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ARTICLE INFO ABSTRACT

Keywords: The rapid growth of distributed solar adoption in California provides an opportunity to lower electricity bills for
Rooftop solar the adopters and realize additional community benefits, including grid resilience and lower grid emissions. It is
Photovoltaics unclear, however, whether this transition is occurring equitably across the state's various demographic and
Environmental justice socioeconomic groups and whether historically disadvantaged environmental justice (EJ) communities have
gzg';;”;z:ézen been able to exploit the bill savings and other associated benefits of rooftop solar. Here we analyze the cumu-

lative and annualized (spatial and temporal) rates of PV adoption across California and compare those with data
from the state's cumulative impact EJ methodology (CalEnviroScreen). We find persistently lower levels of PV
adoption in disadvantaged communities, suggesting clear distributive and equity impacts of existing PV support
policies, and indicating that the benefits bypass some of the state's most vulnerable populations. The analysis
reveals strong correlation of solar adoption with not only socioeconomic variables, but also with health, en-
vironmental and demographic indicators, contributing to our growing understanding of the role these factors
play in household clean-energy adoption trends. The results provide a baseline from which to develop more
effective policies, strategically design incentives, and track the efficacy of existing solar programs that target
disadvantaged communities.

Distributed energy resources

1. Introduction

Residential photovoltaic (PV) adoption in the US has seen a dra-
matic increase over the past couple of decades. The state of California
leads the nation, both in terms of total number of small-scale PV sys-
tems deployed — over 610,000 installations up to 20 kW (kW) in size as
of 2018 — and the number of such installations per capita, averaging
about one array for every 65 California residents (The OpenPV Project,
2018). The high rate of distributed solar adoption in California has been
fueled by a combination of factors: aggressive statewide renewable
energy policies aimed at reducing greenhouse gas emissions, strong
incentive programs such as the California Solar Initiative (CSI), state
and federal PV income tax credits and rebates, net energy metering
(NEM) compensatory mechanisms, high solar resource potential
throughout the state, falling PV costs, and last but not least, electricity
prices that are among the highest in the nation. State government po-
licies, as well as general consumer preferences for cleaner energy, are
rapidly transforming the California energy landscape — generation
from small-scale solar has grown from 3% to 6.6% of total in-state
generation in just the last four years (Electricity Data Browser, 2018).
As the state keeps moving towards a power sector with lower overall
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greenhouse gas and criteria pollutant emissions, it is also upending the
traditional paradigm of electricity generation and distribution by pro-
viding some consumers with the opportunity to produce electricity at
the point of consumption. However, important questions still remain
about whether this transition is occurring equitably across the state's
various demographic and socioeconomic groups and whether histori-
cally disadvantaged environmental justice communities have been able
to capitalize on the bill savings and other associated benefits of dis-
tributed solar.

The levelized cost of energy from renewable energy resources has
fallen precipitously in recent years (Lazard Ltd, 2018). Early adopter
regions of renewable technologies such as California and Germany,
however, have faced the unfortunate side effect of increased electricity
prices for consumers (Rockzsfforde and Zafar, 2015; Grosche and
Schroder, 2014; Jenkins et al., 2016). High residential utility costs can
place a disproportionate burden on low-income households. A study by
the American Council for an Energy Efficient Economy (ACEEE) found
that the median US energy burden, defined as the percent of annual
income spent on energy utility bills (electric, gas or other heating fuels),
was 3.5% across all major US cities, while the median low-income
household's energy burden was more than twice that at 7.2% (Drehobl
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and Ross, 2016). In a large fraction of the cities surveyed, the lowest
quarter of low-income households, i.e. the poorest residents, experi-
enced an even greater energy burden of over 14%, substantially higher
than the 3.5% average for all US households. Energy burden disparities
are often articulated through terms like fuel poverty and energy in-
security, which reflect the inability of a household to meet basic energy
needs (Bednar et al., 2017; Hernandez, 2013). Concerns related to fuel
poverty and energy insecurity constitute the foundation of a growing
field of scholarship on energy (in)justice, which revolves around the
idea that fuel poverty violates the basic principle of distributive justice
(Jenkins et al., 2016; Reames, 2016; Gross, 2007; Sovacool et al.,
2016).

Additional environmental, health, and demographic factors often
interplay with the socioeconomic aspects of energy insecurity. Evidence
suggests that other social stressors besides poverty, including racial
discrimination, crime, malnutrition, substance abuse, and numerous
environmental and health stressors are often present in communities of
lower socioeconomic status (Morello-Frosch et al., 2011; Cushing et al.,
2018). Research is also beginning to show how the cumulative effects of
these social and environmental vulnerabilities can work in concert to
produce both health and equity disparities (Solomon et al., 2016). As a
result, regulatory agencies have started to consider new cumulative
impact methodologies that incorporate social equity, health and en-
vironmental data in policy decision-making (U.S. Environmental
Protection Agency, 2017; California Climate Invest, 2019). One such
methodology is CalEnviroScreen (CES) introduced by the California
Office of Environmental Health Hazard Assessment (OEHHA) in 2013
(CalEPA, 2017). CES is a database and a geospatial mapping tool that
integrates environmental burden and socioeconomic data on the census
tract level in California. The state of California uses CES to identify
disadvantaged communities (DACs) in the state, defined as the census
tracts that score in the top 25% statewide on the CalEnviroScreen 3.0
metric. These are the 25% of California communities that suffer the
most from a combination of socioeconomic, health and environmental
burdens. The CES methodology now plays a key role in directing re-
sources from the California Cap-and-Trade program to support clean
energy investments in environmental justice (EJ) communities (535
Disadvantaged Comm, 2019), with several new statewide initiatives
serving as the vehicles for these funds (Solar on Multifamily Affo, 2019;
Expanding Solar in Disadv, 2019).

