addition we 
provide Figures S4 and S5 in the supplementary information 
that show the values of 𝜒̂∗ for the two different time periods, 
and absolute differences between 𝜒̂∗ for each decade and the 
complete period.

The results show that for CPC vs Livneh, there is a robust 
decrease in extremal dependence in more recent years for 
a large part of the CONUS, that is not seen for the other 
two analyses (b, c). A close inspection of Fig. 9a however 
suggests that clusters of locations showing the largest differ-
ences are constrained by state boundaries in many parts of 
the CONUS, suggesting that observation timing is again rel-
evant and having an effect on extremal dependence. Figure 
S4 compares 𝜒̂∗ for the various periods, revealing that the 
result for the complete period (also seen in Fig. 6) is a little 
lower than the earlier half (b), and a little higher than the 
latter half (c). Since, with the exception of CPC vs Livneh, 
all analyses cover a period after 1979 (or later), Figure S4c 
(1980–2011) provides a more direct comparison over the 
recent period. Looking more closely by examining succes-
sive decades, Figure S5 reveals that extremal dependence 
was highest in the 1970s, and, almost without exception, this 
was systematically higher across the whole CONUS when 
compared to the 1990s and 2000s. Changes in availability, 
quality, use and selection of source data may have occurred, 
and in fact, inspection of Figs. 9a, S4b and S5 readily reveals 
spatial patterns of extremal dependence that correspond 
closely to state boundaries. This seems particularly clear 

before 1980, and likely related to the timing of observation 
issues that we identified in Sect. 4.1.

Although a detailed investigation of sources of non-
stationarity is beyond the scope of this paper, it appears to 
be relevant to CPC vs Livneh. It also appears less likely to 
be relevant to analyses over a shorter period, but a detailed 
case-by-case investigation would be required to confirm 
this. Nonetheless, this finding raises further questions as 
to the reliability of gridded products. Further discussion 
of Figures S4 and S5 is provided in the supplementary 
information.

5 � Discussion

5.1 � Statistical considerations and interpretation.

The application of a metric based upon the tail dependence 
parameter � appears to be a useful tool in this context, that 
explicitly quantifies temporal dependence in the extremes. 
Figures 1 and S1 showed that inference for � is not straight-
forward, thus motivating the use of 𝜒̂∗ . However, many 
complications remain, and 𝜒̂∗ does not necessarily mitigate 
difficulties associated with detecting asymptotic dependence. 
Importantly, we have yet to make use of uncertainty infor-
mation, either directly inferred (see Fig. 1) or from other 
sources (such as the precipitation products themselves), 
in evaluating robustness in estimation of 𝜒̂∗ . Nonetheless, 
interpretation is important issue.

In the context of our comparative study, �  appears to 
have both valuable qualitative and quantitative interpreta-
tion. Qualitatively, for the CONUS for example, we show 
substantial temporal disagreement between high quality 
rain gauge and satellite products in many regions, thus if 
one believes rain gauge products to be the “gold standard”, 
then this raises many questions about the use of satellites 
for extremal analysis. This naturally extends to applica-
tions where rain gauges are not available, and provides 
good reasons to question and interrogate satellite derived 

Fig. 9   Difference between 𝜒̂(q = 0.92) normalized by standard error 
for pairwise comparisons of gridded products for the first and second 
halves of their complete duration. CPC vs Livneh, CPC vs PRISM, 

CPC vs TRMM are shown in a–c, respectively. Points that exhibit a 
difference of less than 2 SE

0.92
 are not shown
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data when studying extremes elsewhere around the globe. 
This is reinforced further given that the CONUS is well 
studied, and source data and subsequent product devel-
opment are likely of the highest available quality. We 
do nonetheless see levels of disagreement even between 
gauge based products in mountainous regions. Quantita-
tively, Fig. 6 shows 𝜒̂∗ ∼ 0.5 in places, implying that the 
probability of temporal coincidence of the most extreme 
events in two products to be no better than a coin flip. 
This seems like a low level of agreement. For a numeri-
cal climate model validation (against observations), this 
may be regarded as acceptable, given current standards 
of model development, but for a regional extremal analy-
sis of some kind, or even a numerical weather forecast, 
this might be highly unsatisfactory. In this sense, 𝜒̂∗ can 
be used to measure extremal temporal dependence with a 
reference product in a consistent way. With this in mind, 
our results appear to raise rather challenging—even awk-
ward—questions over the accuracy of “gold standard” 
gridded products that face a myriad of applications in a 
leading scientific nation. It is unsurprising therefore that 
more detailed studies of complex terrain are being under-
taken (Henn et al. 2017) and that researchers urge caution 
when using gridded products (King et al. 2013).

