<table>
<thead>
<tr>
<th>DOCKETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docket Number:</td>
</tr>
<tr>
<td>Project Title:</td>
</tr>
<tr>
<td>TN #:</td>
</tr>
<tr>
<td>Document Title:</td>
</tr>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Filer:</td>
</tr>
<tr>
<td>Organization:</td>
</tr>
<tr>
<td>Submitter Role:</td>
</tr>
<tr>
<td>Submission Date:</td>
</tr>
<tr>
<td>Docketed Date:</td>
</tr>
</tbody>
</table>
Agenda

+ **Title 24 2022 Time-Dependent Value Development**
 - Background
 - Policy Framework
 - AB32, SB32, SB100
 - Scenarios

+ **Draft TDV Values**

+ **Draft Source Energy Metrics**

+ **Non-combustion emissions**
 - Refrigerant gases
 - Methane
What are TDVs?

- The TDVs are a long-term forecast of hourly electricity, natural gas and propane costs to building owners and are used for cost-effectiveness activities in Title 24 Building Code.
- The TDVs answer the question of what is cost-effective in the long term, as required by the Warren-Alquist Act.

- Time-differentiation reflects the underlying marginal cost of producing and delivering energy.
- Area-correlation reflects underlying marginal cost shapes correlated with each climate zones weather file.

Sample Annual Average Electric TDV, 2022, CZ12

Similar for natural gas and propane.
What are TDVs used for?

Two main uses for TDVs

1. Cost-effectiveness analysis in the CASE studies (Codes And Standards Enhancement studies) used to adopt new building measures in the prescriptive standard

2. Code compliance for buildings that wish to vary from the prescriptive standard using the ACM (alternative calculation methodology). TDVs are embedded in California Building Energy Code Compliance software (CBECC)
Why do we use statewide average electricity and natural gas retail rate levels?
• With this approach, the code has similar overall stringency statewide and there can be similar construction practices across the state. Note that there are still variations for climate.

Why don’t we use the actual retail rate structures that are in place?
• We want the building code to be relatively stable over time and from cycle to cycle, the TDVs reflect a ‘perfect’ marginal cost of service which is a long-term signal for retail rates
• By using the underlying system marginal costs we are reflecting building measures that provide the greatest underlying value to the energy system, even if retail rates are flat or have a different time of use period
Frequently Asked Questions (2)

Why are the units of TDV in kBtu/kWh and kBtu/therm if they measure cost-effectiveness?

- The TDVs are calculated in lifecycle dollars per unit of energy ($/kWh, $/therm) in each hour and climate zone in California.
- For the building code compliance, they are converted to different units of kBtu/kWh and kBtu/therm using fixed multipliers.
What are the source energy factors used for?

• Beginning in the 2022 Title 24 code cycle, the CEC is considering adding an additional metric to measure source energy. The source energy metric would be used to set a maximum source energy consumption in the building. This is complimentary to the measurement of cost-effectiveness.

Why include non-combustion emissions?

• Beginning in the 2022 Title 24 code cycle, the CEC is considering adding the effect of high Global Warming Potential (GWP) gasses including refrigerants and methane leakage. With the interest in heat pumps, this allows greater compliance to be placed on low-GWP options and potentially better leak-prevention and disposal.
TDV Policy Assumptions
California’s Deep Decarbonized Future

+ **By 2020:** return GHGs to 1990 levels *(AB 32, 2006)*
+ **By 2030:** 40% below 1990 levels *(SB 32, 2015)*
+ **By 2050:** 80% below 1990 levels *(EO B-30-15 and EO S-3-05)*
+ **By 2045:** Carbon neutrality *(EO B-55-18) not included*
New Buildings will exist in the future energy system which is fundamentally changing

- Demand-side; efficiency, electrification of buildings and vehicles, storage
- Supply-side; renewable and decarbonized generation, biofuels

