

Applicant's Data Responses Set 3A (Nos. 186-190) for the APPLICATION FOR CERTIFICATION for the Rio Mesa Solar Electric Generating Facility (Rio Mesa SEGF)

(11-AFC-04)

CALIFORNIA ENERGY COMMISSION 1516 9th Street, MS15 Sacramento, CA 95814-5504

Submitted by:

RIO MESA SOLAR I, LLC RIO MESA SOLAR II, LLC 1999 Harrison Street, Suite 2150 Oakland, CA 94612

October 19, 2012

October 19, 2012

Pierre Martinez Project Manager Systems Assessment & Facility Siting Division California Energy Commission 1516 Ninth Street, MS-15 Sacramento, CA 95814

Subject: Applicant's Data Responses Set 3A (Nos. 186-190) Rio Mesa Solar Electric Generating Facility (11-AFC-04)

Dear Mr. Martinez:

On behalf of Rio Mesa Solar I, LLC and Rio Mesa Solar II, LLC, collectively the "Applicant" for the Rio Mesa Solar Electric Generating Facility project ("Rio Mesa SEGF"), we submit the Applicant's Data Responses Set 3A (Nos. 186-190).

Sincerely,

augh Kelh

Angela Leiba, Vice President Senior Project Manager/ Environmental Department Manager

Enclosure

cc: POS List Project File Applicant's Response to Data Requests, Set 3A (Nos. 186-190) for the

Application for Certification

for the

Rio Mesa Solar Electric Generating Facility (Rio Mesa SEGF)

(11-AFC-04)

Submitted to the

California Energy Commission

Submitted by

Rio Mesa Solar I, LLC and Rio Mesa Solar II, LLC

October 19 2012

Contents

AFC Section

Page

Introduction	. 3
Traffic and Transportation (Nos. 186-190)	.4

Tables

Table DR 188-1 LOS D Threshold Analysis

Figures

Figure 1 34th Avenue Access Road

Attachments

Attachment DR 188-1	Staffing Profile
Attachment DR 188-2	Worker Vehicle Trip Summary
Attachment DR 188-3	Project Construction Traffic Calculations

Introduction

Attached are responses from Rio Mesa Solar I, LLC, Rio Mesa Solar II, LLC, and Rio Mesa Solar III, LLC (collectively the "Applicant") to the California Energy Commission (CEC) Staff's Data Requests Set 3A (Nos. 186-190). Staff served these data requests on September 21, 2012. The responses are for the discipline Traffic and Transportation. Responses are presented in the same order provided by CEC staff, and are keyed to the data request number (186 through 190). Tables and attachments are numbered in reference to the data request number.

Data Request

186. Please provide a map of the proposed 34th Avenue access (secondary access) showing the exact location of the County ROW and any public or private easements, the location and type of any project access improvements, and property ownership (County, private, BLM, etc.) of the land on which improvements would occur. This map should commence at the connection of State Route 78 to its termination within the project site.

Response:

The attached Figure 1 depicts the entire extent of the 34th Avenue access road improvements, from the connection at State Route 78 to the termination within the project site. The entire access road will be located on private lands. There are no existing easements along the access road through Section 24, Township 8 South, Range 21 East. The Riverside County, 60-foot wide right-of-way (ROW) ends at the western Boundary of Section 24 and is located south of and abutting the proposed project access road ROW. The project access road will be constructed in accordance with applicable County road and safety standards.

Data Request

187. Please provide a map of the 30th Avenue/Bradshaw Trail access showing the exact location of the County ROW and any public or private easements, the location and type of any project access improvements, and property ownership (County, private, BLM, etc.) of the land on which improvements would occur. Indicate on the map the portion of the road proposed to be paved. Also, indicate whether any agricultural lands would be impacted and if so, indicate by Prime Farmland and Farmland of Statewide Importance.

Response:

Per Figure 1, attached, the Applicant intends to utilize 30th Avenue/Bradshaw Trail as its primary access, from State Route 78 (SR 78) westerly to a point which is approximately 3.85 miles west of SR 78 and 400 feet north of the project boundary. From that point, an access spur road will be built which runs south for approximately 400 feet until it enters the Project. While Riverside County does not hold a recorded ROW in the form of a dedication and acceptance, it maintains the above-described portion of 30th Avenue/Bradshaw Trail. Such maintenance is confirmed in Riverside County's Transportation Department Road Maintenance Book, and is recognized by the BLM. The County currently maintains this road to a width of 80 feet. The road is maintained in a paved state for a distance of 1 mile from SR 78 westerly to Ludy Boulevard. Continuing west from Ludy Boulevard for a distance of approximately 2.85 miles, the County maintains the road in an unpaved state. The Applicant proposes to pave the entire portion of its primary access lying west of Ludy Boulevard, so that the entire primary access from SR 78 to the project boundary is paved.

30th Avenue/Bradshaw Trail from SR 78 to a point which is 1 mile east of that intersection crosses agricultural lands owned by Metropolitan Water District of Southern California. These lands are not designated as Prime Farmland or Farmland of Statewide Importance. From that point west to the access spur road running south into the pProject, 30th Avenue/Bradshaw Trail crosses BLM lands and a 40-acre private parcel owned by Victor Holchak (the northeast [NE] ¼ of the NE ¼ of Section 14, Township 8 North, Range 21 East). Mr. Holchak's parcel is unimproved, non-irrigated desert, and is not designated as Prime Farmland of Statewide Importance. The access spur road running south from 30th Avenue into the project site crosses BLM land before it enters the project boundary. The Applicant has applied to the BLM for a Grant of ROW for the segments of the access route that cross BLM lands.

Data Request

188. Please provide: the estimated number of employees during each month of construction and a traffic analysis determining the threshold number of individually commuting construction employees that would cause LOS at SR-78 (Neighbours Blvd.)/28th Ave. and SR-78 (Rannells Blvd.)/28th Ave. to degrade to LOS D. If the applicant submits this information to staff prior to publication of the Final Staff Assessment (FSA), staff will refine the proposed condition of certification to require implementation of the park-and-ride plan during only those months where construction employment would cause LOS at the affected intersections to reach LOS D. Alternatively, staff would be willing to consider a different measure to address the congestion issue.

Response:

In preparing this response, Applicant has provided the following three attachments:

- DR 188-1 Staffing Profile illustrates the Project monthly staffing profile showing the number of employees each month during Project construction.
- DR 188-2 Worker Vehicle Trip Summary describes the resultant worker vehicle trips each month and on a daily basis during Project construction. Corresponding construction delivery vehicles were shown as separate line items.
- DR 188-3 Project Construction Traffic Calculations provides the worksheets used to model Project construction traffic impacts.

As shown in DR 188- 2, the peak Project construction month is Month 22, with 1,370 worker vehicles each day and eight project delivery vehicles each day. The vehicles were used as the basis of Table 5.12-6 Project Construction Trip Generation in the Environmental Enhancement Proposal.

In response to this data request, a traffic analysis using the worker vehicle trip data shown in DR 188-2 was conducted to determine the construction months during which LOS at SR 78 (Neighbours Blvd.)/28th Avenue and SR 78 (Rannells Blvd.)/28th Avenue is to degrade from LOS C to LOS D. This analysis also forecasts when LOS levels at the study intersections are expected to return to LOS C.

As shown in Table 1, only Months 22 (peak Month) and Month 23 will result in LOS D at the study intersections, with 1,370 and 1,369 daily worker vehicles each month, correspondingly. All other construction months are forecast to operate at LOS C or better. The traffic model calculation worksheets are provided in DR 188-3 Project Construction Traffic Calculations.

The results of the analysis are as follows:

	Month 21	Month 22 ¹	Month 23	Month 24
Intersection	Daily worker vehicle = 1265	Daily worker vehicle = 1370 ²	Daily worker vehicle = 1369	Daily worker vehicle = 1271
SR 78 (Neighbours Blvd.)/28th Avenue ³	LOS C	LOS D	LOS D	LOS C
SR 78 (Rannells Blvd.)/28th Avenue ⁴	LOS C	LOS D	LOS D	LOS C

Table DR 188-1 LOS D	Threshold Analysis
----------------------	---------------------------

Notes

1 – Amended AFC Peak construction month

2 – Peak construction worker vehicles used in Table 5.12-6 Project Construction Trip Generation in the amended AFC.

3 – PM LOS D analysis 4 – AM LOS D analysis

Based on the daily worker vehicle difference on Month 23 (1,369 worker vehicles) and Month 24 (1,271 worker vehicles), a reduction of approximately 100 worker vehicles will result in improvement of LOS D conditions to LOS C conditions.

