

DOCKETED	
Docket Number:	25-IEPR-03
Project Title:	Electricity and Gas Demand Forecast
TN #:	268180
Document Title:	Transcript - IEPR COMMISSIONER WORKSHOP ON LOAD MODIFIER ENERGY DEMAND FORECAST RESULTS
Description:	11-13-25 FINAL Transcript - IEPR COMMISSIONER WORKSHOP ON LOAD MODIFIER ENERGY DEMAND FORECAST RESULTS
Filer:	Raquel Kravitz
Organization:	California Energy Commission
Submitter Role:	Commission Staff
Submission Date:	1/7/2026 11:53:22 AM
Docketed Date:	1/7/2026

STATE OF CALIFORNIA
CALIFORNIA ENERGY COMMISSION

In the matter of:

2025 Integrated Energy Policy)
Report (2025 IEPR)) Docket No. 25-IEPR-03
)
RE: Electricity and Gas Demand)
Forecast)
)

IEPR COMMISSIONER WORKSHOP ON
LOAD MODIFIER ENERGY DEMAND FORECAST RESULTS

REMOTE ACCESS ONLY VIA ZOOM

THURSDAY, NOVEMBER 13, 2025

10:00 A.M.

Reported by:

Elise Hicks

APPEARANCES

COMMISSIONERS

Siva Gunda, Vice Chair, CEC

Andrew McAllister, Commissioner, CEC

Karen Douglas, Commissioner, CPUC

Darcie Houck, Commissioner, CPUC

John Reynolds, CPUC

CEC POLICY ADVISOR

Raja Ramesh, Senior Policy Advisor to Vice Chair Gunda

CEC STAFF

Heather Raitt, Acting Director, Integrated Energy Policy Report

Heidi Javanbakht, Demand Analysis Office

Q&A MODERATORS

Anne Fisher, CEC

Jesse Gage, CEC

PRESENTERS

Quentin Gee, Advanced Electrification Analysis Branch, CEC

Mark Palmere, Demand Analysis Branch. CEC

Bobby Wilson, Demand Forecast Branch, CEC

Alan Jian, Transportation Energy Forecasting Unit, CEC

APPEARANCES

PRESENTERS (cont'd)

Elizabeth Pham, Transportation Energy Forecasting Unit,
Energy Assessments Division, CEC

Andre Freeman, CEC

Asish Gautam, CEC

Ingrid Neumann, Advanced Electrification Analysis Branch,
CEC

Ethan Cooper, CEC

Mathew Cooper, CEC

PUBLIC COMMENT

Jon Hart, Policy Director, California Solar and Storage
Association

Sam Maslin, CEO, Eddy Energy

Karolina Maslanka, CESA

INDEX	<u>PAGE</u>
Welcome Heather Raitt, CEC	6
Opening Remarks Andrew McAllister, Commissioner, CEC Commissioner Darcie Houck, CPUC Commissioner Karen Douglas, CPUC Commissioner Matthew Baker, CPUC	7
1. 2025 IEPR Forecast Introduction and Overview Quentin Gee, CEC	15
2. Behind-the-meter Distributed Generation Forecast Draft Results A. Mark Palmere, CEC B. Bobby Wilson, CEC	17
Discussion between Commissioners and presenters	27
Q&A from attendees, moderated by Anne Fisher, CEC	32
3. Presentations on Transportation Forecast and Additional Achievable Electrification (AATE) A. Alan Jian, CEC B. Liz Pham, CEC	37
Discussion between Commissioners and presenters	52
Q&A from attendees, moderated by Anne Fisher, CEC	59
4. Known Loads Presentation Asish Gautam, CEC	78
Discussion between Commissioners and presenters	87
Q&A from attendees, moderated by Anne Fisher, CEC	88

INDEX	<u>PAGE</u>
Welcome Back	93
Participants from the Dais	94
Vice Chair, Siva Gunda, CEC	
Commissioner Andrew McAllister, CEC	
Commissioner Darcie Houck, CPUC	
Commissioner John Reynolds, CPUC	
Commissioner Karen Douglas, CPUC	
Commissioner Matthew Baker, CPUC	
5. Presentations on Additional Achievable Energy Efficiency (AAEE) and Additional Achievable Fuel Substitution (AAFS) Draft Results	96
A. Ingrid Neumann, CEC	
B. Ethan Cooper, CEC	
Discussion between Commissioners and presenters	122
Q&A from attendees, moderated by Jesse Gage, CEC	128
6. Data Centers Presentation	128
Mathew Cooper, CEC	
Discussion between Commissioners and presenters	138
Q&A from attendees, moderated by Jesse Gage, CEC	139
Public Comments	146
Closing Remarks	152
Adjournment	152

PROCEDINGS

10:01 a.m.

THURSDAY, NOVEMBER 13, 2025

4 MS. RAITT: All right, well, good morning,
5 everyone. We'll get going here. Thanks for joining
6 today's Integrated Energy Policy Report, or the IEPR
7 Report, pardon me, Commissioner Workshop on Load Modifier
8 Scenario Energy Demand Workshop -- Demand Forecast Results.
9 Excuse me. I'm Heather Raitt, the Acting Director for the
10 IEPR Team here at the CEC.

11 This workshop is being held as part of the CEC's
12 proceeding on the 2025 IEPR. Today, we're doing a remote
13 workshop using Zoom. This workshop is being recorded. The
14 recording will be linked to the CEC's website shortly after
15 the workshop. To follow along, the schedule and slide deck
16 have been docketed and are posted on the CEC's website.

17 There will be opportunities to ask the presenters
18 questions. We'll have a few minutes after the panels to
19 take audience questions, but we may not have time to answer
20 all questions submitted.

21 The Q&A feature is available for you to submit
22 questions. Just type them in. You can also upvote a
23 question by clicking on the thumbs up icon. Questions that
24 receive the most upvotes are moved to the top of the queue.

Attendees can also make comments at the public

1 comment portion of the workshop at the end of the day.
2 Please note that we will not be able to respond to comments
3 today and comments are limited to a maximum of three
4 minutes per person with one person per organization.

5 Written comments are also welcome and
6 instructions on how to provide those can be found in the
7 workshop notice and written comments are due by 5:00 p.m.
8 on November 26th.

9 And with that, I'll turn it over to Commissioner
10 McAllister to start the day. Thank you.

11 COMMISSIONER MCALLISTER: Great. Thanks Heather.
12 I really appreciate you and the rest of the staff, the IEPR
13 Team for putting this together. I've been really looking
14 forward to this. You know, the forecast itself is a super
15 important kind of foundational resource for the state. And
16 the load-based, the sort of load modifiers, you know, are
17 really, I think, an area of high-level innovation and
18 market dynamics that we need to understand, and that can
19 also really be a force for good. We have a lot of
20 challenges which I'll comment on in a second, but just in
21 terms of, you know, nobody has a crystal ball and so we do
22 our best to create that crystal ball and the forecasting
23 process in this workshop is part of that.

24 But all of this happens in close coordination
25 with our colleagues at the Public Utilities Commission.

1 And I want to welcome Commissioners Douglas and Houck, and
2 I think we may be expecting Commissioner Baker at some
3 point during the course of the day.

4 Vice Chair Gunda, who would normally lead this,
5 is out for a speaking engagement. He'll be back sort of
6 late morning or in the afternoon. We do have Raja Ramesh
7 from his office to make some comments here in a second as
8 well.

9 I wanted to just, you know, point out that we
10 live in very interesting times. And those of us who are
11 intellectually curious, I think it's a great time to be
12 alive. And just the staff resources, the modeling
13 expertise, the data collection that we do, the stakeholder
14 engagement as part of the forecasting process is invaluable
15 and a huge team effort, multi-agency effort. The Demand
16 Assessment Working Group, the DAWG, you know, is also a
17 sort of senior staff and interagency working group to help
18 vet some of the issues that we'll hear about today and sort
19 of, you know, put them through their paces and develop them
20 in a way that's ready for primetime. And that's also
21 together with the Independent System Operator, so senior
22 staff CAISO and Cal ISO, and then also with the Air
23 Resources Board on a number of the issues involved there
24 too.

25 So really, you know, there are four sort of

1 energy agencies constantly working together but a lot of
2 the policy and decision making sort of originates with the
3 forecast as a platform. And so, you know, the IRP process
4 and RA process over at the PUC and the transmission
5 planning efforts over at the Cal ISO really do leverage the
6 forecast, really utilize the forecast in a very organic way
7 as the base for those conversations.

8 And so it's a big team effort and I think we're
9 lucky to be able to do this in California and have the
10 resources to be able to have this very rich discussion
11 really every year now, you know, not so much every other
12 year but really every year.

13 But the odd years like 2025, you know, roughly
14 full forecast I think, you know, adjusting with the needs
15 of the day to focus on the top issues. And load modifiers,
16 you know, transportation electrification, building
17 electrification, all the load growth that we're facing,
18 rooftop solar, behind-the-meter battery storage, you know,
19 the fuel substitution work that we'll hear about is really
20 key, so moving from gas to electricity doing that load
21 growth and understanding it and trying to predict where
22 it's going but also informing policies to help it move in a
23 way that's beneficial to the grid and optimizes the
24 resource that is the grid that we've already built and
25 manage investments going forward.

1 I think all of these questions are in the mix
2 here as we look about, okay, what do we know about load
3 modifiers which we'll talk about today. You know,
4 electrification generally is our backbone, our path towards
5 decarbonization, and I think we all understand that it's a
6 huge opportunity. It presents challenges. Load growth
7 presents challenges to different -- different than the past
8 few decades but it also represents a great opportunity to
9 incorporate load in a way that that manages rates and
10 provide some downward pressure on energy cost.

11 I guess the last thing I'll say is just, you
12 know, load flexibility, we'll talk about that some today,
13 but load flexibility is really emerging as a tool that has
14 huge potential to optimize the use of the distribution grid
15 particularly but, you know, the load, that 7,000 megawatt
16 load flex goal that we have is sort of, you know, half
17 supply side sort of, you know, peak shaving and the other
18 half is load modifying sort of, you know, lifting the other
19 hours the non-peak hours in terms of incorporating the new
20 load into those hours so that we don't drive too many hard
21 costs into the grid.

22 Load flexibility is emerging as a complement to
23 energy efficiency, which is a policy of the state, as a way
24 for the demand side, for the new electrification loads to
25 help us achieve our, certainly, our decarbonization goals,

1 but also, you know, very importantly manage costs along the
2 way and even enhance reliability so really that trifecta.

3 Anyway, so we've got a great agenda, a bunch of
4 staff, I mean a dozen staff with incredibly deep expertise
5 from the Energy Commission, certainly, to present and
6 really looking forward to a robust discussion about each of
7 the topics. At the end we'll talk about load flex a little
8 bit and the Additional Achievable Energy Efficiency in the
9 afternoon and fuel substitution draft results, and then
10 talk about data centers, which is also a big driver. But
11 really looking forward to the morning, distributed
12 generation forecast and Transportation Forecast, and then
13 the known loads, the larger loads, which will be, I think,
14 a really interesting discussion.

15 So with that I wanted to hand the mic to Raja
16 just to give a few opening comments on behalf of Vice Chair
17 Gunda. And then we'll invite our colleagues at the Public
18 Utilities Commission to provide some opening comments.

19 So Raja, off to you.

20 MR. RAMESH: Thanks Commissioner McAllister. My
21 name is Raja. I'm a Senior Advisor to Vice Chair Gunda.
22 He had a speaking engagement this morning, as Commissioner
23 mentioned, and will join shortly. So he asked me to share
24 these remarks on his behalf.

25 "This workshop is a critical part of our effort to

1 develop California's electricity Demand Forecast and
2 planning today is more complex than ever. We have
3 rapid increases in electricity demand from data
4 centers, electrification, et cetera, shifting federal
5 policies that add new uncertainty to the policy
6 landscape, and there's the growing difficulty of
7 balancing reliability and affordability and getting
8 the demand forecast just right is a critical part
9 of that. It's a difficult balancing act and we really
10 appreciate the enormous effort our staff puts into
11 refining these forecasts under such a challenging
12 environment.

13 "Our collaboration with CAISO and CPUC continues to be
14 vital and we especially want to thank our
15 stakeholders, including the folks who participate in
16 the Demand Analysis Working Group for your expertise
17 and engagement.

18 "Thanks again for joining us at this workshop today.
19 We look forward to a productive and thoughtful
20 discussion."

21 COMMISSIONER MCALLISTER: Thanks a lot, Raja.
22 Looking forward to having the Vice Chair join us a bit
23 later.

24 How about Commissioner Douglas, you want to join
25 us for -- make some comments, and then we'll pass to

1 Commissioner Houck.

2 COMMISSIONER DOUGLAS: Yeah, I'll just be very
3 brief. Thank you very much, Commissioner McAllister. It's
4 great to be here. I'm looking forward to the discussions
5 and the presentation as always, and I'll pass it back to
6 you.

7 COMMISSIONER MCALLISTER: Thanks Commissioner.

8 COMMISSIONER HOUCK: Commissioner Houck. Thank
9 you Commissioner McAllister. I'm really pleased to be here
10 today. I want to thank the Energy Commission for hosting
11 this IEPR workshop. The issues we're going to talk about
12 today on load modifier energy Demand Forecast results are
13 really critical to the work we're doing at the PUC.

