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ABSTRACT

High-resolution gridded datasets are in high demand because they are spatially complete and include

important finescale details. Previous assessments have been limited to two to three gridded datasets or an-

alyzed the datasets only at the station locations. Here, eight high-resolution gridded temperature datasets are

assessed twoways: at the stations, by comparingwithGlobal Historical ClimatologyNetwork–Daily data; and

away from the stations, using physical principles. This assessment includes six station-based datasets, one

interpolated reanalysis, and one dynamically downscaled reanalysis. California is used as a test domain be-

cause of its complex terrain and coastlines, features known to differentiate gridded datasets. As expected,

climatologies of station-based datasets agree closely with station data. However, away from stations, spread in

climatologies can exceed 68C. Some station-based datasets are very likely biased near the coast and in

complex terrain, due to inaccurate lapse rates. Many station-based datasets have large unphysical trends

(.18Cdecade21) due to unhomogenized ormissing station data—an issue that has been fixed in some datasets

by using homogenization algorithms. Meanwhile, reanalysis-based gridded datasets have systematic biases

relative to station data. Dynamically downscaled reanalysis has smaller biases than interpolated reanalysis,

and has more realistic variability and trends. Dynamical downscaling also captures snow–albedo feedback,

which station-based datasets miss. Overall, these results indicate that 1) gridded dataset choice can be a

substantial source of uncertainty, and 2) some datasets are better suited for certain applications.

1. Introduction

High-resolution gridded temperature datasets are

widely used because they are spatially complete and

include finescale variations due to topography and other

features. Such detail is important for many modeling

applications in fields such as hydrology, ecology, and

agriculture (Thornton et al. 1997; Mote et al. 2005;

Abatzoglou 2013; Stoklosa et al. 2015). Gridded datasets

are also used to compute historical trends (e.g., Hamlet

and Lettenmaier 2005; Vose et al. 2014), evaluate re-

gional climate models (e.g., Caldwell et al. 2009; Walton

et al. 2015), and train statistical models to downscale

low-resolution climate information to higher resolution

(e.g., Hidalgo et al. 2009; Pierce et al. 2014).

There are a variety of approaches for generating high-

resolution gridded temperature data. One approach is to

interpolate or smooth data from irregularly spaced sta-

tions to a regular grid. Datasets generated in thismanner

are termed ‘‘station based’’ datasets. A key distinction

between these datasets is that some datasets fit smooth

temperature curves to the station data (e.g., Thornton

et al. 1997; Hijmans et al. 2005), while others use in-

terpolation algorithms that seek to match observations

exactly at the station locations (e.g., Maurer et al. 2002;

Hamlet and Lettenmaier 2005; Livneh et al. 2013).

Some incorporate knowledge of physical processes

into the interpolation method, essentially creating a

simple model of temperature variations between sta-

tion locations (e.g., Daly et al. 2008; Vose et al. 2014;

Oyler et al. 2015a). A challenge with station data is

that changes in station siting, instrumentation, and time

of observation add nonclimatic artifacts to the data

(Menne and Williams 2009). Some datasets correct for

these inhomogeneities (e.g., Hamlet and Lettenmaier

2005; Vose et al. 2014; Oyler et al. 2015a), which makesCorresponding author: Daniel Walton, waltond@ucla.edu
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them better suited for long-term trend analysis. Some

datasets also include uncertainty estimates or facilitate

calculations of uncertainty (e.g., Oyler et al. 2015a;

Newman et al. 2015).

Differences in interpolation algorithms can lead

to large differences in climatologies (Simpson et al.

2005; Daly 2006; Stahl et al. 2006; Daly et al. 2008;

Mizukami et al. 2014). For example, Daly et al. (2008)

compared their dataset, PRISM, to Daymet (Thornton

et al. 1997) and WorldClim (Hijmans et al. 2005) over

the continental United States. PRISM determines

temperatures using a local temperature–elevation re-

lationship calibrated from nearby stations. Stations

are given higher weights if they are closer to the tar-

get grid cell, and if they have similar coastal proximity

or topographic position (among other factors). Day-

met also uses stations to determine a local temperature–

elevation relationship, but stations are weighted using

a truncated Gaussian filter centered at the target

grid cell. Meanwhile, WorldClim fits a thin-plate

spline to station data to generate a temperature

surface. Differences in climatology between these

datasets were found to be largest over complex terrain

and coastal areas of the western United States. January

minimum temperatures (Tmin) in WorldClim and

Daymet were found to be have cold biases of 38–48C
in complex terrain, which Daly et al. concluded were

due to failing to account for cold-air pooling. Mean-

while, along the central California coast, WorldClim

and Daymet have biases in maximum temperature

(Tmax) that likely result from poorly capturing the

onshore marine layer, which complicates the relation-

ship between temperature and elevation (Johnstone

and Dawson 2010; Iacobellis and Cayan 2013). In

contrast, PRISM accounts for coastal proximity and

topographic position, which could explain why it out-

performs the others in complex terrain and along

the coast.

Oyler et al. (2015a) compared PRISM and Daymet to

TopoWx. TopoWx is unique because it uses remotely

sensed land skin temperature (LST) as an auxiliary

predictor. Oyler et al. compared the datasets over the

complex terrain of Nevada, where cold air pooling

causes inversions in Tmin. TopoWx has the strongest

inversions, PRISM has similar but slightly weaker in-

versions, and Daymet has comparatively smooth tem-

perature variations without inversions. Oyler et al.

found that elevation alone is weak predictor of Tmin,

explaining only 6% of the variance in this region, while

LST explained 77%. This could explain why Daymet—

which uses elevation, but does not use LST or physically

based station weights—does not capture inversions

here.

Previous comparisons have found potential biases in

station-based gridded datasets that use fixed lapse rates

when accounting for elevation (Mizukami et al. 2014;

Newman et al. 2015). Newman et al. (2015) compared

their ensemble gridded dataset to that of Maurer et al.

(2002; henceforth this dataset is referred to simply as

‘‘Maurer’’), and noted that Maurer is consistently colder

at high elevations. Newman et al. attribute this to the use

of a fixed 6.58Ckm21 lapse rate in Maurer. Mizukami

et al. (2014), also found Maurer to be relatively cold at

high elevations.