Data Request

189. Please provide feasible proposed park-and-ride locations and the approximate number of vehicles that they would accommodate. These park-and-ride locations should be on already developed lands. Park-and-ride locations could be in the parking lots of hotels where construction employees stay, underutilized parking lots, on vacant but disturbed properties along the I-10 corridor, etc.

Response:

There is no basis for Staff's requested park and ride locational information. Implementation of a massive employee bussing program during Project construction is not justified for a short term impact of a LOS D occurrence at the Neighbours Blvd (PM) and Rannells Blvd (AM) intersections on SR 78 given the applicable threshold of significance of LOS E.

Staff concludes that peak construction traffic impacts occur at two study intersections: SR 78 (Neighbours Boulevard)/28th Avenue (LOS D during peak PM traffic conditions) and SR 78 (Rannels Boulevard) (LOS D during peak AM traffic conditions). Staff then utilizes "the most restrictive applicable LOS standard in Riverside County[] ..." (i.e., LOS C or greater) along all county-maintained roads and conventional state highways. The Applicant requests that the short term degradation to LOS D at the two aforementioned locations during certain time periods should not be considered as severe

impacts requiring the implementation of a park-and-ride plan because the applicable threshold of significance should be LOS E, for the reasons set forth below:

- a. California Department of Transportation (Caltrans) has jurisdiction and maintains the right-ofway of SR 78. Caltrans District 8 maintains SR 78 from Interstate 10 (I-10) to the Imperial County Line while the remainder of SR-78 within Imperial County and San Diego County is maintained by Caltrans District 11.
- b. According to the SR 78 Route Concept Report (RCR) prepared by Caltrans, the RCR "is a <u>planning document</u> that describes the Department's basic approach to development of a given route. Considering financial constraints, characteristics of the highway, and projected travel demand over an approximate 20-year planning period, the RCR defines the type of facility and LOS for each route. The objective of this effort is to provide a better basis for the development of the State Transportation Improvement Program (STIP) and to determine the appropriate concept for future highway projects."
- c. The RCR also described the role of the Riverside County Transportation Commission (RCTC) which is responsible for programming 75 percent of the STIP per Section 188.8 of the Streets and Highway Code amended October 3, 1997. As discussed in Page 4 <u>CONCEPT RATIONALE</u> (emphasis shown in underline) "Under the mandate of State law, RCTC is responsible for preparing the County's CMP. The CMP includes all State highways as well as other roads. The CMP established LOS E as the minimum LOS Standard for intersections and segments along the CMP system of highways and roadways. Due to the transportation financing program established through Measure A in Riverside County, <u>there are no advantages to setting a higher minimum LOS standard than required by the CMP legislation which is LOS E</u> unless the intersection or segment had a lower LOS or LOS F in 1991. The analysis done for this RCR shows the 2020 LOS will meet the CMP standard or LOS E."
- d. Within Riverside County, SR 78 is a de facto component of the CMP roadway system. As mandated by State law, Riverside County Transportation Commission's (RCTC) Congestion Management Program (CMP) requires LOS E as the minimum standard.
- e. Caltrans' threshold of significance of LOS E has not been exceeded by Project traffic at the relevant intersections.

Given that the RCTC requires LOS E or above on SR 78, it is inaccurate to characterize an LOS D condition during AM and PM peak periods at one intersection on SR 78 is a significant adverse impact. Furthermore, as noted above, if SR 78 is subject to a minimum LOS of E, a LOS D condition at one intersection is not a significant adverse impact.

Finally, the Applicant proposes the following specific measures that could be cost effectively implemented and would mitigate impacts on the aforementioned intersections to less than an LOS D. The Project will explore the potential for traffic mitigation strategies such as:

- Stagger morning and evening shifts a half hour to an hour.
- Implement an evening shift.
- Provide preferred parking for workers who carpool, similar to the successful program at Ivanpah Solar Electric Generating Facility project in San Bernardino County.

• Implement a web based ride share program.

Data Request

190. For glint and glare from the heliostats, please identify potential receptors and receptor locations for both ground and airborne observers, and identify the heliostat movements and positions, including malfunctions, which could result in exposure of the identified locations to reflected solar radiation from the heliostats.

Please describe how the heliostat positioning plan algorithms (e.g., the establishment of positioning forbidden zones) would minimize direct solar reflections to known ground locations or to the anticipated intermittent presence of aircraft for either known or unknown flight paths.

Response:

Ground Based Observers

Recipients in the agricultural lands and Blythe (KOP's 1, 2, 4, 5, and 6) will not be subject to glint and glare from the heliostats. This is due to the fact that the agricultural fields are at a lower elevation than the project site. Therefore there is no way for heliostats to be directed to the ground based observers.

Recipients at KOP 3 and 6, I-10 are too far away from the Project to experience any noticeable concentration from the heliostats.

Recipients with an initial view of the Palo Verde Mesa and the Project from eastbound Bradshaw Trail to the west of the project site would first see the Project at distance of approximately 2 miles from the edge of the solar field and 3.25 miles from the nearest heliostat that is typically oriented in a westerly facing direction. At this distance the glint and glare from a heliostat in the field wound not be significant since the distance from the observer is more than 20 times the focal length of the mirror. As the observer travels down the hill towards the project site, mirrors oriented in a direction that would reflect sunlight towards the observer, would become increasingly blocked by the mirrors on the northerly and westerly sides of the solar field between the reflective surface and the observer, or by a ridge between Bradshaw Trail and the project site, hence no significant impact to the observer would be realized.

Airborne Observers

The heliostats, while appearing to be flat mirrors, are actually slightly concave. The design focal lengths for the heliostat mirrors range from 250 to 1,000 meters. Therefore, for air borne observers the only potential for impact would be from mirrors oriented in the "safe" or horizontal position. A mirror in the safe position does not concentrate reflected sunlight with other mirrors into a single point as there are no algorithms programmed to accomplish this. So the glint observe would be from directly over the Project Site at an elevation of less than 1,000 meters, and be that of only a single mirror at a time. For heliostat of 1,000 meter focal length at the focal distance of 1,000 meter, the center of the beam reflected will be

about a quarter of the sun flux (one sun flux is less than 1 kilowat per square meter $[kW/m^2]$) which is a fraction of what any observer will be exposed to from the sun itself.

For mirrors in the tracking mode the control system is designed to point mirrors either at the solar receiver steam generator (SRSG) or into a "standby zone". The beams from the mirrors pointed into the standby zone would continue past the SRSG and reduce in concentration to a level of less than 10 kW/m^2 at an altitude of no more than 500 feet above the tower in compliance with Federal Aviation Administration (FAA) guidelines for Maximum Permissible Exposure (MPE) and structure avoidance.

Minimization Techniques

The Applicant has a policy to make its plants as safe as possible, and the advancements in the control systems reflect this policy. If a particular location(s) are determined to require avoidance it is possible to program a "forbidden zone" within the positioning algorithm for the heliostats. This would result in heliostats to follow a safe path that avoids any forbidden zone(s) while transitioning from tracking to another mode.

Attachment DR 188-1 Staffing Profile

			201	3								2014	Ļ											2015	5							2016	
Month	Jul O	Aug 1	Sep 2	Oct 3	Nov 4	Dec 5	Jan 6	Feb 7	Mar 8	Apr 9	May 10	Jun 11	Jul 12	Aug 13	Sep 14	Oct 15	Nov 16	Dec 17	Jan 18	Feb 19	Mar 20	Apr 21	May 22	Jun 23	Jul 24	Aug 25	Sep 26	Oct 27	Nov 28	Dec 29	Jan 30	Feb 31	Mar 32
Total Manual Labor	8	10	20	30	42	103	196	309	477	559	617	678	828	903	1025	1109	1174	1265	1442	1661	1867	2011	2187	2188	2027	1818	1546	1264	940	719	326	118	76
Manual Vehicle	88	110	220	330	464	1131	2158	3403	5244	6154	6789	7455	9112	9935	11277	12203	12913	13914	15866	18271	20540	22120	24058	24070	22298	20002	17011	13899	10335	7909	3581	1296	836
Total Subcontractors	1	2	4	6	8	19	37	58	89	104	115	126	154	168	191	207	219	235	269	309	348	374	407	407	377	339	288	235	175	134	61	22	14
Subcontractor Vehicle	16	20	41	61	86	211	402	633	976	1146	1264	1388	1696	1849	2099	2272	2404	2590	2954	3401	3824	4118	4479	4481	4151	3724	3167	2587	1924	1472	667	241	156
Total Non-Manual Labor	6	14	23	31	42	55	73	78	89	98	108	112	128	134	140	140	150	150	149	149	147	146	146	142	137	129	114	96	73	54	30	22	17
Non-Manual Vehicle	62	158	255	338	462	602	801	862	977	1074	1188	1232	1408	1478	1540	1540	1646	1646	1637	1637	1619	1602	1602	1566	1505	1417	1254	1055	805	589	335	238	188
Total Manpower (Alltype)	15	26	47	66	92	177	306	445	654	761	840	916	1111	1206	1356	1456	1542	1650	1860	2119	2362	2531	2740	2738	2541	2286	1948	1595	1188	906	417	161	107
Total Vehicle (Alltype)	166	289	516	730	1012	1944	3361	4899	7197	8373	9241	10075	12217	13263	14916	16015	16963	18149	20456	23309	25982	27840	30139	30117	27954	25143	21432	17541	13064	9969	4582	1775	1180

