DOCKETED

Docket Number: 08-AFC-09C
Project Title: Palmdale Energy Project (Formerly Palmdale Hybrid Power Plant) Compliance

TN \#: 214567
Document Title: Palmdale Energy, LLC's Plume Vertical Velocity Assessment for the Air Cooled Condensers

Description: N/A
Filer: Marie Fleming
Organization: DayZen LLC
Submitter Role: Applicant Representative
Submission 11/28/2016 11:29:16 AM
Date:
Docketed Date: 11/28/2016

Plume Vertical Velocity Assessment for the Air Cooled Condensers

Palmdale Energy Project
 Palmdale, California

Submitted to
California Energy Commission

Submitted by
Palmdale Energy, LLC

Prepared by
Atmospheric Dynamics, Inc.

ATMOSPHERIC DYNAMICS,INC Meteorological \& Air Quality Modeling

Introduction

Palmdale Energy, LLC is proposing to develop the Palmdale Energy Project (PEP), located near the Palmdale Airport. The combined-cycle project will utilize two (2) Siemens SCC6-5000F natural gasfired combustion turbine generators (CTG) and two (2) heat recovery steam generators (HRSG) with supplemental duct firing and a 32 cell air cooled condenser (ACC). The PEP site will be located on an approximately 50 -acre undeveloped parcel west of the northwest corner of U.S. Air Force Plant 42. Based on updated ACC stack parameter data, provided by Siemens, a revised analysis of the ACC plume characteristics on vertical winds was prepared and compared to the California Energy Commission (CEC) significance criteria for the average vertical plume velocities as described below.

Atmospheric Dynamics, Inc. (ADI) prepared a screening level plume vertical velocity assessments which are based on the calm wind Spillane methodology outlined in the "Aviation Safety and Buoyant Plumes" paper (Peter Best, et. al., presented th the Clean Air Conference, Newcastle, New South Wales, Australia, 2003). This methodology is also recognized as a screening tool for aviation safety set out by the Australian Civil Aviation Safety Authority (CASA) and presented in "AC 139-5(1) Plume Rise Assessments (CASA, 2012)".

In May, 2016 Palmdale Energy, LLC submitted the results of our ACC plume rise screening analysis. Recently an error in the ACC exit velocity data provided by our vendor was discovered and we are therefore submitting a revised analysis for CEC staff review.

The aim of this revised screening assessment is to conservatively determine the potential for turbulence generated by the ACC waste heat exhaust plumes. Part 139.370 of the Australian Civil Aviation Safety Regulations $(1998,2004)$ provides that CASA may determine that plume velocities in excess of $4.3 \mathrm{~m} / \mathrm{s}$ is or will be a potential hazard to aircraft operations. The Manual of Aviation Meteorology (Australian Bureau of Meteorology 2003) defines severe turbulence as a vertical wind gust velocity in excess of $10.6 \mathrm{~m} / \mathrm{s}$. The assumed critical vertical velocity used as a CEC significance threshold is 5.3 meters per second* $(\mathrm{m} / \mathrm{s})$ but it should be noted that the basis of the original CASA derived threshold of $4.3 \mathrm{~m} / \mathrm{s}$ has been lost in antiquity and that CASA no longer relies on the 1998 and 2004 regulations that established this critical threshold other than to note that a more rigorous analysis, which includes site specific meteorology, should be used if the 4.3 m / s and $10.6 \mathrm{~m} / \mathrm{s}$ screening thresholds are exceeded. The screening method uses absolute worstcase assumptions of calm winds and neutral atmospheric conditions for the entire vertical extent of the plume to determine these worst-case impacts. It should be noted that these results are extremely conservative in that these worst-case conditions typically only occur during a few hours each year.

