DOCKETED	
Docket Number:	18-ALT-01
Project Title:	2019-2020 Investment Plan Update for the Alternative and Renewable Fuel and Vehicle Technology Program
TN #:	225897
Document Title:	BEN-AMOTZ Ami Comments - Presentation - Bio-Fuel and CO2 Capture by Algae
Description:	Lecture Algae Biofuel - November 20, 2008
Filer:	System
Organization:	BEN-AMOTZ Ami
Submitter Role:	Public
Submission Date:	11/14/2018 11:24:48 PM
Docketed Date:	11/15/2018

Comment Received From: BEN-AMOTZ Ami

Submitted On: 11/14/2018 Docket Number: 18-ALT-01

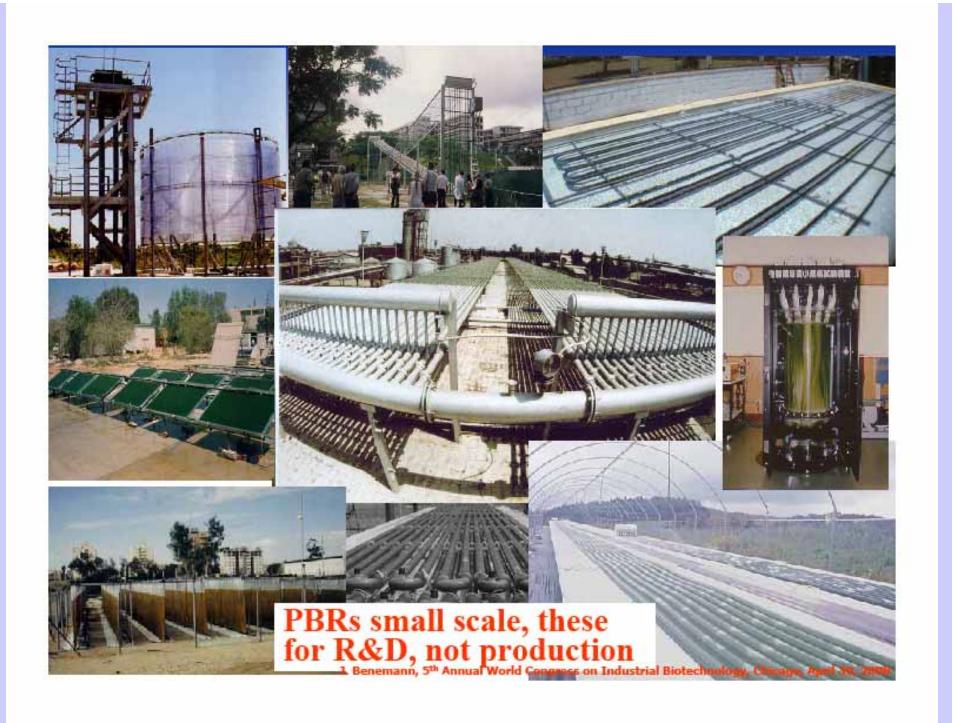
Lecture Algae Biofuel

Bio-Fuel and CO2 Capture by Algae

Additional submitted attachment is included below.

Bio-Fuel and CO2 Capture by Algae

Ami Ben-Amotz NASA **November 20, 2008**

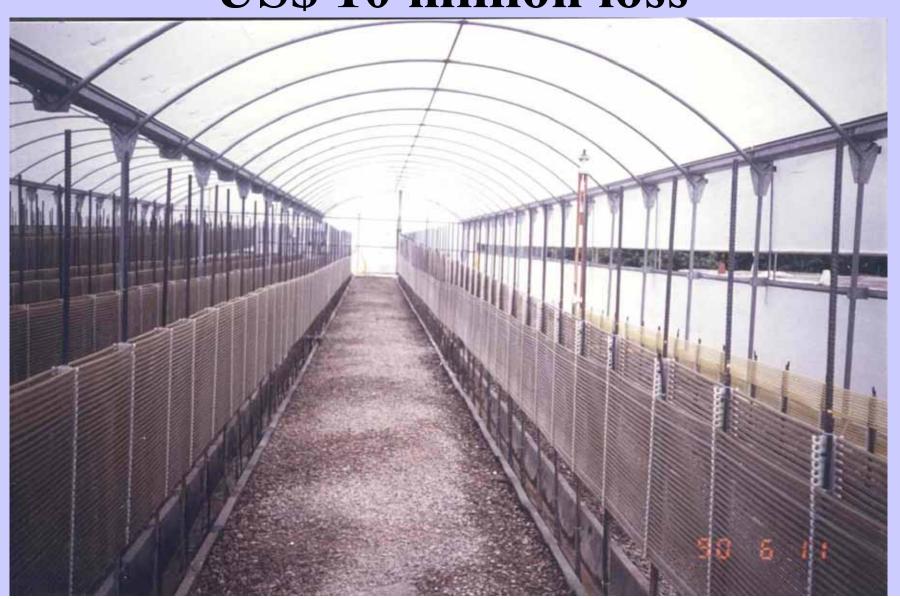

Seambiotic \

Microalgal Applied Phycology

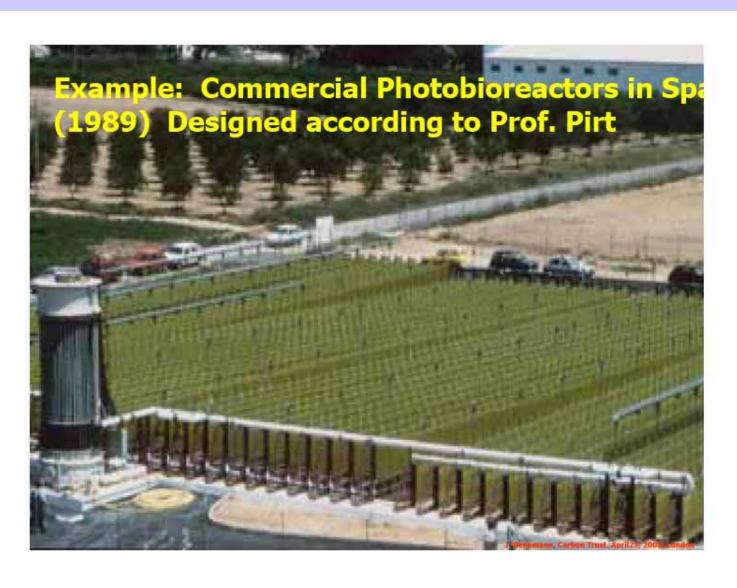
Since 1950 through 2008 almost all commercial algae production plants use only open ponds

Commercial Photo-Bioreactors Examples of Failure R High Cost

Chlorella, Otto Pulz, Germany



Haematococcus, Algae Technologies, Israel


Dunaliella, Murcia, Spain US\$ 10 million loss

Murcia, Spain Major problems: predators and contamination

Murcia, Spain 1990

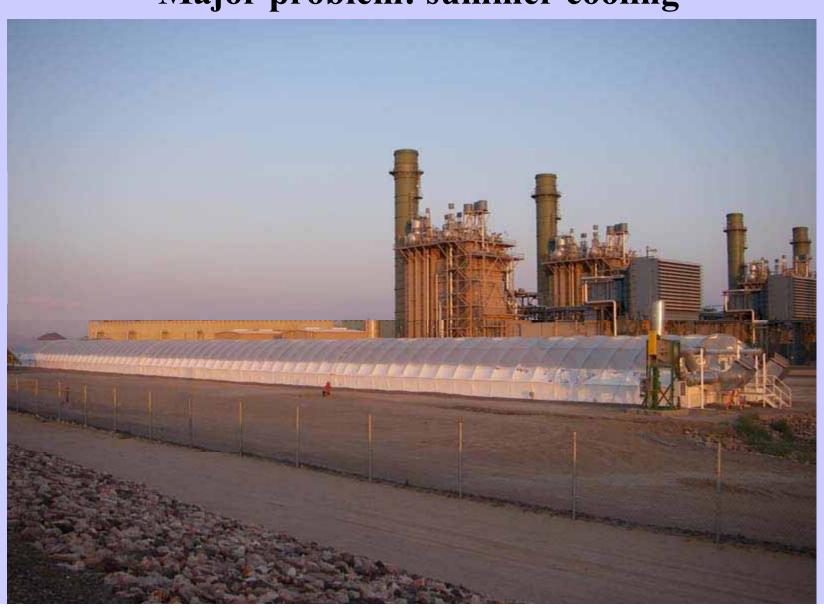
Murcia, Spain Never worked commercially

GreenFuel Technologies Co, Arizona, USA photo-bioreactors on start

GreenFuel Technologies Co, Arizona, USA

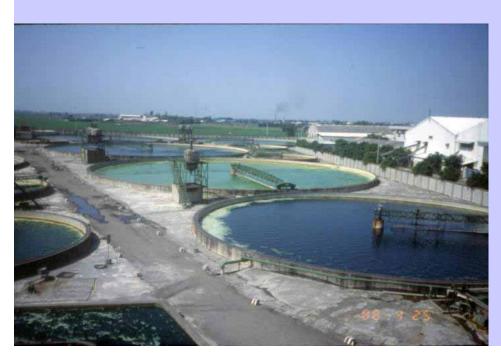
Few weeks later, heavy contamination, difficulty to clean