However, the limited extremal differences between cer-
tain products in some regions (CPC, Daymet, PRISM), not-
ing also very high correlation (Figure S2), may suggest a 
convergence of gridding methodology and that sources of 
uncertainty are small. If we believe those to be reference 
data sets of high accuracy, then this study, having reviewed 
a wide range of products, provides a comprehensive exposé 
of which products diverge from the reference, and in which 
regions. In terms of applications, it seems clear from our 
results that gridded products must be chosen on a case-
by-case basis, but also that many other questions remain, 
such as those relating to marginal aspects of the product 
(e.g. magnitude bias, distribution characteristics etc). As 
an example, possibly relevant to model development, we 
anticipate that a user could define evaluation criteria based 
on an absolute value of 𝜒̂∗ , in much the same way as weather 
forecast scoring metrics (Ferro and Stephenson 2011). From 
there, a formal means of testing robustness could also be 
developed. Nonetheless, given the range of uncertainties and 
possible applications, we view our results as an indicator 
of extremal dependence, and encourage their interpretation 
in terms of relative strengths of dependence between com-
parisons. We also add that there can be problems inherent 
in the analysis of extremes without regard for the complete 
distribution (Lerch et al. 2017), and we advocate for the use 
of � , and perhaps related scoring measures, as part of any 
holistic intercomparison. Ultimately, the question of abso-
lute accuracy of any given product is much further reaching, 
and our analysis serves as a guide to direct enquiry. We make 

suggestions as to possible routes for development of this 
approach at the end of this section.

5.2 � Spatial variation of dependence

It is clear from Figs. 6, 8 and S2 that the spatial structure 
seen in temporal extremal dependence and correlation is 
fairly consistent throughout the analysis. In general there 
is a distinction between the eastern and western US, often 
marked by the edge of the Rocky Mountains, and consist-
ently high dependence on the west coast. Seasonally, a more 
uniform pattern is seen during JJA and more divergence 
east-to-west is seen during DJF. Both gauge- and satellite-
based products tend to more strongly conflict over elevated 
terrain, which we readily attribute to the challenges of inter-
polating station data over complex terrain (Henn et al. 2017), 
and various issues with inference from satellite radar. Over 
the CONUS it is well known that rain gauge density is much 
lower in the western mountainous regions, and that such 
stations can be substantially affected by location elevation 
(Groisman and Legates 1994; Daly et al. 2017). Satellites are 
known to over-estimate the extremes in mountainous areas 
(Xue et al. 2013; Salio et al. 2015) but they also struggle 
with cold weather precipitation. (Xie et al. 2017) describe 
the loss of information due to data quality screening due to 
snow coverage in winter, and this seems to be commensu-
rate with the consistent discrepancy of CMORPH with other 
products during DJF (see Fig. 8).

In addition to orographic effects, spatial variation of 
the underlying precipitation processes appears to affect 
the analysis. ERA and ILIAD, based upon on numerical 
simulation, appear to struggle with capturing summer time 
convective precipitation in the midwest, compared with rain 
gauges. NARR however, assimilates gauge-based observa-
tions directly and exhibits dramatically higher dependence 
in both JJA and DJF. The US west coast stands out some-
what uniquely as a region of consistently high agreement 
in the extremes, although with varying relative strength. It 
experiences heavy precipitation in DJF, where a few high 
magnitude seasonal storms due to extratropical cyclones and 
atmospheric rivers are responsible for almost the entirety of 
precipitation. In California, this often falls heavily on the 
Sierra Nevada mountains, which are clearly visible in nearly 
all panels of Figs. 6 and 8. King et al. (2013) note a similar 
phenomenon in Southern Australia, where correspondence 
between a gridded product and reference data is found to be 
higher on the coast. They speculate that this may be due to 
the majority of heavy precipitation being due to synoptic 
scale weather activity. Notable consistency between ERA 
and ILIAD, and other products suggests that the numerical 
models do capture large scale precipitation extremes fairly 
well. ERA also exhibits dependency with gauge-based prod-
ucts in the northeast in DJF.
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5.3 � Product groupings