14 Work that I'm really focused on is, you know, how
15 we're going to have the grid for the 21st century that's
16 going to be able to address and make sure that we're
17 successful in our clean energy transition. Grid planning
18 is going to be -- is essential to this work. Also, we're
19 looking at avoided cost calculator and data exchange to
20 ensure that the right information is being shared to be
21 able to make all of these systems work together.

22 Also decarbonization, building decarbonization,
23 is also a critical area that I'm working on. And as
24 Commissioner McAllister mentioned, load flexibility is
25 going to be really, really critical to all of this which

1 goes back to the grid planning. We need a grid that's
2 going to be able to make all of that possible.

3 And I really want to thank the Energy Commission
4 again for all of their work and analysis. It's absolutely
5 critical to what we're doing. The collaboration we have
6 across agencies with the CEC and the Cal ISO is also really
7 critical. And I'm really pleased to be working with
8 Commissioner McAllister, Vice Chair Gunda on all of this
9 work and all of the folks at the CEC and all of your
10 support that you're giving us and our agency and we're
11 hoping that we're giving you that same support in the work
12 you're doing.

13 So I'm really looking forward to hearing the
14 information today and, again, just want to thank you for
15 including us in the workshop.

16 COMMISSIONER MCALLISTER: We really appreciate
17 you Commissioner Houck, as well, and thanks to you and all
18 of your colleagues, and we hope to hear -- if Commissioner
19 Baker's not with us yet, which I don't think he is,
20 hopefully he'll be able to join us later.

21 But I just want to again highlight the
22 collaboration with the PUC. I mean the cross-pollinization
23 and just the discussions, whether it's, you know, on the
24 rate making work that the PUC does and just the DER
25 conversations, high penetration DER, and all these are

1 very, very, you know, foundational conversations and
2 rulemakings and decisions that the PUC is taking that
3 govern the IOUs. And the collaboration that we have on
4 sort of the data work and how we can leverage interval
5 meter data and really inform our planning in a much richer
6 way than historically has been possible, I'm super excited
7 about all that.

8 And the forecast is certainly part of that. The
9 load modifiers, you know, by their nature, they are diffuse
10 and they are aggregated because that's what our energy
11 system is for, is an aggregation. And so really just that,
12 I think that context just can't be overstated, how this
13 moment really has opportunity for us to move in these new
14 directions in an informed way to help our ratepayers, but
15 also really incorporate electrification, sort of embody
16 that electrification pathway to decarbonization as a leader
17 state. So I'm excited for this conversation.

18 And with that I'll stop taking up the airspace
19 here and pass it to staff. I think, Heather, should we
20 just pass it directly to Quentin?

21 MS. RAITT: Yeah, that would be great.

22 COMMISSIONER MCALLISTER: Okay, great. All
23 right. So, first presentation by Quentin Gee from our
24 staff here at the CEC to introduce the IEPR Forecast.

25 MR. GEE: Great. Thank you, Commissioner

1 McAllister. Thanks to the dais for those comments and
2 welcome. Hi, everybody. My name is Quentin Gee. I'm the
3 manager of one of the branches that manages the Energy
4 Demand Forecast, Advanced Electrification Analysis branch.
5 Our work really engages the load modifiers, but not all of
6 them.

7 But today, we are going to talk about the load
8 modifiers of transportation electrification; building
9 electrification, or what we call fuel substitution; energy
10 efficiency; behind-the-meter storage and solar; as well as
11 some discussion on known loads.

12 So overall, I think, you know, we'll let sort of
13 staff speak for or the results of the forecast sort of
14 speak for themselves in large part. But I think it is
15 worth sort of acknowledging first off that we are in a time
16 right now of a large degree of uncertainty regarding, you
17 know, what electricity demand is going to look like
18 throughout the forecast period. As folks here I'm sure are
19 aware, there have been significant changes in policy at the
20 federal level and at the state level, and we'll talk some
21 about those. And there's also just some broader economic
22 uncertainty that has made it a little bit more difficult to
23 pin down the forecast compared to previous years.

24 That being said, you know, we have opted to try
25 to create a broader sort of characterization of how things

1 could unfold, and this workshop is a good opportunity for
2 us to sort of envision, you know, how that could all unfold
3 and what it would look like overall.

4 So why don't I just go ahead and introduce the
5 next speaker. That's going to be Mark Palmere from the
6 Demand Analysis Branch.

7 Mark?

8 MR. PALMERE: Thank you, Quentin.

9 Good morning, colleagues, active participants,
10 and members of the public, anyone else on the webinar. My
11 name is Mark Palmere, and today I will present a brief
12 summary of the 2025 Behind-the-meter Distributed Generation
13 Draft Forecast results.

14 Slide.

15 To begin, here is a list of acronyms and
16 initialisms I'll be using in today's presentation.

17 Slide.

18 Before looking at our updates, let's review the
19 framing of this forecast. The technologies we forecast are
20 solar PV, energy storage, and other generation such as fuel
21 cell, gas turbine, and wind turbine. And the metrics we
22 use to measure them are capacity and energy.

23 Slide.

24 Here is a look at the overall adoption modeling
25 architecture, where you can see how historical adoption,

1 compliance-based adoption, and economics-based adoption all
2 lead into the overall adoption forecast.

3 Slide.

4 Why do we forecast distributed generation? Well,
5 behind-the-meter, distributed generation technologies
6 affect electricity demand served by utilities at both
7 annual and hourly levels. And PV generation accounts for a
8 significant share of overall statewide consumption, and
9 that's only increasing. This growth will help offset
10 future electricity demand. And storage adoption affects
11 peak demand by dispatching during peak demand periods,
12 generally from 4:00 to 9:00 p.m.

13 Slide.

14 Drivers of the forecast include historical
15 interconnection data and forecast factors that influence
16 future adoption, such as payback period, which is mainly
17 driven by technology costs, energy costs, export tariffs,
18 and incentives, as well as Title 24 building standards,
19 which mandate PV installation with all statewide new
20 construction.

21 Slide.

22 And note that we conduct both economics-based and
23 compliance-based adoption forecasting. The former
24 considers the economic benefits of adopting solar, think
25 retrofits, while the latter is used for Title 24 adoption.

1 Slide, please.

2 Now let's look at the inputs that have been
3 updated for this year's forecast.

4 Slide.

5 There are several drivers of forecast uncertainty
6 this year. The major change is that the Investment Tax
7 Credit, or ITC, was eliminated in recent federal
8 legislation, effective at the end of the year. On the
9 other hand, tariffs are not currently included in the
10 forecast due to significant uncertainty, and we continue to
11 use NREL's Annual Technology Baseline to forecast future
12 technology costs, the three scenarios of which are shown in
13 the table to the right.

14 Slide.

15 With that in mind, we have developed four PV and
16 storage adoption scenarios, first presented at our input
17 and assumptions workshop this summer. Note the
18 reinstitution of the ITC from 2030 to 2040 in our mid-plus-
19 ITC case, as well as the storage retrofits via NEM contract
20 turnovers in the high case.

21 Slide.

22 Another change this cycle is a higher new housing
23 forecast. This directly affects PV additions through the
24 Title 24 standards. Cumulatively, there are 420,000 more
25 single-family home completions forecast between 2025 and

1 2040. We see a higher short-term housing forecast due to
2 an increase in smaller household formations. Household
3 additions do decrease in the longer term due to an aging
4 population.

5 Slide.

6 We also updated our assumptions on the pairing of
7 storage with Title 24 residential new construction. We
8 previously assumed that builders would not add storage to
9 new homes, as it wasn't required and would thus be an
10 unnecessary cost to them. However, internal discussions
11 have informed us that there actually is some storage paired
12 with PV on new residential construction.

13 CEC's Building Standards Team has reported that
14 their industry contacts indicate a storage attachment rate
15 of about five percent. We applied this to the mid and low
16 case, while our high case uses a higher, more optimistic
17 number from an LBNL, Lawrence Berkeley National Laboratory,
18 study, which is close to 17 percent. This means we're
19 adding about 30 additional megawatts of storage to our low
20 and mid cases per year due to this alone, and about 100
21 megawatts in the high case.

22 Slide.

23 Given all that, we are now ready to look at
24 forecast results.

25 Slide.

1 First, looking at annual results, the PV
2 additions are greatly affected by the elimination of the
3 ITC, as we would expect. We see a 50 percent reduction in
4 adoption in all cases starting in 2026. However, our
5 special case reintroducing the ITC in 2030 through 2040
6 does lead to 2025 levels of added capacity in 2035. By the
7 end of the forecast period, which is 2045, mid case
8 additions are approximately 25 percent higher than in the
9 low case.

10 Slide, please.

11 How does this compare to last year's forecast?
12 Well, the adoption forecast is lower in the early part of
13 the forecast but similar towards the end, as shown by the
14 mid case, which is green, almost meeting up with last
15 year's mid case, which is the gray line, by 2040. The mid
16 case is 7 percent lower cumulatively than last year's mid
17 case in 2030, but only 1.5 percent lower by 2040, the last
18 available year of comparison, as, if you'll recall, 2024's
19 forecast did not go up to 2045. It ended at 2040.

20 Slide.

21 This also means that market penetration is lower
22 post ITC expiration. Fewer households will adopt after the
23 ITC expires, as seen in the chart to the right. This
24 decreased market saturation actually means that more
25 households will adopt solar post 2035 in this forecast

1 compared with the 2024 forecast, since there are more
2 potential adopters out there in that situation post 2035.

3 Slide, please.

4 Meanwhile, storage sees an even bigger effect
5 from the ITC expiration, as we forecast an 80 percent-plus
6 decrease in annual capacity additions. But we do see long-
7 term increases in two of the cases, in the mid ITC case due
8 to ITC reintroduction and in the high case due to NEM
9 turnover, where we assume customers who installed solar
10 under NEM 2.0 will adopt storage at the same rate of NBT
11 customers when they're switched over after 20 years, and
12 that leads to quite a significant jump, especially peaking
13 at 2043, which is not coincidentally 20 years after the
14 last year of NEM 2.0.

15 Slide.

16 When comparing to last year's forecast, we
17 actually see higher capacity in the short term. This was
18 due to the higher than expected installation levels in 2025
19 that are reflected in this forecast. However, longer term,
20 we do see lower capacity, specifically 15 percent in 2040,
21 when comparing the mid case to 2024's mid case, which is
22 again in gray and this year's is in green.

23 Slide.

24 I also want to briefly go over solar and storage
25 pairing. Last year, we saw pairing numbers consistently

1 going up from as low as 10 percent before the switch to NBT
2 to over 70 percent in 2024. However, the data we've gotten
3 in the past year show that the pairing rate appears to be
4 leveling off in the mid-70s, which increases our confidence
5 in using that value in our model for future years since it
6 doesn't look like it's going to go up.

7 Slide.

8 Finally, a comparison of storage types. Over 70
9 percent of storage installations are currently paired with
10 a PV system. Through the forecast period, only about 18
11 percent of storage capacity added is standalone, meaning
12 the paired number will just continue to go up. And as a
13 note about standalone storage, the vast majority of those
14 installations are in the non-residential sector. We don't
15 see it very much at all in the residential sector.

16 Slide.

17 This concludes my presentation. Thank you all
18 for listening.

19 I'll now pass it over to Bobby Wilson, who will
20 discuss hourly behind-the-meter distributed generation
21 results.

22 MR. WILSON: Thanks, Mark.

23 Hello, everyone. My name is Bobby Wilson, and
24 I'm a Distributed Generation Specialist in the Demand
25 Forecast Unit at the CEC. Today, my presentation is on

1 hourly behind-the-meter distributed generation forecast
2 results.

3 Next slide, please.

4 Before we begin, here is a list of acronyms and
5 initialisms you might see or hear in my presentation.

6 Next slide, please.

7 Okay. Now we'll take a look at hourly BTM PV
8 results.

9 Next slide.

10 The biggest takeaway from the 2025 hourly PV
11 forecast is the reduction of PV generation in the short
12 term due to the elimination of the ITC. That reduction
13 peaks around 2035.

14 After 2035, the mid case from this year's IEPR
15 and the 2024 IEPR begin to converge to the same values. If
16 we take a look at the second bullet point, we can see that
17 in the two sub-bullets, in 2035, the behind-the-meter PV
18 generation at the hour of peak demand is reduced by 250
19 megawatts in this year's forecast in comparison to last
20 year. By 2040, that reduction is only 20 megawatts.

21 Similarly, in 2035, the daily max generation, which occurs
22 in hour 13, is reduced by 900 megawatts in this year's
23 forecast. And by 2040, that reduction is 170 megawatts.

24 Okay, next, we are going to look at some charts
25 of the BTM PV generation in this year's forecast.

1 Next slide, please.

2 Here is the average hourly PV generation for the
3 first week of September in 2035. As you can see on this
4 chart, the 2024 IEPR mid case, which is the gray line, and
5 this year's high case, which is the red line, are about the
6 same. This year's mid case is the green curve, which is
7 below the 2024 IEPR. And you can see the 900 megawatt
8 reduction in max generation and the 250 megawatt reduction
9 in generation at the hour of peak demand on both the chart
10 and the table to the left.