GreenFuel Technologies Co, Arizona, USA Bags trial, high cost scale up



GreenFuel Technologies Co, Arizona, USA US\$ 10 million project, 2007

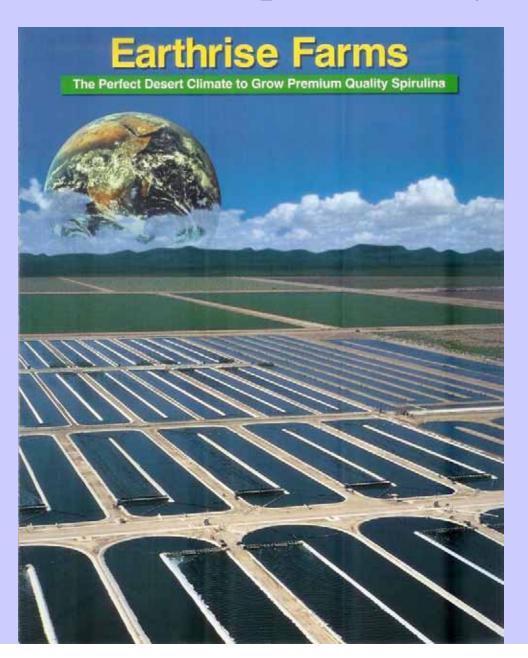
GreenFuel Technologies Co, Arizona, USA


Major problem: summer cooling

Commercial Algae Open Ponds

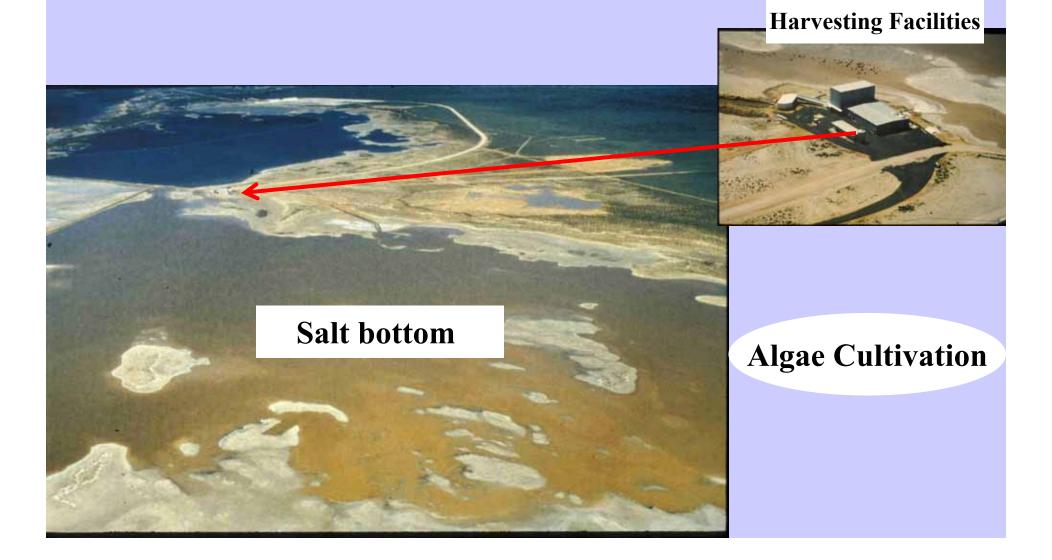
Open Ponds since 1950 Taiwan & Japan

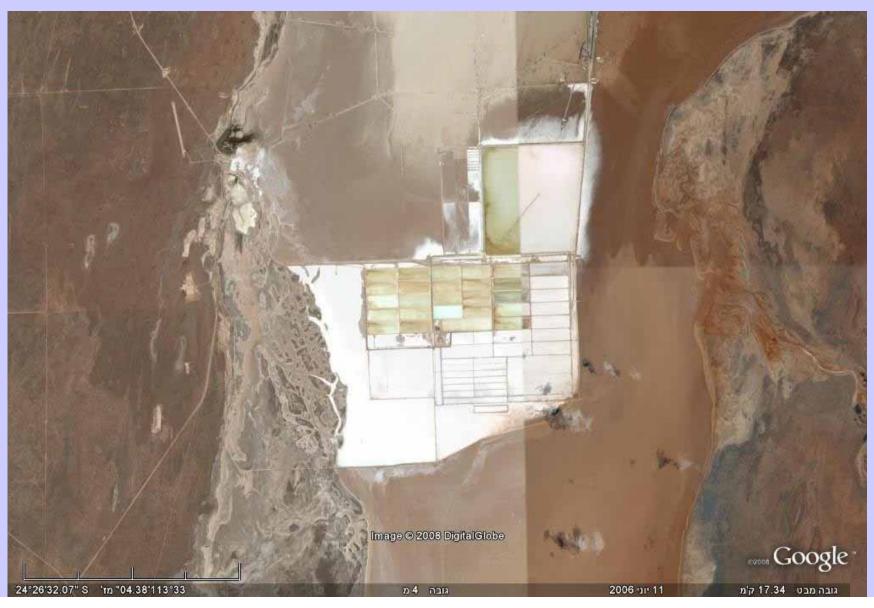
round & oblong open ponds mostly mixotrophic cultivation


