DOCKETED	
Docket Number:	01-AFC-25C
Project Title:	Malburg Generating Station-Compliance
TN #:	227770
Document Title:	Air Quality Quarterly Compliance Report - First Quarter 2019
Description:	Air Quality Quarterly Compliance Report
Filer:	Anwar Ali
Organization:	Bicent (California) Malburg LLC
Submitter Role:	Applicant
Submission Date:	4/19/2019 10:44:13 AM
Docketed Date:	4/19/2019

MALBURG GENERATING STATION

19 April 2019

Mr. Anwar Ali Compliance Project Manager California Energy Commission Energy Facilities Siting Division 1516 9th Street, MS 2000 Sacramento, CA 95814-5512

Subject: Malburg Generating Station 2019 Q1 Compliance Report

Dear Mr. Ali:

On behalf of the owner of the Malburg Generating Station, Bicent (California) Malburg LLC, Colorado Energy has compiled the attached Quarterly Compliance Report per the California Energy Commission Decision 01-AFC-25.

Please contact me at (303) 607-5590 or <u>kmccormack@coloradoenergy.com</u> if you have any questions or need additional information.

Sincerely,

-Ce-

Kyle McCormack Environmental Manager

Attachments:

MGS 2019 Q1 CEC Report

MALBURG GENERATING STATION 4963 Soto Street Vernon, CA 90058 Telephone: (323) 476-3610 Fax: (323) 476-3640

QUARTERLY COMPLIANCE REPORT (First Quarter 2019)

MALBURG GENERATING STATION 4963 SOTO STREET, VERNON, CA 90058

SUBMITTED TO:

CALIFORNIA ENERGY COMMISSION

1516 9TH STREET, SACRAMENTO, CA 95814

TABLE OF CONTENTS

LIST OF TAE	BLESiii
LIST OF FIG	URESiii
SECTION 1	INTRODUCTIONA
1.1	Project Location and DescriptionA
1.2	Organization of the Quarterly Compliance ReportA
SECTION 2	COMPLIANCE DETAILS 1
2.1	Condition of Certification AQ-C61
2.2	Condition of Certification AQ-C71
2.3	Condition of Certification AQ-C81
2.4	Condition of Certification AQ-C92
2.5	Condition of Certification AQ-C10
2.6	Condition of Certification AQ-C11
2.7	Condition of Certification AQ-2
2.8	Condition of Certification AQ-3
2.9	Condition of Certification AQ-5
2.10	Conditions of Certification AQ-6 and AQ-7 4
2.11	Condition of Certification AQ-8 4
2.12	Condition of Certification AQ-9 4
2.13	Condition of Certification AQ-10 4
2.14	Condition of Certification AQ-115
2.15	Condition of Certification AQ-12
2.16	Condition of Certification AQ-136
2.17	Condition of Certification AQ-146
2.18	Condition of Certification AQ-156
2.19	Condition of Certification AQ-276

LIST OF TABLES

- 2-1 Cooling Tower TDS Sampling Results
- 2-2 Cooling Tower Daily PM10 Emissions During July
- 2-3 Cooling Tower Daily PM10 Emissions During August
- 2-4 Cooling Tower Daily PM10 Emissions During September
- 2-5 Diesel Fuel Fired Emergency Firewater Pump Testing Times
- 2-6 AQ-C10 Emission Limits, lbs/hr
- 2-7 AQ-C10 Emission Limits, lbs/day
- 2-8 Maximum Hourly Emissions
- 2-9 Maximum Daily Emissions
- 2-11 Total Monthly Emissions during July
- 2-12 Total Monthly Emissions during August
- 2-13 Total Monthly Emissions during September
- 2-14 Combustion Turbines Startup and Shutdown Events
- 2-15 Combustion Turbines and Duct Burners Gas Usage

LIST OF FIGURES

- 2-1 Cooling Tower Blowdown Reports
- 2-2 Excess Emissions Reports
- 2-3 Chevron GST Oil Specifications
- 2-4 Cooling Tower PM10

SECTION 1 INTRODUCTION

This Quarterly Compliance Report (QCR) has been prepared to meet the California Energy Commission (CEC) requirements for the Malburg Generating Station (MGS). This QCR fulfills various Conditions of Certifications as described in the California Energy Commission's Decision, May 2003.

1.1 PROJECT LOCATION AND DESCRIPTION

The Malburg Generating Station is located at 4963 Soto Street on approximately 3.4 acres, in an industrial land use area. MGS is located near the geographic center of metropolitan Los Angeles County. MGS consists of two Alstom GTX-100 frame type natural gas combustion turbine generators (CTGs); two heat recovery steam generators (HRSG); a steam turbine-generator (STG); a cooling tower, a diesel fuel fired emergency firewater pump and support equipment.

The commissioning of MGS was completed in October 2005 and the power plant began Commercial Operation on October 17, 2005.

1.2 ORGANIZATION OF THE QUARTERLY COMPLIANCE REPORT

A summary of each condition of certification and required means of verification are provided in Section 2. Each sub-section also contains a description of the method used by MGS to demonstrate compliance with the verification requirements and references to Appendices, Figures and Tables as appropriate.

SECTION 2 COMPLIANCE DETAILS

The compliance details for various conditions of certification are provided below.

2.1 CONDITION OF CERTIFICATION AQ-C6

As per the Condition of Certification Number AQ-C6, MGS shall determine the Total Dissolved Solids (TDS) levels in the blowdown water by independent laboratory testing prior to initial operation and periodically thereafter.

For verification of the above condition of certification, the CEC requires MGS to submit weekly TDS reports for the blowdown water as part of the quarterly emission report to the Compliance Project Manager (CPM) for approval.

As demonstration of compliance, the weekly TDS results are provided in Table 2-1, and the weekly sample reports during operation are provided in Figure 2-1.

2.2 CONDITION OF CERTIFICATION AQ-C7

As per the Condition of Certification Number AQ-C7, particulate matter of diameter less than 10 microns (PM_{10}) emissions from the cooling tower shall not exceed 6.2 lb/day.

Compliance with the PM₁₀ daily emission limit shall be demonstrated as follows:

 PM_{10} lb/day = A*B*C*D

Where:

A = circulating water recirculation rate

- B = total dissolved solids concentration in the blowdown water to be updated on a weekly basis
- C = design drift rate
- D = correction factor

For verification of the above condition of certification, the CEC requires MGS to calculate the daily PM₁₀ emissions from the cooling tower and submit all calculations and results on a quarterly basis in the quarterly emissions reports to the CPM for approval.

As demonstration of compliance, the daily PM_{10} emissions from the cooling tower are provided in Tables 2-2 through 2-4.

2.3 CONDITION OF CERTIFICATION AQ-C8

As per the Condition of certification Number AQ-C8, MGS shall refrain from testing the firewater pump on the same day as either gas fire combustion turbines have been started up or shutdown.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval all testing times and results of the diesel fired emergency firewater pump in the quarterly emissions report.

As demonstration of compliance, the testing times for the diesel fired emergency firewater pump are provided in Table 2-5. MGS refrained from testing the diesel fired

emergency firewater pump on the same day the combustion turbines were either started or shutdown.

2.4 CONDITION OF CERTIFICATION AQ-C9

As per the Condition of certification Number AQ-C9, MGS shall use the provided definitions to determine compliance with startup, shutdown and any related emission or operational limitations.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval, a record of all startups and shutdowns including duration and date of occurrence on a quarterly basis as part of the quarterly emission report.

As demonstration of compliance, the startup and shutdown details as defined by the decision modifications issued in March, 2014 are provided in Table 2-14.

2.5 CONDITION OF CERTIFICATION AQ-C10

As per the condition of certification number AQ-C10, MGS shall operate within the emission limits provided in Tables 2-6 and 2-7.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval on a quarterly basis all emission records and calculations to demonstrate compliance with the emission limits stated herein as part of the quarterly emissions report.

As demonstration of compliance, the maximum hourly and daily emissions of CO, NO_X, PM_{10} , VOC, and SO_X are provided in Tables 2-8 and 2-9. CO and NOx emissions data, provided in Tables 2-8 and 2-9, do not include substituted data. The substitution procedure is followed for reporting emissions to the South Coast Air Quality Management District (SCAQMD) or Environmental Protection Agency when there may be a problem with the Continuous Emission Monitoring System (CEMS). Also, the turbine emissions estimates for PM_{10} , SOx, and VOCs are calculated using the original manufacturer's emission factors and do not represent actual emissions.

2.6 CONDITION OF CERTIFICATION AQ-C11

As per the Condition of Certification Number AQ-C11, MGS shall submit a quarterly emissions report on a quarterly basis to the CPM for approval. The quarterly emissions report shall generally report all ammonia, NO_x, SO_x, CO, PM₁₀ and VOC emissions from the MGS as necessary to demonstrate compliance with all emission limits. The fourth quarter emission report shall include an annual summary of all emissions of ammonia, NO_x, SO_x, CO, PM₁₀ and VOC as necessary to demonstrate compliance with all emissions of ammonia, NO_x, SO_x, CO, PM₁₀ and VOC as necessary to demonstrate compliance with all emissions in the annual emission limits.

For verification of the above condition of certification, the CEC requires MGS to submit the quarterly emissions report no less than 30 days after the end of each calendar quarter.

As demonstration of compliance, the maximum hourly and daily emissions of NO_X, SO_X, CO, PM_{10} and VOC are provided in Tables 2-8 and 2-9.

2.7 CONDITION OF CERTIFICATION AQ-2

As per the Condition of Certification Number AQ-2, MGS shall not use diesel oil containing sulfur compounds in excess of 15 ppm by weight as supplied by the supplier.

For verification of the above condition of certification, the CEC requires MGS to submit fuel purchase records for approval to the CPM on a quarterly basis in the quarterly emissions report.

Low sulfur diesel fuel was purchased October 29, 2018.

2.8 CONDITION OF CERTIFICATION AQ-3

As per the Condition of Certification Number AQ-3, MGS shall keep records, in a manner approved by the District, for the following parameter(s) or item(s): Purchase records of fuel oil and sulfur content of the fuel.

For verification of the above condition of certification, the CEC requires MGS to submit fuel purchase records for approval to the CPM on a quarterly basis in the quarterly emissions report.

Low sulfur diesel fuel was purchased October 29, 2018.

2.9 CONDITION OF CERTIFICATION AQ-5

As per the condition of certification number AQ-5, MGS shall limit the emissions from both gas fired combustion turbine-heat recovery steam generator train exhaust stacks as follows:

Contaminant Emissions Limit

- CO 7,633 lbs in any one month
- PM₁₀ 4,876 lbs in any one month
- VOC 3,236 lbs in any one month
- SO_x 214 lbs in any one month

For verification of the above condition of certification, the CEC requires the MGS to submit all emission calculations, fuel use and a summary demonstrating compliance of all emission limits stated in this condition for approval to the CPM on a quarterly basis in the quarterly emissions report.

As demonstration of compliance, the monthly emissions of CO, PM_{10} , VOC, and SOx are presented in Tables 2-11 through 2-13. In addition, the fuel usage for the two turbineduct burner pairs is provided in Table 2-15. MGS calculates the emission limit(s) for CO based on readings from the certified CEMS. In the event the CO CEMS is not operating or the emissions exceed the valid upper range of the analyzer, the emissions are calculated in accordance with the approved CEMS Plan. MGS calculates the emission limit(s) by using the monthly fuel use data and the following emission factors:- PM_{10} : 7.397 lb/mmscf, VOC: 1.63 lb/mmscf & SOX: 0.28lb/mmscf.

2.10 CONDITION OF CERTIFICATION AQ-6

As per the condition of certification numbers AQ-6; following commissioning, start-ups shall not exceed 120 minutes during a cold start-up without a trip, and 150 minutes

during a cold start-up with a trip. Cold start-ups with or without a trip shall not exceed the following limits: NOx 122.8 lbs, CO 204.8 lbs and VOC 1.75 lbs.

Start-ups shall not exceed 90 minutes during a non-cold start-up without a trip or 120 minutes during a non-cold start-up with a trip. Non-cold start-ups shall not exceed the following limits: NOx 51.3 lbs, CO 59.9 lbs, and VOC 1.55 lbs.

Shut-downs shall not exceed 30 minutes. Shut-downs shall not exceed the following limits: NOx 4.5 lbs, CO 10.8 lbs, and VOC 0.71 lbs.

The number of startups shall not exceed two per day per turbine.

For verification of the above condition of certification, the CEC requires the MGS to submit a record of all startups and shutdowns including duration and date of occurrence on a quarterly basis as part of the quarterly emission report.

As demonstration of compliance, the startup and shutdown details are provided in Table 2-14. Additionally, quarterly excess emission reports from the DAHS are provided in Figure 2-2.

2.11 CONDITION OF CERTIFICATION AQ-8

As per the Condition of Certification Number AQ-8, the 80.13 lb/mmscf NOx emission limit(s) shall only apply during interim period to report RECLAIM emissions. The interim period shall not exceed 12 months from the initial start-up date.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval all emissions and emission calculations on a quarterly basis as part of the quarterly emissions report.

The lb/mmscf NOx emission limit(s) referenced in the above condition of certification applied only during the interim period which ended 12 months from the initial start-up date. There is no NOx lb/mmscf limit currently in place and therefore no supporting emission calculation is in place.

2.12 CONDITION OF CERTIFICATION AQ-9

As per the Condition of Certification Number AQ-9, the 2 PPM oxides of nitrogen (NO_X) emissions limit(s) are averaged over 1 hour at 15 percent oxygen, dry basis, during the normal operation of the MGS combustion turbine generators.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval all emissions and emission calculations on a quarterly basis as part of the quarterly emissions report.

NO_x emission for MGS Units 1 and 2 are measured using the CEMS. A review of CEMS NOx emission data indicated that the maximum corrected NOx emissions concentration for both MGS combustion turbines during normal operations was 2 ppm, which is compliant with the emission concentration limit of 2 ppm. All CEMS data for MGS combustion turbines are stored electronically at MGS. As demonstration of compliance, quarterly excess emission reports from the DAHS are provided in Figure 2-2.

2.13 CONDITION OF CERTIFICATION AQ-10

As per the Condition of Certification Number AQ-10 the 2 PPM carbon monoxide (CO) emissions limit(s) are averaged over 3 hour at 15 percent oxygen, dry basis, during the normal operation of the MGS combustion turbine generators.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval all emissions and emission calculations on a quarterly basis as part of the quarterly emissions report.

CO emission for MGS Units 1 and 2 are measured using the CEMS. A review of CEMS CO emission data indicated that maximum CO emission concentration for both MGS combustion turbines was 1.1 ppm, which is lower than the emission concentration limit of 2 ppm. All CEMS data for MGS combustion turbines are stored electronically at MGS. As demonstration of compliance, quarterly excess emission reports from the DAHS are provided in Figure 2-2.

2.14 CONDITION OF CERTIFICATION AQ-11

As per the Condition of Certification Number AQ-11, the 2 ppm reactive organic gases (ROG) emission limit(s) are averaged over 1 hour at 15 percent oxygen, dry basis.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval all emissions and emission calculations on a quarterly basis as part of the quarterly emissions report.

ROG emissions are not monitored on an hourly basis and compliance with 2 ppm limit is demonstrated by source testing. The last compliance source test, performed in February 2017 indicated compliance with the emission limits for CT1 and CT2

2.15 CONDITION OF CERTIFICATION AQ-12

As per the Condition of Certification Number AQ-12, the 5 ppm ammonia (NH_3) emission limit(s) are averaged over 1 hour at 15 percent oxygen, dry basis. MGS shall calculate and continuously record the ammonia slip concentration using the following:

 NH_3 (ppmv) = [a-(b*c/1,000,000)]*(1,000,000*d/b) where

a = ammonia injection rate (lbs/hr)/17 (lbs/lb-mole)

b = dry exhaust gas flow rate (lbs/hr)/29 (lbs/lb-mole)

 $c = change in measured NO_X across the SCR (ppmv dry basis)$

d = correction derived by comparing the measured and calculated NH3 slip concentrations during annual compliance testing.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval all emissions and emission calculations on a quarterly basis as part of the quarterly emissions report.

 NH_3 emissions are calculated via the CEMS on an hourly basis but compliance with 5 ppm limit is demonstrated from source tests. The last NH3 compliance source test, performed in February 2019, indicated compliance with the emission limits for both CT1 and for CT2.

2.16 CONDITION OF CERTIFICATION AQ-13

As per the Condition of Certification Number AQ-13, for the purpose of determining compliance with District Rule 475, combustion contaminant emissions may exceed the concentration limit or the mass emission limit listed, but not both emission limits at the same time.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval all emissions and emission calculations on a quarterly basis as part of the quarterly emissions report.

Rule 475 limits emission of combustion contaminants from electric generating equipment to no more than 5 kilograms (11 pounds) per hour or 23 milligrams per cubic meter (0.01 gr/SCF) calculated at three percent oxygen on a dry basis averaged over 15 consecutive minutes or any other averaging time specified by the Executive Officer.

