The Role of Agriculture in Mitigating Greenhouse Gas Emissions

Johan Six and Steven De Gryze

Source of greenhouse gases in CA

California Energy Commission, 2005

Composition and sinks of greenhouse gases by agriculture

Sources Sinks:	: Livestock, manure, anaerobic soils (rice) Aerobic soils, especially forests and grasslands	Sinks:	 Fossil fuels, biomass burning, soil degradation Buildup soil organic matter and plant biomass 12.5%
CH ₄ ,	37.5%		
			N ₂ O, 50.0%
		Sourc Sinks	 : Fertilizer, crop residues, manure : No sinks in soils

California Energy Commission, 2005

Practices for GHG mitigation

- Reduced or zero tillage
- Set-asides/conversions to perennial grass
- Winter cover crops
- More hay in crop rotations
- Higher residue (above- & below-ground) yielding crops
- Manure application and organic cropping
- Reducing fertilizer application rate

Research question:

Yolo county

What is the potential for GHG mitigation by agriculture by changing practices for common crops and crop rotations in CA

 emissions under alternative practices – emissions under conventional practices

Assessing GHG emissions

- Integrating measurements with modeling
 - Measurements for calibration and validation of model
 - Modeling for regional extrapolation and prediction in a cost-effective way
 - Measurements to monitor and further validate model
- Integrating remote sensing
 - To assess temporal and spatial variability in crop growth and production

Validation: yields (Site)

Site level

Validation: yield and soil C (Site)

		LTRAS	SAFS	Five Points	Field 74	
		prediction of yield				
variation explaine	ed by model (%)	86	92	94	92	
partitioning of the MSD	non-unity slope (%)	13	4	3	5	
	lack of correlation (%)	74	96	96	91	
	square bias (%)	13	0	1	4	
		pr	ediction of	f soil organic cai	bon	
variation explained	variation explained by model (%)		83	87	6	
partitioning of the MSD	non-unity slope (%)	24	21	63	28	
	lack of correlation (%)	70	56	31	45	
	square bias (%)	6	23	6	27	

Results (Site)

		ΔSOC	N ₂ O	CH₄	GWP
Site	Treatment or property	kg C ha⁻¹ yr⁻¹	kg N ha⁻¹ yr⁻¹	kg C ha⁻¹ yr⁻¹	kg CO₂-eq ha⁻¹ yr⁻¹
LTRAS	Standard tillage	$95 \pm 46^{\circ}$	3.18 ± 0.10	-1.52 ± 0.02	1081 ± 192
	Standard tillage and cover cropping	315 ± 46	2.60 ± 0.10	-1.44 ± 0.02	9 ± 192
	Standard tillage and organic	1324 ± 46	3.02 ± 0.10	-1.49 ± 0.02	-3496 ± 192
	Proportion of variation				
	due to seasonal differences ^d	74%	37%	46%	72%
	Conservation tillage	47 ± 87	3.01 ± 0.18	-1.51 ± 0.05	1182 ± 391
	Conservation tillage and cover cropping	321 ± 87	2.21 ± 0.18	-1.46 ± 0.05	-192 ± 391
	Conservation tillage and organic	1279 ± 87	2.98 ± 0.18	-1.49 ± 0.05	-3349 ± 391
	Proportion of variation due to seasonal differences	65%	53%	68%	61%

Results (Site)

SAFS	Conventional 4-year rotation	407 ± 77	2.21 ± 0.08	-1.62 ± 0.02	-515 ± 292
	Conventional 2-year rotation	436 ± 78	1.54 ± 0.08	-1.44 ± 0.02	-925 ± 298
	Cover cropping	999 ± 77	1.70 ± 0.08	-1.63 ± 0.02	-2921 ±292
	Proportion of variation due to seasonal differences	94%	80%	89%	96%
WSREC	Standard tillage	-90 ± 38	3.44 ± 0.10	-2.00 ± 0.02	1866 ± 147
	Standard tillage and cover cropping	677 ± 38	4.01 ± 0.10	-1.93 ± 0.02	-675 ± 147
	Conservation tillage	-9 ± 38	3.26 ± 0.10	-1.99 ± 0.02	1487 ± 147
	Conservation tillage and cover cropping	729 ± 38	3.79 ± 0.10	-1.94 ± 0.02	-969 ± 147
	Proportion of variation due to seasonal differences	91%	82%	38%	92%
Field 74	Standard tillage	128 ± 20	2.62 ± 0.08	-1.54 ± 0.04	700 ± 87
	Conservation tillage	256 ± 20	2.43 ± 0.08	-1.33 ± 0.04	150 ± 87
	Proportion of variation due to seasonal differences	51%	49%	19%	43%