Far East *Chlorella* and *Spirulina*Open Ponds


Earthrise Spirulina, Imperial Valley, CA, USA

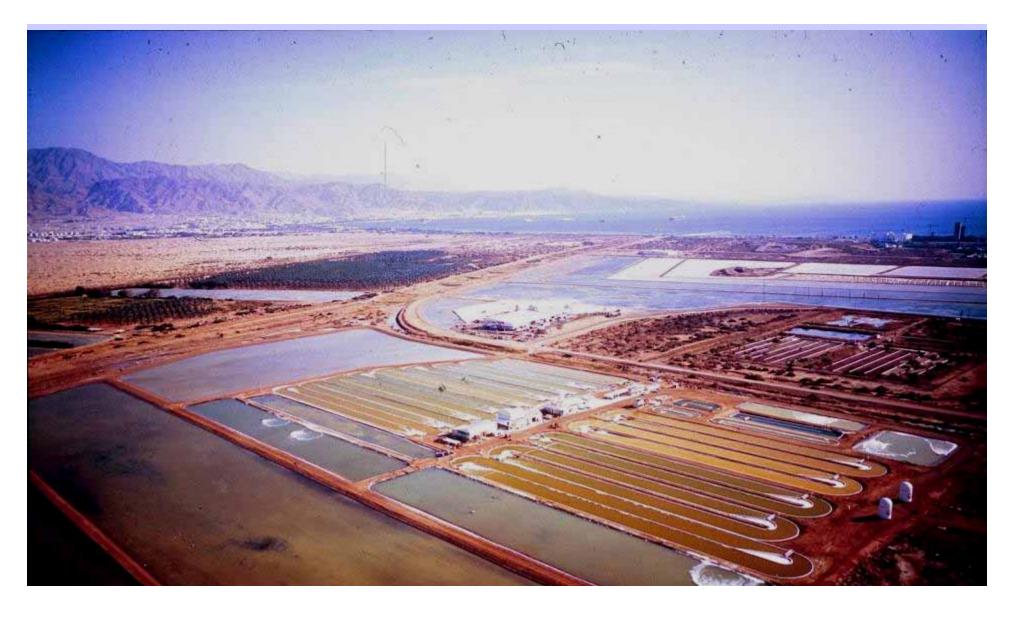
Cyanotech Co Hawaii, USA


Microbio Resources, Imperial Valley, Calipatria, CA, USA


Cognis Dunaliella, Whyalla, Australia

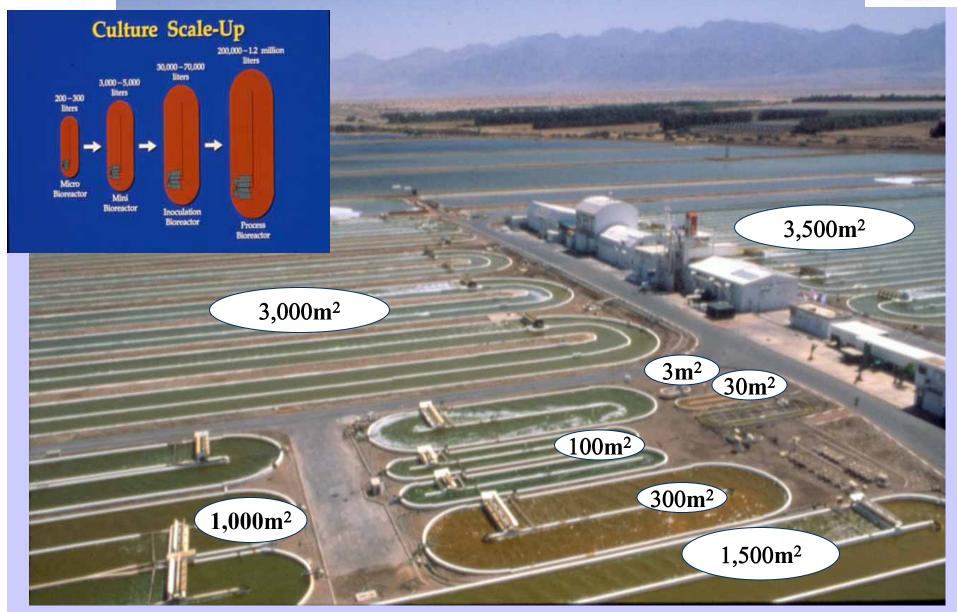
Cognis, Whayalla, Australia Large Scale *Dunaliella* Cultivation

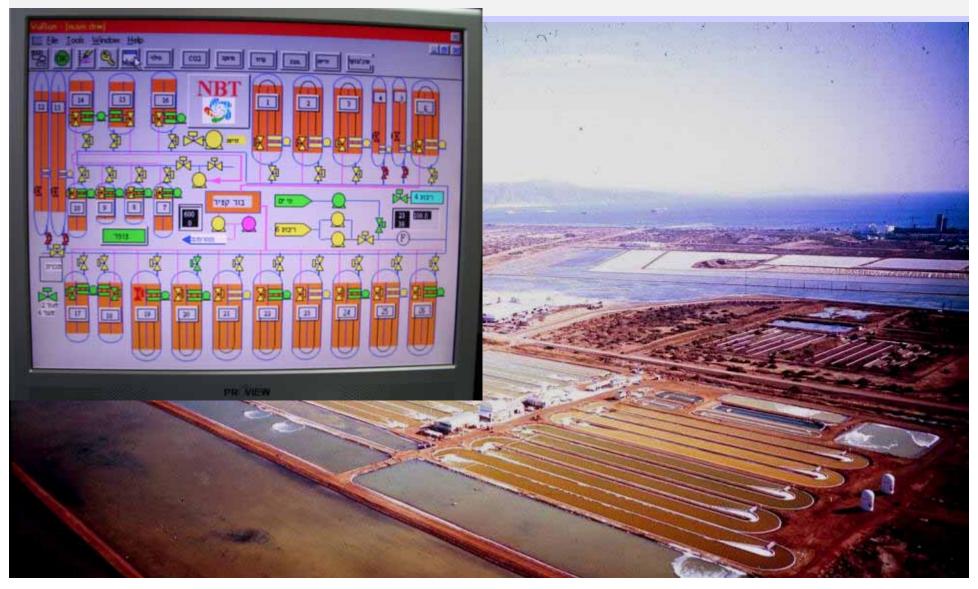
Dunaliella, Hutt Lagoon, West Australia


Dunaliella Health Food Supplement Commercial Plant

Intensive Cultivation

NBT Ltd., Nikken Sohonsha Co. (1975) Dunaliella 10 Hectares Plant, Eilat, Israel





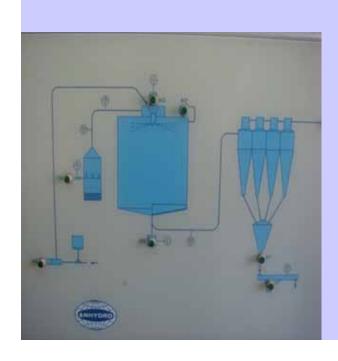
Dunaliella Scale Up

Dunaliella Biotechnology PC Control

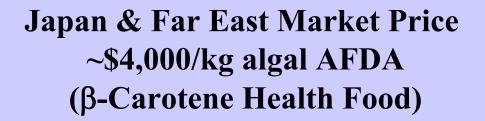
Dunaliella

Biotechnology Processing

Dunaliella Harvesting Westphalia Ltd., Continuous Centrifuges



Dunaliella Paste (~15%)


Dunaliella Spray Dryer

Dunaliella Spray Dried β-Carotene Algal Powder

Japan

Raw algae Israel

Dunaliella β-Carotene Capsules 100 yen/capsule

Dunaliella Health Food Powder

Door to door marketing by 500,000 sale agents in the Far East

Open Ponds & Closed Bioreactors

The key Questions:

Cost of construction & operation
Light
Contamination
Cleaning
Maintenance
Productivity

Nature Beta Technologies Ltd. (NBT) Nikken Sohonsha Co Sharing our know-how

Annual Microalgae Production Costs NBT Dunaliella Plant versus Alternative Bio-Fuel Algal Plant (10 Hectares Plant Open Ponds)

	Dunaliella	Alternative Algal Plant
	NBT Ltd., Eilat, 2008	2008(?)
	Cost in U	US\$/year
Manpower	500,000 (20 workers)	?
Electricity (\$0.125/KW)	180,000	?
Fertilizers (N,P,K, Fe) and other chemicals	36,000	?
Domestic Land City Taxes	50,000	?
CO ₂ (\$500/ton)	150,000	?
Sea Water (\$0.25/m3)	200,000	?
Fresh Water	20,000	?
Other supplies and Miscellaneous	30,000	?
Total	<u>1,166,000</u>	?
Yearly production of dry algae biomass	70 tons	?
	(2g/m2/day)	
Cost of 1Kg dry microalgae	<u>\$17.00/kg</u>	\$0.34/kg???
Market Price	\$4,000/kg algal AFDA (β-Carotene Health Food) Total sale ~\$100 million/year	Algae cost for bio-fuel should be below \$0.5/kg algal AFDW

How to reduce the Cost of Algae Production?

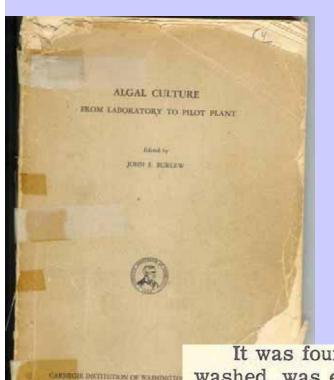
Electric Power Stations

Burn: oil, gas, coal and mix

Use: sea water for cooling

Average mid-large station emits $\sim 4,000$ ton CO_2 per hr

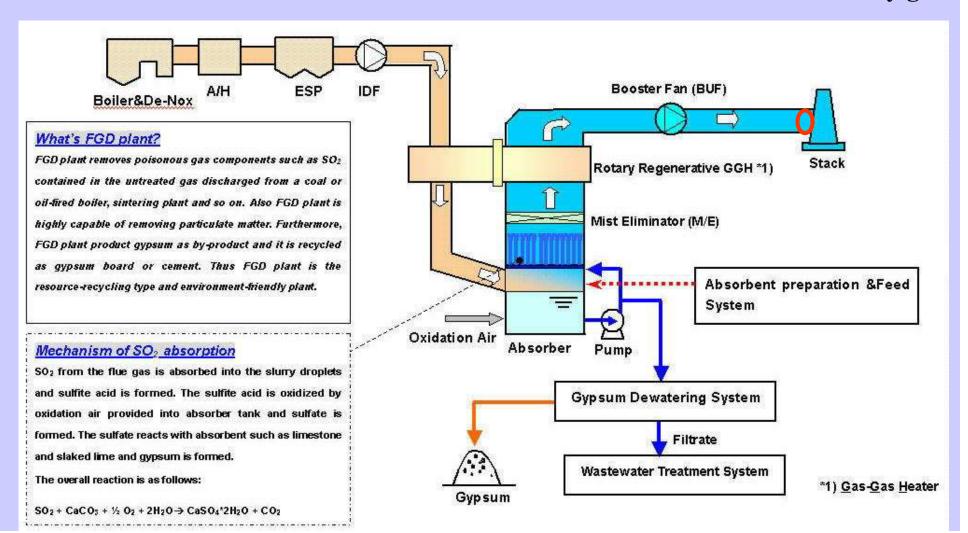
CO₂ emission, 4-14%, plus NOx, plus minerals, plus?