Attachment DR 188-2 Worker Vehicle Trip Summary

Forecast Monthly Site Delivery Schedule - Unit 1&2

	Inf	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	nn	Jul	Aug	Sep	Oct	Νον	Dec	Jan	Feb	Mar	Apr	May	unſ	Inf	Aug	Sep	Oct
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Notes:			20)13				2014												20	15							
MONTHLY (number of vehicles, not trips)												Heav	iest Truck I	Period								Heavie	est Worker	Period				
CRAFT TOTAL	166	289	516	730	1012	1944	3361	4899	7197	8373	9241	10075	12217	13263	14916	16015	16963	18149	20456	23309	25982	27840	30139	30117	27954	25143	21432	17541
MATERIAL AND EQUIPMENT (ACTUAL)	12	26	52	91	112	303	268	429	605	611	666	809	935	921	911	813	690	546	448	348	203	215	172	68	21	8	22	18
MATERIAL AND EQUIPMENT (X3 PCE)	36	78	156	273	336	909	804	1287	1815	1833	1997.4	2427.6	2805	2763	2733.6	2439.6	2071.2	1638.6	1344	1043.4	609.6	644.4	515.4	205.2	62.4	23.4	66	54
TOTAL (PCE ADJUSTED)	202	367	672	1003	1348	2853	4165	6186	9012	10206	11238	12503	15022	16026	17650	18454	19034	19788	21800	24352	26592	28484	30654	30322	28016	25166	21498	17595
DAILY (number of vehicles, not trips)																												
CRAFT TOTAL	8	13	23	33	46	88	153	223	327	381	420	458	555	603	678	728	771	825	930	1059	1181	1265	1370	1369	1271	1143	974	797
MATERIAL AND EQUIPMENT (ACTUAL)	1	1	2	4	5	14	12	20	28	28	30	37	43	42	41	37	31	25	20	16	9	10	8	3	1	0	1	1
MATERIAL AND EQUIPMENT (X3 PCE)	2	4	7	12	15	41	37	59	83	83	91	110	128	126	124	111	94	74	61	47	28	29	23	9	3	1	3	2
TOTAL (PCE ADJUSTED)	9	17	31	46	61	130	189	281	410	464	511	568	683	728	802	839	865	899	991	1107	1209	1295	1393	1378	1273	1144	977	800
																						LOS	LOS	LOS	LOS	_		
																						С	D	D	С			

Attachment DR 188-2 Worker Vehicle Trip Summary (Continued)

Nov	Dec	Jan	Feb	Mar
28	29	30	31	32
			2016	
13064	9969	4582	1775	1180
5	6	22	23	17
15	18	66	69	51
13079	9987	4648	1844	1231
594	453	208	81	54
0	0	1	1	1
1	1	3	3	2
595	454	211	84	56
				_

Attachment DR 188-3 Project Construction Traffic Calculations

Table 5.12-6A Project Construction Trip Generation

		А	M Peak Trips		PM Peak Trips						
Vehicle Type	Peak Daily Round Trips	Inbound	Outbound	Total	Inbound	Outbound	Total				
Construction Worker Vehicles ¹	2530	696	0	696	0	696	696				
Delivery Vehicles (including heavy trucks) ²	60	15	8	23	0	8	8				

Month 21 – April 2015

Source: Bechtel Power Corporation, Forecast Traffic Impact - Rio Mesa_052412_On Site Batch Plant Rev 2.xls

¹ Peak workforce was conservatively analyzed at 1265 worker vehicle trips during peak month of construction. 55% of these worker vehicle trips were assumed to commute during the morning (7-9 AM) and evening (4-6 PM) peak hours.

² Delivery vehicles were adjusted into Passenger Car Equivalent (1 Heavy Vehicle = 3 PCE) vehicle in the traffic impact analysis. Analysis assumed 50 percent of 10 (actual trucks) delivery vehicles arrive and 25 percent leave during the 7 to 9 AM peak hour; 25 percent leave during the 4 to 6 PM peak hour. Numbers shown on the table are passenger car equivalent adjusted.

Level of Service Analysis Results Month 21 – April 2015

Intersection (Deak Hour Analysic)	Level of Service (LOS)
	Results
SR-78 (Rannels)/28th Street (AM Peak Hour Analysis) [1]	LOS C
SR-78 (Neighbours)/28 th Street (PM Peak Hour Analysis) [2]	LOS C

[1] – LOS D occurs during AM peak hour, Amended RMS AFC 2012

[2] – LOS D occurs during PM peak hour, Amended RMS AFC 2012

Attachments: LOS Worksheets

.

Rio Mesa Solar Electric Generating Facility (SEGF) Near Term AM Peak Hour Conditions - with Peak Project Construction Month 21

Trip Generation Report

Forecast for AM Construction

Zone #	Subzone	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
1	Operations	1.00	Operation	0.00	0.00	0	0	0	0.0
2	Construction	1.00	Construction	696.00	0.00	696	0	696	96.8
	Zone 2	Subtotal	•••••	• • • • • • • •	• • • • • • • • •	696	0	696	96.8
3	Construction	1.00	Materials Truc	8.00	4.00	8	4	12	1.7
	Zone 3 3	Subtotal	•••••	•••••	• • • • • • • • •	8	4	12	1.7
4	Construction	1.00	Equipment Truc	7.00	4.00	7	4	11	1.5
	Zone 4 :	Subtotal				7	4	11	1.5
TOTAI	· · · · · · · · · · · · · · · · ·				 	. 711	8	719	100.0

NTAMWP Rev Fri Oct 5, 2012 17:33:57

Rio Mesa Solar Electric Generating Facility (SEGF) Near Term AM Peak Hour Conditions - with Peak Project Construction Month 21													
Level Of Service Computation Report													
2000 HCM 4-Way Stop Method (Future Volume Alternative)													

ntersection #5 Ramells (SR-78)/28th Ave													
Cycle (sec):	tycle (sec): 100 Critical Vol./Cap. (X): 0.819												
Loss Time (se	ec):	4	0 (Y+R	= 4 s	sec) i	Average	Delay	y (seo	c/veh):		22.	. 2	
Optimal Cycle	э:	1	0			Level C	of Serv	vice:				С	
********	* * * * * *	*****	******	*****	*****	******	*****	****	******	*****	*****	*****	
Approach:	No	rth Bo	ound	Sou	uth Bo	ound	Ea	ast Bo	ound	We	est_Bo	ound	
Movement:	ч. ч. т.	- T	– ĸ	· با	- T	- R	<u>г</u> -	- т	- R	۰ L	- т	- R	
Control:	St	top S:	ian	St		ian	St		 ian	I	op Si	ian	
Rights:	_	Inclu	ude		Inclu	ıde		Inclu	ıde		Inclu	ıde	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
Lanes:	0 0	D O	1 0	0 3	LO	0 0	0 () 1!	0 0	0 () 1!	0 0	
Volume Module	e:												
Base Vol:	0	15	8	1	11	0	0	0	0	21	1	1	
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse:	0	15	8	1	11	0	0	0	0	21	1	1	
Added Vol:	0	0	8	0	0	0	0	0	0	676	0	0	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	0	15	16	1	11	0	0	0	0	697	1	1	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	0	12	10	T	11	0	0	0	0	697	1	T	
Reduct Vol:	0	1 -	10	1	11	0	0	0	0	607	0	1	
Reduced vol:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	
PUE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1 00	1.00	1.00	1 00	
Final Vol •	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	697	1.00	1.00	
	ı			1					1	1			
Saturation F	low Mo	odule	: '	•			•		•	•		•	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:	0.00	0.48	· 0.52	0.08	0.92	0.00	0.00	1.00	0.00	0.99	0.01	0.01	
Final Sat.:	0	318	340	51	566	0	0	0	0	851	1	1	
												!	
Capacity Anal	lysis	Modu.	le:										
Vol/Sat:	XXXX	0.05	0.05	0.02	0.02	XXXX	XXXX	XXXX	XXXX	0.82	0.82	0.82	
Crit Moves:	~ ~	****		0.0	****	0.0		~ ~	~ ~	<u></u>	22 1	~~~~	
Delay/ven:	1 00	8.4	8.4	1 00	8.6	1 00	1 00	1 0.0	1 00	23.1	23.1	23.1	
Delay Auj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	22 1	22 1	22 1	
Aujuer/ven:	v.v *	0.4 N	0.4 v	٥.٥ ٨	٥.٥ ۸	v.u *	U.U *	0.U *	U.U *	23.1	23.1	23.1	
ApproachDel:		g /	А	A	8 6					C	23 1	Ċ,	
Delay Adi.		1 00			1 00			~~~~			1 00		
ApprAdiDel·		8 4			8 6		2 2	*****			23 1		
LOS by Appr:		A			A		~~~~	*			c		
***********	*****	*****	******	*****	*****	******	*****	* * * * * *	******	*****	*****	******	

Traffix 7.6.0115 (c) 2003 Dowling Assoc. Licensed to URS CORP., SANTA ANA, CA

.

