December 31, 2009

California Energy Commission
Docket No. 09-AFC-8
1516 9th St.
Sacramento, CA 95814

Genesis Solar Energy Project - Docket Number 09-AFC-8

Docket Clerk:

Included with this letter is one hard copy and one electronic copy of the Application for Incidental Take of Threatened and Endangered Species Section 2081 of the California Endangered Species Act for the Genesis Solar Energy Project.

This document was also sent to the California Department of Fish and Game on December 31, 2009.

Sincerely,

Tricia Bernhardt
Project Manager/Tetra Tech EC

cc: Mike Monasmith /CEC Project Manager
APPLICATION FOR CERTIFICATION FOR THE
GENESIS SOLAR ENERGY PROJECT

Docket No. 09-AFC-8
PROOF OF SERVICE
(Revised 12/22/09)

APPLICANT
Ryan O'Keefe, Vice President
Genesis Solar LLC
700 Universe Boulevard
Juno Beach, Florida 33408
ryan.okeefe@nexteraenergy.com

Scott Busa/Project Director
Meg Russel/Project Manager
Duane McCloud/Lead Engineer
NextEra Energy
700 Universe Boulevard
Juno Beach, FL 33408
scott.busa@nexteraenergy.com
meg.russel@nexteraenergy.com
duane.mccloud@nexteraenergy.com

Mike Pappalardo
Permitting Manager
3368 Videra Drive
Eugene, OR 97405
mike.pappalardo@nexteraenergy.com

Diane Fellman/Director
West Region
Regulatory Affairs
234 Van Ness Avenue
San Francisco, CA 94102
diane.fellman@nexteraenergy.com

APPLICANT’S CONSULTANTS
Tricia Bernhardt/Project Manager
Tetra Tech, EC
143 Union Boulevard, Ste 1010
Lakewood, CO 80228
tricia.bernhardt@ttaci.com

Christo Nitoff, Project Engineer
Worley Parsons
2330 East Bidwell Street, Ste.150
Folsom, CA 95630
christoph.nitoff@worleyparsons.com

COUNSEL FOR APPLICANT
Scott Galati
Galati & Blek, LLP
455 Capitol Mall, Ste. 350
Sacramento, CA 95814
sgalati@gb-llp.com

INTERESTED AGENCIES
California-ISO
er-recipient@caiso.com

Allison Shaffer, Project Manager
Bureau of Land Management
Palm Springs South Coast Field Office
1201 Bird Center Drive
Palm Springs, CA 92262
Allison.Shaffer@blm.gov

INTERVENORS
Tanya A. Guressarian,
Marc D. Joseph
Adams Broadwell Joseph & Cardoza
601 Gateway Boulevard, Ste 1000
South San Francisco, CA 94080
tguressarian@adamsbroadwell.com

*Michael E. Boyd, President
Californians for Renewable Energy, Inc. (CARE)
5439 Soquel Drive
Soquel, CA 95073-2659
michaelboyd@sbcglobal.net

Other
*Alfredo Figueroa
424 North Carlton
Blythe, CA 92225
LaCunaDeAztian@aol.com

*indicates change
DECLARATION OF SERVICE

I, Tricia Bernhardt, declare that on 12/31/2009, I served and filed copies of the attached dated 12/31/2009. The original document, filed with the Docket Unit, is accompanied by a copy of the most recent Proof of Service list, located on the web page for this project at: [http://www.energy.ca.gov/sitingcases/genesis_solar].

The documents have been sent to both the other parties in this proceeding (as shown on the Proof of Service list) and to the Commission’s Docket Unit, in the following manner:

(Check all that Apply)

FOR SERVICE TO ALL OTHER PARTIES:

x sent electronically to all email addresses on the Proof of Service list;

x by personal delivery or by depositing in the United States mail at Sacramento, California, with first-class postage thereon fully prepaid and addressed as provided on the Proof of Service list above to those addresses NOT marked “email preferred.”

AND

FOR FILING WITH THE ENERGY COMMISSION:

x sending an original paper copy and one electronic copy, mailed and emailed respectively, to the address below (preferred method);

OR

depositing in the mail an original and 12 paper copies, as follows:

CALIFORNIA ENERGY COMMISSION
Attn: Docket No. 09-AFC-8
1516 Ninth Street, MS-4
Sacramento, CA 95814-5512
docket@energy.state.ca.us

I declare under penalty of perjury that the foregoing is true and correct.

[Signature]
Genesis Solar Energy Project

Application for Incidental Take of Threatened and Endangered Species Section 2081 of the California Endangered Species Act

In Accordance with California Code of Regulations, Title 14, Division 1, Subdivision 3, Chapter 6, Article 1, Section 783.2

Submitted to:

California Department of Fish and Game
Inland Deserts Region
3602 Inland Empire Blvd Suite C220
Ontario, CA 91764

Contact: Curt Taucher

Submitted by:

Genesis Solar, LLC
700 Universe Boulevard
Juno Beach, Florida 33408

Contact: Kenneth Stein

December 31, 2009
Genesis Solar Energy Project

Application for
Incidental Take of Threatened and Endangered Species
Section 2081 of the California Endangered Species Act

CALIFORNIA CODE OF REGULATIONS
TITLE 14, NATURAL RESOURCES, DIVISION 1, FISH AND GAME COMMISSION – DEPARTMENT OF FISH AND GAME

SUBDIVISION 3. GENERAL REGULATIONS

CHAPTER 6. REGULATIONS FOR IMPLEMENTATION OF THE CALIFORNIA ENDANGERED SPECIES ACT

ARTICLE 1. TAKE PROHIBITION; PERMITS FOR INCIDENTAL TAKE OF ENDANGERED SPECIES, THREATENED SPECIES, AND CANDIDATE SPECIES

§783.2. Incidental Take Permit Applications.

(a) Permit applications. Applications for permits under this article must be submitted to the Regional Manager.

The following application for incidental take of endangered and threatened species under the California Endangered Species Act is being submitted to:

Curt Taucher
California Department of Fish and Game
Inland Deserts Region
3602 Inland Empire Blvd Suite C220
Ontario, CA 91764

and

John Koch
Director
California Department of Fish and Game
1416 Ninth Street
Sacramento, CA 95814
Applicant: Genesis Solar, LLC

Name and Title of Principal Officer: Matt Handel
561-304-6040

Mailing Address: 700 Universe Boulevard
Juno Beach, Florida 33408

Species: Desert tortoise, Mojave population
 (Gopherus agassizii; desert tortoise)

Status: State-threatened

Genesis Solar, LLC, a Delaware limited liability company and wholly owned subsidiary of NextEra Energy Resources, LLC, proposes to construct, own, and operate the Genesis Solar Energy Project (the Project). The Project is a concentrating solar electric generating facility that would be located in Riverside County, California (Figure 1).

The Project consists of two adjacent solar electric generating facilities with a nominal net electrical output of 125 megawatts (MW) each, for a total net electrical output of 250 MW. Electrical power would be produced using parabolic trough technology and steam turbine generators fed from solar steam generators. The solar steam generators receive heated transfer fluid from solar thermal equipment comprised of arrays of parabolic mirrors that collect energy from the sun.

For purposes of this application, the following Project terms are used (see Figure 2):
• “Project Area” or “Project” is the footprint of all Project components, including the Plant Site and Linear Facilities.

• “Plant Site” includes the solar arrays, power blocks, and power generating equipment, support facilities and evaporation ponds.

• “Linear Facilities” includes the access road, transmission line, and natural gas pipeline.

• “Survey Area” means the area that was surveyed for tortoises including all zone of influence transects.

• “Project Vicinity” is intended to be a general term to describe the broader, surrounding area.

• “Project Right-of-Way” (“ROW”) is the 4,640-acre area included in the right of way grant requested from the federal Bureau of Land Management (BLM).

Power Block
The power blocks (i.e., where the steam turbine generators would be located) and solar arrays would occupy approximately 1,800 acres of the requested ROW grant from BLM; the Linear Facilities would occupy approximately 90 acres. There are two 125 MW units planned, each with a power block. Major components of each power block include:

- Steam turbine generators and condenser
- Wet cooling towers
- Natural gas-fired auxiliary boilers
- Steam-fed heat transfer fluid (HTF) freeze protection heat exchangers
- HTF surge volume tanks
- Emergency diesel generators
- Tanks for raw water, treated water, and demineralized water storage
- Ancillary equipment

Solar Field
Each collector field is made up of multiple single-axis-tracking parabolic trough solar collectors aligned on a north-south axis. Each solar collector has a parabolic-shaped reflector that focuses the sun’s direct normal radiation on a receiver known as a heat collection element (HCE) located at the focal point of the parabola.

The collectors track the sun from east to west during the diurnal cycle to ensure the sun is continuously focused on the HCE. The HTF is heated up to approximately 740 °F as it circulates through the HCEs and returns to the steam generators where the fluid is used to generate high-pressure steam.
Transmission Line, Access Road and Gas Pipeline
The transmission line, access road, and natural gas pipeline would be co-located in one linear corridor to serve the Project (Figure 3). This corridor would exit the facility to the south and would be approximately 6.5 miles long. The generation tie-line would cross Interstate 10 (I-10), and tie into the Blythe Energy Project Transmission Line. The generation tie-line would use the existing pole structures of the Blythe Energy Transmission Line to interconnect with the proposed Colorado River Substation to the east.

The auxiliary boilers will be fueled by natural gas supplied from a new six-mile, eight-inch pipeline connected to an existing Southern California Edison (SCE) pipeline located north of I-10. Natural gas delivered to the Project will flow through a revenue quality flow meter, pressure regulation station, and filtering equipment, and will provide gas to the auxiliary boilers for each 125 MW power plant. Safety pressure relief valves are provided downstream of the pressure regulation valves.

Evaporation Ponds
Each 125 MW unit will have three double-lined evaporation ponds. Each pond will have a nominal surface area of eight acres resulting in a total of 24 acres of evaporation ponds for each unit or a total of 48 acres of ponds for both 125 MW units. The ponds will be designed and permitted as Class II Surface Impoundments in accordance with Colorado River Regional Water Quality Control Board (CRRWQCB) requirements, as well as the requirements of the California Integrated Waste Management Board (CIWMB). Multiple ponds are planned to allow plant operations to continue in the event a pond needs to be taken out of service for some reason, e.g., needed maintenance. Each pond will have enough surface area so the evaporation rate exceeds the cooling tower blowdown rate at maximum design conditions and annual average conditions.

The average pond depth is eight feet and residual precipitated solids will be removed approximately every seven years to maintain a solids depth no greater than approximately three feet for operational and safety purposes.

Roads, Fencing, and Security
The Project is located in a remote section of Riverside County, about four miles north of I-10, and approximately 25 miles west of Blythe. Regional access to the area is limited to I-10. There is very little circulation in the surrounding area other than I-10, mostly consisting of off-road vehicle trails and roadways extending from the Ford Dry Lake exit. The nearest paved road to the Project Area, other than I-10, is Wiley’s Well Road, about five miles east of the Project Area. Wiley’s Well Road runs south to the Chuckwalla Valley State Prison complex. All vehicular traffic approaching the Project Area will use I-10.

Only a small portion of the overall Project Area will be paved, primarily the site access road and portions of each power block (paved parking lot and roads encircling the power block area). The remaining portions of each power block area will be gravel surfaced. In total, the power blocks will be approximately 24 acres with approximately 35 acres of paved area for the entire Project. The solar fields will remain unpaved and without a gravel surface in order to prevent rock damage from mirror wash vehicle traffic; an approved dust suppression coating will be used on the dirt roadways within and around the solar fields.
The entire Project Area will be fenced appropriately to restrict public access during construction and operations. Chain-link security fencing will be installed around the site perimeter, switchyard, and other areas requiring controlled access. The security fence will be eight feet tall, topped with one foot of barbed wire (three strands) mounted on 45-degree extension arms and posts set in concrete.

Controlled access gates will be located at the entrances to the Project Area. Site gates will be swing or rolling type access gates. Access through the main gate will require an electronic swipe card, preventing unaccompanied visitors from accessing the Project Area. All Project personnel, contractors, and visitors will be logged in and out of the Project Area at the main office during normal business hours. Visitors and non-Genesis Solar, LLC employees will be allowed entry only with approval from a staff member at the Project Area.
GENESIS SOLAR ENERGY PROJECT
RIVERSIDE COUNTY, CALIFORNIA

LEGEND
- Requested Project ROW
- Lake/River
- Lake Intermittent
- Parks (Regional)
- Military Installation
- Urban Areas
- Airport Area
- County Boundary
- State Boundary

NOTES:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, BLM, TTEC

FIGURE 1
REGIONAL LOCATION MAP

GENESIS SOLAR, LLC

GENESIS SOLAR, LLC

GENESIS SOLAR, LLC

GENESIS SOLAR, LLC

GENESIS SOLAR, LLC
4.1 Project Location
The Project is located in eastern Riverside County, between the communities of Blythe, California (approximately 25 miles east of the Project site) and Desert Center, California (approximately 27 miles west of the Project site). The Ironwood and Chuckwalla State Prisons (adjacent to each other) are located approximately nine miles to the south of the Project site. The land around the Project site is predominantly owned and managed by the BLM.

The Project is located in Township 6S Range 18E and Township 6S Range 19E, San Bernardino Base and Meridian. Surrounding features include the McCoy Mountains to the east, the Palen Mountains (including the Palen/McCoy Wilderness Area) to the north, and Ford Dry Lake, a dry lakebed, to the south. I-10 is located approximately two miles south of the southernmost border of the Project Area (see Figure 2). The Project is shown on the Ford Dry Lake and McCoy Spring United States Geological Survey (USGS) topographic maps.

4.2 General Site Characteristics
The Project Area is relatively flat and generally slopes from north to south with elevations of approximately 370 to 400 feet above mean sea level. There appear to be few anthropogenic disturbances. The former BLM Ford Off-Highway Vehicle (OHV) area was southwest of the Project and there is little evidence of OHV traffic on the Project Area.

4.3 Vegetation and Habitat
The Project is located within the BLM’s Northern and Eastern Colorado Desert Coordinated Management (NECO) Plan area. Within the NECO Plan there are areas designated to manage natural resources including Wildlife Habitat Management Areas (WHMA), Areas of Critical Environmental Concern (ACEC), Desert Wildlife Management Areas (DWMA), and wilderness areas (Figure 4). The Project Area and portions of the Linear Facilities routes are situated within a Multi-Species WHMA. The Project is outside, but adjacent to the Palen/McCoy Wilderness (located to the north) and the Palen Dry Lake ACEC (located to the west). The southern portions of the linear facilities are within a desert tortoise DWMA, as well as U.S. Fish and Wildlife Service (USFWS)–designated desert tortoise critical habitat (transmission line only).

General vegetation and habitat types for the Project Area and vicinity are illustrated in Figure 5. Only two main vegetation communities are found within the Project Area: Sonoran Creosote Bush Scrub and Stabilized and Partially Stabilized Sand Dunes (see Holland 1986). The characteristics of the two communities found within the Project Area are described below. Chenopod Scrub, Desert Dry Wash Woodland, and Playa communities are present within the Project Vicinity, but not on the Project Area. Representative photographs of each plant community can be found in Appendix B, together with a list of all plant species observed within the Survey Area. Figure 5 illustrates the location of vegetation and habitat types mapped on aerial photographs and observed during field surveys.

The Project is sited in an area characterized by sheet flow hydrology. Shallow channels (runnels), typically approximately one yard or less wide and one to-few inches deep, form a
network of ephemeral drainages across the Project that rarely flow and often fail to provide through-flow to larger drainages. Occasional, well-defined washes are present along the southern portion of the surveyed linear facility route north of I-10. There are no springs, seeps, wetlands, streams, or impoundments within the Project Area or vicinity.

Sonoran Creosote Bush Scrub

The Sonoran Creosote Bush Scrub community on the Project Area has relatively low shrub cover, approximately 10 to 15 percent, and varies in response to hydrology and slope. Small drainages are more densely populated by creosote bush (Larrea tridentata), white bursage (Ambrosia dumosa), brittlebush (Encilia farinosa), cheesebush (Hymenoclea salsola), and white rhatany (Krameria grayii) than immediately adjacent areas. Big galleta grass (Pleuraphis [=Hilaria] rigida) is also common in some areas within these drainages. Ironwood (Olneya tesota) and palo verde (Cercidium floridum) are scattered in the occasional well-defined washes and west of the Project Area in areas of heavy sheet flow. Common under story species include plantain (Plantago ovata), pebble pincushion flower (Chaenactis carphoclinia), forget-me-not (Cryptantha spp.), desert sunflower (Geraea canescens), peppergrass (Lepidium lasiocarpum), and stiff-haired lotus (Lotus strigosus).

Within the Project Area where Sonoran Creosote Bush Scrub occurs, soils are generally soft sandy-loams and loamy-sands, with scattered to 90 percent cover of fine gravel. Broad patches of well-developed, large-gravel desert pavement characterize the area west of the Project Area and are scattered (and less well-developed) throughout the central portion of the Project Area. Where Ford Dry Lake nears the junction of the southeastern portion of the Project Area and the linear facility routes (north of I-10), soils are much finer than elsewhere in the Project Area. Also in this area, sand is patchily and shallowly deposited over the surface and there are many small sinks.

Stabilized and Partially Stabilized Sand Dunes

A heterogeneous mixture of Stabilized and Partially Stabilized Sand Dunes overlaps a portion of the Project Area and the Linear Facilities route (Figure 5). There are also sandy areas present south of I-10 that overlap the surveyed linear route. These areas contain low dune formations of fine sand that contain widely spaced perennial shrubs. Dominant shrubs include creosote bush, white bursage, and galleta grass. Several sand-associated and other annuals are also abundant (e.g., sand verbena [Abronia villosa], birdcage primrose [Oenothera deltoides], desert marigold [Baileya pauciradiata], and narrow-leaved forget-me-not [Cryptantha angustifolia]). Although there are no coarse particles in the substrate of the dunes, the areas between the dunes that contain more shrubs may be partially stabilized by a light gravel layer.

Shrub cover decreases from 10 to 15 percent in the Sonoran Creosote Bush Scrub communities to 2 to 5 percent in the Stabilized and Partially Stabilized Sand Dunes. The shrub cover continues to decrease closer to Ford Dry Lake (playa). Between the Stabilized and Partially Stabilized Sand Dunes and Ford Dry Lake, there is a transition zone where there are intermittent sand drifts over the outer edges of the playa. Edges of the ROW, as well as portions of the linear facility route, overlap these areas where the sand layer is shallow and deposited over sinks.
FIGURE 4
SPECIAL MANAGEMENT AREAS
WITHIN PROJECT VICINITY

Legend
- Bythe Transmission Line
- Bythe Transmission Line Structures
- DWMA Northern Eastern Colorado
- Project Area (Facility Footprint)
- Area of Critical Environmental Concern
- Requested Project ROW
- BLM Wilderness
- USFWS Designated Critical Habitat
- Multi Species WHMA
- Bighorn Sheep WHMA

Project Linear Facilities
- Proposed Transmission Interconnect (7.5 Miles)
- Proposed Gas Line (5.9 Miles)
- Proposed Access Road (6.1 Miles)

Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, BLM, TTEC
Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, USDA

Legend
- [Legend colors]

Project Linear Facilities
- Proposed Transmission Interconnect
- Proposed Gas Line
- Proposed Access Road

ENLARGED AREA

Legend
- Chenopod Scrub
- Sonoran Creosote Bush Scrub
- Dry Desert Wash Woodland
- Playa and Sand Drifts over Playa
- Stabilized and Partly-Stabilized Sand Dune
- Project Area (Facility Footprint)
- Requested Project ROW
- Extent of Surveyed Area
- Blythe Energy Project Transmission Line

FIGURE 5
NATURAL COMMUNITY TYPES
SUMMARY OF POTENTIAL TAKE

Section 2080 of the Fish and Game Code prohibits "take" of any species that the Fish and Game Commission determines to be an endangered species or a threatened species. Take is defined in Section 86 of the Fish and Game Code as to "hunt, pursue, catch, capture, or kill, or attempt to hunt, pursue, catch, capture, or kill" a member of the species.

The biological surveys of the Project Area found no tortoises, scat, burrows, tracks, or other sign of recent tortoise occupation or use. The lack of recent tortoise sign on the Project Area, plus the small size, older condition, and distribution of shell fragments, indicate that tortoises do not currently occupy the Project Area. Within the Survey Area, one set of tortoise tracks was observed approximately 0.5 mile north of the Project Area and three burrows were observed approximately four miles west. Tortoises are likely present to the north, west, and east of the Project Area, where higher quality creosote bush scrub and well-developed washes are present. South of Interstate 10, tortoises may be present west of the transmission line route. Tortoises occupying these adjacent areas could enter the Project Area. However, the very low amount of sign observed within the larger survey area indicates that the current tortoise population in the Survey Area is also very low. South of the Project Area, the fine soils, few vegetated washes and sparse vegetation that characterize the habitat nearer the playa, do not offer suitable tortoise habitat.

In summary, desert tortoises do not appear to currently use the Project Area. Additionally, because of the very few sign observed in the much larger Survey Area, as well as lack of habitat to the south of the Project Area, very few tortoises can be expected on the Project Area during the life of the Project, either as transients or residents. Habitat, however marginal, is present in the Project Area and take of desert tortoise could result from direct mortality, injury, or relocation during construction and operation of the Project. Considering the construction phase and 30-year project operation, a generous estimate of take would be one mortality or injury and five relocations, for a total take of six tortoises.

5.1 Desert Tortoise Status

The desert tortoise was listed as threatened under the California Endangered Species Act on June 22, 1989 (CFGC 1989). The species was federally listed as threatened under the Federal Endangered Species Act on August 4, 1989, by emergency rule (USFWS 1989) and by final rule on April 2, 1990 (USFWS 1990). This listing status applies to the entire population of desert tortoise, except in Arizona south and east of the Colorado River, and in Mexico. Critical habitat was designated by the USFWS in 1994 (USFWS 1994a). An approved recovery plan has been published by USFWS (1994b).

5.2 Biological Investigations and Surveys

In December 2007, a biological reconnaissance survey was completed to gain a better understanding of the vegetation communities present in the Project Area and to aid in determining which plant and wildlife species could occur. Vegetation communities and special...
plant communities designated by NECO were mapped. The area surveyed included a much broader area than the 2009 Survey Area or current Project Area, and the results of the reconnaissance survey facilitated the refinement of Project facilities in order to avoid sensitive vegetation communities and habitats (sand dune and playa) as much as possible. Survey results were also used to refine search methods for future focused biological surveys.

Comprehensive biological resource surveys designed to meet all applicable California Energy Commission (CEC), CDFG and USFWS requirements were conducted in March, April, and October 2009. At the time of the spring surveys, the Project footprint had not been finalized, so the Survey Area included the requested 4,640-acre ROW, plus zones of influence (ZOI) surveys extending out one mile from the ROW (Figure 6). Two proposed linear facility routes and ZOIs were also surveyed. In October 2009, surveys were conducted of a revised transmission line route south of I-10.

Desert Tortoise Surveys

Desert tortoise surveys were conducted in accordance with USFWS protocols (1992) and CEC guidelines (2007) by qualified field biologists (Attachment 2) on March 17 – 25, April 6 – 13, and October 30 (transmission line south of I-10 only, per 2009 USFWS survey protocol) 2009. Although the timing requirement for the protocol surveys is March 25 to May 31, the USFWS Carlsbad field office permitted tortoise surveys to commence on March 16, based on data identifying that tortoises are active in the Project area in March (T. Engelhard, pers. comm. March 18, 2009). All survey methods were reviewed and agreed to by the CEC, BLM, USFWS, and CDFG prior to conducting surveys. Detailed survey methods can be found in the Biological Resources Technical Report (Attachment 2).

At the time of the surveys, the Project footprint had not been finalized; therefore, 100 percent of the 4,640-acre requested ROW, plus two proposed routes for the linear facilities, was surveyed using contiguous, 30-foot-wide belt transects. A single 30-foot-wide ZOI transect was walked at 100, 300, 500, 1,200, and 2,400 feet from the ROW boundary, as illustrated in Figure 6. Additionally, a ZOI transect was surveyed at 3,960 and 5,280 feet (from the ROW boundary only) to comply with CEC data requirements (CEC 2007). Linear facility surveys assumed a 420-foot ROW width to allow for flexibility in siting project components within the ROW; ZOI transects were conducted out to 2,400 feet (transect spacing was as described above). Since the spring surveys, the linear facility route has changed, though it remains within the original survey area (i.e., within the area where ZOI transects were walked). Because this overlap was limited for the revised aligned transmission line route that is south of Interstate 10, data on desert tortoise was augmented with a survey of this portion of the route on October 30, 2009. The survey assumed a 420-foot-wide ROW and ZOIs were conducted to 500 feet. Any portions of the new alignment north of Interstate 10 not previously surveyed will be conducted in spring 2010.