The "Algal Bible":

"Algal Culture, From Laboratory to Pilot Plant" John S. Burlew (Ed.), 1953:

"Flue Gas is Toxic to Algae"! SO₂ & H₂S toxicity



It was found that the earbon dioxide (from cylinders filled here), if unwashed, was extremely toxic to the algae because of the presence of sulfur dioxide and hydrogen sulfide, which resulted in the death of the cultures in 1 to $1\frac{1}{2}$ days. The gas had to be washed by passing through alkaline per-

Flue GasDesulphurization (FGD, SO₂ Scrubbing)

FGD the art technology used for removing sulfurdioxide-of-is the current state (I to generate from the exhaust flue gases in power plants that burn coal or oi (₂SO neratorsthe steam for the steam turbines that drive their electricity ge

Flue Gas Desulphurization (FGD SO₂ chemistry) Scrubbing with a basic solid or solution

SO₂ is an acid gas and thus the typical sorbent slurries or other materials used to remove the SO₂ from the flue gases are alkaline.

The reaction is taking place in **wet scrubbing** using limestone, CaCO₃ to calcium sulphite, CaSO₃ that can be expressed as:

$$CaCO_3$$
 (solid) + SO_2 (gas) \rightarrow $CaSO_3$ (solid) + CO_2 (gas)

When wet scrubbing with a Ca(OH)₂ (lime slurry), the reaction also produces CaSO₃ (calcium sulphite) and can be expressed as:

$$Ca(OH)_2$$
 (solid) + SO_2 (gas) \rightarrow $CaSO_3$ (solid) + H_2O (liquid)

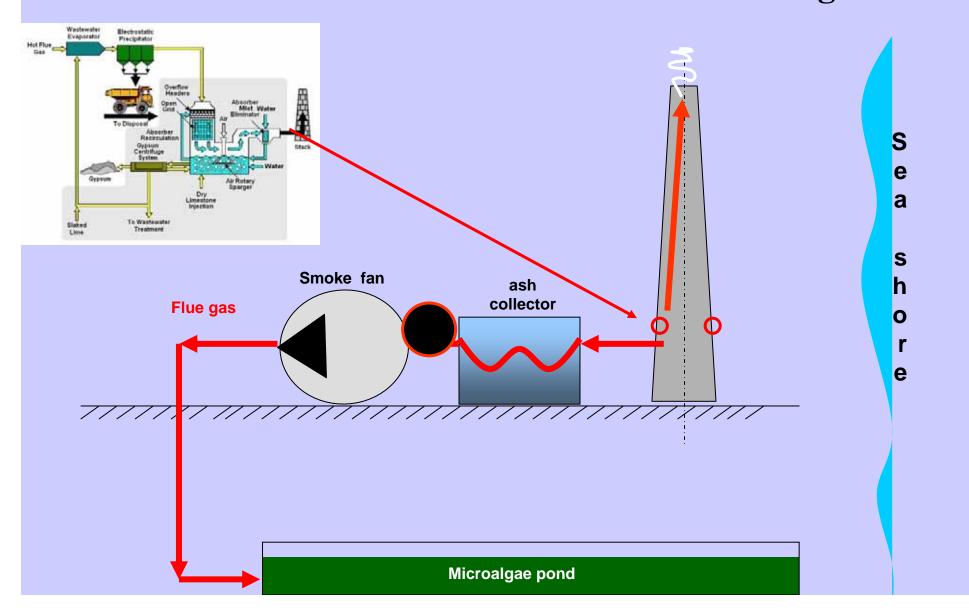
When wet scrubbing with a Mg(OH)₂ (magnesium hydroxide slurry), the reaction produces MgSO₃ (magnesium sulphite) and can be expressed as:

$$MgOH_2$$
 (solid) + SO_2 (gas) $\rightarrow MgSO_3$ (solid) + H_2O (liquid)

Some FGD systems go a step further and oxidize CaSO₃ (calcium sulphite) to produce marketable CaSO₄.2H₂O (gypsum):

$$CaSO_3$$
 (solid) + 1/2 O_2 (gas) + 2 H_2O (liquid) $\rightarrow CaSO_4.2H_2O$ (solid)

Israel Electric Corporation Four Power Plants all coal One is FGD Plant (Ashkelon)


Seambiotic Algae Pilot Plant Within the IEC Power Plant area, Ashkelon, Israel

IEC Power Plant Ashkelon, Israel Only one FGD chimney (out of 8 in Israel)

IEC CO₂- Generation Basic Scheme "Please make holes in the smokestack for algae"

Israel Electric Corporation The connections to the chimney (FGD 2 units)

FGD Power Station, Ashkelon, Israel (431 ton CO₂ /hr, 10,344 /day)

Ruthenberg Power Station, Units III&IV. Unit Nominal Load 550MW							
I. Coal		LHV =	6170	kcal/kg			
	C,% =	65.26	H ₂ O,% =	10.99			
	H,% =	4.53	Ash,%=	8.85			
	S,% =	0.63	N,% =	1.25			
	O,% =	8.49	_				
II. Theoretical Flue Gas Composition.			Excess Air=	100.00%			
Composition.	V ⁰ =	6.74	$V^0_{CO2} =$	1.22	@6%O ₂	Alfa =	1.4
	V ⁰ _{H2O} =	0.748	V ⁰ _{N2} =	5.33			
	V ⁰ _{SO2} =	4.41E-	V ⁰ dry=	6.55			
		03	6%O2	40.04			
III. Real Gas Composition	Vgas ^{alfa} =	8.743	Vgas ^{6%O2} =	10.04 -50 C, density 1.3 kg/m3	\ 		
Unit Load		550MW	l	341MW	<mark>)).</mark> I	181MW	
Excess Air		1.21		1.44		1.7	
EXCESS All	Calculated	1.21	Measured	Calculated		Calculated	
	Before FGD	After		Before FGD	After	Before FGD	After FGD
0 V-1 N3# 61	0.740	FGD		40.040	FGD	40.40	40.50
Gas Volume, Nm³/kg fuel	8.743	10.04		10.318	11.59	12.10	13.52
CO ₂ ,%	13.93	12.13	13.30	11.802	10.51	10.07	9.01
O ₂ ,%	16.19	14.10	4.7-5.12	6.04	5.37	8.19	6.10
N ₂ ,%	0.11	0.10		74.41	66.25	74.90	67.03
H₂O,%	7.31	22.31		7.71	19.33	6.81	19.19
SO ₂ ,ppmv	504.23	-	56-70	427	-	364.37	-
H₂S,%	~0			~0		~0	~0
NO _x ,ppmv	<mark>297.00</mark>	300	190-200	292	260	249	223
SO ₃ ,mg/Nm ³	~5						
CO,mg/Nm ³	<mark>287</mark>		~ <mark>250</mark>	243		208	186
CH _{condensable}	No data			No data		No data	No data
Sulfur	~0			~0		~0	~0
Particles,mg/Nm3	46						

Flue Gas Processing Inside the FGD Chimney

Analysis of the FGD Flue Gas Mist Many Minerals at Low pH (variety of coals)

אמינולאב בע"מ שרותי מעבדה אנליטיים לתעשיה ,מזון ,רפואה ,חקלאות ,מחקר ואיכות הסביבה

08-9303300: פקס :08-9303333 טל: 70400 פקס :4074 ת.ד 4074 נס ציונה 70400 טל: 13303333 פקס סניף צפון -היוצרים 19, ת.ד 1033 כרמיאל 20100 טל: 04-9586916 פקס :04-9582154 פקס

