Docket Number:	16-BSTD-06
Project Title:	Updates to the 2019 Time Dependent Valuation of Energy
TN #:	211415
Document Title:	2019 Draft TDV Updates, E3 Presentation
Description:	N/A
Filer:	Hilary Fiese
Organization:	California Energy Commission
Submitter Role:	Commission Staff
ubmission Date:	5/9/2016 3:11:06 PM
Docketed Date:	5/9/2016

2019 Draft TDV Updates

CEC Staff Workshop May 12, 2016

Snuller Price, Senior Partner
Tory Clark, Consultant
Zachary Ming, Consultant

- + TDV Methodology Background and History
- + SB350 Considerations
 - 3 sensitivities compared
- Updates to Methodology
 - T&D Marginal Cost Allocation Based on Actual Load Data
- + Updates to Inputs
- + Draft Results and Comparison
 - 2019 vs. 2016 TDV Results

4 5 6 8 8 8 2 2 8 8 8 2 2 4 5 6 5 4 3 4 5 6 7 6 5 4 3

TDV METHODOLOGY BACKGROUND

- + The TDVs are a long term forecast of hourly electricity, natural gas and propane costs to building owners and are used for costeffectiveness activities in Title 24 Building Code
- + The TDVs answer the question of what is costeffective in the long term, as required by the Warren-Alquist Act
- Time-differentiation reflects the underlying marginal cost of producing and delivering energy
- Area-correlation reflects underlying marginal cost shapes correlated with each climate zones weather file

What are TDVs used for?

+ Two main uses for TDVs

- Cost-effectiveness analysis in the CASE studies (Codes And Standards Enhancement studies) used to adopt new building measures in the prescriptive standard
- Code compliance for buildings that wish to vary from the prescriptive standard using the ACM (alternative calculation methodology). TDVs are embedded in California Building Energy Code Compliance software (CBECC)
- + TDV is also the metric that has been adopted in the IEPR for measurement of zero-net energy Σ TDV = 0

Frequently Asked Questions (1)

- + Why do we use statewide average electricity and natural gas retail rate levels?
 - With this approach, the code has similar overall stringency state wide and there can be similar construction practices across the state. Note that there are still variations for climate.
- + Why don't we use the actual retail rate structures that are in place?
 - We want the building code to be relatively stable over time and from cycle to cycle, the TDVs reflect a 'perfect' marginal cost of service which is a long term signal for retail rates
 - By using the underlying system marginal costs we are reflecting building measures that provide the greatest underlying value to the energy system, even if retail rates are flat or have a different time of use period

Frequently Asked Questions (2)

- + Why are the units of TDV in kBTU/kWh and kBTU/therm if they measure cost-effectiveness?
 - The TDVs are calculated in lifecycle dollars per unit of energy (\$/kWh, \$/therm) in each hour and climate zone in California
 - For the building code compliance, they are converted to different units of kBTU/kWh and kBTU/therm using fixed multipliers

KILOWATTHOURS

SB 350 CONSIDERATIONS

TYPE AB1 S.

J W OU HZ IA

SB350 Considerations

- + SB350 calls for 50% utility-procured renewable electricity and a doubling of energy efficiency by 2030
- + Base Case; "SB-350-Friendly" scenario
 - 2015 IEPR mid-case load forecast (including mid-case EV and mid CO2 price forecasts)
 - 50% renewables by 2030 from in-state resources
 - A doubling of the 2015 IEPR Additional Achievable Energy Efficiency by 2030
 - Diablo Canyon Nuclear Facility is retired

 Several sensitivities have been evaluated since the implementation plans for SB350 are not yet completed

		Load Forecast	Energy Efficiency	CO2 price
1	Base Case	2015 IEPR Mid-demand	2x 2015 IEPR AAEE	2015 IEPR Mid Case
2	Low EE/High Electrification		1x 2015 IEPR AAEE	
3	High CO2 Price			2015 IEPR High Case

4 5 6 8 8 8 2 2 8 8 8 2 3 4 5 6 7 7 6 5 4 3 4 5 6 7 6 5 4 3

UPDATES TO TDV T&D
ALLOCATION
METHODOLOGY

T&D Updated Methodology

 New methodology for T&D avoided cost allocation using actual distribution load data, not the temperature proxy that we have been using

+ Benefits

- More accurately reflects usage patterns in a climate zone
- Allows for local PV effects to be included
- Is more consistent with industry view of peak demand
 - Provides more focused value in fewer hours to better value dispatchable options

T&D Allocation Method

- + Use regression analyses to determine the relationship of area hourly loads to temperature
 - Variables include dry-bulb temp, cooling degree hours, heating degree hours, lagged variables, moving averages of variables, as well as standard modeling dummy variables
 - Adjusted R-square results typically around 90%.
- Apply the regression equations to the CTZ weather files to derive predicted CZ hourly loads
- Derive 2017 allocation factors based on the predicted hourly loads
- + Adjust predicted loads for additional solar PV adoptions, and derive 2030 allocation factors

Effects of the Update

+ Concentration into fewer hours is common

CZ12 Allocation Factors with 5.1% PV

+ Shifting to later hours also occurs in most CZ's

Update Places higher Emphasis on Top Hours

- Allocation factors shown based on actual and regressionpredicted 2010 loads
- + Allocation based on the PCAF method that is commonly used for T&D cost allocation. Factors kept from 2-250 hours.
- New factors are more appropriate for evaluating dispatchable technologies.