NTPMWP Rev

Fri Oct 5, 2012 17:41:42

١

Rio Mesa Solar Electric Generating Facility (SEGF) Near Term PM Peak Hour Conditions - with Peak Project Construction

Month 21

Trip Generation Report

Forecast for PM Construction

Zone	- 1		•	Rate	Rate	Trips	Trips	Total	% Of
#	Subzone	Amount	Units	In	Out	In	Out	Trips	Total
2	Construction	1.00	Construction	0.00	696.00	0	696	696	98.9
	Zone 2 S	Subtotal	• • • • • • • • • • • • • • • •	•••••		0	696	696	98.9
3	Construction	1.00	Materials Truc	0.00	4.00	0	4	4	0.6
	Zone 3 S	Subtotal	•••••••	•••••	• • • • • • • • •	0	4	4	0.6
4	Construction	1.00	Equipment Truc	0.00	4.00	0	4	4	0.6
	Zone 4 S	Subtotal	•••••	•••••	• • • • • • • • •	0	4	4	0.6
TOTAI						. 0	704	704	100.0

NTPMWP Rev			F	ri Oct	5, 2	012 17	:41:42			Page	9-1
Near T	Rio erm Pi	Mesa M Pea	Solar k Hour	Elect Condi	ric G tions Mont	enerat - wit h 21	ing Fa h Peak	cilit Proj	y (SEGF ect Cor	r) Istruction	•
			Level (Of Ser	vice	Comput	ation	Repor	 t		
	2000 1	HCM 4	-Way St	top Me	thod	(Futur	e Volu	me Al	- ternati	ve)	
*******	*****	* * * * *	******	* * * * * *	* * * * *	*****	*****	* * * * *	******	******	******
Intersection	#4 Ne	eighb *****	ours (\$	SR-78) *****	/28th ****	Ave *****	*****	*****	*****	*****	******
Cycle (sec):		10	0			Critic	al Vol	./Cap	. (X):	0.8	21
Loss Time (s	ec):		0 (Y+R	= 4	sec)	Averag	e Dela	y (se	c/veh):	21	.4
Optimal Cycle	e:		0			Level	Of Ser	vice:			С
*****	*****	****	*****	* * * * * *	* * * * *	*****	* * * * * *	* * * * *	* * * * * * *	*****	******
Approach:	Noi	rth B	ound	So	uth B	ound	E	ast Bo	ound	West B	ound
Movement:	L -	- Т	- R	L	- Т	– R	L ·	- Т	- R	L - T	– R
			- -				11				
Control:	St	top S	ign	S	top S	ign	S	top S.	ign	Stop S	ign
Rights:	-	Incl	ude		Incl	ude	-	Inclu	Jde	Incl	ude
Min. Green:		, ₀	1 0	0	0	0	0		0	0 0	0
Lanes:	U (J (J	ΙŪ		0 11	0 0	U.	1 0	0 0	0 0 1!	0 0
Volumo Modula											!
Paso Vol:	e. 0	24	10	2	21	22	22	٨	0	0 7	0
Growth Adi.	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00 1 00	1 00
Initial Beer	1.00	24	1.00	1.00	21	1.00	2.00	1.00	1.00	1.00 1.00 a 3	1.00 g
Added Vol:	0	27	10	2	21	22	220	221	0	0 0	0
PasserByVol.	n N	ň	0	0	ő	0	0	0	0	0 0	0
Initial Fut:	õ	24	10	2	21	22	361	335	ő	9 3	8 8
User Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Volume:	0	24	10	2	21	22	361	335	0	93	8
Reduct Vol:	0	0	0	0	0	0	0	0	0	0 0	0
Reduced Vol:	0	24	10	2	21	22	361	335	0	93	8
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
Final Vol.:	0	24	10	2	21	22	361	335	0	93	8
Saturation F	low Mo	odule	:								1 00
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
Lanes:	0.00	0./1	0.29	0.04	0.47	0.49	0.52	0.48	0.00	224 111	207
Final Sat.:	U 1	443	100	29			440	400			
Capacity Ana	lveie	Modu	10.	11					1	1	,
Vol/Sat:	XXXX	0.05	0.05	0.07	0.07	0.07	0.82	0.82	XXXX	0.03 0.03	0.03
Crit Moves:		****			****			****		****	
Delay/Veh:	0.0	8.6	8.6	8.6	8.6	8.6	23.3	23.3	0.0	7.8 7.8	7.8
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
AdjDel/Veh:	0.0	8.6	8.6	8.6	8.6	8.6	23.3	23.3	0.0	7.8 7.8	7.8
LOS by Move:	*	А	А	А	А	А	С	с	*	A A	А
ApproachDel:		8.6			8.6			23.3		7.8	
Delay Adj:		1.00			1.00			1.00		1.00	
ApprAdjDel:		8.6			8.6			23.3		7.8	
LOS by Appr:		A			A			С		А	
*********	*****	*****	*****	*****	****	*****	*****	* * * * *	* * * * * * *	*********	*****

Traffix 7.6.0115 (c) 2003 Dowling Assoc. Licensed to URS CORP., SANTA ANA, CA

٠

•

Table 5.12-6BProject Construction Trip Generation

		A	M Peak Trips		PM Peak Trips				
Vehicle Type	Peak Daily Round Trips	Inbound	Outbound	Total	Inbound	Outbound	Total		
Construction Worker Vehicles ¹	2740	754	0	754	0	754	754		
Delivery Vehicles (including heavy trucks) ²	48	12	6	18	0	6	6		

Month 22 – May 2015 (Peak Month Analyzed in Amended AFC 2012)

Source: Bechtel Power Corporation, Forecast Traffic Impact - Rio Mesa_052412_On Site Batch Plant Rev 2.xls

¹ Peak workforce was conservatively analyzed at 1370 worker vehicle trips during peak month of construction. 55% of these worker vehicle trips were assumed to commute during the morning (7-9 AM) and evening (4-6 PM) peak hours.

² Delivery vehicles were adjusted into Passenger Car Equivalent (1 Heavy Vehicle = 3 PCE) vehicle in the traffic impact analysis. Analysis assumed 50 percent of 8 (actual trucks) delivery vehicles arrive and 25 percent leave during the 7 to 9 AM peak hour; 25 percent leave during the 4 to 6 PM peak hour. Numbers shown on the table are passenger car equivalent adjusted.

Level of Service Analysis Results Month 22 – May 2015 (Peak Month Analyzed in Amended AFC 2012)

Intersection (Deak Hour Analysis)	Level of Service (LOS)
Intersection (Peak Hour Analysis)	Results
SR-78 (Rannels)/28th Street (AM Peak Hour Analysis) [1]	LOS D
SR-78 (Neighbours)/28th Street (PM Peak Hour Analysis) [2]	LOS D

[1] – LOS D occurs during AM peak hour, Amended RMS AFC 2012

[2] – LOS D occurs during PM peak hour, Amended RMS AFC 2012

Attachments: LOS Worksheets

NTAMWP Rev Thu Jun 21, 2012 16:24:42	Page 9-1									
Rio Mesa Solar Electric Generating Facility Near Term AM Peak Hour Conditions - with Peak Proje	y (SEGF) ect Construction									
Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative) ************************************										
<pre>************************************</pre>	(X): 0.880 c/veh): 27.9 D									
Approach:North BoundSouth BoundEast BoMovement:L - T - RL - T - RL - T	ound West Bound - R L - T - R									
Control: Stop Sign Stop Sign Stop Sign Rights: Include Include Include Min. Green: 0 0 0 0 0 0 Lanes: 0 0 1 0 0 0 1	ign Stop Sign ude Include 0 0 0 0 0 0 0 1! 0 0									
Volume Module: Base Vol: 0 15 8 1 11 0 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Initial Bse: 0 15 8 1 11 0 0 0 Added Vol: 0 0 6 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 Initial Fut: 0 15 14 1 10 0 0 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 0 PHF Volume: 0 15 14 1 1 0 0 0 Reduced Vol: 0 15 14 1 0 0 0 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Final Vol.:<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 Lanes: 0.00 0.52 0.48 0.08 0.92 0.00 0.00 1.00 Final Sat.: 0 340 317 52 567 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
Capacity Analysis Module: Vol/Sat: xxxx 0.04 0.04 0.02 0.02 xxxx xxxx xxxx Crit Moves: **** **** Delay/Veh: 0.0 8.5 8.5 8.7 8.7 0.0 0.0 0.0 Delay Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 AdjDel/Veh: 0.0 8.5 8.5 8.7 8.7 0.0 0.0 0.0 LOS by Move: * A A A A A * * * ApproachDel: 8.5 8.7 xxxxxx Delay Adj: 1.00 1.00 1.00 1.00 xxxxx ApprAdjDel: 8.5 8.7 xxxxxx LOS by Appr: A A *	xxxx 0.88 0.88 0.88 **** 0.0 29.0 29.0 29.0 1.00 1.00 1.00 1.00 0.0 29.0 29.0 29.0 * D D D 29.0 1.00 29.0 1.00 29.0 1.00									