All tortoise sign (scat, burrows, tortoise, tracks, carcasses, etc.) and all sightings of common ravens, other known tortoise predators, and other site features that could assist in the analysis of tortoise population impacts were recorded and mapped using a handheld global positioning system (GPS) unit. A quality control survey was conducted at six, 37-acre plots within the ROW and one location on the linear route using 10-foot-wide belt transects. Plots were geographically separated to ensure sampling of the entire Project Area and all habitats present.
Vegetation and Habitat Surveys
Botanical surveys were conducted on March 17 to 25 and April 6 to 13, 2009 to coincide with the growing season when optimum conditions for identification (generally blooms, fruits, and leaves) were present. Survey areas were chronologically prioritized within these survey dates to ensure the vegetative communities that could host special status plants were surveyed at the appropriate phenological time, when those species were available for identification. Winter rains in 2008/2009 resulted average germination and flowering of annual forbs, aiding in species identification. Surveys were conducted in accordance with CNPS (2001) and CDFG (2000) survey guidelines for rare plants and sensitive communities. Cacti, yucca, and trees protected by the California Desert Native Plants Act (CDNPA) were inventoried and counted using a stratified sampling technique to estimate total numbers of each species throughout the site. Since the spring surveys, the linear facility route has changed. Surveys of the portions of the new alignment not previously surveyed will be conducted in Spring 2010.

5.3 Summary of Field Survey Observations
No live tortoises or other sign of recent tortoise presence were found within the Project Area during the 2009 field surveys. However, surveyors found three burrows approximately four miles west of the Project Area and one set of tracks approximately 0.5 mile north of the Project Area (Figure 7). Two partially intact carcasses, both estimated to be four or more years old, were located approximately four miles west of the Project Area. The locations of all desert tortoise sign are illustrated in Figure 7.

Within the Project Area and ZOI survey area out to one mile from the Project Area, surveyors found 13 bone fragments estimated to be between 10 and 15 years old, and 46 mineralized bone fragments estimated to be 3,000 to 5,000 years old (W. Orr, pers. comm.) (Table 1). Bone fragments were generally parts of single, disarticulated bones, averaging approximately 30 millimeters (mm) in diameter. Those estimated to be between 3,000 and 5,000 years old showed evidence of permineralization, a process in which minerals are deposited into cells of organisms, usually by way of water (W. Orr, pers. comm.). These fragments could be easily distinguished from the younger bone fragments found because they were heavier, more solid, and most had a slight orange/brown color as opposed to the younger fragments, which were whiter and lighter in color. For the most part, bone fragments were found singly and evenly distributed throughout the surveyed area, with the exception of a slightly higher concentration in the center of the ROW. These slightly higher concentrations are located in areas that could potentially receive increased water runoff from the Palen Mountains, and thus be attributed to distribution by surface flow.

Table 1. Desert Tortoise Sign Observed within Project Area and Survey Area during Spring 2009 Surveys*

<table>
<thead>
<tr>
<th>Sign</th>
<th>Description</th>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Project Area</td>
</tr>
<tr>
<td>Tortoise</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Tortoise Burrow</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Tortoise Tracks</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Tortoise Scat</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Carcass Fragment</td>
<td>Mineralized</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Not Mineralized</td>
<td>9</td>
</tr>
</tbody>
</table>

*Summarized from Attachment 2, Table 4.
The lack of live tortoises, scat, burrows, tracks, courtship rings, or eggshell fragments, plus the small size, older condition, and distribution of the bone fragments, suggest that tortoises do not currently occupy the Project Area. The very low amount of sign observed within the Survey Area indicates that the current tortoise population around the Project Area is very low. South of the Project Area, the fine soils, few vegetated washes and sparse vegetation that characterize the habitat nearer the playa do not offer suitable tortoise habitat.

Desert tortoises are likely present to the north, west and east of the Project Area where higher quality creosote bush scrub is present. South of Interstate 10, tortoises may be present west of the transmission line route. Tortoises occupying these adjacent areas could enter the Project Area.

5.4 Potential Indirect Impacts

The Project transmission line (2.8 miles), gas line (1 mile) and access road (1.8 miles) would intersect the edge of designated desert tortoise critical habitat (see Figure 5). Approximately 22.73 acres of critical habitat would be directly impacted by construction of these facilities. Desert tortoise critical habitat boundaries contain both suitable and unsuitable habitat. The term “suitable” generally refers to habitat that provides the constituent elements for nesting, sheltering, foraging, dispersal and/or gene flow (USFWS 1994a). As noted in Section 5.3, above, a complete lack of tortoise sign in that part of the Survey Area that intersects critical habitat strongly suggests that the critical habitat overlapping the Project Area does not have suitable habitat. This is not surprising, as the Project-intersected critical habitat lies at the edge of the critical habitat unit. Furthermore, the ability of this portion of critical habitat to support desert tortoises is highly compromised by Interstate 10, which both interferes with tortoise movement and gene flow and is also likely to be a mortality sink (Nicholson 1978, Karl 1989, Boarman 1992, LaRue 1993, Marlow et. al 1997).

The proposed Project has the potential to indirectly impact desert tortoise populations by increasing the attraction of common ravens (Corvus corax) into the area and thereby potentially increasing raven predation on juvenile desert tortoise. While potential attractants associated with the Project are not located within desert tortoise habitat, the movement of ravens throughout the area and over potential desert tortoise habitat adjacent to and in the vicinity of the Project Area could increase the chances of a raven encountering and depredating a desert tortoise. A Raven Monitoring, Management, and Control Plan (RMMCP) will be developed to monitor raven activity and specify management and control measures that will avoid, minimize, or mitigate impacts. Many of the Project components, such as the evaporation ponds, waste management, dust suppression, and potential perching locations have been designed to limit their attractiveness to ravens. The RMMCP will monitor the success of these features and determine if additional management and control measures are needed.

Desert tortoise of all size might also briefly fence-walk the Project Area exclusion fence, once the fence is constructed, thereby potentially making them more susceptible to predation by coyotes (Canis latrans). However, this potential impact has a low probability of occurring because (1), there are few desert tortoise adjacent to the Project Area, and (2) fence-walking would be temporary because desert tortoises will become habituated to the fence (A. Karl, field notes for Hyundai Motor America Test Track Project; B. Boarman, pers. comm. to A. Karl on
Fort Irwin Expansion Project translocated desert tortoise). Furthermore, depredation on adult desert tortoise by coyotes appears to occur only in or following drought years, when other prey is unavailable. Prey availability during Project construction cannot be predicted at this time.
100% Coverage 210ft each side of Linear Route Centerline (Typical)
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, USDA
As discussed in the sections above, a generous estimate of the potential take of desert tortoises that might be temporarily present within the Project Area boundary during the life of the Project would be one mortality or injury and five relocations, for a total take of six desert tortoises.

Project impacts on desert tortoise will be minimized by implementation of project design features and plans, including the following:

- A clearance survey for tortoises on the Project Area will be conducted in all areas with shrub cover, and immediately adjacent to those areas. A minimum of two (2) clearance passes must be completed and these must coincide with heightened tortoise activity from mid-March through May and during October. This will maximize the probability of finding all tortoises. Once the Project Area is deemed free of tortoises, heavy equipment will be allowed to enter the site to perform construction activities.

- A Biological Resources Mitigation, Implementation and Monitoring Plan (BRMIMP) will be created to comprehensively describe avoidance, minimization, and mitigation measures; document their implementation; and monitor their effectiveness.

- Prior to the onset of construction, the entire Project Area will be fenced with a permanent tortoise exclusion fence per USFWS requirements to keep tortoises in habitat adjacent to the Project Area from entering during construction and operations phases.

- All construction personnel who work in the Project Area will attend a contractor education program, developed and presented by a Project biologist prior to the commencement of construction activity. This Worker Environmental Awareness Program (WEAP) will be included in the BRMIMP.

- Along the linear routes, the anticipated impact zones, including staging areas, equipment access, and disposal or temporary placement of spoils, will be delineated with stakes and flagging prior to construction to avoid natural resources where possible. Construction-related activities outside of the impact zone will be avoided.

- A Desert Tortoise Relocation/Translocation Plan is currently being prepared to address desert tortoise relocation/translocation associated with the Project.

- A Raven Monitoring, Management, and Control Plan (RMMCP) will be designed and implemented to identify the conditions of concern specific to the Project that may attract ravens to the area and to define a monitoring, management, and control plan that will (1) monitor raven activity and (2) apply specific management and control measures that will avoid, minimize, or mitigate impacts. The monitoring effort is intended to provide qualitative data to determine if Project Design Features are working or if additional management and control measures are needed to mitigate impacts to desert tortoises. This plan will be part of the BRMIMP.

- The introduction and/or spread of exotic plant species will be controlled by implementation of measures described in the Exotic Weed Control Program, which will be included in the BRMIMP.
The Project vicinity has a demonstrated low density desert tortoise population that is relatively isolated from the DWMA and critical habitat to the south of I-10 (see Figure 4). No tortoises currently occupy the Project Area. Desert tortoise that may occupy the area north, west, and east of the Project Area are at the edge of suitable habitat. This and the proposed take of a very few individuals, potentially including the mortality and/or injury of one individual at this location is not likely to have a substantial impact on the species.

Genesis Solar is proposing the acquisition of off-site habitat to compensate for possible incidental take of six desert tortoises which, together with compensatory mitigation of impacts to portions of the DWMA and critical habitat, would fully mitigate the impacts of the proposed taking on the species.
The lack of desert tortoise on the Project Area, the very low density in the Project vicinity and the lack of suitable habitat south of the Project Area, together with implementation of Project avoidance and minimization measures and compensatory mitigation, strongly support the conclusion that the authorization of take for the Project would neither jeopardize the continued existence of the desert tortoise nor cause significant impacts to the local population.

Furthermore, the location of the Project Area relative to the DWMA, critical habitat, and occupied habitat support the conclusion that the Project would not block any genetic connections in the regional tortoise population.

There are approximately 15 reasonably foreseeable projects that are being considered for permitting by the CEC and/or BLM within the general area of the Project (Figure 8). As these projects are still in the planning phases and have not been permitted, approved, or constructed, only limited information is available about their likely impacts and it is uncertain if all or any of these projects would eventually be developed. Although the Project is not located within high quality desert tortoise habitat, many of these projects are located within the geographic range of the desert tortoise and could be located within suitable tortoise habitat.

Cumulative impacts from other related projects can be avoided by implementation of the NECO Plan, which provides for conservation and management of desert tortoise in large part through a system of broad management areas including DWMA for desert tortoises. Emphasis is placed on minimizing disturbance and maximizing mitigation, compensation, and restoration. The proposed project incorporates all of these measures and, together with its location in an area little used by desert tortoise, is unlikely to cause a significant cumulative impact on this species.

Authorization of incidental take of desert tortoises for the Project would not jeopardize the continued existence of the desert tortoise because Project impacts on the species are likely to be very small based on the unlikely presence of these species on the Project Area. Should a minor amount of take of individuals occur, this would take place in a peripheral population that is not considered to be important for species persistence. This conclusion has been made in light of known population trends and threats to the species, as well as in consideration of reasonably foreseeable impacts on the species. Implementation of the Project would not significantly diminish the range or appreciably reduce acreage occupied by the species in the wild.
(8) PROPOSED MEASURES TO MINIMIZE AND FULLY MITIGATE THE IMPACTS OF THE PROPOSED TAKING.

This section includes a summary of proposed avoidance, minimization and compensation measures to fully mitigate potential impacts.

8.1 Proposed Avoidance and Minimization Measures
This section includes general measures followed by avoidance and minimization measures specifically for the desert tortoise.

8.1.1 General Measures for Protection of Biological Resources
The following is a list of general impact avoidance and minimization measures that would apply to all Project activities. These measures are standard practices designed to prevent environmental degradation. The Project applicant would ensure implementation of these measures to avoid and minimize impacts to the greatest extent feasible.

BIO-1: A BRMIMP will be created to comprehensively describe avoidance, minimization, and mitigation measures; document their implementation; and monitor their effectiveness. The BRMIMP shall identify the terms and conditions of any permits associated with the Project, including, but not limited to, the USFWS Section 7 Biological Opinion (BO), CDFG Section 2081 Incidental Take Permit, and CDFG Streambed Alteration Agreement.

BIO-2: The construction contractor(s)/crew(s) will be informed about the biological constraints of the project. All construction personnel who work in the Project Area will attend a contractor education program, developed and presented by a Project biologist prior to the commencement of construction activity. This WEAP will be included in the BRMIMP.

BIO-3: An Environmental Compliance Manager (ECM) will be assigned to the Project who will be an on-site staff member of the Project. The ECM is responsible for facilitating implementation of the environmental conditions of the Project. A Project Authorized Biologist (AB) and alternate ABs will be appointed to oversee compliance with the protection measures for the desert tortoise and other special status species.

BIO-4: Qualified BMs will monitor all work where prior surveys have documented the occurrence or habitat of one or more listed species. The biologist will have the authority to halt all non-emergency actions that might result in harm to a listed species, and will assist in the overall implementation of protection measures for listed species during project operations.

BIO-5: Along the linear routes, the anticipated impact zones, including staging areas, equipment access, and disposal or temporary placement of spoils, will be delineated with stakes and flagging prior to construction to avoid natural resources where possible. Construction-related activities outside of the impact zone will be avoided.

BIO-6: Existing roads will be utilized wherever possible to avoid unnecessary impacts. New and existing roads that are planned for either construction or widening will not extend
beyond the planned impact area. All vehicles passing or turning around will do so within the planned impact area or in previously disturbed areas. Where new access is required outside of existing roads or the construction zone, the route will be clearly marked (i.e., flagged and/or staked) prior to the onset of construction. Outside the Project boundaries, personnel will utilize established roadways (paved or unpaved) for traveling to and from the Project Area, including for transmission line construction. Cross-country vehicle and equipment use outside designated work areas will be prohibited.

To minimize the likelihood for vehicle strikes of tortoises and other species, a speed limit of 15 mph will be established for travel on all Project access roads north of Interstate 10 and all dirt roads south of Interstate 10, and 25 mph along any paved roads in the construction area (e.g., Wiley Well Road).

BIO-7: Best Management Practices (BMPs) will be employed to prevent loss of habitat due to erosion caused by project-related impacts (i.e., grading or clearing for new roads). All detected erosion will be remedied within two days of discovery.

BIO-8: Fueling of equipment will take place within existing paved roads and not within or adjacent to drainages or native desert habitats. Contractor equipment will be checked for leaks prior to operation and repaired as necessary. All vehicles and equipment will be in proper working condition to minimize the potential for fugitive emissions of motor oil, antifreeze, hydraulic fluid, grease, or other hazardous materials. The AB and BM will be informed of any hazardous spills within 24 hours. Hazardous spills will be immediately cleaned up and the contaminated soil will be properly disposed of at a licensed facility.

BIO-9: Construction activity will be monitored, as necessary, by a qualified biologist to ensure compliance with avoidance and minimization measures.

BIO-10: Trash and food items will be removed from the Project Area daily and disposed properly in order to avoid attracting ravens or other potential predators of the desert species.

BIO-11: Firearms and domestic pets will be prohibited from work sites.

BIO-12: The introduction and/or spread of exotic plant species will be controlled by implementation of measures described in the Exotic Weed Control Program, which will be included in the BRMIMP.

8.1.2 Measures for Protection of Desert Tortoise

DT-1: Prior to the onset of construction, the entire Project Area will be fenced with a permanent tortoise exclusion fence per USFWS requirements to keep tortoises in habitat adjacent to the Project Area from entering during construction and operations phases. The fencing type will be one-inch by two-inch vertical mesh galvanized fence material, extending at least two (2) feet above the ground and buried at least one (1) foot. Where burial is impossible, the mesh will be bent at a right angle toward the outside of the fence and covered with dirt, rocks, or gravel to prevent the tortoises from digging under the fence. Tortoise-proof gates will be established at all site entry points. As necessary, linear components will be temporarily fenced to prevent tortoise
entry during construction. Alternatively, monitoring during construction can be used to protect tortoises instead of temporary fencing.

Temporary fencing must follow guidelines for permanent fencing and supporting stakes will be sufficiently spaced to maintain fence integrity. All fence construction will be monitored by qualified biologists to ensure that no desert tortoises are harmed. Following installation, all permanent exclusion fencing will be inspected monthly and during all major rainfall events; temporary fencing will be inspected at least weekly, or more often as necessary. Any damage to the fencing will be repaired immediately. All temporary and permanent impact areas will be surveyed for sensitive species within 30 days prior to commencement of construction activities in the Project Area. Rare plant species and special status wildlife species habitat will be identified and flagged for avoidance.

DT-2: A clearance survey for tortoises will be conducted in all areas with shrub cover, and immediately adjacent to those areas. A minimum of two (2) clearance passes must be completed and these must coincide with heightened tortoise activity from mid-March through May and during October. This will maximize the probability of finding all tortoises. Once the site is deemed free of tortoises, then heavy equipment will be allowed to enter the site to perform construction activities.

DT-3: It is anticipated that no, or very few, tortoises will be found during clearance or monitoring activities, but a Desert Tortoise Relocation and Translocation Plan nevertheless will be prepared.

DT-4: Following Project Area clearance, a report will be prepared by the AB to document the clearance surveys, the capture and release locations of all desert tortoises found, post-release monitoring, individual tortoise data, and other relevant data. This report will be submitted to the USFWS and CDFG.

DT-5: Employees and contractors will look under vehicles and equipment for the presence of desert tortoises prior to movement. No equipment will be moved until the animal has left voluntarily or a biologist authorized to do so removes it.

DT-6: If a desert tortoise is located during construction, and a contingency for avoidance, removal, or transplant has not been approved by CDFG, CEC and USFWS, workers will not proceed with construction until specific consultation with those agencies is completed.

DT-7: All encounters with desert tortoises will be reported to the AB, who will record the following information:

- Species name;
- Location (narrative and maps) and dates of observations;
- General condition and health, including injuries and state of healing;
- Diagnostic markings, including identification numbers or markers; and
- Locations moved from and to.

DT-8: CDFG, CEC and USFWS will be notified if a dead or injured protected species is located. Written notification must be made within 15 days of the date and time of the finding or incident (if known) and must include: Location of the carcass, a photograph, cause of death (if known), and other pertinent information.
DY-9: During construction activities, monthly and final compliance reports will be provided to CEC and other applicable resource agencies documenting the effectiveness of mitigation measures and the level of take associated with the Project. Biological issues also will be covered in the ongoing compliance reporting required by the CEC.

DT-10: Annual monitoring reports will be prepared addressing the habitat enhancement and conservancy of the compensation lands acquired to mitigate impacts to desert tortoise. The reports will be prepared by the entity or organization to which Genesis Solar assigns the compensation lands. That entity will be responsible for conducting the habitat enhancement (which may include habitat restoration, construction and maintenance of protective fencing, etc.), habitat monitoring, and annual reporting. The report will address the level of success of the habitat enhancement, and any suggestions for devising or implementing adaptive management strategies to improve the long-term viability of the covered species associated with the acquired lands. The annual report will be submitted to Genesis Solar, CEC, CDFG and USFWS at the end of each calendar year, for no less than five years.

DT-11: A Raven Monitoring, Management and Control Plan (RMMCP) will be designed and implemented to identify the conditions of concern specific to the Project that may attract ravens to the area and to define a monitoring, management, and control plan that will (1) monitor raven activity and (2) apply specific management and control measures that will avoid, minimize, or mitigate impacts. The monitoring effort is intended to provide qualitative data to determine if Project Design Features (PDFs) are working or if additional management and control measures are needed to mitigate impacts to desert tortoises. This plan will be part of the BRMIMP.

8.2 Proposed Compensatory Mitigation for Potential Impacts To Covered Species

Genesis Solar is proposing the acquisition of off-site habitat to compensate for possible incidental take of up to six desert tortoises. An estimate of the appropriate amount of area for acquisition can be determined by reference to an area with an established population, such as the Desert Tortoise Natural Area (DTNA). The most recent published population density estimates of desert tortoise within the DTNA are approximately 25 individuals per square kilometer in 1992 (or 25 desert tortoises per 247.11 acres, equivalent to approximately one desert tortoise per 10 acres) (Berry 1997). The purchase, protection, and enhancement of desert tortoise habitat at an appropriate location are anticipated to support the species at similar densities. Therefore, the acquisition of 60 acres of high-quality habitat suitable for the desert tortoise would be expected to provide habitat for a minimum of six animals. This would adequately compensate for potential incidental take of desert tortoise within the Project Area, primarily prior to installation of permanent exclusionary fencing at the start of construction at the Project Area.

Surveys results indicate tortoises do not occupy the small part of the Project Area (linear facilities only) that is designated as critical habitat and/or DWMA and that the habitat in that area is very poor quality. Nevertheless, the applicant is proposing compensation at a 5:1 ratio for all impacts in critical habitat and/or DWMA.
The following qualitative criteria would be used to select Compensation Lands to ensure that they provide mitigation for the take of desert tortoises:

- Compensation lands should be part of a larger block of lands that are either already protected or planned for protection, or feasibly could be protected by a public resource agency or a private biological reserve organization.

- Parcels should have inherently moderate to good habitat for desert tortoise that is likely to regenerate naturally when current disturbances are removed. Parcels should not be subject to such intensive recreational, grazing, or other uses that recovery is rendered unlikely or lengthy. Nor should those invasive species that are likely to jeopardize habitat recovery (e.g., Saharan mustard \([Brassica tournefortii]\)) be present in uncontrollable numbers, either on or immediately adjacent to the parcels under consideration.

- Parcels should provide habitat that is as good as or better than the habitat being impacted by the Project. Preferably, the lands would comprise sufficiently good habitat that they are either currently occupied or will likely be occupied by the desert tortoise once they are protected from anthropogenic impacts and/or otherwise enhanced.

- The parcels should be connected to known lands occupied by desert tortoise. Preferably, the existing populations of desert tortoise on these lands would represent populations that are stable, recovering, or likely to recover.

- The parcels should be consistent with the goals, objectives, and recovery actions of an accepted recovery strategy (e.g., recovery plan) for the desert tortoise if possible.

<table>
<thead>
<tr>
<th>Incidental Take and Habitat Disturbance</th>
<th>Disturbance Acres *</th>
<th>Compensation Ratio</th>
<th>Compensation Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desert Tortoise Take (1 mortality or injury, 5 relocations)</td>
<td>N/A</td>
<td>N/A</td>
<td>60</td>
</tr>
<tr>
<td>Desert Tortoise Critical Habitat/DWMA</td>
<td>22.73</td>
<td>5:1</td>
<td>133.65</td>
</tr>
<tr>
<td>Total Acres</td>
<td>22.73</td>
<td></td>
<td>193.65</td>
</tr>
</tbody>
</table>

* Estimated on the basis of available Project plans. Final calculation of acreage will be determined when final Project plans are available.
(9) A PROPOSED PLAN TO MONITOR COMPLIANCE WITH THE MINIMIZATION AND MITIGATION MEASURES AND THE EFFECTIVENESS OF THE MEASURES.

The BRMIMP required by the CEC will describe all avoidance, minimization and compensation measures for desert tortoise and will include requirements for monitoring and reporting to verify Project compliance with those measures and effectiveness of those measures. The monitoring and reporting measures discussed above, as well as those associated with specific monitoring plans (e.g., Desert Tortoise Relocation/Translocation Plan, Raven Monitoring, Management and Control Plan, Exotic Weed Control Plan, Evaporation Pond Monitoring Plan) will be included as part of the BRMIMP.

Upon completion of acquisition of the Compensation Lands, Genesis Solar or an acceptable third party such as the Desert Tortoise Preserve Committee will prepare a Mitigation Land Acquisition report that will discuss the habitat characteristics of the parcel(s) of land, and how they meet the requirements of the desert tortoise. The report would be submitted to the CEC, CDFG and USFWS.

Annual monitoring reports will be prepared addressing the habitat enhancement and conservation of the Compensation Lands. The reports will be prepared by the entity or organization to which Genesis Solar assigns the Compensation Lands and submitted by that entity to CEC, CDFG and USFWS.

(10) A DESCRIPTION OF THE FUNDING SOURCE AND THE LEVEL OF FUNDING AVAILABLE FOR IMPLEMENTATION OF THE MINIMIZATION AND MITIGATION MEASURES.

10.1 MITIGATION SECURITY

Genesis Solar will provide financial assurances to guarantee that an adequate level of funding is available to implement all avoidance, minimization, and compensation measures identified in this CESA Section 2081 permit application. These funds will be used solely for implementation of the measures associated with the Project.

Genesis Solar shall complete acquisition of the proposed Compensation Lands prior to initiating ground-disturbing Project activities, unless financial assurance is provided to the CDFG in the form of an irrevocable letter of credit, a pledged savings account or another form of security (“Security”) approved by the CDFG Office of the General Counsel, to ensure funding.

Based on the acquisition of 60 acres to compensate for the incidental take of up to six individual desert tortoises, plus the acquisition of an estimated 133.65 acres (total acreage = 193.65 acres) to compensate for impacts to federally designated desert tortoise critical habitat, the amount of the Security is calculated as follows:
1. Land acquisition costs for compensation lands, calculated at $1,000/acre for 193.65 acres: $193,650.

If Security is provided, Genesis Solar, the CDFG, or a third-party entity approved by the CDFG, CEC and USFWS, shall complete the proposed Compensation Lands acquisition within eighteen (18) months of the start of Project ground-disturbing activities. A minimum of three months prior to acquisition of the 193.65 acres of Compensation Lands, Genesis Solar, or a third-party entity approved by the CDFG, CEC and USFWS shall submit to the CDFG for approval a formal acquisition proposal identifying specific properties comprising the acres that will be purchased. The CDFG, CEC and USFWS would approve all of the parcels comprising the 193.65 acres in advance of purchase. The Compensation Lands are expected to be acquired in areas appropriate for conservation of desert tortoise and will be subject to the conditions listed in section 10.2 below.

