<table>
<thead>
<tr>
<th>DOCKETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docket Number:</td>
</tr>
<tr>
<td>Project Title:</td>
</tr>
<tr>
<td>TN #:</td>
</tr>
<tr>
<td>Document Title:</td>
</tr>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Filer:</td>
</tr>
<tr>
<td>Organization:</td>
</tr>
<tr>
<td>Submitter Role:</td>
</tr>
<tr>
<td>Submission Date:</td>
</tr>
<tr>
<td>Docketed Date:</td>
</tr>
</tbody>
</table>
Utilizing Energy Storage as Non-Wires Alternatives

Alex Morris, Director of Policy & Regulatory Affairs

May 24, 2017
About CESA

The **California Energy Storage Alliance (CESA)** is a 501c(6) membership-based advocacy group committed to advancing the role of energy storage in the electric power sector through policy, education, outreach, and research. CESA was founded in January 2009 by Janice Lin and Don Liddell.

CESA’s mission is to make energy storage a mainstream energy resource in helping to advance a more affordable, clean, efficient, and reliable electric power system in California.
CESA Members

Board Members

General and Series A Members

Adara Power
Amber Kinetics
American Honda Motor
Bright Energy Storage
BrightSource Energy
Brookfield
Consolidated Edison
Customized Energy Solutions
Demand Energy
Doosan GridTech
Eagle Crest Energy
EDF Renewable Energy
ElectrIQ Power
eMotorWerks
Enerport
Energy Storage Systems
Geli
Green Charge Networks
Greensmith Energy
Gridscape Solutions
Gridtential Energy
Hitachi Chemical
IE Softworks
Johnson Controls
Lockheed Martin AES
Magnum CAES
Mercedes-Benz Energy
National Grid
NEC Energy Solutions
NEXTracker
NGK Insulators
NICE America Research
Ormat Technologies
OutBack Power
Parker Hannifin
Qnovo
Recurrent Energy
RES Americas
Sharp Electronics
Southwest Generation
Sovereign Energy
STOREME
Sumitomo Electric
Sunrun
Swell Energy
UniEnergy Technologies
Viridity Energy
Younicos

3
Key Benefits of Non-Wires Alternatives

- **Reduced environmental impact:**
 - May avoid infrastructure siting concerns faced by traditional wires solutions
 - Supports renewables integration through multiple-use applications

- **Quicker deployment:**
 - Designed and constructed relatively quickly compared to traditional wires solutions

- **Reduced financial risk through modular deployment:**
 - Developed incrementally as needs emerge or change
 - Improves transmission utilization while lowering energy/congestion costs (i.e., dilutes costs of the Transmission Access Charge) through multiple-use applications

- **Easier local siting and access:**
 - Provides reliability advantages by being sited closer to load
Example: Presidio, Texas

- Presidio, TX was reliant on a single, aging transmission line

- ERCOT and Texas PUC approved a 4-MW, 32-MWh battery to support power quality on a transmission line feeding Presidio:
 - Addressed voltage fluctuations affecting power quality
 - Allowed for maintenance on a new transmission line being built from Marfa to Presidio without loss of electric service
 - 8 hours of power during an outage

- Key takeaways:
 - Project took two years from commissioning to operations
 - TX PUC set a split-rate treatment
 - Transmission cost of service for reactive-power portion of battery
 - Separate wholesale transmission rate schedule for back-up service portion of battery
Transmission Wires Can Be Unavailable Too

Thank You!

Questions?

Alex Morris
Director of Policy & Regulatory Affairs
California Energy Storage Alliance (CESA)
amorris@storagealliance.org
www.storagealliance.org
Appendix
Energy Storage = FACTS plus Real Power Services

- FACTS = Flexible AC Transmission System
- FACTS are common for improving transmission power flows
- Energy Storage = FACTS with Real Power (because of 4 quadrant inverters)
- Energy Storage can provide the same FACTS service, constantly, without reducing real power capability (the state of charge)
- Short duration energy storage offers additional capability to FACTS when required:
 - Frequency response, increased voltage stability, increased reliability (particularly momentary outages), additional flexibility for line maintenance and switching
 - Longer duration storage will offer additional applications

FACTS Resource: https://library.e.abb.com/public/75362d2c1aa7f86783257e0c00478a6f/SVC%20A02-0100.pdf
Energy Storage plus FACTS/STATCOM Paper: https://www.hindawi.com/journals/ape/2012/676010/
Energy Storage plus FACTS/STATCOM Case Study: http://energystorage.org/energy-storage/case-studies/earning-revenue-multiple-value-streams-kaheawa-windfarm-dynamic-power