The results of the last compliance source tests performed in February 2017 indicated compliance with the particulate matter emission limits for both CT1 and CT2.

2.17 CONDITION OF CERTIFICATION AQ-14

As per the Condition of Certification Number AQ-14, MGS shall not use engine cylinder lubricating oil containing the following specified compounds:

Ash greater than 0.038 weight percent

For verification of the above condition of certification, the CEC requires MGS to submit fuel purchase records to the CPM on a quarterly basis as part of the quarterly emissions report.

MGS uses Chevron GST Oil for the MGS turbines. This is an ash less oil. As demonstration of compliance, detailed specifications of Chevron GST Oils are provided in Figure 2-3.

2.18 CONDITION OF CERTIFICATION AQ-15

As per the condition of certification number AQ-15, MGS will limit the operating time of the diesel fueled emergency backup generator and the firewater pump to no more than 199 hours each in any one year.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval all testing times and results of the diesel fired emergency firewater pump in the quarterly emissions report.

As demonstration of compliance, the testing times for the diesel fired emergency firewater pump are provided in Table 2-5.

2.19 CONDITION OF CERTIFICATION NUMBER AQ-27

As per the Condition of Certification Number AQ-27, MGS shall limit the fuel usage of each turbine-duct burner pair to no more than 330 MM cubic feet per month.

For verification of the above condition of certification, the CEC requires MGS to submit to the CPM for approval all emissions and emission calculations on a quarterly basis as part of the quarterly emissions report.

As demonstration of compliance, the fuel usage for the two turbine-duct burner pairs is provided in Table 2-15.

Table :	2-1
---------	-----

	Malburg Generating Station Cooling Tower TDS Sampling Results Quarter 1, 2019				
Ιг	Starting	Ending	TDS (ppm)	1	
	1/1/2019	1/5/2019	5620	**	
	1/6/2019	1/12/2019	4600		
	1/13/2019	1/19/2019	4380		
	1/20/2019	1/26/2019	5620		
	1/27/2019	2/2/2019	4640		
	2/3/2019	2/9/2019	5320		
	2/10/2019	2/16/2019	5520		
	2/17/2019	2/23/2019	4500		
	2/24/2019	3/2/2019	4420		
	3/3/2019	3/9/2019	4620		
	3/10/2019	3/16/2019	4660		
	3/17/2019	3/23/2019	4560		
	3/24/2019	3/30/2019	4460		
I –				-	

*Outage

**Substituted

Tab	าโค	2-2
Iai	ле	Z- Z

	Cool		lalburg Gener Daily PM10 E	-		2019	
	A x B x C x D mit is 6.2 lbs/da	y	A = Circulatio C = Drift Fact			B = TDS D = Correc	tion Facto
Date	Circulation Rate (gal/day)	TDS (ppm)	PM ₁₀ (Ibs/day)	Date	Circulation Rate (gal/day)	TDS (ppm)	PM ₁₀ (Ibs/day)
1	36,339,840	5620	1.70	17	36,339,840	4380	1.33
2	36,339,840	5620	1.70	18	36,339,840	4380	1.33
3	36,339,840	5620	1.70	19	36,339,840	4380	1.33
4	36,339,840	5620	1.70	20	36,339,840	5620	1.70
5	36,339,840	5620	1.70	21	36,339,840	5620	1.70
6	36,339,840	4600	1.39	22	36,339,840	5620	1.70
7	36,339,840	4600	1.39	23	36,339,840	5620	1.70
8	36,339,840	4600	1.39	24	36,339,840	5620	1.70
9	36,339,840	4600	1.39	25	36,339,840	5620	1.70
10	36,339,840	4600	1.39	26	36,339,840	5620	1.70
11	36,339,840	4600	1.39	27	36,339,840	4640	1.41
12	36,339,840	4600	1.39	28	36,339,840	4640	1.41
13	36,339,840	4380	1.33	29	36,339,840	4640	1.41
14	36,339,840	4380	1.33	30	36,339,840	4640	1.41
15	36,339,840	4380	1.33	31	36,339,840	4640	1.41
16	36,339,840	4380	1.33				1

Table	2-3
-------	-----

	A x B x C x D mit is 6.2 lbs/da	у	A = Circulatio C = Drift Facto			B = TDS D = Correct	ion Factor
Date	Circulation Rate (gal/day)	TDS (ppm)	PM ₁₀ (Ibs/day)	Date	Circulation Rate (gal/day)	TDS (ppm)	PM ₁₀ (Ibs/day)
1	36,339,840	4640	1.41	17	36,339,840	4500	1.36
2	36,339,840	4640	1.41	18	36,339,840	4500	1.36
3	36,339,840	5320	1.61	19	36,339,840	4500	1.36
4	36,339,840	5320	1.61	20	36,339,840	4500	1.36
5	36,339,840	5320	1.61	21	36,339,840	4500	1.36
6	36,339,840	5320	1.61	22	36,339,840	4500	1.36
7	36,339,840	5320	1.61	23	36,339,840	4500	1.36
8	36,339,840	5320	1.61	24	36,339,840	4420	1.34
9	36,339,840	5320	1.61	25	36,339,840	4420	1.34
10	36,339,840	5520	1.67	26	36,339,840	4420	1.34
11	36,339,840	5520	1.67	27	36,339,840	4420	1.34
12	36,339,840	5520	1.67	28	36,339,840	4420	1.34
13	36,339,840	5520	1.67				
14	36,339,840	5520	1.67				
15	36,339,840	5520	1.67				1
16	36,339,840	5520	1.67				1

Table	2-4
-------	-----

	A x B x C x D mit is 6.2 lbs/da	у	A = Circulatio C = Drift Fact			B = TDS D = Correct	ion Factor
Date	Circulation Rate (gal/day)	TDS (ppm)	PM ₁₀ (Ibs/day)	Date	Circulation Rate (gal/day)	TDS (ppm)	PM ₁₀ (Ibs/day)
1	36,339,840	4420	1.34	17	36,339,840	4560	1.38
2	36,339,840	4420	1.34	18	36,339,840	4560	1.38
3	36,339,840	4620	1.40	19	36,339,840	4560	1.38
4	36,339,840	4620	1.40	20	36,339,840	4560	1.38
5	36,339,840	4620	1.40	21	36,339,840	4560	1.38
6	36,339,840	4620	1.40	22	36,339,840	4560	1.38
7	36,339,840	4620	1.40	23	36,339,840	4560	1.38
8	36,339,840	4620	1.40	24	36,339,840	4460	1.35
9	36,339,840	4620	1.40	25	36,339,840	4460	1.35
10	36,339,840	4660	1.41	26	36,339,840	4460	1.35
11	36,339,840	4660	1.41	27	36,339,840	4460	1.35
12	36,339,840	4660	1.41	28	36,339,840	4460	1.35
13	36,339,840	4660	1.41	29	36,339,840	4460	1.35
14	36,339,840	4660	1.41	30	36,339,840	4460	1.35
15	36,339,840	4660	1.41	31	36,339,840	4460	1.35
16	36,339,840	4660	1.41				1

Heorot Power Management Malburg Generating Station Diesel Fuel Fired Emergency Firewater Pump Testing Times During Quarter 1, 2019

Date	Time	Main / Test Emerg.	Hours of Operation	Fuel Used (gals)	Initials
Jan. 06, 2019	23:25	Testing	0.5	4.5	JAFO
Jan. 13, 2019	23:09	Testing	0.6	5.4	VFFO
Jan. 20, 2019	23:21	Testing	0.5	4.5	SCTFO
Jan. 27, 2019	23:26	Testing	0.4	3.6	JPFO
Feb. 03, 2019	23:22	Testing	0.6	5.4	JAFO
Feb. 10, 2019	23:26	Testing	0.5	4.5	VFFO
Feb. 17, 2019	23:19	Testing	0.5	4.5	SCTFO
Feb. 24, 2019	23:27	Testing	0.4	3.6	JPFO
Mar. 03, 2019	23:16	Testing	0.5	4.5	JPFO
Mar. 10, 2019	23:24	Testing	0.5	4.5	JAFO
Mar. 18, 2019	23:17	Testing	0.5	4.5	VFFO
Mar. 26, 2019	23:28	Testing	0.5	4.5	JAFO

Note: Event 'DNR' - Did Not Run

AQ-C10 Emission Limits, Ibs/hr							
Pollutant	Gas Turbines (2)	Cooling Tower	Firewater Pump	Facility Total			
СО	140		0.59	140			
NOx	55		1.73	55			
PM ₁₀	7.78	0.26	0.08	8.12			
VOC	3.3		0.05	3.35			
SOx	0.3		0.002	0.3			
Ammonia	7.6			7.6			

Table 2-7

AQ-C10 Emission Limits, Ibs/day													
Pollutant	Gas Turbines (2)	Cooling Tower	Firewater Pump	Facility Total									
CO	245		0.59	245									
NOx	230		1.73	230									
PM ₁₀	158	6.2	0.08	164.28									
VOC	36		0.05	36.05									
SOx	6		0.002	6									
Ammonia	182.4			182.4									

Malburg Generating Station Maximum Hourly Emissions During Quarter 1, 2019

Contaminant	Gas Turbi	nes (2)	Cooling	Tower	Firewater	Facility ^a	
Contaminant	Date & Hour	Emission	Date & Hour	Emission	Date & Hour	Emission	Total
CO lbs	1/2/19 16:00	57.35	N/A	N/A	1/13/19 23:09	0.092	57.44
NOx lbs	1/2/19 17:00	41.10	N/A	N/A	1/13/19 23:09	0.918	42.02
PM lbs	2/7/19 18:00	7.37	1/20/2019	0.07	1/13/19 23:09	0.022	7.46
VOC lbs	2/7/19 18:00	1.62	N/A	N/A	1/13/19 23:09	0.022	1.64
SO2 lbs	2/4/19 18:00	0.28	N/A	N/A	1/13/19 23:09	0.002	0.28
NH3 lbs	2/7/19 4:00	5.12	N/A	N/A	1/13/19 23:09		5.12

a.

Although the maximum gas turbines, cooling tower, and firewater pump emissions did not occur during the same hour, the facility total equals the sum of each device's maximum hourly emissions.

Table 2-9	9
-----------	---

Malburg Generating Station Maximum Daily Emissions During Quarter 1, 2019

Contaminant	Gas Turbi	nes (2)	Cooling	Tower	Firewater	Facility ^a		
Containinant	Date Emission		Date & Hour	Emission	Date & Hour	Emission	Total	
CO lbs	1/2/2019	108.24	N/A	N/A	1/13/19 23:09	0.092	108.33	
NOx lbs	1/2/2019	132.63	N/A	N/A	1/13/19 23:09	0.918	133.55	
PM lbs	2/5/2019	141.24	1/20/2019	1.70	1/13/19 23:09	0.022	142.96	
VOC lbs	2/5/2019	31.14	N/A	N/A	1/13/19 23:09	0.022	31.16	
SO2 lbs	2/5/2019	5.32	N/A	N/A	1/13/19 23:09	0.002	5.32	
NH3 lbs	2/7/2019	134.37	N/A	N/A	1/13/19 23:09		134.37	

Although the maximum gas turbines, cooling tower, and firewater pump emissions did not occur during the same hour, the facility total equals the sum of each device's maximum hourly emissions.

Malburg Generating Station Total Monthly Emissions	
Jan-2019	

Contaminant	Gas Turbines (2)
CO lbs	986
PM lbs	3,026
VOC lbs	666
SOx lbs	115

Table 2-12

Malburg Generating Station Total Monthly Emissions Feb-2019									
Contaminant Gas Turbines (2)									
Contaminant	Gas Turbines (2)								
Contaminant CO lbs	Gas Turbines (2) 977								
CO lbs	977								

Table 2-13

Malburg Generating Station Total Monthly Emissions Mar-2019

Contaminant	Gas Turbines (2)							
CO lbs	1,222							
PM lbs	2,863							
VOC lbs	630							
SOx lbs	108							

Malburg Generating Station Combustion Turbines Startup and Shutdown Events During Quarter 1, 2019											
Date	Device	Startup Duration (hrs:min)	Shutdown Duration (hrs:min)								
01/02/2019	CTG-1	1:59									
01/03/2019	CTG-1		:15								
01/03/2019	CTG-1	1:30									
03/09/2019	CTG-1		:06								
03/09/2019	CTG-1	1:24									
03/15/2019	CTG-1		:01 *								
03/15/2019	CTG-1	:54									
03/17/2019	CTG-1		:09								
03/17/2019	CTG-1	:52									
03/22/2019	CTG-1		:03								
03/22/2019	CTG-1	:53									
03/22/2019	CTG-1		:07								
03/23/2019	CTG-1	1:00									
03/23/2019	CTG-1		:07								
03/24/2019	CTG-1	1:07									
03/29/2019	CTG-1		:09								
03/30/2019	CTG-1	1:06									
03/30/2019	CTG-1		:02								
03/31/2019	CTG-1	1:05									
01/02/2019 01/02/2019	CTG-2 CTG-2	:27	*								
01/02/2019	CTG-2	:58									
01/02/2019	CTG-2		0:00 *								
01/03/2019	CTG-2	:05	*								
01/03/2019	CTG-2	:01	*								
01/05/2019	CTG-2	1:31									
01/08/2019	CTG-2		:00								
01/08/2019	CTG-2	1:06									
03/09/2019	CTG-2		:06								
03/09/2019	CTG-2	1:07									
03/17/2019	CTG-2		:08								
03/17/2019	CTG-2	1:16									
03/22/2019	CTG-2		:03								
03/22/2019	CTG-2	1:48	*								
03/22/2019	CTG-2		:14								
03/22/2019	CTG-2	1:10									
03/22/2019	CTG-2		:14								
03/23/2019	CTG-2	1:15									
03/23/2019	CTG-2		:13								
03/24/2019	CTG-2	1:13									
	CTG-2		:09								
03/29/2019											
03/29/2019 03/30/2019	CTG-2	1:25									
		1:25	:03								

*Trip **Trip and restart

Malburg Generating Station Combustion Turbines and Duct Burner Gas Usage During Quarter 1,2019											
Month CT-1 / DB-1 Gas Usage (mmscf) CT-2 / DB-2 Gas Usage (mmscf)											
Jan-19	218.73	190.34									
Fab 10	232.65	231.25									
Feb-19		196.34									

Figure 2-1

Cooling Tower Blowdown Reports

January 14, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1901063 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on January 08, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

If you have any questions in reference to this report, please contact your Positive Lab Service coordinator.

Project Manager

Certificate of Analysis

Page 2 of 2

Report Date: 01/14/19

PLS Report No.: 1901063

Submitted: 01/08/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Sample ID: Cooling Tower B	lowdown Water	(1901063-0)1) Samp	led: 01	/08/19 :	10:05 Re	ceived:	01/08/19	10:05			
Analyte	Results	Flag D.F.	Units	PQL	Pre	p/Test Met	hod	Prepared	Anal	yzed	Ву	Batch
Total Dissolved Solids	4600	1	mg/L	5.0	-	SM	2540C	01/10/19	01/1	1/19	am	BA91422
		Ç	uality	Contro	ol Data	1						
					Spike	Source		%REC		RPD		
Analyte	Result	PQL	l l	Jnits	Level	Result	%REC	Limits	RPD Limit		t Qualifier	
Batch BA91422					Test of the		a 4			1 · · ·	- N	
Blank	Prepare	ed: 01/10/19	Analyzed	: 01/11/:	19							
Total Dissolved Solids	ND	5.0	r	ng/L								
LCS	Prepare	ed: 01/10/19	Analyzed	: 01/11/:	19							
Total Dissolved Solids	354	5.0	r	ng/L	356.0		99.4	80-120				
Duplicate Source: 190	1063-01 Prepare	ed: 01/10/19	Analyzed	: 01/11/:	19							
Total Dissolved Solids	4610	5.0	r	ng/L		4600			0.0369	5		

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

Lilla Mish

Authorized Signature(s)

																			107436
		SIT SER	781 East Washington Blvc (213) 745-5312 FAX (213)					NAL	YSI			EST	DA		<i>[187</i> .e no.		L	PA	age <u>0</u> 65/
CLIENT NA	ME: CEY	\mathcal{O}	Project Na	me/No.	mil	bug	6e	Nedi	MC	たか	l n l	vee	Kly	P.0	. NO.			÷.	AIRBILL NO:
ADDRESS			· · · · · · · · · · · · · · · · · · ·			7							REQU	JESTE	D:		3		COOLER TEMP: 2.8°c
PROJECT	MANAGER:	Tom Bain	HAT PHONE NO:			FAX	NO:	4											PRESERVATIVE:
SAMPLER	~ ~ ~	mare	(Printed)	(Signatur	re)														REMARKS:
TAT (Analy	rtical Turn Arc	ound Time): (0 = Same Day; 1 = 1 Day; 2 = 2 Days; 3	3 = 3 Da	iys; N :	= Norn	nal (5-7	7 Work	ing Da	ys)				-					
CONTAINE	R TYPES: B	B = Brass, E	= Encore, G = Glass, P = Plastic, V =	VOA Via	I, 0 =	Other:													
UST Proje	ct: Y N	I - Globa	l ID#							_	1.00								
SAMPLE NO.	DATE SAMPLED	TIME SAMPLED	SAMPLE DESCRIPTION	WATER	MAT	RIX	OTHER	TAT	CONT. #	AINER TYPE	R				5				SAMPLE CONDITION/ CONTAINER /COMMENTS:
	1-879	1205	Costing Town Blondom	طر				N	1	P	У								
		·	J				-												
																			ļ
) Rolinguis hart s	hu (Signature and	Printed Name)	Banaire Bur (Cinnetiur		d Name)	ļ				Date:		Time:			MDIE			NI-	
	By: (Signature and By: (Signature and		Beerived By: (Signature	V.NI	URE					Date:	191	Time:	/	1.	Sample	es retu	urned to	o client	
	By: (Signature and		Received By: (Signature	/						Date:		Time:		\neg	additio	onal sto	orage til	me is r	l over 30 days, unless requested.
SPECIAL	NSTRUCTIO	NS:							_					3. By		je time	reques	sted: _	days

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

January 22, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1901191 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on January 15, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

If you have any questions in reference to this report, please contact your Positive Lab Service coordinator.