10.2 COMPENSATION LANDS ACQUISITION CONDITIONS

In conjunction with the Genesis Solar funding obligations related to the Compensation Lands and following CDFG’s review and approval of the proposed 193.65 acres to be purchased, Genesis Solar, the CDFG or a third-party entity approved by the CDFG, CEC and USFWS, shall comply with the following conditions:

a) Preliminary Report: Provide a recent preliminary title report, initial hazardous materials survey report, biological analysis, and other necessary documents for the proposed 193.65 acres (and/or conservation easement). All documents conveying or conserving Compensation Lands and all conditions of title/easement are subject to the approval of the CDFG, the California Department of General Services and, if applicable, the Fish and Game Commission.

b) Title/Conveyance: Transfer fee title to the 193.65 acres of Compensation Lands to the CDFG or an organization approved by the CDFG under terms approved by the CDFG. Convey a conservation easement on the 193.65 acres of Compensation Lands to the CDFG or an organization approved by the CDFG under terms approved by the CDFG and Genesis Solar.

c) Enhancement Fund (as necessary): Fund the initial protection and enhancement of the 193.65 acres by providing to the CDFG, or a third-party entity approved by the CDFG, CEC, and USFWS, an appropriate amount as determined by the CDFG field review of the land as discussed above.

d) Endowment Fund: Prior to ground-disturbing expansion Project activities, provide to the CDFG, or a third-party entity approved by the CDFG, CEC, and USFWS, a permanent capital endowment in the amount determined through the Property Analysis Record (PAR) or PAR-like analysis that will be conducted for the 193.65 acres of Compensation Lands.
Interest from this amount shall be available for reinvestment into the principal and for the long-term operation, management, and protection of the Compensation Lands, including reasonable administrative overhead, biological monitoring, improvements to carrying capacity, law enforcement measures, and any other action designed to protect or improve the habitat values of the Compensation Lands. The endowment principal shall not be drawn upon unless such withdrawal is deemed necessary by the CDFG, or a third-party entity approved by the CDFG, CEC, and USFWS, to ensure the continued viability of the species. Monies received by the CDFG pursuant to this provision shall be deposited in a special deposit account established pursuant to Government Code §16370. The CDFG may pool the endowment with other endowments for the operation, management, and protection of the 193.65 acres for local populations of the Covered Species.

e) **Security Deposit:** Genesis Solar may proceed with ground-disturbing Project activities before fully performing its duties and obligations as set forth above only if Genesis Solar secures its performance by providing to the CDFG funding, or the CDFG approves administrative proof of funding, necessary to cover land acquisition and easement costs, fencing/cleanup costs and, as necessary, initial protection and enhancement of the acquired 193.65 acres. If the Security is provided to allow the commencement of Project disturbance prior to completion of compensation actions, Genesis Solar, the CDFG, or a third-party entity approved by the CDFG, CEC, and USFWS, must complete the required actions no later than 18 months after the start of the ground-disturbing activities. The Security will provide that the CDFG, or a third-party entity approved by the CDFG, CEC, and USFWS, may draw on the principal sum if it is determined that Genesis Solar has failed to comply with the Conditions of Approval of the CESA 2081 Permit. The Security will be returned to Genesis Solar upon completion of the legal transfer of the Compensation Lands to the CDFG, or upon completion of an implementation agreement with a third-party mitigation banking entity, acceptable to the CDFG, CEC, and USFWS, to acquire and/or manage the Compensation Lands.

f) **Reimbursement Fund:** Provide reimbursement to the CDFG for reasonable expenses incurred during title, easement, and documentation review; expenses incurred from other state agency reviews; and overhead related to providing Compensation Lands to the CDFG.

If all actions for Compensation Lands described above are not completed within 18 months of initial ground-disturbing activity, Genesis Solar shall consult with CEC, CDFG and USFWS and possibly develop alternate compensation land proposals subject to the above requirements.

Genesis Solar is responsible for all Compensation Lands acquisition/easement costs, including but not limited to title and document review costs, as well as expenses incurred from other state agency reviews and overhead related to providing Compensation Lands to the CDFG; escrow fees or costs; toxic waste clearance; and other site cleanup measures.
(11) CERTIFICATION

I certify that the information in this application is complete and accurate to the best of my knowledge and belief. I understand that any false statement herein may subject me to suspension or revocation of this permit and to civil and criminal penalties under the laws of the State of California.

Matt Handel, Genesis Solar, LLC
ATTACHMENTS
ATTACHMENT 1

REFERENCES

California Department of Fish and Game (CDFG). 2000.

California Department of Fish and Game (CDFG). 2003. California Department of Fish and Game Wildlife Habitat Data Analysis Branch. The Vegetation Classification and Mapping Program- List of California Terrestrial Natural Communities Recognized by the California Natural Diversity Database. Available at http://www.dfg.ca.gov/whdab/pdfs/natcomlist.pdf.

ATTACHMENT 2

BIOLOGICAL RESOURCES TECHNICAL REPORT
GENESIS SOLAR PROJECT, RIVERSIDE COUNTY, CA
Biological Resources Technical Report

Genesis Solar Energy Project
Riverside County, CA

Prepared By:

TETRA TECH EC, INC.
1940 E. Deere Avenue, Suite 200
Santa Ana, CA 92705

and

Alice E. Karl, Ph.D.
P.O. Box 74006
Davis, CA 95617

Prepared For:

Genesis Solar, LLC

August 2009
EXECUTIVE SUMMARY

Genesis Solar, LLC (Genesis Solar), is proposing to develop a 250-megawatt (MW) solar thermal power generating facility located in Riverside County, California, between the community of Desert Center and the city of Blythe on land managed by the Bureau of Land Management (BLM). The proposed Genesis Solar Energy Project (Project) would consist of two 125-MW units. Genesis Solar has applied for a 4,640-acre right-of-way (ROW) grant from the BLM for Project development; however, once constructed, the facility would occupy approximately 1,800 acres within the requested ROW, plus an approximately 90 acres for linear facilities. To determine vegetation communities, habitat, and species presence, comprehensive biological resource surveys were conducted of the entire requested ROW and linear facilities routes in spring of 2009.

The requested ROW and proposed linear facility routes were surveyed for all special-status species potentially occurring in the Project vicinity using U.S. Fish and Wildlife Service (USFWS) desert tortoise protocol survey methods (USFWS 1992). Due to the intensive nature of the desert tortoise survey methods, all special-status species were surveyed concurrently, including vegetation communities. Additional, focused surveys included burrowing owl surveys, avian point count surveys, and cactus/yucca/tree stratified sampling.

During the spring surveys, 64 wildlife species, 131 plant species, and 5 vegetation communities were observed. Although five vegetation communities occur within the survey area, only Sonoran Creosote Bush Scrub and Stabilized and Partially Stabilized Sand Dunes occur within the Project area (footprint). The main Project site (1,800 acres) is located entirely within Sonoran Creosote Bush Scrub. Portions of the linear facility routes overlap areas of Stabilized and Partially Stabilized Sand Dunes.

Special Status Species
No federally or state-listed wildlife species were observed during 2009 surveys; however, sign (burrows, tracks) for the state-threatened desert tortoise (*Gopherus agassizii*) was found outside of the Project area. Seven California species of special concern were observed, including Mojave fringe-toed lizard (*Uma scoparia*), burrowing owl (*Athene cunicularia*), loggerhead shrike (*Lanius ludovicianus*), northern harrier (*Circus cyaneus*), short-eared owl (*Asio flammeus*), ferruginous hawk (*Buteo regalis*), and American badger (*Taxidea taxus, burrow only*). Tracks of the burro deer (*Odocoileus hemionus eremicus*; a game species) were detected within the survey area; however, no direct observations of this species were made.

Special Management Areas
Five plant communities that are considered special by the BLM occur within in the Project survey area. These include Sand Dunes, Desert Chenopod Scrub, Desert Dry Wash Woodland, and Playa. Sand dunes overlap the Project area along the linear facility routes. No Chenopod Scrub, Desert Dry Wash Woodland, or Playa are located within the Project area. Although these communities exist to the northeast and east (Desert Dry Wash Woodland), south, near the dry lake bed (Chenopod Scrub), and south (Playa) of the ROW, these three communities are outside of the Project area and would not be affected by Project development.

The Project is situated within areas designated by the BLM and USFWS to manage natural resources. The plant site and portions of the linear facility routes overlap a Multi-Species Wildlife Habitat Management Area (WHMA). The southern portions of the linear facilities are within a desert tortoise Desert Wildlife Management Area (DWMA), and the southern end of the transmission line overlaps USFWS designated desert tortoise critical habitat.
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... ES-1

1.0 INTRODUCTION ... 1

2.0 PROJECT SETTING ... 1
 2.1 Project Location .. 1
 2.2 Project Description ... 2
 2.3 ENVIRONMENTAL SETTING .. 2

3.0 REGULATORY SETTING ... 11
 3.1 Federal Laws and Regulations ... 11
 3.1.1 National Environmental Policy Act .. 11
 3.1.2 Endangered Species Act .. 11
 3.1.3 Migratory Bird Treaty Act .. 11
 3.1.4 Wild Free-Roaming Horse and Burro Act (Public Law 92-195) 11
 3.2 State Laws and Regulations ... 11
 3.2.1 California Environmental Quality Act .. 11
 3.2.2 California Endangered Species Act .. 12
 3.2.3 Protection of Listed Species ... 12
 3.2.4 Protection of Non-Listed Species ... 12
 3.2.5 CEC Siting Regulations .. 13
 3.3 Relevant Management Plans ... 13
 3.3.1 Northern and Eastern Colorado Desert Coordinated Management Plan 13
 3.3.2 Desert Tortoise Recovery Plan.. 14

4.0 LITERATURE REVIEW AND SURVEYS .. 15
 4.1 Literature Review ... 15
 4.2 Reconnaissance Survey ... 15
 4.3 2009 Field Surveys ... 20
 4.3.1 Vegetation Communities and Habitat Survey ... 20
 4.3.2 Wildlife Surveys .. 25

5.0 SURVEY RESULTS AND DISCUSSION .. 29
 5.1 General Site Characteristics ... 29
 5.2 Vegetation Community and Habitat Survey ... 30
 5.2.1 Special-Status Plant Species ... 33
 5.2.2 Sensitive Plant Communities .. 34
 5.2.3 Cacti, Yucca, and Trees ... 34
 5.2.4 Non-Native Plants ... 37
 5.3 Focused Wildlife Surveys ... 37
 5.3.1 Desert Tortoise ... 37
 5.3.2 Mojave Fringe-Toed Lizard ... 39
 5.3.3 Burrowing Owl .. 40
 5.3.4 Avian Point Count Surveys ... 40
 5.3.5 Other Special-Status Wildlife Observed ... 49
 5.4 Potential for Other Special-Status Species to Occur .. 49
 5.4.1 Special-Status Wildlife and Plant Species Not Observed, but Could Occur 49
5.4.2 Special-Status Wildlife and Plant Species Not Likely to be Present...........50

6.0 ENVIRONMENTAL IMPACTS ...50
 6.1 Vegetation and Special Vegetation Communities ..51
 6.1.1 Special-Status Plant Species ...52
 6.1.2 Cacti and Trees ..52
 6.2 Wildlife Species ...53
 6.2.1 Desert Tortoise ...53
 6.2.2 Mojave Fringe-Toed Lizard ..53
 6.2.3 Burrowing Owl ...54
 6.2.4 Other Special-Status Avian and Wildlife Species54

7.0 GENERAL RECOMMENDATIONS ..55

8.0 REFERENCES...56

LIST OF TABLES

Table 1. Aliquot Parts for the Genesis Solar Energy Project ..1
Table 2. Plant and Wildlife Species Observed and Potentially Occurring within the Genesis Solar Energy Project ..16
Table 3. Cacti, Yucca, and Trees Stratified Sampling Survey Results34
Table 4. Desert Tortoise Sign Found during Spring 2009 Field Surveys38
Table 5. Avian Species, by Species Grouping, Observed during Spring 2009 Point Count Surveys at the Genesis Solar Energy Project ..47
Table 6. Avian Species Observed by Transect during Spring 2009 Point Count Surveys at the Genesis Solar Energy Project ..48
Table 7. Incidental Detections of Birds during Spring 2009 Point Count Surveys at the Genesis Solar Energy Project ...48

LIST OF FIGURES

Figure 1. Regional Location Map...3
Figure 2. Features and Location..5
Figure 3. Natural Community Types within the Genesis Solar Energy Project and Vicinity ..7
Figure 4. Special Management Areas within Project Vicinity9
Figure 5a. CNDDDB Special Status Plant Occurrences within 10 mi of the Genesis Solar Energy Project ...21
Figure 5b. CNDDDB Special Status Wildlife Occurrences within 10 mi of the Genesis Solar Energy Project ...23
Figure 6. Cactus, Yucca and Tree Sampling Area ...27
Figure 7. Avian Point Count Locations ..31
Figure 8. Special Status Plants Observed During Field Surveys35
Figure 9. Desert Tortoise Sign Observed During Field Surveys41
Figure 10. Other Special Status Wildlife Species Sign Observed During Field Surveys ..43
Figure 11. Burrowing Owls and Sign Observed During Field Surveys45
APPENDICES
Appendix A Example of Survey Data Sheet
Appendix B List of Field Biologists
Appendix C Representative Site Photographs
Appendix D List of All Species Observed during Field Surveys
Appendix E Key to Tortoise Sign Classes
1.0 INTRODUCTION

Genesis Solar, LLC (Genesis Solar) is proposing to develop a 250-megawatt (MW) solar thermal power generating plant in Riverside County, California (Figure 1). Genesis Solar has applied for a 4,640-acre right-of-way (ROW) grant from the Bureau of Land Management (BLM) for development of the Genesis Solar Energy Project (Project). Once constructed, the Project would permanently occupy approximately 1,800 acres within this area, plus approximately 90 acres for linear facilities. The total permanent Project footprint would be 1,890 acres (collectively referred to as the Project area).

To comply with federal, state, and local laws, natural resources must be evaluated at the Project. As part of evaluating the Project’s potential effects on species persistence and/or recovery, the presence of federally listed, state-listed, and other special plants and animals must be identified and their distribution and approximate abundance determined. To meet these objectives, comprehensive surveys for biological resources were conducted during spring 2009 of the 4,640-acre ROW and proposed linear facility routes. This document describes the methods and results of those surveys and discusses potential Project impacts.

2.0 PROJECT SETTING

2.1 Project Location

The proposed Project is located approximately 25 miles west of Blythe, California, on lands managed by the BLM (Table 1, Figure 1). Surrounding features include the McCoy Mountains to the east, the Palen Mountains (including the Palen/McCoy Wilderness Area) to the north, and Ford Dry Lake to the south. Interstate 10 (I-10) is located approximately 2 miles south of the southernmost border of the ROW.

Table 1. Aliquot Parts for the Genesis Solar Energy Project

<table>
<thead>
<tr>
<th>Section</th>
<th>Aliquot</th>
<th>Estimated Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Township 6S, Range 19E, San Bernardino Base & Meridian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>S ½ except wilderness</td>
<td>260</td>
</tr>
<tr>
<td>5</td>
<td>All except wilderness</td>
<td>550</td>
</tr>
<tr>
<td>6</td>
<td>SE ¼</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>N ½, NE ¼</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>NE ¼, N ½, NW ¼</td>
<td>240</td>
</tr>
<tr>
<td>9</td>
<td>N ½</td>
<td>320</td>
</tr>
<tr>
<td>10</td>
<td>All except wilderness</td>
<td>580</td>
</tr>
<tr>
<td>11</td>
<td>SW ¼</td>
<td>160</td>
</tr>
<tr>
<td>13</td>
<td>NW ¼ except wilderness; SW ¼</td>
<td>280</td>
</tr>
<tr>
<td>14</td>
<td>N ¼, NW ¼, N ¼, NE ¼</td>
<td>240</td>
</tr>
<tr>
<td>15</td>
<td>N ½, NW ¼, N ½, NE ¼</td>
<td>160</td>
</tr>
<tr>
<td>24</td>
<td>W ½, N ½</td>
<td>160</td>
</tr>
<tr>
<td>Subtotal, T6S, R19E:</td>
<td></td>
<td>3,190</td>
</tr>
<tr>
<td>Township 6S, Range 18E, San Bernardino Base & Meridian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>S ½ except wilderness</td>
<td>290</td>
</tr>
<tr>
<td>2</td>
<td>S ½ except wilderness</td>
<td>260</td>
</tr>
<tr>
<td>3</td>
<td>S ½</td>
<td>320</td>
</tr>
<tr>
<td>4</td>
<td>All except wilderness</td>
<td>580</td>
</tr>
<tr>
<td>Subtotal, T6S, R18E:</td>
<td></td>
<td>1,450</td>
</tr>
<tr>
<td>Total ROW</td>
<td></td>
<td>4,640</td>
</tr>
</tbody>
</table>
2.2 Project Description
The Project would consist of the main plant site (solar facility), a 230-kilovolt (kV) transmission line, a natural gas pipeline, and a paved main access road (Figure 2). Within the 1,800-acre main plant site would be the solar arrays and associated Project facilities such as: a substation; an administration building; operation and maintenance facilities; and evaporation ponds. The linear facilities would originate within the plant site and, for the most part, would share the same 100-foot ROW, although each would terminate in a different location (Figure 2). Approximately 2 miles of the linear route would be within the 1,800-acre main plant site. After leaving the plant, the transmission line would be approximately 7.6 miles long, the natural gas pipeline would be 6 miles long, and the main access road would be 6.5 miles long.

2.3 ENVIRONMENTAL SETTING
The Project is located in Chuckwalla Valley, immediately north of Ford Dry Lake in the Colorado region of the Sonoran Desert. This region is sparsely vegetated and characterized by broad valleys interspersed with mountain ranges and dry lakes. Summer temperatures routinely reach above 100°F (June through September) and annual average precipitation in the Blythe, California, area is less than 4 inches. On average, August receives the most rainfall, although rainfall is also received in the winter months of December, January, and February (WRCC 2008). The Project is in the watershed of the McCoy and Palen Mountains; site drainage is by sheet flow and percolation. Topography is relatively level, with elevations between approximately 360 and 450 feet above mean sea level.

The vegetation within the Project area is characterized by two main vegetation types: Sonoran Creosote Bush Scrub and Stabilized and Partially Stabilized Sand Dunes (Holland 1986); however, small areas of Chenopod Scrub, Desert Dry Wash Woodland, and Playa (dry lake bed) are located within the survey area (but outside the Project area, Figure 3). Sonoran Creosote Bush Scrub represents the majority of the survey area, except where Stabilized and Partially Stabilized Sand Dunes are found in the eastern portion of the ROW and along the northern portions of the linear facility routes.

The Project is an undeveloped area and is currently undisturbed, although the area has been used for grazing and recreation in the past. The Project overlaps the Ford Dry Lake grazing allotment, which has been used in the past for sheep grazing, primarily. The area has not been used for grazing for over 10 years and was made unavailable for grazing in 2002 (BLM 2007). Ford Dry Lake was formerly open to the public for off-highway vehicle use, but has since been closed and current access is restricted to existing roadways. Access to the area is poor as it is limited to 4-wheel-drive roads located on the western end of the ROW.

The Project is located within the BLM’s Northern and Eastern Colorado Desert Coordinated Management (NECO) Plan area. Within the NECO Plan there are areas designated to manage natural resources including Wildlife Habitat Management Areas (WHMA), Areas of Critical Environmental Concern (ACEC), Desert Wildlife Management Areas (DWMA), and wilderness areas (Figure 4). The plant site and portions of the linear facility routes are situated within a Multi-Species WHMA. The Project is outside, but directly adjacent to the Palen/McCoy Wilderness (located to the north) and the Palen Dry Lake ACEC (located to the west). The southern portions of the linear facilities are within a desert tortoise DWMA, as well as USFWS-designated desert tortoise critical habitat (transmission line only). This document discusses potential Project impacts to biological resources as they pertain to these special management areas (Section 3.3).
GENESIS SOLAR, LLC

GENESIS SOLAR ENERGY PROJECT
RIVERSIDE COUNTY, CALIFORNIA

Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, BLM

FIGURE 1
REGIONAL LOCATION MAP

Legend
- Project Site
- Interstate
- Lake/River
- Highway
- Major Road
- Lake Intermittent
- Local Road
- Parks (Regional)
- County Boundary
- Military Installation
- Urban Areas
- State Boundary
- Airport Area

Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, BLM
GENESIS SOLAR ENERGY PROJECT
RIVERSIDE COUNTY,
CALIFORNIA

Legend
- Blythe Transmission Line Structures
- Blythe Transmission Line
- Previously Proposed Linear Route
- Proposed Transmission Interconnect
- Proposed Gas Line
- Proposed Access
- Project Site
- Facility Footprint
- Township and Range Lines
- Section Lines

Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, BLM

FIGURE 2
FEATURES AND LOCATION
Figure 3
Natural Community Types within the Genesis Solar Energy Project and Vicinity

Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, USDA.
FIGURE 4
SPECIAL MANAGEMENT AREAS WITHIN PROJECT VICINITY

Legend
- Proposed Gas Line
- Blythe Transmission Line Structures
- Blythe Transmission Line
- Genesis Proposed Access
- Proposed Linear Route (9.6mi)
- DWMA Northern Eastern Colorado
- Facility Footprint
- Area of Critical Environmental Concern
- Project Site
- BLM Wilderness
- USFWS Designated Critical Habitat
- Multi Species WHMA
- Bighorn Sheep MHMA

Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, BLM
3.0 REGULATORY SETTING

3.1 Federal Laws and Regulations

3.1.1 National Environmental Policy Act

3.1.2 Endangered Species Act
The Endangered Species Act (ESA) of 1973 (16 United States Code [USC] 1531 et seq.; 50 CFR 17.1 et seq.) designates and provides for protection of threatened and endangered plant and animal species, and their designated critical habitat. Under Section 7 of the ESA, the BLM must consult with the USFWS regarding a proposed action that may adversely affect listed species; in this case, the desert tortoise. Formal consultation is requested via a biological assessment, followed by USFWS issuance of a biological opinion (BO) and an incidental take statement.

3.1.3 Migratory Bird Treaty Act
The Migratory Bird Treaty Act (MBTA) of 1918, as amended, prohibits “take” of migratory birds (16 USC 703-712). Under the MBTA it is unlawful to pursue, hunt, take, capture or kill; attempt to take, capture or kill; possess, offer to or sell, barter, purchase, deliver or cause to be shipped, exported, imported, transported, carried or received any migratory bird, part, nest, egg or product. All birds that are native to the United States and belong to a family, group or species covered by at least one of the four migratory bird conventions to which the United States is party are covered under the MBTA. There is currently no permitting framework (e.g., incidental take permits) that allow liability protection for developers.

3.1.4 Wild Free-Roaming Horse and Burro Act (Public Law 92-195)
Wild horses and burros are protected from capture, branding, harassment, and death, and managed with the intent to achieve and preserve the natural ecological balance on public lands. The BLM is the administering agency.

3.2 State Laws and Regulations

3.2.1 California Environmental Quality Act
CEQA requires review of any project that is undertaken, funded, or permitted by a state or local governmental agency. Typically, the state or local agency with overall project permitting authority takes the lead for CEQA compliance. The lead agency has the discretion to consider any non-listed species a defacto listed species by the statement that “a species not included in any listing in subsection (c) shall nevertheless be considered to be rare or endangered if the species can be shown to meet the criteria in subsection (b)” (CEQA Guidelines §15380, Subsection d). If significant project effects were identified, the lead agency would have
the option of requiring mitigation for effects through changes in the project or deciding that overriding considerations make mitigation infeasible (CEQA Sec. 21002). The California Energy Commission (CEC) is the lead state agency for CEQA review for thermal generating facilities 50 MW and larger in size. Because the Genesis Solar Energy Project is proposed as a Concentrated Solar Thermal project, CEC is the lead agency by law. The CEC certification incorporates all other state permits, including those listed below.

3.2.2 California Endangered Species Act

The California Endangered Species Act of 1984 [CESA, Fish and Game Code (FGC) sections 2050 et seq.] protects California's rare, threatened, and endangered species. The applicant must consult with California Department of Fish and Game (CDFG) regarding the possibility of “take” under CESA, similar to the federal consultation, above. When all state-listed species are also federally listed species addressed in the federal BO, CDFG can choose to find the federal BO consistent with state law (a 2080.1 Consistency Determination). Alternatively, CDFG may require a separate state “take” permit (a 2081 permit) if species listed by CESA are not covered by the federal BO and could be harmed or killed during construction or operation of a project.

3.2.3 Protection of Listed Species

Title 14, California Code of Regulations, Sections 670.2 and 670.5 – Under this code, animals are designated as threatened or endangered in California. California species of special concern is a category conferred by CDFG on those species that are indicators of regional habitat changes or are considered potential future protected species. These species do not have any special legal status, but this designation is used by CDFG as a management tool for consideration when land use decisions are made.

Native Plant Protection Act (NPPA); CDFG Code Section 1900 et seq. – The NPPA includes measures to preserve, protect, and enhance rare and endangered native plant species. Definitions for “rare and endangered” are different from those contained in CESA, although CESA-listed rare and endangered species are included in the list of species protected under the NPPA.