Often the term ‘‘gridded data’’ is used to mean

station-based gridded datasets only. However, there are

multiple ways of generating historical data on a regular

grid. A second approach is to run an atmospheric model

that assimilates historical observations. Datasets con-

structed in this way are referred to as reanalysis. There

are many global or continental-scale reanalysis products

that assimilate observations [e.g., NARR, MERRA,

NOAA-20CR, CERA-20C, and ERA-20C; for details,

see Dee et al. (2016)]. However, the resolutions of these

datasets—ranging from 0.38 to 58—are too low for many

applications. Thus, reanalysis is often downscaled to

higher resolution (Cosgrove et al. 2003; Kanamitsu and

Kanamaru 2007; Rasmussen et al. 2011; Stefanova et al.

2012; Xia et al. 2012; Abatzoglou 2013; Walton et al.

2015, 2017). One straightforward way to downscale re-

analysis is with bilinear interpolation. For example, the

temperature forcings in the North American Land Data

Assimilation System version 2 dataset (NLDAS-2; Xia

et al. 2012) are derived by interpolatingNorthAmerican

Regional Reanalysis (NARR; Mesinger et al. 2006) to

1/88 resolution. Reanalysis can also be downscaled with

a regional climate model, a process referred to as

dynamical downscaling. Under this method, a regional

climate model is forced at the lateral and ocean sur-

face boundaries by reanalysis. For example, Kanamitsu

and Kanamaru (2007) downscaled 200-km resolution

NCEP–NCAR global reanalysis (Kalnay et al. 1996) to

10-km resolution over California with the Regional

Spectral Model (Juang and Kanamitsu 1994). Similarly,

Walton et al. (2015) downscaled the 32-km resolution

NARR to 2-km resolution over the Los Angeles region

with the Weather Research and Forecasting Model

(WRF; Skamarock et al. 2008), and used a similar WRF

setup to downscale NARR to 3-km resolution over the

Sierra Nevada mountains (Walton et al. 2017).

Previous assessments of gridded datasets have been

limited in a variety of ways. Some have only considered

station-based datasets and excluded downscaled re-

analysis (Daly et al. 2008; Newman et al. 2015; Oyler

et al. 2015a). Many have compared only two or three

datasets (Daly et al. 2008; Bishop and Beier 2013;

3790 JOURNAL OF CL IMATE VOLUME 31



Mizukami et al. 2014; Newman et al. 2015; Oyler et al.

2015a). Behnke et al. (2016a) performed one of themost

comprehensive evaluations to date, which considered

eight datasets, including interpolated reanalysis, but

datasets were only evaluated at station locations.

Station-based datasets are constrained to match station

data, so only evaluating them at station locations may

give a misleading picture of their overall realism.

Previous assessments of gridded datasets have excluded

dynamically downscaled reanalysis. Dynamically down-

scaled reanalysis could have an advantage away from

stations, to the extent that it realistically simulates phys-

ical processes that cause important spatial variations,

such as onshore penetration of the marine layer in the

coastal zone and cold-air pooling in complex terrain.

Station-based datasets either struggle to capture these

processes (e.g., Daymet, WorldClim, and Maurer) or at-

tempt to model their effects through auxiliary predictors

or physically based weights (e.g., TopoWx and PRISM).

One effect that has not been explored in previous

assessments is snow–albedo feedback (SAF). Snow is

highly reflective, and reductions in snow cover typically

reveal surfaces that absorb more solar radiation, leading

to warmer temperatures and further reductions in snow

cover (Cubasch et al. 2001; Holland and Bitz 2003).

Dynamically downscaling explicitly simulates SAF

(Salathé et al. 2008; Letcher and Minder 2015; Walton

et al. 2017), but it is unknown whether its effects are

captured by station-based datasets. Low station density

at high elevations could make it challenging to capture

the narrow bands of amplified temperatures associated

with SAF (Walton et al. 2017).

This study looks to answer the following questions

about high-resolution temperature datasets:

1) How do temperature climatologies, variability, and

trends in these datasets differ?

2) Can these differences be explained in terms of their

methodological choices?

3) Which datasets are most realistic?While this question

can be answered at station locations by comparing

with observed data, it is challenging to answer away

from stations where there are no observations to rely

on. However, in some instances, there are physical

arguments as to why some datasets are more realistic.

4) Does dynamically downscaled reanalysis—which

explicitly simulates relevant processes (however im-

perfectly)—corroborate the spatial and temporal var-

iations in station-based datasets? How convergent

are these orthogonal approaches of creating gridded

temperature data?

5) Are dynamical downscaled reanalysis and interpo-

lated reanalysis equally realistic?

To answer these questions, this study compares eight

high-resolution gridded datasets with a long running

subset of the Global Historical Climatology Network–

Daily (GHCND) stations (Menne et al. 2012a,b). The

comparison is performed over California, which has

coastal areas with maritime influence, complex terrain

experiencing cold-air pooling, and high-elevation

mountains with significant seasonal snow cover. The

datasets used here are the following:

d PRISM (Daly et al. 2008),
d TopoWx (Oyler et al. 2015a),
d Daymet (Thornton et al. 1997),
d Livneh (Livneh et al. 2013; Maurer et al. 2002),
d Hamlet [an extension of Hamlet and Lettenmaier

(2005)],
d Metdata (Abatzoglou 2013),
d NLDAS-2 (Xia et al. 2012), and
d NARR dynamically downscaled with WRF (Walton

et al. 2017).

Together, these eight datasets represent the wide range

of approaches to creating gridded temperature data

discussed above. For a summary of their important

features, see Table 1.

This paper is structured as follows. Section 2 provides

detailed information about the eight gridded datasets.

Section 3 covers the methodology used to assess their

climatologies, variability, and trends. Results are given

in section 4. Major findings are summarized and dis-

cussed in section 5.

