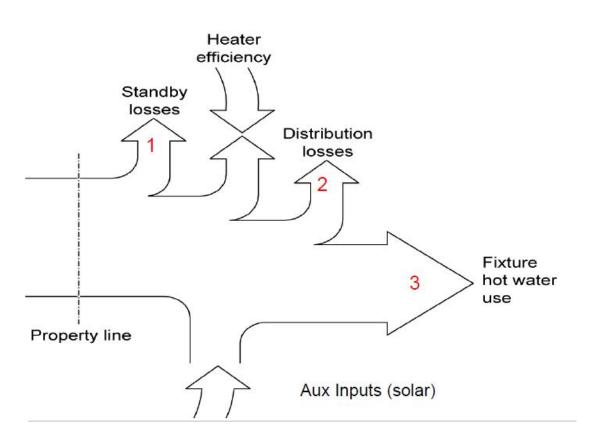
DOCKETED			
Docket Number:	17-BSTD-01		
Project Title:	2019 Building Energy Efficiency Standards PreRulemaking		
TN #:	217813		
Document Title:	Presentation - Compact Hot Water Distribution		
Description:	Acrobat version of the Compact Hot Water Distribution presentation made by Danny Tam at the 6-1-17 Staff Workshop.		
Filer:	Adrian Ownby		
Organization:	California Energy Commission		
Submitter Role:	Commission Staff		
Submission Date:	6/2/2017 10:47:25 AM		
Docketed Date:	6/2/2017		

2019 Building Energy Efficiency Standards Water Heating Proposals

Danny Tam
Building Standards Office
Efficiency Division

2019 Pre-rulemaking June 1, 2017

Compact Hot Water Distribution


Acknowledgements

Marc Hoeschele, Davis Energy Group

Peter Grant, Davis Energy Group

Water heating energy flow

- 1. 2016 gas inst. water heater prescriptive requirement reduced standby losses by ~40 therms/year.
- 2. 2017 CPC Pipe insulation requirement results in ~10% lower distribution losses.
- 3. Future Energy Commission showerhead & lavatories gpm requirements; increasing use of water efficient appliances and wait time

What's the Problem?

- Issues impacting distribution system performance
 - Typical architectural design
 - Non-existent plumbing design
 - PEX can lead to sprawling layouts
 - Wait times impacted by:
 - Lower flow rate devices
 - Pipe sizing conservativism
- Recirculation is a solution for water waste, but not energy

Advantages of Compact Hot Water Design

- Compact hot water design reduces the inefficiencies of conventional hot water distribution system designs
- Issue:
 - Distribution system energy loss

Advantages of Compact Hot Water Design

- Compact hot water design reduces the inefficiencies of conventional hot water distribution system designs
- Issue:
 - Distribution system energy loss → Reduced

Advantages of Compact Hot Water

- Compact hot water design reduces the inefficiencies of conventional hot water distribution system designs
- Issue:
 - Distribution system energy loss → Reduced
 - Wasted water

Advantages of Compact Hot Water Design

- Compact hot water design reduces the inefficiencies of conventional hot water distribution system designs
- Issue:
 - Distribution system energy loss → Reduced
 - Wasted water → Reduced

Advantages of Compact Hot Water Design

- Compact hot water design reduces the inefficiencies of conventional hot water distribution system designs
- Issue:
 - Distribution system energy loss → Reduced
 - Wasted water → Reduced
 - Wait time → Reduced, but shower singing increased

Typical Distribution System Layout

More Compact Distribution Layout

Measure Goal

- Encourage builders to bring the water heater in closer proximity to all use points
 - Focus on Master Bath and Kitchen as primary sources of hot water draw events and hot water load

Relevant Code History

- Compact design is an existing 2016 compliance option
 - HERS-Verified compact hot water design credit
 - Uptake close to zero (CalCerts registry data)
- Other Relevant Requirements/Specifications
 - EPA WaterSense®
 - 0.5 gallon between hot water source and any hot water fixture
 - 2016 CalGreen
 - Voluntary measures Appendix A4 (demand recirculation)
 - 2015 IAPMO Green Plumbing Supplement
 - Maximum volume between <u>source of hot water</u> and use point
 - IECC 2018: NRDC proposal for compact (wasn't accepted)
 - Maximum length (prescriptive), with performance credit for > compactness

Proposed Code Changes

Proposed Code Change

- Revision to existing <u>compliance option</u>
- Newly constructed single family only
- Two tiered credit strategy
 - Basic: no HERS verification required
 - Expanded: greater credit, with limited HERS verification