14/03/2007 רו"ח מס "ור"ח מס "ור"ח

מר משה כהו סימביוטיקס בע"מ מגדלי עזריאלי 1) בניין עגול(תל אביב 67021 050-6709692 emoshec@gmail.com פקס:

תעודה לתוצאות בדיקה

יחידות מידה

mg/L

6347

דר 1 מתוד 2

הנדון:

05/03/2007 מאריך קבלה:

מס 'אמינולאב: 10559.07-C תאור הדוגמה: נוזל FGD-Farm נדגם ע"י:

הלקוח סוג הדיגום:

Pb- עופרת

גופרית -S

1			סו יקונ טונטוו מכאוו ב - דכו
	< 0.05	mg/L	Ag- 100
	3	mg/L	Al- אלומיניום
	< 0.1	mg/L	As- ארסן
	< 0.1	mg/L	B- בורון
	0.07	mg/L	Ba- בריום
	< 0.05	mg/L	Be- בריליום
	5	mg/L	Ca- סידן
	< 0.05	mg/L	Cd- קדמיום
ĺ	< 0.05	mg/L	Co- קובלט
	0.06	mg/L	כרום -Cr
	31	mg/L	נחושת -Cu
	23	mg/L	Fe- ברזל
	< 0.05	mg/L	בספית -gH
	0.6	mg/L	K- אשלגן
	< 0.05	mg/L	Li- ליתיום
ĺ	1	mg/L	מגנזיום -Mg
	0.2	mg/L	מנגן -Mn
	< 0.05	mg/L	Mo- מוליבדן
	<0.5	mg/L	Na- נתרן
	1	mg/L	Ni- ניקל
	1	mo/L	P. 1011

נבדק עייי: ליליה איסאקוב אושר עייי: דר 'צדוק שאבי -מנהל המחלקה

יש להתייחס לנתונים המופיעים במסמד זה במלואם ואיו להעתיה או לצטט את כולם או חלהם ,למסמכים אחרים. הנתונים המפורטים משקפים במדויק את התוצאות של הדוגמה שנמסרה לבדיקה ,כפי שהתקבלו במעבדה און לעשות שימוש בשמה של אמינולאב בעימ או במוניטין שלה ,בהקשר לנתונים או הממצאים המצוינים במסמך. זה אלא ובכפוף לאישורה המוקדם בכתב.

אמדינולאב בע"נו שראר מעזיה אונישיים לחנשית, האסף, האספה, שחקר ואיכות השביבה מטיף ראשר -קרית ויצרא . ד. ד. 4074 מד ציונה 70400 לה 1074 ה. או שבים יוצרא המסוב מטיף ראשר - מינים מו 108-9363300 מינים המסוב המסוב מסוב המסוב 04-9582154 upo 04-9586916 עסיך 20100 מסיך 20100 מסיך 20100 מסיך משניים 1013 יום ביו 1013 מסיך מסיך משניים 1013 מסיך משניים 1013 מסיך משניים 1019582154 upo 04-9586916 עסיך משניים 1019582154 upo 04-9586916 עסיף 1019582154 upo 04-9586916 upo 03/2007 10559.07-C : seturne' tris snortan meste BIORO name manne mg/L 0.1 mg/L Se priorite Ti- groom 0.2 mg/L V- prim 10.05 mg/L 72 mg/l השרות לבר-שתו - ואין השרות.
 בסיות בסיטע "" לא נושבאו עקבות בדוגמת בנבול חרנישות הסטיון.

> SOP/ CW-041 ICP- 3 rivide mone april DECEMBER OF THE PERSON

. מירכת אינות משפח שונות מירות משחת של SO/IEC 17025 במותם מולט מולט מולט אמודה משחדים .

LENGTH, DOSESSE


נברק עייה פיניה אישאקוב

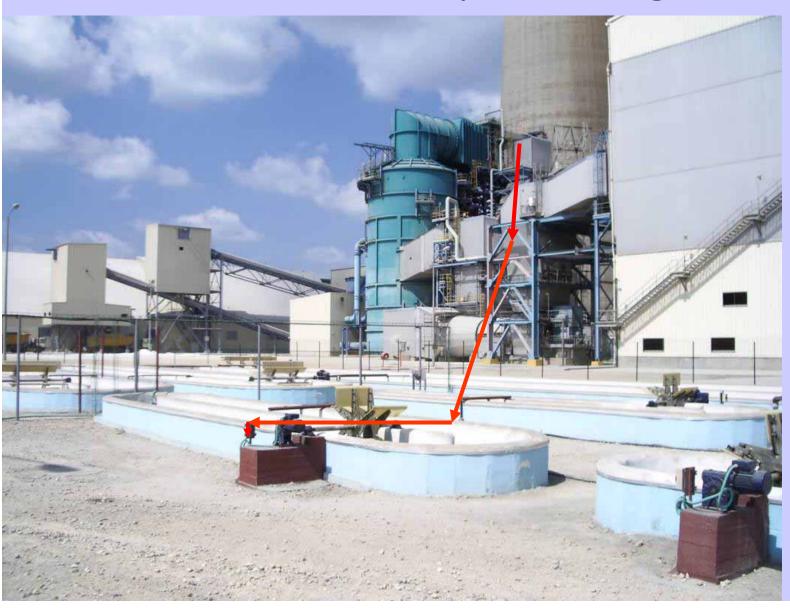
Mist (H₂O) Flue Gas 13% CO₂ **NOx Minerals** Low pH

שישר ערה - דר 'עדוים שווביו -מנחל המחלקה

יש לאדייתו למחיים ומאוצים במשוב או בחלאם האך להאדיק או לאנט אל כולט או חלקם ,למסבכים אוציים. Эм жома мусту гомуй ум. издукал боргом над протах ложем мешти зм янымил ды ротова россова россова фольма алга шумы извече тулги жи из трока сточно стичной шума тулга, то устаса и пуз засчен

Ponds on Construction

Ponds on Construction



PVC Liner

FGD Gas From the Chimney to the Algae Ponds

IEC Power Plant

Free Seawater Supply ~ 450,000 m³/hr

(Filtered & Chlorinated)

Production Cost

Manpower

Electricity (\$0.125/KW)

Fertilizers (N,P,K, Fe) and other chemicals

Domestic Land City Taxes

CO₂ (\$500/ton)

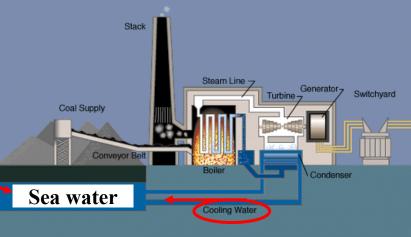
Free Sea Water

Fresh Water

Other supplies and Miscellaneous

Total

Yearly production of dry algae biomass


Cost of 1Kg dry microalgae?

The Pumps

Coal-Fired Power Plant

IEC Power Plant Flue gas Free NOx

N fertilizer(?)

Production Cost

Manpower

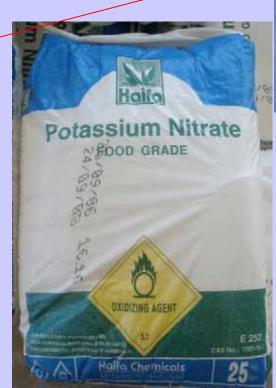
Electricity (\$0.125/KW)

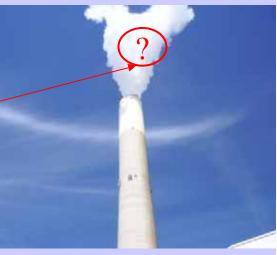
Fertilizers (N,P,K, Fe) and other chemicals

Domestic Land City Taxes

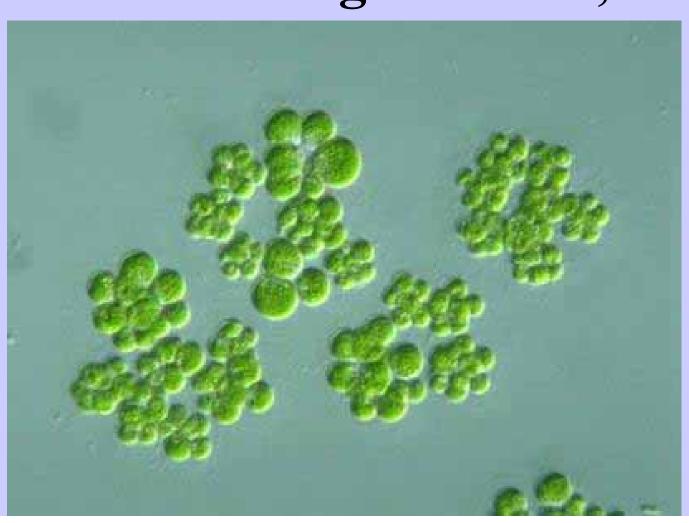
CO₂ (\$500/ton)

Free Sea Water


Fresh Water


Other supplies and Miscellaneous

Total


Yearly production of dry algae biomass

Cost of 1Kg dry microalgae?