Project Manager

		C	ertifica	ate of	Analy	sis			Page 2	of 2		
Colorado Energy Man 4963 Soto St. Vernon, CA 90058	agement							Re	le #:745 eport Da Ibmitted	te: 01/2 : 01/15	/19	
Attn: Tom Barnhart	P	hone: (323) 47	6-3626	FAX:(3	23) 476-	3640						
Project: Malburg Ger	nerating Station W	/eekly										
Sample ID: Cooling Tow	/er Blowdown W	ater (1901191	-01) Sam	pled: 01,	/15/19 ()8:45 Re	ceived: (01/15/19	08:45			
Analyte	Results	Flag D.F	. Units	PQL	Pre	o/Test Met	hod	Prepared	Anal	zed	Ву	Batch
Total Dissolved Solids	4380	1	mg/L	5.0	-	SM	2540C	01/16/19	01/1	7/19	am	BA91714
		1	Quality	Contro	ol Data							
					Spike	Source		%REC		RPD	0	ualifier
Analyte	Re	sult PÇ	L	Units	Level	Result	%REC	Limits	RPD	Limit	<u> </u>	
Analyte Batch BA91714	Re	sult PÇ	L	Units	Level	Result	%REC	Limits	RPD	LITIR	<u></u>	
		epared: 01/16/1	•			Result	%REC	Limits	RPD			
Batch BA91714	Pr		9 Analyzec			Result	%REC	Limits	RPD			
Batch BA91714 Blank	Pr	epared: 01/16/1	9 Analyzec	d: 01/17/ : mg/L	19	Result	%REC	Limits	RPD		<u> </u>	
Batch BA91714 Blank Total Dissolved Solids	Pr t Pr	epared: 01/16/1	9 Analyzed) 9 Analyzed	d: 01/17/ : mg/L	19	Result	98.6	Limits 80-120	RPD	LIMR	<u> </u>	
Batch BA91714 Blank Total Dissolved Solids LCS Total Dissolved Solids	Pri f Pr 3	epared: 01/16/1 ND 5. epared: 01/16/1	9 Analyzed) 9 Analyzed)	d: 01/17/ : mg/L d: 01/17/ : mg/L	19 19 356.0	Result			RPD			

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

White Mon

Authorized Signature(s)

		PC	DSIT	IVE CHAIN OF		lay -								DA	ге: <u>/ -</u> ,	1519			PA	AGEOF
	<u>phi</u>	LA	3 SER	781 East Washington Blvc (213) 745-5312 FAX (213)	d., Los A 3) 745-6	ngeles 372	s, CA 9	0021			LOG	воок	NO		FIL	E NO.		(LAB N	o. <u>l'qo11q1</u>
	CLIENT NA	IME: LOV		Project Na																AIRBILL NO:
	ADDRESS:				£		5						LYSES							COOLER TEMP:
	PROJECT	MANAGER: `	Tom Bain	PHONE NO:			FAX	NO:												PRESERVATIVE:
	SAMPLER NAME: Junificial (Printed) (Signature)															REMARKS:				
ſ	TAT (Analytical Turn Around Time): 0 = Same Day; 1 = 1 Day; 2 = 2 Days; 3 = 3 Days; N = Normal (5-7 Working Days)																			
	CONTAINER TYPES: B = Brass, E = Encore, G = Glass, P = Plastic, V = VOA Vial, O = Other:																			
	UST Project: Y N - Global ID#																			
	SAMPLE DATE TIME SAMPLE DESCRIPTION MATRIX TAT CONTAINER NO. SAMPLED SAMPLED SAMPLE DESCRIPTION WATER SOIL SLUDGE OTHER TAT # TYPE														SAMPLE CONDITION/ CONTAINER /COMMENTS:					
1			<u> </u>	Covingtone Blondon	· Lo				2	1	P								<u> </u>	
2		<u> </u>										//								
3																				
4																				
5																				
6				· ·													_			
7																				
8																				
9																				
10				/		,														
		y: (Signature and		Received By: (Signature	Hun	Haia	14	•			Date:	9	Time:	5		MPLE Sample			N: o client	? YES NO
		y: (Signature and		Received By: (Signature Received By: (Signature	/						Date:		Time:		2.	Sample additio	es will nal sto	not be rage ti	stored ime is r	l over 30 days, unless requested.
		NSTRUCTIO	- 												3. Bv		e time	reques	sted: _	days

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

781 East Washington Blvd., Los Angeles, CA 90021 (213) 745-5312 FAX (213) 745-6372

January 28, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1901383 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on January 22, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

If you have any questions in reference to this report, please contact your Positive Lab Service coordinator.

Project Manage

Certificate of Analysis

Page 2 of 2

Report Date: 01/28/19

PLS Report No.: 1901383

Submitted: 01/22/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Sample ID: Cooling To	wer Blowdown Wa	ter (190	1383-0	L) Samp	led: 01	/22/19 :	10:05 Re	ceived:	01/22/19	10:05		et uni	with Providence
Analyte	Results	Flag	D.F.	Units	PQL	Pre	p/Test Met	hod	Prepared	Anal	yzed	Ву	Batch
Total Dissolved Solids	5620		1	mg/L	5.0	-	SM	2540C	01/23/19	01/2	24/19	am	BA9240
			Qı	uality (Contro	ol Data	1						
						Spike	Source		%REC	<u> </u>	RPD		
Analyte	Res	ult	PQL	U	Inits	Level	Result	%REC	Limits	RPD	Limit	Q	ualifier
Batch BA92404				en dige:	19 A		and the second					9.48	
Blank	Pre	pared: 01	/23/19 /	analyzed:	01/24/	19							
Total Dissolved Solids	NI	C	5.0	m	ig/L								
LCS	Pre	pared: 01	/23/19 4	analyzed:	01/24/	19							
Total Dissolved Solids	35	3	5.0	m	ig/L	356.0		99.2	80-120				
Duplicate Source	e: 1901383-01 Pre	pared: 01	/23/19 A	nalyzed:	01/24/	19							
Total Dissolved Solids	564	10	5.0	m	ig/L		5620			0.266	5		

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

dilla MSR

Authorized Signature(s)

																•				107462
				IVE CHAIN OF					NA	LYS				DA	г <u>е: /:</u>	279	7		PA	GEOF
		LA	<u> 3 SER</u>	781 East Washington Blv (213) 745-5312 FAX (21	/d., Los / 13) 745-6	Angele 3372	s, CA S	90021			LOG	BOOF	(NO		FIL	E NO.			LAB N	0.1901383
	CLIENT NA	ame: Ciz	m	Project N	ame/No.	ma l	bula	60	wat	5151	200	w)e	etly		P.0	. NO.				AIRBILL NO:
	ADDRESS:	•					L			3		ANA	LYSES	REQL	IESTE	D:				COOLER TEMP: 15°
	PROJECT	MANAGER.	ion Aain I	PHONE NO:			FAX	NO:												PRESERVATIVE:
	SAMPLER	NAME: Je	im Bare	(Printed)	(Signat	ure)														REMARKS:
	TAT (Analy	/tical Turn Ar	ound Time):	0 = Same Day; 1 = 1 Day; 2 = 2 Days;	; 3 = 3 D	ays; N	= Norr	nal (5-	7 Worl	king D	ays)									
	CONTAINE	ER TYPES: E	3 = Brass, E	= Encore, G = Glass, P = Plastic, V =	= VOA Via	al, 0 =	Other													
	UST Proje	ect: Y I	V - Globa	al ID#	<u> </u>															
	SAMPLE NO.	DATE SAMPLED	TIME SAMPLED	SAMPLE DESCRIPTION	WATER	1		OTHER	TAT	CON #	TAINER TYPE	Ŕ								SAMPLE CONDITION/ CONTAINER /COMMENTS:
1		12219	1005	Loan Tone Blondon	L				R	1	β	۶								
2																				
3																				
4																				
5																				
6																				
7																				
8																				
9																				
10																				
		By: (Signature and	·	Retreived By (Signatu	17			-			Date:	9 []	Time:					OSITIO)N: o client'	? YES NO
		By: (Signature and		Received By: (Signatu Received By: (Signatu							Date:		Time:		2.	Sampl additic	es will onal sto	not be brage ti	stored	over 30 days, unless equested.
		By: (Signature and				ou manne	/				Dale:		rane:		3.	Storag	je time	reques	sted: _	days
	JOPECIAL I	INSTRUCTIO	NO:												By					Date

.

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

February 05, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1901539 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on January 30, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

If you have any questions in reference to this report, please contact your Positive Lab Service coordinator.

Project Manager

Certificate of Analysis

Page 2 of 2

Report Date: 02/05/19

PLS Report No.: 1901539

Submitted: 01/30/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Sample ID: Cooling Tower B	llowdown Water (1901539-0	1) Samp	oled: 01	/30/19 :	10:00 Re	ceived:	01/30/19	10:00			
Analyte	Results F	ag D.F.	Units	PQL	Pre	p/Test Met	hod	Prepared	Analy	/zed	Ву	Batch
Total Dissolved Solids	4640	1	mg/L	5.0	-	SM	2540C	01/31/19	02/02	1/19	am	BB90527
		Q	uality	Contro	ol Data	1						
					Spike	Source		%REC		RPD		
Analyte	Result	PQL	(Jnits	Level	Result	%REC	Limits	RPD	Limít	Q	ualifier
Batch BB90527												
Blank	Prepared	: 01/31/19	Analyzed	: 02/01/	19							
Total Dissolved Solids	ND	5.0	1	ng/L								
LCS	Prepared	: 01/31/19	Analyzed	: 02/01/	19							
Total Dissolved Solids	363	5.0	r	ng/L	356.0		102	80-120				
Duplicate Source: 190:	1539-01 Prepared	: 01/31/19	Analyzed	: 02/01/	19							
Total Dissolved Solids	4630	5.0	r	ng/L		4640			0.287	5		

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

Litin MS

Authorized Signature(s)

																		107544
	PC							LYSI				DA	ге: <i>[</i> :	30%	9	4	P/	AGEOF/
<u>rni</u>	LA	B SER	781 East Washington Blv (213) 745-5312 FAX (21	3) 745-637	geles, CA 2	90021	×.		LOG	BOOK	NO		FIL	E NO			LAB N	0.1901539
CLIENT N	IAME: CEV	η	Project Na	me/No.m	elbur	i Ge	rest	my S	tethe	n V	Jeel	-lu	P.0	. NO.				AIRBILL NO:
ADDRES	S:				1]		1			LYSES							COOLER TEMP: 15°C
PROJEC	T MANAGER: `	Tom Ball	PHONE NO:		FA	X NO:								1				PRESERVATIVE:
		DuBale	(Printed)	(Signature)														REMARKS:
TAT (Ana	TAT (Analytical Turn Around Time): 0 = Same Day; 1 = 1 Day; 2 = 2 Days; 3 = 3 Days; N = Normal (5-7 Working Days)																	8 - A
CONTAIN	IER TYPES: I	B = Brass, E	= Encore, G = Glass, P = Plastic, V =	VOA Vial,	0 = Othe	er:												- ,
UST Pro	ject: Y I	N - Globa	al ID#				_											a an
SAMPLI NO.	E DATE SAMPLED	TIME SAMPLED	SAMPLE DESCRIPTION		MATRIX	GE OTHER	TAT	CONT. #	AINER TYPE	R				2				SAMPLE CONDITION/ CONTAINER /COMMENTS:
	130-19	1000	Coving Poro Blondan	X			N	1	P	X								
					e					/								
			,															
)																		
	By: (Signature and		Repetived By: (Signatur	man					Date:	19	ITime:				DISPO			t? YES NO
	d By: (Signature and		Received By: (September 2014) Received By: (Signatur						Date:	<i>.</i>	Time: Time:		2.	Samp additi	oles will onal sto	not be orage t	storec	d over 30 days, unless requested.
	By: (Signature and		neceived by. (Signatur	s and r finited N					Dale:		rime:		3.	Stora	ge time	e reque	sted: _	days
SPECIAL	INSTRUCTIO	115:											By					Date

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

February 15, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1902170 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on February 07, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

Project Manager

Certificate	of Ana	lvcic
certificate	UI Alla	19515

Page 2 of 2

Report Date: 02/15/19

PLS Report No.: 1902170

Submitted: 02/07/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Sample ID: Cooling Tower	Blowdown W	ater (190	2170-0	1) Sam	pled: 02	/07/19 :	10:25 Re	ceived:	02/07/19	10:25			
Analyte	Results	Flag	D.F.	Units	PQL	Pre	p/Test Met	hod	Prepared	Anal	lyzed	Ву	Batch
Total Dissolved Solids	5320		1	mg/L	5.0	-	SM	2540C	02/13/19	02/1	4/19	aa	BB91414
			Q	uality	Contro	ol Data	3						
						Spike	Source		%REC		RPD		
Analyte	Re	sult	PQL		Units	Level	Result	%REC	Limits	RPD	Limit	Q	ualifier
Batch BB91414						8		18.					
Blank	Pre	epared & A	nalyzed:	02/14/	L9	in the first	5 1 1 1 1 1 1 1 2 Car	ALL CALLS IN COLOUR					
Total Dissolved Solids	Ν	D	5.0		mg/L								
LCS	Pre	epared & A	nalyzed:	02/14/1	19								
Total Dissolved Solids	3	64	5.0		mg/L	356.0		102	80-120				
Duplicate Source: 19	902170-01 Pre	epared: 02	/14/19	Analyzed	: 02/15/	19							
Total Dissolved Solids	55	520	5.0		mg/L		5320			3.78	5		

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

hld. Mon

Authorized Signature(s)

			SER	CHAIN OF 781 East Washington Blvd (213) 745-5312 FAX (213)														PA	GE WOLL OF
	CLIENT NA	ME: LE		Project Nar									_					_AB NO	AIRBILL NO:
	ADDRESS:	-			1			Con	ceny	<u>)(</u>	er 19		LYSES			-			COOLER TEMP: 2.422
1	PROJECT I	MANAGER: `	TUMBar	PHONE NO:			FAX	NO:											PRESERVATIVE:
	SAMPLER	NAME: 5	MBaie	(Printed)	(Signatu	ıre)													REMARKS:
	TAT (Analy	tical Turn Arc	ound Time): (0 = Same Day; 1 = 1 Day; 2 = 2 Days; 3	3 = 3 Da	ays; N :	= Norn	nal (5-7	7 Work	ing Da	iys)								
	CONTAINE	R TYPES: E	B = Brass, E	= Encore, G = Glass, P = Plastic, V = V	/OA Via	ıl, 0 =	Other:	-											
	UST Proje	ct: Y M	I - Globa	ıl ID#															
-	SAMPLE NO.	DATE SAMPLED	TIME SAMPLED	SAMPLE DESCRIPTION	WATER	MAT SOIL	RIX SLUDGE	OTHER	TAT	CONT/ #	AINER	Ě							SAMPLE CONDITION/ CONTAINER /COMMENTS:
1		2-7-14	1025	Costing Tomer Blonday					N	1	P,	7							
2																			
3																			
4																			
5	,																		
6																			
7																			
8					<u> </u>													<u> </u>	
9																		<u> </u>	
10	Belinguished	y: (Signature and	Printed Name)	Received Ev: (Signature	and Printe	d Name)					Date:		Time:	191		DISPO		N·	
	v	y: (Signature and			olu	nale				2	Date: 779 Date:	135	Time:	 1.	Samp	les retu	rned to	o client'	
		y: (Signature and		Received By: (Signature	/						Date:		Time:		additio	onal sto	orage ti	ime is r	over 30 days, unless equested.
	SPECIAL I	NSTRUCTIO	NS:												Storag	ge time	reques	sted: _	days