CDFG Streambed Alteration Agreement; CDFG Code Section 1600-1616 - Waters of the state of California are also subject to the jurisdiction of the CDFG. The CDFG monitors streambed alteration to conserve, protect, and manage California’s fish, wildlife, and native plant resources. The FGC (Section 1602) requires any person, state or local governmental agency, or public utility to notify the CDFG before beginning an activity that will substantially divert, obstruct, or change the natural flow of the bed, channel, or bank (including associated riparian vegetation) of a river, stream, or lake; or use material from a streambed prior to commencement of the activity. If CDFG determines that the action could have an adverse affect on existing fish and wildlife resources, a Lake or Streambed Alteration Agreement is required.

3.2.4 Protection of Non-Listed Species

CDFG Code Sections 3503 and 3503.5 – These codes state that it is unlawful to take, possess, or needlessly destroy the nest or eggs of any bird, including birds of prey, or take, possess, or destroy birds of prey, except as otherwise provided by this code or any regulation made pursuant thereto.
CDFG Code Sections 3511, 4700, 5050, and 5515 – These state laws classify and prohibit the take of “fully protected” birds, mammal, amphibian/reptile, and fish species in California.

CDFG Code Section 3513 – This code prohibits any take or possession of birds that are designated by the MBTA as migratory non-game birds except as allowed by federal rules and regulations promulgated pursuant to the MBTA.

CDFG Code Section 4150 – This state law makes it unlawful to take or possess any non-game mammal or parts thereof except as provided in the Fish and Game Code or in accordance with regulations adopted by the commission.

California Desert Native Plants Act – Pursuant to the California Food and Agriculture Code §§ 80001-80006, the California Desert Native Plants Act (CDNPA) allows the harvest of certain species of specific native plants under permits issued by the County Agricultural Commissioner or Sheriff. The purpose of the CDNPA is to prevent the unlawful harvesting of native desert trees and cacti, either for wood, landscaping, or other purposes. Where feasible and practicable, individual plants can be salvaged and used for the Project revegetation program or salvaged by an approved nursery, landscaper, or other group to indirectly reduce unlawful harvesting elsewhere.

3.2.5 CEC Siting Regulations

Title 20 California Code of Regulations, Appendix B lists information that must be provided to the CEC to complete the certification process. Further, the CEC has developed protocols (CEC 2007) specific to solar projects in California. The CEC’s data adequacy requirements are based in ongoing consultation with state agencies, including CDFG.

3.3 Relevant Management Plans

3.3.1 Northern and Eastern Colorado Desert Coordinated Management Plan

The 25-million-acre California Desert Conservation Area (CDCA) was designated in 1976 by the Federal Land Policy and Management Act to allow BLM to manage the resources of the California deserts. BLM developed a management plan for the CDCA in 1980, but the plan has since been amended and subdivided into four bioregion planning areas. The BLM has completed a regional plan amendment for each bioregion, among them the NECO Plan (BLM and CDFG 2002), which encompasses 5.5 million acres in the southeastern California Desert and the entire Project area.

The NECO Plan identifies the following issues that underlie the plan’s conservation and management program:

- Adopt standards and guidelines for public land health
- Recover two threatened species: the desert tortoise (Gopherus agassizii) and Coachella Valley milkvetch (Astragalus lentiginosus coachellae)
- Conserve approximately 60 special-status animals and plants and natural communities
- Resolve management issues of wild horses and burros along the Colorado River
- Designate recreational/ routes of travel
- Resolve issues of the land ownership pattern
- Resolve issues of resource access and regulatory burden
Incorporate changes created by the 1994 California Desert Native Plants Act

In addition to a number of specific objectives and actions to meet the goals of the above issues, the NECO Plan provides for conservation and management of several special-status species, in large part through a system of broad management areas: DWMAs for desert tortoises and WHMAs for other special-status species and natural communities. In both types of management areas, habitat improvements are prescribed to enhance the species of concern. Cumulative disturbance within DWMAs is limited to one percent of the surface area and individual disturbances are compensated at 5 acres of land for every 1 acre disturbed (5:1 ratio). The Project’s entire requested ROW of 4,640 acres is located within a Multi-Species WHMA and the Project’s linear facilities overlap with portions of the same WHMA. Additionally, approximately 0.5 mile of the transmission line is within a designated desert tortoise DWM (Figure 4).

BLM habitat categories, ranging in decreasing importance from Category I to Category III, were designed as management tools to ensure future protection and management of desert tortoise habitat and its populations. These designations were based on tortoise density, estimated local tortoise population trends, habitat quality, and other land-use conflicts. Category I habitat areas are considered essential to the maintenance of large, viable populations. Outside of desert tortoise DWMAs, all habitat previously categorized as Category I, II, or III habitat, including uncategorized habitat found to be inhabited by desert tortoises, is treated as Category III habitat for the purposes of compensation. The Project site is in uncategorized habitat not occupied by desert tortoises; however, the linear facilities overlap Category III habitat.

The NECO Plan also specifically identifies situations for which surveys must be completed for projects in the NECO planning area. Those that are relevant to the Project include the following:

- In Multi-species Conservation Zones – Survey for all special-status species
- Special-status Plants – Survey in all mapped ranges
- Special-status Wildlife – Survey at all known locations
- Bats – Identify all significant roosts within 1 mile
- Prairie Falcon (Falco mexicanus) and Golden Eagle (Aquila chrysaetos) – Identify all eyries within 0.25 mile
- Burrowing Owl (Athene cunicularia) – Identify presence and locations
- Crissal Thrasher (Toxostoma crissale) – Identify presence
- Couch’s Spadefoot (Scaphiopus couchi) – Identify all ephemeral impoundment areas
- Natural and Artificial Water Sources – Identify presence within 0.25 mile

3.3.2 Desert Tortoise Recovery Plan

In June 1994, the final Desert Tortoise (Mojave Population) Recovery Plan was released (USFWS 1994a). The Recovery Plan identifies six evolutionarily significant units of the desert tortoise in the Mojave region, termed recovery units, based on differences in tortoise behavior, morphology and genetics, vegetation, and climate. Within those recovery units, suggested DWMAs act as reserves in which recovery actions are implemented. The recovery plan works in concert with critical habitat, designated for the desert tortoise in 1994 (USFWS 1994b), by prescribing management actions to aid recovery, with critical habitat providing legal protection for areas that are considered to have essential features for tortoise survival. Approximately 2.5 miles of the linear facility route falls within desert tortoise critical habitat (Figure 4).
4.0 LITERATURE REVIEW AND SURVEYS

4.1 Literature Review

Several species known to occur on or in the vicinity of the Project are accorded “special status” by federal and state agencies because of their recognized rarity or potential vulnerability to extinction. These species typically have a limited geographic range and/or limited habitat and are referred to collectively as “special-status” species. Prior to field surveys, a target list of special-status species that may be affected by the Project was developed (Table 2) based on the following:

- Records of the California Natural Diversity Data Base (CNDDB) for special-status species that are known to occur within 10 miles of the survey area (Figures 5a, 5b)
- Records from the California Native Plant Society (CNPS) for special-status plants within the survey region
- Requests to and responses by the resource agencies relative to protected species in the Project area (Massar 2007, O’Rourke 2007, Goebel 2009)
- Special status species identified in the NECO Plan
- The Project lead biologist’s extensive experience on desert flora and fauna in the vicinity of the Project

4.2 Reconnaissance Survey

In December 2007, a biological reconnaissance survey was completed to gain a better understanding of the vegetation communities present in the Project area and to aid in determining which plant and wildlife species could occur. This survey also served as the Phase I burrowing owl habitat assessment (see Section 4.3.2.3 Burrowing Owl). Vegetation communities were loosely delineated and any special plant communities designated by NECO were mapped (Figure 3). The results of the reconnaissance survey were taken into consideration by Genesis Solar when siting Project facilities to avoid sensitive vegetation communities and habitats (sand dune and playa) as much as possible. Survey results were also used to refine search methods for focused biological surveys.
Table 2. Plant and Wildlife Species Observed and Potentially Occurring within the Genesis Solar Energy Project

<table>
<thead>
<tr>
<th>Species</th>
<th>Federal</th>
<th>Status</th>
<th>CNPS</th>
<th>Habitat</th>
<th>Likelihood of Occurrence on the Project Site/Observed during Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrams’s Spurge (Chamaesyce abramsiana)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Sandy sites in Mojavean and Sonoran Desert scrub in eastern California; 0 to 3,000 feet</td>
<td>Possible/Not Observed</td>
</tr>
<tr>
<td>Arizona Spurge (Chamaesyce arizonica)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Sandy flats in Sonoran Desert Scrub, below ~1,000 feet</td>
<td>Possible/Not Observed</td>
</tr>
<tr>
<td>Ayenia (Avenia compacta)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Sandy and gravelly washes and canyons in desert, 450 to 6,000 feet</td>
<td>Possible/Not Observed</td>
</tr>
<tr>
<td>California Ditaxis (Ditaxis serrata var. californica)</td>
<td>---</td>
<td>---</td>
<td>3</td>
<td>Sonoran Creosote Bush Scrub from 100 to 3,000 feet</td>
<td>Possible/Not Observed</td>
</tr>
<tr>
<td>Chaparral Sand Verbena (Abronia villosa var. aurita)</td>
<td>---</td>
<td>---</td>
<td>1B</td>
<td>Loose to aeolian sands; chaparral and coastal sage scrub; below 2,000 feet</td>
<td>Highly unlikely/ Not Observed</td>
</tr>
<tr>
<td>Coachella Valley Milkvetch (Astragalus lentiginosus coachellae)</td>
<td>E</td>
<td>BLM Sensitive</td>
<td>1B</td>
<td>Loose to soft sandy soils, often in disturbed sites; 100 to 2,200 feet</td>
<td>Highly unlikely; no known nearby populations (population in Chuckwalla Valley misidentified)/Not Observed</td>
</tr>
<tr>
<td>Cove’s Cassia (Senna covesii)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Dry washes and slopes in Sonoran Desert Scrub, 1,600 to 1,900 feet</td>
<td>Possible, but elevations may be too low/Not Observed</td>
</tr>
<tr>
<td>Crucifixion Thorn (Castela emoryi)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Mojavean and Sonoran Desert Scrubs; typically associated with drainages</td>
<td>Unlikely/Not Observed</td>
</tr>
<tr>
<td>Desert Sand-parsley (Ammoselinum giganteum)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Sonoran Desert Scrub; known from one site, near Hayfield Dry Lake at 1,200 feet</td>
<td>Highly unlikely, but possible/ Not Observed</td>
</tr>
<tr>
<td>Desert Unicorn Plant (Proboscidea althaeifolia)</td>
<td>---</td>
<td>---</td>
<td>4</td>
<td>Sandy areas in Sonoran Desert Scrub throughout southeastern California, below 3,300 feet</td>
<td>Observed during Surveys</td>
</tr>
<tr>
<td>Dwarf Germander (Teucrium cubense depressum)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Sandy soils, washes, fields; below 1,300 feet</td>
<td>Possible/Not Observed</td>
</tr>
<tr>
<td>Flat-seeded Spurge (Chamaesyce platysperma)</td>
<td>---</td>
<td>---</td>
<td>1B</td>
<td>Sandy flats and dunes in Sonoran Desert Scrub; below 350 feet</td>
<td>Possible/Not Observed</td>
</tr>
<tr>
<td>Foxtail Cactus (Coryphantha alversonii)</td>
<td>---</td>
<td>---</td>
<td>4</td>
<td>Primarily rocky substrates between 250 and 4,000 feet in Creosote Bush Scrub</td>
<td>Possible/Not Observed</td>
</tr>
<tr>
<td>Glandular Ditaxis (Ditaxis claryana)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Sandy flats in Mojavean and Sonoran Creosote Bush Scrubs in Imperial, San Bernardino, and Riverside counties; below 1,500 feet</td>
<td>Possible/Not Observed</td>
</tr>
<tr>
<td>Harwood’s Milkvetch (Astragalus insularis var. harwoodii)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Dunes and windblown sands below 1,200 feet, east and south of approximately Desert Center</td>
<td>Observed during Surveys</td>
</tr>
<tr>
<td>Harwood’s Phlox (Eriastrum harwoodii)</td>
<td>---</td>
<td>---</td>
<td>1B</td>
<td>Desert slopes below 7,000 feet., eastern Riverside and San Bernardino Counties</td>
<td>Possibly Observed during Zone of Influence (ZOI) Surveys; however no flower to positively ID</td>
</tr>
<tr>
<td>Jackass Clover (Wislizenia refracta var. refracta)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Sandy washes, roadsides, flats; 1,900 to 2,700 feet</td>
<td>Unlikely - elevations too low on the site/ Not Observed</td>
</tr>
<tr>
<td>Las Animas Colubrina (Colubrina californica)</td>
<td>---</td>
<td>---</td>
<td>2</td>
<td>Sonoran Desert Creosote Bush Scrub, < 3,300 feet</td>
<td>Observed North of Project area during ZOI Surveys</td>
</tr>
<tr>
<td>Mesquite Neststraw (Stylocline somorensis)</td>
<td>---</td>
<td>---</td>
<td>1A</td>
<td>Open sandy drainages; known from one site near Hayfield Spring</td>
<td>Highly unlikely/Not Observed</td>
</tr>
<tr>
<td>Species</td>
<td>Federal</td>
<td>Status[^1]</td>
<td>CNPS[^2]/Other</td>
<td>Habitat</td>
<td>Likelihood of Occurrence on the Project Site/Observed during Surveys</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Orocopia Sage**
(*Salvia greatae*) | --- | BLM Sensitive | 1B | Mojavean and Sonoran Desert Scrubs; gravelly/rocky bajadas, mostly near washes; below 3,000 feet | Unlikely/Not observed |
| **Pink Fairy Duster**
(*Calliandra eriophylla*) | --- | --- | 2 | Sonoran Desert scrub; washes | Possible/Not observed |
| **Sand Evening Primrose**
(*Camissonia arenaria*) | --- | --- | 2 | Sandy washes and rocky slopes below 1,300 feet | Possible/Not observed |
| **Slender Woolly-heads**
(*Nemacaulis denudate* var. *gracilis*) | --- | --- | 2 | Dunes in coastal and Sonoran Desert scrub, primarily in the Coachella Valley; below 1,500 feet | Possible/Not observed |
| **Spearleaf**
(*Matelea parvifolia*) | --- | --- | 2 | Rocky ledges and slopes, 1,000 to 6,000 feet, in Mojave and Sonoran Desert Scrubs | Unlikely; no habitat/Not observed |
| **Spiny Abrojo**
(*Condalia globosa* var. *pubescens*) | --- | --- | 4 | Sonoran Creosote Bush Scrub; 500 to 3,300 feet | Possible/Not observed |
| **Wiggins’ Cholla**
(*Cylindropuntia wigginsii*) | --- | --- | 3 | Sonoran Creosote Bush Scrub; 100 to 2,900 feet | Possibly observed during surveys |

Amphibians

<table>
<thead>
<tr>
<th>Species</th>
<th>Federal</th>
<th>Status[^1]</th>
<th>CNPS[^2]/Other</th>
<th>Habitat</th>
<th>Likelihood of Occurrence on the Project Site/Observed during Surveys</th>
</tr>
</thead>
</table>
| **Couch’s Spadefoot**
(*Scaphiopus couchii*) | --- | SC | --- | Various arid communities in extreme southeastern California and east, south | Possible/Not observed |

Reptiles

<table>
<thead>
<tr>
<th>Species</th>
<th>Federal</th>
<th>Status[^1]</th>
<th>CNPS[^2]/Other</th>
<th>Habitat</th>
<th>Likelihood of Occurrence on the Project Site/Observed during Surveys</th>
</tr>
</thead>
</table>
| **Colorado Desert Fringe-toed Lizard**
(*Uma notata*) | --- | SC | --- | Restricted to aeolian sandy habitats in the Sonoran Desert | Possible hybrids with *U. scoparia* Possibly observed |
| **Desert Rosy Boa**
(*Charina trivirgata gracilis*) | --- | --- | --- | Rocky uplands and canyons; often near stream courses | Unlikely due to lack of habitat/Not observed |
| **Mojave Fringe-toed Lizard**
(*Uma scoparia*) | --- | SC | --- | Restricted to aeolian sandy habitats in the Mojave and northern Sonoran deserts | Observed during surveys |
| **Desert Tortoise**
(*Gopherus agassizii*) | T | T | --- | Most desert habitats below approximately 5,000 feet in elevation | Carcass, carcass fragments, burrows, and tracks only observed during surveys |

Birds

<table>
<thead>
<tr>
<th>Species</th>
<th>Federal</th>
<th>Status[^1]</th>
<th>CNPS[^2]/Other</th>
<th>Habitat</th>
<th>Likelihood of Occurrence on the Project Site/Observed during Surveys</th>
</tr>
</thead>
</table>
| **American Peregrine Falcon**
(*Falco peregrinus anatum*) | Delisted | E | Fully Protected | Dry, open country, including arid woodlands; nests in cliffs | Possible forager on site, may nest in adjacent mountains/Not observed |
| **Bendire’s Thrasher**
(*Toxostoma bendirei*) | BCC | SC | --- | Arid to semi-arid brushy habitats, usually with yuccas, cholla, and trees | Unlikely/Not observed |
| **Burrowing Owl**
(*Athene cunicularia*) | BCC | SC | --- | Open, arid habitats | Observed during surveys |
| **Crissal Thrasher**
(*Toxostoma crissale*) | BCC | SC | --- | Dense mesquite and willows along desert streams and washes | Highly unlikely due to lack of habitat/Not observed |
| **Ferruginous Hawk**
(*Buteo regalis*) | BCC | - | --- | Arid, open country | Observed incidentally |
| **Golden Eagle**
(*Aquila chrysaetos*) | BCC | SC | Fully Protected | Open country; nests in large trees in open areas or cliffs | Possible forager on site, may nest in adjacent mountains/Not observed |
| **Loggerhead Shrike**
(*Lanius ludovicianus*) | BCC | SC | --- | Arid habitats with perches | Observed during surveys |
| **Mountain Plover**
(*Charadrius montanus*) | BCC | SC | --- | Dry upland habitats, plains, bare fields | Highly unlikely, but possible winter visitor on Ford Dry Lake and adjacent shore |

[^1]: BCC: Best Candidate Species; SC: State Candidate Species; BLM Sensitive: Bureau of Land Management Sensitive Species; T: Threatened; E: Endangered; F: Fully Protected; D: Delisted; |
[^2]: CNPS: California Native Plant Society
<table>
<thead>
<tr>
<th>Species</th>
<th>Federal</th>
<th>Status(^1) State</th>
<th>CNPS(^2)/Other</th>
<th>Habitat</th>
<th>Likelihood of Occurrence on the Project Site/Observed during Surveys</th>
</tr>
</thead>
</table>
| **Northern Harrier**
(*Circus cyaneus*) | --- | SC | | Open habitats; nests in shrubby pen land and marshes | Observed during surveys |
| **Short-eared Owl**
(*Asio flammeus*) | --- | SC | | Open habitats: marshes, fields; nests on ground and roosts on ground, low poles | Observed during Surveys |
| **Yellow-breasted Chat**
(*Icteria virens*) | --- | SC | | Dense streamside thickets, willows; brushy hillsides and canyons | Highly unlikely due to lack of habitat, but possible transient/ Not observed |
| **Mammals** | | | | | |
| **American Badger**
(*Taxidea taxus*) | --- | SC | | Many habitats | Observed (burrow only) |
| **Arizona Myotis**
(*Myotis occultus*) | --- | SC | WBWG:M | Lowlands of the Colorado River and adjacent mountain ranges, up to ponderosa pine habitat; mines, buildings, bridges, riparian woodlands, often near water | Unlikely/Not observed* |
| **Big Free-tailed Bat**
(*Nyctinomops macrotis*) | --- | SC | WBWG:M | Cliffs and rugged rocky habitats in arid, country, also riparian woodlands | Possible forager on site, especially near mountains/Not observed* |
| **Burro** | --- | --- | Protected | Various habitats near water | Unlikely/Not observed |
| **Burro Deer**
(*Odocoileus hemionus eremicus*) | --- | Game | Species | Arboreal and densely vegetated drainages | Possible |
| **Californial Leaf-nosed Bat**
(*Macrotus californicus*) | --- | SC | WBWG:MH | Lowland desert associate, found in caves, mines, tunnels and old buildings | Unlikely/Not observed* |
| **Colorado Valley Woodrat**
(*Neotoma albicula venusta*) | --- | --- | | Under mesquite in creosote bush scrub; southeastern California | Unlikely due to lack of habitat/Not observed |
| **Nelson’s Bighorn Sheep**
(*Ovis canadensis nelsoni*) | BLM Sensitive | | | In mountains and adjacent valleys in desert Scrub | Possible in Palen and McCoy Mountains/Not observed |
| **Pallid Bat**
(*Antrozous pallidus*) | --- | SC | WBWG:H | Several desert habitats | Possible/Not observed |
| **Pocketed Free-tailed Bat**
(*Nyctinomops femorosaccus*) | --- | SC | WBWG:M | Variety of arid areas in pinyon-juniper woodland, desert scrub, palm oases, drainages, rocky areas | Possible in the McCoy Mountains/Not observed* |
| **Southwestern Cave Myotis**
(*Myotis velifer brevis*) | BLM Sensitive | | WBWG:M | Caves, mines and buildings in lower desert scrub habitats; also near streams and in woodlands, old ag fields | Unlikely /Not observed* |
| **Spotted Bat**
(*Euderma maculatum*) | BLM Sensitive | | WBWG:H | Arid scrub and grasslands, to coniferous forests, roosts in cliffs, Forages along waterways | Unlikely/Not observed* |
| **Townsend’s Big-eared Bat**
(*Corynorhinus townsendii*) | --- | SC | WBWG:H | Broad habitat associations. Roosts in caves and manmade structures; feeds in trees | Possible/Not observed* |
| **Western Mastiff Bat**
(*Eumops perotis californicus*) | BLM Sensitive | | WBWG:H | Cliffs, trees, tunnels, buildings in desert scrub | Possible/Not observed* |
| **Yuma Myotis**
(*Myotis yumanensis yumanensis*) | BLM Sensitive | | WBWG:LM | Several habitat associations, but typically near open water; often roosts in manmade structures | Unlikely/Not observed* |
| **Yuma Puma**
(*Felis concolor browni*) | BLM Sensitive | | SC | Colorado River bottomlands | Possible/Not observed |
No bats were observed; however, focused bat surveys were not conducted.

1 California Department of Fish and Game Wildlife and Habitat Data Analysis Branch, 2009, http://www.dfg.ca.gov/biogeodata/cnddb/pdfs/SPAnimals.pdf

<table>
<thead>
<tr>
<th>Code</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Endangered</td>
</tr>
<tr>
<td>T</td>
<td>Threatened</td>
</tr>
<tr>
<td>BCC</td>
<td>USFWS Bird of Conservation Concern</td>
</tr>
<tr>
<td>State SC</td>
<td>CDFG Species of Special Concern (species that appear to be vulnerable to extinction)</td>
</tr>
<tr>
<td>Fully Protected</td>
<td>Species that cannot be taken without authorization from the Fish and Game Commission</td>
</tr>
<tr>
<td>BLM Sensitive</td>
<td>Species under review, rare, with limited geographic range or habitat associations, or declining. BLM policy is to provide the same level of protection as USFWS candidate species</td>
</tr>
</tbody>
</table>

WBWG = Western Bat Working Group (http://wbwg.org)

- H – High Priority – These species should be considered the highest priority for funding, planning, and conservation actions.
- M – Medium Priority – These species warrant closer evaluation, more research, and conservation actions of both the species and the threats
- L – Low Priority – Most of the existing data support stable populations of the species and that the potential for major changes in status is unlikely

List 1A - Plants presumed extinct in California
List 1B - Plants rare and endangered in California and elsewhere
List 2 - Plants rare and endangered in California but more common elsewhere
List 3 - Plants about which CNPS needs more information
List 4 - Plants of limited distribution
(Note: CNPS lists 1 and 2 require CEQA consideration.)
4.3 2009 Field Surveys

During March and April 2009, biologists conducted comprehensive botanical and wildlife surveys of the 4,640-acre ROW, plus zones of influence (ZOI) surveys up to 1 mile surrounding the Project area. Two proposed linear facility routes and ZOIs were also surveyed. The linear facility routes proposed at the time of surveys have since changed and will be surveyed at a later date; the formerly proposed linear route that was surveyed is shown on Figure 2. Lengths of the access road, transmission line, and gas pipeline are those of the currently proposed linear routes, portions of which have not yet been surveyed for biological resources. Collectively, the 4,640-acre ROW, linear facility routes, and ZOIs are hereafter referred to as the survey area. The following survey methods were reviewed and agreed to by the CEC, BLM, USFWS, and CDFG prior to conducting surveys. The sections below describe the field methods used during the surveys. Examples of survey data sheets are in Appendix A.

4.3.1 Vegetation Communities and Habitat Survey

In addition to loosely delineating vegetation communities and evaluating habitat during the 2007 reconnaissance survey, vegetation communities were described and mapped during the spring 2009 biological surveys. Surveyors recorded all vegetation communities and habitats determined by the BLM to be sensitive or otherwise special, including Desert Dry Wash Woodland, Sand Dunes, Chenopod Scrub, and Playa.

