

November 14, 2012

Eric Solorio, Project Manager California Energy Commission Docket No. 11-AFC-3 1516 9th St. Sacramento, CA 95814 California Energy Commission
DOCKETED
11-AFC-3

TN # 68544 NOV 14 2012

Cogentrix Quail Brush Generation Project - Docket Number 11-AFC-3, Applicant Slides from the CEC October 19, 2012 Workshop

Docket Clerk:

Pursuant to the provisions of Title 20, California Code of Regulations, and on behalf of Quail Brush Genco, LLC, a wholly owned subsidiary of Cogentrix Energy, LLC, Tetra Tech hereby submits the Applicant Slides from the CEC October 19, 2012 Workshop (11-AFC-3). The Quail Brush Generation Project is a 100 megawatt natural gas fired electric generation peaking facility to be located in the City of San Diego, California.

If you have any questions regarding this submittal, please contact Rick Neff at (704) 525-3800 or me at (303) 980-3653.

Sincerely,

Constance E. Farmer
Project Manager/Tetra Tech

Constance C. Faire

cc: Lori Ziebart, Cogentrix John Collins, Cogentrix Rick Neff, Cogentrix Proof of Service List

BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

1516 NINTH STREET, SACRAMENTO, CA 95814 1-800-822-6228 – www.energy.ca.gov

APPLICATION FOR CERTIFICATION FOR THE QUAIL BRUSH GENERATION PROJECT

DOCKET NO. 11-AFC-03 PROOF OF SERVICE (Revised 10/29/2012)

APPLICANT

Cogentrix Energy, LLC
C. Richard "Rick" Neff, Vice President
Environmental, Health & Safety
9405 Arrowpoint Boulevard
Charlotte, NC 28273
rickneff@cogentrix.com

Cogentrix Energy, LLC
John Collins, VP Development
Lori Ziebart, Project Manager
Quail Brush Generation Project
9405 Arrowpoint Blvd.
Charlotte, NC 28273
johncollins@cogentrix.com
loriziebart@cogentrix.com

APPLICANT'S CONSULTANTS

Tetra Tech EC, Inc.
Connie Farmer
Sr. Environmental Project Manager
143 Union Boulevard, Suite 1010
Lakewood, CO 80228
connie.farmer@tetratech.com

Tetra Tech EC, Inc.
Barry McDonald
VP Solar Energy Development
17885 Von Karmen Avenue, Ste. 500
Irvine, CA 92614-6213
barry.mcdonald@tetratech.com

Tetra Tech EC, Inc.
Sarah McCall
Sr. Environmental Planner
143 Union Boulevard, Suite 1010
Lakewood, CO 80228
sarah.mccall@tetratech.com

COUNSEL FOR APPLICANT

Bingham McCutchen LLP
Ella Foley Gannon
Camarin Madigan
Three Embarcadero Center
San Francisco, CA 94111-4067
ella.gannon@bingham.com
camarin.madigan@bingham.com

INTERVENORS

Roslind Varghese 9360 Leticia Drive Santee, CA 92071 roslindv@gmail.com

Rudy Reyes 8655 Graves Avenue, #117 Santee, CA 92071 rreyes2777@hotmail.com

Dorian S. Houser 7951 Shantung Drive Santee, CA 92071 dhouser@cox.net

Kevin Brewster 8502 Mesa Heights Road Santee, CA 92071 Izpup@yahoo.com

Phillip M. Connor Sunset Greens Home Owners Association 8752 Wahl Street Santee, CA 92071 connorphil48@yahoo.com

*Mr. Rob Simpson, CEO Helping Hand Tools 1901 First Avenue, Suite 219 San Diego, CA 92101 rob@redwoodrob.com HomeFed Fanita Rancho, LLC Jeffrey A. Chine
Heather S. Riley
Allen Matkins Leck Gamble
Mallory & Natsis LLP
501 West Broadway, 15th Floor
San Diego, CA 92101
jchine@allenmatkins.com
hriley@allenmatkins.com
jkaup@allenmatkins.com
vhoy@allenmatkins.com

Preserve Wild Santee Van Collinsworth 9222 Lake Canyon Road Santee, CA 92071 savefanita@cox.net

Center for Biological Diversity John Buse Aruna Prabhala 351 California Street, Suite 600 San Francisco, CA 94104 jbuse@biologicaldiversity.org aprabhala@biologicaldiversity.org

INTERESTED AGENCIES

California ISO e-recipient@caiso.com

City of Santee
Department of Development Services
Melanie Kush
Director of Planning
10601 Magnolia Avenue, Bldg. 4
Santee, CA 92071
mkush@ci.santee.ca.us

Morris E. Dye Development Services Dept. City of San Diego 1222 First Avenue, MS 501 San Diego, CA 92101 mdye@sandiego.gov

INTERESTED AGENCIES (cont.)

Mindy Fogg Land Use Environmental Planner Advance Planning County of San Diego Department of Planning & Land Use 5510 Overland Avenue, Suite 310 San Diego, CA 92123 mindy.fogq@sdcounty.ca.gov

<u>ENERGY COMMISSION –</u> DECISIONMAKERS

KAREN DOUGLAS
Commissioner and
Presiding Member
karen.douglas@energy.ca.gov

ANDREW McALLISTER Commissioner and Associate Member andrew.mcallister@energy.ca.gov

Raoul Renaud Hearing Adviser raoul.renaud@energy.ca.gov

Eileen Allen Commissioners' Technical Adviser for Facility Siting eileen.allen@energy.ca.gov

Galen Lemei Advisor to Commissioner Douglas galen.lemei@energy.ca.gov

Jennifer Nelson Advisor to Commissioner Douglas jennifer.nelson@energy.ca.gov

David Hungerford Advisor to Commissioner McAllister david.hungerford@energy.ca.gov

Pat Saxton Advisor to Commissioner McAllister <u>patrick.saxton@energy.ca.gov</u>