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

February 15, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1902182 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on February 11, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

Project Manager

Certificate of Analysis

Page 2 of 2

Report Date: 02/15/19

PLS Report No.: 1902182

Submitted: 02/11/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Sample ID: Cooling Tower	Blowdown Wa	ater (190	2182-0	1) Samp	led: 02	/11/19	09:30 Re	ceived:	02/11/19	09:30			
Analyte	Results	Flag	D.F.	Units	PQL	Pre	p/Test Met	hod	Prepared	Anal	yzed	Ву	Batch
Total Dissolved Solids	5520		1	mg/L	5.0	-	SM	2540C	02/13/19	02/1	4/19	aa	BB91414
			Q	uality	Contro	ol Data	a						
			1		185	Spike	Source		%REC	-	RPD		
Analyte	Re	sult	PQL	ι	Jnits	Level	Result	%REC	Limits	RPD	Limit	Q	ualifier
Batch BB91414		l.				- 16 ¹							
Blank	Pre	pared & A	nalyzed:	02/14/1	9		Destupped and the loss						
Total Dissolved Solids	N	D	5.0	n	ng/L								
LCS	Pre	pared & A	nalyzed:	02/14/1	9								
Total Dissolved Solids	30	54	5.0	n	ng/L	356.0		102	80-120				
Duplicate Source: 19	902170-01 Pre	pared: 02	/14/19	Analyzed	: 02/15/	19							
Total Dissolved Solids	55	20	5.0	n	ng/L		5320			3.78	5		

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

Talit. Mlsa

Authorized Signature(s)

			*																	107560
			SIT			,			NAL	YS				DAT	re:2-	117	1		PA	AGE
-	101	LAE	B SER	781 East Washington Blv (213) 745-5312 FAX (213)	d., Los A 3) 745-6	Angeles 372	s, CA 9	0021			LOG	воок	NO		FIL	E NO.			LAB N	0.1902182
CI	LIENT NA	ME: LOV	\sim	Project Na	me/No.	mal	bu10	1 G	enere	try						. NO.				AIRBILL NO:
A	DDRESS:		~				2)		1		ANA	LYSES	REQU	IESTE	D:				COOLER TEMP
PI	ROJECT	MANAGER:	Ton Bai	PHONE NO:			FAX	NO:											×	PRESERVATIVE:
S	AMPLER	NAME: 5	in Baria	(Printed)	(Signati	ure)						- 1								REMARKS:
T/	AT (Analy	tical Turn Ar	ound Time): (0 = Same Day; 1 = 1 Day; 2 = 2 Days;	3 = 3 Da	ays; N :	= Norn	nal (5-1	7 Work	king Da	ays)	· .								
C	ONTAINE	R TYPES: E	B = Brass, E	= Encore, G = Glass, P = Plastic, V =	VOA Via	al, 0 =	Other:			-			-							
U	ST Proje	ct: Y I	N - Globa	ll ID#								ST								
S	AMPLE NO.	DATE SAMPLED	TIME SAMPLED	SAMPLE DESCRIPTION	WATER	1	SLUDGE	OTHER	TAT	CON7 #	TAINER	F					÷.,			SAMPLE CONDITION/ CONTAINER /COMMENTS:
		2-11/19	0930	Loong Tone Blondom	ك				R	1	P	5								
2				J																
3																				
1																				
5 🗋																				
3																				
0	P	(0)	Defecte of All Procession								Detre		Timer			MDIE	DIOD			
L	+	by: (Signature and By: (Signature and		Received By: (Signatur Hereived By: (Signatur Received By: (Signature	ne lan	ula.				2	Date: -/1-/0 Date:	7	Time:	*	1.	Sampl	es retu		o client	
Re	linquished B	By: (Signature and	Printed Name)	Received By: (Signature	/						Date:		Time:			additio	onal sto	orage ti	ime is r	l over 30 days, unless requested.
s	PECIAL I	NSTRUCTIO	NS:												3. 		je time	reques	sied: _	day:

PRESERVATIVE: 1-HN03, 2-H2S04, 3-HCL, 4-Zinc Acetate, 5-Na0H, 6-NH4 Buffer, 7-Other

781 East Washington Blvd., Los Angeles, CA 90021 (213) 745-5312 FAX (213) 745-6372

February 22, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1902289 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on February 19, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

Project Manager

Certificate of Analysis

Page 2 of 2

Report Date: 02/22/19

PLS Report No.: 1902289

Submitted: 02/19/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Sample ID: Cooling Tower B	llowdown Wate	r (1902	289-0	L) Samp	led: 02	/19/19 :	10:05 Re	eceived:	02/19/19	10:05			
Analyte	Results	Flag	D.F.	Units	PQL	Pre	p/Test Met	hod	Prepared	Anal	yzed	Ву	Batch
Total Dissolved Solids	4500		1	mg/L	5.0	-	SM	2540C	02/20/19	02/2	1/19	аа	BB92207
			Qı	uality	Contro	ol Data	1						
			10 S	17 mj1		Spike	Source		%REC		RPD		
Analyte	Result		PQL	1	Inits	Level	Result	%REC	Limits	RPD	Limit	Q	Jalifier
Batch BB92207													
Blank	Prepa	red: 02/	20/19 A	Analyzed	02/21/	19							
Total Dissolved Solids	ND		5.0	n	ng/L								
LCS	Prepa	red: 02/3	20/19 A	Analyzed:	02/21/	19							
Total Dissolved Solids	380		5.0	n	ng/L	356.0		107	80-120				
Duplicate Source: 190	2264-01 Prepa	red: 02/3	20/19 <i>4</i>	Analyzed:	02/21/	19							
Total Dissolved Solids	1720		5.0	n	ng/L		1670			2.83	5		

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

hile Mart

Authorized Signature(s)

																				107571
		PC	SIT	IVF CHAIN OF	CUS	TOD	Y AN	ND A	NAL	YSI	S RI	EQU	EST		2.	101 -0		NI.	ē, í	
				781 East Washington Blv (213) 745-5312 FAX (21	d., Los A 3) 745-6	Angeles 372	s, CA 9	0021			LOG	BOOK	NO							IGEOF 0. 1002289
	CLIENT NA	ME: (Fr		Project Na					117V							. NO.				AIRBILL NO:
	ADDRESS:		1			Terr	LIU		J J P V)	<u>lC7)</u> 0	ANA	LYSES	REQU	este	D:				COOLER TEMP: 0.9°C
	PROJECT I	MANAGER: ~	TomBarn	PHONE NO:			FAX	NO:												PRESERVATIVE:
		NAME: 5		(Printed)	(Signati	ure)														REMARKS:
				0 = Same Day; 1 = 1 Day; 2 = 2 Days;	3 = 3 D	ays; N	= Norn	nal (5-	7 Work	king Da	ays)									
	CONTAINE	R TYPES: B	B = Brass, E =	= Encore, G = Glass, P = Plastic, V =	VOA Via	al, 0 =	Other:	:									1			
	UST Proje	ct: Y M	I - Globa	l ID#																
	SAMPLE NO.	DATE SAMPLED	TIME SAMPLED	SAMPLE DESCRIPTION	WATER		SLUDGE	OTHER	TAT	CONT #	TYPE	Ì-)							SAMPLE CONDITION/ CONTAINER /COMMENTS:
1		2-19-19	1005	Coling Tore Blondan	حک				A)	ρ	Y								
2				<u> </u>								Í								
3																				
4															x					
5																				
6																				
7										×										
8																				
9																				
10																				
		by: (Signature and		Received By: (Signatur Received By: (Signatur	10			2		2	Date: Date:	191	Time:		1.	Samp	DISPO les retu	urned to	o client	
		By: (Signature and By: (Signature and		Received By: (Signatul							Date:		Time:		2.	Samp additio	les will onal sto	not be brage t	storec ime is	l over 30 days, unless requested.
		NSTRUCTIO														Storag	ge time	reque	sted: _	days

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

781 East Washington Blvd., Los Angeles, CA 90021 (213) 745-5312 FAX (213) 745-6372

March 04, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1902342 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on February 25, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

Manager

Certificate of Analysis

Page 2 of 2

Report Date: 03/04/19

PLS Report No.: 1902342

Submitted: 02/25/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Analyte	Results	Flag	D.F.	Units	PQL	Prep	Test Method	Prepared	Analyzed	By	Batch
Total Dissolved Solids	4420		1	mg/L	5.0	-	SM 2540C	02/28/19	03/01/19	aa	BC90435

					Spike	Source		%REC		RPD	
Analyte		Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch BC9043	5										
Blank		Prepared: 0	2/28/19	Analyzed: 03/01	/19						
Total Dissolved	d Solids	ND	5.0	mg/L							
LCS		Prepared: 0	2/28/19	Analyzed: 03/01	/19						
Total Dissolved	d Solids	311	5.0	mg/L	356.0		87.4	80-120			
Duplicate	Source: 1902342-01	Prepared: 0	2/28/19	Analyzed: 03/01	/19						
Total Dissolved	1 Solids	4400	5.0	mg/L		4420			0.567	5	
Duplicate	Source: 1902372-01	Prepared: 0	2/28/19	Analyzed: 03/01	/19						
Total Dissolved	l Solids	4520	5.0	mg/L		4660			3.05	5	

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

Authorized Signature(s)

																				107581
		SIT		CHAIN OF					NAL	YSI				DA	т <u>е:</u> 22			1	P/	AGEOF! 10. 1002342
			VICE (213) 74						-			BOOK				E NO.		L	_AB N	AIRBILL NO:
	ME: (Er)		Project Na		n2/	bulc	10	enere	King :	5121	har	Wee	ekly		. NO.				
ADDRESS:				×								ANA	LYSES	S REQU	JESTEI	D:				COOLER TEMP: 0.6 で
PROJECT	MANAGER: [™]	TON Ban 1	hot	PHONE NO:	. e		FAX	NO:												PRESERVATIVE:
SAMPLER	NAME: D	magne	(Printed)		(Signatu	re)												1		REMARKS:
TAT (Analy	rtical Turn Ar	ound Time): (0 = Same Day; 1 = 1 I	Day; 2 = 2 Days;	3 = 3 Da	iys; N	= Norn	nal (5-1	7 Work	ting Da	ays)									
CONTAINE	R TYPES: E	B = Brass, E	= Encore, G = Glass,	P = Plastic, V =	= VOA Via	l, 0 =	Other:			,										
UST Proje	ct: Y I	V - Globa	I ID#	·																
SAMPLE NO.	DATE SAMPLED	TIME SAMPLED	SAMPLE DES	SCRIPTION	WATER		SLUDGE	OTHER	TAT	CONT	TAINER	sol.			e *					SAMPLE CONDITION/ CONTAINER /COMMENTS:
	R2579	0915	Cosin Tower	Blondow	D				r	1	A	3								
				X																
						-													-	
							-						-	-					-	1
					+		-				-		-	-						
					+	-						-	-					-	-	+
							-				<u> </u>		-	-	-			-		+
					_							-							-	
Reimoushed	By: (Signature and	Printed Name)		Received By- (Signate	Ire and Printe	d Name)	Gud	aline.			Date:		Time:			MPLE	חפטר		N.	
4	By: (Signature and			Received By: (Signatu	re and Printe	d Name)	Tan	ala		-	2:25; Date:	79	09 Time:	40	1.	Sample	es retu	urned to	o client	
	By: (Signature and			Received By: (Signatu							Date:		Time:		2.	Sampladditio	es will nal sto	not be brage ti	stored me is	d over 30 days, unless requested.
	INSTRUCTIO			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													e time	reques	sted: _	
SPECIAL	INSTRUCTIO	143.													By					Date

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

1

March 14, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1903094 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on March 07, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

Project Manage

Certificate of Analysis

Page 2 of 2

Report Date: 03/14/19

PLS Report No.: 1903094

Submitted: 03/07/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Sample ID: Co	ooling Tower Blowdow	n Wat	er (1903	3094-01	l) Samj	pled: 03	/07/19 ()9:50 Re	ceived:	03/07/19	09:50			
Analyte	Re	esults	Flag	D.F.	Units	PQL	Pre	p/Test Met	hod	Prepared	Analy	yzed	Ву	Batch
Total Dissolve	d Solids 4	620		1	mg/L	5.0	-	SM	2540C	03/12/19	03/1	3/19	аа	BC91324
				Qı	Jality	Contro	ol Data	1						
							Spike	Source		%REC		RPD		
Analyte		Resu	lt	PQL		Units	Level	Result	%REC	Limits	RPD	Limit	Q	ualifier
Batch BC91324	• •													
Blank		Prepa	ared: 03/	12/19 /	\nalyzed	1: 03/13/	19					<u> </u>		
Total Dissolved	Solids	ND		5.0	I	mg/L								
LCS		Prepa	ared: 03/	'12/19 <i>A</i>	\nalyzed	i: 03/13/	19							
Total Dissolved	Solids	353		5.0		mg/L	356.0		99.2	80-120				
Duplicate	Source: 1903135-01	Prepa	ared: 03/	'12/19 #	\nalyzed	l: 03/13/	19							
Total Dissolved	Solids	4650	۱	5.0	I	mg/L		4660			0.251	5		

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

Authorized Signature(s)

1	n	0	2	n	n
1	U	0	4	U	U

			SIT											DA		719			P4	
	<u></u>			781 East Washington Blvd (213) 745-5312 FAX (213														l	LAB N	
	CLIENT NA	ME: Cor	`	Project Nan	ne/No.	ma/	bulk	60	2027	Fig C	527	n u	dee	Kly	P.C). NO.				AIRBILL NO:
	ADDRESS:						J			,		ANA	LYSE	S REQU	JESTE	D:				COOLER TEMP: 1.8
	PROJECT I	MANAGER.	on Banha	PHONE NO:			FAX	NO:												PRESERVATIVE:
Ī	SAMPLER	NAME:	eregue	(Printed)	(Signatu	ire)			-			-								REMARKS:
- 1				0 = Same Day; 1 = 1 Day; 2 = 2 Days; 3	= 3 Da	ays; N	= Norn	nal (5-7	7 Work	king Da	ays)									
	CONTAINE	R TYPES: E	B = Brass, E :	= Encore, G = Glass, P = Plastic, V = V	/OA Via	l, 0 =	Other:						2							
	UST Proje	ct: Y M	I - Globa	l ID#											-					
	SAMPLE	DATE	TIME	SAMPLE DESCRIPTION		-	RIX		TAT	CONT	TAINER	Ř	1						<u>^</u>	SAMPLE CONDITION/
	NO.		SAMPLED		WATER	SOIL	SLUDGE	OTHER		#	ТҮРЕ	-	-						-	CONTAINER /COMMENTS:
		3.799	0950	Cooling Tone Blowdan	5				N	1	1	V		-					-	
				•										-					-	
															<u> </u>				<u> </u>	
				×																
)																				
	Relinquished B	y. (Signature and	Printed Name)	Received By Signature	and Printe	d Non	udulu	ipe			3. Date:	9	Time:	د				DSITIO		t? YES NO
	Relinquished B	y: (Signature and	Printed Name)	Received By: (Signature	and Printe	d Name)	www	1			Date:		Time:			Samp	les will	not be	stored	d over 30 days, unless requested.
	Relinquished B	y: (Signature and	Printed Name)	Received By: (Signature	and Printe	ed Name)	1				Date:		Time:		3.					days
	SPECIAL I	NSTRUCTIO	NS:												В					Date

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

1

781 East Washington Blvd., Los Angeles, CA 90021 (213) 745-5312 FAX (213) 745-6372

March 15, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1903135 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on March 11, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

Project Manager

Certificate of Analysis

Page 2 of 2

Report Date: 03/15/19

PLS Report No.: 1903135

Submitted: 03/11/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Sample ID: C	ooling Tower Blowdov	vn Wat	er (1903	3135-0	1) Samp	led: 03	/11/19	11:15 Re	ceived:	03/11/19	11:15			
Analyte	R	esults	Flag	D.F.	Units	PQL	Pre	p/Test Met	hod	Prepared	Anal	yzed	Ву	Batch
Total Dissolv	ved Solids	4660		1	mg/L	5.0	-	SM	2540C	03/12/19	03/1	.3/19	aa	BC91324
				Qı	uality (Contro	ol Data	3						
							Spike	Source		%REC		RPD		
Analyte		Resi	ult	PQL	U	Inits	Level	Result	%REC	Limits	RPD	Limit	Q	ualifier
Batch BC91324	!													
Blank		Prep	ared: 03/	/12/19 /	Analyzed:	03/13/	19							
Total Dissolved	l Solids	ND	1	5.0	m	ig/L								
LCS		Prep	ared: 03/	/12/19 /	Analyzed:	03/13/	19							
Total Dissolved	Solids	353	3	5.0	rr	ng/L	356.0		99.2	80-120				
Duplicate	Source: 1903135-01	Prep	ared: 03/	12/19	Analyzed:	03/13/	19							
Total Dissolved	Solids	465	0	5.0	m	ıg/L		4660			0.251	5		