The Spillane methodology is generally applied to a limited number of plume source geometry's (turbines, power plant boilers, etc.) with the stacks arranged linearly (in a single straight-line) and separated by distances that typically exceed the individual stack diameters. For this assessment, a conservative assumption was made in order to use the Spillane methodology on an atypical ACC plume configuration which is made up of 32 plumes or cells arranged on a two dimensional surface. Here, the methodology, as described below, assumed all operating ACC cells were merged into a single equivalent ACC cell with an effective diameter based on the combined diameters of all operating cells. In other words, a single large cell was assumed to initially describe the release parameters of the ACC.

Screening Methodology and Vertical Plume Velocity Calculations for ACC

The ACC is comprised of 32 individual cells, arranged along four rows of eight cells each in 4×8 matrix. Thus, the 32 cells or radiators are arranged along two axis of direction producing a two dimensional plane in both the x and y directions. ACC stack parameter data (plume velocity, plume temperature) was provided by Siemens and the ACC manufacturer. The ACC will utilize variable speed fans. Additionally, the number of fans that are operational are dependent upon ambient temperature and plant load. For all ambient conditions, plant operation was assumed to be at full load. Thus, during cold winter and annual average conditions, all 32 fans would be operational at lower fan speeds. During worst-case hot summer days, 30 fans would be operational at the maximum fan speed. This data is summarized in Table 1.

Case \#	1	2	3
Ambient Temp ($\left.{ }^{\circ} \mathrm{F}\right)^{*}$	23	64	98
Number of ACC Cells in Use*	32	32	30
Heat Rejection (MW)*	447.23	447.36	445.28
Exhaust Flow Rate ($\mathrm{l} / \mathrm{hr} \mathrm{h}^{*}$	1.818E8	2.440E8	2.150E8
Cell Exit Temperature ($\left.{ }^{\circ} \mathrm{F}\right)^{*}$	59.0	90.32	130.10
Cell Height (fit) ${ }^{\text {x }}$	130	130	130
Effective Cell Diameter (ft)	47.169	47.169	47.169
Effective Stack Diameter (fit)	266.83	266.83	258.36
Stack Exit Velocity (ft/s)*	13.16	18.60	18.67
ACC stack data provided by Siemens ${ }^{ *}$ Calculated value based on the cell diameter of 47.17 feet to the square of the number of operating cells or for example, Case \#1: $D_{\text {eff }}=47.17^{*} \sqrt{32}$			

The Spillane methodology was originally developed to treat multiple individual stacks that are arranged along a linear x or y direction, but not both directions at once, with stack separations much greater than the stack diameters, typical of boilers/turbines at large power plants. The thirty to thirty-two radiator cells (depending upon operating case number) are arranged in the 4×8 pattern. Therefore, the Spillane methodology was used for a single source with the effective stack diameter for the number of operating cells in use for each ambient temperature. For the cold day Case \#1 and annual average Case \#2, the effective single plume diameter would be based on 32 cells, while for the summer Case \#3, the effective diameter would be based on 30 cells. The effective diameter for the single cell for each of the three ambient temperatures are presented in Table 1. The plume velocities were then calculated using the Spillane methodology for a single effective diameter.

Results

Screening level vertical plume velocity assessments were made for the range of ambient temperatures with calm winds and neutral atmospheric conditions for the three cases presented in Table 1. The total heat rejection for the three ambient cases are similar to each other and are based on the plant at 100 percent load. The use of variable speed fans and the ability to cycle each fan based on the cooling needs of the plant will allow the ability to minimize plume exit temperature and velocity. The results based on the three ambient conditions are presented in Table 2 and the output from the calculation worksheet provided in Attachment A.

Because of the large effective stack diameters, the initial jet phase extends to a height of about 1,750 feet above grade level (ft-agl) for Case 3 to almost 1,800 ft-agl for Cases 1 and 2. Thus, the previously accepted critical height of 1,500 feet occurs in the jet phase, and the results in Table 2 were interpolated by height from the stack exit velocity to the height at the top of the jet (with a plume average velocity of one-half the exit velocity). After the jet phase, plume temperature buoyancy characteristics modeled in the Spillane methodology cause an increase in plumeaverage vertical velocities to a peak velocity at some distance above the jet, after which plume average vertical velocities again decrease. The heights of maximum plume vertical velocities occur around $2,800 \mathrm{ft}$-agl for all three cases as shown in Attachment A.

