<table>
<thead>
<tr>
<th>DOCKETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Docket Number: 16-TRAN-01</td>
</tr>
<tr>
<td>Project Title: SB 350 Transportation Electrification (Publicly Owned Utilities)</td>
</tr>
<tr>
<td>TN #: 214657</td>
</tr>
<tr>
<td>Document Title: Presentation - Trends of Autonomous Distribution System Integrated Control for Plug In Electric Vehicles</td>
</tr>
<tr>
<td>Description: By John H. Holmes, 12/7/16</td>
</tr>
<tr>
<td>Filer: Tami Haas</td>
</tr>
<tr>
<td>Organization: UC San Diego Research Affairs</td>
</tr>
<tr>
<td>Submitter Role: Public Agency</td>
</tr>
<tr>
<td>Submission Date: 12/7/2016 8:42:48 AM</td>
</tr>
<tr>
<td>Docketed Date: 12/7/2016</td>
</tr>
</tbody>
</table>
Trends of Autonomous Distribution System Integrated Control for Plug In Electric Vehicles

John H. Holmes
Industry Alliance Officer

CEC IEC 15118 Workshop
December 7, 2016
California’s future electricity system will consist of near zero net energy buildings, highly efficient businesses, low-carbon generation, sustainable bioenergy systems, more localized generation, and electrification of transportation, supported by a highly flexible and robust distribution and transmission infrastructure.

– California Energy Commission, EPIC Funding Vision
“The regulator has the job of strengthening competition and ensuring that this does not compromise security of supply and sustainability. To act even-handedly in the interests of all market participants, regulators must be politically and financially independent.”

[E-Control, 2015]
The utility of the future
Flexibility, adaptability

Emerging technology market share will be significant by 2025

The grid will be the platform for the future electric system

Energy Efficiency is the most cost-effective alternative energy source

Grid complexity will increase

The electricity business model will include customized consumer services

Utility scale solar will become more important

The electric system will include central and distributed generation

Energy storage will be a part of system design

Microgrid operations will complement and compete with the grid

Some residential consumers will also become producers of energy; C&I markets for DER will have the greatest penetration in Texas

Picture Source: Trilliant
We have a clearly defined vision of the project

- We present the harmonized European approach for the future DSO electricity smart grid planning with an optimal EV integration, economically and technically justified, based on safe grid operation and DER balancing.
- The partners will work together taking a collaborative approach to benefit from each other’s knowledge and expertise.
Electro mobility will play a major role in the future Smart Grid activities.
Comprehensive ICT architecture proposal
Philosophy of ISO/IEC 15118

- Use Control Pilot (CP) and Pulse Width Modulation (PWM) of IEC 61851-1 (similar to SAE J1772) for “safety”
- Support of several services
- Authentication “External Identification Means” (EIM) and “Plug ’nd Charge” (PnC)
 - Handling of digital certificates and electronic signatures
- Charging AC (Alternating Current) and DC (Direct Current)
 - Respecting customer requirements
 - Allows respecting of availability of capacity and power at (distribution) grid
 - Allows respecting of price tables from energy reseller
 - (Re)Negotiation on new capacity and/or price profile table
- Value Added Services
- Respect security and privacy
- Provide enough bandwidth by using PLC technology based on HomePlug GreenPHY
- EV acts as a client, EVSE acts as a server
Smart electric cars, smart grids and charging stations will use a single data standard.

Advantages of the bidirectional communications protocol ISO/IEC 15118

<table>
<thead>
<tr>
<th>Simplicity</th>
<th>Grid friendliness</th>
<th>International importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Automatic authentication at charging points</td>
<td>> Active load management through EV feedback</td>
<td>> European and American acceptance of the deployment for AC charging</td>
</tr>
<tr>
<td>> Automatic contract handling operation (new contract, change of contract)</td>
<td>> Time-controlled charging possible</td>
<td>> Worldwide acceptance for deployment for combined charging system (CCS) DC</td>
</tr>
<tr>
<td>> Quick and easy foreign authentication (⇒ Enabling of Europe-wide e-roaming)</td>
<td>> Tariff-controlled charging possible</td>
<td>> According to ACEA report of the OEM from 2017 integrated into all EVs</td>
</tr>
<tr>
<td>> High security against data manipulation</td>
<td>> Integration of renewable energy</td>
<td></td>
</tr>
</tbody>
</table>
Smart Charging combines security of energy supply and customer convenience.

Effects of EV's and charging scenarios on the load curve:

- Smart Charging limits the effects of additional loads on the distribution grid caused by EV's.
- Overload situations can be avoided up to a high market share of EV's (~50%).
- Smart Charging offers the possibility to use the fluctuating generation of renewables.
- No loss of convenience for the customer as the charging time is derived from customer preferences.