Notes and Definitions

NA Not Applicable ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

Authorized Signature(s)

											3										108208
			SIT		CHAIN OF East Washington Blv 745-5312 FAX (21)					NAI	YSI						1-19				AGEOF
				VICE (213)									1	NO			E NO.		L	LAB N	o. (火しかい)
	CLIENT NA		e/m		Project Na	ame/No.	Mal	hur	16	eneb	iting	5:					. NO.				
	ADDRESS:			1 / L									ANA	LYSES	REQU	JESTE	D:		,		COOLER TEMP: 0.8°C
	PROJECT	MANAGER:	Ton Bain	TIONT	PHONE NO:			FAX	NO:								·				PRESERVATIVE:
	SAMPLER	NAME: J	Subside	(Printed)	¥	(Signat	ure)							-							REMARKS:
	TAT (Analy	rtical Turn Ard	ound Time): (0 = Same Day; 1 =	1 Day; 2 = 2 Days;	3 = 3 D	ays; N	= Norn	nal (5-	7 Work	king Da	ays)									N
	CONTAINE	ER TYPES: E	B = Brass, E	= Encore, G = Gla	ss, P = Plastic, V =	VOA Via	al, 0 =	Other:													
	UST Proje	ect: Y N	V - Globa	I ID#															÷		ж.
	SAMPLE NO.	DATE SAMPLED	TIME SAMPLED	SAMPLE	DESCRIPTION	WATER		SLUDGE	OTHER	TAT	CONT #	AINER	Ř						-	+	SAMPLE CONDITION/ CONTAINER /COMMENTS:
1		3-11-19	1115	wing Due	Blondon	5				r	1	P	Ŀ								
2				J	4																
3																					
4																					
5																					
6						+															
7						-															
8						+															
9						+															
10																				-	
	t	(Signature and			Received By: (Signer)	patan.	ala	Tun	autur ala-	 >		Date: 3-11:	19	Time:	ల				SITIOI srned to		? YES NO
		By: (Signature and			Received By: (Signatu	V						Date:		Time:		2.	Sample additio	es will nal sto	not be rage ti	stored me is r	l over 30 days, unless requested.
		By: (Signature and			Received By: (Signatu	re and Print	ed Name)					Date:		Time:		3.	Storag	e time	reques	sted: _	days
	SPECIAL I	INSTRUCTIO	NS:													Ву					Date

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

March 25, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1903224 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on March 19, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

Project Manager

Certificate of Analysis

Page 2 of 2

Report Date: 03/25/19

PLS Report No.: 1903224

Submitted: 03/19/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Sample ID: Cooling Towe	r Blowdown 🛛 W	/ater (190	3224-0	1) Samp	led: 03	/19/19 ()8:40 Re	ceived:	03/19/19	08:40			
Analyte	Results	Flag	D.F.	Units	PQL	Pre	p/Test Met	hod	Prepared	Ana	yzed	Ву	Batch
Total Dissolved Solids	4560		1	mg/L	5.0	-	SM	2540C	03/22/19	03/2	2/19	aa	BC92212
			Q	uality	Contro	ol Data	1						
						Spike	Source		%REC	4	RPD		
Analyte	R	esult	PQL	L L	Inits	Level	Result	%REC	Limits	RPD	Limit	Q	Jalifier
Batch BC92212													
Blank	P	repared & A	nalyzed:	03/22/1	9								<u></u>
Total Dissolved Solids		ND	5.0	n	ng/L		_						
LCS	P	repared & A	nalyzed:	03/22/1	9								
Total Dissolved Solids		325	5.0	n	ng/L	356.0		91.3	80-120				
Duplicate Source: 1	903224-01 P	repared & A	nalyzed:	03/22/1	9								
Total Dissolved Solids	4	470	5.0	n	ng/L		4560			2.06	5		

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

alden Mon

Authorized Signature(s)

																					108222
		PC)SIT	IVE (NAL	YSI	S RI	EQU	EST	DA	TE:	379	279		PA	
		LA	3 SER	781 East (213) 745	5-5312 FAX (21	3) 745-6	372	s, ca 9	10021			LOG	воок	NO		FIL	E NO.		L	LAB N	
	CLIENT NA	IME: CEV	η		Project Na	ime/No.	mall	5050	<u>16e</u>	<u>nuz</u>	try	Ste	the	Wel	;KIY	P.0	. NO.				AIRBILL NO:
	ADDRESS:								7							JESTEI					COOLER TEMP: 1.4%
	PROJECT	MANAGER:	Tom B	arnhot	PHONE NO:			FAX	NO:												PRESERVATIVE:
			5~Bar		-	(Signati	ure)														REMARKS:
	TAT (Analy	tical Turn Ar	ound Time):	0 = Same Day; 1 = 1 D	Day; 2 = 2 Days;	3 = 3 Da	ays; N	= Norn	nal (5-7	7 Work	king Da	ays)									
	CONTAINE	R TYPES: E	B = Brass, E	= Encore, G = Glass,	P = Plastic, V =	VOA Via	al, 0 =	Other:	1												
	UST Proje	ct: Y I	V - Globa	I ID#				· · · · ·													
	SAMPLE NO.	DATE SAMPLED	TIME SAMPLED	SAMPLE DES	CRIPTION	WATER	MAT SOIL	RIX SLUDGE	OTHER	TAT	CONT #	AINER TYPE	sal								SAMPLE CONDITION/ CONTAINER /COMMENTS:
1		3-1919	0840	Cooling Tower 1	Blondon	R				r	1	Δ	مز								
2				L			_														
3																					
4																					
5																					
6																					
7							1				ĺ		[
8	<u></u>									<u> </u>											
9																					
10					\sim					1						[
	Reliequietod B	By: (Signature and	Printed Name)	/	Received By: (Signatu	HØ.X	AN L	lei	1	<u> </u>		Date:	1 19 11	Time:		SA 1.	MPLE Sampl	DISPC es retu	DSITIO	N: client	? YES NO
	Relinquished B	By: (Signature and	Printed Name)		Refeived By: (Signatur							Date:		Time:		2.	Sampl	es will mal sto	not be brage ti	stored me is r	l over 30 days, unless requested.
	Relinquished B	By: (Signature and	Printed Name)		Received By: (Signatur	re and Printe	ed Name)					Date:		Time:					-		days
	SPECIAL I	NSTRUCTIO	NS:													Ву	·				Date

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

March 29, 2019

Tom Barnhart Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Report No.: 1903275 Project Name: Malburg Generating Station Weekly

Dear Tom Barnhart,

This report contains the analytical results for the sample(s) received under chain of custody(s) by Positive Lab Service on March 25, 2019.

The test results in this report are performed in compliance with ELAP accreditation requirements for the certified parameters. The laboratory report may not be produced, except in full, without the written approval of the laboratory.

The issuance of the final Certificate of Analysis takes precedence over any previous Preliminary Report. Preliminary data should not be used for regulatory purposes. Authorized signature(s) is provided on final report only.

Project Manager

Certificate of Analysis

Page 2 of 2

Report Date: 03/29/19

PLS Report No.: 1903275

Submitted: 03/25/19

File #:74548

Colorado Energy Management 4963 Soto St. Vernon, CA 90058

Attn: Tom Barnhart

Phone: (323) 476-3626 FAX:(323) 476-3640

Project: Malburg Generating Station Weekly

Sample ID: C	Cooling Tower Blowdow	vn Wat	er (190	3275-0	1) Samp	oled: 03	/25/19	09:00 Re	ceived:	03/25/19	09:00			
Analyte	R	esults	Flag	D.F.	Units	PQL	Pre	p/Test Met	hod	Prepared	Anal	yzed	Ву	Batch
Total Dissol	ved Solids	4460		1	mg/L	5.0	-	SM	2540C	03/27/19	03/2	8/19	аа	BC92813
				Qı	Jality	Contro	ol Data)						
							Spike	Source		%REC		RPD		
Analyte		Resi	ılt	PQL	l	Jnits	Level	Result	%REC	Limits	RPD	Limít	Q	ualifier
Batch BC9281	3													
Blank		Prep	ared: 03	/27/19	Analyzed	: 03/28/	19							
Total Dissolve	d Solids	ND		5.0	r	ng/L								
LCS		Prep	ared: 03,	/27/19	Analyzed	: 03/28/	19							
Total Dissolve	d Solids	327	'	5.0	r	ng/L	356.0		91.9	80-120				
Duplicate	Source: 1903275-01	Prep	ared: 03	/27/19 /	Analyzed	: 03/28/	19							
Total Dissolve	d Solids	445	0	5.0	r	ng/L		4460			0.269	5		

Notes and Definitions

NA Not Applicable

ND Analyte NOT DETECTED at or above the detection limit

NR Not Reported

MDL Method Detection Limit

PQL Practical Quantitation Limit

Environmental Laboratory Accreditation Program Certificate No. 1131, Mobile Lab No. 2534, LACSD No. 10138

ula Men

Authorized Signature(s)

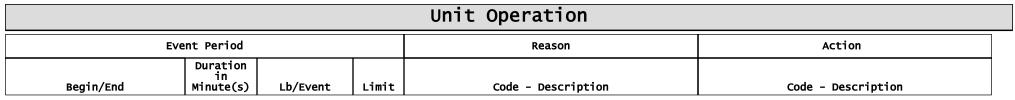
																	107997
	781 East Washington Blvc (213) 745-5312 FAX (213)					NAL						т <u>е: 3</u> 2	2576	7		P/	AGEOF1 OO77715 AIRBILL NO:
		-						LOG	BOOK	NO		FIL	E NO.		L	_AB N	AIRBILL NO:
CLIENT NAME:	Project Nar	me/no.	nal	hv)	16	ens?	241	<u>y 5</u>	en	W	eek	<u>y</u>	. NO.				N <u>REELER A</u>
ADDRESS:			4						ANA		S REQU	JESTE	D:				COOLER TEMP: 2.2
PROJECT MANAGER. TOM BRID	PHONE NO:	а		FAX	NO:												PRESERVATIVE:
SAMPLER NAME: Jon Bard	(Printed)	(Signatu	re)									_	_				REMARKS:
TAT (Analytical Turn Around Time): 0 =	= Same Day; 1 = 1 Day; 2 = 2 Days; 3	3 = 3 Da	ys; N =	= Norn	nal (5-1	7 Work	king Da	ays)					. 1				
CONTAINER TYPES: B = Brass, E =	Encore, G = Glass, P = Plastic, V = '	VOA Via	l, 0 =	Other:									1.00				
UST Project: Y N - Global I	 D#				E											4.5	
SAMPLE DATE TIME NO. SAMPLED SAMPLED	SAMPLE DESCRIPTION	WATER	MAT	RIX SLUDGE	OTHER	TAT	CONT #	AINER	JQ Z								SAMPLE CONDITION/ CONTAINER /COMMENTS
32574 501.00 1	Cooling Tower Blundown	L				N	1	P	6								
									r								
																	<u> </u>
			_														
		+											<u> </u>				·
	a.									<u> </u>							
	\frown																
Relinquished By: (Signature and Printed Name) Relinquished By: (Signature and Printed Name)	Received By: (Signature	and Printed	d Name)	Tuyda Tuy	upl vulca		3	Date: 257 Date:	4	Time: $\int_{0} \frac{3}{5}$ Time:	0	1. 2.	Sampl	es retu es will	not be	o client	t? YES NO I over 30 days, unless requested.
Relinquished By: (Signature and Printed Name) SPECIAL INSTRUCTIONS:	Received By: (Signature	e and Printed	d Name)					Date:		Time:		3.					da

PRESERVATIVE: 1-HN03, 2-H2SO4, 3-HCL, 4-Zinc Acetate, 5-NaOH, 6-NH4 Buffer, 7-Other

Figure 2-2

Excess Emission Reports

Startup/Shutdown Excess Emissions Report U1 CO Startup/Shutdown


From:01/01/2019 00:00To:03/31/2019 23:59Facility Name:Malburg Generating StationGenerated:04/05/2019 10:45Location:Vernon, CaliforniaTag Name:U1_CO_LbPerHr_1MSI = SampleInvalid, * = Excess EmissionTotal Operating Time:1,975.57Hours

Unit Operation													
E	vent Period			Reason	Action								
Begin/End	Duration in Minute(s)	Lb/Event	Limit	Code - Description	Code - Description								

Startup/Shutdown Excess Emissions Report

U1 NOx Startup/Shutdown

From:	01/01/2019 00:00	To:	03/31/20	19 23:59	Facility Name:	Malburg Generating Station
Generated:	04/05/2019 10:47				Location:	Vernon, California
Tag Name:	U1_NOx_LbPerHr_1M	4			<pre>SI = SampleInvalid, * =</pre>	Excess Emission
Total Opera	ting Time:	1,975	5.57 F	ours		

Startup/Shutdown Excess Emissions Report

01/01/2019 00:00 To: 03/31/2019 23:59 Facility Name:

U1 VOC Startup/Shutdown

From:

	Se
Malburg Generating Station Vernon, California	HEDROT

Generated: 04/05/2019 10:48 Tag Name: U1_VOC_LbPerHr_1M

Total Operating Time: 1,975.57 Hours

SI = SampleInvalid, * = Excess Emission

Location:

Unit Operation

Duration in Begin/EndDuration in Minute(s)Code - Description	Code - Description

Unit 1 - CO ppmvdc 3-hour Rolling during Normal Operation

From:01/01/2019 00:00To:03/31/2019 23:59Facility Name:Malburg Generating StationGenerated:04/05/2019 10:49Location:Vernon, California

Tag Name:	U1_CO_3HrF	Roll_Ppm∨dc_1H			
Total Operating Time:	1,988.00	Hour(s)	No	Exclusions	Allowed
Non-Operating Time: 172.00	Hour(s)	Report Time: 2,160.0	0 Hour(s)		

Total Operating Time:	1,988.00 Hour(s)
Total Duration (Online only):	0.00 Hour(s)
Time in exceedance as a percentage of operating time:	0.00 %
Time in compliance as a percentage of operating time:	100.00 %

Unit 1 - NOx ppmvdc 1-hour during Normal Operation

 From:
 01/01/2019 00:00
 To:
 03/31/2019 23:59
 Facility Name:
 Malburg Generating Station

 Generated:
 04/05/2019 10:50
 Location:
 Vernon, California

Tag Name:		U1_NOxNorma	al_Ppmvdc_1H				
Total Operating Time	e:	1,988.00	Hour(s)		NO	Exclusions	Allowed
Non-Operating Time:	172.00	Hour(s)	Report Time:	2,160.00	Hour(s)		

Total Operating Time:	1,988.00 Hour(s)
Total Duration (Online only):	0.00 Hour(s)
Time in exceedance as a percentage of operating time:	0.00 %
Time in compliance as a percentage of operating time:	100.00 %

Unit 1 - VOC ppmvdc 1-hour during Normal Operation

 From:
 01/01/2019 00:00
 To:
 03/31/2019 23:59
 Facility Name:
 Malburg Generating Station

 Generated:
 04/15/2019 08:32
 Location:
 Vernon, California

Tag Name:	U1_VOCNorm	nal_Ppmvdc_1H				
Total Operating Time:	1,988.00	Hour(s)		No	Exclusions	Allowed
Non-Operating Time: 172.00) Hour(s)	Report Time:	2,160.00	Hour(s)		

Total Operating Time:	1,988.00 Hour(s)
Total Duration (Online only):	0.00 Hour(s)
Time in exceedance as a percentage of operating time:	0.00 %
Time in compliance as a percentage of operating time:	100.00 %

Startup/Shutdown Event Report

U2 CO Startup/Shutdown Events

From:01/01/2019 00:00To:03/31/2019 23:59Facility Name:Malburg Generating StationGenerated:04/10/2019 08:07Location:Vernon, CaliforniaTag Name:U2_CO_LbPerHr_1MSI = SampleInvalid, * = Excess EmissionTotal Operating Time:1,921.82Hours

 Unit Operation

 Event Period
 Action

 Duration in Minute(s)
 Lb/Event
 Limit
 Code - Description
 Code - Description

Startup/Shutdown Excess Emissions Report

U2 NOx Startup/Shutdown

From:	01/01/2019 00:00	To:	03/31/2019	23:59	Facility Name:	Malburg	Generating	Station
Generated:	04/10/2019 07:45				Location:	Vernon,	California	
Tag Name:	U2_NOx_LbPerHr_1M	l			<pre>SI = SampleInvalid, * = B</pre>	Excess Emission	n	
Total Opera	ting Time:	1,921	.82 Hour	'S				

 Unit Operation

 Event Period
 Action

 Duration in Minute(s)
 Lb/Event
 Limit
 Code - Description
 Code - Description

Startup/Shutdown Event Report

U2 VOC Startup/Shutdown Events

X.	X
HEDI	

From:01/01/2019 00:00To:03/31/2019 23:59Facility Name:Malburg Generating StationGenerated:04/15/2019 08:30Location:Vernon, CaliforniaTag Name:U2_VOC_LbPerHr_1MSI = SampleInvalid, * = Excess EmissionTotal Operating Time:1,921.82Hours

 Unit Operation

 Event Period
 Action

 Duration in Minute(s)
 Lb/Event
 Limit
 Code - Description
 Code - Description

Unit 2 - CO ppmvdc 3-hour Rolling during Normal Operation

 From:
 01/01/2019 00:00
 To:
 03/31/2019 23:59
 Facility Name:
 Malburg Generating Station

 Generated:
 04/10/2019 07:43
 Location:
 Vernon, California

Tag Name:		U2_CO_3Hr	Roll_Ppmvdc_1H	ł			
Total Operating Time	e:	1,936.00	Hour(s)		No	Exclusions	Allowed
Non-Operating Time:	224.00	Hour(s)	Report Time:	2,160.00	Hour(s)		

Total Operating Time:	1,936.00 Hour(s)
Total Duration (Online only):	0.00 Hour(s)
Time in exceedance as a percentage of operating time:	0.00 %
Time in compliance as a percentage of operating time:	100.00 %

Unit 2 - NOx ppmvdc 1-hour during Normal Operation

From:01/01/2019 00:00To:03/31/2019 23:59Facility Name:Malburg Generating StationGenerated:04/10/2019 07:44Location:Vernon, California

Tag Name:	U2_NOxNorm	nal_Ppmvdc_1H				
Total Operating Time:	1,936.00	Hour(s)		No	Exclusions	Allowed
Non-Operating Time: 224.0	0 Hour(s)	Report Time:	2,160.00	Hour(s)		

Total Operating Time:	1,936.00 Hour(s)
Total Duration (Online only):	0.00 Hour(s)
Time in exceedance as a percentage of operating time:	0.00 %
Time in compliance as a percentage of operating time:	100.00 %

Excess Emission Report

Unit 2 - VOC ppmvdc 1-hour during Normal Operation

 From:
 01/01/2019 00:00
 To:
 03/31/2019 23:59
 Facility Name:
 Malburg Generating Station

 Generated:
 04/10/2019 08:08
 Location:
 Vernon, California

Tag Name:		U2_VOCNori	mal_Ppmvdc_1H				
Total Operating Tim	ne:	1,936.00	Hour(s)		No	Exclusions	Allowed
Non-Operating Time:	224.00	Hour(s)	Report Time:	2,160.00	Hour(s)		

No incidents have been reported for this reporting period. Data is 100% in compliance.