2. Data

a. GHCND station data

California has 847 GHCND stations with some daily

data during the 1981–2010 period (Fig. 1a). These include

NationalWeather Service (NWS) Cooperative Observer

Program (COOP) stations, Weather Bureau Army

Navy (WBAN) stations, National Resource Conserva-

tion Service (NRCS) snow telemetry (SNOTEL) and

snow course sites, and U.S. Forest Service and Bureau of

Land Management (BLM) Remote Automatic Weather

Stations (RAWS). Only a fraction of these stations

have a sufficiently long record to reliably calculate cli-

matologies and variability. So, we use a subset of 223

stations with at least 83% coverage during this period

(Fig. 1b) as determined by Behnke et al. (2016b) and

made available via the Dryad data package [see links

in Behnke et al (2016b)].

b. PRISM

The Parameter–Elevation Relationships on In-

dependent Slopes Model (PRISM; Daly et al. 1994,
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2008) is a modeling system used to derive gridded tem-

perature and precipitation data for the conterminous

United States. At each grid cell, an elevation regression

function is fit to station data using a moving window.

Stations are weighted depending on multiple physical

factors that reflect their similarity to the target grid cell.

These factors include distance, cluster, elevation, coastal

proximity, topographic facet, vertical layer, topographic

position, and effective terrain height. Here we use the

monthly dataset AN81m with 2.5-min (;4 km) resolu-

tion (PRISM Climate Group, Oregon State University;

available from http://prism.oregonstate.edu; data cre-

ated between 9 June 2013 and 9 June 2014). Although

station data are subjected to quality control procedures,

no adjustments are made to ensure temporal homoge-

neity in this PRISM dataset. PRISM incorporates data

from ;10 000 stations spanning multiple networks, in-

cluding COOP, RAWS, the California Data Exchange

Center (CDEC), Agrimet, NRCS, the California Irri-

gation Management Information System (CIMIS), and

more (see http://prism.oregonstate.edu for details).

Many of these networks are part of GHCND (Fig. 1a).

c. TopoWx

TopoWx or ‘‘Topography Weather’’ is a gridded

dataset of daily Tmin andTmax based on station data and

remotely sensed land skin temperature (Oyler et al.

2015a; data downloaded from http://www.scrimhub.org/

resources/topowx/). TopoWx covers the conterminous

United States at 30 arc sec (;800-m resolution) for the

period 1948–2016. TopoWx uses station data from

GCHND stations (Fig. 1a). TopoWx applies the ho-

mogenization algorithm of Menne and Williams (2009)

to correct for changes in observation practices, siting,

and instrumentation. Missing values are filled by com-

paring with nonmissing neighboring observations and

applying spatial regression (Durre et al. 2010). Climate

normals are computed using regression kriging, and

daily anomalies are computed using moving window

geographically weighted regression and inverse distance

weighting. To help estimate climate normals in complex

terrain and regions with low station density, TopoWx

uses remotely sensed land skin temperature as an aux-

iliary predictor.

d. Daymet

Daymet (Thornton et al. 1997) is a dataset of daily

meteorological variables on a 1 km 3 1 km grid cover-

ing North America for the period 1980–2016. Version 3

(Thornton et al. 2016) is used here. Monthly summa-

ries of daily Tmax and Tmin were downloaded from

the Thematic Real-Time Environmental Distributed

Data Services (THREDDS) server (http://thredds.daac.

ornl.gov/thredds/catalogs/ornldaac/Regional_and_

Global_Data/DAYMET_COLLECTIONS/DAYMET_

COLLECTIONS.html) on 9 January 2017. Daymet fits a

smooth curve to data fromGHCND stations to a 1 km3
1 km grid using a weighted average of nearby stations.

Weights are determined by a truncated Gaussian filter

centered at the target grid cell. The radius of the

Gaussian filter varies continuously throughout the do-

main to adjust for varying station density. Tmax and

FIG. 1. (a) All California GHCND stations with at least some data during the 1981–2010 period. GHCND includes stations from the

COOP, RAWS, WBAN, and SNOTEL networks. (b) GHCND stations with at least 83% coverage from 1981–2010. (c) Setup of 27-km

and 9-km resolution one-way nested WRF domains.
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Tmin values are adjusted for elevation using a linear

temperature–elevation relationship.

e. Livneh

The Livneh et al. (2013) dataset (this dataset is here-

after simply called ‘‘Livneh’’) contains station-based

meteorological variables and modeled hydrologic vari-

ables that covers the conterminous United States at

1/168 (;6km) resolution for the period 1915–2011. (Livneh

data are available from https://ciresgroups.colorado.edu/

livneh/data/daily-obserational-hydrometeorology-data-

set-conus-extent-canadian-extent-columbia-river-basin.)

Livneh is an extension and upgrade to the Maurer et al.

(2002) dataset, which used a similar methodology but

spanned the shorter 1950–2000 period at a lower resolu-

tion of 1/88 (;12km). Livneh temperatures are created

by gridding data from COOP weather stations over the

conterminous United States. Gridding is performed on

station temperature data via the synergraphic mapping

system (SYMAP; Shepard 1984). Under SYMAP, for a

grid point, the temperature is calculated as a weighted

average of the temperature at the four nearest stations.

The weights are determined by a combination of inverse

distance weighting and down-weighting stations that are

close to other stations. For a full description of the

gridding procedure, the reader is referred to Livneh et al.

(2013) and Maurer et al. (2002).

f. Hamlet

The original Hamlet and Lettenmaier (2005) dataset

spans 1915–2003 at 1/88 (;12km) resolution (data avail-

able from http://www.hydro.washington.edu/Lettenmaier/

Data/gridded/index_hamlet.html). It has now been ex-

tended to cover 1915–2015, its resolution has been in-

creased to 1/168 (;6km), and temperatures are now

adjusted so that 1971–2000 climate normalsmatchPRISM.

This extension, henceforth simply ‘‘Hamlet,’’ was pro-

vided byMuXiao of UCLA.Hamlet generally follows the

Maurer methodology of interpolating daily COOP station

data using the SYMAP algorithm. The two major differ-

ences are that 1) Hamlet temperatures are adjusted so

1971–2000 monthly normals match PRISM and 2) low-

frequency variability matches the quality-controlled U.S.

Historical Climatology Network (USHCN; Menne et al.