Residential PV adoption can help lower electricity bills for low-in-
come households and make energy expenses more stable from month to
month. In addition, environmental justice communities, which are af-
fected by multiple environmental, health and socioeconomic stressors,
may see multiple benefits (Cushing et al., 2018). For example, 84% of
the peaker power plants in California are sited in locations that have
higher than average CES scores, and close to half of these plants are
located in disadvantaged communities (top 25% of CES scores) (Krieger
et al., 2016). Deployment of rooftop solar in such communities, espe-
cially when paired with storage to reduce electricity consumption
during peak hours, has the potential to not only lower electricity bills
for the adopters, but to also yield co-benefits such as lower air pollutant
emissions by displacing local marginal fossil fuel electricity generation
in transmission-constrained load pockets (Krieger et al., 2016). Low-
income households face numerous barriers to accessing solar power and
its economic benefits, including high upfront costs, lack of access to
financial instruments, lack of information, language and behavioral
barriers, split incentives between owners and tenants (many low-in-
come households are renters), and others. Several state programs in
California were initiated with the goal of lowering or removing some of
those barriers (Multifamily Affordable So, 2018; Single-Family
Affordable, 2018; California Energy Commission, 2016). The emer-
gence of third-party financing models has also provided an avenue to
spur PV deployment among low-income households (Drury et al.,
2012). To date, however, no studies have rigorously examined PV
adoption rates in EJ communities, analyzed the role of various EJ
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indicators in PV adoption, or evaluated the cumulative effects of state
programs developed to help these communities. To improve the effec-
tiveness of targeted policies, a more in-depth evaluation of the spatial
and temporal dynamics of solar adoption in vulnerable populations is
needed. The aim of this paper is to fill this gap by providing a com-
prehensive assessment of the role that EJ, demographic, and socio-
economic factors play in the uptake of solar PV in disadvantaged
communities in California.

A significant portion of the research on residential PV diffusion to
date has focused on equity issues related to PV policy incentives in
countries like Australia (Macintosh and Wilkinson, 2011; Simpson and
Clifton, 2016), Germany (Grosche and Schroder, 2014) and the US
(Griffith et al., 2014), behavioral and policy reasons for adoption vs.
non-adoption of clean energy technologies (Braito et al., 2017; Caird
et al., 2008; Kemp and Volpi, 2008; Wilson and Dowlatabadi, 2007; Li
and Yi, 2014), or on developing predictive models of consumer beha-
vior (Robinson and Rai, 2015; Rai and Robinson, 2015; Sultan et al.,
2016). In recent years, econometric, agent-based, regression and other
models have identified key demographic, socioeconomic, and beha-
vioral variables that influence domestic PV diffusion, including income,
education, age, ethnicity, family size, owner occupancy, peer effects,
and of course, access to financial resources (Kwan, 2012; Sommerfeld
et al., 2017; Coffman et al., 2018; Sardianou and Genoudi, 2013; Islam
and Meade, 2013; Bollinger and Gillingham, 2012). Models have also
looked at the spatial dynamics of PV adoption (Kwan, 2012; Sharshing,
2017; Aklin et al., 2018; Yu et al., 2018). A 2014 study of PV diffusion
in California explored how several types of geospatial data, including
less-commonly studied variables like house age, number of rooms, and
heating source, vary regionally at various spatial scales across the state,
and found that regression models using small subsets of geospatial in-
formation may be just as predictive as models using hundreds of
geospatial variables, but that their predictive powers also depend on the
level of spatial resolution and regional characteristics (Davidson et al.,
2014). This and other geospatial studies did not explore the temporal
dynamics of residential PV adoption. A recent analysis by the Lawrence
Berkeley National Lab (LBNL) examined income trends among US re-
sidential solar adopters with an emphasis on low- and moderate-income
(LMI) residents (Barbose et al., 2018). The report revealed that the
median income of residential solar adopters is $32K higher than that of
other households, and $13K higher compared to owner-occupied
households only, but also showed that PV adoption has been trending
towards more moderate-income households in recent years. As evi-
denced by some of the studies referenced above, however, income may
not be the only strong driver behind disparities in PV adoption. Im-
portantly, the relative impact of the various demographic and socio-
economic variables is still not well understood, and, to the best of our
knowledge, no studies have investigated simultaneously the geospatial
and temporal influences of individual and combined EJ indicators
within the framework of disadvantaged communities to examine the
viability of current EJ methodologies and the policies aimed at helping
these communities.

In this paper, we utilize project-level data for the vast majority of
residential PV systems in California using LBNL's Tracking the Sun da-
tabase. We chose the state of California for this analysis because: 1) it
has the largest number of small-scale PV installations to date and the
highest rate of PV adoption per capita in the US; 2) has some of the
highest levels of income inequality in the country as well as significant
environmental pollution disparities across the state; and 3) has devel-
oped a unique and robust environmental justice cumulative impact
methodology (CalEnviroScreen) that the state uses to direct clean en-
ergy funding streams. We identify key variables within CES and quan-
tify their relative influence on solar adoption both independently and
using the combined CES score. We explore geospatial variations of solar
adoption on the census tract level and regionally across utility terri-
tories, as well as temporal variations of solar adoption within and
outside of disadvantaged communities in California over the past 20
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years. We aim to answer several key questions: 1) How is distributed
solar adoption in California correlated with various socioeconomic and
EJ indicators? 2) How have the geospatial, demographic and socio-
economic trends of PV uptake changed over time? 3) What role have
state programs designed to help low-income and disadvantaged com-
munities played in solar deployment trends? 4) What are the policy
implications of the answers to these questions and what do they say
about the EJ methodology used in California (CalEnviroScreen) and its
application to climate investments? Our results indicate that EJ com-
munities in California have experienced disproportionately low levels
of PV adoption. These low levels of uptake continue to persist to the
present day, despite fairly aggressive state policies and a number of
solar incentive programs aimed at targeting low-income and dis-
advantaged communities. Our analysis reveals strong correlation be-
tween solar adoption rates and socioeconomic/demographic indicators
such as poverty, education, linguistic isolation and housing burden. It
also reveals correlation between solar deployment and health/en-
vironmental EJ indicators such as asthma rates, cardiovascular disease,
low birthweight births and traffic density. These findings contribute to
our growing understanding of the role that demographic, socio-
economic, health and environmental factors play in household uptake
of clean energy technologies and offer an opportunity to more effec-
tively shape future incentives and policies to successfully target dis-
advantaged communities in California. They also provide a framework
for supporting the equitable deployment of residential solar PV systems
and other distributed clean energy technologies nationwide.