Total Operating Time:	1,936.00 Hour(s)
Total Duration (Online only):	0.00 Hour(s)
Time in exceedance as a percentage of operating time:	0.00 %
Time in compliance as a percentage of operating time:	100.00 %

Figure 2-3

Chevron GST Oil Specifications

CHEVRON GST[®] OILS

ISO 32, 46, 68, 100

CUSTOMER BENEFITS

Chevron GST Oils deliver value through:

- Superior oxidation stability for long service life at elevated temperatures.
- Rust and corrosion protection
- **High viscosity index** assures minimum viscosity change when variations in temperature occur.
- **Minimum foam** prevents sump overflow or erratic governor operation.
- **Fast air release** minimizes possibility of pump cavitation in systems with high circulation rates and small reservoirs.
- Superior thermal stability minimizes deposit formation.
- Rapid water separation keeps water in oil to a minimum.
- Hydraulic fluid service Chevron GST Oils ISO 32, 46, and 68 are excellent hydraulic fluids in low pressure systems up to 1000 psi.
- Air compressor lubricant when OEM recommends R&O type oil.
- Environmental benefits All grades are ashless. This facilitates reclaiming and recycling of the used oils. Chevron GST Oils are not expected to be harmful to aquatic organisms.

FEATURES

Chevron GST Oils are designed to meet the critical demands of:

- gas, steam, and hydroelectric turbine bearing lubrication
- · reduction gear lubrication in marine operations

They are an excellent recommendation for many other industrial applications including air compression.

Chevron GST Oils are formulated with ISOSYN® base stocks.

Higher temperatures in advanced gas and steam turbines require a circulating system oil with exceptional high temperature stability. Chevron GST Oils have outstanding **thermal and oxidation stability**.

Nonvolatile **oxidation inhibition** minimizes the evaporative loss of the inhibitors, a common problem with turbine oils where bearing temperatures are high and system capacities are limited. With retained oxidation resistance for long periods under high temperature conditions, Chevron GST Oils have proven they will provide longer oil service life and reduced turbine down time.

Corrosion inhibition protects costly turbine shafts and gears from corrosion and rusting.

Chevron GST Oils have excellent demulsibility characteristics which allow these oils to maintain a high film strength coating on critical wear points of bearings and gear reducers and assure fast removal of water contamination.

Foam inhibition prevents sump overflow and erratic governor operation.

APPLICATIONS

Chevron GST Oils are recommended for use in turbines of all types including gas, steam, and hydroelectric turbines, and marine gear turbine sets.

The following viscosity grades are formulated to meet the specified OEM requirements:

Chevron GST Oil ISO 32

- meets and exceeds
 - General Electric GEK-32568f, GEK 28143A, GEK-46506D, GEK-27070
 - Ingersoll Rand specification for Centac Centrifugal Compressors
 - Solar ES 9 224 requirements for gas turbine oils
 - ASTM D4304, British Standard 489, and DIN 51515 standard organization requirements for new lubricants used in gas and steam turbines and auxiliary equipment
- is approved by
 - Cincinnati Machine P-38
 - Alstom Power HTGD 90117
 - Siemens Westinghouse M spec 55125Z3
 - Siemens TLV 901304

Chevron GST Oil ISO 46

- meets
 - General Electric and Westinghouse requirements for marine gas turbine system oils. Recommended by Siemens Westinghouse for reactor coolant pump motor bearings.
 - Siemens TLV 901304
 - Solar ES 9 224 requirements for gas turbine oils
 - ASTM D4304, British Standard 489, and DIN 51515 standard organization requirements for new lubricants used in gas and steam turbines and auxiliary equipment
- · is approved by
 - Cincinnati Machine P 55
 - Alstom Power HTGD 90117

Chevron GST Oil ISO 68

- meets
 - meets General Electric, Alstom, Westinghouse, and other OEM requirements for hydroelectric turbines, land and marine steam turbines, and associated reduction gears
 - ASTM D4304, British Standard 489, and DIN 51515 standard organization requirements for new lubricants used in gas and steam turbines and auxiliary equipment
- is approved by
 - Cincinnati Machine P-54

Chevron GST Oil ISO 100

- meets
 - meets General Electric, Alstom, Westinghouse, and other OEM requirements for hydroelectric turbines, land and marine steam turbines, and associated reduction gears
 - ASTM D4304, British Standard 489, and DIN 51515 standard organization requirements for new lubricants used in gas and steam turbines and auxiliary equipment

Chevron GST Oils ISO 32, 46, 68, and 100 are registered with NSF and are acceptable as lubricants where there is no possibility of food contact (H2) in and around food processing areas. The NSF Nonfood Compounds Registration Program is a continuation of the USDA product approval and listing program, which is based on meeting regulatory requirements of appropriate use, ingredient review and labeling verification.

Do not use in high pressure systems in the vicinity of flames, sparks and hot surfaces. Use only in well ventilated areas. Keep container closed.

Do not use in breathing air apparatus or medical equipment.

TYPICAL TEST DATA

ISO Grade	32	46	68	100
CPS Number	253026	253027	253028	253029
MSDS Number	6710	6710	6710	6710
AGMA Grade	—	1	2	3
API Gravity	32.7	32.0	31.7	31.4
Viscosity, Kinematic cSt at 40°C cSt at 100°C	30.4 5.2	43.7 6.6	64.6 8.5	95.0 11.0
Viscosity, Saybolt SUS at 100°F SUS at 210°F	157 43.8	225 48.2	334 54.8	495 63.9
Viscosity Index	102	101	102	100
Flash Point,°C(°F)	222(432)	224(435)	245(473)	262(504)
Pour Point, °C(°F)	-36(-33)	-36(-33)	-33(-27)	-30(-22)
Oxidation Stability ASTM D 943 ¹ ASTM D 2272 ²	17,000 1700	12,000 1400	11,000 1400	11,000 1400
FZG, Pass stage, DIN 51354	—	_	_	—

Typical test data are average values only. Minor variations which do not affect product performance are to be expected in normal manufacturing.

1 Hours to 2.0 mg KOH/g acid number modified D943

2 Minutes to 25 psi pressure drop

Material Safety Data Sheet Diesel Low Sulfur (LSD) and Ultra Low Sulfur Diesel (ULSD)

0 = Insignificant, 1 = Slight, 2 = Moderate, 3 = High, 4 = Extreme

SECTION 1. PRODUCT AND COMPANY IDENTIFICATION **Product name** Diesel Low Sulfur (LSD) and Ultra Low Sulfur Diesel (ULSD) : Synonyms CARB Diesel, 888100004478 **MSDS Number** : 888100004478 Version 2.10 : **Product Use Description** 2 Fuel Company : For: Tesoro Refining & Marketing Co. 19100 Ridgewood Parkway, San Antonio, TX 78259 **Tesoro Call Center** : (877) 783-7676 Chemtrec (800) 424-9300 (Emergency Contact)

SECTION 2. HAZARDS IDENTIFICATION				
Emergency Overview				
Regulatory status	: This material is considered hazardous by the Occupational Safety and Health Administration (OSHA) Hazard Communication Standard (29 CFR 1910.1200).			
Signal Word	: WARNING			
Hazard Summary	: Toxic. Combustible Liquid			
Potential Health Effect	<u>ts</u>			
Eyes	: Eye irritation may result from contact with liquid, mists, and/or vapors.			
Inhalation	 Vapors or mists from this material can irritate the nose, throat, and lungs, and can cause signs and symptoms of central nervous system depression, depending on the concentration and duration of exposure. 			
Skin	: Skin irritation leading to dermatitis may occur upon prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are repeatedly exposed. Long-term, repeated skin contact may cause skin cancer			
Ingestion	: Harmful or fatal if swallowed. Do NOT induce vomiting. This material can irritate the mouth, throat, stomach, and cause nausea, vomiting, diarrhea and restlessness Aspiration hazard if liquid is inhaled into lungs, particularly from vomiting after ingestion. Aspiration may result in chemical pneumonia, severe lung damage, respiratory failure and even death.			

MATERIAL SAFETY DATA SHEETDiesel Low Sulfur (LSD) and Ultra Low SulfurPage 2 of 10Diesel (ULSD)

Target Organs

: Central nervous system, Eyes, Skin, Kidney, Liver

SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Component	CAS-No.	Weight %
Fuels, diesel, No 2; Gasoil - unspecified	68476-34-6	100%
Nonane	111-84-2	0 - 5%
Naphthalene	91-20-3	0 - 1%
1,2,4-Trimethylbenzene	95-63-6	0 - 2%
Xylene	1330-20-7	0 - 2%
Sulfur	7704-34-9	15 ppm maximum

SECTION 4. FIRST AID MEASURES		
Inhalation	: Move to fresh air. Give oxygen. If breathing is irregular or stopped, administer artificial respiration. Seek medical attention immediately.	
Skin contact	 Take off all contaminated clothing immediately. Wash off immediately with soap and plenty of water. Wash contaminated clothing before re-use. If skin irritation persists, seek medical attention immediately. 	
Eye contact	: Remove contact lenses. Rinse thoroughly with plenty of water for at least 15 minutes. If symptoms persist, seek medical attention.	
Ingestion	: Do not induce vomiting without medical advice. If a person vomits when lying on his back, place him in the recovery position. Seek medical attention immediately.	
Notes to physician	: Symptoms: Dizziness, Discomfort, Headache, Nausea, Disorder, Vomiting, Lung edema, Aspiration may cause pulmonary edema and pneumonitis, Liver disorders, Kidney disorders.	

SECTION 5. FIRE-FIGHTING MEASURES		
Form	:	Liquid
Flash point	:	38 ℃ Minimum for #1 Diesel, 52 ℃ Minimum for #2 Diesel
Auto Ignition temperature	:	257 ℃ (495 °F)
Lower explosive limit	:	0.6 %(V)
Upper explosive limit	:	4.7 %(V)
Suitable extinguishing media	:	Carbon dioxide (CO2), Water spray, Dry chemical, Foam, Keep containers and surroundings cool with water spray.
Specific hazards during fire fighting	:	Fire Hazard Do not use a solid water stream as it may scatter and spread fire. Cool closed containers exposed to fire with water spray.
Special protective equipment	:	Wear self-contained breathing apparatus and protective suit. Use personal

for fire-fighters	protective equipment.	
Further information :	Exposure to decomposition products may be a hazard to health. Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.	

SECTION 6. ACCIDENTAL RELEASE MEASURES

Personal precautions	:	Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to contain spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact. Ensure adequate ventilation. Use personal protective equipment.
Environmental precautions	:	Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection. Discharge into the environment must be avoided. If the product contaminates rivers and lakes or drains inform respective authorities.
Methods for cleaning up	:	Take up with sand or oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).
CERCLA Hazardous substances	ar	nd corresponding RQs :
Xylene		1330-20-7 100 lbs
Nanhthalene		

Naphthalene	91-20-3	100 lbs
Nonane	111-84-2	100 lbs

SECTION 7. HANDLING AND STORAGE		
Handling	:	Keep away from fire, sparks and heated surfaces. No smoking near areas where material is stored or handled. The product should only be stored and handled in areas with intrinsically safe electrical classification.
Advice on protection against fire and explosion	:	 Hydrocarbon liquids including this product can act as a non-conductive flammable liquid (or static accumulators), and may form ignitable vapor-air mixtures in storage tanks or other containers. Precautions to prevent static-initated fire or explosion during transfer, storage or handling, include but are not limited to these examples: (1) Ground and bond containers during product transfers. Grounding and bonding may not be adequate protection to prevent ignition or explosion of hydrocarbon liquids and vapors that are static accumulators. (2) Special slow load procedures for "switch loading" must be followed to

		 avoid the static ignition hazard that can exist when higher flash point material (such as fuel oil or diesel) is loaded into tanks previously containing low flash point products (such gasoline or naphtha). (3) Storage tank level floats must be effectively bonded. For more information on precautions to prevent static-initated fire or explosion, see NFPA 77, Recommended Practice on Static Electricity (2007), and API Recommended Practice 2003, Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents (2008).
Dust explosion class	:	Not applicable
Requirements for storage areas and containers	:	Keep away from flame, sparks, excessive temperatures and open flame. Use approved containers. Keep containers closed and clearly labeled. Empty or partially full product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose containers to sources of ignition. Store in a well-ventilated area. The storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".
Other data	:	Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure.
Advice on common storage		Keep away from food, drink and animal feed. Incompatible with oxidizing agents. Incompatible with acids.

SECTION 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Exposure Guidelines

List	Components	Components		Туре:	Value	
OSHA Z1	Xylene	Xylene		PEL	100 ppm 435 mg/m3	
	Naphthalene		91-20-3	PEL	10 ppm 50 mg/m3	
ACGIH	Diesel Fuel		68476-30-2	TWA	100 mg/m3	
	Xylene		1330-20-7	TWA	100 ppm	
			1330-20-7	STEL	150 ppm	
	Naphthalene		91-20-3	TWA	10 ppm	
	Nonane		91-20-3	STEL	15 ppm	
			111-84-2	TWA	200 ppm	
be		belov spac	v occupational exp	posure and flai	and vapor concentrations of this product mmability limits, particularly in confined actrical equipment approved for use in	
		y glasses or gogg hing or spraying.	v glasses or goggles are recommended where there is a possibility of ning or spraying.			
•		es constructed of Ifacturer specifica		ne, or PVC are recommended. Consult		

MATERIAL SAFETY DATA SHEETDiesel Low Sulfur (LSD) and Ultra Low SulfurPage 5 of 10Diesel (ULSD)Page 5 of 10

Skin and body protection	: If needed to prevent skin contact, chemical protective clothing such as of DuPont TyChem®, Saranex or equivalent recommended based on degree of exposure. The resistance of specific material may vary from product to product as well as with degree of exposure.
Respiratory protection	: A NIOSH/ MSHA-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, ANSI Z88.2-1992, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection. Use a NIOSH/ MSHA-approved positive-pressure supplied-air respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.
Work / Hygiene practices	: Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES				
Form	: Liquid			
Appearance	: Clear, straw colored			
Odor	: Characteristic petroleum (kerosene) odor			
Flash point - typical	: 38 $^{\circ}$ C Minimum for #1 Diesel, 52 $^{\circ}$ C Minimum for #2 Diesel			
Auto Ignition temperature	: 257 ℃ (495 °F)			
Thermal decomposition	: No decomposition if stored and applied as directed.			
Lower explosive limit	: 0.6 %(V)			
Upper explosive limit	: 4.7 %(V)			
рН	: Not applicable			
Freezing point	: No data available			
Boiling point	: 148 - 372 °C(298 - 702 °F)			
Vapor Pressure	: < 2 mm Hg at 20 ℃			
Density	: 0.86 g/cm3			
Water solubility	: Negligible			
Viscosity, dynamic	: 1.7 - 40 mPa.s at 37.8 ℃ (100.0 °F)			

Percent Volatiles	: 100 %	
Conductivity (conductivity can be reduced by environmental factors such as a decrease in temperature	Diesel Fuel Oils at terminal load rack: Ultra Low Sulfur Diesel (ULSD) without conductivity additive ULSD at terminal load rack with conductivity additive: conductivity may decrease from environmental factors such JP-8 at terminal load rack:	At least 50 pS/m but

SECTION 10. STABILITY AND REACTIVITY

Conditions to avoid	: Avoid high temperatures, open flames, sparks, welding, smoking and other ignition sources. Keep away from strong oxidizers. Viton ®; Fluorel ®
Materials to avoid	: Strong oxidizing agents. Peroxides
Hazardous decomposition products	: Carbon monoxide, carbon dioxide and noncombusted hydrocarbons (smoke). Diesel exhaust particulates may be a lung hazard - see Section 11.
Thermal decomposition	: No decomposition if stored and applied as directed.
Hazardous reactions	: Keep away from oxidizing agents, and acidic or alkaline products.