ENERGY COMMISSION STAFF

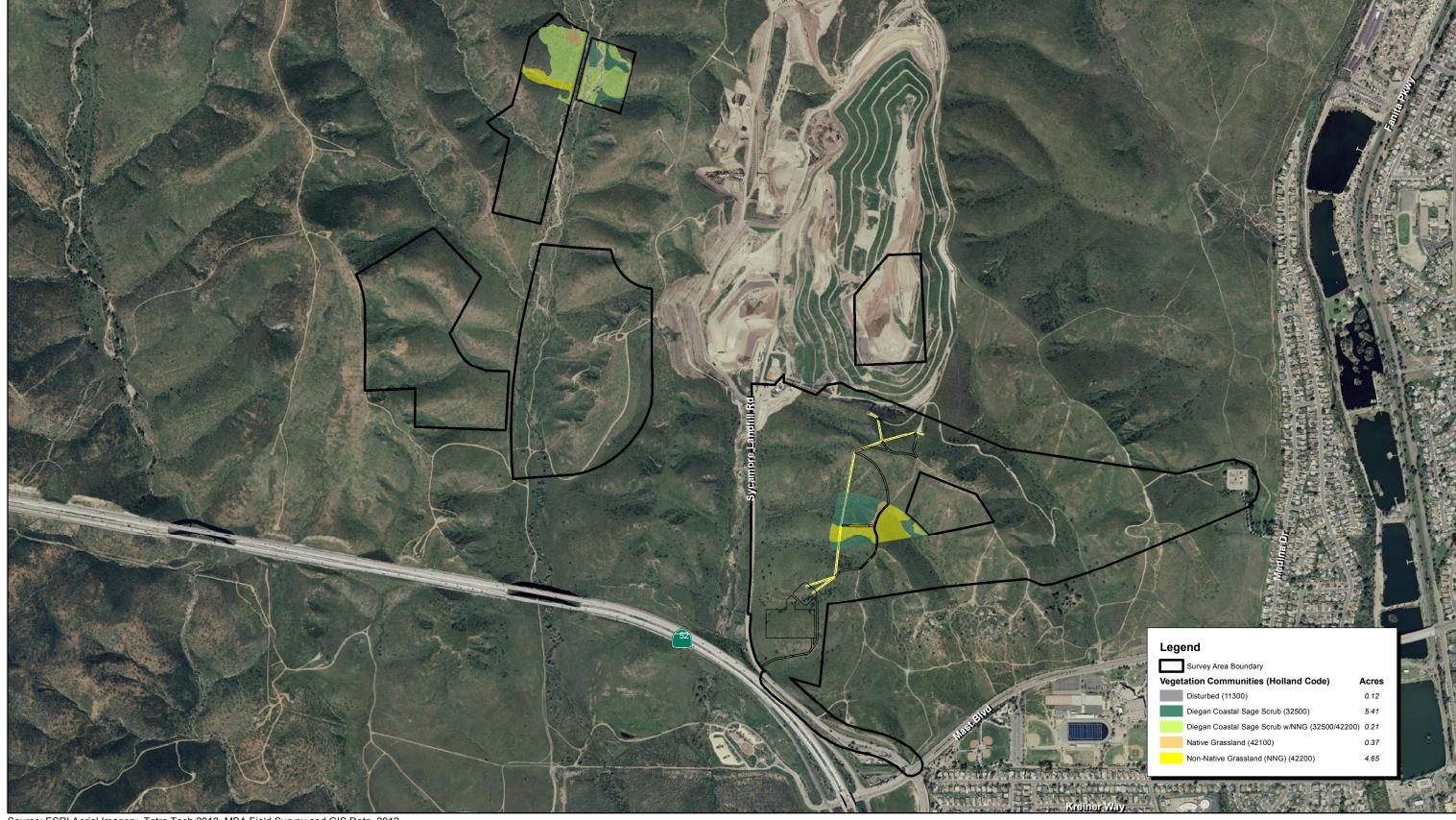
Eric Solorio
Project Manager
eric.solorio@energy.ca.gov

Stephen Adams
Staff Counsel
stephen.adams@energy.ca.gov

<u>ENERGY COMMISSION – PUBLIC ADVISER</u>

Jennifer Jennings
Public Adviser's Office
publicadviser@energy.ca.gov

DECLARATION OF SERVICE

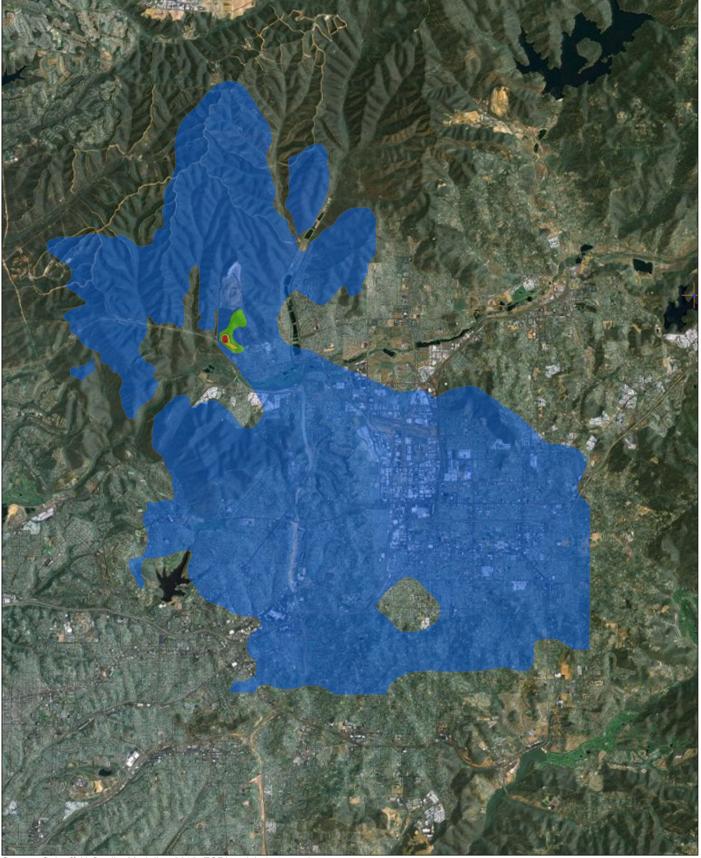

I, Constance Farmer, declare that on November 14, 2012, 2012, I served and filed copies of the attached Applicant Slides from the CEC October 19, 2012 Workshop, dated October 19, 2012. This document is accompanied by the most recent Proof of Service list, located on the web page for this project at: http://www.energy.ca.gov/sitingcases/quailbrush/index.html.

The document has been sent to the other parties in this proceeding (as shown on the Proof of Service list) and to the Commission's Docket Unit or Chief Counsel, as appropriate, in the following manner:

(Check	all that Apply)
For ser	vice to all other parties:
Х	Served electronically to all e-mail addresses on the Proof of Service list;
	Served by delivering on this date, either personally, or for mailing with the U.S. Postal Service with first-class postage thereon fully prepaid, to the name and address of the person served, for mailing that same day in the ordinary course of business; that the envelope was sealed and placed for collection and mailing on that date to those addresses marked *"hard copy required" or where no e-mail address is provided.
AND	
For filir	g with the Docket Unit at the Energy Commission:
Х	by sending an electronic copy to the e-mail address below (preferred method); OR
	by depositing an original and 12 paper copies in the mail with the U.S. Postal Service with first class postage thereon fully prepaid, as follows:
	CALIFORNIA ENERGY COMMISSION – DOCKET UNIT Attn: Docket No. 11-AFC-03 1516 Ninth Street, MS-4 Sacramento, CA 95814-5512 docket@energy.ca.gov
OR, if f	iling a Petition for Reconsideration of Decision or Order pursuant to Title 20, § 1720:
	Served by delivering on this date one electronic copy by e-mail, and an original paper copy to the Chief Counsel at the following address, either personally, or for mailing with the U.S. Postal Service with first class postage thereon fully prepaid:

California Energy Commission Michael J. Levy, Chief Counsel 1516 Ninth Street MS-14 Sacramento, CA 95814 michael.levy@energy.ca.gov

I declare under penalty of perjury under the laws of the State of California that the foregoing is true and correct, that I am employed in the county where this mailing occurre Constance C. Fainer proceeding.