Proposed Code Change

Mandatory, Prescriptive, Addition and Alteration Requirements

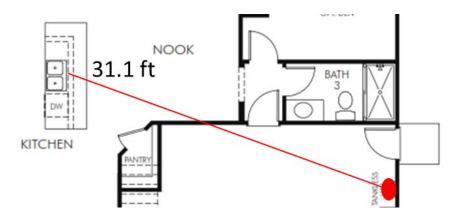
- No change

Reference Appendices

 Updates to existing Compact Hot Water Distribution System Credit

ACM Reference Manual

New Compactness Factor to Distribution loss multiplier equation


Why Are We Proposing This Code Change

- Additional option to achieve EDR target
- Achieve energy (and water) savings
- Provide builders with flexible means of compliance
- Promote improved plumbing practices
 - Homeowners benefit (wait time, less waste)
 - Builders benefit (homeowner satisfaction)

Basics of Proposed Compact Design Measure

- Two versions: Basic Credit, Expanded Credit
 - Both are based on plan view calculation

- Comparison between two calculated values
 - Weighted Distance (WD)
 - Qualification Distance (QD)

Basics of Measure

- WD & QD equations vary with:
 - Non-recirculation or recirculation (both WD, QD)
 - Number of stories (QD)
 - Conditioned floor area (QD)
- Adds Compactness Factor (CF) to distribution loss equations in the ACM
 - CF = 1.0 for non-compact system (default)
 - CF = 0.7 for Basic Credit
 - CF < 0.7 for Expanded Credit

 $\overline{DLM_k} = 1 + (\overline{SDLM_k} - 1) * DSM_k * CF$

Equation 5

Weighted Distance (WD) Calculation

- $WD = x * d_{MasterBath} + y * d_{Kitchen} + z * d_{FurthestFixture}$
 - d_{MasterBath} = Distance from water heater to furthest master bathroom fixture
 - d_{Kitchen} = Distance from water heater to furthest fixture in kitchen
 - d_{FurthestFixture} = Distance from water heater to furthest fixture in house

Distribution System	X	y	Z
Non-Recirculating	0.4	0.4	0.2
Recirculating	0	0	1

Qualification Distance Criteria Development – 1 story, Non-Recirculating

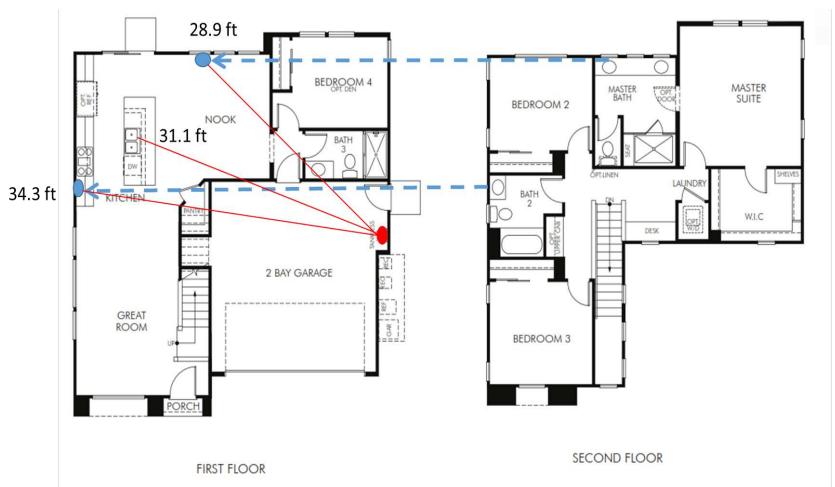
- 1 story, Exterior
- 1 story, Central

QualificationLine

...... Linear (1 story, Exterior) Linear (1 story, Central)

Basic Credit

- Qualification:
 - Weighted Distance < Qualification Distance
- Reward
 - CF = 0.7



Expanded Credit

- Qualifications:
 - 1. Weighted Distance < Qualification Distance
 - HERS verification steps:
 - Less than 8' of 1" diameter pipe (and no larger piping)
 - No hot water piping allowed in attic in two and three story homes unless water heater is located in the attic
 - Eligible recirculating systems must be HERS-Verified Demand Recirculation: Manual Control conforming to RA4.4.17.
- If meeting 1 & 2, the Expanded Credit criteria is satisfied
 - And, CF = 0.3 + 0.4 * WD/QD

Base Case Example: $1814 \text{ ft}^2 \text{ two-story}$, Qualification Distance = 23.2

Weighted Distance = 0.4 * 28.9 ft + 0.4 * 31.1 ft + 0.2 * 34.3 ft = 30.9 ft Fails Basic Credit

Compact Example: 1814 ft² two-story, Qualification Distance = 23.2 ft

Weighted Distance = 0.4 * 12.9 ft + 0.4 * 11.8 ft + 0.2 * 16.1 ft = 13.1 ft

Meets Basic Credit

Expanded Credit Compact Example: 1814 ft² two-story, Qualification Distance = 23.2 ft