It is particularly interesting that products fall into fairly well 
defined groupings that correspond to the sources of obser-
vational data (given our choice of color scheme in Figs. 6 
and 8). Simply put, the strength of correspondence—both 
correlation and extremal dependence—is ordered by obser-
vation type: rain-gauge, satellite, reanalysis and simulation. 
This is consistent with the fact that a high quality rain gauge 
network has lower uncertainty than estimates from satellites, 
and that data based upon numerical simulation are typically 
somewhat less accurate and more uncertain still. The four 
rain gauge-based products are clearly characterized by com-
mon source data, but given the range of sources of uncer-
tainty in this analysis, including those originating in the raw 
source data, post-processing and the inference conducted 
here, it is somewhat surprising that there is so little varia-
tion. Figure 7b shows the standard deviation is low (< 0.05) 
in many locations. However, extremal dependence is not per-
fect, 𝜒̂∗ ∼ 0.8 , implying that some source(s) of uncertainty 
may be affecting each product in a fairly consistent way. 
Variation in interpolation method could be an important 
consideration. Attribution of dependence characteristics to 
sources of uncertainty is challenging although some factors 
are apparent. Satellite derived precipitation suffers from bias 
in both warm and cold seasons, and reanalysis data appears 
to be sensitive to which data is assimilated and how it is 
done.

Regardless, the spread in extremal dependence across all 
groups of products that we have identified raises important 
questions about sources of uncertainty and where and when 
certain products should and should not be used. At the very 
least, it seems one should be particularly cautious in the 
absence of a high quality rain gauge network.

5.4 � Regridding and product standardization

During this study, we found a remarkable lack of stand-
ardization across product format, leading to the need for 
extensive post-processing that could introduce errors. For 
example, PRISM and CMORPH are provided only in binary 
formats, ERA contains (very small) negative precipitation, 
and while Daymet are available in the more convenient 
NetCDF format, the former adopts a “standardized” 365 day 
year (leap days are included but December 31 is dropped 
from leap years) and the latter lacks a time variable. Geo-
graphic grid configurations are almost universally different, 
dictating the need for a choice of regridding methodol-
ogy (of which there are many), and we recognize this as a 
potentially important source of uncertainty. Choice of grid-
ding algorithm may be influential, but re-gridding typically 
smooths out extremal information and inevitably a choice of 
target resolution is required for direct comparisons, which 

might unfavourably affect certain products, including those 
that require regridding, and those that are processed to a 
coarser grid. We did not undertake any specific investigation 
of the impact of (re-)gridding, judging that any introduced 
uncertainty was no greater than other relevant sources in 
this case. However, we anticipate addressing this issue more 
fully in any future studies of this kind. While we acknowl-
edge that there are many scientific, practical and historic 
reasons for disparities in product format and availability, 
many pitfalls await the researcher who wishes to use multi-
ple products (which we advocate). Acknowledging that wide 
ranging intercomparison studies of this kind are beneficial 
and necessary, the additional provision of a standardized 
format (e.g. rectilinear gridded product as monthly NetCDF 
files) by developers, could bring considerable benefit to 
users, and alleviate problems and risks of errors potentially 
introduced through lengthy reformatting processes.

