<table>
<thead>
<tr>
<th>Docketed Date</th>
<th>3/11/2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Title</td>
<td>Presentation - LBNL EV Infrastructure and Grid-Integration Overview</td>
</tr>
<tr>
<td>Description</td>
<td>Lawrence Berkeley National Laboratory presentation at March 11 IEPR Staff Workshop</td>
</tr>
<tr>
<td>Organization</td>
<td>Lawrence Berkeley National Laboratory</td>
</tr>
<tr>
<td>Submitter Role</td>
<td>Public Agency</td>
</tr>
<tr>
<td>Submission Date</td>
<td>3/11/2019 2:36:36 PM</td>
</tr>
</tbody>
</table>
LBNL EV Infrastructure and Grid-Integration Overview

Colin Sheppard, Samveg Saxena, Doug Black
BEAM Agent-Based Travel Demand Model
What if we installed more workplace chargers?

Modest increases in flexibility vs. residential sector
DC Fast Requirements for SAEV Ride Hail using BEAM

- Adopting the EV fleet for automated taxis leads to more waiting time, deadheading VMT, and less customers served compared with the same number of ICEVs

- Charging infrastructure can significantly affect the above metrics
Grid-Integrated Electric Mobility Model:
• LBNL, UC Davis partnership
• Top-down approach leveraging bottom-up models & studies
• Personal EV fleet load and flexibility assumptions derived from EVI-Pro outputs
• Top-down
GEM Results:
Charging Infrastructure and Fleet Composition by Region

[Bar charts showing the distribution of charging infrastructure and fleet composition by region, with charging power in kW and vehicle range in miles represented in different colors and percentages.]
Load profile estimates as EV fleet transforms from private to shared autonomous on-demand mobility. Assumes unmanaged private EV charging.
GEM Results: National EV Load with Private Smart Charging

Load profile estimates as private EV fleet transitions from 0 to 100% participation in cost minimizing smart charging. Assumes 50% private fleet and 50% shared automated.
Results: Smart Charging

Without Smart Charging

With Smart Charging
Examine LDV, MDV, HDV ZEV
Fueling Needs & Grid Integration Potential – Example for FCEVs

1. Hydrogen fuel demands
 - Non-LDV data from EMFAC
 - LDV data from travel survey data

 Generate probabilistic simulations from aggregate data

2. HFCV scenarios
 - (Synthesis from CA modelers)
 - Number of FCEVs
 - (fraction of total stock)
 - 5.0 million LDVs (18%)
 - 180,000 MDVs (15%)
 - 22,000 HDVs (6%)
 - 12,750 buses (17%)

 For 2030 reference year

3. Refueling algorithms
 - MDVs and buses: End of shift
 - HDVs: refueling probability similar to LDVs (fuel tank level)

4. Hydrogen refueling profiles

Grid System Models
= System costs, renewables integration
Thank you