2009) stations. The use of quality-controlled stations to

determine low-frequency variability is intended to make

the Hamlet dataset suitable for trend analysis and long-

term hydrologic simulations. This extension appears to be

similar to the extension created by Hamlet et al. (2010).

g. WRF

This dataset is a dynamical downscaling of 32-km

resolution NCEP North American Regional Reanalysis

(Mesinger et al. 2006) for the 1981–2015 period using

version 3 of the Weather Research and Forecasting

Model (Skamarock et al. 2008) performed by Walton

et al. (2017). Under this setup, WRF is forced at the

lateral and ocean surface boundaries by NARR.WRF is

coupled to the Noah-MP land surface model (Niu et al.

2011).WRF is arranged in a one-way nested setup with a

27-km resolution domain covering the western United

States and northeastern Pacific Ocean, a 9-km domain

covering California, and a 3-km domain covering the

Sierra Nevada. This study focuses on the 9-km domain

covering California [Fig. 1c (indicated as D2)]. A cubic

spline fit to WRF 3-hourly output is used to calculate

daily Tmax and Tmin.

h. NLDAS-2

This dataset is the historical forcing for the North

American Land Data Assimilation System (NLDAS;

Cosgrove et al. 2003; Mitchell et al. 2004), which in-

cludes temperature data with 1-h temporal resolution

and 1/88 spatial resolution. The most recent version of

the project, NLDAS-2 (Xia et al. 2012), linearly interpo-

lates 32km, 3-hourly NARR temperature data in space

and time to achieve 1/88, 1-hourly data for the period

1979–2016. So, like the WRF simulation, NLDAS-2 is a

downscaling of NARR, but using linear interpolation

instead of a regional climate model. Data were down-

loaded using the NASA Earthdata Simple Subset

Wizard (https://disc.gsfc.nasa.gov/SSW/).

i. Metdata

Metdata (Abatzoglou 2013) is a hybrid dataset of

meteorological forcings that combines the subdaily

temporal resolution of NLDAS-2, with the spatial cli-

matologies and monthly variability of PRISM. Metdata

is available for the 1979–2016 period at 4-km horizontal

resolution from http://metdata.northwestknowledge.

net. To create Metdata, NLDAS-2 subdaily anomalies

(relative to monthly means) are interpolated to 4-km

resolution and added to PRISM monthly means. Be-

cause this study analyzes monthly data and Metdata’s

monthly variability comes from PRISM, Metdata is

grouped here with the station-based datasets.

3. Methods

a. Regridding to the WRF 9-km grid

To facilitate comparisons among the datasets, each

dataset is regridded to the 9-kmWRF grid. For TopoWx

and Daymet, which have substantially higher resolution

than WRF, regridding is performed using a moving

window approach: averages are taken over all grid cells
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whose centers reside within the nearest WRF grid cell.

For all other datasets, regridding is performed with bi-

linear interpolation. Only land areas are considered as

some datasets do not have data over oceans or lakes. All

analysis is performed over the 1981–2010 period. For

comparisons with GHCND station data, the nearest grid

cell in the regridded dataset is used. To adjust for ele-

vation differences between GHCND station locations

and the nearestWRF grid cell, a lapse rate of 6.58Ckm21

is used. This adjustment is only made for Tmax. No

adjustment is made for Tmin, because Tmin differences

were found to be only weakly correlated with elevation

differences.

b. Climatologies

Annual climatologies are computed for each gridded

dataset. Climatologies are displayed two ways: as dif-

ferences relative to the GHCND station data, and as

differences relative to the average of the station-based

gridded datasets. Station data are not without error, but

collectively they represent our best primary source of

temperature data. Thus, if a gridded dataset has large

differences with many stations, then the gridded dataset

is probably biased. Meanwhile, differences with the

station-based gridded dataset average are not used to

detect biases, necessarily, but they do show how the

gridded datasets compare to each other. Importantly,

these differences are spatially complete—unlike the

differences with GHCND stations data—so they reveal

how the datasets compare to each other away from the

stations.

c. Linear trends

Linear trends are computed at each grid cell using

least squares linear regression on the full sequence of

monthly anomalies (all 360 months in the 1981–2010

period). This is too short a period to draw inferences

about overall historical trends in temperatures. Instead,

this analysis is intended to highlight differences in trends

between the datasets. Important differences are expected

between datasets based on whether they account for in-

homogeneities in the data. Linear trends are also com-

puted for the GHCND station data, using all nonmissing

monthly anomalies.

d. Variability

To compare temperature variability, the standard

deviation of the full sequence of monthly temperature

anomalies is computed for the period 1981–2010 at each

grid cell. Variability is also computed for GHCND sta-

tion data, using all nonmissing monthly anomalies. For a

deeper investigation into spatial covariability, empirical

orthogonal function (EOF) analysis is performed on the

full sequence of monthly anomalies. EOFs (spatial

patterns) represent the primary modes of spatial co-

variability within the domain. The corresponding prin-

cipal components (PCs) are time series that represent

how these patterns are scaled up and down in time. The

three leading EOFs are compared, along with their

principal components.

e. Snow–albedo feedback

To test for SAF, April temperature differences are

computed between 2007, a warm year with low snow

cover, and 2010, a cold year with high snow cover. April

snow cover differences are computed for WRF and re-

motely sensed data from the Moderate-Resolution Im-

aging Spectroradiometer onboard the Terra satellite

(MODIS/Terra Snow Cover Monthly L3 Global 0.05

CMG; Hall et al. 2006; data available from http://nsidc.

org/data/MOD10CM). Comparing temperature and

snow cover differences will allows us to determine

whether WRF and the other datasets have similarly

amplified temperature differences due to SAF in narrow

bands where snow cover is lost.

f. Surface lapse rates

Coastal areas and complex terrain in California may

be subject to inverted temperature profiles from pene-

tration of the marine layer and cold-air pooling

(Lundquist et al. 2008; Daly et al. 2010). If interpolation

algorithms do not account for the complicated re-

lationships between temperature and elevation, then

they may produce errant temperature patterns. Here we

examine surface lapse rates in three representative da-

tasets: TopoWx, which uses satellite LST as an auxiliary

predictor and has been shown to better capture Tmin in

complex terrain (Oyler et al. 2015a); PRISM, which

explicitly incorporates physical factors like coastal

proximity in its regression weights; and Livneh, which

uses a fixed lapse rate of 6.58Ckm21. To calculate the

surface lapse rate at each grid cell, linear regression is

applied to temperature and elevation data from sur-

rounding grid cells (defined as grid cells within two grid

lengths in the x or y direction).