Weighted Distance = 0.4 * 12.9 ft + 0.4 * 11.8 ft + 0.2 * 16.1 ft = 13.1 ft

$$CF = 0.3 + 0.4 * WD/QD$$

= 0.3 + 0.4 * (13.1/23.2)
= 0.53

Technical and Market Barriers

CALIFORNIA ENERGY COMMISSION

- Centrally locating water heater is a challenge
 - Increased venting distance/costs
 - Impacts garage space
- Possible solutions:
 - Condensing water heater (cheaper plastic vent pipe)
 - External wall (non-garage) mounting close to key use points
 - Attic

Technical and Market Barriers

- Title 24 Consultant Builder Plumber communication
 - The consultant specs Expanded Credit, but plumber does not know
 - Plumber installs non-compliant system & fails HERS verification
- Solution → Clear direction to plumber
 - Eligibility criteria on plans
 - Plumber training

Technical and Market Barriers

- Piping required between floors for Expanded Credit
 - Open web floor trusses not standard
 - Added labor when dealing with I-joists
- Solution → Builder can default to Basic Credit

Compliance and Enforcement

Compliance Process

Architect

- Provide Weighted Distance vectors on floor plan for easier plan review
- For Expanded Credit, clearly specify eligibility criteria on plumbing plan

Plan Reviewer

- Verifies Weighted Distance qualification is met.
- For basic credit, no additional requirement beyond this step

HERS Rater (Expanded Credit Only)

- Visual inspection of expanded credit requirements:
 - 1) < 8' of 1" diameter pipe 2) no hot water piping in attic in > two stories homes unless water heater is located in the attic 3) Any recirculation system must be HERS-Verified Demand Recirculation with Manual Control

Energy and Water Impacts

Definition of Baseline and Proposed Conditions

- Baseline Conditions
- Minimally compliant with 2016 Standards
- List key assumptions
 - Develop standard water heating budget for house sizes ranging from 1,200 to 4,000 ft², assuming <u>all hot</u> water pipes insulated using CBECC-Res
 - CBECC water heating model assumes hot water loads vary with number of bedrooms

- Proposed Conditions
 - Simulate compact hot water distribution Basic Credit (CF = 0.7)

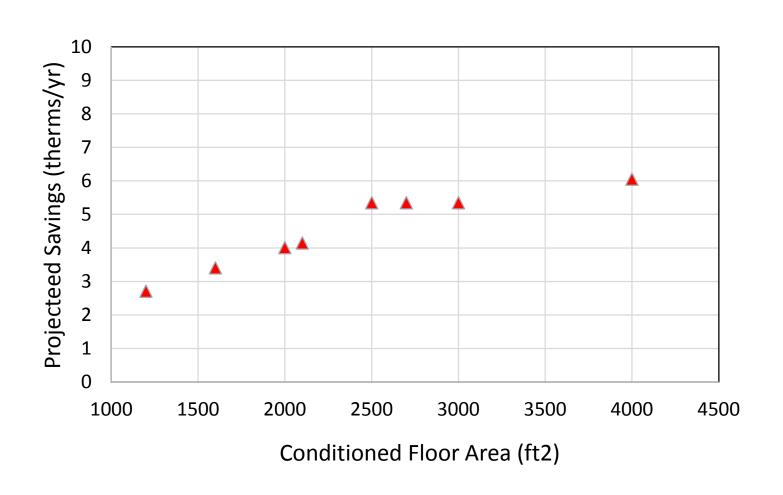

Per-unit Energy Impacts

Table 5: First-Year Energy Impacts per 2,430 Square Feet Single Family Prototype- New Construction

Climate Zone	Electricity Savings (kWh/yr)	Peak Electricity Demand Reductions (kW)	Natural Gas Savings (therms/yr)	TDV Energy Savings (TDV kBtu/yr)
1	0	0	6.0	1,205
2	0	0	5.4	1,079
3	0	0	5.4	1,080
4	0	0	5.1	1,028
5	0	0	5.5	1,107
6	0	0	4.9	982
7	0	0	4.8	948
8	0	0	4.6	938
9	0	0	4.6	938
10	0	0	4.6	932
11	0	0	4.7	954
12	0	0	5.0	1,002
13	0	0	4.6	934
14	0	0	4.8	972
15	0	0	3.3	686
16	0	0	6.0	1,213

Projected Savings as a Function of House Size

Estimated Water Savings Impact

- Water-use impacts are highly dependent upon behavior and occupancy
- Can only assess with detailed, short time step simulation models
- Building America report looked at performance in six U.S. climates
- Based on findings, estimating typical water savings of 962 gallons/year for ~2,000 ft² home