Source: ESRI Aerial Imagery. Tetra Tech 2012, MBA Field Survey and GIS Data, 2012.

1,000 500 0 1,000

Feet

Exhibit 3 Mitigation Areas and Project Site

Source: Calpuff AirQuality Modeling 2012. ESRI aerial photograph

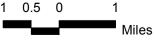


Table 1: Habitat Types/Vegetation Communities and Mitigation Acreage Calculations (Based on Supplement 3.1 Design)

Habitat / Vegetation Community	Permanent Impacts	Mitigation Ratio (Tiered Habitat)		MHPA Mitigation Ratio	Mitigation Acreage
Diegan Coastal Sage Scrub	0.43	1:1	0.43	4:1	1.72
Diegan Coastal Sage Scrub/non- native grassland	0	1:1	0	4:1	0
Disturbed Habitat	0.35	0	0.35	4:1	1.40
Granitic Chamise Chaparral	0.00	1:1	0.00	4:1	0
Granitic Chamise Chaparral/non- native grassland	0.00	1:1	0.00	4:1	0
Native Grassland	0.06	2:1	0.12	4:1	0.24*
Non-Native Grassland	6.66	1:1	6.66	4:1	26.64
Non-Vegetated Channel	0.00	2:1	0.00	4:1	0
Urban/Developed	0.00	0:1	0.00	4:1	0
Total	7.50		7.56		30.00

Table 2: Vegetation Communities Acreage for Mitigation

Project Site/Mitigation Parcels	Diegan Coastal Sage Scrub (Tier II)	Diegan Coastal Sage Scrub/Non- native grassland (Tier II)	Granitic Chamise Chaparral (Tier Illa)	Native Grassland (Tier I)	Non-native Grassland (Tier IIIb)	Non- Vegetated Channel (2:1)	TOTAL ACRES
36603031	0	5.22	4.14	0.61	1.48	0.3	11.75
36603112	2.16	4.44	1.07	0	0.25	0.56	8.48
36608027	5.43	0.21	0	0.38	4.66	0	10.68
Total Mitigation Parcels	7.59	9.87	5.21	0.99	6.39	0.86	30.91
Mitigation Requirements	1.72	0	0	0.24*	26.64	0	28.60

Table 3: Mitigation Parcel Percentage of Tier System

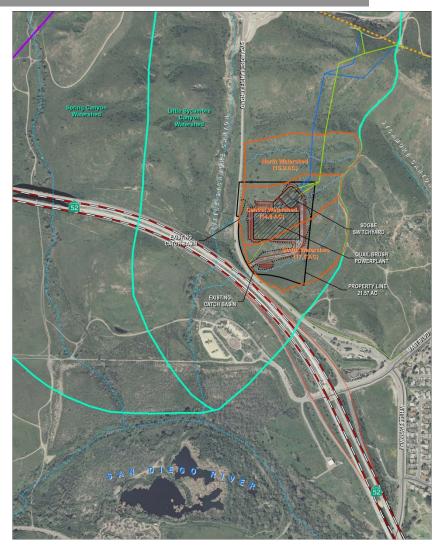
Project Site/Mitigation Parcels	Diegan Coastal Sage Scrub (Tier II)	Diegan Coastal Sage Scrub/Non- native grassland (Tier II)	Granitic Chamise Chaparral (Tier IIIa)	Native Grassland (Tier I)	Non-native Grassland (Tier IIIb)	Non- Vegetated Channel (2:1)
Project Site Mitigation Requirements	6.1 %	0	0	0.8 %	93.1 %	0
36603031	0	44.4 %	35.3 %	5.2 %	12.6 %	2.5 %
36603112	25.5 %	52.4 %	12.6 %	0	2.9 %	6.6 %
36608027	50.8 %	2.0 %	0	3.6 %	43.6 %	0

Staff Workshop for the Quail Brush Generation Project

Developed by

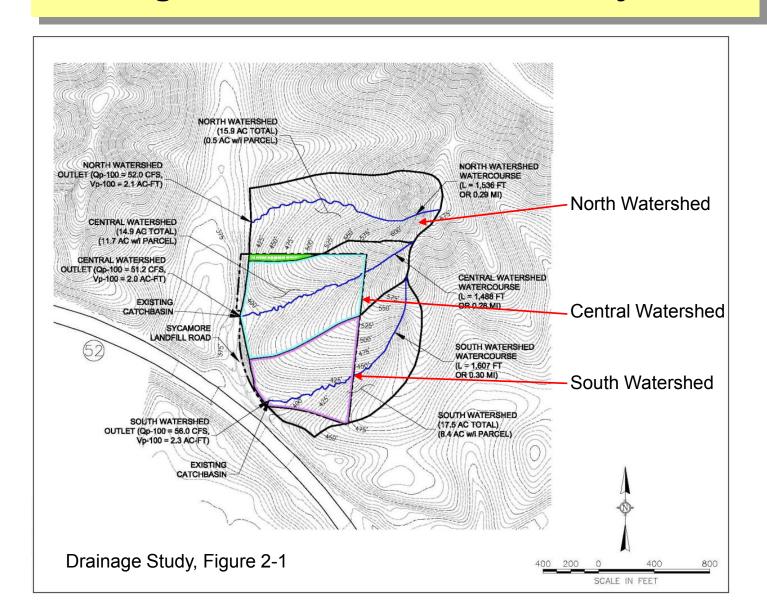
Quail Brush Genco, LLC

California Energy Commission

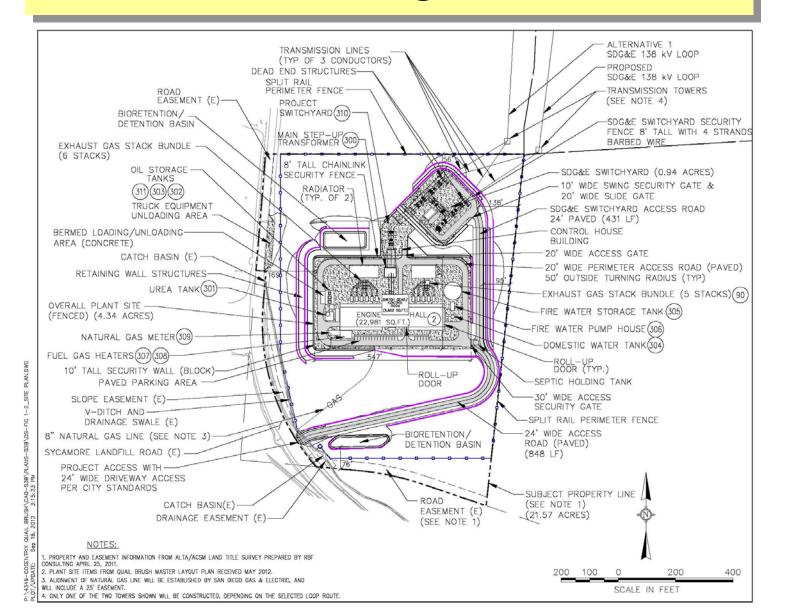

Introduction – Soils and Water

- Overall goal of presentation Explain the approach used for the stormwater drainage, controls and management
- Project location
- Existing watersheds and stormwater drainage
- Site arrangement of power plant and SDG&E switchyard
- Post development watersheds and stormwater drainage
- Stormwater drainage controls and management
 - Offsite stormwater runoff
 - Onsite stormwater runoff
- BMP Sizing Calculator approach and details