SECTION 11. TOXICOLOGICAL INFORMATION

Carcinogenicity		
NTP	: Naphthalene (CAS-No.: 91-20-3)	
IARC	: Naphthalene (CAS-No.: 91-20-3)	
OSHA	 No component of this product which is present at levels greater than or equal to 0.1 % is identified as a carcinogen or potential carcinogen by OSHA. 	
CA Prop 65	: WARNING! This product contains a chemical known to the State of California to cause cancer. naphthalene (CAS-No.: 91-20-3)	
Skin irritation	: Irritating to skin.	
Eye irritation	: Irritating to eyes.	
Further information	Studies have shown that similar products produce skin cancer or skin tumors in laboratory animals following repeated applications without washing or removal. The significance of this finding to human exposure has not been determined. Other studies with active skin carcinogens have shown that washing the animal's skin with soap and water between applications reduced tumor formation. Positive mutagenicity results have been reported. Repeated over-exposure may cause liver and kidney injury IARC classifies whole diesel fuel exhaust particulates as probably carcinogenic to humans (Group 2A). NIOSH regards whole diesel fuel exhaust particulates as a potential cause of occupational lung cancer based on animal studies and limited evidence in humans.	
Component:		
Fuels, diesel, No 2; Gasoil - unspecified	68476-34-6 <u>Acute oral toxicity:</u> LD50 rat Dose: 5,001 mg/kg	
	Acute dermal toxicity: LD50 rabbit	

MATERIAL SAFETY DATA SHEETDiesel Low Sulfur (LSD) and Ultra Low SulfurPage 7 of 10Diesel (ULSD)

i l		
		Dose: 2,001 mg/kg
		<u>Acute inhalation toxicity:</u> LC50 rat Dose: 7.64 mg/l Exposure time: 4 h
		<u>Skin irritation:</u> Classification: Irritating to skin. Result: Severe skin irritation
		<u>Eye irritation:</u> Classification: Irritating to eyes. Result: Mild eye irritation
Nonane	111-84-2	<u>Acute oral toxicity:</u> LD50 mouse Dose: 218 mg/kg
		<u>Acute inhalation toxicity:</u> LC50 rat Exposure time: 4 h
Naphthalene	91-20-3	<u>Acute oral toxicity:</u> LD50 rat Dose: 2,001 mg/kg
		<u>Acute dermal toxicity:</u> LD50 rat Dose: 2,501 mg/kg
		<u>Acute inhalation toxicity:</u> LC50 rat Dose: 101 mg/l Exposure time: 4 h
		<u>Skin irritation:</u> Classification: Irritating to skin. Result: Mild skin irritation
		<u>Eye irritation:</u> Classification: Irritating to eyes. Result: Mild eye irritation
		Carcinogenicity: N11.00422130
1,2,4-Trimethylbenzene	95-63-6	<u>Acute inhalation toxicity:</u> LC50 rat Dose: 18 mg/l Exposure time: 4 h
		<u>Skin irritation:</u> Classification: Irritating to skin. Result: Skin irritation
		Eve irritation: Classification: Irritating to eyes. Result: Eye irritation
Xylene	1330-20-7	<u>Acute oral toxicity:</u> LD50 rat Dose: 2,840 mg/kg
		<u>Acute dermal toxicity: LD50 rabbit</u> Dose: ca. 4,500 mg/kg
		<u>Acute inhalation toxicity:</u> LC50 rat Dose: 6,350 mg/l Exposure time: 4 h
		<u>Skin irritation:</u> Classification: Irritating to skin. Result: Mild skin irritation Repeated or prolonged exposure may cause skin irritation and dermatitis, due to degreasing properties of the product. <u>Eye irritation:</u> Classification: Irritating to eyes. Result: Mild eye irritation

SECTION 12. ECOLOGICAL INFORMATION

Additional ecological

: Keep out of sewers, drainage areas, and waterways. Report spills and releases, as

MATERIAL SAFETY DATA SHEETDiesel Low Sulfur (LSD) and Ultra Low SulfurPage 8 of 10Diesel (ULSD)Page 8 of 10

information	applicable, under Federal and State regulations.		
Component:			
Naphthalene	91-20-3	<u>Toxicity to algae:</u> EC50 Species: Dose: 33 mg/l Exposure time: 24 h	
1,2,4-Trimethylbenzene	95-63-6	<u>Toxicity to fish:</u> LC50 Species: Pimephales promelas (fathead minnow) Dose: 7.72 mg/l Exposure time: 96 h <u>Acute and prolonged toxicity for aquatic invertebrates:</u> EC50 Species: Daphnia Dose: 3.6 mg/l Exposure time: 48 h	

SECTION 13. DISPOSAL CONSIDERATIONS

Disposal

: In accordance with local and national regulations.

SECTION 14.	SECTION 14. TRANSPORT INFORMATION		
CFR			
UI CI Pa	N-No. : lass :	DIESEL FUEL UN1202 (NA 1993) 3 III	
TDG			
UI CI	N-No. : lass :	DIESEL FUEL UN1202 (NA 1993) 3 III	
IATA Cargo Trar	nsport		
De	escription of the goods :	UN1202 (NA 1993) DIESEL FUEL 3	
IC. Pa air Pa	AO-Labels : acking instruction (cargo : craft)	III 3 310 Y309	
IATA Passenger	ATA Passenger Transport		
De	escription of the goods :	UN1202 (NA 1993) DIESEL FUEL 3	
Pa	ackaging group :	III	
		8 / 10	

	ICAO-Labels Packing instruction (passenger aircraft) Packing instruction (passenger aircraft)	:	3 309 Y309
IMDG-Code			
	UN-No.	:	UN 1202 (NA 1993)
	Description of the goods	:	DIESEL FUEL
	Class	:	3
	Packaging group	:	
	IMDG-Labels	:	3
	EmS Number	:	F-E S-E
	Marine pollutant	:	No

SECTION 15. REGULATORY INFORMATION

OSHA Hazards	: Combustible Liquid Moderate skin irritant Moderate eye irritant Toxic by ingestion POSSIBLE CANCER HAZARD	
TSCA Status	: On TSCA Inventory	
DSL Status	: All components of this product are on the Canadian DSL list.	
SARA 311/312 Hazards	: Fire Hazard Acute Health Hazard Chronic Health Hazard	
SARA III	US. EPA Emergency Planning and Community Right-To-Know Act (EPCRA) SARA Title Chemicals (40 CFR 372.65) - Supplier Notification Required	III Section 313 Toxic
Components	CAS-No.	
Xylene	1330-20-7	
1,2,4-Trimethylbenzene	95-63-6	
Naphthalene	91-20-3	
PENN RTK	US. Pennsylvania Worker and Community Right-to-Know Law (34 Pa. Code Chap. 301-	323)
Components	CAS-No.	
Nonane	111-84-2	
Naphthalene	91-20-3	
1,2,4-Trimethylbenzene	95-63-6	
xylene	1330-20-7	
Fuels, diesel, No 2; Gas	coil - unspecified 68476-34-6	
MASS RTK	US. Massachusetts Commonwealth's Right-to-Know Law (Appendix A to 105 Code of N Section 670.000)	lassachusetts Regulations
Components	<u>CAS-No.</u>	

Xylene		1330-20-7
1,2,4-Trimethylbenzene	e	95-63-6
Naphthalene		91-20-3
Nonane		111-84-2
NJ RTK	US. New Jersey Worker and Commu	inity Right-to-Know Act (New Jersey Statute Annotated Section 34:5A-5)
Components		CAS-No.
Nonane		111-84-2
Naphthalene		91-20-3
1,2,4-Trimethylbenzene	e	95-63-6
Xylene		1330-20-7
Fuels, diesel, No 2; Ga	soil - unspecified	68476-34-6
California Prop. 65	: WARNING! This pro cause cancer.	oduct contains a chemical known to the State of California to
	Naphthalene	91-20-3

SECTION 16. OTHER INFORMATION

Further information

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

Prepared by	:	GWU mbH Birlenbacher Str. 18 D-57078 Siegen
		Germany
		Telephone: +49-(0)271-88072-0
		10/15/2009

65, 66, 295

J.

SC Fuels P.O. Box 14237 Orange, CA 92863-1237 Tel: 800-659-5823 Fax: 714-992-7377 Credit Inquiries: 888-364-0121

Order#: 1291140 Order Date: 10/25/2018 Delv Req Date: 10/29/2018 Sales Person: 0177 - Todd Cripps

SOLD TO: 01-0001084 COLORADO ENERGY MANAGEMENT LLC ATTN: ACCOUNTS PAYABLE 4963 S. SOTO STREET VERNON, CA 90058 (323) 476-3622 SHIP TO: 1L COLORADO ENERGY MANAGEMENT LLC 4963 SOTO STREET VERNON, CA 90058 (323) 476-3632

Confirm To: ASHLEY HURD

Cus	tomer PO: MGS14841 S	hip Via:	Whse: 101	Terms: N30		
HM	Product Code / Desc / Svc Type	Qty Ordered / Package [Desc Ext Qty Ordered	Qty Delivered	Unit Price	Extended Amount
x	UN1202, DIESEL FUEL, NONTAXABL PENALITY FOR TAXABLE USE 422D055 30 CARB ULTRA L.S. DYED DIESEL	2.00 55 GAL DRM	110.00 GALS	2 55	3.79000	416.90
	Federal Lust Federal Oil Spill CA - AB 32 - DSL				0.00100 0.00214 0.00271	0.11 0.24 0.30
				1-5	3.79585	417.55
	CH235120981D055 30 DELO 400 SAE 40 55G	1.00 55 GAL DRM	55.00 GALS	1155	13.93000	766.15
	CA Oil Recycling Fee				0.24000	13.20
	CA Lube Fee				0.05000	2.75
					14.22000	782.10
	DRUMDEPOSITC001 30 DRUM DEPOSIT FEE	3.00 MISC CHRG	3.00 EACH	3.0	25.00000	75.00
	/FUELCH 30 FUEL SURCHARGE		0.00			9.92
	/RCF 30 REGULATORY COMPLIANCE FE	E	0.00			12.95

Jor inthe

SC Fuels P.O. Box 14237 Orange, CA 92863-1237 Tel: 800-659-5823 Fax: 714-992-7377 Credit Inquiries: 888-364-0121

Order#: 1291140 Order Date: 10/25/2018 Delv Req Date: 10/29/2018 Sales Person: 0177 - Todd Cripps

SOLD TO: 01-0001084 COLORADO ENERGY MANAGEMENT LLC ATTN: ACCOUNTS PAYABLE 4963 S. SOTO STREET VERNON, CA 90058 (323) 476-3622 SHIP TO: 1L COLORADO ENERGY MANAGEMENT LLC 4963 SOTO STREET VERNON, CA 90058 (323) 476-3632

Confirm To: ASHLEY HURD Customer PO: MGS14841 Whse: 101 Terms: N30 Ship Via: HM Product Code / Desc / Svc Type Qty Ordered / Package Desc Ext Qty Ordered **Qty Delivered** Unit Price Extended Amount Net Order: 1,297.52 Less Discount: 0.00 CEE Freight: 0.00 11-79-1 Sales Tax: 116.15

Rec'd by Date Order Total: 1,413.67 Print Name **Driver's Signature** TRUCK # ARRIVED LOAD POINT COMPLETED LOADING DATE FOR COMPANY USE ONLY AM DATE AM B/L # PM ΡN DATE ARRIVED DESTINATION COMPLETED UNLOADING D.O.T. HAZARDOUS MATERIALS PLACARD PROVIDED AM DATE AM 29/18 BY SHIPPER CARRIER and a PM PM THIS IS TO CERTIFY THAT THE ABOVE NAMED MATERIALS ARE PROPERLY CLASSIFIED, DESCRIBED, PACKAGED, MARKED AND LABELED AND ARE IN PROPER CONDITION FOR TRANSPORTATION ACCORDING TO APPLICABLE REGULATIONS OF THE DEPARTMENT OF TRANSPORTATION. WATER DETECTED ? GRAVITY GAS DIESEL OTHER END ☐ YES ☐ NO DRUM DEPOSIT TANK BEGINNING DRUM CREDIT OTHER DIESEL GAS TANK IN THE EVENT OF A HAZARDOUS MATERIALS INCIDENT - CALL 1-800-424-9300

Figure 2-4

Cooling Tower PM10 Guidance

COOLING TOWER DRIFT MASS DISTRIBUTION Excel Drift Eliminators

The following table represents the predicted mass distribution of drift particle size for cooling tower drift dispersed from Marley TU10 and TU12 Excel Drift Eliminators properly installed in a cooling tower.

Mass in Particles (%)		Droplet Size (Microns)
0.2	Larger Than	525
1.0	Larger Than	375
5.0	Larger Than	230
10.0	Larger Than	170
20.0	Larger Than	115
40.0	Larger Than	65
60.0	Larger Than	35
80.0	Larger Than	15
88.0	Larger Than	10

How to read table: Example -0.2% of the drift will have particle sizes larger than 525 microns.

Marley guarantees the data above for properly installed, undamaged drift eliminators in 'like-new' condition.

COOLING TECHNOLOGIES

NOTE: Biological treatment and control of Legionella and other potentially health-threatening bacteria is essential. Consult a competent water treatment expert or service company.

pH Temperature Langelier Saturation M-Alkalinity Silica Iron Manganese Sulfides Ammonia Chlorine / bromine Organic solvents TDS	er Saturation Index 0.0 to 1.0 recommended; higher allowed if scale is controllable. inity 100 to 500 ppm as CaCO3 iso 150 ppm as SiO2 maximum (scale formation) 3 ppm maximum (staining and scale contributor) 0.1 ppm maximum (staining and scale contributor) ese 0.1 ppm maximum (staining and scale contributor) ia 50 ppm maximum (staining and scale contributor) ia 50 ppm maximum if copper alloys present; lower limits apply for the set able below for limits with film fill. ia 50 ppm maximum if copper alloys present; lower limits apply for the set able below for limits and promote bio-growth. Trace amound acceptable, depending on the solvent. solvents These can attack plastics and promote bio-growth. Trace amound acceptable, depending on the solvent. vidual lons: Calcium Magnesium Sodium Anions: Chlorides	
Individual Ions: Cations:	Magnesium	800 ppm as CaCO3 preferred, (300 ppm with MX fills in arid climate). Depends on pH and silica level (for magnesium silicate scale).
Anions:	Chlorides Sulfates Nitrates Carbonates/Bicarbonates	upgrades are required for higher chloride levels. 800 ppm as CaCO ₃ preferred if calcium is also high (CaSO ₄ scale). 300 ppm as NO ₃ (bacteria nutrient).

Fouling Contaminant Limits - based on fouling load of 2.5 pounds per cubic foot

Bacteria counts listed below relate to maintaining fill thermal efficiency only. Biocidal treatment is required for all cooling tower installations. (see NOTE above).

Fill Type	<u>Aerobic Bacteria</u> <u>Heterotrophic Plate Count</u>	Total Suspended Solids (TSS)	<u>Oil and</u> Grease	<u>Sulfides</u>	<u>Ammonia</u>
MC75, MC120	10,000 CFU/ml	50 ppm	1 ppm	0.5 ppm	10 ppm
FB20, MX75 and MX625 (crossflow)	100,000 CFU/ml with TSS up to 50 ppm, or 10,000 CFU/ml with TSS up to 150 ppm		1 ppm	1.0 ppm	15 ppm
DF254, MCR16	100,000 CFU/ml	150 ppm	5 ppm	1.5 ppm	25 ppm
DF381 with 1' MC75 overlay	1,000,000 CFU/ml with TSS up to 50 ppm, or 100,000 CFU/ml with TSS up to 150 ppm		5 ppm	1.5 ppm	25 ppm
DF381, MVC20, AAFNCS ('Cleanflow') MCR12, Tricklebloc	1,000,000 CFU/ml	250 ppm	10 ppm	2.0 ppm	25 ppm
Splash bar or grid fill	1,000,000 CFU/ml target	No specific limit	10 ppm	N/A	N/A

Note: <u>Any amount of oil or grease is likely to adversely affect thermal performance</u>. Sulfides and ammonia promote bacterial growth which can cause fill fouling; conformance to the limits above will assist in controlling bacteria to the recommended levels.