In addition, the topographic dissection index (TDI;

Holden et al. 2011) is used to determine where stations

are located relative to local topographic minima and

maxima. Here we use the TDI computed by Oyler et al.

(2015a) on the 800-m TopoWx grid, which uses five

spatial windows (n 5 5) with sizes 3, 6, 9, 12, and 15 km.

With this setup, TDI values range from 0 to 5, with

0 being a multiscale local minimum and 5 being a mul-

tiscale local maximum.A station’s TDI is taken to be the

TDI at the grid cell closest to that station. Knowing a

station’s TDI tells us whether a station’s nearby grid
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cells are generally above or below it, which is useful for

understanding how lapse rates are applied.

4. Results

a. Climatologies

For Tmax, the station-based datasets match GHCND

within 18C at nearly all stations (Fig. 2). Most every-

where, the station-based datasets are similar (within 18C
of the station-based average). As expected, PRISM,

Metdata, and Hamlet have nearly identical climatol-

ogies. This is no surprise because Metdata is built on

PRISM monthly data, and Hamlet is adjusted to match

PRISM normals for 1971–2000. These three datasets

tend to have warmer than average Tmax values on the

windward side of the coastal mountains by up to 38C,
likely because PRISM has inverted Tmax conditions

along the coast (discussed further in section 4e). Mean-

while, Livneh Tmax is colder than average in the higher

elevations of the coastal mountains by up to 48C. In-
terestingly, comparing at the station locations, there is

little indication that Livneh diverges from the other

datasets; it is only revealed through a spatially complete

comparison. This highlights the importance of compar-

ing station-based datasets everywhere, not just at sta-

tion locations. The reanalysis-based datasets (NLDAS-2

and WRF) are substantially cooler throughout the do-

main. On average, NLDAS-2 and WRF are colder than

the station-based gridded average by 1.48 and 1.18C,

FIG. 2. Shown at top left is 1981–2010 Tmax annual-mean climatology (8C) at GHCND stations and averaged over the station-based

datasets. The remainder of the panels shows differences in 1981–2010 annual-mean Tmax climatology withGCHND station data and with

the station-based dataset average (8C). To adjust for the elevation differences between the GCHND stations and the nearest grid cell,

a lapse rate of 6.58Ckm21 was used.
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respectively. They are also consistently colder than

GHCND data (by 1.88 and 1.68C, respectively), so it is

highly likely that they have a cold bias. WRF’s cold bias

appears to be related to elevation (r 5 20.67) and with

a slope of approximately 21.08Ckm21 (based on least

squares linear regression). NLDAS-2 shows dramatic

differences with the other datasets along the edges of

topographic features and along the coast, exceeding 68C
in some cases. Although both WRF and NLDAS-2 are

derived by downscaling NARR, they have large differ-

ences in their climatologies, indicating that the choice of

downscaling technique is important.

For Tmin, the station-based datasets agree closely

with GHCNDdata (within 18C) at most stations (Fig. 3).

Differences are larger near strong terrain gradients, such

as those along the western side of the Sierra Nevada.

These discrepancies could be due to elevation mis-

matches between the stations and the WRF grid, as no

elevation adjustments were made to Tmin (adjustments

were made only for Tmax). TopoWx and Livneh are the

station-based datasets that differ most from the average.

Unlike the others, TopoWx uses satellite LST as a pre-

dictor for Tmin, which could explain why it differs.

Livneh is clearly the most different and is colder than

average by 28–68C in areas of complex terrain, such as

the coastal mountains of Northern California. This

likely is due to Livneh’s use of a fixed lapse rate, which is

examined in more detail in section 4e. WRF agrees

closely with the station-based dataset average over most

of the domain (domain-average difference of10.38C). It
does differ in a few areas, such as along the eastern

California border with Arizona, where it is 38–48C
colder, and on the lee sides of the several mountain

complexes, where it is 28–58C warmer. In contrast,

NLDAS-2 has a strong warm bias throughout the do-

main when compared with GHCND data and is much

FIG. 3. As in Fig. 2, but for Tmin. Note that no elevation-based adjustments are made for Tmin.
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warmer than the average (domain-average difference

of 12.98C). Thus, WRF has a more realistic Tmin cli-

matology than NLDAS-2.

Interdataset spread varies dramatically based on

which datasets are considered (Fig. 4). The spread in

Tmax among PRISM relatives (PRISM, Hamlet, and

Metdata) is small (domain average of 0.58C). This makes

sense as Hamlet is adjusted to match PRISM’s clima-

tology, and Metdata is constructed using PRISM’s

monthly mean values. It becomes larger, especially in

the coastal mountains, when all station-based datasets

are included (domain average of 1.38C). When WRF is

included, the domain-average spread increases to 2.38C,
with greater spreads at high elevations.WhenNLDAS-2

is included, spreads increase further, to 3.58C. A similar

progression happens for Tmin: 0.88C for PRISM rela-

tives, 2.58C for all station-based, 3.08C for station-based

and WRF, and 4.88C for all datasets. When all datasets

are included, certain locations have extreme spreads (up

to 128C), especially along strong topographic gradients,

where NLDAS-2 differs sharply from the others.

b. Trends

Linear trends in Tmax and Tmin differ substantially

among the datasets (Fig. 5). There are clear differences

in trends between those that use homogenized and un-

homogenized station data. Daymet, Livneh, PRISM,

and Metdata use unhomogenized data and have large

trends, exceeding 18C decade21 in some locations. In

contrast, TopoWx and Hamlet correct for inhomoge-

neities and have smooth trend fields free of nonclimatic

artifacts. The reanalysis-based datasets, WRF and

NLDAS-2, also have smooth trends fields, although

NLDAS-2 has a large trend (up to 18C decade21) in cen-

tral California that is inconsistent with the homogenized

datasets, and likely unphysical.

