OCKETED	
Docket Number:	17-IEPR-10
Project Title:	Renewable Gas
TN #:	220149
Document Title:	Presentation noting some renewable gas RD&D topics of interest
Description:	By: Jack Brouwer, Ph.D.
Filer:	System
Organization:	University of California, Irvine/Jack Brouwer
Submitter Role:	Public Agency
Submission Date:	7/13/2017 4:44:32 PM
Docketed Date:	7/13/2017

Comment Received From: Jack Brouwer

Submitted On: 7/13/2017 Docket Number: 17-IEPR-10

Presentation noting some renewable gas RD&D topics of interest

The attached presentation contains excerpts of a presentation on Power-to-Gas and renewable hydrogen. The most important slide is the second slide, which summarizes some topics that are important to consider as research, development and demonstration (RD&D) topics that deserve some attention. The following slides show some examples of RD&D accomplishments related to these topics.

Additional submitted attachment is included below.

Evaluation of Renewable Hydrogen Power-to-Gas (P2G) in California

Renewable Hydrogen Production Workshop

<u>California Energy Commission – Sacramento</u>

Jack Brouwer, Ph.D.
Associate Director

January 30, 2017

P2G RD&D Topics of Interest

Some P2G Research, Development and Demonstration Topics

- 1. H₂ production dynamics by direct-DC connection to renewables
- 2. Hydrogen injection into existing natural gas distribution and/or transmission system infrastructure assess leaks, mixing dynamics
- 3. Evaluation of leakage (both H2, NG, & H2/NG) mitigation strategies
- 4. Evaluate and advance novel new high efficiency electrolysis technologies (e.g., solid oxide, molten carbonate)
- 5. Simulation and experimental evaluation of pipeline materials impacts (e.g., embrittlement, fatigue)
- 6. Simulation of P2G impacts in the grid and microgrids
- 7. End-use conversion of P2G gases (H2, NG, & H2/NG blends)
- 8. Economic analyses

P2G Accomplishment: Lab-Scale Electrolyzer Dynamics

HOGEN-RE proton exchange membrane electrolyzer

Performs best when hot (summer vs. winter)

P2G Accomplishment: Lab-Scale Electrolyzer Dynamics

HOGEN-RE proton exchange membrane electrolyzer

Hydrogen production dynamics (with and without clouds)

P2G Accomplishment: Hydrogen Pipeline Injection

H2 injection into existing natural gas infrastructure (low pressure)

NG, H2/NG mixtures, H2 leak at same rate 50 ▲ NG 45 ◆ 10% H2 • H2 40 Pressure (inH2O) 30 25 20 15 1 2 5 6 0 Day of Test

P2G Accomplishment: Leak Mitigation Evaluation

H2 injection into existing natural gas infrastructure (low pressure)

Copper epoxy applied (Ace Duraflow®)

■ H2 • 10% ▲ NG • H2 - Original ▲ NG - Original • 10% H2 - Original

P2G Accomplishment: Electrolysis Alternatives

Solid Oxide Electrolysis and Co-Electrolysis

Comparison to PEMFC (lower activation losses, higher ohmic losses)

P2G Accomplishment: Pipeline Materials Impacts

Simulation of H2 embrittlement and fatigue crack growth with UIUC

• Fatigue crack growth in 6" SoCalGas pipeline

0.188" wall thickness: (h = 0.188" = 4.8 mm)

P2G Accomplishment: UCI Microgrid Simulation

P2G could significantly increase renewable percentage at UCI

P2G Accomplishment: Large Electrolyzer Deployment

P2G Accomplishment: Large Scale Electrolyzer

Injection and combustion of H2/NG mixture in NGCC (400 psi line)

P2G Accomplishment: Large Scale Electrolyzer

Injection and combustion of H2/NG mixture in NGCC (400 psi line)

~0.24 volume % H2 in natural gas

P2G Accomplishment: Detailed Economic Analyses

Levelized Cost of Returned Energy (LCORE)

- Future Costs & Efficiencies
- 50% capacity factor for all equipment

Natural Gas Pipelines and Storage Facilities