<table>
<thead>
<tr>
<th>Energy efficiency & conservation</th>
<th>Electrification</th>
<th>Low carbon electricity</th>
<th>Low carbon fuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Appliance EE</td>
<td>✓ Heat pumps</td>
<td>✓ Renewables & integration</td>
<td></td>
</tr>
<tr>
<td>✓ Building shells</td>
<td>✓ ZEV cars and trucks</td>
<td>✓ Nuclear, fossil with CCS</td>
<td></td>
</tr>
<tr>
<td>✓ Urban infill / transport mode-shift</td>
<td>✓ Industry & off-road vehicles</td>
<td>✓ Biofuels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ Electrolytic fuels (H₂ and P2X)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓ CCS</td>
<td></td>
</tr>
</tbody>
</table>
Major Policy Targets

+ Major policy included in Title 24

- California electricity sector targets set by SB100 to achieve 60% RPS by 2030, and 100% decarbonized by 2045
- California emissions reductions goals AB32 (1990 levels by 2020), SB32 (40% below 1990 levels by 2030), 80 x 50 (80% below 1990 levels by 2050)
 - We have not included Gov. Browns Executive Order for statewide carbon neutrality by 2045

+ Key Input Assumptions to reflect the policy landscape

- Assumes a statewide economy that meets 2030, 2050 emissions reduction goals
- Included impacts on the grid
 - Significant change in generation resource portfolio to decarbonize electricity generation
 - Increase in loads due to significant transportation electrification, some building electrification
- Updated cost of emissions abatement in the electricity system
- Introducing biofuel into natural gas pipeline, and reduced pipeline throughput
Emissions decline in all sectors to reach 80 x 50 target
Building Decarbonization Assumptions

+ In addition to building electrification, gas efficiency and renewable natural gas are utilized to reduce GHGs from buildings.
 - Only very high efficiency natural gas appliances are installed by 2025.
 - Renewable Natural Gas is blended in the pipeline, with 10% biomethane blended by 2030 and 19% by 2050, with 7% renewable hydrogen blend by 2050.

+ From CEC Pathways study, we decided to use the ‘Slower Building Electrification’ Scenario which has a mix of electrification and biofuel

+ Comparison to Energy Futures Initiative Study (2019)
 - EFI (2019) assessed strategies to meet the 2030 goal with 40% reductions in all sectors, so not directly comparable to a combined 40% reduction by 2030.
 - EFI study achieved 40% in buildings with greater assumed gas energy efficiency, greater rates of electrification including all new all-electric construction by 2020, and similar utilization of RNG to the CEC PATHWAYS scenario.

2018 CEC Deep Decarbonization in a High Renewables Future: Updated Results from the California PATHWAYS Model
“Slower Building Electrification” scenario reflects a mid-range level of building electrification among scenarios that meet the economywide GHG reduction goals (40% below 1990 levels by 2030 and 80% by 2050).

- About 18% of homes are electrified by 2030 and 49% by 2050.
- Assumes a rollover rate of ~75% for existing buildings
Natural Gas TDV Scenario Analysis

Policy Compliant
- Uses retail rate forecasts from 2019 CEC Future of Natural Gas study – Multi-Prong with Slower Building Electrification scenario
- Includes CPUC-approved rate increase, has some assumed reduced throughput due to building electrification (conservative compared to other scenarios), has biofuel and H2 costs
- Source energy is lower due to renewable fuel

Mid-IEPR
- Uses 2019 Preliminary IEPR Mid-Demand retail rate forecasts
- Does not include recent CPUC approved retail rate increases over the next 3 years
- Forecast is for 8 years, and then trended to 2050

Natural Gas Retail Rates for each Scenario

Source Energy – Share of Fossil Natural Gas
Modeling Framework

Set major policy and investment requirements necessary to reach Economy-wide GHG targets

Identify optimal statewide electricity resource portfolio to achieve electricity sector goals (SB100)

Simulate detailed electricity-sector operations given new loads including EV and electric buildings, and weather

Combine all outputs to generate 8760 TDV values and source energy metric

New CEC Weather Files
Annual Load Forecast

Annual load forecast taken from this scenario to determine an optimal system plan to meet the new load

- Baseline load decreases over time with energy efficiency, despite population increases projected for California
- New load added from transportation, building electrification
Hourly building electrification load shapes developed using parametric building simulations across 16 climate zones in new CTZ year

Scaled up by end-use, by PATHWAYS scenario annual forecasted load
RESOLVE Resource Plan

+ RESOLVE is a resource procurement model that determines the optimal electricity generation plan to meet statewide energy procurement targets
+ GHG emissions target comes from PATHWAYS, consistent with statewide emissions scenario
+ RESOLVE procures renewable resources to serve all electricity load while meeting the GHG constraint. As an effect of this constraint, the RPS% exceeds near-term current state targets
To meet SB100 goals in 2045, as well as emissions targets, RESOLVE builds significant amounts of renewable resources and storage.