Table 2 ACC Vertical Plume Velocity Analysis Results for Reference Height			
Case \#	1	2	3
Ambient Temp (${ }^{\circ} \mathrm{F}$)	23	64	98
Single Plume Results (m/s):			
at 1,500 -feet agl (Within the Jet Phase)	2.36	3.34	3.28
Maximum Velocity above 1500-	4.72	4.71	4.87

From these results and for each ambient condition, the vertical plume velocities are less than the threshold value of $5.3 \mathrm{~m} / \mathrm{s}$ for all heights through 1,500 feet-agl and above for the ACC. The heights at which plume-averaged vertical velocities exceed $5.3 \mathrm{~m} / \mathrm{s}$ only occur during the jet phase for Cases 2 and 3 and occur at a height of 240 ft -agl as shown in Attachment A. For Case 1, the jet phase velocity is always less than $5.3 \mathrm{~m} / \mathrm{s}$. These cases also represent the worst-case conditions of calm winds at all levels of a neutral atmosphere.

These screening results indicate that mechanical and thermal turbulence levels due to the flow from the ACC always remain in the light turbulence category and below the significance level of $5.3 \mathrm{~m} / \mathrm{s}$ at all heights above $1,500 \mathrm{ft}$-agl. Even light wind speeds can dramatically decrease the predicted plume-averaged vertical velocities so the above results are very conservative indications of adverse conditions. The important factor for a given location is the appropriateness of available information for estimating true wind and temperature profiles throughout a typical year. Theoretical calculations, as shown in the tables above, are likely to overestimate the expected vertical velocities, for the following reasons:

- The wind profile is assumed constant with height with no occurrence of wind-shear when realistically, there is a considerable variation with height, especially in light winds;
- Worst-case scenarios are based on very light-wind, near-neutral atmospheric conditions with maximum loading.