11 Next slide, please.

12 Okay, here we are five years later in 2040. The
13 high case, which is the red curve, has now outpaced the
14 2024 IEPR mid case, which is the gray curve. And the 2025
15 mid case, the green curve, is at the same level as the 2024
16 IEPR mid case.

17 Next slide, please.

18 All right, this is 2045. Last year's forecast
19 went to 2040, so there is no curve for the 2024 IEPR here.
20 As we've seen on the previous slides, and this one too, the
21 mid ITC case, the dark blue curve, which assumes the ITC is
22 reintroduced in 2030, drives higher generation throughout
23 the forecast period.

24 Now we'll take a look at hourly BTM storage
25 results.

1 Next slide, please. Thank you. Next slide,
2 please.

3 Okay, the ITC elimination also has an effect on
4 BTM storage, reducing the amount of capacity that will be
5 added in the long term. If we take a look at the second
6 bullet point, we can see that in the two sub-bullets, in
7 2035, the daily max generation is 300 megawatts lower in
8 this year's forecast than last year's forecast. By 2040,
9 that difference is 220 megawatts.

10 Next slide, please.

11 Okay, this is the average hourly discharge for
12 the first week of September in 2035. Here we are only
13 showing a summer profile. When considering the impacts of
14 a winter peak in the later part of the forecast, we would
15 expect to see potentially new rate structures and different
16 charging and discharging profiles. In 2035, we can see the
17 reduction that we spoke about on a previous slide during
18 hour 19 when daily max discharge occurs. The 2025 IEPR mid
19 case, which once again is the green curve, is below last
20 year's IEPR, which is the gray curve.

21 Next slide, please.

22 And the reduction continues to grow in 2040 -- or
23 excuse me, the reduction decreases in 2040. The mid ITC
24 case, the dark blue curve, has overtaken last year's IEPR,
25 which is the gray curve.

1 Next slide, please.

2 And here we have 2045. Once again, there is no
3 curve for the 2024 IEPR. As you saw in the previous slides
4 and even more pronounced here, the 2025 high case, the red
5 curve, is significantly higher than the other cases due to
6 NEM turnover additions.

7 Next slide, please.

8 Thank you to our forecasting team, and I'll hand
9 it back to Heather.

10 MS. RAITT: Great. Thank you, Bobby.

11 So next, we will go to Anne Fisher for some Q&A
12 from the public.

13 COMMISSIONER MCALLISTER: Can I maybe ask maybe a
14 quick clarifying question actually?

15 MS. RAITT: Oh, sure. I'm so sorry.

16 COMMISSIONER MCALLISTER: Yeah. Opens up some
17 space for the dais. But I just have one quick question.
18 All that, I got at the -- you know, been following this, so
19 not surprised to see some of these results.

20 But let's see, Mark, did you -- I probably
21 misheard, when you were talking about attachment rates, I
22 thought I heard that they were sort of more consistent and
23 higher in the non-residential space. Did I hear that right
24 or --

25 MR. PALMERE: No.

1 COMMISSIONER MCALLISTER: No. Okay.

2 MR. PALMERE: The standalone storage is higher in
3 non-residential.

4 COMMISSIONER MCALLISTER: Oh, okay, that's what I
5 missed. Gotcha. Gotcha.

6 MR. PALMERE:

7 COMMISSIONER MCALLISTER: Okay. Okay. That
8 makes sense. That makes sense. And is there appreciable
9 standalone storage in the residential space, like single-
10 family or small multiple family, or just --

11 MR. PALMERE: There's a small amount, like it's a
12 non-zero, but it's not -- it doesn't have that much of an
13 impact on the overall storage numbers.

14 COMMISSIONER MCALLISTER: I would be interested
15 in your sort of take on why that might be the case. I
16 mean, I think, you know, residential customers are sort of
17 a little bit less, potentially less -- a little sacrifice
18 of reliability, you know, sort of is not -- they wouldn't
19 necessarily feel they want to make a big investment to get
20 that tiny little bit of additional reliability or backup,
21 or maybe they're getting gensets or something. I don't
22 know.

23 But it seems like that's a little bit of an
24 underutilized resource, you know, behind-the-meter
25 batteries without PV attached, especially going forward.

1 So I wonder if we'll see more of that going forward.

2 MR. PALMERE: Yeah, we'll definitely keep an eye
3 on that to see if those numbers change. There certainly
4 is, I mean, as electricity, as time-of-use increase, there
5 certainly is more of an incentive to have a battery even
6 without solar. But, yes --

7 COMMISSIONER MCALLISTER: (Indiscernible.)

8 MR. PALMERE: -- I don't have one answer to --

9 COMMISSIONER MCALLISTER: Okay.

10 MR. PALMERE: -- to the question. But I would
11 say generally, I think there's kind of an overlap in
12 customers interested in solar and in batteries. So that's
13 why we don't see a lot of them getting just the batteries.
14 But, yeah, I mean, it is definitely a nuanced issue, and
15 something we'll continue to look at the numbers to see if
16 they change over the years.

17 COMMISSIONER MCALLISTER: I guess I asked partly
18 because, you know, there are utilities in other parts of
19 the world, of the U.S. who are offering standalone battery
20 services as a -- you know, maybe they're more rural and
21 they have more sort of outages in their weaker feeders.
22 But they're offering, you know, subsidized batteries or
23 just, you know, to work with the customer to dispatch and
24 aggregate battery resources as a reliability tool, whether
25 or not there's solar involved. And it's kind of an

1 interesting approach.

2 But, yeah, so anyway, thanks a lot. Really
3 appreciate that.

4 Commissioner Douglas, Commissioner Houck, any --
5 or Raja, any questions for Quentin or Mark or Bobby?

6 COMMISSIONER DOUGLAS: None from me, thank you.

7 COMMISSIONER MCALLISTER: Okay, great.

8 COMMISSIONER HOUCK: Yeah, I don't have any
9 questions either right now.

10 COMMISSIONER MCALLISTER: Okay, great. Awesome.
11 Yeah. Okay. Well, thanks. Thanks a lot.

12 And Heather back to -- or Anne, rather, back to
13 you for a question, Q&A from the attendees.

14 MS. FISHER: Good morning. Yeah, thank you,
15 Commissioner. So we have a few questions in the Q&A.

16 First question is, "Do these behind-the-meter
17 storage figures include non-residential?"

18 MR. PALMERE: The forecast results do include
19 both residential and non-residential. The pairing graph I
20 shared of solar and storage pairing, that is just for
21 residential. So I'm not sure which specifically you're
22 asking about, but the forecast results do include
23 residential and non-residential.

24 MS. FISHER: Thanks Mark.

25 Next question. "Do these figures include

1 commercial, industrial, behind-the-meter storage?"

2 MR. PALMERE: Yeah. So industrial is --
3 commercial and industrial are both subsectors of non-
4 residential. So they would all be included in the forecast
5 storage numbers.

6 MS. FISHER: "How is behind-the-meter storage
7 assumed to dispatch on reliability risk days? Will
8 dispatch assumptions align with performance
9 obligations under utility rate structures?"

10 MR. WILSON: Sorry, just unmuting. Yes, the
11 reliability risk or event dispatch is not considered an
12 IEPR, so that's not part of the results that we presented.

13 MS. FISHER: Thanks, Bobby.

14 We have a number of comments from CalSSA
15 (phonetic). There was one part of this that I did want as
16 a question for you guys. So the question is, you know, how
17 do we handle the ITC ending at the end of 2025 for
18 residential solar and then continuing to 2027 for non-
19 residential?

20 So Mark, could you speak to that a little bit?

21 MR. PALMERE: Yeah. I did want to clarify that
22 we do include nuance on the incentives that I just didn't
23 have a chance to get into those details. But to clarify,
24 we are aware of the continuation of the non-residential
25 storage incentive and that is modeled in our -- included in

1 our model. It's just kind of a way of -- we've kind of
2 modified the model to account for that even saying -- it's
3 kind of a technical thing, but it is considered and we are
4 aware of it in terms of higher potential numbers in non-
5 residential. So the effective cost with just the incentive
6 for storage moving into the next decade is still taken into
7 account. But, yeah, there just wasn't time in the
8 presentation to go into those details.

9 MS. FISHER: Thank you. Yeah, as to those other
10 comments, we do encourage you to either provide a public
11 comment at the end of the workshop today or submit a
12 written comment.

13 Next question.

14 "Do your forecast assumptions include policy drivers
15 such as battery incentives? And if so, incentives
16 already exist at the local level and additional
17 incentive programs are likely to be launched. Are
18 those taken into account?"

19 MR. PALMERE: Yeah, we do assume, just like if
20 you're talking about like general, like for example, the
21 ITC is considered and that's -- or has been considered and
22 that's why our forecast is lowered due to the changes to
23 it.

24 In terms of local incentives, it's just kind of a
25 limitation to our model to capture something at that level.

1 But we do like take into account the current prices that
2 are being paid by the consumer. So we have data from DG
3 stats for that, the distributed generation statistics
4 website from the CPUC to analyze current prices that are
5 being paid.

6 And in terms of like future incentives, it's kind
7 of unclear the fiscal limitations of SGIP in future years,
8 so that's not currently reflected. But we definitely
9 capture as much as we can in terms of other incentives
10 beyond the major one.

11 MS. FISHER: Thank you. "How is behind-the-meter
12 storage assumed to dispatch in general?"

13 MR. WILSON: Yes, for -- okay, I'm unmuted. We
14 assume non-event based dispatch in accordance with peak
15 demand shaving and TOU arbitrage. But for non-res storage,
16 specifically dispatch, the dispatch assumption is that
17 there's a blend of TOU arbitrage and peak demand shaving.
18 And those rates and profiles were sourced from prior SGIP
19 impact evaluations. For residential storage, the dispatch
20 is in accordance with TOU arbitrage. And those were
21 workshopped in a previous IEPR in 2023.

22 MS. FISHER: Thank you. "Would EV to grid
23 application be reflected in behind-the-meter storage at
24 residential level?"

25 MR. WILSON: Yeah, no, we don't include EV to

1 grid in BTM storage.

2 MS. FISHER: Thanks.

3 "Did the CEC team look at public charging hubs for
4 medium duty heavy duty vehicles based on a behind-the-
5 meter microgrid, including chargers, solar and
6 storage?"

7 MR. WILSON: I don't think that was included
8 either.

9 But Mark, you can correct me if I'm wrong.

10 MR. PALMERE: Not specifically, no.

11 COMMISSIONER MCALLISTER: Just, by the way, we
12 are going to have the next session, the next presenters
13 here on Transportation Forecast and electrification of
14 transportation, so maybe they can address those
15 transportation related bidirectional charging and the like.

16 MS. FISHER: Yeah. Great point.

17 I'm not seeing any additional. Oh, here's a
18 question that just came in.

19 "If next year's IEPR Forecast shows that the 2025
20 behind-the-meter high scenario for paired solar and
21 storage systems was realized, what issues does that
22 create for CPUC and CAISO planning processes?"

23 And this may be more of a question for the
24 Commissioners.

25 MR. PALMERE: Yeah, I don't know if it's asking

1 about like the 2025 results in particular. Those, I mean,
2 those are pretty similar among all the low, mid and high
3 cases just because it's, we're looking at like one year
4 forecast.

5 But if the question is like, if next year's
6 forecast, the mid case is equal to this year's high case,
7 then I mean, yeah, we would have to reassess. Obviously,
8 that's, this forecast is a continuing process. And, yeah,
9 I mean, given the big changes to the policy -- to policies,
10 there is a lot of uncertainty right now. And we're hoping
11 to get more certainty as we get more actual interconnection
12 data through all of the changes.

13 I guess that's all I can really say about that
14 now is we do keep -- we do constantly reassess. I mean,
15 each year we either have a new forecast or an update. So
16 if things change, we'll take them into account moving
17 forward. Then, yeah, I mean, there's just a lot of
18 uncertainty in general, so that's part of the process and
19 why we have multiple cases. I mean, not just from solar
20 and storage, but any other load modifier that gets
21 forecasted.

22 MS. FISHER: Thanks.

23 "From a resource planning perspective, should we
24 assume energy needs from behind-the-meter storage are
25 fully resolved and netted from behind-the-meter solar,

1 or should we include in broader energy sufficiency
2 needs?"

3 MR. WILSON: Yes, for our purposes or for our
4 assessment, we assume that all BTM storage is resolved by
5 BTM solar, that the solar generated is charging the
6 batteries.

7 MS. FISHER: Thank you. Next question. "Am I
8 understanding correctly that your low and mid forecasts
9 assume no storage retrofits?"

10 MR. PALMERE: That's correct. That's not a part
11 of the mid and low case, just because right now, based on
12 the data we have so far, there's not evidence to include
13 it, at least at the same, compared to the optimistic high
14 case that is assuming a good amount of retrofits.

15 But as I said, for the last question, that's
16 something that we'll continue to look at the data. If we
17 see evidence that it will be a continuing trend, then we
18 would definitely incorporate it. But as of right now, it's
19 not part of the lower cases, mid and low.