Maximum dimensions of transformer station.
With target-oriented Management Grid Load can be reduced temporarily

With charge management a rate of 100% EV per household will be possible.

ISO/IEC V2G CI PT structure

Layer

7 Application
- PT 1: Use-cases
 Sven Jundel (RWE)
- PT 2: Messages, Sequences & Timing
 Stephan Voit (RWE)

6 Presentation

5 Session
- PT 3: Protocols
 Andreas Heinrich, (Daimler)

4 Transport

3 Network

2 Data Link
- PT 4: Communication technologies
 Hervé Szychter (Renault)

1 Physical

ISO/IEC Vehicle to Grid – Communication Interface

TC69
Paul Bertrand (for EDF)

ISO

TC22/SC3/JWG1
Michael Schwaiger (BMW)
Secretary: Eric Wern (VDA)

PT 5: security analysis and measures
 Sebastian Kaluza (BMW)

PT 6: Conformance Test
 Jens Schmutzler (TU Dortmund)

Wireless Communication is developed within Project Team (PT) 7.
Structure of Norm ISO/IEC 15118 „Road vehicles — Vehicle to grid communication interface“

> **Part 1**: General information and use-case definition (available as *International Standard* (IS) since April 2013)
> **Part 2**: Network and application protocol requirements (available as IS within next weeks)
> **Part 3**: Physical and data link layer requirements (available as *Final Draft International Standard* (FDIS) or *Committee Draft for Vote* (CDV) within next weeks)
> **Part 4**: Network and application protocol conformance test (*CD available since 02/2014*)
> **Part 5**: Physical layer and data link layer conformance test (*CD available since 02/2014*)
> **Part 6**: General information and use-case definition for wireless communication
> **Part 7**: Network and application protocol requirements for wireless communication
> **Part 8**: Physical layer and data link layer requirements for wireless communication

Availability: Paper or PDF versions of DIS, FDIS, CDV and IS can be bought at ISO (www.iso.org) and IEC (www.iec.ch). CD versions are only distributed within Joint Working Group.
V2X: COMMUNICATION PRINCIPLE BASED ON ISO/IEC 15118

Customer Data:
- End_of_Charge
- Requested_Energy (kWh)
- Charge_Type (eco, ...)
- Discharge_Auth

Physical limits / Grid Constraints:
- VMax
- IMax
- Imin
- Slopes
- Energy_for_discharge
- temperature
- Tariff_Table (€, gCO2, %En)
- Power_Limit_Table
- Discharge_selected
- Single_3P_Threshold
- Specific (derived from RfG NC)

Charging Profile:

Discharging Request:
- Charge_DischargeReq(I, ...)
- ChargeReq(I, U, P)

Dis- / Charge Ctrl:
- Charged/Discharged_kWh

End of Charge:
- Charged_kWh
- Discharged_kWh

Possible Re-negotiation
Recurrent Loop
5 – V2X: CONCLUSIONS

TECHNICAL POINT OF VIEW

- Communication between Charge Spot and EV could be ISO/IEC 15118 … but
 - IMPROVEMENT REQUIRED FOR CHARGE ENVIRONMENT DISCOVERY (THRESHOLD BETWEEN SINGLE AND 3-PHASE, RULES FOR DISCHARGING, …)
 - QUESTION IN ORDER TO ADD 61850 & CIM DATA MODEL DEDICATED FOR GRID SERVICES
 - SERVICE PERFORMANCES ARE IMPLEMENTATION DEPENDENT

- Communication interface with HEMS to be standardized
 - LOTS OF PRIVATE PROTOCOLS
 - EXISTING PROTOCOLS NOT DEDICATED FOR "HARD" REAL TIME
 - PERFORMANCES ARE IMPLEMENTATION DEPENDENT
 - ISO/IEC 15118 / HOME PROTOCOL GATEWAY TO BE CAREFULLY IMPLEMENTED

- EMS strategies
 - INTEROPERABILITY REQUIRED

- EV charge/discharge to be standardized
 - IMPLEMENTATION OF V2X IS OFTEN BASED ON STATE MACHINE WHICH PREVENT TO OFFER QUICK RESPONSE TIME AND TO BE ACCURATE AROUND 0A.
Comprehensive Orchestration of Resources
Supply, Storage & Demand

John H. Holmes
Industry Alliance Officer
jhholmes@ucsd.edu

UCSD Innovation & Commercialization
http://innovation.ucsd.edu

UCSD Center for Energy Research
http://cer.ucsd.edu/