2. Data and methodology

This work relies primarily on two data sources. PV deployment data
were obtained from the most recent edition of LBNL's Tracking the Sun
2018 database (Darghouth and Barbose, 2018). The dataset includes
project-level data for the vast majority of grid-connected non-utility
scale PV systems installed nationwide through 2017. LBNL collects the
data from state incentive programs, large utilities, state utility reg-
ulators and other organizations. For California, our data include
695,620 individual systems within the three largest investor-owned
utility (IOU) territories in the state Pacific Gas and Electric (PG&E),
Southern California Edison (SCE), and San Diego Gas and Electric (SDG
&E). The dataset also contains an additional 50,915PV systems in-
stalled in the two largest public utility service territories in the state:
the Los Angeles Department of Water and Power (LADWP) and the
Sacramento Municipal Utility District (SMUD). Since individual PV
system addresses are not publicly available, LBNL provided us with a
list containing the census tract code for each PV installation. This al-
lowed us to aggregate various types of data, including total number of
installations, total installed capacity (in kW), customer segment (re-
sidential, commercial, government, nonprofit, school, non-residential),
and others on the census tract level. It also allowed us to associate the
tract-level PV information with the CES 3.0 dataset, which is similarly
aggregated on the census tract level. We did not include data for
LADWP in our analysis because LADWP data were available to us on the
zip code level only.

OEHHA's CalEnviroScreen 3.0 is the other primary data source for
this analysis. The CES methodology develops an EJ score for each
census tract in California based on its state percentile values for 20
different socioeconomic, demographic and environmental indicators.
Using percentiles produces a relative, rather than an absolute scale for
the pollution impacts and vulnerabilities in California communities, but
this approach allows for the aggregation of multiple indicators that are
otherwise measured in non-comparable units. The 20 CES indicators are
grouped into two broad categories: (1) Population Characteristics,
which include five socioeconomic factors (educational attainment,
housing burden, linguistic isolation, poverty, unemployment) and three
sensitive populations variables (asthma emergency room visits, cardi-
ovascular disease emergency room visits, percent low birthweight
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births); and (2) Pollution Burden, which includes seven exposure in-
dicators (ozone and PM,s concentrations, diesel PM emissions,
drinking water contamination, pesticide use, toxic releases, traffic
density) and five environmental indicators (cleanup sites, groundwater
threats, hazardous waste, impaired water bodies, and solid waste sites)
(CalEPA, 2017). The five indicators comprising the Environmental Ef-
fects component are weighted one-half when combined with the seven
indicators comprising the Exposures component. The overall CES score
for each census tract is calculated by (1) averaging the state percentiles
of the 12 Pollution Burden indicators and separately averaging the
percentiles of the eight Population Characteristics indicators; (2)
scaling each of these results to a maximum score of ten; (3) multiplying
the population and environmental scores to create an EJ score with a
maximum value of 100; and (4) calculating the state percentile of these
EJ scores for each census tract. The communities that score in the top
25% of census tracts statewide on this metric and the tracts that do not
have an overall CES score but are in the top 5% in the Pollution Burden
category are designated as Disadvantaged Communities by the state of
California.

We also utilize data from the American Community Survey (ACS) to
obtain the 5-year-average (2012-2016) median household income for
each census tract. The ACS is a statistical survey conducted by the US
Census Bureau that samples a small percent of the US population every
year to provide demographic, social and economic data on various
communities in the US. ACS provides 1-, 3- and 5-year rolling data but
the 5-year ACS data are based on larger survey samples and are con-
sidered more reliable.

Due to the distributed nature of small-scale solar systems, in this
work we use installed PV capacity per capita as the dependent variable
to represent PV adoption rates (or PV deployment density). We use
regression and correlational analysis to correlate solar deployment with
various demographic, socioeconomic and environmental factors on the
census tract level. For parts of the analysis we log-transform the in-
stalled PV per capita and use that as the dependent variable in order to
produce more normally distributed model residuals.

3. Results and discussion

In this section, we examine the overall geospatial and EJ distribu-
tion of PV adoption in California, deployment rates by utility service
territory, and the temporal dynamics of solar uptake since 1998. We
also correlate PV deployment with predictor variables such as overall
CES score, overall Population Characteristics and Pollution Burden
scores, as well as several individual indicators from the CES metho-
dology and ACS, including median household income, education level,
poverty, unemployment, linguistic isolation, PM, s, asthma rates and
others.

3.1. Spatial and EJ analysis

The geospatial distribution of EJ scores in California and adoption
rates of rooftop solar by census tract are compared side-by-side in
Fig. 1. Fig. 1a displays the geographic extent of disadvantaged com-
munities in California. The map outlines the broader regional patterns
in the state, with most disadvantaged communities located in dense
urban areas such as Downtown LA and San Francisco Bay Area (insets),
near the smaller metropolitan area of Sacramento, and in the slightly
less dense but heavily industrial and agricultural region of the San
Joaquin Valley. These communities are colored darker orange on the
blue-orange divergent EJ map. Fig. 1b outlines variations in residential
PV adoption across census tracts in California. In contrast to the dis-
tribution of EJ communities, the geospatial characteristics of rooftop
solar (presented on a per capita basis to control for differences in po-
pulation density) follow a more suburban and rural trajectory. The
urban cores of the cities, where most disadvantaged communities are
located, reveal relatively low levels of solar uptake, while the outlying
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Fig. 1. (a) Geospatial distribution of CES EJ score percentiles in California by census tract. The highest 25% of CES scores are designated as disadvantaged com-
munities (colored orange). (b) Distribution of rooftop solar deployments in California on a green-yellow-orange-red color map. Green indicates lowest rates of solar
deployment, yellow-orange indicate medium levels of PV deployment, red indicates highest levels of solar adoption (nearly 2 kW per capita). (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)

suburbs and rural areas appear to have significantly higher rates of PV
adoption. The insets in Fig. 1 illustrate these trends visually for two of
the most populous areas in the state: the LA Basin and the San Francisco
Bay Area. The census tracts with highest levels of residential PV
adoption (colored yellow-red in Fig. 1b) form a spotted band of sub-
urban and rural areas often situated more than 30 miles away from the
dense city cores. We note that a large portion of the LA Basin is colored
grey on the map due to the unavailability of solar deployment data on
the census tract level for LADWP territory. A small number of census
tracts overlap both LADWP and SCE territory. In those census tracts,
only systems deployed within SCE territory were considered.