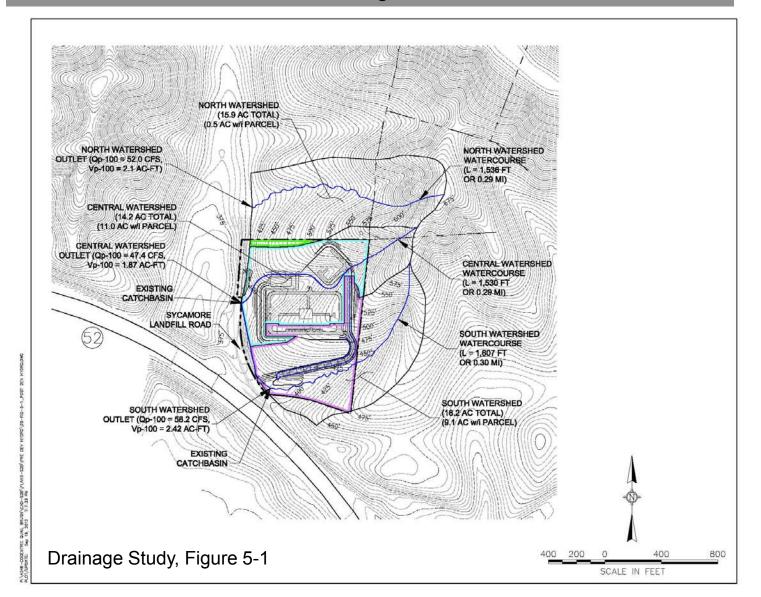
Project Vicinity


- Located on Sycamore Landfill Road
- Within Little Sycamore Canyon Watershed
- 3 small watersheds in Project area
- Stormwater drains from eastern ridge line across site towards Sycamore Landfill Road

Drainage Study, Figure 1-1

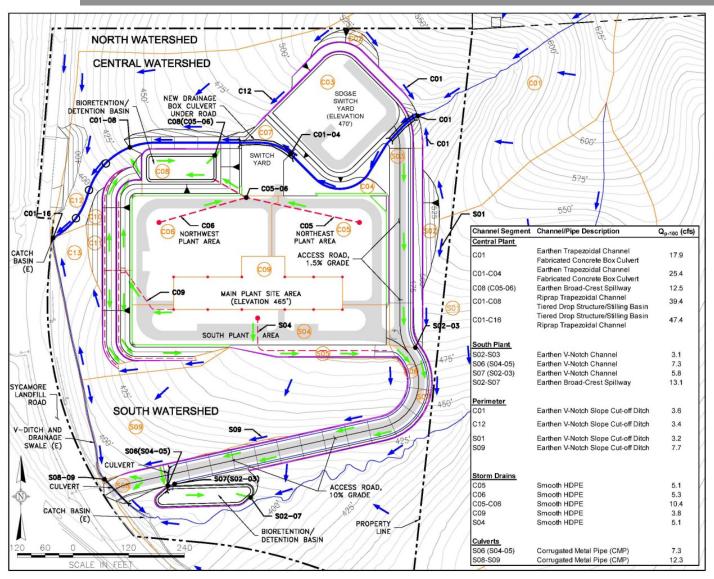


Existing Watersheds within the Project Site

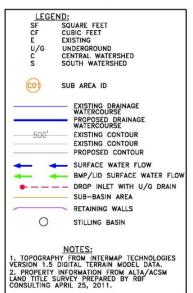


Site Arrangement

Post Development Watersheds Within Project Site



Approach to Managing Stormwater


- Two separate sources:
 - Offsite stormwater runoff
 - Onsite stormwater runoff
- Offsite stormwater:
 - Originates upslope in watersheds or from areas outside of plant footprint
 - Considered "Clean" since no Project contact
 - Only Central and South watersheds drain through Project site areas to enter existing catch basins in each watershed
 - Existing Central watershed drainage channel redirected around plant site and SDG&E switchyard
 - Hydraulic controls designed for 100-year storm event

Post Development Offsite Stormwater Runoff Controls

Onsite Stormwater Management

- Requirements:
 - Project is considered a Priority Development Project
 - Must be in compliance with:
 - -Regional Board Permit Order R9-2007-001
 - -City of San Diego Storm Water Standards (January 2012)
 - -Final Hydromodification Management Plan (HMP) (March 2011)
- All onsite stormwater controls will be designed to withstand 100-year storm events

San Diego Storm Water Standards Manual (January 2012)

- Storm Water Standards Manual Requires:
 - Preparation of:
 - -Water Quality Technical Report (WQTR)
 - –Drainage Study
 - -Hydromodification Plan (included in WQTR)
 - -Geotechnical Study/Report (if infiltration is proposed)
 - Identification of:
 - -Drainage areas/watersheds
 - –Potential Project-related Pollutants
 - -Receiving water pollutants of concern
 - -Permanent stormwater controls
 - Best Management Practices (BMPs) (source control and treatment control)
 - Low Impact Development (LID) design practices
 - Structural treatment controls must treat Project-related pollutants
 - Bioretention basins and areas
 - Flow–through planter boxes
 - Developing numerically-sized treatment control BMPs (BMP Sizing Calculator)