Attachment A

Spillane Method Plume Velocity Calculations

SINGLE Plume Average Vertical Velocities for PEP ACC with Effective Diameter for 30 cells at 98F (Summer)										
	"Aviation Scdety and Buoyant Plumes," Peter Best, et al.									
	"The Evaluation of Max imum Updraft Speects for Calm Conoitions at Various Heights in the Plume									
	from a Gas Turbine Power Station t Oakey, Queensland, Australia," Dr. K.T. Spillane									
Ambient Conditions				Constants Assume neutral conditions ($d \theta / \mathrm{dz}=0$ or $\theta_{\mathrm{s}}=\theta_{\mathrm{e}}$)						
Ambient Potertial Temp $\theta_{\text {, }}$	309.82 K	Kelứns	$98.0{ }^{\circ}$			0.3048	meters/feet			
Plume Exit Conditions					Gravity 9		$\mathrm{m} / \mathrm{s}^{2}$			
Stadk Height h_{3}	39.62 m	meters	130.0	6et	λ	1.11				
Stack Diameter D	78.7472 m	meters	258.36	Eet	do	~ 1.0				
Stack Velocity $\mathrm{V}_{\text {ar }}$			1867	t/sec						
Volumetric Flow	27,712.29 c	cu. m/sec	58,719:014	ACFM	TVetD ${ }^{2} / 4$			Sect 2 2/1		
Stack Potential Temp θ_{s}	, $\quad 327.65 \mathrm{~K}$	Kelùns	130.10	${ }^{\circ} \mathrm{F}$						
Intitial Stack Buoyancy Flux Fo	$4,709.04 \mathrm{~m}$	$\mathrm{m}^{4} / \mathrm{s}^{3}$			$\mathrm{gV}_{\text {ers }} \mathrm{D}^{2}(1-\theta$)/4 $=\mathrm{Vo}$	Flow(g/m)(1-8/8 θ_{3})	Sect.2/11		
Plume Buoyancy Flux F	$\mathrm{N} / \mathrm{A} \mathrm{m}^{4} / \mathrm{s}^{3}$				$\lambda^{2} g V a^{2}\left(1-\theta_{0} / \theta_{0}\right)$ br $\mathrm{a}, \mathrm{V}, \theta_{0}$ at plume height (see below)					
Conditions at End (Top) of Jet Phas:										
Height above Stadk $z_{\text {\% }}$	492.170 meters ${ }^{*}$		1614.7 Eet ${ }^{*}$		$z_{\text {er }}=6.25 \mathrm{D}$, meters ${ }^{2}=$ meters above stack top			Sect.3/11		
Height above Ground $z_{s+}+$ hs	531.790 meters		1744.7 Eet		$V_{x=0}$			-		
Vertical Velocity Ver	$2.845 \mathrm{~m} / \mathrm{s}$		$9.33 \mathrm{t} / \mathrm{sec}$		$\mathrm{V}_{\text {gex }}=0.5 \mathrm{Vaxz}=\mathrm{V}_{\text {eut }} / 2$			*		
Plume Top-Hat Diameter 2aje	157.494 m	meters	516.7	Eet	$2 \mathrm{ae}=2 \mathrm{D}$		Consenation ofmomentum	*		
Spillane Methodology - Analytical Solutions for Calm Conditions for Plume Heights above Jet Phase										
Single Plume-averaged Vertical Velocity V given by Analytical Solution in Paper where Product Va given by equations below:										
Plume Top-H at Radius aVirtual Source Height	Solutions in Table Below				$0.16(z-z v)$, or linear increase with height			Sect 2/Eq. 6		
	13.579 meters ${ }^{*}$		44.5 tet ${ }^{*}$		$6.250\left[1-(\theta / \theta / \theta)^{1 / 9}\right]$, meters $=$ meters atove stacktop			Sect 2/Eq. 6		
Height above Ground zv v hs	53.199 meters		174.5 tet				where $\left(\theta_{2} / \theta_{3}\right)^{1 / 2}=\left(\theta_{e} / \theta_{s}\right)^{1 / 2}=$	0.9724		
Vertical Velocity V	Solutions in Table Below				$\left\{(\mathrm{Va}) \mathrm{o}^{3}+0.12 \mathrm{Fo} \cdot\left[(\mathrm{z}-\mathrm{zu})^{2}-(6.25 \mathrm{D}-\mathrm{zu})^{2}\right]\right\}^{1 / 2} / \mathrm{a}$			Sect.2.1(6)		
Product (Va)	$217.855 \mathrm{~m}^{2 / \mathrm{s}}$				$\operatorname{Ven}=1 / 2\left(\theta_{0} / \theta_{3}\right)^{1 / 2}$					
Solve for plume-averaged vertical velocity at height		1,500.0	feet	457.2 meters above ground ($z+\mathrm{h}_{\text {s }}$)						