Nannochloropsis Eustigmatophyceae Bio-Fuel or High W3 FA, EPA

Stock Algae Cultures in house

Stock Algae Cultures outside

Scale-Up Cultivation of Nannochloropsis sp

Coal Burning FGD Flue Gas

Superior Algal Growth!

Algal density at depth of 20 cm ~ 1g algae/L

Production Cost

Manpower

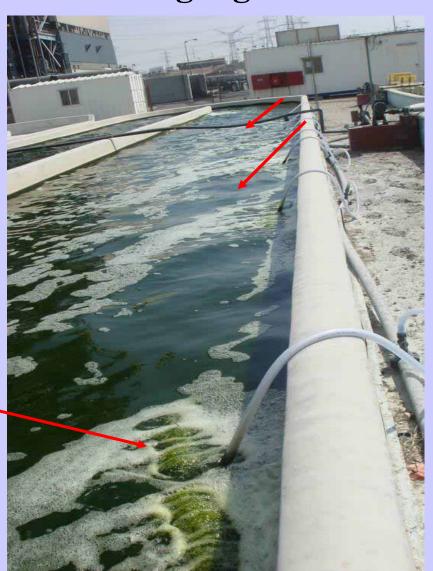
Electricity (\$0.125/KW)

Fertilizers (N,P,K, Fe) and other chemicals

Domestic Land City Taxes

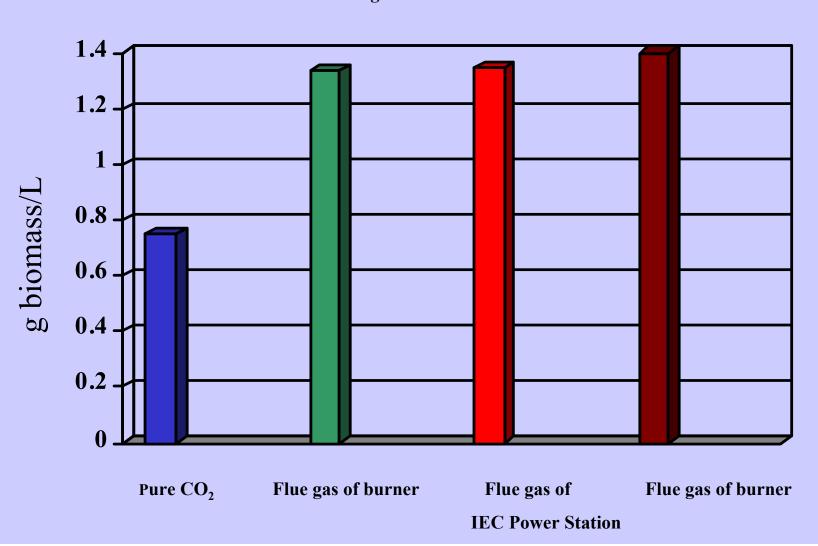
*Free FGD CO,

Sea Water (\$0.25/m3)


Fresh Water

Other supplies and Miscellaneous

Total


Yearly production of dry algae biomass

Cost of 1Kg dry microalgae?

Nannochloropsis Grows better on Coal FGD Flue Gas than on Pure CO₂

- 1. Pure CO₂
- 2. Flue gas
- 3. Flue gas from the Power Plant
 - 4. Flue gas

Coal FGD Mist Minerals Content "Coal Extract" superior to "Soil Extract"

	•	1 . •	<u> </u>
Cam	71	d ti	0
Ocall			
תנאי שמירת חדוגמא וחחובלח:	00:00	05/08/2008	: דיגום:

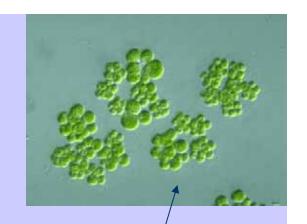
תוצאח	תחום מותר	יחידת מידח	תאור בדיקח
< 0.001		מייג/ליטר	כספית (Hg) ב-AA
ראה רשימה		-	סריקת מתכות ב-ICP
< 0.010		מייג/ליטר	לסף (Ag) - ב'-ICP
0.733		מייג/ליטר	אלומיניום)Al)- ב-ICP
<0.020		מייג/ליטר	ICP- ב'(As) ארסן
7.69		מייג/ליטר	בורון (B) - ב-ICP
0.028		מייג/ליטר	בריום (Ba) - ב-ICP
< 0.005		מייג/ליטר	בריליום (Be) - ב-ICP
8.60		מייג/ליטר	ICP-ב - (Ca) סידן
<0.005		מייג/ליטר	קדמיום (Cd) - ב-ICP
< 0.010		מייג/ליטר	קובלט (Co) - ב-ICP
< 0.010		מייג/ליטר	כרום (Cr) - ב-ICP
< 0.010		מייג/ליטר	נחושת (Cu) - ב-ICP
0.381		מייג/ליטר	ברזל (Fe) - ב-TCP
< 0.010		מייג/ליטר	כספית (Hg) - ב-ICP
0.092		מייג/ליטר	ICP- בי ואילגן (K)
< 0.010		מייג/ליטר	ליוניום (Li) - ב-ICP
1.40		מייג/ליטר	מגטיום (Mg) - ב-ICP
0.012		מייג/ליטר	מנגן (Mn) - ב-ICP
< 0.010		מייג/ליטר	מוליבדיום(Mo)-ב-ICP
3.21		מייג/ליטר	נתרן (Na) - ב־ICP
< 0.010		מייג/ליטר	ניקל (Ni) - ב-ICP

וחובלח: (אי שמירת חדוגמא וו	00:00	"דיגום: 05/08/2008
תוצאח	תחום מותר	יחידת מידח	תאור בדיקח
0.011		מייג/ליטר	זרחן (P) - ב־ICP
< 0.010		מייג/ליטר	עופרת (Pb) - ב-ICP
29.0		מייג/ליטר	מפרית (S) - ב-ICP
<0.020		מייג/ליטר	אנטימון (Sb) - ב-ICP
<0.020		מייג/ליטר	טלניום (Se) - ב־ICP
0.568		מייג/ליטר	סיליקון (Si) - ב-ICP
<0.020		מייג/ליטר	בדיל (Sn) - ב־iCP
0.020		מייג/ליטר	סטרוניום (Sr) - ב-ICP
0.023		מייג/ליטר	טיטניום (Ti) - ב-ICP
< 0.010		מייג/ליטר	ונדיום (V) - ב-ICP
0.539		מייג/ליטר	ICP- ב' - (Zn) אבץ

13.3 % CO₂
200 ppm NOx
Minerals
Low pH

Natural Selection of Microalgae

by season and by the coal Spring-Summer Diatoms (brown/black)


Diatoms

Self Selected algae by the specified coal FGD flue gas (spring-summer algae)

Coal FGD Algae Selection 2005-2008

Dunaliella, Chlorophyceae
Tetraselmis, Chlorophyceae
Nannochloropsis, Eustigmatophyceae
Nannochloris, Chlorophyceae
Chlorococcum, Chlorophyceae
Skeletonema, Bacillariophyceae
Navicula, Bacillariophyceae,

Average Yearly Productivity unicellular marine algae on FGD flue gas in open ponds

