LCD Power Efficiency Technology

Prepared by: Steve Jurichich, PhD and Carl Cobb McLaughlin Consulting Group

www.mcgweb.com

DOCKET

09-AAER-1C

DATE OCT 14 2009 RECD NOV 03 2009

for

California Energy Commission 14 October, 2009

Cost of Efficiency – LCD Television

- LCD can be made more efficient
- Net additional manufacturing costs, if any, are small
 - Light management film costs offset by savings on lamps, inverters, and smaller power supply
- LED backlights offer additional efficiency, with cost adder
 - LED cost adders decreasing as volumes grow
- Net savings from lower <u>operating</u> cost not visible to consumers

LCD TV Power Efficiency 2007-2009

LCD Power Efficiency Trends

LCD Power Efficiency

14 October 2009

Technology / Market Forecasts

- McLaughlin Consulting Group has long history of display industry strategy and market research
- "Prism Film (BEF), Reverse Prism Film, Polarization Recycling Film (DBEF) and Brightness Enhancement Diffusers" http://www.mcgweb.com/reports/bef2007.htm
- "The Fast Track for LEDs into Large-Area LCD's" <u>http://www.mcgweb.com/reports/led07.htm</u>
- Both studies use proprietary cost/performance database to calculate low cost configurations
- LED model also has preference/value function to predict incremental selling prices for features

Light Management Films

- Polarization recycling 3M or wire-grid films improve usable light output by ~ 55%
 - → 35% reduction in light/power input
- Prism films focus light to viewer in front
- Combine with polarization recycling together improve light output ~ 110%
 - → 47% reduction in power input
- Light management films (mostly) pay for themselves in lamp, inverter and power supply savings

Light Management in Backlights

Example for 46" LCD-TV

	Differences — 46" LCD-TV, 2009			
	Street price	Electricity saving/ year	Power (W)	_
A	\$6	\$0	0	
В	\$7	\$3	-13	
С	\$4	\$16	-64	Most common 2009
D	\$0	\$33	-127	Most common 2010

Source:

McLaughlin Consulting Group LCD Brightness Enhangement film study

McLaughlin Consulting Group: "The Fast Track for LEDs into Large Area LCD's" LED Adoption

http://www.mcgweb.com/reports/bef2007.htm

http://www.mcgweb.com/reports/led07.htm

TV use 5 hours/day, power cost = \$0.14/ kWh

A: No BEF or DBEF, 3 gain diffusers (25 CCFLs)

B: BEF (Cavity, Area Diffuser) (24 CCFLs)

C: DBEF(Cavity, Area Diffuser) (20 CCFLs)

D: BEF+DBEF (Cavity, Area Diffuser) (15 CCFLs)

MCG

46" Power Trend

2007

2008

2009

Watts

266

230

172

YTY %

13.5%

25.2%

LED Backlight for LCD-TV

- LEDs now more efficient than CCFLs:
 - Avg. Power (2009) for 46-in. LED TV = 122W, for CCFL TV = 172W, LED saves 50W or 29%.
- Performance gap growing with LED efficiency innovation
- Cost premium shrinking, but still high
- <u>But</u>, additional performance features possible with LED backlight
 - High speed refresh works better
 - Local dimming → higher contrast, more power conservation
 - Slim form factor
 - Elimination of CFL lamp mercury

Additional LCD-TV Efficiencies

- Dynamic backlight, local dimming
- Improved LCD array aperture
- Increased color filter transmission

Future

It may be possible to eliminate color filters completely

Summary on LCD Efficiency

- Technology exists, now, to improve LCD power consumption
- Most film power reductions pay for themselves
- Power efficiency can be accelerated with incentives and/or more consumer information
- Life cycle reductions in power usage yield net savings in almost all cases except LED backlights
- LED backlight cost gap narrowing
- Added features with LED backlights can generate higher market price