This analysis is based on the publicly available 2018 CEC statewide RESOLVE model, with updated cost information.
Avoided Energy Costs

+ New production simulation run in PLEXOS model
+ Model footprint is entire Western Interconnection to reflect the impacts of interzonal trade, transmission, and generation on California energy prices
+ CEC and E3 updated inputs to IEPR PLEXOS model
 • Changes in annual load due to efficiency, transportation electrification, building electrification
 • Changes in hourly load due to new weather year
 • Changes in supply side generation mix to meet SB100
 • Update renewable generation shapes to match new weather year

wecc.org
Wholesale Electricity Price Forecast

+ Marginal energy price shape generated from PLEXOS production simulation modeling at CEC
+ SB100-compliant portfolio calculated with RESOLVE model
+ Ran PLEXOS for 2023-2030 and 2045, interpolating prices for complete 2023-2052 scope
PLEXOS Energy Price Shape Example: SCE 2030

SCE: January 2030

- Price (2018 $/MWh)
- Hour Ending
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
- Solar
- Customer Solar
- Wind
- Price

SCE: April 2030

- Price (2018 $/MWh)
- Hour Ending
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
- Solar
- Customer Solar
- Wind
- Price

SCE: July 2030

- Price (2018 $/MWh)
- Hour Ending
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
- Solar
- Customer Solar
- Wind
- Price

SCE: November 2030

- Price (2018 $/MWh)
- Hour Ending
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
- Solar
- Customer Solar
- Wind
- Price
Energy Price Shape Comparison

+ Higher buildout of solar in PLEXOS drives down midday prices
+ Abundant zero-cost resources – solar, wind, and storage – contribute to lower prices overall – particularly with Spring’s low loads, high solar, and hydro runoff
+ Storage discharge reduces peak prices in morning and evening “shoulder hours”
Generation Capacity

+ System Net Peak expected to transition as renewable penetration increases
 • 2023 – summer evenings
 • 2033 – mornings after batteries dispatch
 • 2045 – winter periods of low renewable energy availability

+ With significant solar and storage, early morning before sun rises will be capacity defining event
T&D Capacity

- New weather year used in for T&D Allocator model, along with regional rooftop PV penetration forecasts
- Peaks generally remain in historical patterns
- T&D avoided costs are calculated using weighted average from the latest utility GRCs, consistent with 2019 CPUC Avoided Cost Calculator
 - Transmission: $24.47/kW-yr
 - Distribution: $102.54/kW-yr
Three emissions cost streams for electricity and natural gas

1. **Cap and Trade Emissions**: Direct plant emissions from directly serving load

2. **GHG Adder**: Additional cost of procuring the necessary supply-side resources to achieve the electricity-sector long run emissions intensity target. Replaces previous ‘RPS Adder’ field

3. **Emissions Abatement**: Economy-wide cost of abating remaining emissions after supply-side actions have been taken
Emissions Accounting for Natural Gas

Three emissions cost streams for electricity and natural gas

1. **Cap and Trade Emissions**: Direct emissions from non-renewable gas delivered (net of RNG)

 Additional cost of procuring renewable natural gas included in the commodity price.

2. **Emissions Abatement**: Economy-wide cost of abating remaining emissions after supply-side actions have been taken.

 Adding load from new buildings increases emissions.

 Remaining emissions put pressure on the 80 x 50 GHG cap and therefore drive costs to meet statewide goal.

 Direct emissions increases subject to Cap and Trade market.

 Biofuels to reduce GHG content of pipeline gas.