BMP Sizing Calculator Details

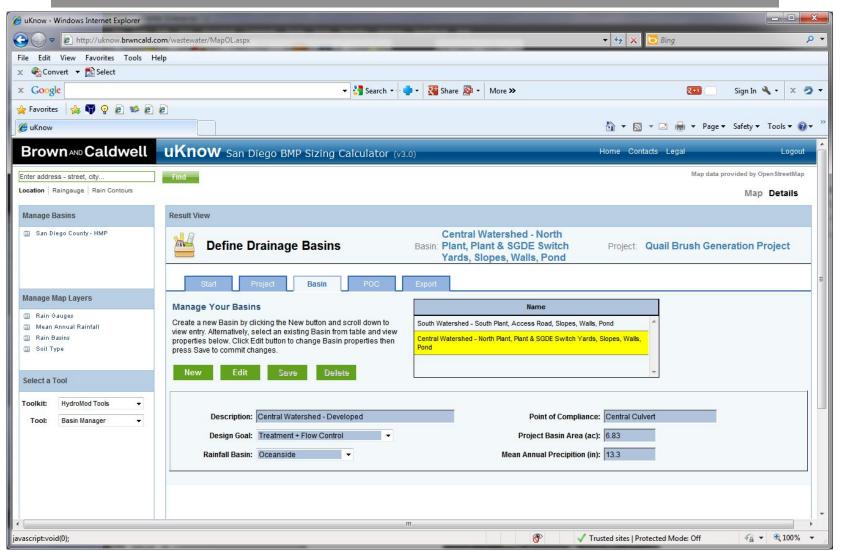
- The BMP Sizing Calculator:
 - Is a "web-based tool [that] allows the user to size LID and extended detention basin (Pond) facilities that meet both HMP and Treatment Control requirements. These facilities are often referred to as BMPs."
 - Has built-in data for rain events, run-off factors, BMP sizing factors and other location specific details
 - Provides a continuous simulation of rainfall events for 2-year to 10-year storms for the Project Location
- The user enters the site location and other data into the BMP Calculator and the program's output identifies whether the size and design of the proposed control measures is sufficient to meet the required parameters.

BMP Sizing Calculator Input

- BMP Calculator Addresses the stormwater that is generated within a specific drainage management area (DMA) and the control measures for that area
- Project Site broken into subwatershed areas (the DMAs) for both Central and South watersheds
- Data Entered into BMP Calculator includes:
 - Area of DMA
 - Slope characteristics
 - Type of soil and surface
 - What control and treatment BMP is DMA associated with?

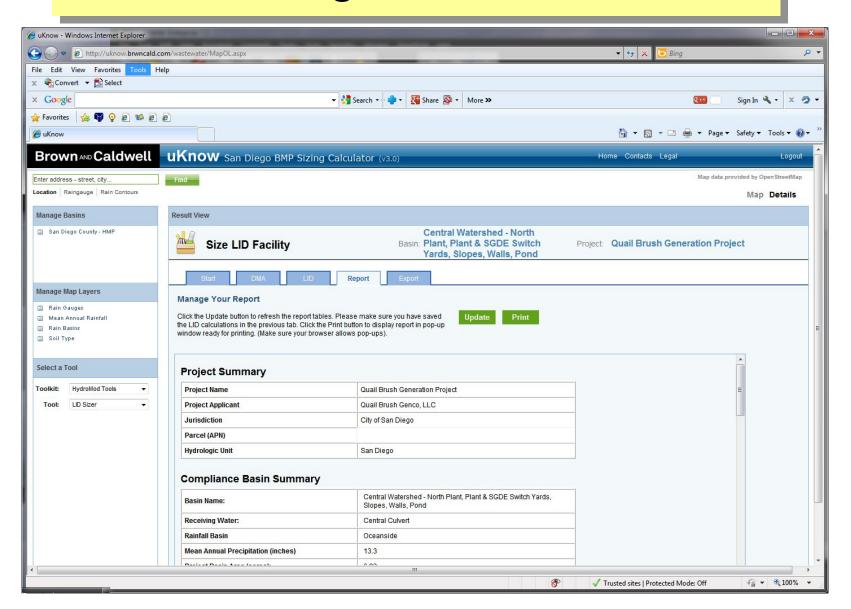
DMA Descriptions and Sizes

Central Watershed

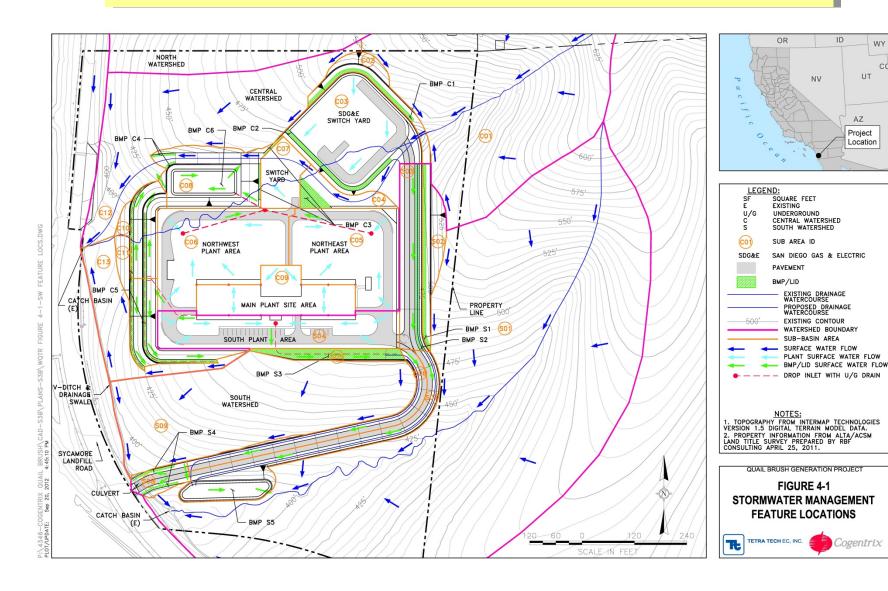

Watershed	Subarea	DMA Description	Area (ac)
Central	C02	Landscaping, Retaining Walls, Slopes	0.27
Central	C03-A	SDGE Switch Yard Pavement	0.25
Central	C03-B	SDGE Switch Yard Gravel	0.70
Central	C03-C	SDGE Switch Yard Landscaping, Drainages, Slopes	0.35
Central	C03-D	SDGE Switch Yard Building	0.03
Central	C04	Landscaping, Drainages	0.25
Central	C05-A	NE Plant Pavement	0.23
Central	C05-B	NE Plant Gravel	0.42
Central	C05-C	NE Plant Landscaping	0.13
Central	C05-D	NE Plant Misc Structures	0.25
Central	C05-E	NE Plant Containment Structures	0.09
Central	C06-A	NW Plant Pavement	0.26
Central	C06-B	NW Plant Gravel	0.48
Central	C06-C	NW Plant Landscaping	0.11
Central	C06-D	NW Plant Misc Structures	0.21
Central	C06-E	NW Plant Containment Structures	0.21
Central	C07-A	Plant Switch Yard Pavement	0.01
Central	C07-B	Plant Switch Yard Gravel	0.29
Central	C07-C	Plant Switch Yard Building	0.00
Central	C08-A	Landscaping, Retaining Walls, Slopes, Pond, Access	0.52
Central	C08-B	Landscaping, Drainages, Slopes, Access	0.22
Central	C09	Plant Main Buildings	0.68
Central	C10	Landscaping, Retaining Walls, Slopes	0.37
Central	C11	Landscaping, Retaining Walls, Slopes	0.51
		Total:	6.8