Gives the bllowing Height above Stack z^{\prime}	417.580 meters*		1370.0	Eet ${ }^{\text {F }}$		HeightEntered < Top of Jet - Cannot Be Solved				
Plume Top-Hat Diameter $2{ }^{\text {a }}$,Vertical Velocity V	\#N/A meters		\#N/A Eet		$2 a^{\prime}=2^{*} 0.16(t-z v)$			Sect $2 / \mathrm{Eq} .8$		
	\#N/A m/s		\#N/A t/sec		$\mathrm{V}=\{\mathrm{Na})^{3}+0.12 \mathrm{f}$ [$(\mathrm{z}-\mathrm{zv}$		$)^{2}(6.25 \mathrm{D}-\mathrm{zv})^{(1 / 1 / 3 / 1(2 a 72)}$	Sect 2 Eq. 6		
Vertical Velocity V										
Solve for Height of CASC critical vertical velocity Vort		$5.30 \mathrm{~m} / \mathrm{s}$ plumeaveraged vertical velocity					Critical \mathbf{W} < Top of Jet			
Find Height above Stack Zos.	\#N/A meters		\#NA teet		Solve for $\mathrm{x}=(z-\mathrm{zv})$ simultaneously in both eqs. (i.e, Va and a)					
Height above Ground Zerths	\#N/A meters		\#N/A feet		or $\mathrm{V}=4.3 \mathrm{~m} / \mathrm{s}$ using the cubic equation $a x^{3}+b x^{2}+c x+d=0$, where					
					$\text { and } d=\left[0.12 F_{\circ}(6.25 \mathrm{D}-\mathrm{zv})^{2}-(\mathrm{Va})^{3} y /\left(4.3^{3} 0.16^{3}\right)=\right.$			-926.6727		
Interpolated Height of critical vertical velocity in Jet Phase:								195298353		
Find Height above Stack Zor	67.468 meters		221.4 bet		htto:/lumuv. 1728 ardcubic.htm					
Height above Ground zerths	107.088 meters		351.3 fet			gives the real solution $x=z-z v=$		-385.7550		
					or $z(m)=$	-372 176				
Table of Plume Top-Hat Diameters (2a) and Plume-averaged Vertical Velocities starting at end of jet phase:							$z(t)=$	-1221.1		
Height (feet)	(meters)	Plume			Vert.	Plume				
above ground above stack		Radius(m)	$\mathrm{Vel}(\mathrm{mm} / \mathrm{s})$	Temp(K)						
Stack. Rel. $\mathrm{Ht}=130.0$	0.00	39.374	5.69	Jet Pha selinterpolated						
150.0	6.10	39.861	5.65							
200.0	21.34	41.081	5.57	Jet Phase $>5.3 \mathrm{~m} / \mathrm{s}$ up to $\sim 350 \mathrm{agl}$						
300.0	51.82	43.519	5.39							
400.0	82.30	45.957	5.21							
500.0	112.78	48.396	5.04							
600.0	143.26	50.834	4.86							
700.0	173.74	53.273	4.69							
800.0	204.22	55.711	4.51							
900.0	234.70	58.150	4.33							
1000.0	265.18	60.588	4.16							
1100.0	295.66	63.027	3.98							
1200.0	326.14	65.465	3.80							
1300.0	356.62	67.903	3.63							
1400.0	387.10	70.342	3.45							
1500.0	417.58	72780	3.28							
1600.0	448.06	75.219	3.10							
1700.0	478.54	77.657	292							
Top of jet $=1744.7$	492.16	78.747	2.85							
1797.7	508.32	79.158	3.38	315.51	Spillane Eq	quations				
1800.0	509.02	79.271	3.40	315.47	$\mathrm{V}_{\mathrm{s}}=(1 \mathrm{Vaj})^{2}$	+0.12F.i(z-z) ${ }^{2}$				
1900.0	539.50	84.147	3.97	314.12	a $a=0.16(z-z)$					
2000.0	569.98	89.024	4.29	313.37	$\theta_{0}=\theta_{s}(1+(1-1$	($\left.\left.\theta_{2} / \theta_{3}\right)\right)^{(N a r}$				
2100.0	600.46	93.901	4.50	31286						
2200.0	630.94	98.778	4.64	31249						
2400.0	691.90	108.531	4.79	311.96						
2600.0	752.86	118.285	4.86	311.60						
2800.0	813.22	128.039	4.87	311.33	Max<5.3 m					
3000.0	874.78	137.792	4.86	311.13						
3200.0	935.74	147.546	4.83	310.97						
34000	996.70	157.299	4.79	310.84						
3600.0	1057.66	167.053	4.74	310.73						
3800.0	1118.62	176.807	4.69	310.64						
4000.0	1779.58	186.560	4.64	310.57						
4200.0	1240.54	196.314	4.59	310.50						
4400.0	1301.50	206.067	4.54	310.45						
4600.0	1362.46	215.821	4.49	310.40						
4800.0	1423.42	225.575	4.44	310.35						
5000.0	1484.38	235.328	4.39	310.32						

