DOCKETED

	—
Docket Number:	16-OIR-04
Project Title:	Integrated Resource Plans (Publicly Owned Utilities)
TN #:	214845
Document Title:	Presentation - E3 Resource Planning Under High Renewable Penetrations By: Nick Schlag
Description:	December 13, 2016
Filer:	Le-Huy Nguyen
Organization:	Energy+Environmental Economics (E3)
Submitter Role:	Public
Submission Date:	12/16/2016 3:15:20 PM
Docketed Date:	12/16/2016

Energy+Environmental Economics

Resource Planning Under High Renewable Penetrations

California Energy Commission IRP Workshop

December 13, 2016

Nick Schlag, Sr. Managing Consultant

- San Francisco-based consultancy with 40+ professionals focusing on electricity sector economics, regulation, planning and technical analysis
- Leading consultant to California agencies governing renewables, energy efficiency, demand response, and distributed generation programs
- Consultant to many of the world's largest utilities and leading renewable developers
- Our experience has placed us at the nexus of planning, policy and markets

Multiple Scenarios Are on a Consistent Trajectory to Meet 2050 GHG Goal

to Early Deployment scenario in 2030

Renewables Are the Best Option to Decarbonize Electricity

- Low-carbon electricity is primarily provided by solar and wind resources, natural gas generation continues to provide energy when solar and wind are not available
- Electric loads increase significantly between 2030 2050 due to fuel switching in buildings, industry & transportation

Generating capacity by fuel type

Annual Generation by fuel type

Energy+Environmental Economics

Energy+Environmental Economics

WHAT DOES A 50+% RPS LOOK LIKE FOR CALIFORNIA?

50+% RPS is a New Challenge

 California does not yet have operating experience at 33% RPS

Few other large countries or states have achieved an equivalent RPS at or above 30%:

	6
bumps in the road	
50+% RPS is achievable but the	re may be some
 Assisted by interconnections with Germany 8 	& Norway
• Denmark: >40% wind in 2014	
 26% wind, 1% solar 	
 Portugal: 35% renewables in 2014 	
 22% wind, 6% solar 	
• Spain: 31% renewables in 2014	
• 10% wind, 7% solar	
• Germany: 28% renewables in 2014	

+

- **Renewables Are Cost-Competitive With Conventional Resources**
- + Cost of solar and wind in 2016: \$40-60/MWh
- + Cost of gas combined-cycle plant: \$50-70/MWh
- Cost of wind and solar continues to decline +

Note: costs include effect of state and federal tax incentives

In-state Resource Potential is Largely Solar

- New resources needed for 50% RPS:
 - 15,000 MW

+ Developable potential:

- Geothermal: 1,800 MW
- Wind: < 3,000 MW
- Solar: 100,000+ MW

Principal Challenge at 50+% RPS is Solar-Driven Oversupply

- Studies show that the potential for overgeneration becomes significant at higher renewable penetrations
- Solar energy production is concentrated during relatively few hours of the year
- California will need to find ways to use, export or store surplus renewable energy

Oversupply Challenge Grows Rapidly at Higher Penetrations

- Significant increase in solar PV installations under current policy
 - 15-20 GW for RPS
 - 12-21 GW of rooftops under NEM 2.0
 - 15-20 GW of wind and geothermal
- Curtailment of wind and solar will become commonplace

Overgeneration Statistics	33% RPS	40% RPS	50% RPS, Large Solar	• • • • •
Total Overgeneration (GWh/yr.)	190	2,000	12,000	
% of hours with overgeneration	1.6%	8.6%	23%	
% of available RPS energy	0.2%	1.8%	8.9%	
Marginal overgeneration for Solar PV	5%	26%	65%	10

Many Potential Integration Solutions Exist

- Increased regional coordination
 - Energy Imbalance Market and Regional ISO

+ Renewable resource diversity

 Reduces overgeneration and need for flexible resources

+ Flexible loads

 Shifting loads from one time period to another, sometimes on short notice

+ Flexible generation

 Need generation that is fast ramping, starts quickly, and has min. gen. flexibility

+ Energy storage

• Pumped hydro, batteries, compressed air

Optimal Solution Balances Non-Renewable Solutions with Overbuild

Energy+Environmental Economics

12

Integrated Planning is Needed to Balance Renewables & Solutions

- Balancing the costs of renewable overbuild and integration solutions is a complex multidimensional optimization problem
 - Complex interactive effects
 - Requires sophisticated model that considers both operations and investment costs
- E3's <u>RESOLVE</u> model uses linear programming to solve this problem
 - Used in CAISO's SB350 study
 - Currently in use in CPUC's IRP proceeding

Integration Solutions

13

 Governor Brown's aggressive goals require large quantities of zero-carbon electricity

 Modeling suggests that 50% renewables is the minimum requirement to meet 40% GHG reductions by 2030

+ Integration challenges are significant above 40%

- Portfolio diversity and regional coordination are key solutions
- It is possible to achieve 50-60% renewables at a reasonable cost
 - State policymakers must ensure timely implementation of renewable integration solutions

(\mathbf{B})	Decarbonization Pro	Integration & jects
+	Investigating a Higher Renewables Po California	ortfolio Standard in
	Clients: PG&E, SCE, SDG&E, LADWP, SMUI	D
	Completed: January 2014	
+	PATHWAYS: Long-Term Greenhouse C	Bas Reduction Scenarios
	Clients: California state agencies	
	Completed: April 2015	
+	Senate Bill 350 Study: The Impacts of Power Market on California (w/ The Br Environmental Group & BEAR Inc.)	f a Regional ISO-Operated attle Group, Aspen
	Client: CAISO	
	Completed: July 2016	
+	CPUC RPS Program & IRP Implementa	ation Support
	Client: CPUC	
	Ongoing	
Energy+En	nvironmental Economics	15

Energy+Environmental Economics

Thank You!

Energy and Environmental Economics, Inc. (E3) 101 Montgomery Street, Suite 1600 San Francisco, CA 94104 Tel 415-391-5100 Web http://www.ethree.com

Nick Schlag, Sr. Managing Consultant (nick@ethree.com)