20 MS. FISHER: Thanks Mark.

21 I'm currently not seeing any new questions in the
22 Q&A.

23 MS. RAITT: Great. Unless the Commissioners have
24 more questions, maybe we can move on to the next part.

25 COMMISSIONER MCALLISTER: Yeah, no, thanks a lot,

1 Quentin and Mark and Bobby, really appreciate it, and Anne
2 as well. And really great to see numerous questions coming
3 in from attendees, so thanks for your engagement. And
4 yeah, hopefully that continues going forward for the rest
5 of the day.

6 All right, nothing more from me, and I don't
7 think from my colleagues here on the dais, so let's move
8 forward with the Transportation Forecast.

9 MS. RAITT: Great. Go ahead, Alan.

10 MR. JIAN: All righty. Hello, everyone. Can you
11 all see me? Everything good? Okay. Cool. All right.

12 Good morning, everyone. My name is Alan Jian and
13 I'm a Forecaster in the Transportation Energy Forecasting
14 Unit. Today, I'll be providing an overview of the draft
15 results for the Transportation Energy Demand Forecast.

16 I'll start by providing background on the forecast,
17 including updates made since last year's forecast, and then
18 I'll go over the annual statewide results. Afterwards, my
19 colleague, Elizabeth Pham, will present the hourly forecast
20 results. We'll hold questions until after the
21 presentations are complete.

22 Next slide, please.

23 We have included this list of acronyms for those
24 who are new to this subject area. In particular, I would
25 like to highlight the definition of EV that we will be

1 using for today's presentation. The forecast we will show
2 today focus only on plug-in electric vehicles and the
3 associated electricity demand from them. We will not be
4 discussing the electricity usage associated with the
5 production and generation of other fuel types. The
6 electricity associated with those facilities, such as oil
7 refineries, is included in other parts of the CEC's
8 forecast.

9 So -- oh, next slide, please.

10 So first, some background on the forecast.

11 The forecast acts as a predictive tool to help
12 assess future transportation energy demand. It is used by
13 government agencies, utilities, fuel providers, and many
14 others to plan infrastructure development, adjust energy
15 policies, and implement emission reduction strategies. In
16 essence, it enables better preparation for the evolving
17 energy needs of California.

18 One of the key purposes that the forecast serves
19 to inform is a balanced approach to the proactive planning
20 for electrification. Overestimating the growth of
21 transportation electrification could lead to
22 overdevelopment of infrastructure and associated costs that
23 could lead to affordability issues, and underestimating the
24 rate of growth could lead to delayed development of needed
25 infrastructure and prevent California from achieving its

1 climate and public health goals.

2 At the simplest level, the transportation energy
3 forecast achieves this by taking a pragmatic approach to
4 determining how many and what types of vehicles will be on
5 the road, the types of fuel they will use, how much they
6 will travel, and other factors impacting their consumption
7 of fuel.

8 Next slide, please.

9 We have two types of forecast scenarios, the
10 baseline scenario, which reflects existing market
11 conditions, including regulations that have been actively
12 implemented, and the AATE scenarios, which stands for
13 Additional Achievable Transportation Electrification.
14 These AATE scenarios are designed to reflect the impact of
15 policies across various scenarios that are difficult to
16 implement solely in demand-side vehicle choice models, each
17 of which is reasonably anticipated based on market, policy,
18 and programmatic conditions.

19 Next slide, please.

20 With the increasing levels of uncertainty in the
21 marketplace, the AATE scenarios provide an opportunity to
22 show multiple paths forward, depending on how federal and
23 state policies and other marketplace conditions may evolve
24 over time. The accelerated growth of zero-emission
25 vehicles in these scenarios result from new technological

1 advancements, changing consumer demand patterns, future
2 regulations, and other policy initiatives.

3 Next slide, please.

4 For the 2025 IEPR, we have included a series of
5 AATE scenarios to reflect the changes in policy and
6 significant amount of uncertainty prompted by recent
7 federal government actions. We would also like to mention
8 that given the high levels of uncertainty associated with
9 tariffs on vehicles and components, we have not
10 incorporated any tariff-related price impacts in this
11 forecast.

12 In our analysis, we looked at different zero-
13 emission growth rates across light-, medium-, and heavy-
14 duty vehicle sectors, with a focus on how California may
15 continue on a trajectory towards meeting its zero-emission
16 vehicle goals. Each of these growth rates are then
17 assigned to different AATE scenarios, which is depicted in
18 this table. So, for example, the planning scenario, AATE
19 3, includes a high growth rate for light-duty vehicles
20 while utilizing the baseline forecast for medium- and
21 heavy-duty vehicles.

22 If you're wondering what goes into each scenario,
23 don't worry. In the next few slides, we'll talk about the
24 individual assumptions associated with each growth
25 scenario. And as always, we welcome your input on which of

1 these scenarios would make the most sense to use for
2 infrastructure planning purposes.

3 Next slide, please.

4 So we'll start by discussing the light-duty
5 forecast. In recent years, we have continued to update and
6 improve the light-duty models that we use. The areas of
7 light-duty vehicle usage we cover include personal
8 vehicles, which are the dominant category of light-duty
9 vehicle ownership, as well as commercial vehicles,
10 government-utilized vehicles, and rental fleets.

11 We use choice models to determine what types of
12 new or used vehicles will be purchased by different
13 households, fleets, and other entities. Choices are based
14 on desired characteristics and are informed by preference
15 data gathered through tools like our California Vehicle
16 Survey.

17 The baseline scenario focuses on projecting
18 transportation energy demand in the state by existing
19 vehicle fleets, standard fuel efficiency improvements,
20 anticipated vehicle technologies, population growth,
21 economic drivers, and travel behaviors. The baseline
22 serves as a reference scenario for future transportation
23 energy needs without taking into account significant policy
24 or technology shifts, helping establish a point of
25 comparison for planning purposes.

1 The AATE scenarios build on that baseline
2 scenario and assesses how government policies, regulations,
3 advanced vehicle technologies, such as upcoming zero-
4 emission vehicle offerings, and associated fueling
5 infrastructure further affect energy demand.

6 Previous Transportation Forecasts have modeled the
7 impacts of recent regulations, such as the Advanced Clean
8 Cars II regulation. In absence of this regulation, the
9 AATE scenarios will focus on accelerated technology growth
10 scenarios, some of which could be supported by future
11 regulations, technology advancements, vehicle manufacturers
12 reducing EV prices to offset the loss of the federal tax
13 credit, and other measures.

14 I do want to mention that different organizations
15 sometimes classify Class 2B vehicles in different ways. So
16 for the purpose of this presentation, our light-duty
17 modeling includes those Class 2B vehicles.

18 Next slide, please.

19 So now for the results. Historically, we have
20 seen an increasing number of ZEVs and associated increases
21 in market share for new vehicle sales. I would encourage
22 those interested in finding out more details about
23 California's growing ZEV market to visit the Data and
24 Reports section of the Energy Commission website, which has
25 vehicle and infrastructure statistics available.

1 The baseline scenario shows continued growth in
2 the ZEV population, which reflects both consumer adoption
3 of new zero-emission options that are coming to market, and
4 continued support from vehicle manufacturers that are
5 planning to release new vehicles and updated models. The
6 AATE 2 scenario reflects a moderate growth rate above the
7 baseline, which could result from prospective future
8 regulations and improved economics. The AATE 3 and 4
9 scenarios assume continued high growth that would rely on
10 continued strong support from vehicle manufacturers,
11 increased consumer interest, additional technology
12 advancements opening the market to new segments of vehicle
13 purchasers, and future state and local policy initiatives.

14 Next slide, please.

15 Here, we have included a comparison of the 2024
16 and 2025 ZEV population projections under AATE 3, the
17 planning scenario. As you can see, there are not too many
18 differences, most of which can be attributed to incremental
19 improvements in our forecast, such as regularly updated
20 inputs and improved modeling assumptions, some of which we
21 described earlier.

22 I will point out that some of the leading drivers
23 of change since last year, not just for these results but
24 also for the forecast as a whole, are the increased market
25 share of new vehicle sales and recently updated data on the

1 market, including new models and improved technologies that
2 will be released in the near future.

3 Next slide, please.

4 Similarly, we see changes between the 2024 and
5 2025 light-duty vehicle electricity Demand Forecasts. Many
6 of the year-to-year differences seen here can be attributed
7 to the changing mix of light-duty EVs and changes in travel
8 behavior.

9 Next slide, please.

10 So now on to our medium- and heavy-duty modeling.
11 Our baseline scenario includes input updates similar to
12 those in the light-duty models.

13 In addition, it also assumes the continued
14 manufacturing of a wide variety of vehicles by major
15 vehicle manufacturers. The AATE 2 and 3 scenarios will
16 utilize the ZEV growth rate from the baseline forecast.
17 The AATE 4 scenario, however, will include an accelerated
18 ZEV growth rate that could be spurred by continued
19 technology advancements, accelerated manufacturing by major
20 truck manufacturers, and future regulatory drivers.

21 With the uncertainty on how these factors may
22 play out over the next few years, we have chosen to utilize
23 a simple linear ZEV growth rate starting in 2031.

24 Next slide, please.

25 Here's a look at results for this year's medium-

1 and heavy-duty ZEV on-road freight vehicle stock forecast.
2 The scenarios utilizing the baseline growth rate are shown
3 here in blue. I would like to reiterate that the AATE 3
4 planning scenario utilizes the baseline growth rate for
5 these vehicles, given the uncertainty with prospective
6 measures that might lead to the accelerated growth seen in
7 AATE 4.

8 Next slide, please.

9 Shown here is the decrease in electricity demand
10 when comparing planning scenario values from the
11 Transportation Forecast with the 2025 forecast. This
12 significant reduction in electricity demand is a result of
13 changed growth assumptions between the years. The 2024
14 AATE 3 scenario assumed the implementation of the Advanced
15 Clean Fleets Regulation. With the withdrawal of that
16 regulation, the 2025 AATE scenario assumes baseline growth
17 with no major fleet-side regulatory drivers for accelerated
18 deployment of ZEVs.

19 Next slide, please.

20 For the overall transportation and electricity
21 demand, including cars, trucks, buses, and other on-road
22 vehicles, we see a decline from the demand in last year's
23 forecast. As we discussed, this is primarily due to the
24 lower ZEV truck adoption rate associated with the updated
25 AATE 3 scenario.

1 Next slide, please.

2 That concludes our overview of the statewide 2025
3 Transportation Forecast. I would also like to give you a
4 glimpse into what we'll be looking at for future forecasts.

5 As new policy initiatives are fleshed out, we
6 will factor any relevant details into future modeling.
7 Once tariff impacts on vehicle prices become stable, we
8 will adjust the vehicle price considerations accordingly.
9 We will also look at new data available on the behaviors of
10 existing vehicle owners and prospective vehicle purchasers.

11 And one of the other key areas of interest will
12 be to closely track the rapidly evolving autonomous vehicle
13 sector and determine what impacts it may have on travel
14 behavior, vehicle ownership, electricity demand, and other
15 factors. As a lot of the information surrounding the
16 growth of autonomous vehicles is highly speculative, we
17 will refrain from making any major assumptions about these
18 vehicles until more data is available.

19 And with that, I will turn the discussion over to
20 Liz for the hourly forecast.

21 Next slide, please.

22 MS. PHAM: Hello, everyone. My name is Elizabeth
23 Pham, and I will be presenting an overview of our EV load
24 model and the associated hourly results.

25 Next slide, please.

1 First, let's go over some of the terminology I'll
2 be referring to. Load shapes and load profiles are often
3 used interchangeably. However, we use shape to mean the
4 shape of the hourly load, often normalized, and use
5 profiles to mean both shape and magnitude of the load.

6 Next slide.

7 So here is an overview of the EV load model. It
8 takes in three types of input.

9 The first type are inputs from the IEPR
10 Electricity Forecast. We have light-duty vehicles, medium-
11 and heavy-duty vehicles, and bus energy.

12 The second type of inputs are our load shapes.
13 Load shapes you would typically see at a single-family
14 home, multi-family home, destination charging, which is
15 away from home charging, or in-route charging, as well as
16 commercial vehicles, government, rental. And we have load
17 shapes for medium- and heavy-duty vehicles, as well as bus.

18 And the third type are our economic inputs. So
19 we have EV TOU rates for each of the utilities, TOU
20 schedules, so TOU rates differ based on on-peak, off-peak
21 hours, the season, weekday, weekend, and whether it's
22 residential or commercial. TOU participation, which is the
23 percentage of people participating in TOU rates. Price
24 elasticity factor, which is the price response to
25 electricity rates, and seasonality, which uses quarterly

1 averages of monthly gasoline and diesel sales tax that we
2 are assuming is indicative of electricity consumption.

3 So at a high level, our EV load model takes our
4 IEPR Electricity Consumption Forecast, uses the base load
5 shape to create an 8,760 hourly load profile, and then the
6 load profile is shifted based on the economic input.

7 Next slide.

8 The results that we post online consists of two
9 load profiles, one for light-duty vehicles and one for
10 medium- and heavy-duty vehicles. However, our inputs for
11 load shapes consist of many different types of charging
12 patterns for both light-duty and medium- and heavy-duty
13 vehicles.