 Net long-run GHG emissions.
Cap and Trade Emissions: Cost from IEPR GHG Allowance Price forecast; direct cost of emissions from combusting natural gas, factored into retail rates

Emissions Abatement: Assumed that in a SB32-compliant future, cheapest economy-wide incremental emissions reduction is from electricity supply side, so RESOLVE GHG Abatement price is used. Represents cost of meeting state economy-wide emissions target
Electricity Retail Rate Adjustment

+ Little change in electricity retail rate forecasts from 2019 TDV

- 2019 TDV used Mid Demand case from 2015 IEPR
- 2022 TDV uses Mid Demand case from 2019 IEPR
Title 24 2022 TDV Results
Updated Inputs to Electricity TDV

Sample Electric 2022 TDV – Residential CZ12

Updates for 2022 TDVs

- Resource balance year, marginal capacity resource
- T&D costs, CTZ weather, distributed PV % and profile
- Carbon price forecast, economy-wide abatement costs to hit 80x50
- GHG-based procurement of integrated renewables to reduce electricity GHGs
- Carbon allowance price forecast
- Ancillary services costs
- Same loss %’s → new value
- PLEXOS simulation with SB100 resource portfolio, loads with CTZ weather and electrification
- Electric retail rate forecast
Electricity TDV Changes from Last Cycle

+ Increase in renewable generation, decrease in natural gas commodity cost drive down wholesale energy costs
 - Decrease in volumetric costs is supplemented with fixed costs through retail rate adder
+ Decrease in TDV in middle of day

![Chart showing TDV changes](chart.png)

- **2019 TDVs**
- **2022 TDVs**

<table>
<thead>
<tr>
<th>2019 TDVs</th>
<th>2022 TDVs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022 TDV Categories</td>
<td></td>
</tr>
<tr>
<td>T&D</td>
<td>Capacity</td>
</tr>
<tr>
<td>Emissions Abatement</td>
<td>GHG Adder</td>
</tr>
<tr>
<td>Cap & Trade Emissions</td>
<td>Ancillary Services</td>
</tr>
<tr>
<td>Losses</td>
<td>Energy</td>
</tr>
<tr>
<td>Retail Adjustment</td>
<td>RPS Adder</td>
</tr>
</tbody>
</table>

Category new to 2022 TDVs
Comparisons between TDVs

Different CZs have different shapes

Res and Non-Res have same shape but different retail adjustment factors

Different CZs have different shapes

Res and Non-Res have same shape but different retail adjustment factors
Updated inputs to Natural Gas TDV - Policy

- Updated natural gas retail rate forecast
- Updated CO2 allowance price forecast
- Updated natural gas commodity price forecast including biofuels
- Updated natural gas commodity price forecast
- Residual Emissions Abatement

Policy Compliant Natural Gas 2022 TDV - Res

2022 Avoided Cost of Natural Gas (k8tu/th)

- T&D
- Emissions Abatement
- Cap & Trade Emissions
- Commodity Cost
- Retail Adjustment

[Graph showing cost breakdown by month]
Updated inputs to Natural Gas TDV – Mid-IEPR

- Updated natural gas retail rate forecast
- Updated natural gas commodity price forecast
- Added Emissions Abatement
- Updated CO2 price forecast
Updated inputs to Propane TDV

- Updated inputs to Propane TDV
- Updated propane retail rate forecast (2019 EIA AEO)
- Updated CO2 price forecast
- Added Emissions Abatement
Natural Gas and Propane TDVs Comparison

Natural Gas TDV
30-year NPV Residential, CZ12

Avoided Cost of Natural Gas
(kBtu/therm)

Propane Gas TDV
30-year NPV Residential, CZ12

Avoided Cost of Propane Gas
(kBtu/therm)

- T&D
- Emissions Abatement
- Cap & Trade Emissions
- Commodity Cost
- Retail Adjustment

2019 TDVs
2016 TDVs

Emissions Abatement
Cap & Trade Emissions
Delivered Propane
Source Energy Metric
Source Energy Metric

+ Secondary evaluation metric to encourage efficient consumption of input fuels, by calculating the total input fuels for a unit of end-use consumption