Two primary types of inhomogeneities are present in

unhomogenized gridded datasets. The first type is due to

missing data or changes in data availability. For exam-

ple, Fig. 6b shows a location where Daymet has large

jumps (up to 108C) corresponding to when the closest

GHCND station (a RAWS station) station goes on and

offline. The second type is due to inhomogeneities in-

herited from the station data. For example, Fig. 6c

shows a case where Livneh has large inhomogeneities

(38–48C) that appear to be inherited from the nearest

COOP station. Livneh uses an inverse distance weight-

ing scheme that causes it to very closely match station

data near station locations, more closely than other

station-based datasets, which could explain why its trend

field looks so similar to the station trends (Fig. 5).

For some datasets, the inhomogeneities are system-

atic and can be seen in the California average. Figure 7

shows California-average monthly anomalies relative to

TopoWx, a homogenized dataset likely to have more

trustworthy trends. Unhomogenized datasets (Daymet,

FIG. 4. Interdataset spread (8C) in climatological (top) Tmax and (bottom) Tmin calculated for four different

groups. Datasets included in each group are listed in the top-right corner of each panel.
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Livneh, PRISM, andMetdata) have cold trends in Tmax

relative to TopoWx (Fig. 7a). This could be due in

part to the well-known transition in instrumentation

from liquid-in-glass (LiG) thermometers to maximum–

minimum temperature systems (MMTS), which had a

cooling effect on Tmax values (Menne et al. 2009). In

contrast, there are warm trends in Tmin for the non-

homogenized datasets relative to TopoWx (Fig. 7b).

Although there are nonclimatic warm trends at SNOTEL

stations (Oyler et al. 2015b), there is almost certainly

another factor at play here, since there are so few

SNOTEL stations in California and they are confined to

FIG. 5. Trend (8C decade21) in (top) Tmax and (bottom) Tmin based on linear regression of monthly anomalies for all months in 1981–

2010 time period. For GHCND, only anomalies from nonmissing months are used.

FIG. 6. Exploration of Tmin anomalies (8C) at selected grid cells where gridded datasets show inhomogeneities. (a) Locations of the two

grid cells (40.98718N, 122.84638W and 35.76058N, 117.38118W). (b) Monthly Tmin anomalies at location 1 (colored lines) and raw daily

Tmin values at two nearby GHCND stations. The first (gray line) is the closest station to location 1 prior to 1990, and the second (black

line) is the closest from 1990 onward. (c) Monthly Tmin anomalies at location 2 (colored lines) and differences in daily Tmin between the

nearest COOP station and a nearby reference station (dark gray line).
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small areas of the domain (Fig. 1). A more influential

factor may be the LiG to MMTS transition, which had a

warming effect on Tmin (Menne et al. 2009). Daymet

has the largest relative trend in California-average

Tmin, with an increase of over 18C between 1985 and

1992 alone (Fig. 7b). Based on our analysis, Daymet grid

cells at high elevations experience similar issues to those

of location 1 in Fig. 6b, namely that changes in data

availability cause large jumps, particularly when a

nearby station comes online. We suspect that the in-

troduction of RAWS stations (320 stations, starting in

1985) could explain Daymet’s large trend (Fig. 8).

c. Variability

All datasets have greater temperature variability at

higher elevations (Fig. 9). In most datasets, Tmax vari-

ability peaks in the high elevations of Sierra Nevada, in

the range of 28–38C. At lower elevations, Tmax vari-

ability is in the range of 18–28C. NLDAS-2 has much

lower Tmax variability (0.58–18C) along a wider coastal

strip than GHCND or any of the other gridded data-

sets. Because NLDAS-2 differs so consistently from

GHCND along the coast, it is almost definitely biased

there. Grid cells in this coastal strip likely reside

between land and ocean grid cells in NARR. Thus,

when linear interpolation is applied, grid cells in this

strip have temperatures with intermediate properties

that are mixture between land and ocean. Since tem-

perature variability is lower over the ocean, these grid

cells are likely to have lower variability than their in-

land counterparts.

Tmin variability is lower than Tmax variability in all

datasets. For most datasets, Tmin variability is generally

in the 1–1.58C range at low elevations and in the 1.58–28C
at higher elevations. TopoWx andHamlet have the least

Tmin variability, probably in part because the apply

homogenization algorithms that remove nonclimatic

jumps. NLDAS-2 has lower Tmin variability along the

coast, just like it does for Tmax. Meanwhile, Daymet

and Livneh have Tmin variability as high as 38C, which is
likely due to the inhomogeneities that lead to large

trends at these locations.

Generally, the datasets have very similar spatial pat-

terns (EOFs) and nearly identical time series (PCs) for

the major modes of variability. For Tmax, EOF1 ex-

plains between 78%and 86%of the variance, depending

on the dataset (Fig. 10). EOF1 is characterized by pos-

itive loadings over all of California, with larger loadings

FIG. 7. California-average (a) Tmax and (b) Tmin monthly anomaly differences with TopoWx, for

the period 1981–2010.
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at high elevations. PC1 (the time series representing

how EOF1 is scaled up or down each month) is nearly

identical for each dataset. One notable difference is that

Livneh, Hamlet, and NLDAS-2 have EOFs that do not

follow topographic contours as closely as the other da-

tasets. NLDAS-2 is also hasmuchweaker loadings along

the coast, consistent with smaller variability found there

(cf. Fig. 9). EOF2 explains 6%–8% of the variance and

has a very consistent dipole pattern with positive load-

ings in Northern California and negative loadings in

Southern California. Agreement among PC2 time series

is also high, although not as high as for PC1. EOF3 is

another dipole mode, this time representing variability

that is oppositely phased between coastal and inland

locations (2%–4% of the variance). The corresponding

PC3s agree less than PC1s or PC2s. Daymet’s EOF3

stands out for its irregular loading pattern, which again is

likely related to the inhomogeneities discussed above.

For Tmin, EOFs and PCs differ somewhat more than

Tmax (Fig. 11). For example, EOF1, characterized by all

positive loadings, explains 63%–81% of the variance, a

wider range than for Tmax (77%–86%). Daymet’s EOF

FIG. 8. Year that each California RAWS station came online (colored dots). The red square marks location 1 from

Fig. 6, the grid cell where Daymet has a jump in 1990.