CES data are often presented in terms of percentiles rather than CES
scores. The percentile rank of each census tract is based on the rank-
order of its CES score compared to all other census tracts in the state.
Thus, a tract's CES percentile indicates the percentage of census tracts
with lower CES scores. In Fig. 2, we plot the cumulative installed PV
capacity in kW per capita across the full CES percentile range (0-100)
divided into 5% bins. The figure shows rooftop solar deployment data
for three major customer segments: residential, commercial and gov-
ernment installations. We excluded non-profit, school and non-re-
sidential installations from this figure because they comprise a small
percentage of the total kW installed (less than 2% each).

For residential installations, the PV deployment data in Fig. 2 re-
veals unambiguous tendency towards progressively lower PV adoption
levels in communities with higher EJ scores. Rates of residential solar
deployment in the most disadvantaged communities, i.e. the census
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Fig. 2. Total installed rooftop solar (in kW per capita) by CES percentile range
divided in 5% bins. Data are shown for three main customer segments: re-
sidential (blue), commercial (red), and government (green). (For interpretation
of the references to color in this figure legend, the reader is referred to the Web
version of this article.)
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tracts that rank in the top 5% of CalEnviroScreen, are 8.2 times lower
than the adoption rates in the bottom 5% of CES scores (the least dis-
advantaged communities). To date, only 2.6% of the total residential
solar capacity has been installed in the top 10% of CES communities. In
contrast, the bottom 10% boast almost 20% of the total residential solar
installed to date. The average PV system sizes in the bottom 10% and
top 10% CES scores are similar at about 6 kW per system.

In contrast, PV adoption trends for commercial installations are
reversed and we see slightly higher installed PV capacity per capita in
the higher CES percentile ranges. This finding may be partially attri-
butable to the fact that commercial businesses are often located in in-
dustrial and urban areas where environmental burdens are elevated due
to high traffic volumes and industrial activities. Government installa-
tions reveal a more equal distribution of PV deployment per capita
across EJ communities that seems to be largely independent of the EJ
score.

The three major IOU territories in California have slightly different
solar potential due to their geographic distribution from north to south,
with PG&E being the furthest north and SDG&E the southernmost of the
three. To account for differences in solar irradiance, as well as for other
discrepancies between utilities such as median household income,
electricity rates, utility program structures, and percentage of dis-
advantaged communities, we plot residential solar adoption rates by
CES percentile for each of the three main IOU territories. We also in-
clude data for the Sacramento Municipal Utility District (SMUD), which
is the second largest public utility in California after LADWP.
Residential solar adoption rates by utility territory are displayed in
Fig. 3.

SDG&E, which tends to serve wealthier populations and contains a
smaller percent of disadvantaged communities within its territory, has
higher rates of solar adoption per capita in the bottom 25% of CES
scores compared to other utilities, but has less PV capacity per capita
installed in the top 25% of CES scores (disadvantaged communities).
The latter finding is surprising, given that the smaller number of EJ
communities in SDG&E territory should, in principle, require less pro-
grammatic effort to reach these populations and ensure a more equi-
table distribution of solar benefits. Only 5.2% of SDG&Es customers live
in disadvantaged communities, compared with 30% in SCE, 17.7% in
PG&E and 13.3% in SMUD.

In contrast to SDG&E, PG&E and SCE exhibit higher rates of PV
adoption in EJ communities, with PG&E claiming the most equitable
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Fig. 3. Residential PV deployment in California (in kW per capita) by CES
percentile range. Data shown for four main utility service territories: Pacific Gas
and Electric, San Diego Gas and Electric, Southern California Edison, and

Sacramento Municipal Utility District.
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distribution of the three IOUs. A significant fraction of the solar capa-
city installed in PG&E territory falls within the middle CES ranges, al-
though the lowest 10% of CES scores, i.e. the least disadvantaged
communities, still show the highest installed PV per capita. SMUD ap-
pears to have the lowest overall levels of solar adoption of the four
utility territories shown in Fig. 3. This may be due to the convergence of
multiple factors, including lower median household income in SMUD
territory compared to the three IOUs, different population density,
lower electricity rates, and the fact that municipal utilities in California
are not subject to the same oversight by the California Public Utilities
Commission (CPUC) as compared to the IOUs.

3.2. Temporal dynamics of PV adoption

Figs. 1-3 highlight the total capacity per capita installed in Cali-
fornia to date. To explore trends in solar adoption over time, we also
examine the annual data time series for the years between 1998 and
2017. Fig. 4 details the evolution of residential solar uptake over the
second decade of this period: 2008-2017. The last three years in par-
ticular show a marked increase in solar deployment across all CES
percentiles. In fact, more than sixty percent (62.8%) of the total re-
sidential capacity installed between 1998 and 2017 was deployed in the
last three years alone. However, despite the availability of PV support
policies in the state of California that have specifically targeted low-
income residents in affordable housing, such as the California Solar
Initiative and its two main low-income components, the Single-Family
Affordable Solar Homes (SASH) and the Multifamily Affordable Solar
Housing (MASH) programs, lower rates of solar adoption have con-
tinued to persist in the higher CES percentiles.