NTPMWP Rev			Th	u Jun	21,	2012 16	:24:5	6			Page	8-1
Near Te	Rio erm PN	Mesa 1 Pea	Solar k Hour	Elect: Condi	ric G tions	enerati - with	ng Fa Peak	cilit; Proje	y (SEGF ect Con	') struct	tion	
			Level C	f Ser	vice	Computa	tion H	Report				
2	2000 H	ICM 4	-Way St	op Me	thod	(Future	Volur	me Al	ternati	ve)		
*****	*****	****	* * * * * *	****	* * * * *	* * * * * * *	*****	* * * * *	* * * * * * *	* * * * * *	* * * * * :	*****
Intersection	#4°N∈ *****	eighbo	ours (S ******	R-78),	/28th	Ave ******	*****	* * * * * *	* * * * * * *	*****		+++++++
Cycle (sec) .		1.01	n			Critica	1 Vol	/Can	(V) •		0 01	22
Loss Time (se	.()	10) (V+P	- 4	(202	Avorago	Dolar	./Cap	\cdot (A) \cdot		0.00	0
Optimal Cycle)	1.	5007	Lovol O	of Cor	y (set	J ven).		21	. U
****	- • * * * * * *	****	J * * * * * * *	*****	*****	******	*****	*****	******	*****		D
Approach:	Nor	th Bo	ound	Sou	uth B	ound	Ea	ast Bo	ound	We	est Bo	ound
Movement:	L -	- Т	- R	L ·	- T	- R	L -	- T	- R	L -	- Т	- R
Control.	 St	on S	 i.an							 C+		
Rights.	50	Inclu	ıda	5	Incl.	udo	51	Thel	ıdo	51	Thel	i da
Min Green.	0	THET	n n	0	INCI	uue 0	0	THCT	ide 0	0	Incit	ide 0
Lance.	0 0		1 0	0 0	11	0 0	0 -	1 0	0 0	0 0		0 0
l			I	1		1	1	1 0		1		0 0
Volume Module							1			1		
Base Vol.	· ·	24	10	2	21	22	22	4	0	9	3	Q
Growth Adi.	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Initial Bso.	1.00	1.00	1.00	1.00	21	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Added Vol.	0	24	10	0	21	0	361	358	0	0	0	0
PassarByVol.	0	0	0	0	0	0	04	550	0	0	0	0
Initial Fut.	0	24	10	2	21	22	386	362	0	9	0 7	8
lleer Adi.	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
PHF Adi.	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
PHF Volume.	1.00	24	1.00	2.00	21	22	386	362	1.00	1.00	1.00	1.00
Reduct Vol:	0	0	0	0	0	0	000	0	0	0	0	0
Reduced Vol.	0	24	10	2	21	22	386	362	0	9	с З	8
PCE Adi.	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1.00	1.00	1.00	1.00	1.00
MLF Adj.	1 00	1 00	1 00	1 00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol ·	0.11	24	10	2.00	21	22	386	362	0	9	3	8
				1								
Saturation Fl	ow Mc	dule	: '			,						
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	0.71	0.29	0.04	0.47	0.49	0.52	0.48	0.00	0.45	0.15	0.40
Final Sat.:	0	445	185	29	301	316	437	410	0	333	111	296
Capacity Anal	lysis	Modu.	le:									
Vol/Sat:	XXXX	0.05	0.05	0.07	0.07	0.07	0.88	0.88	XXXX	0.03	0.03	0.03
Crit Moves:		* * * *			* * * *		****				****	
Delay/Veh:	0.0	8.8	8.8	8.7	8.7	8.7	29.5	29.5	0.0	7.8	7.8	7.8
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	8.8	8.8	8.7	8.7	8.7	29.5	29.5	0.0	7.8	7.8	7.8
LOS by Move:	*	A	A	A	А	А	D	D	*	А	А	А
ApproachDel:		8.8			8.7			29.5			7.8	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		8.8			8.7			29.5			7.8	
LOS by Appr:		A			A		ny v soore	D			A	
**********	*****	****	* * * * * * *	* * * * *	* * * * *	* * * * * * *	****	* * * * *	* * * * * * *	*****	* * * * * *	******

Table 5.12-6CProject Construction Trip Generation

Month 23 – June 2015

		A	M Peak Trips		PM Peak Trips				
Vehicle Type	Peak Daily Round Trips	Inbound	Outbound	Total	Inbound	Outbound	Total		
Construction Worker Vehicles ¹	2738	753	0	753	0	753	753		
Delivery Vehicles (including heavy trucks) ²	18	5	2	7	0	2	2		

Source: Bechtel Power Corporation, Forecast Traffic Impact - Rio Mesa_052412_On Site Batch Plant Rev 2.xls

¹ Peak workforce was conservatively analyzed at 1369 worker vehicle trips during peak month of construction. 55% of these worker vehicle trips were assumed to commute during the morning (7-9 AM) and evening (4-6 PM) peak hours.

² Delivery vehicles were adjusted into Passenger Car Equivalent (1 Heavy Vehicle = 3 PCE) vehicle in the traffic impact analysis.
 Analysis assumed 50 percent of 3 (actual trucks) delivery vehicles arrive and 25 percent leave during the 7 to 9 AM peak hour;
 25 percent leave during the 4 to 6 PM peak hour. Numbers shown on the table are passenger car equivalent adjusted.

Level of Service Analysis Results Month 23 – June 2015

Intersection (Deak Hour Analysic)	Level of Service (LOS)
Intersection (Peak Hour Analysis)	Results
SR-78 (Rannels)/28th Street (AM Peak Hour Analysis) [1]	LOS D
SR-78 (Neighbours)/28th Street (PM Peak Hour Analysis) [2]	LOS D

[1] – LOS D occurs during AM peak hour, Amended RMS AFC 2012

[2] – LOS D occurs during PM peak hour, Amended RMS AFC 2012

Attachments: LOS Worksheets

Fri Oct 5, 2012 17:55:08

Page 2-1

.

Rio Mesa Solar Electric Generating Facility (SEGF) Near Term AM Peak Hour Conditions - with Peak Project Construction Month 23

Trip Generation Report

Forecast for AM Construction

Zone #	Subzone	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
1	Operations	1.00	Operation	0.00	0.00	0	0	0	0.0
2	Construction	1.00	Construction	753.00	0.00	753	0	753	99.1
	Zone 2	Subtotal	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • •	753	0	753	99.1
3	Construction	1.00	Materials Truc	2.00	1.00	2	1	3	0.4
	Zone 3	Subtotal	•••••	• • • • • • • •	• • • • • • • • •	2	1	3	0.4
4	Construction	1.00	Equipment Truc	3.00	1.00	3	1	4	0.5
	Zone 4	Subtotal	•••••	• • • • • • •	• • • • • • • • •	3	1	4	0.5
TOTAL	 L					. 758	2	 760	100.0