~20 g x m2 x day-1

Photosynthetic Limitation of Long Term Algal Productivity

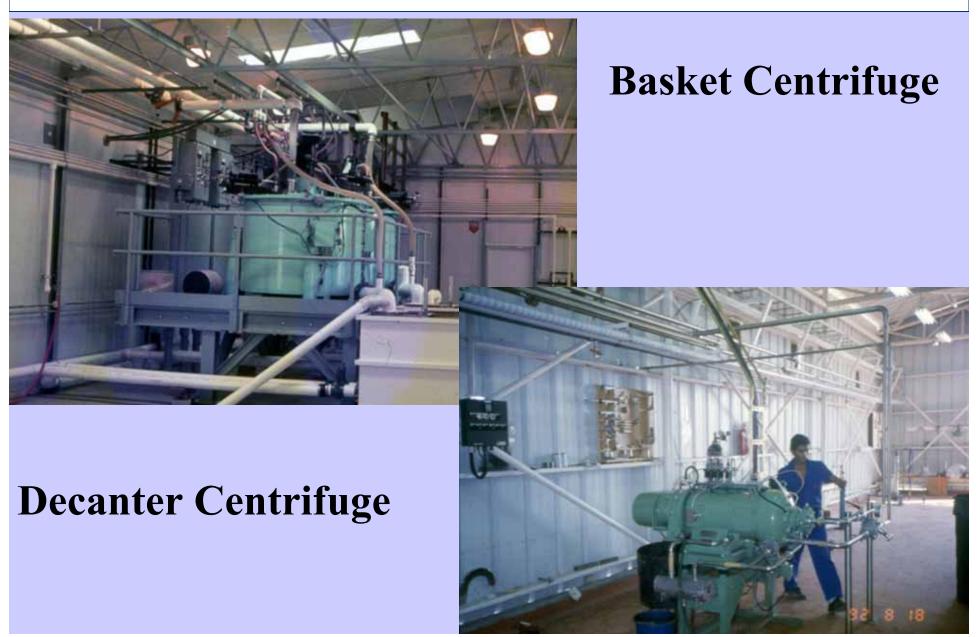
Max Theoretical Algal Productivity 25 g/m²/day

Environment Factor	Reduction	(%)		
Solar light		100		
Scattering and reflecting properties of surface	10%	90		
Absorption spectrum (depth of culture)	50%	45		
Photosynthetic efficiency (25%)	75%	11.3		
Light saturation (7-95%)	60%	4.5		
Respiration, photo-respiration, excretion	5%	4.3		
Photo-inhibition	10%	3.8		
Temperature	20%	3.1		
	Productivity			
Mean daily solar intensity	4,000 kcal/ m ² /day			
Energy productivity at 3% efficiency	120 kcal/ m ² /day			
Algal biomass productivity (5 kcal/g)	25 g/m²/day			

Dunaliella Productivity NBT, 2 g/m2/day

Flue gas Algae Productivity, 20 g/m²/day (Terrestrial plants productivity is up to 5 g/m²/day)

Feasible Harvesting


Low Cost Algal Harvesting?

Seambiotic

Algae Centrifuges of Lower Cost

Seambiotic Auto-flocculation (Diatoms)

Harvesting by Floc-Filtration

Dunaliella induced Flocculation

Dunaliella Biopolymer-Flocculation

Co-Bio-Flocculation Nannochloropsis & diatoms

Annual Microalgae Production Costs NBT *Dunaliella* Plant versus Seambiotic/IEC FGD Plant (10 Hectares Plant)

	Dunaliella	Seambiotic/IEC Plant	
	NBT Ltd., Eilat	(estimated)	
	Cost in US\$/year		
Manpower	500,000 (20 workers)	120,000 (8 workers)	
Electricity (\$0.125/KW) & residual energy	180,000	30,000	
Fertilizers (N,P,K, Fe) and other chemicals	36,000	36,000	
Domestic Land Taxes	50,000	10,000	
CO ₂	150,000	5,000	
Sea Water	200,000	5,000	
Fresh Water	20,000	10,000	
Other supplies and Miscellaneous	30,000	20,000	
Total	<u>1,166,000</u>	236,000	
Yearly production of dry algae biomass	70 tons (2g/m2/day)	700 tons (20g/m2/day)	
Cost per 1Kg dry microalgae	\$17.00	\$0.34	
Market Price	\$4,000 β-Carotene Health Food	For Bio-Fuel cost should be below \$0.5/kg algal dw	

From the Algae to Bio-Fuel

Seambiotic made algae available in large quantity

Seambiotic frozen algae stock 7 tons/1,000m²/year

Seambiotic

Extraction and Processing of lipids and carbohydrates

to bio-diesel & bio-ethanol & protein

Algal paste (a few tons) were shipped frozen or dried

from

Seambiotic Ltd., Israel

to

processing trials

Israel

Nannochloropsis, Bio-Diesel Seambiotic & Inventure

Nannochloropsis Bio-Diesel (marine algae smell) Certificate of Analysis

Certificate of Analysis

Customer: Seambiotic Date : 4/29/2008

B/L# : NA Time

P.O.# : NA Batch# : SEA42908

Quantity: Received unknwn microalgae for processing

Product Certified: Algae biodiesel

	Method	Minimum	<u>Maximum</u>	Results
Flash Point, deg C	(ASTM D 93)	130.0		>130
Kinematic Viscosity, cSt @ 40C	(ASTM D 445)	1.9	6.0	3.5
Cloud Point, deg C	(ASTM D 2500)	-2.0	300	<-2
Specific Gravity @ 60f	(ASTM D 1298)	0.85	0.90	0.880
Acid Number, mg KOH, gm	(ASTM D 664)	a 	0.5	0.20
Free Glycerin	(ASTM D 6584)		0.02	<0.01
Total Glycerin	(ASTM D 6584)		0.24	0.20
Appearance	(Visual)		B&C	B&C
Tested by				

Inventure Chemical, Inc. 1741 First Ave. S, third floor Seattle, WA 98134 Phone# (206)-753-0258 www.inventurechem.com

Q/C control

Certificate of Analysis

Customer: Seambiotic Date : 4/29/2008

B/L# : NA Time

P.O.# : NA Batch# : SEA42908

Quantity : Received unknown microalgae for processing

Product Certified: Algae biodiesel

Tested by

Results from Certification Sample

	Method	Minimum	Maximum	Results
Flash Point, deg C	(ASTM D 93)	130.0		>130
Kinematic Viscosity, cSt @ 40C	(ASTM D 445)	1.9	6.0	3.5
Cloud Point, deg C	(ASTM D 2500)	-2.0	7	<-2
Specific Gravity @ 60f	(ASTM D 1298)	0.85	0.90	0.880
Acid Number ma KOH am	(ASTM D 884)		0.5	0.20
Free Glycerin	(ASTM D 6584)		0.02	<0.01
Total Glycerin	(ASTM D 6584)		0.24	0.20
Appearance	(Visual)	В	&C	B&C

Inventure Chemical, Inc. 1741 First Ave. S, third floor Seattle, WA 98134 Phone# (206)-753-0258 www.inventurechem.com

Algae Bio-Ethanol

Certificate of Analysis

Customer: GreenFuel Technologies

ite : 02/07/0

RA# Y

ime NA

...

Little NA

P.O.# NA

Batch# : GFT011007

Quaritity: Processed de-fatted alege pulp, material evapprated to concentrate

Initial 2000 grams of algae

* material not distilled

Product Certified: Algae ethanol

Results from Certification Sample

	Method	Minimum	Maximum	Results
Flash Point, deg C	(ASTM D 93)	R	port	25.0
Ethanol Wwt	GC	Re	port	79.3*
Methanol %/wt	ec		0.50	_NA
Acid Number, mg KOH, gm	(ASTM D 664)	(<u> </u>	0.5	0.46
Specific Gravity @ 60f	(ASTM D 1298)	0.75	0.87	0.67
Appearance	(Visual)	/ _	ac .	BAC

Testad by

renduce Chemical Technologies LLC 2244 Port of Tacoma Road Tacoma WA, 98401 Phone# (253) 284-4302 Fau# (253) 284-4303

From the Algae through lipids Acid Transesterification to

"Protein"

Seambiotic

Dried Algae

Diatoms

Nannochloropsis

Nannochloropsis High Value Protein, (essential amino acids)

University of Alabama,

Crude Protein*

U nits	W/W%	W/W%	
Dept #	Insolubles	Solubles	
Гaurine	0.00	0.01	
Hydroxyproline	0.00	0.00	
Aspartic Acid	0.00	0.03	
Threonine	0.00	0.00	
Serine	0.00	0.00	
Glutamic Acid	0.14	1.94	
Proline	0.04	1.13	
Lanthionine	0.00	0.05	
Glycine	0.02	0.66	
Alanine	0.04	1.24	
Cysteine	0.01	0.01	
Valine	0.03	1.26	
Methionine	0.00	0.02	
soleucine	0.01	0.43	
Leucine	0.04	1.80	
Гуrosine	0.02	0.64	
Phenylalanine	0.03	0.95	
Hydroxylysine	0.04	1.42	
Ornithine	0.00	0.16	
Lysine	0.03	0.44	
Histidine	0.00	0.04	
Arginine	0.01	0.07	
Fryptophan	< 0.04	0.42	

Seambiotic

41.80

8.73

^{*} Percentage Nitrogen X 6.25. W/W%= grams per 100 grams of sample.