We analyzed the number of installations installed through SASH and
MASH and found that the total PV capacity installed through them is
less than 5% of the total residential capacity installed in the state to
date. This reported PV capacity reflects the direct impact of the two
programs (i.e. the number of directly incentivized deployments) but
there may be secondary impacts, such as social diffusion peer effects,
which are beyond the scope of this work. Both programs have targeted
only low-income households, defined as the households with income of
less than 80 percent of the area median income. As a result, systems
installed through these programs have been sited both within and
outside of disadvantaged communities. While we do note somewhat
increased levels of solar diffusion in the higher CES percentiles over the
last three years of the dataset, the overall rate of deployment in these
populations has remained lower compared to communities with low EJ
scores, leading to an ever-widening gap in solar installations between
the two ends of the CES spectrum.

This point is further illustrated in Fig. 5, where we plot the total
installed residential kW per capita in disadvantaged communities (top
25% of CES scores) versus all other CES percentiles. Fig. 5a compares
the running total of cumulative PV installations per capita over the
twenty-year period between 1998 and 2017. We note that a gap in
installed kW per capita starts to open up very early on and continues to
grow until present day. By the end of 2017, the total PV capacity per
capita installed outside of disadvantaged communities is almost three
times that installed inside them.

Fig. 5b compares the annual rate of solar additions in disadvantaged
communities (DACs) versus non-DAC communities as their relative
weight of the total installed kW per capita for that year. This means that
an equal rate of deployment would be at the 50% mark. In 1998, 1999,
all new residential solar deployments occurred outside of dis-
advantaged communities. In the early years after that, the levels of solar
adoption per capita outside of disadvantaged communities were nearly
ten times greater than the deployment levels in EJ communities. In the
last few years of our dataset, the relative weight of total PV capacity per
capita installed in disadvantaged communities has shown a steady in-
crease. This trend is in line with observations by Barbose et al. (2018)
who report increased PV adoption rates among low- and moderate-
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Fig. 4. Installed residential PV in California by year (2008-2017) and by CES percentile range.
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Fig. 5. Installed residential solar in Disadvantaged Communities (DACs) com-
pared to non-DACs. (a) Cumulative running total of installed kW per capita
1998-2017. (b) Relative weight of annual residential solar deployments per
capita as percent of the total installed kW per capita for that year. An equal rate
of deployment would be at the 50% line. The outlier in 2003 is due to two
unusually large residential systems installed in DACs in PG&E territory that
year.

income households in recent years. However, even in the last three
years of our dataset the kW per capita deployed outside of DACs in
California still constitutes the vast majority of installed PV capacity. In
2017, the most recent year in our data, the deployment rate outside of
disadvantaged communities was still more than twice the deployment
rate in DACs. These numbers suggest that when it comes to distributed
solar, the gap between the haves and have-nots in California has con-
tinued to increase (albeit at a slower rate) despite aggressigve state

policies and a slew of solar incentive programs aimed at targeting low-
income communities.

The drivers behind disparities in solar uptake can be complex. As
mentioned in the Introduction, previous literature has identified posi-
tive association between PV uptake and several socioeconomic and
demographic variables, including income, age, education, access to
information, perception of risk, neighborhood effects, and others
(Wilson and Dowlatabadi, 2007; Kwan, 2012; Barbose et al., 2018; Rai
et al., 2016). Home ownership is also a key driver for discrepancies in
PV adoption within similar income groups (Barbose et al., 2018).

To evaluate the role of various CES metrics in PV adoption, we
explore the relative influence of the overall CES score compared to its
two main components that comprise it: Pollution Burden and
Population Characteristics. Fig. 6 shows bivariate log-linear scatter
plots of the annual installed residential PV capacity per capita across
census tracts in California versus each census tract's total CES, Pollution
Burden and Population Characteristics scores. Each point on the scatter
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2003

2008

r=-0.44 b = -0.28 r =-0.46 b = -0.18

2015 2013
LN (kW/capita) LN (kW/capita) LN (kW/capita) LN (kW/capita) LN (kW/capita)

0 b=-0.24 r=-0.32 b=-0.17

2017

8 100 2 4 6
Pollution Burden Score

0O 2 4 6 8 100 2 4 6 8 10

CES Score (SQRT) Pop. Char. Score

Fig. 6. Bivariate log-linear scatter plots of the residential PV per capita installed
in census tracts in California for select years (2003, 2008, 2013, 2015, 2017).
Each data point represents a census tract where residential solar was deployed
during that year. Data shown as LN (kW/capita) for the total CES score,
Population Characteristics Score and Pollution Burden Score. Linear regression
models are shown, with b = regression coefficients, r = Pearson correlation
coefficients. All are significant at the p < 0.001 level.
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Fig. 7. A correlation matrix for residential solar adoption (kW per capita) and six other independent variables: education, housing burden, linguistic isolation,
median household income (MHI), poverty and unemployment. Spearman rank correlation coefficients are displayed to the right of the diagonal. Histogram dis-
tributions of the number of census tracts across each variable are shown along the diagonal. Bivariate scatter plots with fitted lines are displayed left of the diagonal.
The p < 0.001, 0.01 and 0.05 significance levels associated with each coefficient are indicated by three, two, and one stars respectively.

plots represents a single census tract where residential solar was de-
ployed during that year. To illustrate the overall trends over time, we
plot the data in five-year intervals early on and then two-year intervals
for the most recent years.

We note that census tracts are normally distributed across both the
Pollution Burden and Population Characteristics components, which
have a score range of 0-10. Census tracts are also normally distributed
across the total CES score, calculated by multiplying the Pollution
Burden and Population Characteristics components and resulting in a
maximum score of 100. We therefore plot the square root of the CES
score to obtain a variable directly comparable with the Pollution
Burden and Population Characteristics components. Census tracts have
a non-normal distribution across the PV deployment variable — a his-
togram of census tracts ranked by installed PV capacity per capita
produces a distribution peaked near the origin (i.e. most census tracts

have little residential solar installed), which decays exponentially at
higher rates of PV deployment. We therefore log-transformed the in-
stalled kW per capita and used this as the new dependent variable to
produce more normally distributed model residuals.