14 For the light-duty vehicles, these include load
15 shapes you would typically see at a single-family home,
16 multifamily home, destination charging, which is away-from-
17 home charging or en-route charging, as well as load shapes
18 from commercial vehicles, government, and rental vehicles.
19 And these load shapes were informed by ChargePoint data
20 that we got in 2017.

21 For buses, we have load shapes for school bus,
22 urban bus, these are buses within the city, such as public
23 buses, intercity bus, which go between cities, such as
24 Greyhound, and other bus, which encompasses airport bus,
25 and shuttles, and these load shapes we got from Lawrence

1 Berkeley National Lab.

2 For medium- and heavy-duty, we have load shapes
3 for vehicle classes with gross vehicle weight rating 3
4 through 8, also sourced from Lawrence Berkeley National
5 Lab.

6 Next slide.

7 For assumptions, we are assuming gasoline sales
8 tax informs light-duty seasonal electricity consumption,
9 and diesel sales tax informs medium- and heavy-duty
10 seasonal electricity consumption.

11 For our load shapes and price-elasticity factor,
12 they are all the same for each of the utilities. We
13 recognize that there could be regional differences for
14 these inputs, we just don't have better data to inform them
15 yet. We're hoping to improve these inputs by using AMI
16 data, or advanced metering infrastructure data, but that is
17 still to be determined if possible.

18 Another assumption is that today's charging
19 behavior will stay the same into the future.

20 And lastly, we assume that EV rates, the ratio
21 between off-peak and on-peak hours, remain the same
22 throughout the forecast years.

23 Next slide.

24 For the inputs, I just wanted to go over what is
25 different compared to last year's inputs.

1 For EV TOU rates, every year we update the EV TOU
2 rates for each of the utilities, so those were updated as
3 of October 2025.

4 Seasonality was updated.

5 And then for load shapes, electricity factor, and
6 TOU participation, these all stay the same as well.

7 Next slide, please.

8 Our seasonality uses quarterly averages of
9 monthly gasoline and diesel sales tax from the California
10 Department of Tax and Fee Administration. So we assume
11 that the seasonal pattern in the electricity consumption
12 for light-duty vehicles and medium- and heavy-duty vehicles
13 mirrors those observed in gasoline and diesel sales tax
14 respectively. So this assumption is based on the premise
15 that vehicles miles traveled for gasoline and diesel
16 vehicles follow similar seasonal trends as those for
17 electric vehicles.

18 So on the left side is an index chart for light-
19 duty consumption, and on the right side is an index chart
20 for medium- and heavy-duty consumption. Both have similar
21 distributions. You'll see lower energy consumption in the
22 winter months, so month one, two, and three, and more
23 energy consumption in the summer months, so month seven,
24 eight, and nine. Essentially, seasonality shifted more
25 load to the summer months than the winter months.

1 Next slide.

2 For the light-duty results, here is a comparison
3 between last year's and this year's load profile. We're
4 currently looking at a load profile from 2035, a weekday in
5 September for the CAISO system. The CAISO system is
6 essentially PG&E, SCE, and SDG&E. Much like the annual
7 results Alan previously showed, the 2024 and 2025
8 projections are closely aligned.

9 Next slide.

10 For the medium- and heavy-duty results, here is a
11 comparison between last year's and this year's load
12 profile. Again, we're looking at a profile from 2035, a
13 weekday in September for the CAISO system. Significant
14 reduction in overall load and changing shape resulted from
15 the reduction in EV trucks adoption that was discussed
16 earlier from Alan's presentation.

17 Next slide.

18 Here we have the overall load profile for light-
19 duty vehicles and medium-heavy-duty vehicles for the CAISO
20 system. Again, we're looking at a profile from 2035, a
21 weekday in September. We can see a lot of nighttime
22 charging peaking around 11:00 p.m. to 1:00 a.m., less
23 charging in the early mornings around 5:00 to 6:00 a.m.,
24 and then peaking again around 9:00 a.m. to 11:00. This
25 mid-morning peak is mainly due to our light-duty commercial

1 and government rental vehicles and away-from-home charging,
2 and then load decreasing around peak hours from hours 16 to
3 21 when TOU rates are more expensive.

4 Next slide.

5 With that, we'd like to thank you for your
6 attention and happy to answer any questions.

7 Anne or Quentin?

8 COMMISSIONER MCALLISTER: Thanks so much, Alan
9 and Liz, both, really interesting.

10 I did have one, just one clarifying question for
11 you, Liz. I think you said the charge point data was from
12 2015 or 2017.

13 MS. PHAM: Yeah.

14 COMMISSIONER MCALLISTER: I think it said 2017 on
15 the slide.

16 MS. PHAM: Yeah.

17 COMMISSIONER MCALLISTER: Is there any -- so that
18 seems, you know, given the dynamism in this sector for
19 light-duty, I wonder if there are any -- is there any
20 reason to believe that sort of charging patterns and habits
21 and the like have changed since 2017?

22 MS. PHAM: So our model shifts the EV load based
23 on TOU rates, so the benefit of using data from 2017 can
24 provide a baseline for understanding the typical load
25 patterns and the initial impacts of TOU rates when it's

1 potentially less common.

2 COMMISSIONER MCALLISTER: Oh, okay.

3 MS. PHAM: But, yeah, we do recognize that our
4 data is outdated, and so we currently have AMI data that
5 we're hoping can better inform our load shape.

6 COMMISSIONER MCALLISTER: Great. Yeah.

7 MS. PHAM: -- (indiscernible).

8 COMMISSIONER MCALLISTER: Okay, great. That's
9 where I was going to go with that. Because, I mean, we do,
10 you know, we do have the DMV data, like we know where the
11 cards are registered and we can -- it seems like we can --
12 we could put together a pretty -- get some pretty good
13 insights from looking at those, especially now that we have
14 AI and we can like look at it --

15 MS. PHAM: Yeah.

16 COMMISSIONER MCALLISTER: -- just figure out how
17 to use these big data sets more efficiently. Yeah, so
18 definitely strongly encourage that.

19 I want to -- yeah, and just, it's a bummer to see
20 the impact of the, you know, the withdrawal of the clean --
21 of the Advanced Clean Fuels rules and not surprised that it
22 has that impact. So thanks for sort of laying that out.

23 And I guess on the light-duty, you know, I'm not
24 as tuned into -- you know, Commissioner Skinner is lead on
25 sort of a transportation, you know, market dynamics and

1 those issues directly related to transportation. But I
2 guess I'm wondering on light-duty, it looks like you had
3 not that much difference between last year's and this
4 year's forecast when, you know, again, the federal kind of,
5 you know, posturing has changed. And, you know, the
6 governor's executive order for 2020 -- or 2035, you know,
7 that would require a light-duty to have, to be zero-
8 emission, I guess I'm wondering is, you know, that's a
9 state-level initiative that has not gone away, but
10 certainly the federal dynamics would seem to impact it,
11 especially, you know, no more tax credits and that sort of
12 thing.

13 So I was a little surprised to see the, the
14 light-duty kind of roughly even, and even exceeding the
15 2024 in the out years. So is that just a reflection of the
16 strength of the California EV market or what?

17 I see Andre came on.

18 MR. FREEMAN: Yeah. So thanks for that question.
19 It's a question we get very commonly. And I know Alan
20 mentioned earlier in the presentation, we are not factoring
21 in --

22 COMMISSIONER MCALLISTER: Yeah.

23 MR. FREEMAN: -- tariff impacts.

24 COMMISSIONER MCALLISTER: Oh, right. Yeah.

25 MR. FREEMAN: So the current forecast does look

1 at the removal of the tax credit, which did have an impact
2 in, especially, in the next couple of years.

3 COMMISSIONER MCALLISTER: Mm-hmm.

4 MR. FREEMAN: We have seen some of the OEMs out
5 there trying to adjust their retail prices just on their
6 own, maybe taking less of a profit, a bigger hit to kind of
7 offset that differential. But we do expect when we come
8 back to you with the 2026 forecast, we'll have data on how
9 the tariffs have impacted retail prices, both in the light
10 and medium and heavy duty sides of the equation, since
11 there are tariffs that impact the full spectrum vehicle
12 types. And then we'll, again, barring anything, you know,
13 new coming out of the federal government, we will likely
14 see some type of negative impact built into next year's
15 forecast.

16 COMMISSIONER MCALLISTER: Okay. Okay, great.

17 Thanks, Andre. I appreciate that.

18 Quentin, did you want to chime in as well?

19 MR. GEE: Yeah, thanks, Commissioner McAllister.
20 Yeah, I think Andre got to a lot of it.

21 I would point out that the AATE 2 scenario does
22 capture a little bit. So the AATE 3 scenario for light-
23 duty sort of has that sort of linear increase in proportion
24 of new vehicle sales. The AATE 2 does not until a later
25 date, I think Alan may have mentioned that --

1 COMMISSIONER MCALLISTER: Yeah.

2 MR. GEE: -- but the thinking is that there might
3 be additional market transformations or new policies
4 further down the road that we anticipate in line with
5 things like the governor's executive order. And so I think
6 that AATE 2 sort of serves as kind of a balance point
7 between --

8 COMMISSIONER MCALLISTER: Interesting.

9 MR. GEE: -- a pure kind of like, if everyone's
10 frozen in time today and their attitudes and the EV, you
11 know, model sort of just stays put with those consumer
12 preferences, that's kind of the baseline. And we're
13 expecting something sort of in between there with AATE 2.

14 COMMISSIONER MCALLISTER: Okay. It sure seems at
15 the top end of the market, like for light-duty, that
16 there -- it would be interesting to know sort of the
17 residence time of the first buyer, the car with the first
18 buyer, like with EVs versus other types of cars. Because
19 it seems like there's a certain percentage of folks that
20 are buying new cars, and then sort of either on lease or
21 whatever, but then actually going to the next iteration as
22 battery technology and bells and whistles, it seems like
23 that's -- the EV sort of dynamic there is different than
24 the ICE dynamic. I don't know that, it's just a gut.

25 MR. GEE: Yeah.

1 COMMISSIONER MCALLISTER: And so it would be
2 interesting to sort of pay attention to that. And it sure
3 seems like there's a very robust and growing market for
4 second or used, you know, pre-owned EVs as well. So those
5 dynamics do seem kind of new. And so it'd be good to sort
6 of understand how those impact the growth of the market
7 over time.

8 MR. GEE: Yeah, we are tracking that. I mean,
9 once a vehicle is introduced as a new vehicle sold, it's
10 kind of in the population.

11 COMMISSIONER MCALLISTER: Yeah.

12 MR. GEE: We do have vehicles leaving the state
13 in our stock model.

14 COMMISSIONER MCALLISTER: Mm-hmm.

15 MR. GEE: But we want to make sure we true that
16 up and get a better sense of, you know, like, are these, a
17 lot of these 2022 cars that have been -- EVs that have been
18 leased are now, you know, going into the used market. A
19 lot of them tend to leave the market, leave California at
20 least. But, you know, we want to see like, well, hold on,
21 are they leaving? We're going to be conducting some
22 analysis on the sort of the rate at which the vehicles are
23 staying in state.

24 But, yeah, we're tracking things. I mean, a lot
25 of interesting things in the used market could have impacts

1 later on down the road in the new market as people become
2 more comfortable with EV technology.

3 COMMISSIONER MCALLISTER: Mm-hmm.

4 MR. GEE: Maybe they buy a used one because
5 they're not really sure and then they get more comfortable
6 with it and those sorts of things.

7 We're also trying to track battery investments as
8 well. We weren't able to get the latest data ready in time
9 for the workshop. But we've reported in the past that
10 battery facility, manufacturing facilities in the United
11 States have been growing quite a bit. You know, there have
12 been some setbacks and we're looking to get the latest
13 data, but we're finding that the amount of installed
14 capacity that we expect is well-suited to have a large
15 amount of -- to support a large amount of electric vehicles
16 in the future, which could affect things like prices and
17 other things pertaining to potential market
18 transformations.

19 COMMISSIONER MCALLISTER: Yeah. Yeah, that's
20 really interesting. And prices seem to be coming down and
21 this parity issue of when actually the lines cross, you
22 know, just on the initial investment, right, that seems to
23 be like not too far out. And then like obviously --

24 MR. GEE: Yeah.

25 COMMISSIONER MCALLISTER: -- across ownership is

1 already lower, so, for many cars. So --

2 MR. GEE: Yeah.

3 COMMISSIONER MCALLISTER: -- yeah, so this is
4 great. I really appreciate it.

5 And I want to open up to my colleagues on the
6 dais, Commissioner Houck, Commissioner Douglas, or Raja, if
7 you want to ask any questions as well. We're a little bit
8 ahead of time. So we do have some time. We've got 10
9 minutes or so. We're a little bit ahead of schedule. I'm
10 not hearing questions.

11 MR. RAMESH: No, no questions from me at this
12 point.

13 COMMISSIONER MCALLISTER: Okay, great.

14 Either Commissioner Douglas or Commissioner
15 Houck, any questions for the transportation panelists?
16 Going once.

17 All right, so let's see, I guess, Anne, do you
18 want to -- are there any questions from the attendees that
19 we want to, we need moderation?