5.5 � Further developments

A number of opportunities exist for further development 
of this approach, including both inference for � , the use 
of alternative measures and investigation of additional data 
products. Firstly, we acknowledge that the choice of formu-
lation of 𝜒̂∗ is somewhat arbitrary and it may be advanta-
geous to explore alternatives. For example, on closer inspec-
tion of Fig. 1f, a negative trend in 𝜒̂(q) is evident, indicative 
of a decreasing level of dependence with quantile. A revised 
metric that could capture the trend, or other higher order 
behavior, would be more informative and help mitigate 
errors arising from point or average estimates. While 𝜒̂(q) is 
based on a non-parametric approach following (Coles et al. 
1999), parametric models for extremal dependence struc-
ture are available. Our results suggest a range of strength of 
dependence, from strong asymptotic dependence, particu-
larly between gauge-based products, to weakly correlated 
and likely asymptotically independent data sets. Develop-
ment of flexible statistical models that can capture a range 
of extremal dependence structure is a key area of research 
in multivariate extreme value theory (see e.g. Ledford and 
Tawn 1996, 1997), and very much a current focus (Davison 
and Huser 2015; Huser et al. 2017; Wadsworth et al. 2017). 
Parametric models like this may provide a more formal 
framework in which to assess extremal dependence between 
precipitation data sets, and as such offer a potentially attrac-
tive avenue of further investigation.

We noted in Sect. 3.1 that inference for extremal depend-
ence is related to scoring statistics that are used, in particu-
lar, in weather forecast verification (Jolliffe and Stephen-
son 2012; Neiting and Raftery 2007). Alternative scoring 
measures, that offer different properties than � , are proposed 
and discussed by Ferro and Stephenson (2011). Although 
their focus is on weather forecasting, it is clear that there 
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are relevant linkages with our approach for observational 
data and a more detailed examination of alternative scoring 
metrics could be fruitful in this context.

In terms of broadening the exploration of precipitation 
products and data sets, the scope of this study could easily 
be expanded to other widely used precipitation products both 
over the CONUS and worldwide. We note in particular that 
Newman et al. (2015) recently developed a rain gauge-based 
product that employs a probabilistic interpolation method, 
and they provide uncertainty information from the gridding 
process as an ensemble of 100 grids, each sampled from 
the interpolation process. At 1∕8◦ resolution over CONUS, 
this represents a large amount of data to work with which 
presents a challenge, but offers a potentially exciting way of 
exploring uncertainty more explicitly in this kind of analy-
sis. With the increasing availability of a range of higher reso-
lution products, our approach could be useful in identifying 
regions where improvements are (and are not) being made. 
In particular, we advocate for the use of our approach in 
contexts where uncertainties are well known, such as Daly 
et al. (2017). In such controlled conditions, differences in 
estimates of � could be attributed robustly to known sources 
of uncertainty, thus providing clearer interpretation when 
applied to larger scale situations.

6 � Conclusions

We have computed both correlation, and extremal depend-
ence for annual and seasonal data, based upon the tail 
dependence measure � , for time series of 5-day averaged 
accumulated precipitation from a wide range of publicly 
available gridded precipitation products over the CONUS 
at 25 km resolution. The application of these complimen-
tary methods has revealed considerable discrepancy between 
products, where the spatial pattern of correspondence was 
found to be similar in both cases. Complex terrain appears 
to introduce uncertainty in all products, whereas seasonal 
biases also affect satellite based products. Furthermore, 
based upon the relative strengths of correspondence we have 
identified clear groupings of products that in general appear 
to be due to the use of common source data. We have also 
identified that discrepancy in the treatment of observation 
timing has a strong impact on analysis based upon daily data.

We conclude on a cautionary note: in a wide range of 
different settings, some or all of these products set the stand-
ard—the “gold standard” perhaps—for research involving 
precipitation. However, our results, particularly in terms of 
extremal analysis, at least call this into question. The appar-
ent total loss of extremal dependence between gauge-based 
and satellite products during DJF in mountainous regions 
is surely cause for concern. Noting the wide use of such 
products and the increasing focus on studies of extreme 

precipitation, particularly involving simulations where grid-
ded products play an important role, our findings motivate 
research that probes uncertainty more closely, such as Ger-
vais et al. (2014b) and Daly et al. (2017), and like others 
we emphasise the need for caution when employing grid-
ded products for extremal analysis, particularly on daily 
timescales.
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