NTAMWP Rev

•

Rio Mesa Solar Electric Generating Facility (SEGF) Near Term AM Peak Hour Conditions - with Peak Project Construction Month 23												
Level Of Service Computation Report												
2000 HCM 4-Way Stop Method (Future Volume Alternative)												
T	" г р.		- (05 -		*****	* * * * * * *	*****	*****	******	*****	*****	*****
Intersection	#5 Ka	ame11:	5 (SR-1	(8)/28	CN AVE	. .	ن ماد ماه ماه ماد ماد					
Cuele (see).		101	<i></i>				1 17-1	10	1.1.1.	* * * * * *	~ ~ ~ ~ ~	
Loca Time (sec):		TO		_ ^ _		LTILICA	T VOL.	./Cap	. (X):		0.80	-
Loss lime (se	30):		0 (I+K	= 4 ;	sec) /	verage	Delay	/ (sec	:/ven):		26.	. /
Uptimal Cycle	2: *****	• • • • • •				Level U	i Serv	/1ce:		ل بال بال بال بال بال	ى بەر بەر بەر بەر بار	
Approach.	No	rth D	aund		1+h B	 						
Movement:	1001			301	исп во - т		T Le			we T	SL DC	ouna B
Movement:	- 1 	- 1	- ĸ	ц	- 1	- K	- <u>ت</u>	- 1	- K	- 4	- 1	- K
Control·	S1		ian	11	ron Si	ian	11		 an	 st	on Si	an
Bights:		Inclu	ide	0.	Inclu	ıde	5	Inclu	ıde	51	Inclu	.gn Ide
Min Green:	٥	1	100	٥	1.1010	1000	٥	111011	100	0	111010	ιαe Λ
Lanes.		പ്	1 0	۰.	່ທີ	n n	ົ້ດັ້	1 1 I	0 0	ົ້ດັ້ດ	1 1	<u> </u>
Lanes.							1			1	, <u> </u>	
Volume Module	۱ ۵۰			1		1	'			1		4
Base Vol:	 0	15	8	1	11	0	٥	٥	٥	21	1	1
Growth Adi	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1.00	1.00
Initial Beat	1.00	1.00	1.00	1.00	11	1.00	1.00	1.00	1.00	21	1.00	1.00
Addad Vol.	0	10	2	0	11	Ň	0	ň	ň	720	ň	ñ
RacearByVol:	ň	ő	0	0	0	Ő	0	ň	ň	.20	ő	ň
Thitial Fut:	0	15	10	1	11	0	0	0	0	741	1	1
Inicial ful:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
DUE Adi.	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
PHF Auj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	7/1	1.00	1.00
PAR VOLUME:	0	10	10	- -	11	0	0	0	0	, 11	0	ň
Reduct Vol:	0	15	10	1	11	0	0	0	0	741	1	1
Reduced Vol:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
ME Add.	1 00	1 00	1 00	1.00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
MER AUJ:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	7/1	1.00	1.00
Final Vol.:	U U		10				1			1	⊥ 	۱ ا ــــــا
Saturation F	 ໄດພ Mo	ndule	•	1		I	1		(1		•
Adjustment:	1.00	1.00	. 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes.	0 00	0 60	0 40	0 08	0 92	0 00	0.00	1.00	0.00	0.99	0.01	0.01
Final Sat ·	0.00	390	260	52	567	0.00	0.00	1.00	0.00	853	1	1
				1			I			1		
Capacity Ana	lvsis	Modu	le:				•		'	,		
Vol/Sat:	xxxx	0.04	0.04	0.02	0.02	xxxx	xxxx	xxxx	xxxx	0.87	0.87	0.87
Crit Moves:		****			****					****		
Delav/Veh:	0.0	8.5	8.5	8.7	8.7	0.0	0.0	0.0	0.0	27.6	27.6	27.6
Delay Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdiDel/Veh:	0.0	8.5	8.5	8.7	8.7	0.0	0.0	0.0	0.0	27.6	27.6	27.6
LOS by Move:	*	A	A	A	A	*	*	*	*	D	D	D
ApproachDel:		8.5			8.7		x	xxxxx			27.6	
Delav Adi:		1.00			1.00			xxxxx			1.00	
ApprAdiDel		8.5			8.7		x	xxxxx			27.6	
LOS by Appr.		A			Α			*			D	
***********	*****	* * * * *	* * * * * * *	*****	*****	******	****	****	******	*****	- * * * * * * *	*****

κ.

Rio Mesa Solar Electric Generating Facility (SEGF) Near Term PM Peak Hour Conditions - with Peak Project Construction Month 23

Trip Generation Report

Forecast for PM Construction

Zone #	Subzone	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
									
2	Construction Zone 2	1.00 Subtotal	Construction	0.00	753.00	0 0	753 753	753 753	99.7 99.7
3	Construction Zone 3	1.00 Subtotal	Materials Truc	0.00	1.00	0 0	1 1	1	0.1 0.1
4	Construction Zone 4	1.00 Subtotal	Equipment Truc	0.00	1.00	0 0	1 1	1 1	0.1 0.1
TOTAI	· · · · · · · · · · · · · · · · · · ·					. 0	 755	 755	100.0

Traffix 7.6.0115 (c) 2003 Dowling Assoc. Licensed to URS CORP., SANTA ANA, CA

.

.

		Fr	i Oct	5, 20	012 17:	59:27				Page	9-1
Rio rm Pl	Mesa M Peal	Solar k Hour	Elect: Condit	cic Ge cions Month	enerati - with 23	ng Fac Peak	cility Proje	y (SEGF ect Con	') struct	ion	
		Level O	f Serv	vice (tion F	Report	 +			
000 1	HCM 4-	-Way St	op Met	hod	(Future	Volu	ne Ali	ternati	ve)		
* * * * *	****	******	*****	*****	******	* * * * * *	****	******	*****	*****	****
#4 Ne	eighbo	ours (S	R-78),	28th	Ave						
****	*****	******	*****	*****	******	*****	*****	******	*****	*****	****
	100)			Critica	1_Vol.	./Cap	. (X):		0.87	78
c):	() (Y+R	= 4 9	sec) A	Average	Delay	γ (see	c/veh):		26.	. 5
:		, , ,			revel O	f Serv	vice:				D
No	~~~~~~					*****		******	*****	*****	****
		Juna	, 500		Juna	- Ec	ast Bo	Suna	we T	est BC	ouna
	- T	- ĸ	ь - I	- T	- K	<u> </u>	- т	- ĸ	ь - ,	- T	- 1
51	ton Si	ian	I St		an	 st	top S	ian	 +		an
5	Thel	ide	51	Inclu	ide	51	Inclu	ude	51	Troly	l gn Ido
0	1.1010	1000	0	111011	100	٥	111010	10e 0	0	111011	ue
0 0	ວັດັ	1 0	ົດັດ) 1	0 0	0 1	่ กั	ററ്	ົດັດ	า 1 เ	0
		1				1		1			
:		•	•		•	•			•		
0	24	10	2	21	22	22	4	0	9	3	
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
0	24	10	2	21	22	22	4	0	9	3	
0	0	0	0	0	0	360	358	0	Ō	Õ	
0	0	Ó	Ō	Ō	Ō	0	0	0	Ō	0	
0	24	10	2	21	22	382	362	Õ	9	3	
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.(
0	24	10	2	21	22	382	362	0	9	3	
0	0	0	0	0	0	0	0	0	0	0	
0	24	10	2	21	22	382	362	0	9	3	
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
0	24	10	2	21	22	382	362	0	9	3	
ow Mo	odule:	:									
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
0.00	0.71	0.29	0.04	0.47	0.49	0.51	0.49	0.00	0.45	0.15	0.4
0	445	182	29	301	316	435	412	0	333	111	29
veic	Modul	 	1		[,			1		
XXXX 1913	0.05	0.05	0.07	0.07	0.07	0.88	0.88	****	0 03	6 N N	0 0
	****	0.05	5.07	****	0.07	****	0.00	~~~~	0.05	****	0.0
0.0	8.7	8.7	8.7	8.7	8.7	28 Q	28 9	0 0	78	78	7
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
0.0	8.7	8.7	8.7	8.7	8.7	28.9	28.9	0.0	7.8	7.8	
*	Α	Α	Ъ. / А	Α	Δ	20.J	 n	*	, Д	Δ	1
	8.7	••	••	8.7	••	2	28.9		**	7.8	-
	1.00			1.00			1.00			1.00	
	8.7			8.7			28.9			7.8	
				- • ·							
	Rio rm PI 000 1 ***** #4 No ***** c): : ***** C): : ***** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rio Mesa rm PM Peal 000 HCM 4 ************************************	Rio Mesa Solar rm PM Peak Hour Level C 000 HCM 4-Way St ************************************	Rio Mesa Solar Electi rm PM Peak Hour Condit Level Of Serv 000 HCM 4-Way Stop Met ************************************	Rio Mesa Solar Electric Ge rm PM Peak Hour Conditions Month Level Of Service (000 HCM 4-Way Stop Method ************************************	Rio Mesa Solar Electric Generati rm PM Peak Hour Conditions - with Month 23 Level Of Service Computa 000 HCM 4-Way Stop Method (Future ************************************	Rio Mesa Solar Electric Generating Factoria Month 23 Level Of Service Computation H 000 HCM 4-Way Stop Method (Future Volum #4 Neighbours (SR-78)/28th Ave 100 Critical Vol c): 0 (Y+R = 4 sec) Average Delay: 0 Level Of Service Computation H North Bound South Bound L - T - R L - T - R L - T - R L - T - R Stop Sign Stop Sign Include Include 0 0 0 0 0 0 0 0 0 0 0 0 100 1.00 1.00 0 0 0 0 0 0 0 0 0 24 10 2 21 100 1.00 1.00 1.00 1.00 0 0 0 0 0 0 24 10 2 21 22 100 1.00 1.00 1.00 1.00 1.00 0 24 10	Rio Mesa Solar Electric Generating Facility rm PM Peak Hour Conditions - with Peak Proje Month 23 Level Of Service Computation Report 000 HCM 4-Way Stop Method (Future Volume Al #4 Neighbours (SR-78)/28th Ave ************************************	Rio Mesa Solar Electric Generating Facility (SEGF rm PP Peak Hour Conditions - with Peak Project Con Month 23 Level Of Service Computation Report 000 HCM 4-Way Stop Method (Future Volume Alternati ************************************	Rio Mesa Solar Electric Generating Facility (SEGF) rm PM Peak Hour Conditions - with Peak Project Construct Month 23 Iou Level Of Service Computation Report 100 Critical Vol./Cap. (X): 101 Level Of Service: 102 0 (YR = 4 sec) Average Delay (sec/veh): 103 South Bound East Bound 101 South Bound East Bound 102 1 - T - R L - T - R 101 Include Include Include 101 0 0 0 0 102 21 22 22 4 0 103 1.00 1.00 1.00 1.00 1.00 103 24 10 2 21 22 24 0 9 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 104 2 21 22 3	

