DOCKETED				
Docket Number:	16-OIR-03			
Project Title:	Energy Data Collection			
TN #:	214501			
Document Title:	Nov 16 Presentation Energy Efficiency Data Needs			
Description:	Presentation during November 16 workshop by Martha Brook on the Energy Commission's data needs to evaluate progress in reaching energy efficiency goals			
Filer:	Andrea Gough			
Organization:	California Energy Commission			
Submitter Role:	Energy Commission			
Submission Date:	11/16/2016 9:14:35 AM			
Docketed Date:	11/16/2016			

Title-20 Data Collection Workshop Energy Efficiency Data Needs

Martha Brook, P.E.
California Energy Commission

November 16, 2016

Reduced Energy Consumption by Doubling Energy Savings

Reduction in Building Energy Consumption per Capita

Existing Building EE Action Plan

- Current efficiency savings trajectory is insufficient to achieve CA's clean energy and emissions reduction goals
 - SB 350 (DeLeon, 2015) re-emphasizes aggressive energy savings goals
- Efficiency efforts will be tracked and reported
 - Integrated Energy Policy Reports- every year
 - EBEE Action Plan updates every 3 years
- Unlocking EE potential of existing buildings requires market focused solutions
 - Data analytics to support market decisions

Efficiency Program Data Needs

- Policy Development, Implementation and Tracking
 - Macro consumption modeling
 - Uncertainty analysis
 - Energy use & load shapes mapped to buildings

- Consumer & Market Decision Support
 - Energy use distributions
 - Load shape distributions

Macro Consumption Modeling

- Will be used to estimate the impacts of efficiency policies across the state, using:
 - Consumption (GWh, Mtherm)
 - Weather, energy prices, demographics
 - Building stock characteristics
 - Efficiency program descriptors
- Typically, regression analysis is used:

```
\begin{split} &\ln(e_{it}) = \gamma_e ln(p_{e,it}) + \gamma_g ln(p_{g,it}) + \beta ln(I_{it}) + \omega_h ln(HDD_{it}) + \omega_c ln(CDD_{it}) + \Sigma_{k=0}{}^K \delta_k EE_{it\text{-}k} + \\ &\Sigma_{m=1}{}^M \eta_m \ln(NC_{mit}) + \tau(TimeTrend_t) + \lambda_i + \mu_{it} \end{split} \tag{Equation 1}
```

See pg. 7, Preliminary Findings Memo, The CADMUS Group, Inc., August 2012 – for the CPUC

Macro Consumption Modeling

Table 5. IOU Energy-Efficiency Program Savings and Cost of Conserved Energy Estimates

	2005	2006	2007	2008	2009	2010		
Panel A: Inputs								
Consumption (GWh)		193,263	195,195	198,777	190,465	186,207		
Energy-efficiency program expenditures (\$)		307,405,693	350,768,323	339,355,140	676,311,064	704,521,516		
Expenditures per capita (\$)		11	13	12	24	25		
Population (estimate)		27,332,409	27,648,206	27,963,216	28,197,531	28,448,916		
Panel B: Savings Estimates								
Model predicted savings from current expenditures (GWh)	1,790	1,087	1,238	1,206	2,284	2,306		
Model predicted savings from one-year lag expenditures (GWh)		2,823	1,671	1,920	1,765	3,409		
Model predicted savings from two-year lag expenditures (GWh)			7,138	4,261	4,620	4,331		
Model predicted savings from three-year lag expenditures (GWh)				442	249	276		
Model predicted total savings from current and three previous year expenditures (GWh)				7,830	8,919	10,321		
Panel C: Percent Savings								
Model predicted savings from current year expenditures as % of current consumption		0.6%	0.6%	0.6%	1.2%	1.2%		
Model predicted savings from one-year lag expenditures as % of current consumption		1.5%	0.9%	1.0%	0.9%	1.8%		
Model predicted savings from two-year lag expenditures as % of current consumption			3.6%	2.1%	2.4%	2.3%		
Model predicted savings from three-year lag expenditures as % of current consumption				0.2%	0.1%	0.1%		
Model predicted total savings from current and three previous year expenditures as a								
% of current consumption				3.9%	4.7%	5.5%		
Panel D: Cost of Conserved Energy								
Model predicted cost per kWh saved from current expenditures	\$0.290	\$0.283	\$0.283	\$0.281	\$0.296	\$0.306		
Model predicted cost per kWh saved from one-year lag expenditures		\$0.000	\$0.000	\$0.000	\$0.000	\$0.000		
Model predicted cost per kWh saved from two-year lag expenditures			\$0.000	\$0.000	\$0.000	\$0.000		
Model predicted cost per kWh saved from three-year lag expenditures				\$0.000	\$0.000	\$0.000		
Model predicted cost total per kWh saved from current expenditures and three previous								
year expenditures				\$0.043	\$0.076	\$0.068		

See pg. 34, Preliminary Findings Memo, The CADMUS Group, Inc., August 2012 – for the CPUC

Uncertainty Analysis

- Currently, efficiency policy impacts are reported as singular estimates – without error bounds and/or levels of uncertainty
- Distributions of energy use by sector, building type, geography, and demographics are needed to improve the estimates and to understand expected ranges

Uncertainty Analysis

Uncertainty Analysis

Random sample of PG&E K-12 schools AMI data
CBECC-Com Small School Energy Simulation --- CZ 3 & CZ 12

Energy Use Mapped to Buildings

Examples: City Scale Planning & Benchmarking Disclosures

Energy Use Mapped to Buildings

Example: AMI Data Analytics Test Bed Development

Consumer & Market Decision Support

Example: Distributions included in Benchmarking Disclosures