Increased Forecast Local PV also Affects the Allocators for 2030

- Peak shifts to later hours
- Peak can include other months
- + But effect through 2030 is moderate

LOWATTHOURS

UPDATES TO TDV INPUTS

- ELECTRICITY
- NATURAL GAS AND PROPANE

Updated Inputs to Electricity TDV

- Marginal energy price shape generated from PLEXOS production simulation modeling at CEC
- + 50% RPS portfolio calculated with CPUC RPS Calculator
- 2026-2049 is assumed to have same price shape as 2026

2020 Shape

2026 Shape

Energy Price Shape Comparison

 Updated PLEXOS results begin to show lower midday energy prices due to higher RPS and solar penetration

Energy+Environmental Economics

Updated Inputs to Electricity TDV

Generation Capacity (1)

Updated resource balance year

- Expected renewable build extends resource balance year and reduces the value of capacity in the near-term
- Calculated using RPS Calculator (no uncommitted AAEE included in load forecast)

Generation Capacity (2)

+ Updated capacity value allocation

- 50% RPS shifts value to later in the evening and later in the summer
- Calculated using E3 RECAP model and allocated to hours in TDV weather year

- T&D avoided costs are calculated using weighted average from the latest utility GRCs
 - Transmission: \$33.63/kW-yr
 - Distribution: \$83.99/kW-yr
 - GRC Sources: PG&E 2014, SCE 2015, SDG&E 2015
- Costs are allocated to climate zones using new methodology of actual utility loads and forecast behind-the-meter PV forecasts
 - Replaces temperature-only allocation
 - Shifts allocation to later in the evening

CZ3 Allocation Factors with 20.2% PV Jan Mar May Jul Sep Nov 40% 25% 35% 20% 30% Updated Monthly 25% 15% 20% Updated Avg by 10% 15% Hour 10% 5% Avg by Hour 5% 5 7 9 11131517192123

Hour Ending (Standard Time)

Ancillary Services, Emissions, and Losses

+ Ancillary Services

 Continue to use 0.5% of energy

+ Emissions

- Updated GHG price forecast to 2015 IEPR
- Continue to calculate marginal emission rate on hourly implied heat rate using energy and gas prices

+ Losses

 Continue to use utilityspecific loss factors retained from 2013 TDV analysis

Description	PG&E	SCE	SDG&E
Summer Peak	1.109	1.084	1.081
Summer Shoulder	1.073	1.080	1.077
Summer Off-Peak	1.057	1.073	1.068
Winter Peak	0.000	0.000	1.083
Winter Shoulder	1.090	1.077	1.076
Winter Off-Peak	1.061	1.070	1.068
Generation Peak	1.109	1.084	1.081
Transmission Peak	1.083	1.054	1.071
Distribution Peak	1.048	1.022	1.043

RPS Premium

- Avoided cost of procuring additional RPS energy
- + Marginal RPS cost data from CPUC RPS Calculator Version 6.2
 - Assumed to be energy-only resource with <u>no</u> incremental transmission costs and <u>no</u> capacity value
- Decline in RPS costs has decreased this component
- NOTE: this component has no effect on the shape of TDV outputs since it is flat

 its inclusion simply reduces the retail rate adder

Retail Rate Adjustment

- Retail rate adder is used to ensure that the load weighted average TDVs are equal to customer retail rate
- Mid-Demand and Low-Demand rate forecasts provided by 2015 IEPR
- SB-350 retail rate adjustment was estimated by E3

Approach

- CPUC RPS Calculator to calculate average rates under IEPR mid demand and SB 350 friendly assumptions
- Apply this % impact to the IEPR mid electric rate forecast

Updated inputs to Natural Gas and Propane TDV

Natural gas and propane retail rate forecasts

- + Natural gas commodity price update
 - Natural gas burnertip price forecast from 2015 IEPR
- Natural gas retail rate price update
 - Retail rate forecast from 2015 IEPR

Natural Gas Commodity

\$12 2019 High \$10 2019 Base \$/MMBtu nominal 2016 High \$8 2016 Base \$2 \$0 2020 2022 2024 2026 2028 2030

Natural Gas Retail Rates

- Propane price forecast
 - EIA AEO 2013 Pacific region forecast, normalized to IEPR through natural gas rates – Propane Price_{EIA}* (NG Price_{IEPR}/NG Price_{EIA})

KILOWATTHOURS

DRAFT TDV RESULTS

SINGLE-STATOR WATTHOUR METER

TYPE AB1 S.

0 CL 240 V 3 W 60 Hz TA 30

Changes in TDVs from Last Cycle

- Increase in retail rate forecast drives average TDV level higher
- Generation capacity and T&D capacity have shifted to later in evening

Comparisons between TDVs

Impact on Electric End Uses Cooling

- Larger T&D capacity deferral value coupled with better coincidence with cooling loads drive increase in TDV value
- Shift of generation capacity value into evening reduces value
- Retail rate increase drives some TDV value increase

Impact on Electric End Uses Lighting

- Increase in retail rates drives large portion of lighting TDV value increase
- Better coincidence of generation capacity and T&D capacity value and lighting load shape drive increase in total TDV value

Scenario Analysis

Differences between scenarios are largely driven by resultant retail rate forecasts

High CO2

CO2 price drives up retail rate because California GHG household credit is not tied to electricity consumption

1x AAEE

Less efficiency means fixed costs can be spread over more retail sales which results in lower rates

Natural Gas and Propane TDVs

 Natural gas and propane both increase in TDV value due to increase in natural gas retail rate forecast

