DOCKETED						
Docket Number:	18-IEPR-07					
Project Title:	Doubling Energy Efficiency Savings					
TN #:	TN #: 223679					
Document Title:	Voltage and Reactive Power Optimization Pilot Summary and Potential Deployment Plans					
Description:	Presentation by Russ Griffith for June 7, 2018 IEPR Workshop on Doubling Energy Efficiency Savings					
Filer:	Stephanie Bailey					
Organization:	California Energy Commission					
Submitter Role:	Commission Staff					
Submission Date:	6/5/2018 10:45:58 AM					
Docketed Date:	6/5/2018					

Voltage and Reactive Power Optimization (VVO) Pilot Summary and Potential Deployment Plans

Russ Griffith June 2018

- PG&E's Voltage and Reactive Power Optimization (VVO) pilot project was approved by the CPUC in March 2013* to demonstrate the value and challenges of deploying new Smart Grid technology to deliver Conservation Voltage Reduction (CVR) and enable the continued adoption of Distributed Energy Resources (DERs)
- PG&E's VVO pilot ran from late 2013 through end of 2016**
- Lab tested then field trialed VVO software on 14 distribution circuits in and around Fresno
- Pilot VVO software vendors DVI and Utilidata were 100% focused on VVO software control systems to deliver CVR

^{*} CPUC Decision 13-03-032 issued in March 2013

^{**} Closeout report available via PG&E Advice Letter 4990-E, dated December 30, 2016

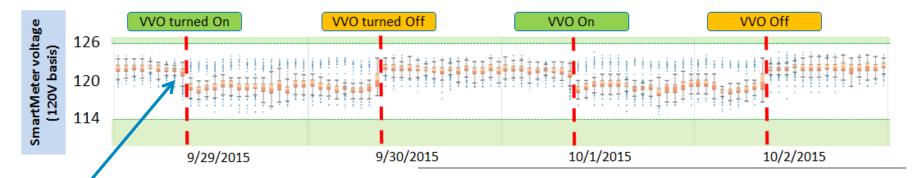
Comparing pilot technology selection to the present potential deployment strategy requires understanding context of 2014 vs. 2018

2014

 PG&E about to consolidate 13 legacy to 3 new Distribution Control Centers, plans involved adoption of Distribution Management System (DMS) as electronic, real-time as-switched model

Pilot Technology

- Pilot project technology evaluated via RFI process
- Vendors selected based on likelihood of delivering best CVR savings for duration of pilot
- Used simpler solution architecture, not integrated with DMS electronic asswitched model


2018

- Planning to replace Distribution SCADA, and adopt Advanced Distribution Management System (ADMS)
 - RFP in progress

Deployment Concept

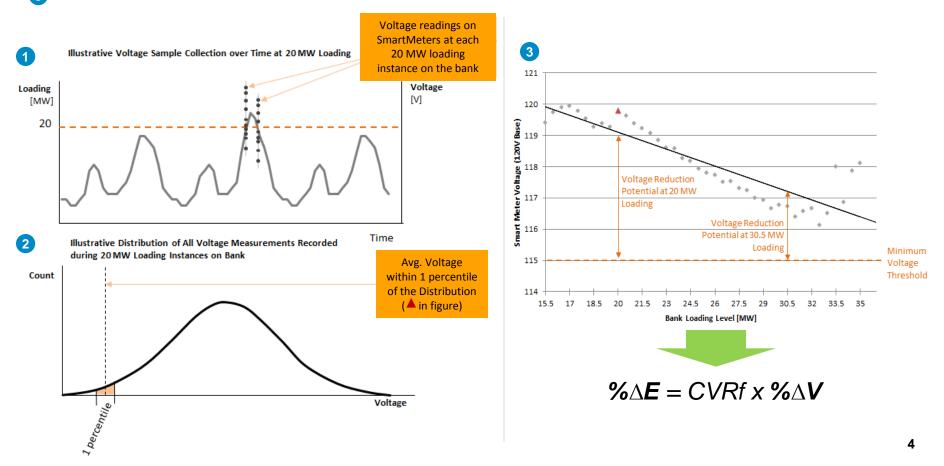
- VVO would be an "advanced application" enabled by the deployment of ADMS, where SCADA is integrated with the distribution asswitched model
 - More complex solution architecture

Toggled VVO on & off, used regression to quantify energy savings and demand reduction

Prototype visualization & analysis tool showed voltage distribution impact from VVO being turned On and Off on alternating days