.

Table 5.12-6DProject Construction Trip Generation

Month 24 – July 2015

		A	M Peak Trips		PM Peak Trips				
Vehicle Type	Peak Daily Round Trips	Inbound	Outbound	Total	Inbound	Outbound	Total		
Construction Worker Vehicles ¹	2542	699	0	699	0	699	699		
Delivery Vehicles (including heavy trucks) ²	6	2	1	3	0	1	1		

Source: Bechtel Power Corporation, Forecast Traffic Impact - Rio Mesa_052412_On Site Batch Plant Rev 2.xls

¹ Peak workforce was conservatively analyzed at 1271 worker vehicle trips during peak month of construction. 55% of these worker vehicle trips were assumed to commute during the morning (7-9 AM) and evening (4-6 PM) peak hours.

² Delivery vehicles were adjusted into Passenger Car Equivalent (1 Heavy Vehicle = 3 PCE) vehicle in the traffic impact analysis.
 Analysis assumed 50 percent of 1 (actual trucks) delivery vehicles arrive and 25 percent leave during the 7 to 9 AM peak hour;
 25 percent leave during the 4 to 6 PM peak hour. Numbers shown on the table are passenger car equivalent adjusted.

Level of Service Analysis Results Month 24 – July 2015

Intersection (Deak Hour Analysic)	Level of Service (LOS)				
Intersection (Peak Hour Analysis)	Results				
SR-78 (Rannels)/28th Street (AM Peak Hour Analysis) [1]	LOS C				
SR-78 (Neighbours)/28th Street (PM Peak Hour Analysis) [2]	LOS C				

[1] – LOS D occurs during AM peak hour, Amended RMS AFC 2012

[2] – LOS D occurs during PM peak hour, Amended RMS AFC 2012

Attachments: LOS Worksheets

Fri Oct 5, 2012 18:13:16 _____

.

Rio Mesa Solar Electric Generating Facility (SEGF) Near Term AM Peak Hour Conditions - with Peak Project Construction Month 24

Trip Generation Report

Forecast for AM Construction

Zone		_	4	Rate	Rate	Trips	Trips	Total	% Of
#	Subzone	Amount	Units	In	Out	In	Out	Trips	Total
1	Operations	1.00	Operation	0.00	0.00	0	0	0	0.0
2	Construction	1.00	Construction	699.00	0.00	699	0	699	99.4
	Zone 2	Subtotal	•••••	•••••		699	0	699	99.4
3	Construction	1.00	Materials Truc	1.00	0.50	1	1	2	0.3
	Zone 3 :	Subtotal	•••••	• • • • • • •	• • • • • • • • •	1	1	2	0.3
4	Construction	1.00	Equipment Truc	1.00	0.50	1	1	2	0.3
	Zone 4	Subtotal	• • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • •	1	1	2	0.3
TOTAI	· · · · · · · · · · · · · · · · · · ·			•••••		. 701	2	703	100.0

NTAMWP Rev			Fr	i Oct	5, 20	012 18:	13:16			I	age 1	L0-1
Near Te	Rio erm AN	Mesa 1 Pea}	Solar < Hour	Electi Condi	ric Ge tions Month	enerati – with n 24	.ng Fac n Peak	cility Proj∈	/ (SEGF ect Con) struct	ion	
Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)												
Intersection #5 Ramells (SR-78)/28th Ave												
Cycle (sec):100Critical Vol./Cap. (X):0.805Loss Time (sec):0 (Y+R = 4 sec) Average Delay (sec/veh):21.2Optimal Cycle:0Level Of Service:C)5 .2 C			
Approach: Movement:	Noi L -	cth Bo - T	ound - R	Sou L -	uth Bo - T	ound - R	Ea L -	ast Bo - T	ound - R	We L -	est Bo - T	ound - R
Control: Rights: Min. Green:	St	op Si Inclu 0	ign ude 0	S1	top S: Inclu	ign ude 0	St	op Si Inclu 0	lgn ide 0	5t	op Si Inclu 0	ign ude 0
Lanes:							1		·			
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: PasserByVol: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.: 	0 1.00 0 0 0 1.00 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0	15 1.00 0 15 1.00 1.00 15 1.00 1.00 1.00	8 1.00 8 2 0 10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1 1.00 1 0 1 1.00 1.00 1.00 1.00 1.00 1.00 0.08	11 1.00 11 0 11 1.00 1.00 1.00 1.00 1.00 1.00 0.92	0 1.00 0 0 1.00 1.00 1.00 1.00 1.00 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0	0 1.00 0 0 1.00 1.00 1.00 1.00 1.00 1.00 0 1.00 0 1.00 0 1.00	0 1.00 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0 1.00 0 0 0 1.00 1.00 1.00 0 1.00 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0	21 1.00 21 666 0 687 1.00 687 1.00 687 1.00 687 1.00 687 1.00 99	1 1.00 1 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.01	1 1.00 1 0 1 1.00 1.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
							1				·	
Capacity Ana Vol/Sat: Crit Moves:	lysis xxxx	Modu] 0.04 ****	le: 0.04	0.02	0.02	xxxx	x xxx	xxxx	xxxx	0.80	0.80	0.80
Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move: ApproachDel: Delay Adj:	0.0 1.00 0.0 *	8.4 1.00 8.4 A 8.4 1.00	8.4 1.00 8.4 A	8.5 1.00 8.5 A	8.5 1.00 8.5 A 8.5 1.00	0.0 1.00 0.0 *	0.0 1.00 0.0 * xx	0.0 1.00 0.0 *	0.0 1.00 0.0 *	21.9 1.00 21.9 C	21.9 1.00 21.9 C 21.9 1.00	21.9 1.00 21.9 C
ApprAdjDel: LOS by Appr:	* * * * * *	8.4 A *****	*****	*****	8.5 A *****	******	XX ******	(XXXX * *	*****	*****	21.9 C	*****

.

NTPMWP Rev Fri Oct 5, 2012 18:17:38

Page 2-1

Rio Mesa Solar Electric Generating Facility (SEGF) Near Term PM Peak Hour Conditions - with Peak Project Construction Month 24

Trip Generation Report

Forecast for PM Construction

Zone #	Subzone	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
		<u>-</u>							
2	Construction Zone 2	1.00 Subtotal	Construction	0.00	699.00	0 0	699 699	699 699	99.7 99.7
3	Construction Zone 3 :	1.00 Subtotal	Materials Truc	0.00	0.50	0 0	1 1	1 1	0.1 0.1
4	Construction Zone 4 3	1.00 Subtotal	Equipment Truc	0.00	0.50	0 0	1 1	1 1	0.1 0.1
TOTAI	· · · · · · · · · · · · · · · · · · ·					. 0	 701	 701	100.0