The simple linear regressions shown in the scatter plots in Fig. 6
reveal statistically significant inverse dependence (all significant at the
p < 0.001 level). The inverse trends are strongest for the overall CES
score, slightly less so for the Population Characteristics category, and
weakest for the Pollution Burden category. Looking at the annual time
series of the scatter plots, we note that the negative regression coeffi-
cients b increase over time until 2013, after which they become less
influential. The same is true for the Pearson correlation coefficients r.
They are generally strongest for the Population Characteristics com-
ponent, slightly less so for the overall CES score, and weakest for the
Pollution Burden component, indicating that Pollution Burden is
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Fig. 8. A correlation matrix for residential solar adoption (kW per capita) and six other independent environmental and health variables: asthma, cardiovascular
disease, low birth weight, ozone, PM, s and traffic. Spearman correlation coefficients are displayed to the right of the diagonal. Histogram distributions of the number
of census tracts across each variable are shown along the diagonal. Bivariate scatter plots with fitted lines are left of the diagonal. The p < 0.001, 0.01 and 0.05
significance levels associated with each coefficient are indicated by three, two, and one stars respectively.

slightly less influential in predicting residential solar adoption rates
(but still statistically significant). The results suggest that the Popula-
tion Characteristics component and the EJ indicators that comprise it
are slightly more influential as predictor variables impacting solar PV
uptake than the Pollution Burden indicators. To explore this relation-
ship further, we next look at how individual indicators within these two
CES categories correlate with residential solar uptake.

3.3. Correlational analysis

We performed both regression and correlational analysis on the
individual indicators in our study to examine not only the explanatory
ability of these variables but also their relative weight. An ordinary
least squares (OLS) multiple regression model for solar adoption was
run on our data using all 20 CES indicators plus the median household

income (MHI). Many of these predictor variables, including linguistic
isolation, housing burden, MHI, cardiovascular disease, asthma rates,
ozone, traffic and others were found to be statistically significant at the
p < 0.001 level. While regression analysis allows us to control for
confounding effects between the explanatory variables, it does not
provide clear information about the relative influence of each of the
predictor variables on solar adoption rates.

We therefore chose to perform correlational analysis on the two
main categories of CES metrics based on the results of the previous
section: socioeconomic EJ indicators that comprise the Population
Characteristics component in CalEnviroScreen and environmental EJ
indicators that comprise the Pollution Burden component. We started
by evaluating the Spearman's rank correlation coefficients between
residential PV adoption (in kW/capita) and five socioeconomic and
demographic variables in the Population Characteristics category:
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unemployment, education, housing burden, linguistic isolation and
poverty. In CES, the education indicator is defined as the percent of
population over age 25 with less than a high school education, housing
burden is defined as the percent of households that are both low-income
and paying greater than 50% of their income to housing costs, and
poverty is defined as the percent of population living below twice the
federal poverty level. We also include the 5-year-average (2012-2016)
median household income aggregated on the census tract level. The
results are summarized in the correlation matrix in Fig. 7 where
Spearman's rank correlation coefficients for every pair of variables are
displayed. Histogram distributions of the number of census tracts across
each variable are also shown along the diagonal, revealing non-normal
distributions for all variables. Left of the diagonal are the respective
bivariate scatter plots with fitted trend lines, which are generally non-
linear. Right of the diagonal are the values of the respective Spearman
rank correlation coefficients. The p < 0.001, 0.01 and 0.05 sig-
nificance levels associated with each coefficient are indicated by three,
two, and one stars respectively.

All six variables are statistically significant in explaining variations
in residential solar adoption across census tracts. Housing burden is the
most (inversely) correlated variable with PV adoption (—0.40), fol-
lowed closely by linguistic isolation (—0.37), poverty (—0.37), low
education levels (—0.34) and median household income (0.34). Given
the small differences, all five of these variables carry similar weight as
predictors, suggesting that a combination of these factors may be more
statistically significant in influencing residential solar adoption levels
than each of them individually. To test this hypothesis, we generated an
index taking the average of the census tract percentiles of the four CES
variables most correlated with PV adoption rates — housing burden,
linguistic isolation, poverty and education. The Spearman correlation
coefficient between the new index variable and kW solar per capita was
—0.46 — stronger than for any one of the four variables individually.
This correlation is also stronger compared to the overall CES score
(—0.34) because the CES score includes the more weakly correlated
Pollution Burden component, and compared to the overall Population
Characteristics component (—0.37), which contains less correlated in-
dicators such as asthma, cardiovascular disease, and unemployment.
Fig. 7 also shows the unemployment indicator, which has a correlation
coefficient of —0.17.

As one might expect, Fig. 7 illustrates strong pairwise correlations
between all six explanatory variables. The correlation coefficient be-
tween median household income and poverty is —0.82, between low
education and poverty 0.82, between low education and linguistic
isolation 0.74, and between housing burden and poverty 0.71. The
weakest (but still statistically significant) correlation is between lin-
guistic isolation and unemployment at 0.22. All coefficients are statis-
tically significant at the p < 0.001 level.

In Fig. 8, we also correlate the dependent variable PV deployment
per capita with six environmental and health indicators: low birth-
weight births, ozone, PM, s, traffic, asthma and cardiovascular disease.
Five of these variables are statistically significant factors in explaining
variations in residential solar adoption between census tracts but with
somewhat weaker correlation compared to the demographic and so-
cioeconomic indicators in the Population Characteristics category. The
respective correlation coefficients are 0.24 for ozone, —0.22 for
asthma, —0.20 for low birth weight, —0.15 for traffic and —0.11 for
cardiovascular disease. PM, s does not end up being a statistically sig-
nificant predictor variable for residential solar adoption.

3.4. Data significance and limitations

Previous research on the factors influencing solar uptake has fo-
cused primarily on socioeconomic considerations and has identified
income and home ownership as key explanatory variables for PV
adoption (Macintosh and Wilkinson, 2011; Coffman et al., 2018;
Barbose et al., 2018). Our analysis suggests that other variables,

Energy Policy 134 (2019) 110935

including linguistic isolation and education, may be more significant
predictors of solar uptake than median household income (at least for
data aggregated on the census tract level). Housing burden, linguistic
isolation, poverty, education and income all carry nearly equal weights
in predicting residential solar adoption rates.