FIG. 9. Standard deviation (8C) of monthly Tmax and Tmin anomalies for the period 1981–2010. For GHCND, only anomalies from

nonmissing months are used.
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spatial patterns differ considerably from the others.

They havemuch higher loadings in the same regions that

have large, unphysical trends. Inhomogeneities are also

likely responsible for the unusual spatial pattern of

Livneh’s EOF3. These results suggest that nonclimatic

variations can make significant contributions a station-

based dataset’s variability, not just its long-term trends.

PRISM, Metdata, and TopoWx appear to have the

most plausible variability. Their main EOFs are free

from artifacts and their PC time series do not have no-

ticeable jumps or trends. Hamlet also has these qualities,

but its EOFs are much smoother in space and appear to

miss topographic effects. Hamlet’s overly smooth EOFs

are a side effect of the way it avoids inhomogeneities.

Low-frequency variability is adjusted to match in-

terpolated values from stations in the U.S. Historical

Climatology Network, a small network of long-running

stations with continuous temperature records (Menne

et al. 2009). While excluding short-term stations may

help produce more realistic long-term trends, it has the

side effect of lowering the effective resolution for low-

frequency variability, resulting in overly smooth EOFs.

Meanwhile, WRF does not rely directly on station data

and appears free of inhomogeneity-related artifacts.

Overall, WRF EOF spatial patterns are broadly similar

to PRISM, TopoWx, and Metdata, but the smaller-scale

details are different. WRF also has somewhat smoother

Tmin spatial patterns, and does not have finescale vari-

ations (,10km) in complex terrain that the others do,

likely because of its lower resolution.

d. Effect of snow cover

WRF disagrees considerably with the other datasets

over the influence of SAF on temperature anomalies

(Fig. 12).WRF simulates large differences in snow cover

between April 2007 and April 2010, which are corrob-

orated by MODIS/Terra satellite data. WRF tempera-

ture differences between these years can reach 78C at

grid cells where snow cover is lost, versus 18–48C in the

rest of the domain.Meanwhile, the other datasets do not

FIG. 10. Three largest Tmax EOFs and their associated PCs for each dataset for the period 1981–2010. Percentages of explained variance

are included in the top-right corner of each panel.
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show substantially enhanced temperature differences at

grid cells where snow cover is lost. It seems likely that

low station density at high elevations would limit

station-based datasets from capturing this effect. Overly

simplistic relationships between temperature and ele-

vation could also be problematic as they would not be

able to capture enhanced warming within a narrow el-

evation band. It may also be the case that WRF’s SAF

strength is unrealistically high and actual temperature

differences are not amplified as much as WRF suggests.

In a study of theAlps,Winter et al. (2017) found that the

ETH Zurich COSMO regional climate model (ETHZ-

CLM) produced springtime SAF strength values in the

08–58C range with a mode of 2.58C, while observational

estimates using station observations suggest that the

SAF strength is only 0.48C. Estimates of WRF’s

springtime SAF strength for the Sierra Nevada are in the

18–48C range (Walton et al. 2017), which is similar to

ETHZ-CLM and greater than the 0.48C observational

estimate. Thus, it appears that station-based datasets are

missing a real effect—the enhanced warming from

snow–albedo feedback—but the effect may be weaker

than WRF suggests.

e. Surface lapse rates

TopoWx and PRISM agree that Tmax inland lapse

rates are 48–88Ckm21 (Figs. 13a,b). Thus, Livneh’s fixed

lapse rate of 6.58Ckm21 is generally appropriate for

Tmax for most inland areas (Fig. 13c). Immediately

adjacent to the coast, PRISM differs considerably from

the others, showing strongly inverted conditions, with

lapse rates reaching 2108Ckm21. PRISM explicitly ac-

counts for the suppression of Tmax in low-lying coastal

areas due to the penetration of marine air by using

a coastal proximity factor and an inversion layer factor,

which could explain why it captures this well-known

effect (Daly et al. 2008). As for Tmin, both TopoWx and

PRISM have lapse rates near zero or even negative for

most of California (Figs. 13d,e), likely reflecting night-

time radiation inversions and cold-air pooling. Thus,

using a 6.58Ckm21 lapse rate for Tmin is unsuitable for

large swaths of California (Fig. 13f).

FIG. 11. As in Fig. 10, but for Tmin.
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In general, the lapse rate used by a gridded dataset

would have little impact if station density were high

everywhere and all elevations were adequately sampled.

However, that is not the case in many areas. For ex-

ample, in the coastal mountains of Northern California,

station density is low and almost all stations are located

near topographic minima (Fig. 14a). The most credible

data suggest that Tmin lapse rates are ,28Ckm21 for

much of this region (Figs. 13d,e), which is substantially

different from the fixed lapse rate of 6.58Ckm21 used in

Livneh. This explains why Livneh is relatively cold

compared to the station-based gridded datasets average

here (Fig. 14b), with differences becoming increasingly

negative with height by 2.98Ckm21 (Fig. 14c).

5. Summary and discussion

This study assesses temperature climatologies, trends,

and variability in eight high-resolution gridded datasets

over California. Each dataset gives a different spatially

complete picture of historical temperatures. Five are

station-based datasets created by interpolating station

data to a regular grid (PRISM, TopoWx, Daymet, Livneh,

and Hamlet). Two are created by downscaling re-

analysis data (NLDAS-2 andWRF). Finally, one dataset,

Metdata, combines monthly means from station-based

PRISM with daily variability from reanalysis-based

NLDAS-2. This study seeks to identify differences in

these datasets, trace these differences back to the data-

sets’ methodologies, and determine which are the most

realistic by comparing with station data. In our analysis,

particular attention is paid to how the WRF simulation

compares with the others, as dynamically downscaled

reanalysis data have not been included in previous as-

sessments of gridded datasets.