Results (Site)

		ΔSOC ^a	$\Delta N_2 O^b$	ΔCH₄ ^b		Contribution
Site	Effect of treatment Conservation	kg C ha ⁻¹ yr ⁻¹	kg N ha ⁻¹ yr ⁻¹	kg C ha ⁻¹ yr ⁻¹	kg CO₂-eq ha⁻¹ yr⁻¹	Contribution of ΔN2O to ΔGWP
LTRAS	tillage	36 ± 31	-0.07 ± 0.08	0.00 ± 0.01	-168 ± 131	20%
	Cover cropping ^c	220 ± 65	-0.58 ± 0.14	0.09 ± 0.03	-1072 ± 272	25%
	Manure application ^c	1229 ±65	-0.16 ± 0.14	0.04 ± 0.03	-4577 ± 272	2%
SAFS	Cover cropping	577 ± 21	-0.18 ± 0.02	-0.10 ± 0.01	-2201 ± 82	4%
WSREC	Conservation tillage	66 ± 10	-0.20 ± 0.03	0.00 ± 0.01	-336 ± 47	28%
	Cover cropping	752 ± 10	0.55 ± 0.03	0.06 ± 0.01	-2499 ± 47	-10%
Field 74	Conservation tillage	128 ± 28	-0.19 ± 0.11	0.20 ± 0.05	-550 ± 123	16%

Validation: yields (Regional)

Validation: yields (Regional)

Results (regional)

			GWP		?SOC		Ν	N ₂ O	
		Cover	(Mg CO	₂ -eq					
Tillage	Fertilizer	crop	ha ⁻¹ yı	r ⁻¹)	(kg C h	a ⁻¹ yr ⁻¹)	(kg N	ha⁻¹ yr⁻¹)	
			Sacrament	o Valley					
convent.	mineral,								
	75%	no	-0.89 ±	0.76	-2	± 16	-1.92	± 1.59	
conserv.	mineral	no	-0.68 ±	0.36	103	± 34	-0.64	± 0.56	
convent.	mineral	yes	-1.36 ±	0.89	310	± 180	-0.48	± 0.94	
conserv.	mineral	yes	-1.37 ±	0.88	312	± 178	-0.48	± 0.94	
convent.	Organic	no	-1.16 ±	0.78	158	± 63	-1.23	± 1.51	
conserv.	Organic	no	-1.94 ±	1.03	288	± 88	-1.89	± 1.86	
convent.	Organic	yes	-2.60 ±	1.87	405	± 212	-2.38	± 2.81	
conserv.	Organic	yes	-3.29 ±	2.07	532	± 246	-2.86	± 2.98	
			San Joaqu	in Valley					
convent.	mineral,								
	75%	no	-0.61 ±	0.58	-4	±14	-1.33	± 1.24	
conserv.	mineral	no	-0.57 ±	0.33	81	± 35	-0.59	± 0.55	
convent.	mineral	yes	-1.35 ±	1.07	284	± 170	-0.66	± 1.36	
conserv.	mineral	yes	-1.38 ±	1.08	287	± 169	-0.68	± 1.39	
convent.	Organic	no	-0.49 ±	0.89	154	± 54	0.16	± 1.96	
conserv.	Organic	no	-1.14 ±	0.90	255	±79	-0.43	± 1.82	
convent.	Organic	yes	-1.87 ±	1.41	395	± 203	-0.89	± 2.41	
conserv.	Organic	yes	-2.45 ±	1.52	498	± 235	-1.32	± 2.41	

3 concerns around C-sequestration

• Permanence

- They have to be secured over the long run

• Additionality

 Carbon stocks with project activities compared to carbon stocks without project activities

Leakage

- Potential negative C flows due to the project (on land outside of the project) must be addressed
 - Migration of people who were farming on the land to other places and clearing forest somewhere else

Future needs

- Get a handle on nitrous oxide
- Including perennial systems (vineyards/orchards)
 - Targeted measures integrated with modeling
 - Remote sensing integrated with modeling
- Monitoring
- Decision support tool for stakeholders

 COMET-VR

THANKS!