South Watershed

Watershed	Subarea	DMA Description	Area (ac)
South	S02	Landscaping, Retaining Walls, Slope	0.33
South	S03-A	Access Road Pavement	0.26
South	S03-B	Landscaping, Retaining Walls, Drainages, Slopes	0.26
South	S04-A	Plant Pavement	0.46
South	S04-B	Plant Gravel	0.24
South	S04-C	Plant Landscaping	0.16
South	S04-D	Plant Misc Structures	0.16
South	S05	Landscaping, Retaining Walls	0.20
South	S06-A	Access Road Pavement	0.19
South	S06-B	Landscaping, Retaining Walls, Drainages, Slopes	0.21
South	S07-A	Access Road Pavement	0.19
South	S07-B	Landscaping, Retaining Walls, Drainages, Slopes, Pond	0.56
South	S08-A	Access Road Pavement	0.07
South	S08-B	Landscaping, Retaining Walls, Drainages, Slopes	0.09
		Total:	3.4



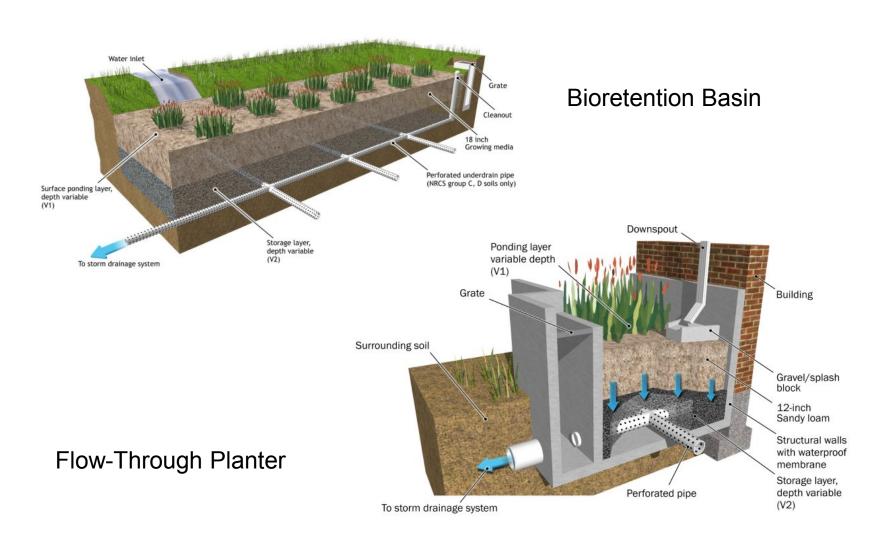
BMP Sizing Calculator Basin Screen



BMP Sizing Calculator Screen

Project Site with Proposed BMP/LID Controls

WY


BMP Descriptions and Sizing

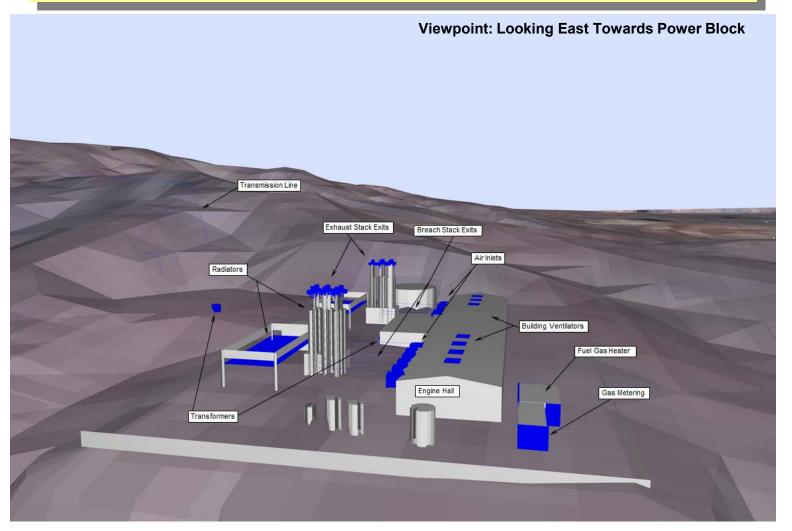
Watershed	BMP ID	Туре	Description/Reporting DMA	Available Area (SF)	Min. Plan Area (SF)
Central	BMP C1	Flow-Through Planter	C02	2,529	164
Central	BMP C2	Bioretention	C03	3,181	2,091
Central	BMP C3	Bioretention	C04 and C07	3,431	362
Central	BMP C4	Flow-Through Planter	C08-B	420	134
Central	BMP C5	Flow-Through Planter	C09, C10 and C11	7,366	5,410
Central	BMP C6	Bioretention	C05, C06 and C08-A	8,914	6,126
			Total:	<u>25,841</u>	<u>14,287</u>

Watershed	BMP ID	Туре	Description/Reporting DMA	Available Area (SF)	Min. Plan Area (SF)
South	BMP S1 Flow-Through Planter		S02	3,419	201
South	BMP S2	Bioretention	S03	3,457	1,619
South	BMP S3	Bioretention	S04 and S05	7,741	3,850
South	BMP S4	Bioretention	S08	975	447
South	BMP S5	Bioretention	S02 through S07	8,298	8,115
			Total:	<u>23,891</u>	<u>14,232</u>

Examples of BMPs

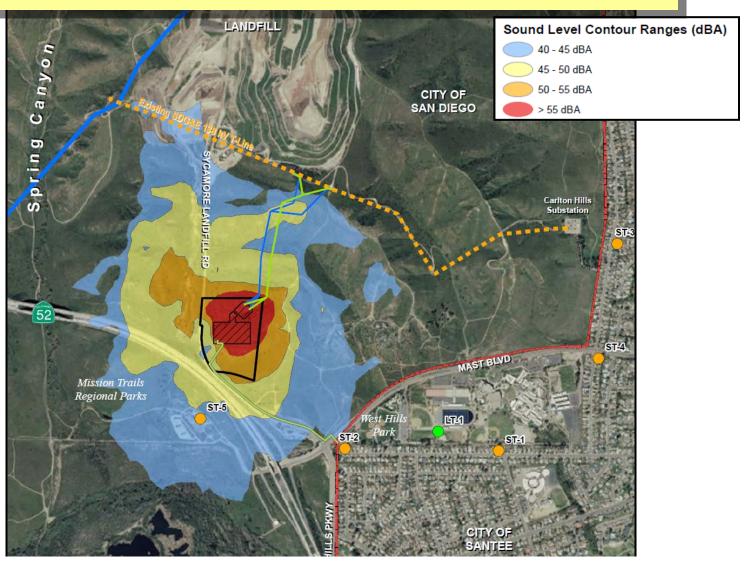
Conclusions

- Post development "Clean" stormwater will be directed around
 Project site and hydraulic controls designed for 100-year storm
 event
- Onsite stormwater source and treatment controls integrated into design
- Project design will use appropriate BMPs and LID features to:
 - Minimize sources of pollutants
 - Provide treatment of Project-related pollutants
 - -Bioretention basins and flow-through planters
- Project BMPs will include permanent maintenance by the Project owner
- Project meets hydromodification requirements of 2012 City of San Diego Storm Water Standards