20 MS. FISHER: Yes. Thanks, Commissioner.

21 COMMISSIONER MCALLISTER: Great.

22 MS. FISHER: We do have a couple of questions in
23 the Q&A.

24 First question:

25 "Is there a process to integrate future grid

1 considerations from SB 100 or the IRP processes to
2 assess future TOU periods to assess and or drive
3 different overnight charging behavior?" They give an
4 example, "9:00 p.m. to 12:00 a.m. as emerging as a key
5 risk period in the late 2020s."

6 MS. PHAM: So right now there is no process in
7 place. But I think that's a very interesting point, so
8 we'll definitely consider for the next IEPR.

9 COMMISSIONER MCALLISTER: I want to just double-
10 click on that question.

11 The carbon content is not the same as price at
12 this point, there's a little bit of a disconnect, you know,
13 in the time-of-use rates that are there. And we're having
14 this same conversation in the Flexible Demand Appliance
15 Standards context, trying to show, okay, if it's cost
16 effectiveness, you know, dollars, or is it decarbonization,
17 and those two things don't necessarily, you know, map
18 together very well at this moment.

19 And so the nighttime charging, you know, the
20 forcing things out of TOU, and then into nighttime isn't
21 necessarily the best decarbonization strategy. But it
22 would -- it does save consumers money. So we'd love to,
23 you know, work with you all to unpack that.

24 MR. GEE: Yeah, that is an important dynamic for
25 us to consider. It's something. You know, we do show that

1 the model does indicate that there is growth towards a
2 little bit more daytime charging. In the model results, we
3 have, you know, a little bit more of a -- if you look at
4 the light-duty load towards the middle of the day, there's
5 a little bit of load being shifted towards that. But the
6 time-of-use rates do incent a lot of people to charge at
7 12:00 a.m., or in I think, in the So Cal Edison territory
8 at 9:00 p.m.

9 Those, you know, that is something that we want
10 to like have more fully considered conversations about
11 with, you know, all kinds of different folks. On the one
12 hand, you know, we have this suspicion, like you mentioned,
13 Commissioner, with the issue around carbon emissions and
14 nighttime activity and nighttime -- not peaking necessarily
15 at night, but high, high amounts of load at night. That is
16 something that, you know, the forecast says, like, if you
17 continue to keep things this way, right, this is what you
18 can anticipate.

19 COMMISSIONER MCALLISTER: Yeah.

20 MR. GEE: So we have to balance that between what
21 kinds of goals do we want to have towards encouraging more
22 zero carbon or low carbon transportation options.

23 So that's something that we will be continuing to
24 talk with different partners with on this issue, because it
25 is a sensitivity, right?

1 COMMISSIONER MCALLISTER: Right.

2 MR. GEE: We don't want to -- we're producing a
3 forecast that says, like, here's what we expect it to be.

4 COMMISSIONER MCALLISTER: Yeah, what's happening,
5 yeah.

6 MR. GEE: We can't say, like, well, if everything
7 works out just perfectly, right, then, you know, we'll have
8 this, everything happen here.

9 COMMISSIONER MCALLISTER: Yeah. Yeah.

10 MR. GEE: So we're trying to make sure that there
11 are policy insights as well from the --

12 COMMISSIONER MCALLISTER: Yeah, exactly. I mean,
13 I think that's your value here in the analysis coming up
14 with some, well, you know, actually, there might be a need
15 for policy to sort of emphasize middle of the day versus
16 the middle of night.

17 I guess a related question is, and this isn't --
18 well, it's sort of, kind of related to the forecast, but
19 slightly different issue. Are you sort of up to date on
20 efforts to avoid just like this spike at midnight or at
21 9:00 p.m. or whatever, like when the TOU expires and a
22 bunch of cars are already plugged in and, boom, they sort
23 of start charging all at once when the TOU period expires?
24 You know, that is a reliability, potential reliability
25 issue and could drive a peak right in that hour --

1 MR. GEE: Yeah.

2 COMMISSIONER MCALLISTER: -- at least locally.

3 So are you looking at that?

4 MR. GEE: So that cuts in. I think that, that
5 question kind of cuts at two separate levels on, you know,
6 we're --

7 COMMISSIONER MCALLISTER: Yeah.

8 MR. GEE: -- we're trying -- the forecast overall
9 is sort of a system level forecast --

10 COMMISSIONER MCALLISTER: Yeah, exactly.

11 MR. GEE: -- that is thinking more about kind of
12 like resource planning and procurement and those sorts of
13 challenges. Right now we're not seeing, even with the TOU
14 rates kind of pushing a lot of people to charge at
15 midnight, we're not seeing I think a midnight peak in the
16 load model anytime within the forecast period.

17 COMMISSIONER MCALLISTER: Yeah.

18 MR. GEE: We are seeing, you know, you sort of
19 draw a chart --

20 COMMISSIONER MCALLISTER: It would be a transient
21 spike; right?

22 MR. GEE: -- at what is 12:00 a.m. compared to --

23 COMMISSIONER MCALLISTER: Yeah.

24 MR. GEE: I'm sorry. What's that?

25 COMMISSIONER MCALLISTER: It would be like a

1 transient spike; right? So a potentially reliability
2 issue, but not necessarily impacting like average load
3 shapes or the forecast.

4 MR. GEE: Yeah. So at the grid level, we're
5 seeing it maybe 12:00 a.m. compared to the peak, you know,
6 gets a little closer to the peak, but doesn't become the
7 peak.

8 COMMISSIONER MCALLISTER: Yeah, exactly.

9 MR. GEE: However, I think, as you mentioned at a
10 distribution level, or even at a local, you know, direct
11 like residential transformer that's serving like --

12 COMMISSIONER MCALLISTER: Mm-hmm.

13 MR. GEE: -- you know, six to ten homes; right?
14 That can be a concern --

15 COMMISSIONER MCALLISTER: Yeah.

16 MR. GEE: -- if everyone there has an EV and has
17 it set to a 12:00 a.m. charge.

18 So yeah, we are thinking through a lot of these
19 things around our demand flex tool and some other --

20 COMMISSIONER MCALLISTER: Yeah.

21 MR. GEE: -- things that help with managed
22 charging. Right now, time-of-use is a great way to
23 encourage people and offer people an opportunity to save
24 money and actually drive for way less per mile, cost per
25 mile than gasoline alternatives. But there is this kind of

1 challenge about getting people to do it in such a way that
2 it doesn't create additional problems as more and more
3 people own EVs. So we are --

4 COMMISSIONER MCALLISTER: Great. Okay.

5 MR. GEE: -- going to be using that in our demand
6 flex tool and thinking through that more.

7 COMMISSIONER MCALLISTER: All right. Thanks for
8 all that context. I really appreciate it.

9 So back to you, Anne, to moderate additional
10 questions.

11 MS. FISHER: Thanks. Yeah. And I saw Nick
12 Pappas (phonetic), who asked the initial question, put some
13 additional comments in the chat, so thanks. That was a
14 great conversation on that topic.

15 Next question.

16 "On the TE load modifiers, stock of the medium duty
17 heavy duty vehicles forecast on slide 12, is it
18 possible to get the vehicle count forecast detailed by
19 vehicle class for 2030 and 2035?

20 MR. JIAN: Yeah, sure. I mean, for those sorts
21 of like data requests, you can reach out to me or Andre,
22 and we can help you out with that. So, yes.

23 MR. FREEMAN: And for those who haven't seen it
24 before, at the end of every IEPR cycle, we post all the
25 details from our Demand Forecast to what's called the

1 Planning Library. So we'll be able to provide that link to
2 folks once it's released, but it will have the forecast
3 down at the, broken down by individual vehicle class and
4 fuel type as well.

5 MS. FISHER: Great. Thanks, Alan and Andre.

6 Next question. Sorry, my chat just jumped.

7 "Would it be fair to say, given the various
8 uncertainties discussed today, that this forecast is
9 more speculative than in the past?"

10 MR. FREEMAN: You know, that's a great question,
11 Andy. You know, every year there's a lot of uncertainty
12 associated with the transportation sector. You know,
13 it's -- I don't -- I wouldn't say that one year is much
14 more speculative than the others. When we release the
15 forecast this year, for example, we try to outline the
16 areas that we -- of high uncertainty, that we aren't
17 incorporating into the forecast, such as tariffs this year,
18 which you heard. We do expect to see those impacts over
19 the next 6-12 months and be able to integrate that into the
20 2026 IEPR.

21 But even if you look at last year's
22 Transportation Forecast, you know, we did model out all of
23 California's existing or pending regulations that were
24 there at the time. And we did have to give a caveat that
25 some of them did need additional approvals at the federal

1 level, so there was that uncertainty outline there.

2 So I don't want to tag, you know, various years
3 as being more or less speculative than another. I do think
4 that there's a lot more uncertainty this year on the price
5 side for vehicles, primarily because of tariffs and other
6 impacts. But I wouldn't say that it's significantly
7 different than last year, because as I said, each year,
8 there are various areas of uncertainty that we try to
9 highlight alongside the forecast.

10 MR. GEE: Yeah, and I would add to Andre's point
11 that, yeah, I wouldn't characterize this forecast as
12 speculative. We have produced more scenarios to account
13 for the various uncertainties. And, you know, as, you
14 know, the Commission and our public agency partners sort of
15 talk these scenarios through, and the combination of them
16 all, and how that should impact the forecast, how they
17 should interrelate to the forecast overall, I think that we
18 will come to a decision that a Planning Forecast and a
19 Local Reliability Managed Forecast that we can feel
20 confident with is suitable for planning.

21 So, yes, there's a lot more variety in the
22 scenario. So I guess in that way, there's more
23 speculativeness in a very broad way. But I wouldn't want
24 to characterize it as just kind of like, well, you know,
25 like, what if, you know? So not quite sure exactly what

1 you mean by the term "speculative," but there is more
2 variety in the forecast outputs across the load modifiers.

3 MS. FISHER: Thanks, Quentin and Andre.

4 Next question.

5 "Regarding TE and the baseline, AB 2700 requires
6 including in distribution planning and investments,
7 all the CARB regs. Does the baseline forecast include
8 all the CARB recent regs that have waivers, ships at
9 berth, SORE for forklifts, cargo handling, airport
10 GSE, and also air district regs? Does the on-road
11 include CARB regs such as clean mile standard and
12 airport shuttles?"

13 MR. FREEMAN: So the forecast that we showed
14 today was just for light-, medium- and heavy-duty on-road
15 vehicles. And those do include the kind of pre-existing
16 CARB regulations that were put in place prior to this year,
17 including Clean Mile Standard, Airport Shuttle, and others.
18 It does not incorporate things like Advanced Clean Cars II
19 or Advanced Clean Fleets, which was drawn, which we talked
20 about previously.

21 For some of those off-road transportation sources
22 that you mentioned, and also the SORE regulation, we do
23 have off-road equipment incorporated into the larger
24 forecast beyond the Transportation Forecast. So, yes,
25 those impacts are baked into kind of the larger electric

1 and other fuel type demand that the CEC forecast puts out.

2 MR. GEE: Yeah. Yeah, just to kind of add on a
3 little bit more, the -- as Andre mentioned, these are not
4 load modifiers in the strict way that we're defining them
5 here, but that we do incorporate them in the sector models,
6 and those factors are considered there. So we do have, I
7 believe we do have some information pertaining to that that
8 we could post in the planning library.

9 MS. FISHER: Great. Thank you.

10 Next question.

11 "Someone mentioned that there's a slight shift for
12 midday charging in the forecast. Does the model
13 account for how as EV adoption expands to broader
14 demographics, there may be more midday charging from
15 drivers who can't install a charger at home, for
16 example, renters?"

17 MR. GEE: Yeah, that's precisely what the model's
18 doing there. We do anticipate more what we call away-from-
19 home charging that would capture things like fast charging
20 and other what we might call, what one might consider
21 destination charging, where you arrive like at a hotel and
22 you plug into a Level 2 charger at that location. So
23 that's -- we are anticipating more of that.

24 We do have a distinct load shape for multifamily
25 homes, which are best captured by renters versus single

1 family homes, which oftentimes have some kind of direct
2 capability to charge either Level 1 or Level 2 at the home.

3 MS. FISHER: Thanks Quentin.

4 And I see there's kind of a related question more
5 on the medium-duty/heavy-duty.

6 "Are you seeing any difference in the medium-
7 duty/heavy-duty charging patterns, depot versus public
8 charging plaza or otherwise, due to ACF?"

9 MR. GEE: Well, we are not including the ACF rule
10 in this year's forecast directly, or at least not in the
11 AATE 3 scenario. We are including something akin to it
12 there in the AATE 4 scenario, but we're not monitoring
13 directly. The forecast is not capturing the precise sort
14 of patterns associated with how that regulation works
15 without and depot versus -- depot charging versus public
16 charging.

17 The load shapes do capture, the medium- and
18 heavy-duty baseline load shapes do capture a broad array of
19 intended charging. And we are going to be working -- we
20 are currently working with the CPUC on what's called TEPP,
21 or the Transportation Electrification Proactive Planning,
22 effort in further breaking out depot -- excuse me, plaza,
23 MDHD plaza charging or public charging as a distinct
24 component versus depot charging.