4.3.1.1 Special-Status Plant Species

Botanical surveys were conducted on March 17 – 25 and April 6 – 13, 2009, to coincide with the growing season when optimum conditions for identification (generally blooms, fruits, and leaves) were present. Survey areas were chronologically prioritized within these survey dates to ensure that the vegetative communities that could host special-status plants were surveyed at the appropriate phenological time, when those species were available for identification. Winter rains in 2008/2009 resulted in slightly better than average germination and flowering of annual forbs, aiding in species identification. Surveys were conducted in accordance with CNPS (2001) and CDFG (2000) survey guidelines for rare plants and sensitive communities. Because of the intensity of the desert tortoise surveys (100 percent coverage at 30-foot intervals), botanical surveys were conducted concurrently with desert tortoise surveys.

Surveyors were given a pre-survey training session to become familiarized with all special plants that could occur in the area. This included visits to local reference populations of reasonably accessible species prior to commencing surveys to become familiar with the species and microhabitat preferences and to establish a search image. Reference populations were verified for the following plant species: California ditaxis (Ditaxis serrata var. californicus), desert unicorn plant (Proboscidea althaeifolia, seed pod only), foxtail cactus (Coryphantha alversonii), and Harwood’s milkvetch (Astragalus insularis var. harwoodii). A known population of dwarf germander (Teucrium cubense depressum) was sought, but no plants could be found. These visits also assisted in determining if the species had germinated and would be present at the time of surveys. Surveyors were also equipped with plant descriptions, keys to identify plants to the subspecies level, and pictures of each special status plant species with the potential to occur within the survey area. All native and non-native plant species encountered were recorded and identified to the extent necessary to determine their rarity or status using relevant publications (e.g., Baldwin et al. 2002, Gowen 2008). Vegetative communities were classified based on biotic and abiotic features.
Figure 5a. CNDDB Special Status Plant Occurrences within 10 mi of the Genesis Solar Energy Project

Legend
CNDDB Record Common Name
- Abram's spurge
- Coachella Valley milk-vetch
- Emory's crucifixion-thorn
- Hamood's milk-vetch
- Las Animas colubrina
- dwarf germander
- glandular ditaxis
- jackass-clover
- Blythe Energy Project Transmission Line
- Proposed Transmission Interconnect
- Proposed Gas Line
- Proposed Access Road
- Project Site
- 10 Mile Site Buffer

Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, CA Dept. of Fish and Game
Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, CA Dept of Fish and Game

Figure 5b. CNDDB Special Status Wildlife Occurrences within 10 mi of the Genesis Solar Energy Project
4.3.1.2 Cacti, Yucca, and Trees

Cacti, yucca, and trees protected by the CDNPA were inventoried and counted using a stratified sampling technique. The site was stratified into six areas based on habitat type (including plant communities, topography, soils, substrates, and drainage) and geographically (Figure 6). Transects within each area were surveyed to census all cacti, yucca, and trees. These transects included six 0.405-acre plots, plus the quality control plots (see Section 4.3.2.1 Desert Tortoise). Total species counts in each censused transect were then applied to the area to provide the total number of each protected species on the site as well as distribution.

4.3.1.3 Non-Native Plants

Invasive plants are any non-native plant species that are injurious to the public health, agriculture, recreation, wildlife habitat, or the biodiversity of native habitats. The California Invasive Plant Council (Cal-IPC) categorizes invasive plants as high, moderate, or limited according to the severity of their ecological impact (Cal-IPC 2006). Invasive plants classified as high consist of species that have severe ecological impacts on physical processes, plant and animal communities, and vegetation structure; and have a moderate to high rate of dispersal and establishment. Those classified as moderate consist of species that have substantial and apparent (but not severe) ecological impacts, and have a moderate to high rate of dispersal and establishment; however, establishment is generally dependent upon a disturbance regime such as soil disruption or fire. Those classified as limited consist of species that are invasive, but their ecological impacts are minor on a state-wide level. Dispersal and establishment of species classified as limited are generally low to moderate. These classifications are based on cumulative state-wide trends and can vary at local scales; this means that a species classified as limited may be more invasive on a local scale than a species classified as high, depending on local conditions (Cal-IPC 2006). Therefore, all plants Cal-IPC classified invasive, even those classified as limited, can potentially impact a local ecosystem. All invasive plant species were inventoried during the biological field surveys. Concentrations of invasive species were mapped and described.

4.3.2 Wildlife Surveys

Comprehensive wildlife surveys were completed in March and April 2009 for most species in Table 2 or their habitat in Project-affected areas that each special-status species might inhabit.

4.3.2.1 Desert Tortoise

Desert tortoise surveys were conducted in accordance with USFWS protocols (1992) and CEC guidelines (2007) by qualified field biologists (Appendix B) on March 17 – 25 and April 6 – 13, 2009. Although the timing requirement for the protocol surveys is March 25 to May 31, the USFWS Carlsbad field office permitted tortoise surveys to commence on March 16, based on data identifying that tortoises are active in the Project area in March (T. Engelhard, pers. comm. March 18, 2009).

At the time of the surveys, the Project area had not been finalized; therefore, 100 percent of the 4,640-acre requested ROW, including the proposed routes for the linear facilities, was surveyed using 30-foot-wide belt transects. A single 30-foot-wide ZOI transect was walked at 100, 300, 600 (see Section 4.3.2.3 Burrowing Owl, below), 1,200, and 2,400 feet from the ROW boundary. Additionally, a ZOI transect was surveyed at 3,960 and 5,280 feet (from the ROW boundary only) to comply with CEC data requirements (CEC 2007). Linear facility surveys assumed a 420-foot ROW width to allow for flexibility in siting project components and ZOI transects were conducted out to 2,400 feet (transect spacing was as described above). All tortoise sign (scat,
burrows, tortoise, tracks, carcasses, etc.) and all sightings of common ravens, other known
tortoise predators, and other site features that could assist in the analysis of tortoise population
impacts were recorded and mapped using a handheld global positioning system (GPS) unit. A
quality control survey was conducted at six, 37-acre plots within the ROW and one location on
the linear route using 10-foot-wide belt transects. Plots were geographically separated to ensure
sampling of all habitats present.

4.3.2.2 Mojave Fringe-Toed Lizard

Surveys for the Mojave fringe-toed lizard (*Uma scoparia*) were conducted in suitable sandy
habitats concurrently with desert tortoise surveys. Survey methods are identical to those
outlined in Section 4.3.2.1. All fringe-toed lizards, including Colorado fringe-toed lizards (*U.
notata*) and possible hybrids were identified to species when possible, recorded, and mapped
using a handheld GPS unit.

4.3.2.3 Burrowing Owl

California Burrowing Owl Consortium (CBOC) Guidelines (CBOC 1993) include three survey
phases, each following the previous based on the latter’s results. To assess the presence of
burrowing owl within the Project area, a Phase I: Habitat Assessment was completed in
December 2007 during the reconnaissance survey. Because burrowing owls were detected
during the Phase I survey, a Phase II: Burrow Survey was conducted to locate burrows and
owls in suitable burrowing owl habitat within the Project area. Subsequently, because the
Project area contained burrows, Phase III: Owl Presence surveys were conducted during the
breeding season (February 1 to August 31) to determine if, when, and how burrowing owls were
utilizing the area. During all three phases, owl sightings and observed sign were recorded and
mapped using a handheld GPS unit.

The Phase II surveys were concurrent with desert tortoise surveys on March 17 – 25 and April 6
– 13, 2009. The CBOC guidelines suggest a buffer transect (functionally equivalent to the desert
tortoise ZOI transect) every 100 feet out to 500 feet from the Project boundary for the Phase II
surveys. These buffer transects at 100 and 300 feet coincided with Project ZOI transects for the
desert tortoise at 100 and 300 feet. Two additional buffer transects were added at 200 and 400
feet. Normally, desert tortoise surveys are conducted at 600 feet; however, to meet the
burrowing owl requirement for a buffer transect at 500 feet, the desert tortoise ZOI was moved
to 500 feet with permission from the CEC, BLM, USFWS, and CDFG.

Phase III surveys were conducted from 1 hour before sunrise to 2 hours after sunrise on April
11, April 13, May 29, and May 30, 2009, and from 2 hours before sunset to 1 hour after sunset
on April 10, April 11, May 28, and May 29, 2009. Survey locations were chosen using the
locations of owl sightings and burrow locations identified during Phase I and II surveys. The
CBOC guidelines suggest that if no burrowing owls are observed during the Phase III surveys, a
wintering survey should be conducted between December 1 and January 31. No burrowing owls
were observed during the Phase III surveys, and therefore winter surveys will be conducted
during the 2009/2010 or they will be replaced with a pre-construction clearance survey of site
footprint and linear facility routes. The results of the pre-construction survey will fulfill the
purpose of the Phase III winter survey and simultaneously provide data relative to then-current
burrowing owl occupation of the site and necessary on-site mitigation strategies. Clearance
surveys will be conducted within 30 days prior to the commencement of construction. Approval
for deviation from the recommended CBOC guidelines was obtained from the CEC, BLM,
USFWS, and CDFG prior to commencing surveys.
Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, USDA

Figure 6
Cactus, Yucca, and Tree Sampling Area
4.3.2.4 Avian Point Count Surveys

Avian point count surveys were conducted according to a protocol set forth by the BLM dated March 9, 2009, and revised via email on March 24, 2009 (C. Otahal, pers. comm.). Point count surveys were conducted on March 21 – 24, 27, 29, 30, and April 4 – 7 and 11 – 13, 2009. One point count transect was located in each square mile of the ROW for a total of seven transects (Figure 7). Specific transect locations were chosen based on habitat characteristics where the highest density of avian species was likely to occur. Each transect consisted of eight point count locations spaced 820 feet (250 meters) apart with a 328 feet (100 meters) survey radius. Point count surveys were conducted for each transect 1 day a week for 4 weeks between March and April. Protocol called for point counts to be conducted between 0500 and 0900; however, due to logistics and poor access to transect locations, point counts were conducted between 0730 and 0950, except for two transects, which were conducted between 1045 and 1145. Additional point count surveys to identify wintering birds will be conducted using identical methodology between November and January.

4.3.2.5 Other Special-Status Wildlife

Other special-status wildlife surveys and wildlife inventories were conducted concurrent with tortoise surveys. All observations of special-status wildlife species within 1 mile of the Project boundary and within 2,400 feet of the centerline of proposed linear facilities were included when compiling and mapping survey results. All non-game mammals are protected by CDFG; therefore, kit fox (Vulpes macrotis) complexes (natal dens or burrow complexes with three or more entrances) were recorded and mapped. To inventory nocturnal rodents and the raptor/burrowing owl prey base, small-mammal trapping (100 traps per night) was conducted on April 8, 11, 12 and June 7, 8, 9, 2009, in two locations on each side of the Project area. Any artificial or temporary water catchments that could serve as breeding pools for Couch’s spadefoot toad were identified. Surrounding natural and anthropogenic features (e.g., water bodies, cliffs) that could funnel migrants or serve as major avian roosting sites; wildlife corridors; and bat roosting and hibernacula were also identified and mapped.

5.0 SURVEY RESULTS AND DISCUSSION

5.1 General Site Characteristics

The survey area is characterized by sheet flow hydrology, which is particularly heavy in the western portion of the survey area where water flow off the two surrounding mountain ranges coalesces. Shallow channels (runnels), typically approximately one yard or less wide and one-to-few inches deep, form a network of ephemeral drainages across the Project that rarely flow and often fail to provide through-flow to larger drainages. Occasional, well-defined washes are present in the western portion of the survey area and along the southern portion of the surveyed linear facility route north of I-10. There are no springs, seeps, wetlands, streams, or impoundments within the Project area. Field surveys to analyze surface waters were conducted separately from biological resource surveys. Detailed survey results can be found in Delineation of Waters for the Genesis Solar Energy Project (Tetra Tech EC, Inc. 2009).

Within the survey area where Sonoran Creosote Bush Scrub occurs, soils are generally soft sandy-loams and loamy-sands, with scattered to 90 percent cover of fine gravel. Broad patches of well-developed, large-gravel desert pavement characterize the western portion of the survey area and are scattered (and less well-developed) throughout the central portion of the survey area. Where Ford Dry Lake nears the southeastern portion of the ROW and the linear facility
routes (north of I-10), soils are much finer than elsewhere in the survey area. Also in this area, sand is patchily and shallowly deposited over the surface and there many small sinks.

5.2 Vegetation Community and Habitat Survey

Five vegetation communities occur within the survey area; however, there are only two main vegetation communities found within the Project area: Sonoran Creosote Bush Scrub and Stabilized and Partially Stabilized Sand Dunes (see Holland 1986, Figure 3). Chenopod Scrub, Desert Dry Wash Woodland, and Playa communities were not present within the Project area (Section 5.2.2). The characteristics of the two communities found within the Project area are described in detail below. Representative photographs of each plant community can be found in Appendix C.

Sonoran Creosote Bush Scrub

The deserts of southeastern California are extensively covered by creosote bush scrub (Holland 1986), which is recognized by the dominance of creosote bush *Larrea tridentata* and the lack of trees. Creosote bush scrub communities typically consist of widely scattered shrubs, 1.5 to 10 feet tall, with bare ground between the plants. Sonoran Creosote Bush Scrub, a subset of creosote bush scrub communities, occurs mainly on well-drained secondary soils of slopes, fans, and valleys rather than on sites with thin residual spoils or areas of high soil salinity (Holland and Keil 1995). The dominant shrub species in this vegetation community are creosote bush, white bursage *Ambrosia dumosa*, brittlebush *Encelia farinosa*, white rhatany *Krameria grayi*, and cheesebush *Ambrosia [=Hymenoclea] salsola*. Growth occurs during spring and many species of ephemeral herbs may flower in late March and April if the winter rains are sufficient. Other less numerous species of annuals appear following summer thundershowers.

The shrub cover is low, approximately 10-15 percent within the surveyed area of Sonoran Creosote Bush Scrub community, and the shrub community varies due to hydrology and slope. Runnels are more densely populated by creosote bush and white bursage as well as brittlebush, cheesebush, and white rhatany; big galleta grass *Pleuraphis [=Hilaria] rigida* is patchily common in these drainages. Ironwood *Olneya tesota* and palo verde *Cercidium floridum* are scattered in the occasional well-defined washes and in the heavy sheet flow area in the western portion of the ROW. Common understory species include plantain *Plantago ovata*, pebble pincushion flower *Chaenactis carphoclinia*, forget-me-not *Cryptantha spp.*, desert sunflower *Geraea canescens*, peppergrass *Lepidium lasiocarpum*, and stiff-haired lotus *Lotus strigosus* (Appendix D).

Stabilized and Partially Stabilized Sand Dunes

Stabilized and Partially Stabilized Sand Dunes are areas of fine, windblown sand accumulations stabilized by shrubs, perennial grasses, and sand-adapted annual plants (Holland 1986). Desert dunes typically occur within creosote bush scrub communities where sand that has been deposited by wind or water accumulates over millennia. Sand dunes readily absorb water and can retain water below the surface. These conditions are suitable for plants that have deep root systems that are able to take advantage of the retained water.

A heterogeneous mixture of Stabilized and Partially Stabilized Sand Dunes is located in the southeastern portion of the 4,640-acre ROW along portions of the linear facility route (Figure 3). There are also sandy areas present south of I-10 that overlap with the surveyed linear route. These areas contain low dune formations of fine sand that contain widely spaced perennial shrubs. Dominant shrubs include creosote bush, white bursage, and galleta grass. Several sand-associated and other annuals are also abundant (e.g., sand verbena *Abronia villosa*,...
Figure 7.
Avian Point Count Locations

Legend
- Avian Point Count Location
- Blythe Energy Project Transmission Line
- Previously Proposed Linear Route
- Proposed Transmission Interconnect
- Proposed Gas Line
- Proposed Access Road
- Project Site
- Township (Meridian 27, SE)

Notes:
(a) UTM Zone 11, NAD 1983 Projection
(b) Source data: ESRI, BLM
birdcage primrose (*Oenothera deltoides*), desert marigold (*Baileya pauciradiata*), and narrow-leaved forget-me-not (*Cryptantha angustifolia*). Although there are no coarse particles in the substrate of the dunes, the areas between the dunes that contain more shrubs may be partially stabilized by a light gravel layer.

Shrub cover decreases from 10 to 15 percent in the Sonoran Creosote Bush Scrub communities to 2 to 5 percent in the Stabilized and Partially Stabilized Sand Dunes. The shrub cover continues to decrease closer to Ford Dry Lake (playa). Between the Stabilized and Partially Stabilized Sand Dunes and Ford Dry Lake there is a transition zone where there are intermittent sand drifts over the outer edges of the playa (Figure 3). Edges of the ROW, as well as portions of the linear facility route, overlap these areas where the sand layer is shallow and deposited over sinks (small playas).

5.2.1 Special-Status Plant Species

No federally or state-threatened, endangered, or candidate plant species were identified within the Project survey area during field surveys; however, five CNPS-listed plants were found during surveys. Of the five CNPS-listed plants found, three were found within the Project area and are likely to be impacted by Project development: desert unicorn plant (75 seed pods, 1 individual), Harwood's milkvetch (21 individuals), and Wiggins' cholla (*Cylindropuntia wigginsii*, 109 individuals) (Figure 8). One Harwood's phlox (*Eriastrum harwoodii*) and one Las Animas colubrina (*Colubrina californica*) were found approximately 1 mile west and north of the ROW boundary, respectively. Because neither of these plants were found within the Project area, it is unlikely that these two species impacted by Project development.

Two of the species found, Wiggins’ cholla and Harwood’s phlox, could not be positively identified. Wiggin’s cholla is a possible hybrid (see below), and definitive identification by physical characteristics and geographic range is unreliable. Harwood’s phlox was unable to be positively identified because it was dried and lacked flowers.

Desert Unicorn Plant

This perennial herb grows on deep, alluvial sands in Sonoran Desert Scrub habitat (Reiser 1994), at elevations below 3,300 feet. It typically flowers between July and September after substantial summer rains. It has a fleshy root system that can remain dormant in dry years. Although only one plant was found during surveys, the number of seed pods found suggests that this species is present in the Project area would likely germinate when growing conditions are suitable. Habitat for this species is present along the southern end of the linear facility routes, on both sides of I-10.

Harwood’s Milkvetch

This annual herb grows in dunes and windblown sand in Mojave and Sonoran Creosote Bush Scrub, at elevations of 300 to 1,200 feet (Munz and Keck 1968, Hickman 1993). It blooms from February to May. This species was found in higher concentrations along the sandy areas of the proposed linear facility route, although two specimens were found within the proposed facility footprint. Habitat for Harwood’s milkvetch exists in the sandy areas along the linear facility routes (Figure 3, Figure 8).

Wiggins’ Cholla

This perennial, shrubby cactus grows on sandy soils in Sonoran Desert Scrub (Reiser 1994) at elevations below 2,900 feet. It is thought to be a hybrid of pencil cholla (*Opuntia ramosissima*)
and silver cholla (O. echinocarpa). Although it could not be identified to species, habitat for this cholla is present throughout the Project area.

5.2.2 Sensitive Plant Communities

NECO sensitive plant communities that occur in the Project region include Sand Dunes, Desert Chenopod Scrub, Desert Dry Wash Woodland and Playa. Sand Dunes overlap the Project area and are discussed in Section 5.1 Vegetation and Habitat Survey, above. No Chenopod Scrub, Desert Dry Wash Woodland, or Playa is located within the Project area; however, both communities exist to the northeast and east (Desert Dry Wash Woodland), south, near the dry lake bed (Chenopod Scrub), and south (Playa) of the ROW (Figure 3). Because these 3 communities are outside of the Project area, they would not be impacted by Project development.

5.2.3 Cacti, Yucca, and Trees

Approximately five percent of the study area was surveyed for cacti, yucca, and trees based on a stratified method that resulted in six sampling areas (Figure 6). Cacti and tree species were relatively uncommon within the Project survey area and there were no yucca species observed (Table 3). Zero cacti and zero trees were detected in Areas 4 and 6, resulting in an estimate of zero cacti and trees in this area (Table 3); however, this is likely an underestimation in the number that actually occurs in this area. Conversely, nine ironwood trees were found in Area 5, indicating that 69 ironwood trees occur in this area. This is likely an overestimation of the number of trees in this area. Stratified sampling is a method of sampling a population and may not always be an accurate indicator of how many cacti or trees occur. The numbers presented in Table 3 are meant to provide an estimate only.

Table 3. Cacti, Yucca, and Trees Stratified Sampling Survey Results

<table>
<thead>
<tr>
<th>Description of Area ¹</th>
<th>Habitat</th>
<th>Transect Number ²</th>
<th>Survey Counts</th>
<th>Total Acreage of Each Area</th>
<th>Estimated Number of Cacti and Trees per Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cacti ³</td>
<td>Trees</td>
<td></td>
</tr>
<tr>
<td>Area 1</td>
<td>Desert pavement areas of the western ROW</td>
<td>Transect 1 [QC]</td>
<td>1 Beavertail Cactus</td>
<td>3 Wiggins' Cholla</td>
<td>732.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transect 2 [C]</td>
<td>0 Palo Verde</td>
<td>D N T R (W)</td>
<td></td>
</tr>
<tr>
<td>Area 2</td>
<td>Open creosote bush scrub with little desert pavement, found on most of the western area of the ROW</td>
<td>Transect 3 [QC]</td>
<td>3 Wiggins' Cholla</td>
<td>0</td>
<td>1,165.80</td>
</tr>
<tr>
<td>Area 3</td>
<td>Heavy sheet flow area central ROW</td>
<td>Transect 5 [C]</td>
<td>0</td>
<td>0</td>
<td>1,068.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transect 6 [QC]</td>
<td>0</td>
<td>2 Catclaw Acacia</td>
<td></td>
</tr>
<tr>
<td>Area 4</td>
<td>Sparsely vegetated, soft sandy area in eastern ROW</td>
<td>Transect 7 [QC]</td>
<td>0</td>
<td>0</td>
<td>1,036.20</td>
</tr>
<tr>
<td>Area 5</td>
<td>Windblown sandy areas in far eastern ROW</td>
<td>Transect 8 [C]</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Area 6</td>
<td>Sink habitat in southeastern ROW and transmission line route</td>
<td>Transect 9 [QC]</td>
<td>0</td>
<td>9 Ironwood</td>
<td>278.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transect 10 [C]</td>
<td>0</td>
<td>0</td>
<td>201.1</td>
</tr>
</tbody>
</table>

¹ Areas and transect numbers correspond to those on Figure 6.

² QC = Quality Control Survey Plot

³ Positive identification of Wiggins’ cholla (hybrid) based on external characteristics and geography was not reliable.
Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, USDA

Figure 8
Special Status Plants
Observed During Field Surveys

Legend
- Harwood's Milk Vetch
- Las Animas Colubrina
- Wiggins' Cholla [Possible]
- Harwood's Phlox [Possible]
- Desert Unicorn Plant
- Blythe Energy Project Transmission Line
- Previously Proposed Linear Route
- Proposed Transmission Interconnect
- Proposed Gas Line
- Proposed Access Road
- Project Site
- Solar Facility

RESOURCES:

Genesis Solar, LLC
GENESIS SOLAR ENERGY PROJECT
RIVERSIDE COUNTY, CALIFORNIA

Los Angeles Metro Area
San Diego Metro Area
Phoenix
Arizona
Nevada
ENLARGED AREA

Genesis Solar, LLC
Genesis Solar, LLC

Riverside County, California

Harwood's Milk Vetch
Las Animas Colubrina
Wiggins' Cholla [Possible]
Harwood's Phlox [Possible]
Desert Unicorn Plant
Blythe Energy Project Transmission Line
Previously Proposed Linear Route
Proposed Transmission Interconnect
Proposed Gas Line
Proposed Access Road
Project Site
Solar Facility

Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, USDA
5.2.4 Non-Native Plants

Four non-native species were detected during surveys, including Saharan mustard (Brassica tournefortii), tamarisk (Tamarix ramosissima), Russian thistle (Salsola tragus), and Mediterranean grass (Schismus sp.). Saharan mustard and tamarisk are classified as high by the Cal-IPC, whereas Russian thistle and Mediterranean grass are classified as limited by the Cal-IPC. Saharan mustard was widespread throughout the survey area, and contributed to a relatively large portion of the plant biomass. It was located in both Sonoran Creosote Bush Scrub, as well as Stabilized and Partially Stabilized Sand Dunes; with patches of higher concentrations occurring within runnels, along the existing two-track road on the west side of the ROW, and along the linear facility routes. Tamarisk was rare in the survey area, as only a single plant was found in the south of the Project area near the edge of the dry lake bed. Russian thistle is common within the Stabilized and Partially Stabilized Sand Dunes in the eastern portion of the survey area and along the linear facility route. Mediterranean grass was detected throughout the Project area in both vegetation communities.

5.3 Focused Wildlife Surveys

No federally listed wildlife species were found during 2009 surveys; however, sign (burrows, tracks, etc.) was found for the state-threatened desert tortoise. Seven California species of special concern were observed, including Mojave fringe-toed lizard, burrowing owl, loggerhead shrike (Lanius ludovicianus), northern harrier (Circus cyaneus), short-eared owl (Asio flammeus), ferruginous hawk (Buteo regalis), and American badger (Taxidea taxus, burrow only). Tracks of the burro deer (Odocoileus hemionus eremicus), a protected game species, were found in one location south of I-10. The section below describes the detailed survey results for special-status species observed during spring 2009 surveys.