Noise

Acoustic analysis consisted of the following steps that were completed in accordance with established CEC protocols:

- Baseline sound survey Short and long measurements completed to document the existing acoustic environment
- Acoustic modeling DataKustik GmBH CadnaA (Computer Aided Noise Abatement). Noise modeling software conforming to International Standard ISO-9613.2, "Acoustics – Attenuation of Sound during Propagation Outdoors."
- Noise mitigation analysis A top down review of candidate noise mitigation strategies
- Study results Demonstrates the feasibility of the project to operate in compliance with LORS at all existing noise sensitive areas


Noise – Modeling Methodologies

3-Dimensional Rendering of Noise Model Input Data

Noise – Study Results

Received Sound Levels during Operation of Attenuated Plant

KOP Selection

3 Components:

- Viewshed Analysis
- Definition of Visual Sphere of Influence (VSOI)
- Viewpoint and Key Observation Point (KOP) Selection

Viewshed Analysis

Viewshed analysis defines the area where there is a potential for project visibility. Overall, the viewshed analysis indicated that virtually all points with a straight-line view to the plant site are located within 2.5 miles of the site, and that large portions of the area within 2.5 miles are blocked from view by topography.

VSOI Definition

Using the viewshed we define the Visual Sphere of Influence (VSOI). The VSOI for a project represents the area within which the Project could be seen and could potentially cause visual impacts. The assessment of potential Project visibility for the purpose of identifying representative viewpoint locations was based on locations with a direct line of sight to the proposed plant stack height.

Viewpoint and KOP Selection

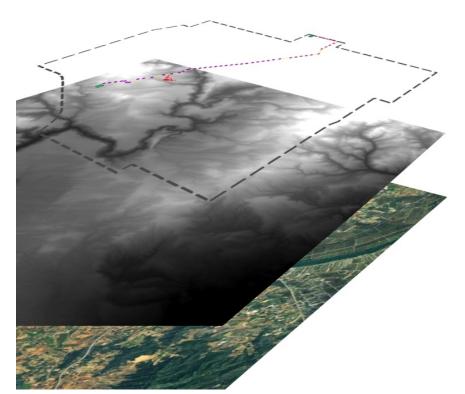
Potential visual impacts are typically assessed by evaluating the visual effects of an action from a number of viewpoints that represent the range of applicable viewing conditions. The standard approach is to identify viewpoints that represent sensitive viewing areas that account for the following types of viewing locations:

- Important public use areas such as schools, parks, wildlife areas, visitor centers or areas used for camping, picnicking, bicycling, or other recreational activities
- Residential areas
- Travel routes

Selection of KOP

As discussed in Section 4.5.2 of the filed AFC, one of these viewpoints was subsequently identified as a Key Observation Point (KOP) in consultation with CEC staff, as required. The KOP selected is representative of viewers who will be most susceptible to visual impact as a result of the Project and represent the most critical viewing condition.

Due to changes in the configuration of the plant as well as local public concern four additional KOPs were chosen in consultation with CEC staff to ensure that visual impacts would be as low or lower than assessed in the original filed AFC document. In addition to viewpoint 2 these four additional KOPs include:

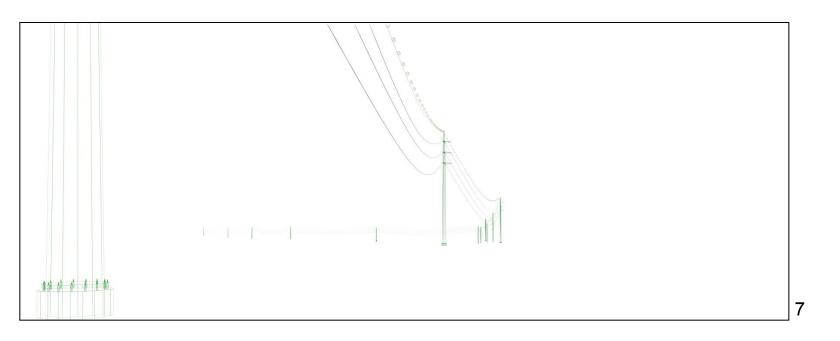

- Viewpoint 5 (The viewing platform at the Mission Trails Dam)
- Viewpoint 6 (the Kumeyaay Campground)
- Viewpoint 10 (Mission Gorge Road)
- Viewpoint 11 (California State Route 52)

Typical Visualization Approach

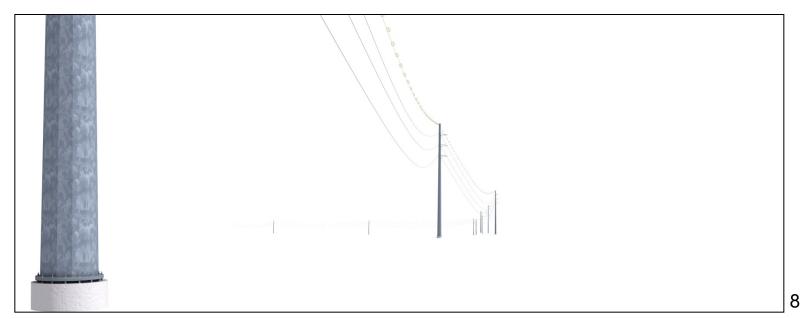
1 - Design Data Preparation/ Geo-referenced GIS Database

With the use of Geo-referenced GPS data from the camera, USGS Digital Elevation Model data, and aerial imagery within our Geographical Information System (GIS) database we are able to place all proposed objects in proper world coordinates (X, Y, Z) in our 3D software.

2 - Site Photography


An inventory of site photographs are shot documenting views from the surrounding environment towards the proposed development. The selected photograph will then be used as a base image for the simulation.

3 - Computer 3D Digital Modeling


A three dimensional (3D) computer model is created using a combination of AutoCAD files, transmission line specifications, and GIS Layers. This data is then exported to Autodesk's 3D Studio Max for production. Mathematically correct 3D models of proposed elements are then created based on all available design and structure data received.