25 Andre, was there anything you wanted to add on to

1 that?

2 MR. FREEMAN: Yeah, I was just going to add in
3 because I know we've got a -- we've had a couple of
4 questions on, you know, how charging patterns might change
5 over time due to TOU changes, regulatory changes, you know,
6 just natural changes in consumer behavior of how and when
7 they're charging their vehicles.

8 I did want to mention that kind of outside of
9 this IEPR proceeding, the Energy Commission does have other
10 efforts such as the infrastructure planning activities that
11 our Fuels and Transportation Division is on point for. And
12 as part of those activities, they both monitor and develop
13 reports that really try to stay on top of the ever-evolving
14 world of light-, medium- and heavy-duty vehicle charging.

15 And through some of those efforts, we're
16 collecting more data, getting more insight from people, for
17 example, for this question, for charging companies who have
18 developed depots and who are looking at prospective
19 corridor or other charging needs to really start providing
20 us more and more data that we can integrate into the future
21 forecast that might change up some of those shapes that
22 you've previously seen in our presentation.

23 But we're really looking for data that will help
24 drive our understanding of how the market's changing. And
25 I think as far as impacts from something like ACF go,

1 that's still a relatively recent occurrence. So hopefully,
2 you know, throughout later this year and early next year,
3 we'll start to see more data that will help us kind of
4 refine that charging shape for next year's forecast.

5 MS. FISHER: Thank you.

6 Next question.

7 "Are you working on adding additional spatial
8 granularity on your TE forecasts so they can support
9 distribution planning more? Is that the forecast zone
10 assignments?"

11 MR. JIAN: I guess I can chime in on this one.
12 So we do actually disaggregate our like TE forecast a
13 little bit further with something called the load bus
14 allocation. So that helps disaggregate it down to the
15 substation level.

16 That being said, yes, I mean, we are still like
17 very interested in like improving the spatial granularity
18 of like this forecast itself. But, yes, so to answer your
19 question, yes.

20 MR. FREEMAN: And also, as Quentin mentioned
21 earlier, we are working very closely with the teams at the
22 Public Utilities Commission, and also teams for most of the
23 major utilities as they try to kind of grapple with their
24 own internal forecasts for, you know, exactly where this
25 load's going to appear, what type of distribution and

1 transmission level upgrades are going to need to happen.
2 So there's a lot of internal and external conversations
3 going on in that space.

4 And as Alan mentioned, you know, as we get more
5 and more data, we will utilize that to kind of improve our
6 existing processes to put out a more granular forecast and
7 continue to work with those other folks who rely on using
8 our Transportation Forecasts for their own purposes.

9 MS. FISHER: Great. Thanks, Alan and Andre.

10 "What significance do you assign to workplace
11 charging in 2035?"

12 MS. PHAM: Is this question kind of asking how
13 much of the charging, like what percentage of the charging
14 is dedicated to workplace charging? If so, then it's kind
15 of significant in 2035. It's about like 40 percent, which
16 we could rethink if that's too aggressive for people.

17 MR. GEE: Yeah, we do. Yeah, it's a little bit
18 unclear exactly how to parse out how much is workplace
19 versus other DC -- you know, versus other charging.

20 But, yeah, Liz is right that we've got a good
21 chunk of charging that occurs away from home in, say,
22 forecast year 2035, more so than occurs away from home
23 today. Away from home is a broad category. As you might
24 imagine, that could include DCFC, you know, the fast
25 charging, you know, that can charge your car in, you know,

1 15 to 30, 40 minutes versus Level 2 charging where you
2 might imagine someone could show up to work, plug in for
3 four hours or maybe the whole day and charge their car up
4 you know, while they're sitting at work or something.

5 Right now, you know, as Liz mentioned earlier,
6 we're doing a lot of AMI, or advanced metering
7 infrastructure, analysis. Right now, it's hard for us to
8 fully parse out exactly like workplace charging versus --
9 we only have meter data. So we can tell what's happening
10 at a fast charging site and we can tell the charging that's
11 happening at a home with an EV, but we can't necessarily
12 tell what's happening at a big, huge warehouse site or a
13 big, huge retail site that installed like 10 chargers on
14 the same meter. That's a little bit harder for us to parse
15 out, but we are going to continue thinking through how to
16 best assess workplace charging and the dynamics there.

17 MS. FISHER: Yeah. Thanks, Liz. And thanks,
18 Quentin.

19 That's the last question that I'm seeing in the
20 Q&A, so -- oh, I saw Commissioner McAllister.

21 COMMISSIONER MCALLISTER: Yeah. I really
22 appreciate this interaction and thanks for all the
23 attendees for asking great questions. I wonder about
24 institutional and fleets. And I was distracted just for
25 one second to do something else that came in, so maybe you

1 mentioned this, but I wonder sort of, you know, how you're
2 thinking of that or how you actually are paying attention
3 to that and getting data about it and sort of figuring out
4 how to incorporate the fleet side of things into the
5 forecast?

6 MR. GEE: Sorry, Commissioner McAllister, when
7 you say fleet, do you mean like a fleet of light-duty cars
8 or do you mean --

9 COMMISSIONER MCALLISTER: Yeah, or school buses
10 or --

11 MR. GEE: Or school buses.

12 COMMISSIONER MCALLISTER: -- you know, police. I
13 mean --

14 MR. GEE: Yeah.

15 COMMISSIONER MCALLISTER: -- a lot more of that
16 is going to be coming; right? And so --

17 MR. GEE: Yeah.

18 COMMISSIONER MCALLISTER: -- yeah, both. I guess
19 it applies to both light and medium and heavy -- or light
20 and medium, I guess. But, yeah.

21 MR. GEE: Yeah, so when it comes to things like
22 school buses, I think Liz mentioned earlier in her
23 presentation that, you know, we do have a school bus load
24 shape --

25 COMMISSIONER MCALLISTER: Yeah.

1 MR. GEE: -- we have school bus population --

2 COMMISSIONER MCALLISTER: Okay.

3 MR. GEE: -- so that's pretty straightforward to
4 do.

5 COMMISSIONER MCALLISTER: Right. Yeah.

6 MR. GEE: We are assigning that mostly only at
7 the forecast zone level. When it comes to, say, light-duty
8 fleets, we do have -- so our light-duty model does have
9 different types of light-duty cars. So there's private or
10 personal vehicles, there are commercial vehicles, there are
11 government vehicles --

12 COMMISSIONER MCALLISTER: Oh, okay.

13 MR. GEE: -- and there are rental vehicles.

14 COMMISSIONER MCALLISTER: Okay.

15 MR. GEE: So we have four categories.

16 COMMISSIONER MCALLISTER: So the counties and
17 cities that are transitioning over to electric, you've got
18 those covered? That's my, I guess, my question.

19 MR. GEE: I'm sorry, could you say that?

20 COMMISSIONER MCALLISTER: The counties and cities
21 and the local governments and, you know, the larger, the
22 institutions that are moving to electric, you have good
23 information and are paying close attention to that?
24 That's, I guess, that's what I'm getting at.

25 MR. GEE: Yeah, we do have --

1 COMMISSIONER MCALLISTER: Yeah.

2 MR. GEE: -- we do have those different fleet
3 types and different load shapes for them.

4 COMMISSIONER MCALLISTER: Great.

5 MR. GEE: And different load shapes for them.

6 COMMISSIONER MCALLISTER: Great. Perfect. All
7 right. Well, thanks.

8 I just want to give one more opportunity to
9 others on the dais, Commissioner Douglas or Commissioner
10 Houck, if you wanted to follow up with any questions. And
11 we're almost back sort of on schedule here.

12 COMMISSIONER DOUGLAS: No questions from me.

13 Thank you.

14 COMMISSIONER MCALLISTER: Okay, great. Great.
15 Well, thanks. Thanks to all of you for really insightful
16 presentations. Inspires a lot of confidence in your work
17 and really appreciate the insights.

18 MS. FISHER: Thanks.

19 COMMISSIONER MCALLISTER: Great. So, I think,
20 Heather, we're going to Asish Gautam --

21 MS. RAITT: Yes.

22 COMMISSIONER MCALLISTER: -- to talk about the
23 known loads.

24 MS. RAITT: Yeah. Great.

25 COMMISSIONER MCALLISTER: Hey, Asish.

1 MR. GAUTAM: Hey. Hello, Commissioner
2 McAllister. My name is Asish Gautam and I'll be going over
3 the draft impacts for the known loads for this year's IEPR
4 Sales Forecast.

5 Next slide, please. The known loads -- thank
6 you.

7 The known loads dataset contains requests from
8 utility customers to energize new load. It is used in the
9 CPUC's DER proceeding. And this proceeding is meant to
10 encourage proactive distribution system planning to meet
11 various goals, including building and transportation
12 electrification.

13 Another focus of this proceeding is to identify
14 local areas in need of infrastructure investments for
15 future GRC cycles. The IOUs are including customer
16 energization requests captured in the known loads dataset
17 as part of their efforts to support distribution planning.

18 The utilities note that projects captured in the
19 known loads dataset show potential for more load growth in
20 the near term than what is reflected in the IEPR system
21 forecast. So our interest in working with the known loads
22 dataset for this IEPR cycle is to use it as a way to bridge
23 the gap in load growth occurring in the near term.

24 And so we worked with the CPUC to issue a data
25 request to the IOUs to collect project-level data in the

1 known loads dataset. It gives an example of some of the
2 fields that we collected on. And then, to the right, I
3 show examples of the different types of loads that's
4 captured in the unknown loads dataset. You can see there's
5 different types of housing development and various
6 commercial buildings that customers are interested in
7 constructing and eventually energizing.

8 Just a quick note that for this analysis, we are
9 excluding projects dealing with transportation
10 electrification as we have a separate forecast for
11 transportation, which we just covered, and that will be
12 handled by Quentin and his team.

13 Next slide, please.

14 I wanted to go over some of the assumptions we
15 made regarding the known loads data when it came to
16 translating the capacity requested to sales.

17 First is the project cancellation rate. While
18 the known loads data is considered to have some degree of
19 certainty that the projects will finish construction and be
20 energized, we do know projects do get canceled, and so
21 there is some degree of uncertainty with projects listed in
22 the known loads dataset. We used the August 2025 filing by
23 the utilities to come up with the cancellation rates.

24 The second area I want to discuss is the ramp
25 rate. Our assumption for ramp rate is meant to address the

1 lumpiness associated with projects finishing construction,
2 but that doesn't mean that 100 percent of the load will
3 come online just as construction is completed. As an
4 example, if a 100-unit apartment building finishes
5 construction, it doesn't mean all 100 units will be
6 occupied right away. It takes some time, so we made some
7 assumptions about how load will materialize over time.

8 The next assumption we want to discuss is the
9 utilization factor. This factor is meant to adjust the
10 capacity requested to reflect what we think will be the
11 actual peak demand. However, based on the use case, you
12 may actually want to use 100 percent of the capacity
13 requested, especially in the case of distribution system
14 planning where you're assessing local infrastructure needs.

15 But for load forecasting, we need something a
16 little different where we are trying to forecast
17 consumption. Generally, we don't expect customers to use
18 100 percent of the capacity requested all the time, so our
19 challenge is to find the balance between using a
20 utilization factor that is too high and risking
21 overestimating sales consumption. At the same time, we
22 don't want to use a low utilization factor or we may
23 underestimate consumption.

24 Next slide, please.

25 This slide shows the utilization and cancellation

1 rates by IOU. Again, regarding utilization factor, as I
2 mentioned earlier, we don't expect customers to use 100
3 percent of the capacity requested, so that is the reason
4 for this adjustment.

5 For this cycle, we were able to obtain meter data
6 on completed projects for PG&E to look at how completed
7 project from the known loads dataset, how their maximum
8 demand varied monthly relative to the capacity requested in
9 the known loads dataset, and we were able to estimate an
10 average utilization factor for the three different load
11 sectors there. You can see for industrial sector for PG&E,
12 we estimate about 53 percent utilization factor, 65 percent
13 for commercial, and almost 100 percent for ag.

14 We did not get meter data for Edison, but we
15 understand that SCE makes an adjustment to capacity
16 requested by customers to account for what they believe
17 will be the estimated peak based on Edison's experience
18 working with customer utilization requests.

19 We encountered an issue with AMI data for SDG&E,
20 and we were unable to reconcile our meter data for SDG&E
21 completed projects, but we continue to work with SDG&E and
22 our IT Team to resolve this issue. And so for SDG&E, we
23 try to keep the utilization factor close to SCE.

24 We do have an interest in continuing this meta-
25 analysis for the next IEPR cycle, so we do hope to reach

1 out to SCE to get more meter data, to get meter data, and
2 hope to resolve our issue with the meter data we have
3 experienced for SDG&E.

4 Next slide, please.

5 This slide, it's going to show our overall
6 methodology for how we translated capacity requested to
7 annual sales. Starting from left and going to the right,
8 we start with the assumptions that I just discussed, along
9 with information for the known loads data set, such as
10 capacity requested, the customer sector, and the
11 energization date. And then we apply load profiles to
12 estimate annual sales and compare the load growth from the
13 known loads to our baseline forecast of sales by a sector.
14 We are only including the incremental portion of known
15 loads that exceeds our baseline forecast to avoid double
16 counting load growth.