NTPMWP Rev

Pie More Solar Pleatric Concreting Facility (SEGE)												
Near Term PM Peak Hour Conditions - with Peak Project Construction Month 24												
	2000 1	נ HCM 4-	Level C -Way St	of Service	vice (thod	Computa (Future	tion I Volur	Report ne Alt	: ernati	ve)		
******	*****	* * * * * ;	******	*****	*****	*****	*****	* * * * * *	*****	*****	*****	*****
Intersection #4 Neighbours (SR-78)/28th Ave												
Cycle (sec):	Cvole (coo): 100 Critical Vol (Cap (X): 0.916											
Loss Time (se	• () •	200	,) (Y+R	= 4	sec) A	verage	Dela	v (sec	(veh):		21.	1
Optimal Cycle	2:	ć			1	Level C	f Serv	vice:	.,			c
***********	*****	*****	- ******	*****	* * * * * *	******	*****	*****	*****	*****	* * * * *	******
Approach	No	rth Bo	hund	So	ith Bo	hund	Ea	ast Br	hund	We	st Br	und
Movement:	т	- T	– R	т	- т	– R	L.	- т	– R	T	ос <u>о</u> с т	– R
			1	1		1	1					
Control	י גי	ton S	ian '	' s	ton Si	ian	' Si	ton Si	an I	' St.	on Si	an
Dighter	5	Tral	udo	5	Tral	ido.	5	Tral	.gn .do	30	Jpoly	.gn ido
Min Croop.	0	111011	n n	0	INCI	iue n	0	THET	nde v	0	111010	ιue Λ
Min. Green.	~ ~ ~	<u> </u>	1 0		n 11	<u> </u>	~ ·	1 0	0 0		11	۰ ۰
Lanes:		0 0	1 0		5 1:	0 0	. 0 .	1 0	00	. 0 0	1:	00
Volumo Modul				1		!	1					
Rece Vol.	= : 	24	10	2	21	22	22		•	•	2	•
Base VOI: Crouth Adia	1 00	1 00	1 00	1 00	1 00	1 00	1 00	4	1 00	1 00	1 00	1 00
GLOWCH Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	24	10	2	21	22	22	4	0	9	3	8
Added Vol:	0	0	0	0	0	0	334	332	0	0	0	0
PasserByVol:	0	0	0	0	0	0	256	0	0	0	0	0
Initial Fut:	1 00	24	1 00	1 00	1 00	1 00	356	336	1 00	1 00	3	8
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	24	10	2	21	22	356	336	U	9	3	8
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	1 00	24	1 00	1 00	21	22	356	336	0	9	3	8
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	. 0	24	10	. 2	21	22	356	336	0	. 9	3	8
Saturation FI	Low Me	odule	 :	[
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	0.71	0.29	0.04	0.47	0.49	0.51	0.49	0.00	0.45	0.15	0.40
Final Sat.:	0	445	185	29	301	315	436	412	0	334	111	297
				1		1				1		
Capacity Anal	lysis	Modu	le:							•		-
Vol/Sat:	xxxx	0.05	0.05	0.07	0.07	0.07	0.82	0.82	xxxx	0.03	0.03	0.03
Crit Moves:		* * * *			****			****			* * * *	
Delay/Veh:	0.0	8.6	8.6	8.6	8.6	8.6	22.9	22.9	0.0	7.8	7.8	7.8
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
AdjDel/Veh:	0.0	8.6	8.6	8.6	8.6	8.6	22.9	22.9	0.0	7.8	7.8	7.8
LOS by Move:	*	A	A	A	A	A	C	C	*	A	A	A
ApproachDel:		8.6			8.6		-	22.9		••	7.8	••
Delav Adi:		1,00			1.00			1.00			1.00	
ApprAdiDel·		8.6			8 6			22 9			 7 R	
LOS by Appr:		A			ъ. 5 Д			 C			γ.υ Δ	

BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA 1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 – WWW.ENERGY.CA.GOV

APPLICATION FOR CERTIFICATION FOR THE RIO MESA SOLAR ELECTRIC GENERATING FACILITY

APPLICANTS' AGENTS

BrightSource Energy, Inc. Todd Stewart Senior Director, Project Development Brad DeJean *Kwame Thompson 1999 Harrison Street, Suite 2150 Oakland, CA 94612 tstewart@brightsourceenergy.com bdejean@brightsourceenergy.com kthompson@brightsourceenergy.com

APPLICANTS' CONSULTANTS

Grenier and Associates, Inc. Andrea Grenier 1420 E. Roseville Parkway Suite 140-377 Roseville, CA 95661 andrea@agrenier.com

URS Corporation Angela Leiba 4225 Executive Square, Suite 1600 La Jolla, CA 92037 angela leiba@urscorp.com

APPLICANTS' COUNSEL

Ellison, Schneider, & Harris Christopher T. Ellison Brian S. Biering 2600 Capitol Avenue, Suite 400 Sacramento, CA 95816-5905 <u>cte@eslawfirm.com</u> bsb@eslawfirm.com

INTERVENORS

Center for Biological Diversity Lisa T. Belenky, Senior Attorney 351 California Street, Suite 600 San Francisco, CA 94104 Ibelenky@biologicaldiversity.org

Center for Biological Diversity lleene Anderson Public Lands Desert Director PMB 447, 8033 Sunset Boulevard Los Angeles, CA 90046 ianderson@biologicaldiversity.org

INTERESTED AGENCIES

Mojave Desert AQMD Chris Anderson, Air Quality Engineer 14306 Park Avenue Victorville, CA 92392-2310 canderson@mdagmd.ca.gov

California ISO e-recipient@caiso.com

Bureau of Land Management Cedric Perry Lynnette Elser 22835 Calle San Juan De Los Lagos Moreno Valley, CA 92553 <u>cperry@blm.gov</u> <u>lelser@blm.gov</u>

County of Riverside Katherine Lind Tiffany North Office of Riverside County Counsel 3960 Orange Street, Suite 500 Riverside, CA 92501 klind@co.riverside.ca.us tnorth@co.riverside.ca.us

DOCKET NO. 11-AFC-04 PROOF OF SERVICE (Revised 10/16/12)

ENERGY COMMISSION – DECISIONMAKERS

CARLA PETERMAN Commissioner and Presiding Member carla.peterman@energy.ca.gov

KAREN DOUGLAS Commissioner and Associate Member karen.douglas@energy.ca.gov

Kenneth Celli Hearing Adviser ken.celli@energy.ca.gov

Eileen Allen Commissioners' Technical Advisor for Facility Siting eileen.allen@energy.ca.gov

Jim Bartridge Advisor to Presiding Member jim.bartridge@energy.ca.gov

Galen Lemei Advisor to Associate Member galen.lemei@energy.ca.gov

Jennifer Nelson Advisor to Associate Member jennifer.nelson@energy.ca.gov

ENERGY COMMISSION STAFF

Pierre Martinez Project Manager pierre.martinez@energy.ca.gov

Lisa DeCarlo Staff Counsel lisa.decarlo@energy.ca.gov

ENERGY COMMISSION – PUBLIC ADVISER

Jennifer Jennings Public Adviser's Office publicadviser@energy.ca.gov

DECLARATION OF SERVICE

I, <u>Kathleen McDowell</u>, declare that on <u>October 19</u>, 2012, I served and filed a copy of the attached document <u>Applicant's Data Responses Set 3A (Nos. 186-190)</u>, dated <u>October 19</u>, 2012. This document is accompanied by the most recent Proof of Service list, located on the web page for this project at: <u>http://www.energy.ca.gov/sitingcases/riomesa/index.html</u>.

The document has been sent to the other parties in this proceeding (as shown on the Proof of Service list) and to the Commission's Docket Unit or Chief Counsel, as appropriate, in the following manner:

(Check all that Apply)

For service to all other parties:

X Served electronically to all e-mail addresses on the Proof of Service list;

Served by delivering on this date, either personally, or for mailing with the U.S. Postal Service with firstclass postage thereon fully prepaid, to the name and address of the person served, for mailing that same day in the ordinary course of business; that the envelope was sealed and placed for collection and mailing on that date to those addresses marked *****"**hard copy required**" or where no e-mail address is provided.

AND

For filing with the Docket Unit at the Energy Commission:

X by sending electronic copies to the e-mail address below (preferred method); OR

by depositing an original and 12 paper copies in the mail with the U.S. Postal Service with first class postage thereon fully prepaid, as follows:

CALIFORNIA ENERGY COMMISSION – DOCKET UNIT

Attn: Docket No. 11-AFC-04 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512 docket@energy.ca.gov

OR, if filing a Petition for Reconsideration of Decision or Order pursuant to Title 20, § 1720:

Served by delivering on this date one electronic copy by e-mail, and an original paper copy to the Chief Counsel at the following address, either personally, or for mailing with the U.S. Postal Service with first class postage thereon fully prepaid:

> California Energy Commission Michael J. Levy, Chief Counsel 1516 Ninth Street MS-14 Sacramento, CA 95814 michael.levy@energy.ca.gov

I declare under penalty of perjury under the laws of the State of California that the foregoing is true and correct, that I am employed in the county where this mailing occurred, and that I am over the age of 18 years and not a party to the proceeding.

Original signed by Kathleen McDowell