+ Defined as Btu of depletable fuels, averaged over the lifetime of a building or measure
 - Renewable energy (ex: wind, solar) and renewable fuels (ex. biogas, hydrogen) are defined as having zero marginal source energy in this definition

+ As natural gas is the only thermal generation that could be on the margin, the source energy metric correlates with emissions

+ For electricity end-uses, long run marginal source energy is used
 - Factors in supply-side interventions that will occur as a result of incremental load
 - Ex. given a 50% RPS, if 1,000 MWh of new annual load is added, a corresponding 500 MWh of new renewable energy must be procured and delivered
 - The new renewables will offset some of the initial increase in generation
Formulation - Electricity Source Energy

- Implied short run marginal source energy calculated based on hourly wholesale energy price forecast (from PLEXOS)

- Avoided source energy from incremental renewable generation is calculated based on hourly profile of new renewable portfolio and short run source energy
Renewable avoided source energy is generalized to an annual number (renewables integration does need to occur in same hour as new load)

\[\sum \]

Avoided source energy from incremental renewable is calculated based on hourly generation of incremental renewables and short run source energy

Short Run Source Energy

Time Independent Renewable Avoided Energy

Long Run Source Energy

Heat Rate (Btu/kWh)

0 3000 6000 9000
8760 Long-run Source Energy Factors

Based on achieving an RPS Portfolio over time consistent with SB100

Average of month and hour, Btu/kWh

<table>
<thead>
<tr>
<th>Source Energy with minimum @ zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hour</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Month</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Propane source energy is simple unit conversion (100 kBtu/th)

In retail natural gas – blended biogas and hydrogen are counted as 0 Btu/th

- Blended RNG assumption results in lifetime source energy of 86-88 kBtu/th
- Includes compression losses + LUAF
All electric end uses, especially heat pumps, have lower source energy than analogous natural gas end uses in mixed fuel home.
Non-Combustion Emissions
All heat pumps have refrigerants, and nearly all refrigerants in use today are very potent greenhouse gases—up to ~2000x stronger than CO2

- This comparison to CO2 is known as the Global Warming Potential (GWP)

These refrigerants only contribute to global warming when they leak, but leakage is inevitable, and can account for a significant portion of lifecycle emissions from an all-electric building

- Air conditioners use refrigerants too, so mixed-fuel buildings have leakage as well

Including these emissions in the TDV framework will allow us to compare the true lifecycle emissions between all-electric and mixed-fuel buildings, and more importantly, incentivize the use of lower-GWP refrigerants

- Lower-GWP refrigerants are available, but are not widely used in the US, and often require different installation practices as they can be mildly flammable
On the natural gas side, it is also important to account for the potential for avoided methane leakage through building choices.

- It is well-known that the natural gas system has leaks, particularly during the production and storage stages.

Methane has a 100-year GWP of 25, so leaking methane causes significantly more global warming than burning it.

The difficult question is: how much methane leakage could we avoid through electrification?
Proposed Mechanism for Non-Combustion Emissions Accounting

- Establish for the baseline building types the CO2e for both of the non-combustion emission sources in consideration; refrigerants and methane

- In CBECC-Res and CBECC-Com:
 - Compute the CO2e of lifecycle refrigerant and methane emissions
 - Multiply by the GHG Abatement factor for TDV
 - Add to the TDV score based on electricity, natural gas, and propane energy use

- Reduction from the baseline non-combustion emissions would then count as a TDV trade-off so that lower non-combustion emissions would be considered in building design tradeoffs

Refrigerant leakage is a significant portion of the GHG emissions from an all-electric home

Example:

![Chart showing emissions comparison between refrigerant leakage and grid CO2 emissions.](chart.png)
Refrigerant leakage

+ The California Air Resources Board has compiled data on average leakage rates for appliances that use refrigerants
 • Leakage happens both during operation and at end-of-life
+ This allows us to calculate lifecycle refrigerant leakage emissions for any building
 • These numbers are of course average, as some buildings will leak more than others

