<table>
<thead>
<tr>
<th>Docket Number:</th>
<th>17-MISC-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>California Offshore Renewable Energy</td>
</tr>
<tr>
<td>TN #:</td>
<td>216316</td>
</tr>
<tr>
<td>Document Title:</td>
<td>Presentation - Offshore wind lease areas in California: criteria for site selection in the near term</td>
</tr>
<tr>
<td>Description:</td>
<td>By Martin Goff 3-3-17</td>
</tr>
<tr>
<td>Filer:</td>
<td>Misa Milliron</td>
</tr>
<tr>
<td>Organization:</td>
<td>Statoil</td>
</tr>
<tr>
<td>Submitter Role:</td>
<td>Public</td>
</tr>
<tr>
<td>Submission Date:</td>
<td>3/2/2017 8:37:27 AM</td>
</tr>
<tr>
<td>Docketed Date:</td>
<td>3/2/2017</td>
</tr>
</tbody>
</table>
Offshore wind lease areas in California: criteria for site selection in the near term

Martin Goff - Development Manager, Offshore Wind, Statoil
3rd March 2017
Offshore wind projects delivering up to 1100 MW

- **Sheringham Shoal**: In operation, 317 MW, 2012-
- **Dudgeon**: In construction, 402 MW, 2017
- **Arkona**: In construction, 385 MW, 2019
- **Dogger Bank**: Consented, 4 x 1200 MW, 2020-
- **New York**: In development, 1000 MW, 2025

Other Projects
- **Hywind Demo**: 2.3MW, 2009
- **Hywind Scotland 30MW**: 2017
- **Utility Scale Hywind**: 2020+

All capacity figures on 100% basis
Site selection criteria

- Safe to construct and operate
- Safe for other users
- Lowest environmental impacts and use conflicts
- Lowest technical challenges
- Acceptable wind, economics and Levelized Cost of Energy (LCOE)
- Grid connection and Power Purchase Agreement (PPA) opportunities
Northern California
- Very good wind resource, suitable water depths
- Smaller market, limited grid to other markets
- Potential for the longer term

Central California
- Good winds, close to markets
- Potential permitting challenges
- Potential for medium term

Southern California
- Good wind resource in places
- Close to the market and grid infrastructure
- Permitting opportunities in the right areas

Phased ‘zone appraisal’ approach
Environmental

- Ornithology
- Marine mammals
- Fish & shellfish
- Benthic ecology
- Marine ecology
- Marine protected areas, protected species
- Marine physical processes
- Marine sediment & water quality

Use conflicts

- Shipping & Navigation
- Military
- Recreational shipping, fishing, tourism, visual
- Commercial fisheries
- Oil & gas, aggregates, mining, renewables
- Aviation
- Tribes, cultural
- Radar

Hard constraints, technical

- Water depth
- Wind resource
- Distance from shore
- Geology,
- Wrecks, UXO, archaeology
- Cables, pipelines, installations

MarineCadastre data and mapping tool
Legend

Areas between 15km and 120km from land (8-65NM)

Legend

- Screened in – water depth 100-500m (330-1650ft)
- Screened out – size <50km2 (<19 miles2)
Protected species

Viewshed, tourism, recreation

Military, radar

Experiences from site selection and EIAs in Europe and US

Shipping & Navigation

Civilian Aviation

Protected areas
Technical Appraisal

Included, but not limited to:

- Wind resource (modelled)
- Export cable route:
 - Distance
 - Complexity
 - Landfall & grid connection
- Water depth:
 - Inter-array cables
 - Moorings
 - Installation complexity;
- Metocean conditions:
 - Installation
 - O&M
- Distance from landfall / grid connection:
 - O&M accessibility
 - Transmission losses
 - Transmission solutions
- Levelized Cost of Energy (LCOE)
 - Comparison of sites
 - Comparison on phased approach
Potential lease areas

-300 - -120
-500 - -300
-700 - -500
-1000 - -700

Wind Speed at 90m (NREL) m/s

1.875 - 8.0
8.1 - 8.2
8.3 - 8.4
8.6 - 8.7
8.8 - 8.9
9.1 - 9.2
9.3 - 9.4

Distance from Shore Nautical miles

0 - 5
5 - 10
10 - 15
15 - 20

Potential grid connection

Classification: Open

© Statoil ASA
Offshore Wind Lease Areas
California ‘near-term’
Martin Goff, Development Manager
Offshore Wind
Statoil

www.statoil.com

© Statoil ASA