Drift Effects:

Certain contaminants or treatment chemicals such as surfactants, glycols, biodispersants and antifoams may increase drift rate. When minimizing drift is vital, the circulating water shall have a surface tension of at least 65 dynes/cm and a total organic carbon (TOC) level below 25 ppm. Reclaim or re-use waters in particular may contain contaminants which increase drift rate either directly or by necessitating the use of treatment chemicals which increase drift rate.

Miscellaneous Solids and Nutrients

Avoid high efficiency fill (MC75) with water containing bacteria nutrients such as alcohols, nitrates, ammonia, fats, glycols, phosphates, black liquor, or TOC greater than 50 ppm. Clog-resistant fills may be considered for contaminated water, case by case. For all film fills, avoid fibrous, oily, greasy, fatty, or tarry contaminants, which can plug fill.

In general, do not use film fill in Steel Plants, Pulp & Paper Mills, Food Processing Operations, or similar applications unless leaks and contamination by airborne or waterborne particulates, oil, or fibers are extremely unlikely. If film fill is used, biological-growth control must be stringent and diligent.

Calculating Realistic PM₁₀ Emissions from Cooling Towers

Abstract No. 216 Session No. AM-1b

Joel Reisman and Gordon Frisbie

Greystone Environmental Consultants, Inc., 650 University Avenue, Suite 100, Sacramento, California 95825

ABSTRACT

Particulate matter less than 10 micrometers in diameter (PM_{10}) emissions from wet cooling towers may be calculated using the methodology presented in EPA's AP-42¹, which assumes that all total dissolved solids (TDS) emitted in "drift" particles (liquid water entrained in the air stream and carried out of the tower through the induced draft fan stack.) are PM_{10} . However, for wet cooling towers with medium to high TDS levels, this method is overly conservative, and predicts significantly higher PM_{10} emissions than would actually occur, even for towers equipped with very high efficiency drift eliminators (e.g., 0.0006% drift rate). Such overprediction may result in unrealistically high PM_{10} modeled concentrations and/or the need to purchase expensive Emission Reduction Credits (ERCs) in PM_{10} non-attainment areas. Since these towers have fairly low emission points (10 to 15 m above ground), over-predicting PM_{10} emission rates can easily result in exceeding federal Prevention of Significant Deterioration (PSD) significance levels at a project's fenceline. This paper presents a method for computing realistic PM_{10} emissions from cooling towers with medium to high TDS levels.

INTRODUCTION

Cooling towers are heat exchangers that are used to dissipate large heat loads to the atmosphere. Wet, or evaporative, cooling towers rely on the latent heat of water evaporation to exchange heat between the process and the air passing through the cooling tower. The cooling water may be an integral part of the process or may provide cooling via heat exchangers, for example, steam condensers. Wet cooling towers provide direct contact between the cooling water and air passing through the tower, and as part of normal operation, a very small amount of the circulating water may be entrained in the air stream and be carried out of the tower as "drift" droplets. Because the drift droplets contain the same chemical impurities as the water circulating through the tower, the particulate matter constituent of the drift droplets may be classified as an emission. The magnitude of the drift loss is influenced by the number and size of droplets produced within the tower, which are determined by the tower fill design, tower design, the air and water patterns, and design of the drift eliminators.

AP-42 METHOD OF CALCULATING DRIFT PARTICULATE

EPA's AP-42¹ provides available particulate emission factors for wet cooling towers, however, these values only have an emission factor rating of "E" (the lowest level of confidence acceptable). They are also rather high, compared to typical present-day manufacturers' guaranteed drift rates, which are on the order of 0.0006%. (Drift emissions are typically

expressed as a percentage of the cooling tower water circulation rate). AP-42 states that "a *conservatively high* PM_{10} emission factor can be obtained by (a) multiplying the total liquid drift factor by the TDS fraction in the circulating water, and (b) assuming that once the water evaporates, all remaining solid particles are within the PM_{10} range." (Italics per EPA).

If TDS data for the cooling tower are not available, a source-specific TDS content can be estimated by obtaining the TDS for the make-up water and multiplying it by the cooling tower cycles of concentration. [The cycles of concentration is the ratio of a measured parameter for the cooling tower water (such as conductivity, calcium, chlorides, or phosphate) to that parameter for the make-up water.]

Using AP-42 guidance, the total particulate emissions (PM) (after the pure water has evaporated) can be expressed as:

For example, for a typical power plant wet cooling tower with a water circulation rate of 146,000 gallons per minute (gpm), drift rate of 0.0006%, and TDS of 7,700 parts per million by weight (ppmw):

PM = 146,000 gpm x 8.34 lb water/gal x 0.0006/100 x 7,700 lb solids/ 10^6 lb water x 60 min/hr = <u>3.38 lb/hr</u>

On an annual basis, this is equivalent to almost 15 tons per year (tpy). Even for a state-of-the-art drift eliminator system, this is not a small number, especially if assumed to all be equal to PM_{10} , a regulated criteria pollutant. However, as the following analysis demonstrates, only a very small fraction is actually PM_{10} .

COMPUTING THE PM₁₀ FRACTION

Based on a representative drift droplet size distribution and TDS in the water, the amount of solid mass in each drop size can be calculated. That is, for a given initial droplet size, assuming that the mass of dissolved solids condenses to a spherical particle after all the water evaporates, and assuming the density of the TDS is equivalent to a representative salt (e.g., sodium chloride), the diameter of the final solid particle can be calculated. Thus, using the drift droplet size distribution, the percentage of drift mass containing particles small enough to produce PM_{10} can be calculated. This method is conservative as the final particle is assumed to be perfectly spherical; hence as small a particle as can exist.

The droplet size distribution of the drift emitted from the tower is critical to performing the analysis. Brentwood Industries, a drift eliminator manufacturer, was contacted and agreed to provide drift eliminator test data from a test conducted by Environmental Systems Corporation (ESC) at the Electric Power Research Institute (EPRI) test facility in Houston, Texas in 1988 (Aull², 1999). The data consist of water droplet size distributions for a drift eliminator that achieved a tested drift rate of 0.0003 percent. As we are using a 0.0006 percent drift rate, it is reasonable to expect that the 0.0003 percent drift rate would produce smaller droplets, therefore,

this size distribution data can be assumed to be <u>conservative</u> for predicting the fraction of PM_{10} in the total cooling tower PM emissions.

In calculating PM₁₀ emissions the following assumptions were made:

- Each water droplet was assumed to evaporate shortly after being emitted into ambient air, into a single, solid, spherical particle.
- Drift water droplets have a density (ρ_w) of water; 1.0 g/cm³ or 1.0 * 10⁻⁶ $\mu g / \mu m^3$.
- The solid particles were assumed to have the same density (ρ_{TDS}) as sodium chloride, (i.e., 2.2 g/cm³).

Using the formula for the volume of a sphere, $V = 4\pi r^3/3$, and the density of pure water, $\rho_w = 1.0 \text{ g/cm}^3$, the following equations can be used to derive the solid particulate diameter, D_p , as a function of the TDS, the density of the solids, and the initial drift droplet diameter, D_d :

Volume of drift droplet =
$$(4/3)\pi (D_d/2)^3$$
 [2]

Mass of solids in drift droplet = (TDS)(
$$\rho_w$$
)(Volume of drift droplet) [3]

substituting,

Mass of solids in drift = (TDS)(
$$\rho_w$$
) (4/3) π (D_d/2)³ [4]

Assuming the solids remain and coalesce after the water evaporates, the mass of solids can also be expressed as:

Mass of solids =
$$(\rho_{\text{TDS}})$$
 (solid particle volume) = $(\rho_{\text{TDS}})(4/3)\pi(D_p/2)^3$ [5]

Equations [4] and [5] are equivalent:

$$(\rho_{\text{TDS}})(4/3)\pi(D_{p}/2)^{3} = (\text{TDS})(\rho_{w})(4/3)\pi(D_{d}/2)^{3}$$
 [6]

Solving for D_p:

$$D_{p} = D_{d} \left[(TDS)(\rho_{w} / \rho_{TDS}) \right]^{1/3}$$
[7]

Where,

TDS is in units of ppmw D_p = diameter of solid particle, micrometers (μm) D_d = diameter of drift droplet, μm

Using formulas [2] - [7] and the particle size distribution test data, Table 1 can be constructed for drift from a wet cooling tower having the same characteristics as our example; 7,700 ppmw TDS and a 0.0006% drift rate. The first and last columns of this table are the particle size distribution derived from test results provided by Brentwood Industries. Using straight-line interpolation for a solid particle size 10 μ m in diameter, we conclude that approximately <u>14.9</u> <u>percent</u> of the mass emissions are equal to or smaller than PM₁₀. The balance of the solid particulate are particulate greater than 10 μ m. Hence, PM₁₀ emissions from this tower would be equal to PM emissions x 0.149, or 3.38 lb/hr x 0.149 = <u>0.50 lb/hr</u>. The process is repeated in Table 2, with all parameters equal except that the TDS is 11,000 ppmw. The result is that approximately <u>5.11 percent</u> are smaller at 11,000 ppm. Thus, while total PM emissions are larger by virtue of a higher TDS, overall PM₁₀ emissions are actually <u>lower</u>, because more of the solid particles are larger than 10 μ m.

EPRI Droplet	Droplet	Droplet Mass	Particle Mass	Solid Particle	Solid Particle	EPRI % Mass
Diameter	Volume		(Solids)	Volume	Diameter	Smaller
(µm)	$\left(\mu m^3\right)$	(<i>μ</i> g) [3]	(µg)	$\left(\mu m^3\right)$	(µm)	
	[2] ¹		[4]		[7]	
10	524	5.24E-04	4.03E-06	1.83	1.518	0.000
20	4189	4.19E-03	3.23E-05	14.66	3.037	0.196
30	14137	1.41E-02	1.09E-04	49.48	4.555	0.226
40	33510	3.35E-02	2.58E-04	117.29	6.073	0.514
50	65450	6.54E-02	5.04E-04	229.07	7.591	1.816
60	113097	1.13E-01	8.71E-04	395.84	9.110	5.702
70	179594	1.80E-01	1.38E-03	628.58	10.628	21.348
90	381704	3.82E-01	2.94E-03	1335.96	13.665	49.812
110	696910	6.97E-01	5.37E-03	2439.18	16.701	70.509
130	1150347	1.15E+00	8.86E-03	4026.21	19.738	82.023
150	1767146	1.77E+00	1.36E-02	6185.01	22.774	88.012
180	3053628	3.05E+00	2.35E-02	10687.70	27.329	91.032
210	4849048	4.85E+00	3.73E-02	16971.67	31.884	92.468
240	7238229	7.24E+00	5.57E-02	25333.80	36.439	94.091
270	10305995	1.03E+01	7.94E-02	36070.98	40.994	94.689
300	14137167	1.41E+01	1.09E-01	49480.08	45.549	96.288
350	22449298	2.24E+01	1.73E-01	78572.54	53.140	97.011
400	33510322	3.35E+01	2.58E-01	117286.13	60.732	98.340
450	47712938	4.77E+01	3.67E-01	166995.28	68.323	99.071
500	65449847	6.54E+01	5.04E-01	229074.46	75.915	99.071
600	113097336	1.13E+02	8.71E-01	395840.67	91.098	100.000

 Table 1. Resultant Solid Particulate Size Distribution (TDS = 7700 ppmw)

¹ Bracketed numbers refer to equation number in text.

The percentage of PM_{10}/PM was calculated for cooling tower TDS values from 1000 to 12000 ppmw and the results are plotted in Figure 1. Using these data, Figure 2 presents predicted PM_{10} emission rates for the 146,000 gpm example tower. As shown in this figure, the PM emission rate increases in a straight line as TDS increases, however, the PM_{10} emission rate increases to a maximum at around a TDS of 4000 ppmw, and then <u>begins to decline</u>. The reason is that at higher TDS, the drift droplets contain more solids and therefore, upon evaporation, result in larger solid particles for any given initial droplet size.

CONCLUSION

The emission factors and methodology given in EPA's AP-42¹ Chapter 13.4 *Wet Cooling Towers*, do not account for the droplet size distribution of the drift exiting the tower. This is a critical factor, as more than 85% of the mass of particulate in the drift from most cooling towers will result in solid particles larger than PM_{10} once the water has evaporated. Particles larger than PM_{10} are no longer a regulated air pollutant, because their impact on human health has been shown to be insignificant. Using reasonable, conservative assumptions and a realistic drift droplet size distribution, a method is now available for calculating realistic PM_{10} emission rates from wet mechanical draft cooling towers equipped with modern, high-efficiency drift eliminators and operating at medium to high levels of TDS in the circulating water.

End and a result of the second s						
EPRI Droplet	Droplet	Droplet Mass	Particle Mass	Solid Particle	Solid Particle	EPRI % Mass
Diameter	Volume	(μg)	(Solids)	Volume	Diameter	Smaller
(<i>µ</i> m)	$\left(\mu m^3\right)$		(μg)	$\left(\mu m^3\right)$	(μm)	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		[3]	· ,	(^{µm})	· ,	
	[2] ¹		[4]		[7]	
10	524	5.24E-04	5.76E-06	2.62	1.710	0.000
20	4189	4.19E-03	4.61E-05	20.94	3.420	0.196
30	14137	1.41E-02	1.56E-04	70.69	5.130	0.226
40	33510	3.35E-02	3.69E-04	167.55	6.840	0.514
50	65450	6.54E-02	7.20E-04	327.25	8.550	1.816
60	113097	1.13E-01	1.24E-03	565.49	10.260	5.702
70	179594	1.80E-01	1.98E-03	897.97	11.970	21.348
90	381704	3.82E-01	4.20E-03	1908.52	15.390	49.812
110	696910	6.97E-01	7.67E-03	3484.55	18.810	70.509
130	1150347	1.15E+00	1.27E-02	5751.73	22.230	82.023
150	1767146	1.77E+00	1.94E-02	8835.73	25.650	88.012
180	3053628	3.05E+00	3.36E-02	15268.14	30.780	91.032
210	4849048	4.85E+00	5.33E-02	24245.24	35.909	92.468
240	7238229	7.24E+00	7.96E-02	36191.15	41.039	94.091
270	10305995	1.03E+01	1.13E-01	51529.97	46.169	94.689
300	14137167	1.41E+01	1.56E-01	70685.83	51.299	96.288
350	22449298	2.24E+01	2.47E-01	112246.49	59.849	97.011
400	33510322	3.35E+01	3.69E-01	167551.61	68.399	98.340
450	47712938	4.77E+01	5.25E-01	238564.69	76.949	99.071
500	65449847	6.54E+01	7.20E-01	327249.23	85.499	99.071
600	113097336	1.13E+02	1.24E+00	565486.68	102.599	100.000

 Table 2. Resultant Solid Particulate Size Distribution (TDS = 11000 ppmw)

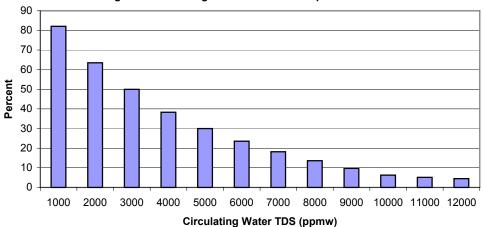
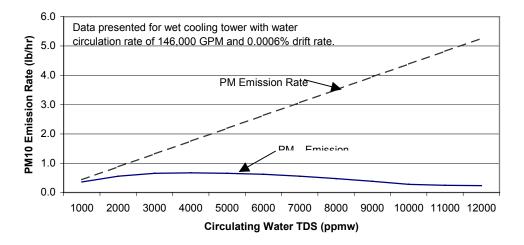



Figure 1: Percentage of Drift PM that Evaporates to PM10

Figure 2: PM₁₀ Emission Rate vs. TDS

REFERENCES

- EPA, 1995. Compilation of Air pollutant Emission Factors, AP-42 Fifth edition, Volume I: Stationary Point and Area Sources, Chapter 13.4 Wet Cooling Towers, <u>http://www.epa.gov/ttn/chief/ap42/</u>, United States Environmental Protection Agency, Office of Air Quality Planning and Standards, January.
- 2. Aull, 1999. Memorandum from R. Aull, Brentwood Industries to J. Reisman, Greystone, December 7, 1999.

KEY WORDS

Drift Drift eliminators Cooling tower PM₁₀ emissions TDS