5.3.1 Desert Tortoise

No live tortoises or other signs of recent tortoise presence (e.g., burrows, tracks) were found within the Project area during the 2009 field surveys; however, three burrows were found within the western half of the ROW and one set of tracks was found on the 2,400-foot ZOI (Figure 9). Of the three burrows found, two were Class 3 burrows and one was a Class 5 burrow, indicating that the burrows had not been used at the date of the survey in 2009 (see Appendix E for explanation of tortoise sign classes). No live tortoises or scat were found within the survey area.

Within the entire survey area, surveyors found two partially intact carcasses, 19 bone fragments estimated to be between 10 and 15 years old, and 50 bone fragments estimated to be 3,000 to 5,000 years old (W. Orr, pers. comm. May 15, 2009) (Table 4; Figure 9). The two partially intact carcasses, both estimated to be 4 or more years old, were located outside the western portion of the ROW. Bone fragments were generally parts of single, disarticulated bones, averaging approximately 30 millimeters (mm) in diameter. Those estimated to be between 3,000 and 5,000 years old showed evidence of permineralization, a process in which minerals are deposited into cells of organisms, usually by way of water (W. Orr, pers. comm. May 15, 2009). These fragments could be easily distinguished from the younger bone fragments found because they were heavier, more solid, and most had a slight orange/brown color as opposed to the younger fragments, which were whiter and lighter in color. For the most part, bone fragments were found singly and evenly distributed throughout the surveyed area, with the exception of a slightly higher concentration in the center of the ROW. These slightly higher concentrations are located in areas that could potentially receive increased water runoff from the Palen Mountains, and thus be attributed to distribution by surface flow.
Table 4. Desert Tortoise Sign Found during Spring 2009 Field Surveys

<table>
<thead>
<tr>
<th>Number on</th>
<th>UTM Coordinates</th>
<th>Sign Type</th>
<th>Number of Sign</th>
<th>Age Class*</th>
<th>Survey Date 2009</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 9.</td>
<td>NAD 83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>676877 3729670</td>
<td>Partially intact carcass Tracks</td>
<td>1</td>
<td>>4</td>
<td>8-Apr</td>
<td>approximately 250 mm MCL</td>
</tr>
<tr>
<td>2</td>
<td>684527 3729281</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>8-Apr</td>
<td>fresh tracks; 220 mm wide; toe nail present; <48 hours old</td>
</tr>
<tr>
<td>3</td>
<td>682857 3728946</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>8-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>4</td>
<td>674911 3728719</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>17-Mar</td>
<td>3,000-5,000 years old; adult</td>
</tr>
<tr>
<td>5</td>
<td>682695 3728687</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>19-Mar</td>
<td>3,000-5,000 years old; adult</td>
</tr>
<tr>
<td>6</td>
<td>682542 3728491</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>8-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>7</td>
<td>676755 3728260</td>
<td>Partially intact carcass</td>
<td>1</td>
<td>4</td>
<td>8-Apr</td>
<td>outer scales still present; 170 mm wide x 230 mm MCL</td>
</tr>
<tr>
<td>8</td>
<td>680962 3728232</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>10-Apr</td>
<td>10-15 years old; not hard as other specimens</td>
</tr>
<tr>
<td>9</td>
<td>682294 3728165</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>10-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>10</td>
<td>680853 3728141</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>10-15 Apr</td>
<td>3,000-5,000 years old; adult</td>
</tr>
<tr>
<td>11</td>
<td>682894 3728132</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>12</td>
<td>675283 3728104</td>
<td>Burrow</td>
<td>1</td>
<td>5</td>
<td>18-Mar</td>
<td>330 mm wide (inactive)</td>
</tr>
<tr>
<td>13</td>
<td>682118 3728020</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>10-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>14</td>
<td>681731 3728006</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>8-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>15</td>
<td>682765 3727990</td>
<td>Carcass fragment</td>
<td>3</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old, all 3 bone fragments within 10 m radius</td>
</tr>
<tr>
<td>16</td>
<td>682695 3727959</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>17</td>
<td>684014 3727891</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>18</td>
<td>682548 3727823</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>19</td>
<td>675189 3727734</td>
<td></td>
<td>1</td>
<td>3</td>
<td>18-Mar</td>
<td>320 mm wide</td>
</tr>
<tr>
<td>20</td>
<td>679460 3727687</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>11-Apr</td>
<td>3,000-5,000 years old; adult plastron bone</td>
</tr>
<tr>
<td>21</td>
<td>684227 3727681</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>6-Apr</td>
<td>10-15 years old; adult</td>
</tr>
<tr>
<td>22</td>
<td>680559 3727677</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>10-Apr</td>
<td>3,000-5,000 years old; male plastron</td>
</tr>
<tr>
<td>23</td>
<td>679924 3727671</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>11-Apr</td>
<td>3,000-5,000 years old; 30 mm</td>
</tr>
<tr>
<td>24</td>
<td>684614 3727668</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>6-Apr</td>
<td>single fragment appeared worked over</td>
</tr>
<tr>
<td>25</td>
<td>689136 3727659</td>
<td>Carcass fragment</td>
<td>2</td>
<td>>4</td>
<td>8-Apr</td>
<td>3,000-5,000 years old; adult</td>
</tr>
<tr>
<td>26</td>
<td>682673 3727581</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000 to 5,000 years old</td>
</tr>
<tr>
<td>27</td>
<td>682710 3727531</td>
<td>Carcass fragment</td>
<td>2</td>
<td>>4</td>
<td>7-Apr</td>
<td>2 fragments within 10 m radius</td>
</tr>
<tr>
<td>28</td>
<td>683905 3727512</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>29</td>
<td>684026 3727486</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>30</td>
<td>675911 3727474</td>
<td>Burrow</td>
<td>1</td>
<td>3</td>
<td>17-Mar</td>
<td>290 mm wide</td>
</tr>
<tr>
<td>31</td>
<td>682627 3727456</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>32</td>
<td>676167 3727453</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>17-Mar</td>
<td>2 bone fragments</td>
</tr>
<tr>
<td>33</td>
<td>683817 3727450</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old; adult</td>
</tr>
<tr>
<td>34</td>
<td>680983 3727394</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>19-Mar</td>
<td>juvenile</td>
</tr>
<tr>
<td>35</td>
<td>683904 3727278</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old; adult</td>
</tr>
<tr>
<td>36</td>
<td>682673 3727176</td>
<td>Carcass fragment</td>
<td>7</td>
<td>>4</td>
<td>7-Apr</td>
<td>spread out over sheet flow</td>
</tr>
<tr>
<td>37</td>
<td>684161 3727047</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>6-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>38</td>
<td>685297 3727011</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>6-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>39</td>
<td>683922 3726983</td>
<td>Carcass fragment</td>
<td>2</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>40</td>
<td>682484 3726900</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>8-Apr</td>
<td>10-15 years old</td>
</tr>
<tr>
<td>41</td>
<td>686576 3726867</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>24-Mar</td>
<td>10-15 years old</td>
</tr>
<tr>
<td>42</td>
<td>683743 3726842</td>
<td>Carcass fragment</td>
<td>2</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old; adult</td>
</tr>
<tr>
<td>43</td>
<td>686756 3726840</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>24-Mar</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>44</td>
<td>683985 3726818</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old; adult</td>
</tr>
<tr>
<td>45</td>
<td>684074 3726757</td>
<td>Carcass fragment</td>
<td>2</td>
<td>>4</td>
<td>7-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>46</td>
<td>683938 3726621</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>8-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>47</td>
<td>684176 3726526</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>8-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>48</td>
<td>683972 3726523</td>
<td>Carcass fragment</td>
<td>2</td>
<td>>4</td>
<td>8-Apr</td>
<td>3,000-5,000 years old</td>
</tr>
<tr>
<td>49</td>
<td>686804 3726344</td>
<td>Carcass fragment</td>
<td>1</td>
<td>>4</td>
<td>24-Mar</td>
<td>10-15 years old</td>
</tr>
<tr>
<td>50</td>
<td>687711 3726341</td>
<td>Carcass fragment</td>
<td>2</td>
<td>>4</td>
<td>23-Mar</td>
<td>10-15 years old</td>
</tr>
</tbody>
</table>
The lack of live tortoises and recent tortoise sign detected during surveys, plus the size, older condition, and distribution of the bone fragments, suggest that tortoises do not currently occupy the Project area. The lack of tortoises, scat, and active burrows indicates that the current tortoise population within the survey area is very low to zero. Although two carcasses were found during surveys, both were located on ZOI transects, outside of the ROW and Project area. It is possible that tortoise densities are higher north of the Project area, or that these carcasses were transported into the area by predators.

Quality Control Surveys

The Quality Control (QC) surveys produced mixed results. During the QC surveys, surveyors located 12 desert tortoise bone fragments, whereas only one bone fragment was located during the original survey. The increased number of bone fragments found during QC surveys is most likely due to the more intensive survey methods, as well as to the surveyors becoming more familiar with the Project survey area, and thus more adept at locating the small bone fragments. However, two inactive (Class 3 and Class 5) tortoise burrows that were recorded during the original surveys were not recorded during the QC surveys. This discrepancy may be attributable to the subjective nature of classifying inactive burrows.

5.3.2 Mojave Fringe-Toed Lizard

Thirty-nine fringe-toed lizards were found during surveys, six of which could be positively identified as Mojave fringe-toed lizard (Figure 10). Both the Mojave and Colorado fringe-toed lizards are found only in sand dunes, sand fields, hummocks, and other areas with sand
deposits, between 300 and 3,000 feet in elevation. The Project is located in an area that is adjacent to known habitat for the Colorado fringe-toed lizard, also a California species of special concern (Zeiner et al. 1988-1990) Based on morphological characters seen in lizards that were caught and examined, it is possible that the Colorado fringe-toed lizard could also occur in the Project area and that the two species have hybridized.

5.3.3 Burrowing Owl

The field reconnaissance survey in December 2007 identified suitable burrowing owl habitat in the Project area; one burrowing owl was observed during that survey. During the 2009 biological field surveys two live birds were observed within the survey area, and burrowing owl sign (burrows, whitewash, feathers, and pellets) was observed at several locations throughout the survey area (Figure 11). Recent burrowing owl sign was observed at three locations within the survey area, although no active nests were found. Habitat for this species exists within the entire ROW and along all the surveyed linear facilities routes.

5.3.4 Avian Point Count Surveys

During the avian point count surveys in spring 2009, a total of 336 birds consisting of 17 identified and one unidentified species were recorded at the 120 points (Tables 5 and 6). The most commonly detected birds were the horned lark (*Eremophila alpestris*, 36.1 percent of all birds observed), black-throated sparrow (*Amphispiza bilineata*, 24.7 percent), and cliff swallow (*Hirundo pyrrhonota*, 15.5 percent). Each remaining species comprised 5.4 percent or less of the total number of birds observed. One special-status species, the loggerhead shrike was observed during point count surveys. An additional 18 identified species were observed incidentally (i.e., flying outside of the 100 meter survey radius during point counts) (Table 7), including three California species of special concern: loggerhead shrike, northern harrier, and short-eared owl. Observations of each special-status bird species are summarized below.

Loggerhead Shrike

Loggerhead shrike was observed throughout the survey area during spring 2009 surveys as well as during avian point count surveys. The survey area is considered loggerhead shrike habitat because of the open and relatively low shrub vegetation that also contains taller structures. The latter are used for nesting and as lookout posts to spot potential predators and prey.

Northern Harrier

Northern harrier is thought to be a wintering occupant of the area; however, it was observed during spring 2009 surveys and incidentally during avian point count surveys. Suitable habitat consists of open areas dominated by herbaceous cover, including deserts, coastal dunes, pasturelands/grasslands, estuaries, and salt- and freshwater marshes; therefore, the entire survey area is considered wintering habitat for the northern harrier. The California species of special concern designation refers to breeding only.

Short-eared owl

The short-eared owl is considered a winter resident in southern California; however, it was observed as an incidental during spring avian point count surveys. Suitable habitat consist of open country (typically prairie, grasslands, shrub-steppe, or agricultural lands), which is capable of supporting small mammal populations (Wiggins et al. 2006). The entire survey area is considered wintering habitat for the short-eared owl. The California species of special concern designation refers to breeding only.
Figure 9
Desert Tortoise Sign Observed During Field Surveys

- Notes:
 - (a) UTM Zone 11, NAD 1983 Projection.
 - (b) Source data: ESRI, USDA

Legend
(Reference Table 4)
- Burrow
- Carcass
- Bone Fragments 10-15 years old
- Bone Fragments 3,000 - 5,000 years old
- Tracks
- Extent of Surveyed Area
- Project Site
- Proposed Facility Footprint
- Blythe Energy Project Transmission Line
- Previously Proposed Linear Route
- Proposed Transmission Interconnect
- Proposed Access Road
- Proposed Gas Line

Genesis Solar, LLC
GENESIS SOLAR ENERGY PROJECT
RIVERSIDE COUNTY, CALIFORNIA

Last Saved: Thursday, August 13, 2009 9:06 AM
P:\projects_2005\maps\Genesis_Solar\Tortoise.mxd
Genesis Solar, LLC

GENESIS SOLAR ENERGY PROJECT
RIVERSIDE COUNTY, CALIFORNIA

Legend
- American Badger Burrow
- Burro Deer (Tracks)
- Kit Fox Burrow Complex
- Loggerhead Shrike
- Northern Harrier
- Short-eared Owl
- Mojave and/or Colorado Fringe-toed Lizard

Blythe Energy Project Transmission Line
Previously Proposed Linear Route
Proposed Transmission Interconnect
Proposed Gas Line
Proposed Access Road
Project Site
Solar Facility

Notes:
(a) UTM Zone 11, NAD 1983 Projection
(b) Source data: ESRI, USDA

FIGURE 10
Other Special Status Wildlife Species Sign Observed During Field Surveys

Genesis Solar, LLC
Figure 11. Burrowing Owls and Sign Observed During Field Surveys

Notes:
(a) UTM Zone 11, NAD 1983 Projection.
(b) Source data: ESRI, USDA

Legend
- Owl
- Inactive Burrow
- Active Burrow
- Pellet

- Blythe Energy Project Transmission Line
- Previously Proposed Linear Route
- Proposed Transmission Interconnect
- Proposed Access Road
- Proposed Gas Line
- Project Site
- Solar Facility
Table 5. Avian Species, by Species Grouping, Observed during Spring 2009 Point Count Surveys at the Genesis Solar Energy Project

<table>
<thead>
<tr>
<th>Species Grouping</th>
<th>Overall Rank</th>
<th>Number of Birds</th>
<th>Number of Observations</th>
<th>Mean Use # birds per 10 min. (90% confidence interval)</th>
<th>Frequency % of surveys detected</th>
<th>Percent Composition Group %</th>
<th>Percent Composition Overall %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Songbirds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>horned lark</td>
<td>1</td>
<td>119</td>
<td>81</td>
<td>0.53 (0.43-0.63)</td>
<td>32.6</td>
<td>36.1%</td>
<td>35.4%</td>
</tr>
<tr>
<td>black-throated sparrow</td>
<td>2</td>
<td>83</td>
<td>64</td>
<td>0.37 (0.30-0.44)</td>
<td>27.7</td>
<td>25.2%</td>
<td>24.7%</td>
</tr>
<tr>
<td>cliff swallow</td>
<td>3</td>
<td>52</td>
<td>24</td>
<td>0.23 (0.14-0.32)</td>
<td>10.7</td>
<td>15.8%</td>
<td>15.5%</td>
</tr>
<tr>
<td>northern rough-winged swallow</td>
<td>4</td>
<td>18</td>
<td>11</td>
<td>0.08 (0.04-0.12)</td>
<td>4.9</td>
<td>5.5%</td>
<td>5.4%</td>
</tr>
<tr>
<td>tree swallow</td>
<td>4</td>
<td>17</td>
<td>6</td>
<td>0.08 (0.01-0.15)</td>
<td>2.7</td>
<td>5.2%</td>
<td>5.1%</td>
</tr>
<tr>
<td>loggerhead shrike</td>
<td>6</td>
<td>14</td>
<td>14</td>
<td>0.06 (0.03-0.09)</td>
<td>6.3</td>
<td>4.2%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Brewer’s sparrow</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>0.04 (0.01-0.07)</td>
<td>3.1</td>
<td>2.7%</td>
<td>2.7%</td>
</tr>
<tr>
<td>barn swallow</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0.02 (0.00-0.04)</td>
<td>1.3</td>
<td>1.5%</td>
<td>1.5%</td>
</tr>
<tr>
<td>violet-green swallow</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>0.02 (0.00-0.04)</td>
<td>1.3</td>
<td>1.2%</td>
<td>1.2%</td>
</tr>
<tr>
<td>northern mockingbird</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>0.01 (0.00-0.02)</td>
<td>0.9</td>
<td>0.6%</td>
<td>0.6%</td>
</tr>
<tr>
<td>common raven</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>0.01 (0.00-0.02)</td>
<td>0.9</td>
<td>0.6%</td>
<td>0.6%</td>
</tr>
<tr>
<td>black-tailed gnatcatcher</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>0.01 (0.00-0.02)</td>
<td>0.4</td>
<td>0.6%</td>
<td>0.6%</td>
</tr>
<tr>
<td>ash-throated flycatcher</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>0.01 (0.00-0.02)</td>
<td>0.9</td>
<td>0.6%</td>
<td>0.6%</td>
</tr>
<tr>
<td>red crossbill</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0.00 (0.00-0.01)</td>
<td>0.4</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Group Total</td>
<td>330</td>
<td>221</td>
<td></td>
<td>1.47 (1.27-1.67)</td>
<td>98.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raptors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>turkey vulture</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>0.01 (0.00-0.03)</td>
<td>0.9</td>
<td>60.0%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Swainson’s hawk</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0.00 (0.00-0.01)</td>
<td>0.4</td>
<td>20.0%</td>
<td>0.3%</td>
</tr>
<tr>
<td>northern harrier</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0.00 (0.00-0.01)</td>
<td>0.4</td>
<td>20.0%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Group Total</td>
<td>5</td>
<td>4</td>
<td></td>
<td>0.02 (0.00-0.04)</td>
<td>1.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swifts/Hummingbirds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unidentified hummingbird</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0.00 (0.00-0.01)</td>
<td>0.4</td>
<td>100.0%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Group Total</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0.00 (0.00-0.01)</td>
<td>0.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td>336</td>
<td>226</td>
<td></td>
<td>1.50 (1.30-1.70)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 A ranking of 1 indicates highest mean use
Table 6. Avian Species Observed by Transect during Spring 2009 Point Count Surveys at the Genesis Solar Energy Project

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Birds</th>
<th>Number of Obs.</th>
<th>Transects</th>
</tr>
</thead>
<tbody>
<tr>
<td>horneed lark</td>
<td>139</td>
<td>81</td>
<td>27 20 20 11 19 10 12</td>
</tr>
<tr>
<td>black-throated sparrow</td>
<td>83</td>
<td>64</td>
<td>22 15 27 4 8 1 6</td>
</tr>
<tr>
<td>cliff swallow</td>
<td>52</td>
<td>24</td>
<td>4 6 1 9 19 6 7</td>
</tr>
<tr>
<td>northern rough-winged swallow</td>
<td>18</td>
<td>11</td>
<td>0 7 3 2 6 0 0</td>
</tr>
<tr>
<td>tree swallow</td>
<td>17</td>
<td>6</td>
<td>0 0 8 2 0 0 7</td>
</tr>
<tr>
<td>loggerhead shrike</td>
<td>14</td>
<td>14</td>
<td>0 4 2 3 2 1 2</td>
</tr>
<tr>
<td>Brewer’s sparrow</td>
<td>9</td>
<td>7</td>
<td>1 1 3 1 2 1 0</td>
</tr>
<tr>
<td>barn swallow</td>
<td>5</td>
<td>3</td>
<td>0 0 0 4 0 1 0</td>
</tr>
<tr>
<td>violet-green swallow</td>
<td>4</td>
<td>3</td>
<td>0 0 0 0 1 3 0</td>
</tr>
<tr>
<td>turkey vulture</td>
<td>3</td>
<td>2</td>
<td>0 0 0 0 0 0 3</td>
</tr>
<tr>
<td>northern mockingbird</td>
<td>2</td>
<td>2</td>
<td>2 0 0 0 0 0 0</td>
</tr>
<tr>
<td>common raven</td>
<td>2</td>
<td>2</td>
<td>0 0 1 1 0 0 0</td>
</tr>
<tr>
<td>black-tailed gracklecatcher</td>
<td>2</td>
<td>1</td>
<td>0 0 2 0 0 0 0</td>
</tr>
<tr>
<td>ash-throated flycatcher</td>
<td>2</td>
<td>2</td>
<td>1 0 0 1 0 0 0</td>
</tr>
<tr>
<td>unidentified hummingbird</td>
<td>1</td>
<td>1</td>
<td>1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Swainson’s hawk</td>
<td>1</td>
<td>1</td>
<td>0 1 0 0 0 0 0</td>
</tr>
<tr>
<td>red crossbill</td>
<td>1</td>
<td>1</td>
<td>1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>northern harrier</td>
<td>1</td>
<td>1</td>
<td>0 0 0 1 0 0</td>
</tr>
<tr>
<td>Grand Total</td>
<td>336</td>
<td>226</td>
<td>59 54 67 38 58 23 37</td>
</tr>
</tbody>
</table>

Table 7. Incidental Detections of Birds during Spring 2009 Point Count Surveys at the Genesis Solar Energy Project

<table>
<thead>
<tr>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>ash-throated flycatcher</td>
</tr>
<tr>
<td>barn swallow</td>
</tr>
<tr>
<td>black-throated sparrow</td>
</tr>
<tr>
<td>cliff swallow</td>
</tr>
<tr>
<td>common raven</td>
</tr>
<tr>
<td>Gambel’s quail</td>
</tr>
<tr>
<td>horneed lark</td>
</tr>
<tr>
<td>Le Conte’s thrasher</td>
</tr>
<tr>
<td>loggerhead shrike</td>
</tr>
<tr>
<td>mourning dove</td>
</tr>
<tr>
<td>northern harrier</td>
</tr>
<tr>
<td>northern mockingbird</td>
</tr>
<tr>
<td>red-tailed hawk</td>
</tr>
<tr>
<td>short-eared owl</td>
</tr>
<tr>
<td>Swainson’s hawk</td>
</tr>
<tr>
<td>tree swallow</td>
</tr>
<tr>
<td>turkey vulture</td>
</tr>
<tr>
<td>violet-green swallow</td>
</tr>
</tbody>
</table>
* Birds detected outside 100m radius
Other Special-Status Bird Species

Ferruginous Hawk
The ferruginous hawk, a BLM sensitive species, was observed incidentally during spring 2009 surveys (and therefore no data was collected for this observation). This bird is a winter resident of California; however, the survey area is located within the ferruginous hawk’s range and suitable wintering habitat exists within the Project area.

5.3.5 Other Special-Status Wildlife Observed

Several other wildlife species and their sign were found during surveys (Appendix D), two of which were special status (American badger and burro deer, described below). Over 65 kit fox burrow complexes, both active (fresh scat present) and inactive, were observed throughout the 4,640-acre ROW, but not along the southern portion of the linear facility routes (Figure 10), indicating that habitat for kit fox overlaps portions of the Project area. Nocturnal rodents inventoried by trapping included desert pocket mouse (*Chaetodipus penicillatus*), little pocket mouse (*Perognathus longimembris*), and Merriam’s kangaroo rat (*Dipodomys merriami*). No artificial or temporary water catchments that could serve as breeding pools for Couch’s spadefoot toad, wildlife corridors, major avian migration routes or roosting sites, or bat roosting and hibernacula were identified during surveys.

American Badger
One American badger burrow was found in the western portion of the ROW (Figure 10). The badger is an uncommon resident of level, open areas in grasslands, agricultural areas, and open shrub habitats. The entire survey area is considered habitat for American badger.

Burro Deer
Tracks from a burro deer, a game species, were found at the southern end of the transmission line route south of I-10 (Figure 10). Burro deer is a subspecies of mule deer found in the in the Colorado region of the Sonoran Desert near the Colorado River and within Desert Wash Woodland communities. This species is known to migrate into desert areas looking for water and forage. Suitable habitat for the burro deer does not occur in the Project area, but is present to the east, closer to the McCoy Mountains.

5.4 Potential for Other Special-Status Species to Occur

5.4.1 Special-Status Wildlife and Plant Species Not Observed, but Could Occur

In addition to the special status species observed during surveys, it is possible that the following special-status species from Table 2 could inhabit the survey area and immediately adjacent areas. Species may not have been observed during surveys because of their rarity, behavior, or season of surveys (e.g., annual plants, wintering species).

- Abram’s Spurge (*Chamaesyce abramsiana*)
- Arizona Spurge (*Chamaesyce arizonica*)
- Ayenia (*Ayenia compacta*)
- California Ditaxis (*Ditaxis serrata var. californica*)
- Dwarf Germander (*Teucrium cubense depressum*)
- Flat-seeded Spurge (*Chamaesyce platysperma*)
- Glandular Ditaxis (*Ditaxis claryana*)
- Sand Evening Primrose (*Camissonia arenaria*)
- Slender Woolly-heads (*Nemacaulis denudate var. gracilis*)
- Couch’s Spadefoot (*Scaphiopus couchii*)
- American Peregrine Falcon (*Falco peregrinus anatum*)
- Golden Eagle (*Aquila chrysaetos*)
- Nelson’s Bighorn (*Ovis canadensis nelsoni*) (migratory)
- Yuma Puma (*Felis concolor browni*)

Habitat exists for all of these species, either for growing (e.g., the plant species), or for foraging (e.g., American peregrine falcon, golden eagle). Nelson’s bighorn sheep, burro, and Yuma puma are unlikely to use this portion of the valley as it is far from the mountains and contains no water resources.

