DOCKET

11-AFC-2

DATE JUN 14 2012

RECD JUN 15 2012

People | Clients | Growth | Quality | Performance

BrightSource - Hidden Hills SEGS Analysis of Groundwater Conditions

Cardno ENTRIX
Santa Barbara, California
June 14, 2012

Major Points

- The pumping test data demonstrated that the aquifer can easily support the project
- Pumping represents about 8% of normal flow beneath site
- The test data clearly showed that the aquifer receives recharge from leakance
- CEC staff assumed a flat aquifer with no recharge (not representative of site conditions)
- Regional flow and recharge from leakance must be considered to match pumping test data
- No drawdown will propagate to springs from the Hidden Hills site
- No significant drawdown is expected at any private wells.
- Earlier models did not reflect aquifer properties as they are now understood.

Site Location Map

Representing the Aquifer: Theory Vs. Reality

Theoretical Model for Analytical Solutions

The Real World

Review of Private Well Construction

- •On site wells 93 to 1100 feet deep, pumped at up to 400 gpm
- Nearby Private Wells 175 to 310 feet deep, pumped at 5 to 30 gpm
- Private wells have Specific Capacity Values 3.5 to 12.5 gpm/ft (Good producers)
- •Static Water levels at time of completion 60 to 156 feet
- Decline in water levels about 0.2 to 0.3 ft/yr

Groundwater Gradient Across Site

- Approximately 250 feet of head drop from Stump Springs to Site
- •Gradient approximately 0.01 to southwest

Groundwater Flow Under Ambient Conditions

Approximately 1800 af/yr Flows Through Aquifer Beneath Site

Pumping Diverts Flow to Well and Stabilizes Cone

- Pumping Diverts Flow to Replace Water Being Pumped
- •Reduces Water Leaving site by less than 8%

Aquifer Performance Test Feb 2012

MAP SHOWING AQUIFER PERFORMANCE TEST WELLS AND ADJACENT MONITOR WELLS.

- Begin APT at 1100 on Friday Feb 17
- Orchard well and Well #3 pumped at constant rate of 45 gpm each
- Regular verifying of water level sensors and conducting hand measurements
- Biological resources monitoring
- Discharge monitoring
- Water Quality sampling
- Conduct dust control measures
- Orchard well and Well #3 operated from 11:00 Feb 17 thru 19:00 Feb 21 (approximately 4.5 days)
- Vandalism at Well #3 caused pump to drop into well.

Measured Drawdown: Day 1 and Day 4

FIGURE 1. APT WELL LOCATIONS AND DRAWDOWN IN FEET AT DAY 1 AND DAY 4.

Pumping Rates Held to +/- 5% During Test

Drawdown After 4 Days Pumping

FIGURE 1-1. MAP SHOWING AQUIFER PERFORMANCE TEST WELLS AND ADJACENT MONITOR WELLS.

No Impact Observed on Stump Springs

Figure 4-1 Stump Springs Background and APT Results

CEC Staff Asserted Aquifer May Be Fully Confined

- •Data from MW4 appears to fit fully confined curve reasonably well when plotted with compressed time axis (7 log cycles when data is only 4 logs)
- •Compresses the curve and minimizes departures from type curve
- Staff suggested Deviation from type curve may be due to variations in pumping rate
- •Difference in interpretation hangs on interpretation of vertical flow from layers above and below pumping zone
- Significantly changes projected growth of the cone of depression

MW4 Fits Better to a Leaky Solution

(50 feet from Well 3)

- Plotting on 4 log time axis shows differences
- •The difference seems minor but it is significant
- •Data Corrected for variable pumping rates

MW1 Only Fits Leaky Type Curve

(200 feet from Orchard Well)

Type Curves corrected for variations in pumping rate

MW2 Only Fits Leaky Type Curve

(50 feet from Orchard Well)

Type Curves corrected for variations in pumping rate

MW3 Fits Leaky Type Curve Much Better Than Confined Type Curve

(200 feet from Well 3)

Type Curves corrected for variations in pumping rate

MW5 Fits Leaky Type Curve Much Better Than Confined Type Curve

(25 feet from Well 3)

Type Curves corrected for variations in pumping rate

Using The Wrong Aquifer Type Significantly Over Estimates Future Drawdown

Estimating Radius of Influence From Pumping Test Data

Drawdown vs. distance from Well 3 after 25 years pumping at 45 gpm assuming no recharge from regional flow.

- •Predicts drawdown will extend no more than about 1500 feet after 25 years
- •Yields an estimated Transmissivity of about 6,000 gpd/ft

CEC Staff Assumed No Gradient and No Leakance and Half Actual Aquifer Transmissivity

Nearly 10 feet of drawdown at Stump Springs

Simulated Gradient (No Pumpage)

FIGURE 1. ESTIMATED BASELINE HEADS IN THE AREA OF THE PROJECT SITE WITH NO PUMPAGE.

Hidden Hills Pumping (No Gradient or Leakance)

FIGURE 2. DRAWDOWN BASED ON 25 YEARS OF PUMPAGE BY HIDDEN HILLS ONLY, WITH NO LEAKANCE REPRESENTED.

Simulated Pumping at Hidden Hills With Leakance

FIGURE 3. DRAWDOWN (0.1-FOOT CONTOUR) BASED ON 25 YEARS OF PUMPAGE BY HIDDEN HILLS ONLY, WITH LEAKANCE REPRESENTED.

Summary

- The pumping test data demonstrated that the aquifer can easily support the project
- Pumping represents about 8% of normal flow beneath site
- The test data clearly showed that the aquifer receives recharge from leakance
- CEC staff assumed a flat aquifer with no recharge (not representative of site conditions)
- Regional flow and recharge from leakance must be considered to match pumping test data
- No drawdown will propagate to springs from the Hidden Hills site
- No significant drawdown is expected at any private wells.
- Earlier models did not reflect aquifer properties as they are now understood.

Question & Answer