The results also highlight the interrelationship between explanatory
variables and indicate that examining combinations of socioeconomic
factors using cumulative impact analyses is important for developing a
more complete picture of the barriers to solar adoption. The index
averaging the census tract percentiles of the CES variables most cor-
related with PV adoption revealed higher correlation with solar de-
ployment than any of the comprising individual variables. The data also
suggest that environmental and pollution burden indicators in the CES
methodology (including asthma rates, cardiovascular disease, low
birthweight births and traffic density) are statistically significant pre-
dictors of solar adoption, albeit slightly less so compared to socio-
economic indicators.

We should emphasize the fact that correlations do not necessarily
imply causations. There are numerous confounding demographic and
socioeconomic factors that can influence the rates of rooftop solar
adoption that were not taken into account in this study. Some of these
include degree of home ownership, rural versus urban areas, social
diffusion peer effects, and others. We also did not try to account for
potential endogeneity effects. We note that home ownership is to some
extent reflected in the housing burden CES indicator. We also explored
the effects of population density (qualitatively) by arranging census
tract data into population density bins and comparing urban versus
rural PV adoption rates — we found no significant trends related to the
EJ distributional aspects of solar adoption based on population density.
The correlations examined in this study, however, do highlight areas
where more attention may be needed and where barriers for solar
adoption might still exist (e.g. linguistic isolation and education).

Recent studies have indicated that race and ethnicity are important
factors for solar adoption in vulnerable communities (Sunter et al.,
2019). Research confirms that racial disparities in rooftop PV adoption
remain significant even after accounting for income and home-owner-
ship differences (Sunter et al., 2019). Race is no longer used as an in-
dicator in CalEnviroScreen (it was removed after the first iteration of
the methodology in order to render CES more practical for state entities
prohibited from including racial considerations in their decision-
making processes) and, although linguistic isolation can sometimes
serve as a proxy for race and ethnicity, the influence of race on solar
adoption is not necessarily well represented by this indicator and other
population characteristic variables in CES (Liévanos, 2018). The ab-
sence of a dedicated race indicator in CalEnviroScreen 3.0 is a limita-
tion, given that CES is used to allocate a quarter of California's carbon
Cap-and-Trade funds towards marginalized communities in the state.

We note that the census tract histograms and scatter plots for ozone
and PM, 5 in Fig. 8 exhibit a peculiar striated pattern. This is an artifact
in CES due to the unavailability of hyperlocal data on the census tract
level for these two criteria pollutants, which highlights another im-
portant limitation in the CES methodology. The low granularity of re-
gional air pollution data means that modeling is generally required to
interpolate pollutant concentrations for individual census tracts. Be-
cause the models are anchored by a small number of regional air
monitoring stations, many census tracts tend to get the same criteria
pollutant CES scores, resulting in the striated patterns for ozone and
PM, 5 seen in Fig. 8. This indicates that data accuracy for these two
metrics is not satisfactory at the community level. Collecting hyper-
local pollution data for ozone and PM, s and achieving higher spatial
resolution (ideally on the census tract level) has the potential to con-
siderably improve the CES methodology and in particular the Ca-
1EnviroScreen Pollution Burden component.

Geospatial granularity is also an important consideration when
analyzing solar data at different geographic aggregation scales. Because
clean energy deployment data are not always available on the census
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tract level, we ran parts of our analysis for data aggregated on the ZIP
code level to test for the effects of lower geospatial granularity on the
general findings of this paper. We averaged census tract CES scores
within zip codes to obtain a score for each zip code area (this introduces
some level of uncertainty because zip code and census tract boundaries
do not always align). We then re-ranked zip codes based on their cal-
culated CES scores to obtain a new set of CES percentiles and a new set
of disadvantaged communities based on zip code percentiles. We found
that the lower granularity of zip code data did change the specific va-
lues of correlation coefficients but that the overall trends of solar
adoption in EJ communities in California were still captured reasonably
well and remained statistically significant. This implies that findings of
this study should hold for analyses performed on the zip code level as
well, suggesting that zip code data may be sufficiently granular to
identify broad trends for the purposes of future research.

Conversely, more granular data on the household level would be
highly informative and would allow researchers to explore whether
trends observed in this work are mostly community-based or mostly
household-based. For instance, solar uptake in education-limited
households may be similar across all communities, or worse in com-
munities with low educational levels across the board. Pointers in either
direction could inform future policy designs and indicate whether PV
support policies should be aimed at identifying disadvantaged com-
munities or disadvantaged households in particular.

3.5. Discussion

The results of this study illustrate an important point about re-
sidential solar adoption in California: that there are clear distributive
and equity impacts of PV support policies (e.g. net energy metering)
and that the benefits of residential PV adoption in California are largely
accruing within less-disadvantaged communities and bypassing some of
the most vulnerable populations in the state. In addition, the data imply
that current climate incentives and state investments in clean energy
may not be aligned with equity considerations and environmental
pollution trends. Indeed, we should flag a potential concern that has
already been raised in previous studies: that in some cases climate in-
centives can actually be detrimental to equity and public health goals
because of increased energy burdens on disadvantaged populations
through higher energy prices (Simpson and Clifton, 2016), and because
of potentially exacerbated local air pollution due to more frequent
ramping of fossil fuel peaker power plants to compensate for the in-
termittent nature of solar power generation. Peaker power plants in
California are disproportionately located in EJ communities (Krieger
et al., 2016).

These considerations are important, because residential solar carries
the potential to not only address energy disparities by lowering elec-
tricity bills through net energy metering and feed-in tariffs, but to also
bring additional environmental and health co-benefits to populations
that are affected by numerous socioeconomic, environmental and
health stressors. The somewhat weaker correlation between pollution/
environmental indicators and PV adoption does not necessarily imply
that California should ignore communities where EJ scores are elevated
primarily as a result of environmental burdens. Rather, we would argue
that the rationale for directing investments towards those communities
would be slightly different, including targeted support for over-
burdened populations, or achieving health and pollution-reduction co-
benefits rather than focusing solely on the climate and socioeconomic
benefits of PV adoption. As mentioned earlier, deployment of dis-
tributed solar in combination with efficiency and storage in EJ com-
munities can improve resilience and help displace local fossil fuel
generation (Krieger et al., 2016). Delayed participation by dis-
advantaged communities in this process can exacerbate the disparities
between them and other populations in the state.