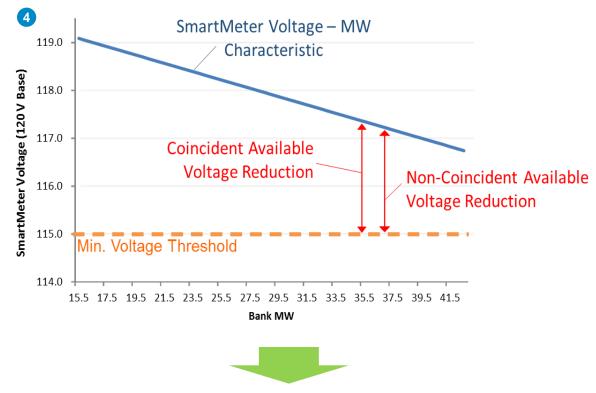
Results calculated for each bank across five seasons (Summer 2015 through Summer 2016)

- 1. **Some peak demand reduction results have large error bands affecting statistical significance
- Comprehensive M&V results included in final report (Advice Letter 4990-E)


M&V shows weighted average CVRf across 12 of the piloted circuits of 0.7

	Subs	Subset of Pinedale Bk 1 M&V Results					Real Power Demand		
	7		Voltage	Energy	Energy	Reactive Power	Reduction on CAISO 1-in-2 Peak		
		Pinedale Bank	Reduction	Reduction	Conserved	Reduction	Day Scenario		
-				[%ΔE]	[MWh]	[%∆Q]	[% Δ P]		
	2 E	Bank	1.8%	2.0%	131	57%			
	Period 2 Autumn 2015	P-2101	1.3%	2.3%	60	-102%			
	Au Au	P-2102	2.2%	2.8%	54	88%			
		P-2103	1.7%	0.9%	17	64%			
-	Period 3 Winter 2016	Bank	1.7%	0.9%	114	49%			
		P-2101	1.4%	0.8%	45	-21%			
	eri Wii 20	P-2102	2.0%	1.1%	42	86%			
	<u>ш</u>	P-2103	1.5%	% 0.7% 27 46%					
	4	Bank	1.6%	0.7%	57	51%			
	eriod Spring 2016	P-2101	1.3%	0.7%	23	0%			
	Period 4 Spring 2016	P-2102	1.9%	1.3%	28	85%			
	<u> </u>	P-2103	1.4%	0.3%	6	46%			
	ъ ́	Bank	1.2%	0.6%	101	49%	1.2%		
	eriod umme 2016	P-2101	0.7%	0.1%	7	13%	0.8%**		
	Period 5 Summer 2016	P-2102	1.4%	0.7%	35	74%	1.7%		
		P-2103	1.4%	1.4%	60	54%	1.0%**		

SmartMeter voltage measurements were used to forecast deployment-scale benefits (1 of 2)


Voltage data collected from non-VVO pilot circuits enabled forecasting of energy reduction savings [MWh] from VVO deployment

- Voltages corresponding with loading
- 2 Voltage distributions at various loading levels analyzed
- 3 Lowest 1 percentile plotted against loading, allowing forecast of voltage reduction at various loadings

SmartMeter voltage measurements were used to forecast deployment-scale benefits (2 of 2)

Trend of allowable voltage reduction at varying load levels allows evaluating potential demand [MW] reduction during coincident CAISO peak

Allowable voltage reduction for energy [MWh] and peak demand [MW] savings calculated for 33 banks and extrapolated to enable forecasting the ability of VVO to deliver Conservation Voltage Reduction benefits at wide-scale.

Results of benefit forecast summarized on subsequent slide.

 $\mathcal{A} = CVRf \times \mathcal{A}$

PG&E estimates deployment to ~170 banks (~510 out of PG&E's over 3,200 distribution circuits) has a favorable Benefit to Cost Ratio

- Two scenarios (high and low effectiveness) evaluated
- Evaluated impact of not realizing peak demand reduction benefits, B/C still favorable

Effectiveness Scenario	Discounte Lifetime Cos		Lifetime	Benefit-Cost Ratio	Benefit-Cost Ratio (excluding Avoided Cost of Capacity benefits)		
High	\$180M	\$472M	20 yrs.	2.6	2.5		
Low	\$198 M	\$286M	15 yrs.	1.4	1.4		
Scanario		Avg. %∆ in Voltage, for CAISO System Peak	Avg.%∆ in Peak Demand	Avg. %∆ in Voltage, for Energy	Avg. %∆ in Energy Consumed		
High	0.8	1.6%	1.04%	3.05%	1.97%		
Low 0.6		1.6%	1.6% 0.81%		1.53%		
Assumption	High Effectiveness Scenario		Low Effecti	Low Effectiveness Scenario			
CVR factor		eflates on average 1% naining useful life	· · · · · · · · · · · · · · · · · · ·	0.6 in year 1, deflates on average 1% per year for remaining useful life			
Useful Lifetime	20 years		15 years	15 years			
Source of Avoided Cost Forecasts	Energy and En	vironmental Economists (E	3) Energy and	Energy and Environmental Economists (E3)			