Refrigerant Leakage Table

<table>
<thead>
<tr>
<th>Appliance</th>
<th>Typical refrigerant</th>
<th>Refrigerant GWP</th>
<th>Average refrigerant charge</th>
<th>Average annual leakage</th>
<th>Average end-of-life leakage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central A/C R410A 2088</td>
<td>7.5 lbs</td>
<td>5%</td>
<td>80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-source ducted heat pump</td>
<td>R410A 2088</td>
<td>8.2 lbs</td>
<td>5.3% 80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat pump water heater</td>
<td>R134A 1430</td>
<td>2.4 lbs</td>
<td>1% 95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat pump clothes dryer</td>
<td>R134A 1430</td>
<td>0.88 lbs</td>
<td>1% 100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annualized leakage = (Annual leakage rate) + (End-of-life leakage)/lifetime
Lower-GWP refrigerants are available, but not yet commonly used in the US.

The most promising near-term low-GWP refrigerant for use in residential HVAC heat pumps is **lower-GWP HFCs**, such as HFC-32.

- These refrigerants are generally mildly flammable, so different installation practices are required.
- Fire Code and Mechanical Code currently don’t allow mildly flammable HFCs.

For other, smaller heat pumps such as water heaters, the most promising option is **HFOs**, which are similar to HFCs but have a very low GWP.

Another option being used in some places, such as Europe and India, is **hydrocarbons** such as propane— but flammability is an obvious issue.

CO2 can be used as a refrigerant, but requires much higher system pressures, so is currently only viable for smaller systems such as automobiles and heat pump water heaters.

Low-GWP Refrigerant Alternatives

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>GWP</th>
<th>Appropriate for...</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFC-32</td>
<td>675</td>
<td>HVAC Heat Pumps</td>
</tr>
<tr>
<td>HFO-1234yf</td>
<td>4</td>
<td>All heat pumps except HVAC</td>
</tr>
<tr>
<td>R-290</td>
<td>3</td>
<td>All</td>
</tr>
<tr>
<td>R-744 (CO2)</td>
<td>1</td>
<td>All heat pumps except HVAC</td>
</tr>
</tbody>
</table>
Key question: how much do changes in building natural gas consumption change methane leakage?

Sources of leaks in the natural gas system

Behind-the-meter

Distribution

Transmission & Storage

Production (90% outside of California)
We looked at a broad range of studies on methane leakage.

None of them answer exactly our question: how much leakage could be avoided by electrifying an appliance or home in California?

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
<th>Leakage rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARB Inventory- behind-the-meter only</td>
<td>Includes both new and existing homes</td>
<td>0.5%</td>
</tr>
<tr>
<td>CARB Inventory</td>
<td>All leakage sources in CA</td>
<td>0.7%</td>
</tr>
<tr>
<td>LA Basin Study (He, 2019)</td>
<td>LA Basin only; attempts to quantify correlation with consumption</td>
<td>1.4%</td>
</tr>
<tr>
<td>Alvarez (2018)</td>
<td>US-wide estimate including production emissions. Not all of this leakage will be marginal.</td>
<td>2.3%</td>
</tr>
</tbody>
</table>
We examined sample CBECC results for a single-family home in CZ12 (Sacramento), to compare the emissions from all-electric and mixed-fuel homes when leakage emissions are included.

Air conditioners in mixed fuel homes also have refrigerant leakage.

Overall, the all-electric home in this example emits about 40% less GHGs, once leakage emissions are accounted for.
Key takeaways

- All-electric homes emit significantly less GHGs, even when refrigerant and methane leakage is accounted for.
- Low-GWP refrigerants have a significant potential to reduce lifecycle emissions, and therefore could be significantly incentivized through TDV.
- We will further investigate the potential for electrification to reduce leakage in new homes; the CARB leakage rate of 0.7% is our starting point.
Baseline Load Weather Matching Algorithm

- Weather/load prediction algorithm updated from previous code cycles
- Regression model for each balancing authority is trained using historical weather data and load data
- New weather year characteristics are used to predict hourly load for each balancing authority
- Load profiles are normalized and scaled up by annual baseline load
Electric Vehicle Charging Load Profile