5.4.2 Special-Status Wildlife and Plant Species Not Likely to be Present

The remaining species in Table 2 likely do not occur within the Project survey area. These species were not observed during surveys and are not expected due to lack of preferred habitat.

- Cove’s Cassia (*Senna covesii*)
- Crucifixion Thorn (*Castela emoryi*)
- Orocopia Sage (*Salvia greatae*)
- Chaparral Sand Verbena (*Abronia villosa var. aurita*)
- Desert Sand-parsely (*Ammoselinum giganteum*)
- Jackass Clover (*Wislezenia refracta var. refracta*)
- Mesquite Nestraw (*Stylocline sonorensis*)
- Spearleaf (*Matelea parvifolia*)
- Bendire’s Thrasher (*Toxostoma bendirei*)
- Crissal Thrasher (*Toxostoma crissale*)
- Mountain Plover (*Charadrius montanus*)
- Yellow-breasted Chat (*Icteria virens*)
- Desert Rosy Boa (*Charina trivirgata gracilis*)
- Colorado Valley Woodrat (*Neotoma albigula venusta*)
- Arizona Myotis (*Myotis occultus*)
- Big Free-tailed Bat (*Nyctinomops macrotis*)
- California Leaf-nosed Bat (*Macrotus californicus*)
- Pallid Bat (*Antrozous pallidus*)
- Pocketed Free-tailed Bat (*Nyctinomops femorosaccus*)
- Southwestern Cave Myotis (*Myotis velifer brevis*)
- Spotted Bat (*Euderma maculatum*)
- Townsend’s Big-eared Bat (*Corynorhinus townsendii*)
- Western Mastiff Bat (*Eumops perotis californicus*)
- Yuma Myotis (*Myotis yumanensis yumanensis*)

6.0 ENVIRONMENTAL IMPACTS

The Project consists of a solar power generating facility, a 230-kV transmission line, a natural gas pipeline, and a paved main access road, which would impact approximately 1,890 acres. The solar facility would consist of the solar arrays and associated project facilities, including a substation, an administration building, operation and maintenance facilities, and evaporation ponds. It is assumed that these project components would occupy 1,800 acres and that the entirety of this area would be permanently disturbed.

The transmission line, natural gas pipeline, and paved access road would originate at the solar facility and be co-located within the same 100-foot ROW for the majority of the linear corridor, although each terminates in a different location. After leaving the facility, the transmission line,
natural gas pipeline, and access road would extend approximately 7.6 miles, 6 miles, and 6.5 miles, respectively, and occupy approximately an additional 90 acres, although not all disturbances would be permanent. The transmission line would be suspended on poles with foundations, the natural gas line would be buried, and the access road would be paved. Permanently affected areas associated with these linear features would include the 24-foot-wide access road, the transmission line pole foundations, and the transmission line spur roads.

Biological resources may be either directly or indirectly affected by a project. Direct or indirect impacts may be permanent or temporary in nature. These impact categories are defined below. It is expected that impacts to biological resources would be minimized with the implementation of protection measures determined as part of the permitting process (see Section 7).

- **Direct**: Any alteration, disturbance or destruction of biological resources that would result from project-related activities would be considered a direct impact. Examples include vegetation clearing and loss of individual species or their habitats.

- **Indirect**: As a result of project-related activities, biological resources may also be affected in a manner that is not direct. Examples include elevated noise and dust levels, increased human activity, decreased water quality, and the introduction of invasive plants.

- **Permanent**: All impacts that result in the long-term or irreversible removal of biological resources are considered permanent. Examples include constructing a building, transmission line foundations, or a permanent road.

- **Temporary**: Any impact considered to have reversible effects on biological resources can be viewed as temporary. Examples include increased vehicle traffic and noise during construction activities and habitat loss from underground pipeline installation.

6.1 Vegetation and Special Vegetation Communities

There would be permanent and temporary impacts to vegetation and habitat from construction and operation of the proposed solar facility. One hundred percent of the vegetation would be permanently cleared within the 1,800-acre solar facility. The corridor for the linear facilities is assumed to be 100 feet wide, but vegetation would only be permanently cleared for the paved access road, transmission line pole foundations, and transmission line spur roads. Although some impacts are classified as temporary, natural revegetation in desert habitats is slow and should be considered a long-term temporary impact.

Direct Impacts – Construction of the Project would result in the permanent clearing of Sonoran Creosote Bush Scrub and Stabilized and Partially Stabilized Sand Dunes. These areas would be directly and permanently affected by the construction of the solar facility, paved access road, transmission line pole foundations, and transmission line spur roads. Vegetation located along the underground natural gas pipeline would be temporarily affected, as these areas would be cleared for construction, but allowed to re-vegetate afterward. Other impacts from development, especially of the linear facility route, is population fragmentation resulting in an adverse affect on pollinator activity and thus gene flow.

Indirect Impacts – Vegetation communities are likely to be temporarily affected by fugitive dust from construction activities, off-ROW human and vehicle construction traffic, and offsite run-off and sedimentation. Fugitive dust settles on plant surfaces and inhibits metabolic processes such as photosynthesis and respiration. Individual plants could be trampled by foot or vehicles that stray outside of authorized areas during construction. Run-off, sedimentation, and alteration
of drainage patterns may affect plants by altering site conditions so that the location in which they are growing becomes unfavorable. It is also possible that the introduction and spread of invasive species would result in permanent impacts.

Special Vegetation Communities

One NECO-designated sensitive vegetation community, Stabilized and Partially Stabilized Sand Dunes, was identified within the Project area along a portion of the linear facility route where it comes out of the main plant site (Figure 3). Direct and indirect impacts to this area are as outlined in this section above. The affected portion of the Stabilized and Partially Stabilized Sand Dune community represents a small portion of this vegetation community, which extends to the northeast beyond the Project ROW. Three additional sensitive communities, Desert Dry Wash Woodland, Chenopod Scrub, and Playa were identified outside of the Project area to the east, west, and south, respectively; however, these communities are not within the Project area and would not be affected by Project development.

6.1.1 Special-Status Plant Species

Federally listed or state-listed plants were not identified within the survey area and are not considered likely to occur within the Project area; therefore, no direct or indirect impacts to listed plant species would result from Project construction or operation. Three CNPS listed plant species; Harwood’s milkvetch, Wiggin’s cholla (possible), and desert unicorn plant were identified within the Project area are would be affected by Project development. Impacts to these species would be identical to those discussed in section 6.1.

Permanent impacts to Wiggin’s cholla and Harwood’s milkvetch and their associated habitat would result from the development of the solar facility, and permanent impacts to Harwood’s milkvetch and desert unicorn plant would result from development of the linear facilities. Where Harwood’s milkvetch and desert unicorn plant overlap the underground natural gas pipeline, impacts would be direct and permanent, although these areas would be backfilled and allowed to re-vegetate after construction.

6.1.2 Cacti and Trees

Two cacti species (beavertail and Wiggins’ cholla) and three tree species (palo verde, cat-claw acacia, and ironwood) were identified within the Project area. Higher concentrations of ironwood were observed in the northern portion of the Project area. No yuccas were observed during surveys and they are unlikely to be present in the Project area and, therefore, would not be affected by project development.

Direct – Any tree or cacti overlapping the Project area would be directly and permanently affected by the removal of individuals.

Indirect – Impacts to these species would likely include those listed for vegetation in Section 6.1. Additionally, trees that are located in drainages to the south of the Project area (there are few) that require sufficient water accumulation are likely to be adversely affected by the alteration of natural drainage patterns by Project development.
6.2 Wildlife Species

6.2.1 Desert Tortoise

Impacts to desert tortoise within the Project area are expected to be negligible due to lack of current occupation. The creosote bush scrub found within the Project is poor desert tortoise habitat and the small sand dunes along the linear facilities route are generally not considered tortoise habitat, although tortoises may occupy the inter-dune spaces. It is possible that tortoises are present upslope to the north and east of the ROW where higher quality creosote bush scrub and ephemeral washes are present. Tortoises occupying these areas may enter or inhabit the ROW.

Direct – If present, potential impacts to desert tortoise could include injury or mortality by crushing or entombment in their burrows during construction or increased potential for vehicle strikes if tortoises are attempting to cross the main access road. Tortoises may also experience disruption of behavior during construction or operation of facilities; disturbance by noise or vibrations from the heavy equipment; or collection or vandalism by project personnel.

Indirect – Permanent habitat removal could result in indirect impacts that are considered to be negligible due to (1) poor habitat that is currently unoccupied on site and (2) lack of habitat south and southwest of the ROW. If impacts occur, they would include habitat fragmentation (i.e., restriction of movement and gene flow); loss of potential burrowing, breeding, and foraging habitat; and reduced habitat quality due to the introduction or spread of non-native plant species and compaction of soils. Increased levels of surface disturbing activities may compact the soils, as well as increase the abundance of non-native plants, which could replace native forage species and reduce the amount and diversity of forage available for tortoises. Additionally, an increase in human activities, the Project’s transmission line (as bird perch sites), and the Project’s evaporation ponds may attract predators (e.g., common raven, coyote) of the desert tortoise, resulting in increased tortoise mortality.

6.2.2 Mojave Fringe-Toed Lizard

The Mojave fringe-toed lizard occupies the sandy habitats that overlap the proposed linear facility routes and would likely incur impacts as a result of Project development. It is possible that the Colorado fringe-toed lizard, also a California species of concern, occurs within the sandy areas associated with the Project. Both the Mojave and Colorado fringe-toed lizards are California species of concern and are treated the same by the resource agencies.

Direct – Permanent impacts to either of the fringe-toed lizard species would include injury or mortality from construction equipment and related traffic and habitat fragmentation as a result of the paved access road. These impacts would be elevated during construction due to increased traffic and temporary disturbance, but vehicle strikes would continue throughout the operation of the project or as long as the road was in place.

Indirect – Indirect temporary impacts to these species due to construction activities would include temporary dispersal from existing habitat to similar, adjacent habitats due to noise and vibrations. Indirect, permanent impacts could include potential avoidance of paved roads by these species resulting in further fragmentation of populations and potential reduction in home range. Additionally, an increase in human activities, the transmission line (as bird perch sites) and the Project’s evaporation ponds may attract predators (e.g., common raven, coyote) of the fringe-toed lizards, resulting in increased mortality.
6.2.3 Burrowing Owl

Burrowing owls are present within the Project area and vicinity and would likely be affected by Project development. No active nest were found during surveys; however, suitable habitat for this species exists throughout the Project area. Fewer burrowing owl sign was detected along the linear facility route and, therefore, impacts are expected to be less in this area.

Direct – Permanent impacts to this species include removal of foraging and breeding habitat, destruction of burrows during construction activities, and mortality due to vehicular strikes during both construction and operation activities.

Indirect – Indirect temporary impacts to these species may include temporary dispersal from existing habitat to similar adjacent habitats. Permanent impacts to the burrowing owl could result from artificially enhanced populations of native predators (e.g., kit foxes, coyotes) and introduced predators (e.g., cats, dogs) near burrowing owl colonies. Burrowing owls may also get tangled in loose fences, abandoned wire, and loose string.

6.2.4 Other Special-Status Avian and Wildlife Species

Other special-status wildlife species are expected to be directly and indirectly affected by Project development mainly due to the loss of 1,800 acres of habitat. However, the loss of the specific foraging habitat located in the Project area is unlikely to create a significant, permanent impact because the Project area hosts no special foraging habitat (e.g., water sources) and there is ample, identical foraging habitat immediately outside of the Project area. Impacts are expected to be elevated during construction, but would continue to a lesser extent during operation of the facility.

Direct – Permanent impacts include habitat fragmentation, loss of foraging and breeding habitat, and mortality, injury, or harassment of individuals as a result of encounters with vehicles or heavy equipment during construction and operations.

Indirect – Temporary, indirect impacts could result from disruption of natural foraging behavior by increased ambient noise levels and unnatural lighting during dawn, dusk, or nighttime construction. Indirect affects could also include poisoning by drinking from evaporation ponds and mortality due to an increase of predators (e.g., coyotes, ravens) attracted to the area by human activities.

Bird Species

Direct – Impacts to bird species could include disruption of nesting activities during construction, permanent habitat loss and fragmentation, and mortality by transmission line collisions and electrocution. Wintering or migrating species that do not nest in the area (e.g., ferruginous hawk and northern harrier) would be affected by loss of foraging habitat. In addition, the accumulation of waste material in evaporation ponds can be detrimental to a variety of birds that seasonally inhabit or utilize the Project vicinity. Birds may be attracted to the evaporation ponds for resting, foraging, and nesting. Evaporation ponds can contain high levels of trace elements from geochemical origins. The trace element of most concern is selenium, as it bioaccumulates in the aquatic food chain and causes death and deformity of birds that are attracted to the pond environment.

Indirect – Temporary, indirect impacts could result from disruption of natural foraging behavior by increased ambient noise levels and unnatural lighting during dawn, dusk, or nighttime construction.
Bats

Impacts would be negligible since no roosting and foraging habitat exists on site. Also, foraging habitat such as agricultural fields and riparian areas are not present within the Project area and would not be affected. Nocturnal foraging near the Project would not be disturbed by daytime project construction.

7.0 GENERAL RECOMMENDATIONS

The following are general recommendations for both desert tortoises and wildlife. Specific conservation and mitigation measures for the appropriate vegetation communities, special-status species, and habitat will be captured in the environmental documents that will be generated as part of the permitting requirements, such as the Application for Certification to the CEC, Biological Resources Mitigation Implementation and Management Plan (BRMIMP), and Section 7 consultation with the USFWS.

ON-SITE MITIGATION

Minimization of Habitat Degradation

In general, disruption of ecological processes should be minimized. Habitat degradation should be limited to essential areas only and, where practical, previously disturbed areas (e.g., existing roads) should be used for driving, parking, and storing equipment. Surface water control facilities for storm water flow and discharge are proposed as part of the final design and best management practices will be employed to effectively manage drainage related issues.

Avoidance

In general, avoidance of biological resources, seasonal or daytime construction, and pre-construction surveys for special-status wildlife (desert tortoise, Mojave fringe-toed lizard, burrowing owl) will minimize impacts.

Pre-Construction, Construction-, and Operations-Related Environmental Protection

Prior to the start of construction, activities and contingencies-related environmental protection during Project construction and operation must be detailed in a BRMIMP. Issues addressed should include, but not be limited to, biological monitoring of construction activities, exclusionary wildlife fencing, designated working areas and equipment storage, stream protection, equipment maintenance and cleaning, fueling and accidental fuel spills, removal of all debris, hazardous waste (including evaporation pond monitoring during operations), and other construction-related materials, and worker education. The worker education program for Project personnel should include measures for desert tortoises and all special-status species, as well as general working procedures (e.g., minimization of habitat degradation, garbage control, vehicular speed limits, and authority of the biological monitors). The BRMIMP and all associated plans and programs would be approved by the resource agencies prior to Project licensing.

Designation of a Project Biologist

A Project biologist should be assigned to ensure successful monitoring of construction activities and successful mitigation implementation, as well as implement the worker education program. The Project biologist would be approved by the agencies and would be responsible for approving biological monitors. The Project biologist would work with the construction foreman and Project Environmental Compliance Coordinator and would have the authority to halt construction to ensure successful mitigation. Finally, the Project biologist would be responsible for reports to the agencies.
Restoration and Weed Control

Project design will include efforts to decrease the risk of introduction of and spreading non-native vegetation. For all surface disturbance areas, including external to the Project due to erosion or other Project factors, a restoration and weed control program should be implemented, based on anticipated disturbance levels.

Reporting

During construction, the Project biologist should provide progress reports to relevant agencies to describe the extent of construction, mitigation measures implemented, mitigation successes or difficulties, and suggestions. Any harassment or mortality take of listed species, with suggestions for mitigation improvement, would be documented.

Adaptive Management

The monitoring results will be used to evaluate the effectiveness and practicality of the protection measures. When data show that alterations in the mitigation measures are required to adequately protect wildlife and habitats, then these should be analyzed with the relevant agencies and changes implemented, as feasible.

OFF-SITE MITIGATION

Off-site mitigation may be required for certain species to offset habitat loss, especially for species that are more difficult to avoid. Off-site mitigation, if required, will mitigate for direct and indirect impacts to species from the Project. Off-site mitigation would be scientifically supportable and based upon species impacts (both Project and cumulative), on-site habitat quality and importance identified by the resource agencies, and Project location.

Impacts to sand dune habitat will require habitat compensation at a 3:1 ratio for all acres disturbed during construction and operation (BLM and CDFG 2002). Additionally, the portion of the linear facility routes that overlap the DWMA and Critical Habitat will carry a compensation ratio of 5 acres of land for every 1 acre disturbed (5:1 ratio).

8.0 REFERENCES

CDFG (California Department of Fish and Game). 2000. Survey Guidelines for Assessing the Effects of Proposed Projects on Rare, Threatened, and Endangered Plants and Natural Communities.

Bureau of Land Management Barstow Field Office. 2601 Barstow Road, Barstow, CA 92311 Phone: (760) 252-6000. March 9 and March 24.

Reiser, C. 1994. Rare Plants of San Diego County. Sierra Club. Available at: http://sandiego.sierraclub.org/rareplants/. Last updated on 10/6/01

APPENDIX A

EXAMPLES OF SURVEY DATA SHEETS
G20
Transsects: show start, and end by direction and transect number.
DATE: 10 APR 2009
TIME: Start 08:47
 End 14:55
WEATHER:

<table>
<thead>
<tr>
<th></th>
<th>Ta</th>
<th>Tg</th>
<th>Cloud Cover</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>17.1°</td>
<td>20.0°</td>
<td>95%</td>
<td>0-5mph</td>
</tr>
<tr>
<td>End</td>
<td>27.3°</td>
<td>35.4°</td>
<td>65%</td>
<td>4-7mph</td>
</tr>
</tbody>
</table>

SURVEYORS: Navigator Nathan Mudry
 GPS Peggy Ward
 Data Shannon Lindsay

CELL I.D. G20
TRANSECT Nos COMPLETED
STARTING UTM 682430 E 3727497N
ENDING UTM 681907 E 3727490N
(NAD 83)
(TOTAL TRANSECT WIDTH 90 FT

GENERAL SITE DESCRIPTION:
VEGETATION SHRUB LAYER AND BUNCH GRASSES
 Aspect Dominants LATR

Common Species PLRI, AMDU

Occasional Species KRER

% Cover 87%
Avg. Height of Dominant Shrub Species LATR- 0.8m

UNDERSTORY
 Abundant Species PLOU, CRAN, GECA

Exotics (Map concentrations and describe here relative to population size and geographic breadth.)
 BRTO (Sparse throughout cell)

TOPOGRAPHY
 Landform lower bajada
 Drainage Type Sheet washing, shallow runlets
 Elevation (state meters or feet) 366 ft

SUBSTRATE
 Color Pale to gray
 Coarse Particles (Type, % Cover)
 Fine gravel 25%, sand 50%, coarse gravel w/ a few scattered cobbles 25%

SOIL TEXTURE AND CONSISTENCY
 Firm to soft, silty sand, firm on desert pavement

PRESENCE OF PREDATORS:
RAYENS - # Detected 0
Coyotes - # Detected 0
Seal? yes
Seat Piles yes

HUMAN-RELATED DISTURBANCES (Onsite and Adjacent)

SITE PICTURE: Photographer Nathan Mudry

A - Form
B - SE from NW Corner
C - NW from SE Corner
D - Other None

COMMENTS
<table>
<thead>
<tr>
<th>SIGN</th>
<th>WAYPOINT</th>
<th>UTM (NAD 83)</th>
<th>DESERT TORTOISE</th>
<th>OTHER SPECIES</th>
<th>FURTHER DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IWAA36</td>
<td>0682303 3727947</td>
<td></td>
<td>Kit fox complex 6 active burrows</td>
<td>fresh scat 140 and tracks 1km</td>
</tr>
<tr>
<td>2</td>
<td>IWTC37</td>
<td>0682294 3728165</td>
<td>Carcass 274</td>
<td>One shell fragment</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IWAA38</td>
<td>0682153 3727454</td>
<td></td>
<td>Shrike Individual</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IWTC39</td>
<td>0682118 3728020</td>
<td>Carcass 274</td>
<td>One shell fragment</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>IZZ240</td>
<td>0682119 3728030</td>
<td></td>
<td>CYLWIG Individual 1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>IZZ241</td>
<td>0682117 3727707</td>
<td></td>
<td>CYLWIG Individual 2</td>
<td></td>
</tr>
</tbody>
</table>
DATE: 09 APR 2009
TIME: Start 10:10
 End 14:00

WEATHER:

<table>
<thead>
<tr>
<th>Ta</th>
<th>Tg</th>
<th>Cloud Cover</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>21.1</td>
<td>31.4</td>
<td>19% cirrus</td>
</tr>
<tr>
<td>End</td>
<td>29.8</td>
<td>41.7</td>
<td>50% cirrus</td>
</tr>
</tbody>
</table>

GENERAL SITE DESCRIPTION:
VEGETATION SHRUB LAYER AND BUNCH GRASSES)
Aspect Dominants
- Lartri

Common Species
- Atr cam

Occasional Species
- Cin flo, Atr pol, Date
- Hilrig, Amb dem, Pro

% Cover: 47%
Avg. Height of Dominant Shrub Species
- Lartri = 0.8 m

UNDERSTORY
Abundant Species
- Ger cam, Placro, Zephe, Ole
- Hof, Melilotis sp.

TOPOGRAPHY
Landform
- Valley floor - lake bed area

Drainage Type
- Sheet flow

Elevation (state meters or feet)
- 3639 ft

SUBSTRATE
Color
- Pale sand with multi-colored gravels.

Fine Gravels
- 85% Coarse Gravels
- 15%

Soil Texture and Consistence
- Silt - gravelly loam, loose
- Gravelly and loose

PRESENCE OF PREDATORS: Ravens - # Detected
- Coyotes - # Detected
- Tracks
- Scat? yes
- Scat Piles yes

HUMAN-RELATED DISTURBANCES (Onsite and Adjacent)
- Some fresh ATV tracks. Bottles & cans of various ages.

SITE PICTURE: Photographer
- Woodard

A - Form:
- D - SE from NW corner
- C - NW from SE corner
- D - Other

COMMENTS
- Deer skulls found on Row.
- Cultural artifacts noted along alignment - flakes, matates, stones, pottery.
- 480F
<table>
<thead>
<tr>
<th>SIGN #</th>
<th>WAYPOINT</th>
<th>UTM (NAD 83)</th>
<th>DESERT TORTOISE</th>
<th>OTHER SPECIES</th>
<th>FURTHER DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IQAA6</td>
<td>690781, 3722577</td>
<td>Bur. Ox, burrow 230-380cm, 6 openings</td>
<td></td>
<td>690781, 3722577</td>
</tr>
<tr>
<td>2</td>
<td>IQ227</td>
<td>698959, 3723331</td>
<td>Pro alt, 1 old pod</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IQTC8</td>
<td>690846, 3722835</td>
<td>Carcass >4 Adult, brought back</td>
<td></td>
<td>Single "petrified" bone 10-10,000yr</td>
</tr>
<tr>
<td>4</td>
<td>IQA229</td>
<td>690840, 3722803</td>
<td>Pro alt, 1 pod, dug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>IQTC10</td>
<td>690865, 3722341</td>
<td>Carcass >4 Adult</td>
<td></td>
<td>1 "petrified" plaque</td>
</tr>
<tr>
<td>6</td>
<td>IQTC11</td>
<td>691252, 3721119</td>
<td>Carcass >4 Adult (big Animal)</td>
<td></td>
<td>2 "petrified" plaque</td>
</tr>
<tr>
<td>7</td>
<td>IQTC12</td>
<td>691277, 3720866</td>
<td>Carcass</td>
<td></td>
<td>1 "petrified" bone of other lines</td>
</tr>
</tbody>
</table>
DATE 13 APR 2009
CELL I.D. 400447114411
LEGEND:
--- Fresh ATV tracks

Transects: show start and end by direction and transect number.
DATE: 13 Apr 2009
TIME: Start 0939 End 12:32
WEATHER:

<table>
<thead>
<tr>
<th>Weather Parameter</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta</td>
<td>25.0</td>
<td>33.6</td>
</tr>
<tr>
<td>Tg</td>
<td>2.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Cloud Cover</td>
<td>10% in west</td>
<td>80% with NW SE</td>
</tr>
<tr>
<td>Wind</td>
<td>3 SE</td>
<td>3 SE</td>
</tr>
</tbody>
</table>

GENERAL SITE DESCRIPTION:
VEGETATION SHRUB LAYER AND BUNCH GRASSES)
Aspect Dominants LATHLM

Common Species

Occasional Species AM0V, YHM - actually rare

% Cover 7
Avg. Height of Dominant Shrub Species

UNDERSTORY
Abundant Species PL0VY

Exotics (Map concentrations and describe here relative to population size and geographic breadth.)