As expected, when evaluated at station locations,

station-based datasets have similar climatologies that

closelymatchGHCNDstation data. However, matching

GHCND station data is an imperfect measure of accu-

racy. This metric favors datasets with interpolation al-

gorithms that constrain the interpolated data to match

exactly with the original data, and does not reflect how

well these datasets do away from stations. Furthermore,

gridded datasets that correct for inhomogeneities or

other station data issues could be penalized, as they

would no longermatch the original data as closely. Thus,

it is crucial to examine how these datasets behave away

from stations. Differences are more pronounced (up to

68C) away from stations, in complex terrain, and near

the coast. The existence of large differences away from

the stations despite close agreement at stations un-

derscores the need to compare station-based datasets

FIG. 12. Differences in (a) MODIS and (b)WRF snow cover fraction (SCF), and (c)–(j) daily average temperatures (8C) for each dataset,

computed as April 2007 minus April 2010.
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everywhere, not just at station locations.Meanwhile, the

reanalysis-based datasets, WRF and NLDAS-2, are not

directly constrained to match station observations and

have systematic biases relative to GHCND station data,

making them less suitable for assessing absolute errors

in temperature.

There are clearly large differences in climatology

between these datasets, but away from the station lo-

cations it is difficult to know definitively which dataset is

most realistic. It is possible, in some cases, to demon-

strate that a dataset relies on a problematic assumption.

For example, Livneh uses a fixed lapse rate of 6.58Ckm21

to adjust for elevation. Tmin lapse rates were found to

be negative or near zero for much of the domain (in-

verted or neutral conditions). Thus, a fixed positive lapse

rate of 6.58Ckm21 is not suitable for Tmin and explains

why Livneh Tmin so cold at high elevations. This finding

is consistent with Mizukami et al. (2014) and Newman

et al. (2015), who found that datasets with fixed positive

lapse rates have cold biases at high elevations. Based on

these results, using a gridded dataset that accurately

captures variable lapse rates is especially important

when studying daily minimum temperatures in complex

terrain.

Differences in trends are the result of choices made

about station homogenization and how to handle missing

FIG. 13. Surface lapse rate (8Ckm21) calculated as the negative slope determined by linearly regressing climatological (a)–(c) Tmax and

(d)–(f) Tmin onto elevation for all nearby grid cells within two grid lengths. Cool colors indicate decreasing temperature with height.

Warm colors indicate increasing temperature with height (i.e., inverted conditions). Grid cells whose neighbors range in elevation by less

than 100m are excluded from the calculation.
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FIG. 14. (a) Elevation (m) in the coastal mountains of Northern California. (b) Tmin cli-

matology difference between Livneh and station-based gridded dataset average. The topo-

graphic dissection index (TDI) is plotted at each COOP station (colored circles). Warm colors

indicate station is near topographic maxima. Cold colors indicate station is near topographic

minima. (c) Tmin difference (Livnehminus station-based gridded dataset average) vs elevation

at all grid cells within the coastal region shown in (a) and (b). Slope computed using least

squares linear regression.
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data. Daymet, Livneh, PRISM, and Metdata do not ho-

mogenize station data and subsequently have large non-

climatic trends. Daymet appears especially sensitive to

changes in station data availability, and the introduction

of the RAWS stations could explain its large systematic

trends. In contrast, TopoWx and Hamlet use homogeni-

zation procedures and have smooth trend fields. There are

legitimate concerns that homogenization could smooth

out true local trends, forcing the regional trend on

each grid cell (Pielke et al. 2007). Based on our results,

this seems to be a problem with Hamlet, but not with

TopoWx. Meanwhile, WRF and NLDAS-2 have smooth

trend fields like TopoWx and Hamlet, but the details

are different enough to cast doubt on their accuracy. If

accurately capturing trends is important, then using a

homogenized dataset is necessary.

Most datasets have broad agreement in the spatial

patterns and the timing of the leading modes. Daymet

and Livneh are the main exceptions, with prominent

nonclimatic artifacts in the spatial patterns and jumps

in the associated time series. NLDAS-2 is also note-

worthy, but for unrealistically low variability very near

the coast, which makes it not recommended for coastal

applications.

While the WRF simulation has important disagree-

ments with station-based datasets, it still broadly similar

in most aspects considered here. WRF’s most glaring

issue is a cold bias in Tmax at high elevations. But, for

Tmin, it is within the range of station-based datasets.

WRF’s temporal variability is highly correlated with the

most plausible station-based datasets, and its spatial

patterns of the leading modes are qualitatively similar to

themost plausible station-based datasets. In fact,WRF’s

variability is more realistic than some unhomogenized

station-based datasets, such as Daymet, which has large

jumps due to missing data. These results suggest that dy-

namically downscaled reanalysis can produce a spatially

complete picture of the historical temperatures onparwith

station-based datasets in many aspects. In fact, it could

potentially be a valuable, complementary perspective to

station-based dataset in snow-covered areas, as it explicitly

simulates the snow cover anomalies on temperature.

However, further research is needed to determine if

WRF’s snow–albedo feedback strength is realistic.

AlthoughWRF and NLDAS-2 are both downscalings

of NARR, NLDAS-2 is less realistic in most aspects

considered here. NLDAS-2 has large biases in both

Tmax and Tmin. NLDAS-2 has less realistic variability

especially very near the coast, which could be due to

interpolation between grid cells across the land–sea in-

terface. Thus, at least in this case, dynamical downscal-

ing is found to add value over linear interpolation in

downscaling historical reanalysis.

Often station-based gridded datasets are treated as

ground truth, without acknowledging problems with

station data or assumptions needed to generate a spatial

complete temperature field from point measurements.

Indeed, the large differences between gridded datasets

seen here indicate that gridded dataset choice is a con-

siderable source of uncertainty. It is important that users

of gridded datasets are aware of their limitations and

select datasets appropriate for the task at hand. If cap-

turing trends is important, then homogenization is nec-

essary. For capturing climatologies, reanalysis-based

datasets may not be suitable because of their systematic

biases; station-based datasets that capture variable lapse

rates along the coast and in complex terrain are a better

choice. Many station-based datasets could be improved

with straightforward fixes, like making variable lapse

rates and station homogenization standard practice.

Reanalysis-based gridded datasets are likely to improve

from ongoing progress in regional and global climate

modeling and data assimilation.
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