DOCKETED		
Docket Number:	16-TRAN-01	
Project Title:	SB 350 Transportation Electrification (Publicly Owned Utilities)	
TN #:	213899	
Document Title:	Presentation - Key Considerations for Incorporating Transport Electrification into IRP by Nancy Ryan	
Description:	October 5, 2016 Workshop	
Filer:	Patty Paul	
Organization:	Energy+Environmental Economics	
Submitter Role:	Public	
Submission Date:	10/5/2016 9:06:30 AM	
Docketed Date:	10/5/2016	

Key Considerations for
 Incorporating Transport
 Electrification into IRP

California Energy Commission

October 5, 2016

Nancy Ryan, Partner

- San Francisco-based consultancy with 40 professionals focusing on electricity sector economics, regulation, planning and technical analysis
- Leading consultant to California agencies governing renewables, energy efficiency, demand response, and distributed generation programs
- Consultant to many of the world's largest utilities and leading renewable developers
- Our experience has placed us at the nexus of planning, policy and markets

Multiple scenarios are on a consistent trajectory to meet CA's 2050 GHG goal

- + Timing scenarios vary the pace of decarbonization: 2030 GHG emissions range from 26-38% below 1990 level
- **+ Technology scenarios** (not shown) assess impacts and interactions for specific technologies

Decarbonizing CA's economy depends on four energy transitions

1. Efficiency and Conservation

2. Fuel Switching

Share of electricity &

H₂ in total final energy

Energy use per capita (MMBtu/person)

3. Decarbonize electricity

4. Decarbonize fuels (liquid & gas)

Emissions intensity

Emissions intensity (tCO2e/MWh)

4

Fuel switching drives rapid growth in electric generation after 2030

- + Energy efficiency offsets impact of electrification through 2030
- Beyond 2030 new loads offer potential for flexibility to help integrate solar and wind generation

California policy is driving significant renewable adoption

- + Gov. Brown's GHG goals: 40% reduction in economy-wide emissions, relative to 1990 levels, to be accomplished with:
- The Governor's Conference
 XTREME CLIMATION OF THE CALIFORNIAS IN THE C

- 50% renewable electricity
- Doubling of energy efficiency savings in existing buildings
- Up to 50% reduction in petroleum use in cars and trucks
- Net energy metering decision will drive significantly more adoption of rooftop PV

SB350 renewable energy target probably too low to meet 2030 GHG goal

Renewables account for 50-60% of annual energy use by 2030

- + Integration solutions are needed in all high renewables cases:
 - Regional coordination, renewable diversity, flexible loads, more flexible therma fleet, curtailment energy storage, flexible fuel production for ZEVs

Renewable Needs to Meet 50%

+ In 2015, California is achieving ≈25% RPS

- Some resources out of state
- California resources will need to double by 2030 to reach a 50% RPS

Source: CPUC RPS Calculator (v.6.1)

In-state resource potential is largely solar

+ "Bucket 1" resources must be 75% of RPS portfolio by 2020

- Must interconnect to or be dynamically scheduled to a California BA
- Applies to LSEs, CCAs

+ Developable in-state potential:

Geothermal: 1800 MW

Wind: < 3000 MW

Solar: 100,000+ MW

Current policy driving robust growth in distributed solar

- Recent CPUC decision on NEM successor tariff ensures a significant rooftop solar market in California
- Future adoption is highly uncertain, but most projections suggest <u>10-20 GW</u> of customer PV by 2025

Predicted Growth of Customer-Adopted Solar PV

40 GW of solar expected in California by 2030

- Unless procurement practices are changed, total solar installations in IOU service areas could reach 35-39 GW by 2030
 - 15-20 GW utility scale
 - 15-20 GW customer-owned
 - Additional 2-5 GW from muni service areas (SMUD, LADWP)
- + Non-solar renewables will add another 15-20 GW

California (CAISO) Installed **Solar PV Capacity**

Solar generation is already suppressing market prices

 Rapid increase in solar buildout has clearly begun to suppress daytime market prices—but negative pricing has not yet been observed in the day-ahead market

Negative prices observed in real-time market

Negative prices have been observed in the real-time market in 2015

NP-15 Real Time Prices

SP-15 Real Time Prices

- Negative prices seen more frequently in spring
- Negative price magnitudes and frequency are higher in SP-15
- Day ahead markets have still not experienced negative prices
- We anticipate the real time and day ahead markets will both have considerable number of hours with negative prices with increasing solar

Integration solutions are needed in all high renewables scenarios

+ Increased regional coordination

 Make best use of latent flexibility in current system

+ Renewable resource diversity

 Reduces overgeneration and need for flexible resources

+ Flexible loads

 Shifting loads from one time period to another, sometimes on short notice

+ Flexible generation

 Need generation that is fast ramping, starts quickly, and has min. gen. flexibility

+ Energy storage

Deep-draw (diurnal) storage is important

ZEV pathways require different electricity infrastructure

(BEVs)

Zero Emissions Vehicles

In Straight Line scenario flexible grid electrolysis for hydrogen FCVs balances renewables on the grid

New Infrastructure

Electric vehicle charging

load: 7,000 MW

Flexible grid electrolysis:

9,000 MW

H₂ fueling stations

No new energy storage

(new vehicle sales)

Mix of fuels cell (FCVs) and

battery electric vehicles

Focus on BEVs if FCVs don't materialize

OR

In High BEV scenario longduration energy storage provides bulk of renewable balancing services for the grid **Electric vehicle charging**

load: 20,000 MW

New 4-8 hr energy storage:

5,000 MW

No grid electrolysis
No H2 fueling stations

Thank You!

Energy and Environmental Economics, Inc. (E3)
101 Montgomery Street, Suite 1600
San Francisco, CA 94104
Tel 415-391-5100
www.ethree.com

Nancy Ryan, Partner (nancy@ethree.com)

E3's "Pocket Guide" to Renewable Integration Solutions

	Integration solution	Findings
Net benefits even w/o renewables	Regional coordination	More efficient dispatch and reduced curtailment
Low cost solutions with potentially large benefits	Time of use rates	Shifts energy consumption toward daylight hours
	Subhourly renewable dispatch	Allows system to operate with fewer thermal resources during overgeneration events
	Renewable portfolio diversity	Avoids curtailment by spreading renewable production over more hours of the year
Costs and benefits should be evaluated on specific project or program basis	Flexible loads Advanced DR	Shifts energy consumption toward hours with overgeneration, but cost and potential are unknown
	Additional storage	Reduces curtailment but requires significant investment
	Gas retrofits	Makes existing resources more flexible at a low cost
	New flexible gas resources	Provides limited dispatch flexibility at a high cost
Valuable, though not as much for integration	Energy efficiency	Provides significant cost and GHG savings but may not reduce curtailment
	Conventional demand response	Provides cost savings but does not significantly reduce curtailment