TOPOGRAPHY
Landform LOWBERJADY

Drainage Type SHEET

Elevation (state meters or feet) 384'

SUBSTRATE
Color huHHAH
Coarse Particles (Type, % Cover) 50% - 100% GRAVEL

Soil Texture and Consistence Silty Clay FIRM

PRESENCE OF PREDATORS: Ravens - # Detected _______ # Nests _______
Coyotes - # Detected _______ Scat? YES Scat Piles NO

HUMAN-RELATED DISTURBANCES (Onsite and Adjacent)

SITE PICTURE: Photographer NO
A - Form □
B - SE from NW Corner □
C - NW from SE Corner □
D - Other □

COMMENTS
<table>
<thead>
<tr>
<th>SIGN #</th>
<th>WAYPOINT</th>
<th>UTM (NAD 83)</th>
<th>DESERT TORTOISE</th>
<th>OTHER SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IQTC 13</td>
<td>687452 3726399</td>
<td>C 4++</td>
<td>2+1 cm peripheral mucus?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FURTHER DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
DATE: 21- MAR 2009
TIME: Start 750
End 940
WEATHER:
<table>
<thead>
<tr>
<th>Start</th>
<th>Tg</th>
<th>Cloud Cover</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>16°C</td>
<td></td>
<td>25%</td>
<td>0-2</td>
</tr>
<tr>
<td>24°C</td>
<td></td>
<td>30%</td>
<td>0-5</td>
</tr>
</tbody>
</table>

GENERAL SITE DESCRIPTION:
VEGETATION SHRUB LAYER AND BUNCH GRASSES)
General Area:
Aspect Dominants LATR, HIRI
Common Species

% Cover 8
Specific Point Count Site:
Aspect Dominants LATR, HIRI
Common Species

% Cover 8 LATR 5% HIRI 3%

UNDERSTORY
Abundant Species CHFR
Exotics BRT0

TOPOGRAPHY
General Description of Landforms and Drainages in the Area
Valley - sheet flow or very little flow
lots of bare patches, fines + gravel

Specific Description of Point Count Site
Valley - open bare ground w/ patches of denser

Elevation (state meters or feet)
between 300 - 380 ft (get on next survey)

HUMAN-RELATED DISTURBANCES (Onsite and Adjacent)

SITE PICTURE:
A - Form
B - Looking NW from Pt. 8

COMMENTS
low plant diversity, open bare ground frequent
<table>
<thead>
<tr>
<th>Species</th>
<th>#</th>
<th>Type of Detection</th>
<th>Behavior</th>
<th>Microhabitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- **BTSP** = BLACK THROATED SPARROW
- **HOLA** = HORNY LARK
- **RTHA** = REDTAIL HAWK
- **CORA** = COMMON RAVEN
- **Aud** = Audio
- **Vis** = Visual
- **>100 m = outside circle**

WALKING TO SITE:
- **PTSP Aud - 5**
- **HOLA Aud - 5**
- **RTHA Vis - 1**
Burrowing Owl Observations
Pit: Genesis

Location: Cells G44

Weather:
start: Ta = 8.9° Wind 1-2mph (W) Cloud Cover 0%
end: Ta = 19.8° Wind 1-2mph Cloud Cover 47%

(Time) (Activity)

05:05 Left camp
05:58 - 06:52 At (0687284 3726229) - Observed burrow from 30m.
Observe no activity at S burrow.
07:00 - 07:17 Checked burrows at (0687061 3726268) and (0687347 3726217) Still no fresh guano, pellets, or activity at either burrow.
07:20 - 08:12 Walked around surrounding area to look and listen for any sign or activity. No B.Owls heard or seen, no new sign encountered.

*Flushed a great horned owl on hike out to site. Also heard HOLV, BTSP and CORA calling. Saw BARS
Legend:

PV = Palo Verde

TOTAL = 1

Cactus/Tree Count

TRANSECTS: show start, and end by direction and transect number.

6 people - 2 passes

Cactus

Start

End

Road
DATE: 12 April 2009
TIME: Start 15:43 End 15:51

WEATHER:

<table>
<thead>
<tr>
<th></th>
<th>Ta</th>
<th>Tg</th>
<th>Cloud Cover</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>32</td>
<td>34</td>
<td>3%</td>
<td>4-10N</td>
</tr>
<tr>
<td>End</td>
<td>32</td>
<td>34</td>
<td></td>
<td>0-4N</td>
</tr>
</tbody>
</table>

GENERAL SITE DESCRIPTION:
VEGETATION SHRUB LAYER AND BUNCH GRASSES)
Aspect Dominants

LAIR

Common Species
AMDO

Occasional Species

% Cover 8%
Avg. Height of Dominant Shrub Species .8m

UNDERSTORY
Abundant Species
PL6V

Exotics (Map concentrations and describe here relative to population size and geographic breadth.)

TOPOGRAPHY
Landform
Valley Floor

Drainage Type
Ephemeral Sheet Flow

Elevation (state meters or feet)
376 ft

SUBSTRATE
Color
Coarse Particles (Type, % Cover)

Soil Texture and Consistence

PRESENCE OF PREDATORS: Ravens - # Detected
Coyotes - # Detected Seat? # Seats # Nests

HUMAN-RELATED DISTURBANCES (Onsite and Adjacent)
TANK TRACKS

SITE PICTURE: Photographer
A - Form
B - SE from NW Corner
C - NW from SE Corner
D - Other

N

COMMENTS
TRAPPING RESULTS

Project: GENESIS

DATE: April 11, 2009

TIME (START): 07:25

TIME (FINISH): 08:07

TRAPPING WEATHER:
- **MOON PHASE:** Nearly full/full
- **WIND SPEED:** 0-1
- **T_{AIR}(°C)/S_{surf}^T(°C):** 18.3 / 28.29
- **RECENT WEATHER:** Overnight - overcast, slight rain (~10:00), wind (~10:30) (?)

OBSERVER: Reiter / Karl

LOCATION: 6-14 _South Line_ (Redul o6id)

SPECIES	**AGE**	**SEX**	**REPRO**	**CONDITION**	**MASS (g)**	**NEW (N)/ RECAPTURE (R)**
DIP MER | S/A | ? | Vulva, sl. swollen | 38 | N
DIP MER | S/A | ? | Pregnancy | 37 | N
DIP MER | S/A | ? | Slightly swollen | - | R
DIP MER | S/A | ? | ? | 38 | N
DIP MER | S/A | ? | Prog(s) | - | R
DIP MER | S/A | ? | sl. scrot | 38 | N
DIP MER | S/A | ? | sl. scrot | 36 | N
DIP MER | S/A | ? | sl. prog | 34 | R
DIP MER | S/A | ? | sl. scrot | 39 | N

Spring new info:
- Poss smaller adults here? I thought
- There were last yrs bigger, but poss.
- These are smaller here because have never seen larger ones (>40g)

NOTE:
APPENDIX B

LIST OF FIELD BIOLOGISTS

<table>
<thead>
<tr>
<th>Field Biologists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice Karl, Ph.D. *</td>
</tr>
<tr>
<td>Art Schaub</td>
</tr>
<tr>
<td>Bill Hasskamp</td>
</tr>
<tr>
<td>Bret Blosser, Ph.D.</td>
</tr>
<tr>
<td>Dave Focardi</td>
</tr>
<tr>
<td>Emily Festger *</td>
</tr>
<tr>
<td>Jake Mohlmann</td>
</tr>
<tr>
<td>Jennifer Weidensee</td>
</tr>
<tr>
<td>Kevin Walsh</td>
</tr>
<tr>
<td>Lehong Chow</td>
</tr>
<tr>
<td>Leslie Backus</td>
</tr>
<tr>
<td>Liz (Jacqueline) Smith</td>
</tr>
<tr>
<td>Mary Ann Hasskamp</td>
</tr>
<tr>
<td>Michael Omana</td>
</tr>
<tr>
<td>Nathan Mudry</td>
</tr>
<tr>
<td>Paul Frank</td>
</tr>
<tr>
<td>Peggy Wood</td>
</tr>
<tr>
<td>Rachel Woodard</td>
</tr>
<tr>
<td>Shawn Lindsey</td>
</tr>
<tr>
<td>Steve Emerson</td>
</tr>
<tr>
<td>Tim Thomas</td>
</tr>
<tr>
<td>Tina Poole</td>
</tr>
</tbody>
</table>

*Report Preparers
APPENDIX C

REPRESENTATIVE PHOTOGRAPHS
Sonoran Creosote Bush Scrub in North/Central Area of ROW, Facing Southeast

Sonoran Creosote Bush Scrub with Patches of Sand over Playa
Proposed Linear Route, Facing East
Sonoran Creosote Bush Scrub, Facing East from Center of ROW

Sonoran Creosote Bush Scrub Located within the Proposed Solar Facility
Stabilized and Partially Stabilized Sand Dunes Characteristic of the Eastern ROW

Sonoran Creosote Bush Scrub North of I-10 along Linear Route, Facing East
APPENDIX D

SPECIES OBSERVED
<table>
<thead>
<tr>
<th>Wildlife and Plant Species Observed at the Genesis Solar Energy Project during 2009 Spring Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPTILES</td>
</tr>
<tr>
<td>Callisaurus draconoides</td>
</tr>
<tr>
<td>Chnemidophorus (=Aspidoscelis) tigris</td>
</tr>
<tr>
<td>Crotalus cerastes</td>
</tr>
<tr>
<td>Diposaurus dorsalis</td>
</tr>
<tr>
<td>Gambelia wislizenii</td>
</tr>
<tr>
<td>Phrynosoma platyrhinos</td>
</tr>
<tr>
<td>Ura scaparia</td>
</tr>
<tr>
<td>Urosaurus gracilus</td>
</tr>
<tr>
<td>Uta stansburiana</td>
</tr>
<tr>
<td>MAMMALS</td>
</tr>
<tr>
<td>Ammospermophilus leucurus</td>
</tr>
<tr>
<td>Canis latrans</td>
</tr>
<tr>
<td>Chaetodipus penicillatus</td>
</tr>
<tr>
<td>Dipodomys deserti</td>
</tr>
<tr>
<td>Dipodomys merriami</td>
</tr>
<tr>
<td>Lepus californicus</td>
</tr>
<tr>
<td>Neotoma lepida</td>
</tr>
<tr>
<td>Odocoileus hemionus eremicus</td>
</tr>
<tr>
<td>Perognathus longimembris</td>
</tr>
<tr>
<td>Taxidea taxus</td>
</tr>
<tr>
<td>Spermophilus tereticaudus</td>
</tr>
<tr>
<td>Sylvilagus audubonii</td>
</tr>
<tr>
<td>Vulpes macrotis</td>
</tr>
<tr>
<td>INSECTS</td>
</tr>
<tr>
<td>Pepsis sp.</td>
</tr>
<tr>
<td>BIRDS</td>
</tr>
<tr>
<td>Amphispiza bilineata</td>
</tr>
<tr>
<td>Asia flammeus</td>
</tr>
<tr>
<td>Auriparus flaviceps</td>
</tr>
<tr>
<td>Athene cunicularia</td>
</tr>
<tr>
<td>Bubo virginianus</td>
</tr>
<tr>
<td>Buteo jamaicensis</td>
</tr>
<tr>
<td>Buteo swainsoni</td>
</tr>
<tr>
<td>Buteo regalis</td>
</tr>
<tr>
<td>Callipepla gambeli</td>
</tr>
<tr>
<td>Calypte anna</td>
</tr>
<tr>
<td>Calypte costae</td>
</tr>
<tr>
<td>Cathartes aura</td>
</tr>
<tr>
<td>Chordeiles auria</td>
</tr>
<tr>
<td>Circus cyaneus</td>
</tr>
<tr>
<td>Corvus corax</td>
</tr>
<tr>
<td>Dendroica coronata</td>
</tr>
<tr>
<td>Eremophila alpestris</td>
</tr>
<tr>
<td>Falco mexicanus</td>
</tr>
<tr>
<td>Hirundo rustica</td>
</tr>
<tr>
<td>Hirundo pyrrhonota</td>
</tr>
<tr>
<td>Lanius ludovicianus</td>
</tr>
<tr>
<td>Loxia curvirostra</td>
</tr>
<tr>
<td>Mimus polyglottos</td>
</tr>
<tr>
<td>Myiarchus cinerascens</td>
</tr>
<tr>
<td>Passerculus sandwichensis</td>
</tr>
<tr>
<td>Phainopepla nitens</td>
</tr>
<tr>
<td>Phalaenoptilus nuttalii</td>
</tr>
<tr>
<td>Quiscalus mexicanus</td>
</tr>
<tr>
<td>Riparia riparia</td>
</tr>
<tr>
<td>Spizella breweri</td>
</tr>
</tbody>
</table>

August 2009
<table>
<thead>
<tr>
<th>Wildlife and Plant Species Observed at the Genesis Solar Energy Project during 2009 Spring Surveys</th>
</tr>
</thead>
<tbody>
<tr>
<td>**PLANTS (Non-native)</td>
</tr>
<tr>
<td>Stelgidopteryx serripennis</td>
</tr>
<tr>
<td>Streptopelia decaocto</td>
</tr>
<tr>
<td>Sturnella neglecta</td>
</tr>
<tr>
<td>Tachycineta bicolor</td>
</tr>
<tr>
<td>Tachycineta thalassinus</td>
</tr>
<tr>
<td>Toxostoma lecontei</td>
</tr>
<tr>
<td>Tyrannus verticalis</td>
</tr>
<tr>
<td>Vireo gilvus</td>
</tr>
<tr>
<td>Zenaida asiatica</td>
</tr>
<tr>
<td>Zenaida macroura</td>
</tr>
<tr>
<td>Zonotrichia albicollis</td>
</tr>
<tr>
<td>Abronia villosa var. villosa</td>
</tr>
<tr>
<td>Acacia greggii</td>
</tr>
<tr>
<td>Achyronychia cooperi</td>
</tr>
<tr>
<td>Allionia incarnata</td>
</tr>
<tr>
<td>Ambrasia acanthocarpa</td>
</tr>
<tr>
<td>A. dumosa</td>
</tr>
<tr>
<td>A. (=Hymenoclea) salsola</td>
</tr>
<tr>
<td>Aristida purpurea</td>
</tr>
<tr>
<td>Asclepias subulata</td>
</tr>
<tr>
<td>Asclepias erosa</td>
</tr>
<tr>
<td>Astragalus aridus</td>
</tr>
<tr>
<td>A. insularis var. harwoodii</td>
</tr>
<tr>
<td>Atriplex polycarpa</td>
</tr>
<tr>
<td>Baileya pauciradiata</td>
</tr>
<tr>
<td>B. pleniradiata</td>
</tr>
<tr>
<td>Bebbia juncea</td>
</tr>
<tr>
<td>Bouteloua aristidoides</td>
</tr>
<tr>
<td>Brandegea bigelovii</td>
</tr>
<tr>
<td>Brassica tournefortii</td>
</tr>
<tr>
<td>Calandrinia ambiguata</td>
</tr>
<tr>
<td>Calycoseris wrightii</td>
</tr>
<tr>
<td>Camissonia boothii</td>
</tr>
<tr>
<td>C. boothii ssp. condensata</td>
</tr>
<tr>
<td>C. boothii ssp. desertorum</td>
</tr>
<tr>
<td>C. claviformis ssp. aurantiaca</td>
</tr>
<tr>
<td>Ceridium floridum (=Parkinsonia florida)</td>
</tr>
<tr>
<td>Chaenactis carpholina</td>
</tr>
<tr>
<td>C. fremontii</td>
</tr>
<tr>
<td>C. steviodes</td>
</tr>
<tr>
<td>Chamaesyce polycarpa</td>
</tr>
<tr>
<td>Chenopodium murale</td>
</tr>
<tr>
<td>Charizanthe brevicornu</td>
</tr>
<tr>
<td>C. corrugata</td>
</tr>
<tr>
<td>C. rigidula</td>
</tr>
<tr>
<td>Colubrina Californica</td>
</tr>
<tr>
<td>Cryptantha angustifolia</td>
</tr>
<tr>
<td>C. barbigera</td>
</tr>
<tr>
<td>C. costata</td>
</tr>
<tr>
<td>C. maritima</td>
</tr>
<tr>
<td>C. nevadensis</td>
</tr>
<tr>
<td>C. pterocarya</td>
</tr>
<tr>
<td>Cryptantha sp.</td>
</tr>
<tr>
<td>Cylindropuntia acanthocarpa</td>
</tr>
<tr>
<td>C. (=Opuntia) echinocarpa</td>
</tr>
<tr>
<td>Wildlife and Plant Species Observed at the Genesis Solar Energy Project during 2009 Spring Surveys</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>C. (=Opuntia) ramosissima</td>
</tr>
<tr>
<td>C. (=Opuntia) wigginsii</td>
</tr>
<tr>
<td>Cynanchum utahensis</td>
</tr>
<tr>
<td>Cuscuta cf denticulata</td>
</tr>
<tr>
<td>Dalea mollis</td>
</tr>
<tr>
<td>D. mollissima</td>
</tr>
<tr>
<td>Datura wrightii</td>
</tr>
<tr>
<td>Dicaria canescens</td>
</tr>
<tr>
<td>Ditaxis lanceolata</td>
</tr>
<tr>
<td>D. neomexicana</td>
</tr>
<tr>
<td>D. serrata</td>
</tr>
<tr>
<td>D. serrata serrata</td>
</tr>
<tr>
<td>Dithyreola californica</td>
</tr>
<tr>
<td>Encelia farinosa</td>
</tr>
<tr>
<td>Eremalche rotundifolium</td>
</tr>
<tr>
<td>Eriastrum harwoodii</td>
</tr>
<tr>
<td>Eriogonum inflatum</td>
</tr>
<tr>
<td>E. reniforme</td>
</tr>
<tr>
<td>E. thomasi</td>
</tr>
<tr>
<td>E. trichopes</td>
</tr>
<tr>
<td>Eriogonum sp.</td>
</tr>
<tr>
<td>Erodium texanum</td>
</tr>
<tr>
<td>Eschscholtzia glyptosperma</td>
</tr>
<tr>
<td>E. minutiflora</td>
</tr>
<tr>
<td>Fagonia laevis</td>
</tr>
<tr>
<td>Fouquieria splendens</td>
</tr>
<tr>
<td>Geraea canescens</td>
</tr>
<tr>
<td>Gilia latifolia</td>
</tr>
<tr>
<td>G. stellata</td>
</tr>
<tr>
<td>Guillenia (=Thelopodium) lasiophylla</td>
</tr>
<tr>
<td>Hesperocallis undulata</td>
</tr>
<tr>
<td>Hibiscus denudatus</td>
</tr>
<tr>
<td>Hoffmannseggia glauca</td>
</tr>
<tr>
<td>Hyptis emory</td>
</tr>
<tr>
<td>Kalstroemia grandiflora</td>
</tr>
<tr>
<td>Krameria erecta</td>
</tr>
<tr>
<td>K. grayi</td>
</tr>
<tr>
<td>Langloisia setosissima ssp. setosissima</td>
</tr>
<tr>
<td>Larrea tridentata</td>
</tr>
<tr>
<td>Lepidium lasiocarpum</td>
</tr>
<tr>
<td>Linanthus lemmontii</td>
</tr>
<tr>
<td>Loeseliastrum schottii</td>
</tr>
<tr>
<td>Lotus strigosus</td>
</tr>
<tr>
<td>Lupinus arizonica</td>
</tr>
<tr>
<td>Lupinus sp.</td>
</tr>
<tr>
<td>Malacothrix glabrata</td>
</tr>
<tr>
<td>Mammillaria tetrancistra</td>
</tr>
<tr>
<td>Marina parryi</td>
</tr>
<tr>
<td>Mentzelia affinis</td>
</tr>
<tr>
<td>M. albicaulis</td>
</tr>
<tr>
<td>M. involucrata</td>
</tr>
<tr>
<td>M. multiflora var. longiloba</td>
</tr>
<tr>
<td>Mentzelia sp.</td>
</tr>
<tr>
<td>Mohavea confertifolia</td>
</tr>
<tr>
<td>Monoptilon belliioides</td>
</tr>
<tr>
<td>Nama demissum</td>
</tr>
<tr>
<td>Oenothera deltoides</td>
</tr>
<tr>
<td>Wildlife and Plant Species Observed at the Genesis Solar Energy Project during 2009 Spring Surveys</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Oligomeris linifolia</td>
</tr>
<tr>
<td>Olneya tesota</td>
</tr>
<tr>
<td>Palofoxia arida (= linearis)</td>
</tr>
<tr>
<td>Pectocarya peniciliata</td>
</tr>
<tr>
<td>P. recurvata</td>
</tr>
<tr>
<td>Perityle emoryi</td>
</tr>
<tr>
<td>Peucephyllum schottii</td>
</tr>
<tr>
<td>Phacelia crenulata var. crenulata</td>
</tr>
<tr>
<td>P. crenulata var. minutiflora</td>
</tr>
<tr>
<td>P. distans</td>
</tr>
<tr>
<td>P. neglecta</td>
</tr>
<tr>
<td>P. tanacetifolia</td>
</tr>
<tr>
<td>Plantago ovata</td>
</tr>
<tr>
<td>Pleuraphis (=Hilaria) rigida</td>
</tr>
<tr>
<td>Prenanthella exigua</td>
</tr>
<tr>
<td>Proboscidea althaefolia</td>
</tr>
<tr>
<td>Prosopis glandulosa</td>
</tr>
<tr>
<td>Psathyrotes ramosissima</td>
</tr>
<tr>
<td>Psorothamnus emoryi</td>
</tr>
<tr>
<td>P. spinosus</td>
</tr>
<tr>
<td>Rafinesquia neomexicana</td>
</tr>
<tr>
<td>*Salisola tragus</td>
</tr>
<tr>
<td>Sarcostemma hirtellum</td>
</tr>
<tr>
<td>*Schismus arabicus</td>
</tr>
<tr>
<td>Senecio mohavensis</td>
</tr>
<tr>
<td>Sphaeralcea angustifolia</td>
</tr>
<tr>
<td>Stephanomeria pauciflora</td>
</tr>
<tr>
<td>Stillingia spinulosa</td>
</tr>
<tr>
<td>Streptanthella longirostris</td>
</tr>
<tr>
<td>*Tamarix ramosissima</td>
</tr>
<tr>
<td>Tidestromia oblongifolia</td>
</tr>
<tr>
<td>Tiquilia plicata</td>
</tr>
</tbody>
</table>
APPENDIX E

DR. ALICE KARL’S KEY TO DESERT TORTOISE SIGN CLASSES
KEY TO SIGN CLASSES

BURROWS
1 – DEFINITELY TORTOISE – FRESH (TRACKS, TORTOISE INSIDE, FRESHLY DISTURBED SOIL ON MOUND/RUNWAY)
2 – DEFINITELY TORTOISE – USED THIS SEASON (CLEARED OF ANNUALS, BUT NO FRESHLY DISTURBED SOIL)
3 – DEFINITELY TORTOISE – NOT USED THIS SEASON (PROBABLY HAS ANNUALS GROWING IN RUNWAY)
4 – POSSIBLY TORTOISE – IN GOOD CONDITION BUT UNSURE OF SPECIES USING BURROW
5 – DEFINITELY TORTOISE – DETERIORATED SUCH THAT IT WOULD REQUIRE SUBSTANTIAL REMODELING TO BE USABLE
6 – POSSIBLY TORTOISE – DETERIORATED

SCAT
TY1 – WET OR FRESH DARK, ODORIFEROUS
TY2 – DRIED, POSSIBLE GLAZE ON PART; UNEXPOSED SURFACES DARK BROWN; SLIGHT ODOR
TY3 – DRIED, NO GLAZE; AT LEAST PARTIALLY FADED ON EXTERIOR; VERY SLIGHT ODOR
NTY3 – DRIED, NO GLAZE; AT LEAST PARTIALLY FADED ON EXTERIOR; NO ODOR (DISTINGUISHES FROM TY3)
NTY4 – DRIED, LOOSENING, PALE OR BLEACHED

CARCASSES – GENERAL INDICATORS FOR TIME SINCE DEATH
<1 YR – UNEXPOSED SCUTES NORMAL COLOR AND SHEEN, ADHERE TIGHTLY. EXPOSED SCUTES PALING AND MAY BE LIFTING OR OFF. UNEXPOSED BONE WAXY AND SOLID.
1–2 YRS – UNEXPOSED SCUTES NORMAL COLOR WITH SLIGHT SHEEN, MOSTLY TIGHTLY ATTACHED. EXPOSED SCUTES SLIGHTLY PALE WITH NO SHEEN AND NO TO SLIGHT GROWTH RING PEELING. NO ODOR. UNEXPOSED BONE SILKY.
2–3 YRS – UNEXPOSED SCUTES PALE AND WITHOUT SHEEN BUT NO GROWTH RING PEELING. EXPOSED SCUTES PALE WITH SLIGHT PEELING, SCUTES LOOSE, OFF AND/OR TIGHT. BONE SUTURES GENERALLY TIGHT.
4 YRS – UNEXPOSED SCUTES NORMAL COLOR TO SLIGHTLY PALE, NO SHEEN, NO PEELING. EXPOSED SCUTES LOOSE, PALE, DULL, WITH MODERATE PEELING. SUTURES SEPARATING AND BONE SURFACE IS FISSURED, EDGES ARE ROUGHENED (FISSURED UNDER HAND LENS) AND CHIP FAIRLY EASILY.
>>4 YRS – DISARTICULATED AND DISARTICULATING. BONE EDGES CHIP AND CRUMBLE EASILY. SCUTES ARE PEELING AND CURLED.