In line with previous findings, our results suggest that economic
burdens — such as housing burden and poverty rates — are likely
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significant barriers to solar adoption. In addition, our breakdown of
population characteristic metrics suggests that linguistic isolation and
low education levels are also highly anticorrelated with solar adoption.
Reversing the trends in solar adoption may therefore require both an
increase in financial support for low-income populations as well as
strategies to specifically target linguistically isolated communities and
those with lower levels of education. Ensuring the participation of low-
income and linguistically isolated customers in community solar pro-
grams can be challenging, and program designs and subscription po-
licies may need to be adjusted compared to standard community solar
models by, for example, encouraging affordable housing facilities to
serve as subscribers for their tenants, or by using prepaid subscriptions
subsidized through state funding, or investing in increased customer
outreach, etc. Various third-party financing mechanisms have also
proven successful in recent years. In fact, more than two thirds of the
SASH and MASH residential installations to date have been financed
through third-party financial models.

Future research may need to address limitations in this study related
to social diffusion effects, urbanization levels, degree of household
ownership, and the lack of high-resolution air pollution data on the
census tract level in CES. Future work should also track the impact and
effectiveness of new solar support policies and programs for DACs and
look at specific programs or strategies that have been particularly ef-
fective at reducing inequalities in certain IOUs territories like PG&E. It
would be valuable to utilize household-level data to explore whether
trends observed in this study are predominantly community-based or
household-based. It would also be valuable to explore the distributive
justice landscape of other clean energy technologies such as energy
storage and energy efficiency.

4. Conclusions and policy implications

The rooftop solar industry in California has experienced dramatic
growth in the past four years. In the context of this accelerating de-
ployment, it is critical to evaluate the impacts of PV incentives in the
broader context of climate, environmental, public health and equity
goals, and improve these policies to maximize the multiple economic,
air quality, environmental justice and community resilience benefits
that rooftop PV has to offer. As the solar industry continues to grow and
solar-adopting states like California continue to refine their next steps
in energy policy, it is important that this development is both inclusive
and just in order to maximize this resource potential as well as the
number of people that have access to its benefits.

In this paper, we analyzed distributed solar adoption in California in
the context of environmental justice communities and the applicability
of cumulative impact methodologies such as CalEnviroScreen to climate
investments in clean energy technologies. We found significantly lower
levels of PV adoption in communities that are disadvantaged and suffer
from a combination of socioeconomic, health and environmental bur-
dens. We have shown that without intervention, the solar adoption gap
between EJ and other communities will likely continue to increase. This
underscores the importance of state programs aimed at reaching dis-
advantaged communities in California.

The state has already taken steps to correct its course. Cap-and-
Trade funding streams have been established for several new programs
designed to target EJ populations in the state: the new Solar on
Multifamily Affordable Housing program (SOMAH) is funded at sub-
stantially higher levels compared to the previous MASH program; a new
SASH program for disadvantaged communities (DAC-SASH) will target
single family low-income homes located in DACs; and two Green Tariff
programs — for DACs and for community solar respectively — will
provide electricity bill discounts for low-income customers who live in
DACs and for community solar projects located in and serving dis-
advantaged communities. These programs can provide important in-
centives for solar growth in EJ communities but are still in their nascent
stage. Because net energy metering has been one of the most influential
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policy drivers in support of rooftop solar adoption in California, it is still
unclear whether the new programs will have a significant impact on
decreasing inequities in solar access and ensuring that solar co-benefits
such as bill savings reach all customers. The effectiveness of the pro-
grams should be carefully monitored in the near future and this paper
provides a baseline from which to track their efficacy.

Community solar may prove to be an attractive policy instrument
for increasing access to solar and reducing solar burdens. Cap-and-
Trade funds may ultimately need to be directed towards this sort of
solution if individual residential barriers in disadvantaged communities
continue to prove challenging. However, community solar may be most
viable in urban neighborhoods where significant industrial or com-
mercial rooftop space is available nearby to use for project installations
or in more rural EJ areas with readily available land, whereas different
policy solutions may be needed in dense urban areas with many
apartments and little rooftop space. In such areas, Community Choice
Aggregations with carve-outs for LMI customers may be the best option
to provide clean energy from resources that are not necessarily located
in the vicinity of those neighborhoods.

The results of this analysis may hold policy implications for other
non-solar distributed energy resources, including energy efficiency,
storage, and demand response (DR) programs. The solar deployment
trends examined here highlight the need to design effective incentives
for storage and DR while these technologies are still in the early stages
of adoption to ensure that their growth does not follow similar in-
equitable deployment trends. The strategies used to overcome barriers
to solar deployment in low-income and disadvantaged communities
will likely be effective for other distributed energy technologies, as well
as other states and contexts outside of California.

This study also provided insights into the relative influence of var-
ious CES indicators on the levels of residential solar adoption. The re-
sults confirm the importance of socioeconomic factors such as housing
burden, poverty levels and income but also highlight the significance of
demographic variables such as linguistic isolation and education, as
well as the relevance of health and environmental burden indicators
such as traffic pollution, cardiovascular disease and asthma rates. The
combination of all these indicators is ultimately important in de-
termining the cumulative barriers to and understanding the drivers
behind participation in the adoption of clean energy technologies.
Failure to account for these various effects may misdirect efforts to
promote environmental health and equity in vulnerable EJ commu-
nities that are most in need of regulatory and investment interventions.

For policy makers, our results highlight the value of cumulative
impact methodologies like CES. The implications largely rest in the
distributive impacts of clean energy technology adoption as a result of
energy rate-based compensatory mechanisms and other incentives, and
in the question of how to bring the multiple benefits of clean energy
technologies to the broadest possible set of customers. The examples
that California sets in this regard will hold lessons for other regions in
the US in the years to come. While California continues to lead the
nation in solar adoption, it should do so by also addressing these im-
portant equity issues.
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