Results are expressed on an "as received" basis unless otherwise indicated.

Seambiotic Flue Gas Microalgae Gross Chemistry

Protein (food & feed)

20-50%

Cellular Lipids (bio-diesel)

TG, DG, MG, Polar & Neutral

8-50%

Cellular Carbohydrates (bio-ethanol)

20-50%

Chlorophyceae: Starch (α (1 \rightarrow 4) glucose units

Most other classes: Chrysolaminarin (β (1 \rightarrow 3) glucose units

Seambiotic

Microalgae Commodity Market Potential Value

33% Protein (feed), US\$ 1.0/kg = \$0.3

33% Lipids (bio-diesel), 1.2 US/L = \$ 0.4

33% Carbohydrates (bio-ethanol), US\$ 1.0/L = \$0.3

Total ~ US\$ 1.0/kg algae

Lower CAPEX Large Scale Algae Open Ponds

Capital Costs Dunaliella Plant versus Alternative Bio-Fuel Algal Plant (10 Hectares Plant Open Ponds)

Category	Health Food <i>Dunaliella</i> NBT Ltd., Eilat, 2008 Capital Cost in US\$	Category	Alternative Algal Plant Capital Cost in US\$
Land	0	Land	0
Seawater Pumps and Underground Pipes, 4,000 m³/day (1 km from the sea), ~\$100/m*	200,000*	Sea water and piping, outsourcing,	30,000
Centrifuges, 4 x SS Clarifiers, 1,500m ^{3/} day	2,000,000	Flocculation	200,000
Ground Work & Liner, PVC Food Grade & Cloth, \$15/m ²	1,500,000	Ground work & Clay, Salt	150,000
Pressurized CO ₂ Containers , 2 x 15 tons, \$50,000/unit, piping	150,000	Flue gas and piping, outsourcing	50,000
Spray Drier, 300L/hr, plus LP Gas Container	450,000	Drying? Power plant, outsourcing	?
\$250,000/unit Infrastructure, air, pipes, pumps, containers paddle wheels, sensors, control, power room, PC room	1,000,000	Infrastructure?	200,000?
Buildings: office, laboratory, processing, maintenance, control	1,000,000	Buildings	500,000
Others, including recycling salt, \$0.3ML	300,000	Others	300,000
<u>Total</u>	6.600,000	Total	1,430,000(?)
Capital Cost, US\$/m²	66.0	Capital Cost, US\$/m²	14.3(?)

Capital Costs

Bio-Fuel Microalgae Plant Land & Outsourcing

Desalination & Seawater pipe, 700,000m³/day

Category

Land, Desert Land?

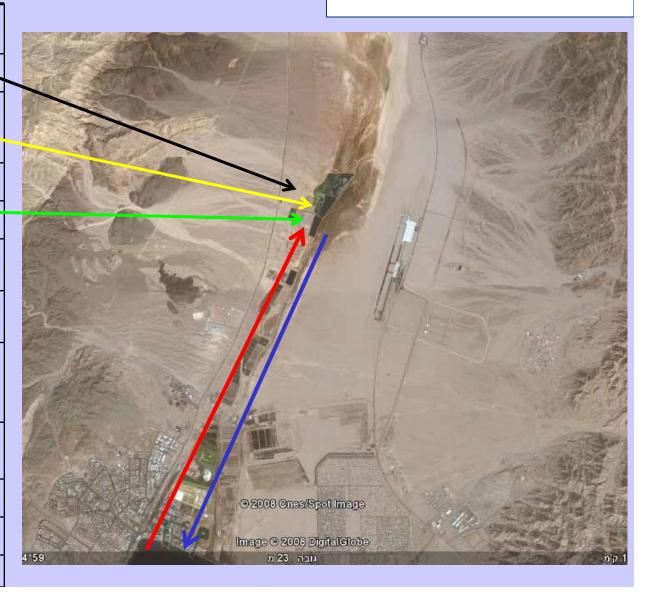
Seawater Pumps and Underground Pipes, Outsourcing: *Desalination Plant, Salt Industry*

Centrifuges, 4 x SS Clarifiers, 1,500m³/day

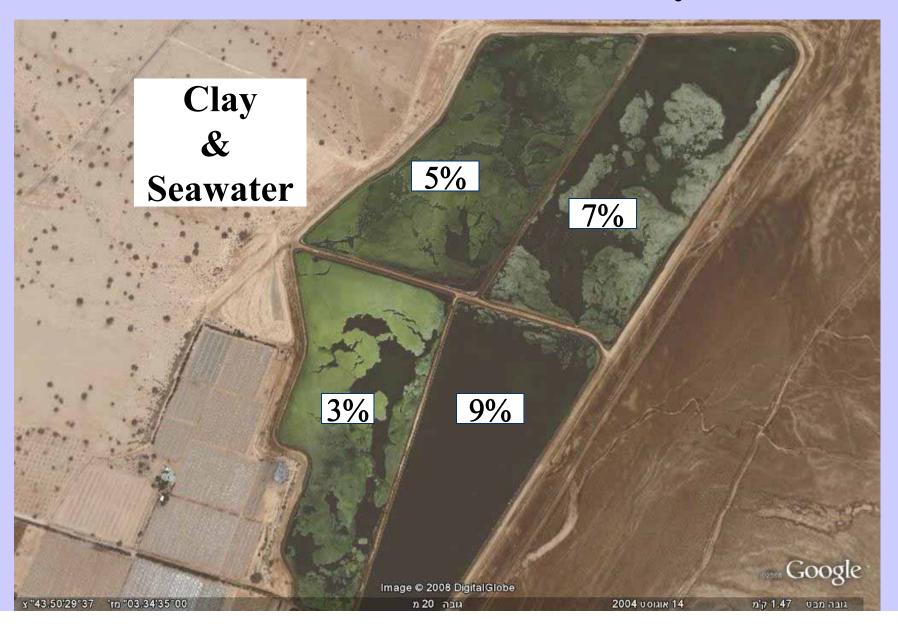
Liner, Clay, Salt

Pressurized CO₂ Containers, 2 x 15 tons, \$50,000/unit

Spray Drier, 300L/hr, plus LP Gas Container

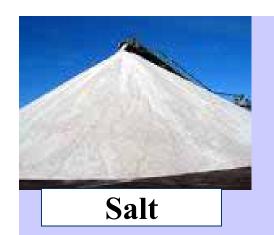

\$250,000/unit Infrastructure, air, pipes, pumps, containers paddle wheels, sensors, control, power room, PC room, \$1ML

Buildings: office, laboratory, processing, maintenance, control, \$1ML


Others, \$0.3ML

Total

Capital Cost, US\$/m²



Salt Water Clay Ground Ponds 200 Hectares Desert Arava Valley, Israel

NASA

Intensive Culture Mixing & Algal Productivity

Economic Feasibility?

Salt at US\$25/ton is feasible

Algae at US\$1,000/ton??

Seambiotic

ISRAELI ELECTRIC CO

Seambiotic

Small Israeli company of 6 employees

Major Achievements (2005-2008):

- 1. Applying the know-how of health food algal biotechnology to algal bio-fuel
 - 2. Direct use of electric power plant coal burning flue gas
 - 3. Direct use of electric power plant turbine cooling sea water
 - 4. Continuous production of microalgae, ~7 tons/1,000m²/year
 - 5. Production of high lipid Nannochloropsis to 50%/AFDW
- 6. Processing collaboration of the algal mass to bio-diesel, bio-ethanol and protein
 - 7. Supply of mass of algae to many algae companies
 - 8. Reducing CAPEX and APEX of algal biotechnology
 - 9. Scale up to 5 hectares pond area in 2009
 - 10. Open to cooperation and collaboration