- Load shape generated by E3 EV Load Shaping Tool, scaled up to PATHWAYS annual average loads
- Assumes distribution of EV types (BEV, PHEV, etc), and models driving behavior with historical trip data from the National Household Travel Survey (NHTS)
Weather-Matched Renewable Generation

Sampling of site-specific historical NREL data used to calculate generation profiles for candidate renewable resources in the CTZ weather year for production simulation model
To decarbonize retail natural gas, biogas and hydrogen are blended in

- 10% biogas by 2030
- 7% hydrogen by 2045 (assumed off-grid renewable generation for hydrogen)

The renewable natural gas blend is reflected in both commodity cost and emissions
Marginal capacity price tracks with transition system net peak

- 2023 resource balance year, based on new CT
- 2030 based on RESOLVE capacity shadow price
- Beyond 2030 transitions to the cost to keep CCGTs operating to meet winter energy constraints
Ancillary Services, Losses

+ Ancillary Services
 • Continue to use 0.5% of energy

+ Losses
 • Continue to use utility-specific loss factors retained from 2019 TDV analysis

<table>
<thead>
<tr>
<th>Description</th>
<th>PG&E</th>
<th>SCE</th>
<th>SDG&E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Peak</td>
<td>1.109</td>
<td>1.084</td>
<td>1.081</td>
</tr>
<tr>
<td>Summer Shoulder</td>
<td>1.073</td>
<td>1.080</td>
<td>1.077</td>
</tr>
<tr>
<td>Summer Off-Peak</td>
<td>1.057</td>
<td>1.073</td>
<td>1.068</td>
</tr>
<tr>
<td>Winter Peak</td>
<td>0.000</td>
<td>0.000</td>
<td>1.083</td>
</tr>
<tr>
<td>Winter Shoulder</td>
<td>1.090</td>
<td>1.077</td>
<td>1.076</td>
</tr>
<tr>
<td>Winter Off-Peak</td>
<td>1.061</td>
<td>1.070</td>
<td>1.068</td>
</tr>
<tr>
<td>Generation Peak</td>
<td>1.109</td>
<td>1.084</td>
<td>1.081</td>
</tr>
<tr>
<td>Transmission Peak</td>
<td>1.083</td>
<td>1.054</td>
<td>1.071</td>
</tr>
<tr>
<td>Distribution Peak</td>
<td>1.048</td>
<td>1.022</td>
<td>1.043</td>
</tr>
</tbody>
</table>
Natural gas retail rate forecasts (Policy Compliant Scenario)

+ **Natural gas commodity price has decreased since 2019 Code Cycle**
 - Natural gas commodity and burnertip price forecast from 2019 Preliminary IEPR (average of PG&E Backbone and SCG Needles)

+ **Natural gas retail rates based on 2019 CEC Future of Natural Gas study – Multi-Prong with Slower Building Electrification scenario**
 - Retail rates increase compared to 2019 code cycle due to recently approved safety upgrade costs, somewhat decreased throughput, some blend of biogas and hydrogen
Natural gas commodity price has decreased since 2019 Code Cycle
- Natural gas commodity and burnertip price forecast from 2019 Preliminary IEPR (average of PG&E Backbone and SCG Needles)

Natural gas retail rates based on 2019 Preliminary IEPR Mid-Demand Retail Rate Forecast
- Residential retail rate forecast has increased compared to 2019 code cycle
- Non-residential retail rate forecast has decreased compared to 2019 code cycle
Retail Rate Forecast Comparison

Retail Rate forecast scenario is conservative compared to other PATHWAYS scenarios that meet emissions targets

- Alternatives are increased synthetic natural gas, or high building electrification, both of which are expensive
- This scenario compensates for less decarbonization in the building sector with larger, more expensive reductions in other sectors
+ Policy Compliant yields higher retail gas rates, which translates to higher TDVs
+ The difference between scenarios is larger for Non-Res

Natural Gas Scenario Comparison

Natural Gas Retail Rates

Natural Gas TDV

Policy Compliant yields higher retail gas rates, which translates to higher TDVs

The difference between scenarios is larger for Non-Res