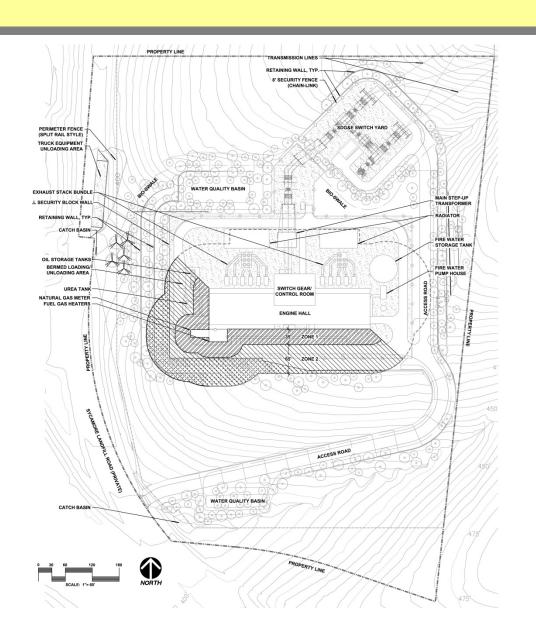
4 - Apply Materials/Textures and Lighting

- Once the proposed elements are modeled, accurate materials and textures are applied.
- Then a light source is added to recreate the original lighting depicted in the selected site photograph. By combining the camera information of time, date, and year along with the GPS location of the photograph taken we can simulate an accurate sun and conditions of the photo.

5 - Virtual Camera and Rendering

- A virtual camera is created to simulate the actual camera used on site from the embedded EXIF data within the selected photograph. This means that the GPS location and focal length of the lens are used for mathematical precision.
- Once the virtual camera is matched to the photo, the rendering of the 3D model is composited over the base photograph using image editing software.

6 - Final Simulation


Details from the computer model are blended seamlessly into the base photograph to produce the final visual simulations.

10

Site Plan of Proposed Site Facilities

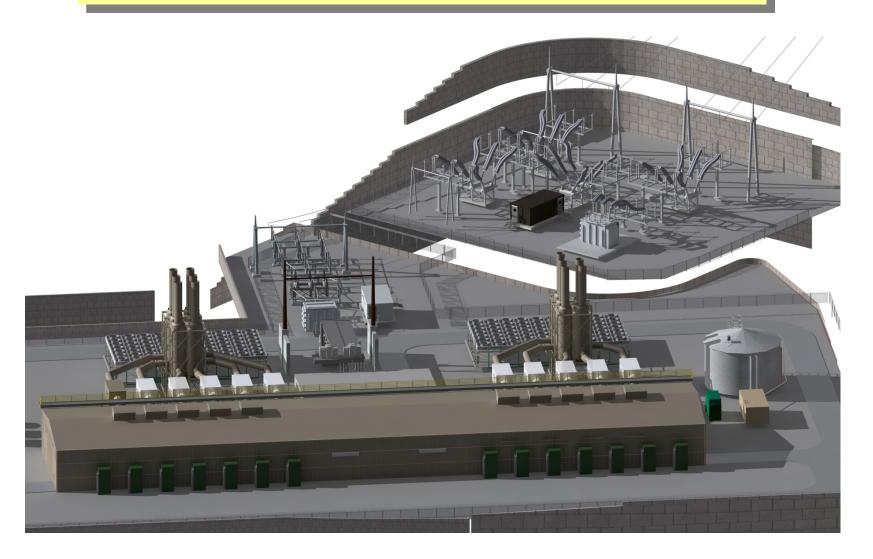
Typical Heights / Dimensions for Proposed Facilities

Component (number)	Height (feet)	Dimensions (length x width, feet)	Material/Color ¹
Engine hall (1)	32 at eaves	365 x 70	Pre-engineered metal/tan-brown
Control house (1)	32	92 x 44	Pre-engineered metal/tan-brown
Fire water storage tank (1 600,000 gallon)	25	15 diameter	Metal/medium brown
Stacks (11)	70	4 diameter	Painted steel (desert tan)
Switchyard dead-end structures (2)	60	Poles 45 apart	Treated Steel/dark
Transmission poles (13 - 15)	70-80	1 foot thick at base	Treated Steel monopole

Notes:

¹ Steel will be treated to minimize glare

Similar Cogentrix Plant - Plains End II Golden, CO



Similar Cogentrix Plant – Plains End II Golden, CO View from Colorado Highway 93

3-Dimensional Renderings of Proposed Site Facilities

Existing Conditions of KOP 1 / Viewpoint 2

Mission Gorge Road Existing Conditions (intersection with Father Junipero Serra Trail looking north)

Simulation of KOP 1 / Viewpoint 2

Mission Gorge Road Simulation (intersection with Father Junipero Serra Trail looking north)

Existing Conditions of KOP 2 / Viewpoint 5

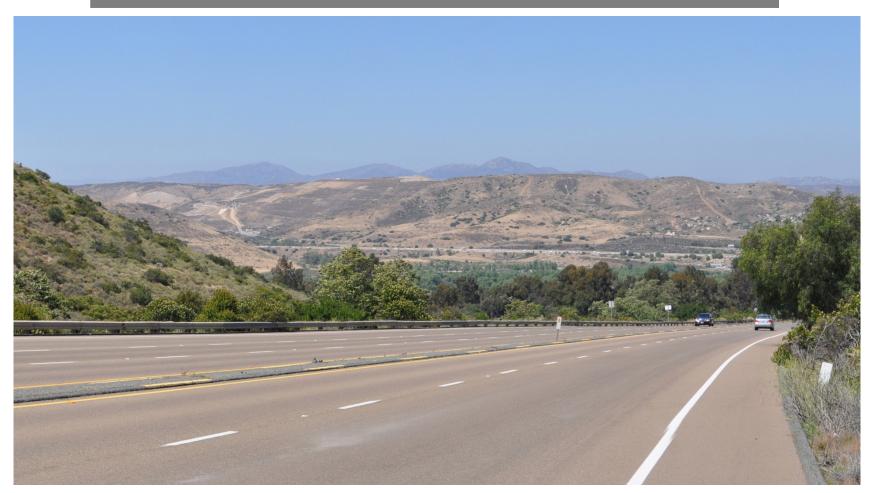
MTRP Old Mission Dam Viewing Platform Existing Conditions (looking northeast)

Simulation of KOP 2 / Viewpoint 5

MTRP Old Mission Dam Viewing Platform Simulation (looking northeast)

Existing Conditions of KOP 3 / Viewpoint 6

MTRP Kumeyaay Campground Existing Conditions (looking north)


Simulation of KOP 3 / Viewpoint 6

MTRP Kumeyaay Campground Simulation (looking north)

Existing Conditions of KOP 4 / Viewpoint 10

Mission Gorge Road Existing Conditions (looking northeast)

Simulation of KOP 4 / Viewpoint 10

Mission Gorge Road Simulation (looking northeast)

Existing Conditions of KOP 5 / Viewpoint 11

California State Route 52 East-bound Lane Existing Conditions (looking east)

Simulation of KOP 5 / Viewpoint 11

California State Route 52 East-bound Lane Simulation (looking east)

Visual Impact Summary

In summary, impacts were originally classified as less than significant at five viewpoints, including the KOP selected for the AFC analysis, and insignificant at two other viewpoints. The original analysis indicated that significant visual impacts from the Project are not expected. With the addition of the new simulations the original assessment was confirmed and is anticipated to be lower than the original AFC analysis.

26

Question / Answers

shawn.jackson@tetratech.com

robert.evan@tetratech.com