17 And I just want to emphasize that since this is
18 our first time looking at the known loads data set, we are
19 recommending that the impacts from known loads only be
20 included in the local reliability scenario to limit
21 downstream impacts to other proceedings that rely on the
22 IEPR Demand Forecast as an input.

23 Okay, next slide, please.

24 And this slide shows the capacity, cumulative
25 capacity of projects for PG&E service area, again,

1 excluding transportation projects. For 2026, we expect
2 about 3,500 megawatts online, growing to about 4,500
3 megawatts by 2030. Just under 80 percent of the capacity
4 is in the non-residential sector, and just a little over 20
5 percent in the residential sector.

6 Next slide, please.

7 In this slide, we show the result of applying the
8 assumptions that I discussed earlier and our methodology to
9 translate the capacity to annual sales. Here we show sales
10 for PG&E to increase by just under 11,000 gigawatt hours by
11 2026 and growing to just a little over 13,000 gigawatt
12 hours by 2030. Roughly three quarters of the sales is in
13 the non-residential sector and about a quarter in the
14 residential sector. For reference, by 2030 the increase is
15 about 15 percent, 15 percent of PG&E's 2024 reported sales.
16 So this is quite a bit of load expected to come online
17 fairly quickly.

18 Next slide, please.

19 And this slide shows the capacity of projects in
20 Edison's territory, again, excluding transportation
21 projects. By 2026, we expect a little over 2,000 megawatts
22 online, growing to just over 2,500 megawatts by 2030.
23 Roughly 70 percent of the capacity is in the non-
24 residential sector and about 30 percent in the residential
25 sector.

1 Next slide, please.

2 Here we show the net effect of, again, applying
3 our assumptions to translate capacity to sales. By 2026,
4 we expect just a little over 5,500 gigawatt hours of sales
5 and growing to just over 8,000 gigawatt hours by 2030.
6 Roughly three quarters of the sales is in the non-
7 residential sector and about a quarter in the residential
8 sector. And as a way of reference, by 2030 the increase is
9 about nine percent of SCE's 2024 reported sales. So again,
10 this is a fair amount of load expected to come online
11 fairly quickly.

12 Next slide, please.

13 And in this slide, we show the capacity of
14 projects in SDG&E's territory. By 2026, we're roughly
15 expecting 25 megawatts online, growing to about just over
16 300 megawatts by 2030. A little over 80 percent of the
17 capacity is in the non-residential sector and just under 20
18 percent in the residential sector.

19 Next slide.

20 And here we show the -- how we -- the impact of
21 translating the capacity to sales. Roughly, we expect
22 about 80 gigawatt hours of sales in 2026, increasing to
23 about 800 gigawatt hours by 2030. Just over 80 percent of
24 the sales in the non-residential sector and just under 20
25 percent in the residential sector. As a reference, by 2030

1 the increase is about five percent of SDG&E's 2024 reported
2 sales.

3 Next slide, please.

4 This slide shows the impact of the known loads at
5 the statewide level, comparing our planning and local
6 reliability scenarios. The blue line on the bottom is the
7 planning scenario. The orange line is the local
8 reliability scenario. And the green line is the local
9 reliability scenario with the impact of known loads
10 included.

11 In 2026, sales in the local reliability scenario
12 with known loads is about seven percent higher than the
13 planning and the local reliability scenario without
14 considering the impact of known loads. By 2030, sales in
15 the local reliability scenario with known loads is about 10
16 percent higher than the planning scenario and 8 percent
17 higher than the local reliability scenario without
18 considering the impact of known loads. And this trend
19 stays throughout the forecast period.

20 Next slide, please.

21 Here, I'd like to kind of go over our next steps.
22 We do have an interest in refreshing our data. This data,
23 the known loads data set we have, comes to us as current as
24 of May. And we do want to try to update that. Based on
25 our last experience working with utilities, it was a pretty

1 manual process compiling some of this data, especially
2 extra data fields that we had requested that's not part of
3 the overall known loads data set. And so we want to work
4 with utilities to try streamline the data collection
5 process going forward.

6 And then we are interested in studying the, you
7 know, how these projects can get completed and if they're
8 sticking to the energization dates that were requested,
9 given the magnitude that we were sort of anticipating to
10 see over the forecast horizon.

11 And other areas of work left to do, we do want to
12 allocate the impacts to different LSCs. We do want to
13 continue our AMI analysis, especially for Edison and for
14 SDG&E.

15 Another area we are looking to explore is to have
16 a better understanding of the new pending loads data set
17 that's going to be included in future distribution planning
18 cycles. We would like to explore using this data set in
19 future epicycles, especially to inform our scenario
20 analysis.

21 Lastly, we have initiated a project with our
22 consultant Itron (phonetic) to explore options on how we
23 can bridge our system forecast to best for distribution
24 system planning. This work has only recently started, so I
25 don't have any anything needed to share as of now, but we

1 may have more information to share in a future DAWG or IEPR
2 workshop. We're starting this project by briefing the
3 Itron team with our overall forecasting approach, and then
4 we hope to engage our stakeholders to get their input. So
5 we do plan to reach out to CPUC, CAISO, and the utility
6 distribution planning staff as always next year. Again,
7 the goal of this project is to develop an approach to
8 extend our system level forecast to better support
9 distribution system planning.

10 I believe that's the end of my slide, and I'll
11 take any questions.

12 COMMISSIONER MCALLISTER: Thanks a lot. Great.
13 Thanks a lot, Asish. Really appreciate that. And just,
14 you know, maybe a little bit of context. I think you laid
15 it out properly but, you know, really well. And to the
16 previous panel question about sort of, you know, the
17 speculative -- sorry, is it fair to say it's more
18 speculative? I think this is one example of, you know, the
19 agencies working together to identify an area that they
20 want to drill into more and really sort of surface
21 potential issues that may come up, you know, over and above
22 the kind of baseline forecast and just make sure we're
23 paying attention to all the corners of demand that, you
24 know, that we have to that add up to the managed forecast.

25 So, you know, kudos to the team for really

1 rolling up your sleeves and digging into that and figuring
2 out what loads we know and, you know, whether their loads
3 may or may not and trying to sort of give a handicap, you
4 know, probability and assess sort of the likelihood of
5 different loads developing. So appreciate that. I got a
6 briefing really recently on this, so I will not ask any
7 more questions.

8 But wanted to just invite Commissioner Douglas.
9 I think Commissioner Houck had to step out. I'm not sure
10 if anyone else has joined us.

11 And Raja, just confirming that Vice Chair Gunda
12 has not joined us.

13 MR. RAMESH: Yeah, correct.

14 COMMISSIONER MCALLISTER: Okay, great. All
15 right. Well, terrific.

16 Anne, did you want to step in and do -- if there
17 are any other questions in the Q&A and get those addressed
18 before we break?

19 MS. FISHER: Sure. Yeah. Thanks, Commissioner.

20 All right, we have a few questions in the Q&A.

21 First question.

22 "On slide four, do you all have any idea why PG&E's
23 utilization factor for commercial and industrial is so
24 much lower than the other IOUs?"

25 MR. GAUTAM: Yeah. So as I mentioned, for PG&E,

1 we looked at completed projects from their known loads
2 dataset and looked at their meter data to look at how their
3 peak demand, monthly peak demand varied relative to the
4 capacity requested. And so what we've seen the actual
5 meter data is the actual utilization to be much lower.

6 For SCE and SDG&E, we weren't able to do a
7 similar analysis. And so we are relying on the capacity
8 that's reported in their known loads data. So it is an
9 issue, but, you know, we considered maybe applying a
10 uniform factor. But at this point, we decided to hold off
11 on that. You know, customers, they can be very different
12 from each other, especially if we have different utilities
13 and different customer classes and whatnot.

14 So for future, we do want to try to refine how we
15 develop those factors and extend that to Edison and to
16 SDG&E by actually collecting the underlying AMI data to do
17 a similar analysis that we did for PG&E.

18 MS. FISHER: Yeah. Thanks, Asish.

19 Next question.

20 "Do your slides 6 through 11 just show the known loads
21 that exceed your baseline or the total known loads?
22 Do you expect the delta between the known loads and
23 your baseline to increase over time?"

24 MR. GAUTAM: Yeah, so in slides 6 to 11, I'm just
25 showing the extent of the known loads that exceed our

1 baseline forecast.

2 As far as the delta increasing, so if we update
3 our known loads dataset and there's been more customer
4 requests for projects, then, yeah, so then yes, the delta
5 will grow over time. But right now, we're using the May
6 version of the known loads dataset that we received from
7 the utilities.

8 MS. FISHER: Yeah. Thank you.

9 Next question.

10 "Similar to Katie's question on slide 4, you mentioned
11 a desire to refine the SCE and SDG&E utilization
12 factors. Do you think any -- or do you have any
13 specifics you could share about how you're thinking
14 that may be done?"

15 MR. GAUTAM: Yeah. So again, the way we did it
16 for PG&E was to take a look at the completed projects and
17 look at how their maximum demand varied relative to
18 capacity to derive a utilization factor and replicate that
19 same analysis for SCE and SDG&E.

20 MS. FISHER: Thanks.

21 Next question. "I'd like to hear about how the
22 load modifiers will be distributed for use to PG&E." I'm
23 not sure if maybe they're talking about the known loads.

24 MR. GAUTAM: So one of the things we're exploring
25 is for every IEPR cycle, for different load modifiers, we

1 do a load bus allocation. And so we're considering doing
2 something similar with the known loads impacts, and we can
3 try to make that available to PG&E.

4 MS. FISHER: Great. And Mark is asking about
5 asking this question live. So unfortunately, right now,
6 we're only addressing questions in the Q&A. So if you
7 wanted to put more additional context, we can address that.
8 Otherwise, there is a chance to speak at the end of the
9 workshop to include a public comment or, you know, I think
10 as we've discussed, you know, you can also follow up with
11 us after this workshop. We're happy to chat with you about
12 it.

13 COMMISSIONER MCALLISTER: Also, maybe Heather or
14 Anne, can you give folks the information before we break
15 for lunch maybe about how they can submit public comment --
16 or comment, written comment to the docket and all that good
17 stuff and what the deadline is for that?

18 MS. RAITT: Sure. Yeah. So this is Heather.

19 Yes, written comments are always welcome. And
20 the notice provides instructions for how to do that. And I
21 believe they are due on November 26 by 5:00 p.m.

22 MS. FISHER: Yeah. Thanks, Heather.

23 Next question. "Can you share any information as
24 to the timeline for your project with Itron to better
25 support distribution planning?"

1 MR. GAUTAM: Sure. As I mentioned in my
2 presentation, we just kicked off this project right now.
3 Itron is meeting with staff internally to have a better
4 understanding of our overall system level forecast process.
5 And then we hope to reach to the staff at the PUC, CAISO,
6 and then also the utilities to better understand other
7 needs. And then Itron will be taking a look at how, based
8 on all the input they receive, on what options there are to
9 better align our system forecast to something that can
10 support distribution planning.

11 I think a lot of stakeholders, for the next few
12 months we'll be spending more time on these stakeholder
13 engagements. And then towards, I think towards the later
14 part of next year, we'll have some kind of a proposal from
15 Itron to consider. And we'll be happy to share that in a
16 future DAWG IEPR workshop.

17 MS. FISHER: Yeah. Thanks, Asish.

18 That's the last question that I see in our Q&A,
19 so I'll hand it over to Heather.

20 MS. RAITT: Thank you, Anne. Thank you to all
21 presenters.

22 And I think I might have said November 25th.
23 Anyway, the comments are due November 26th at 5:00 p.m.
24 And as I mentioned, if you wanted to submit written
25 comments, the notice we'll give you all that information.

1 And they're due November 26th.

2 So with that, thank you everybody for joining.

3 And we will be back at 1:30. I will keep this line open,
4 but we'll just stop recording over the break. So we'll be
5 back at 1:30 for afternoon presentations. Thank you very
6 much.

7 (Off the record at 12:01 p.m.)

8 (On the record at 1:30 p.m.)

9 MS. RAITT: So I am returning this afternoon.
10 I'm Heather Raitt, the Acting Director of the IEPR Team.
11 And just a reminder that this workshop is being recorded as
12 part of the 2025 IEPR proceeding.

13 This afternoon, we will follow the same pattern
14 that we had this morning. We will have presentations from
15 the Commission staff, and then a few minutes after to take
16 a panel to take questions from attendees for the Q&A
17 feature on Zoom. And then at the end of the day, we will
18 have an opportunity for public comments, a maximum of three
19 minutes and one person per organization, please.

20 And then also written comments are welcome and
21 they are due on November 26th. And all the materials for
22 this workshop are posted, including the notice that gives
23 you instructions for how to submit those comments.

24 And with that, I think I will turn it over to
25 Commissioner McAllister.

1 COMMISSIONER MCALLISTER: Great. Well, thanks
2 Heather.

3 MS. RAITT: Thank you.

4 COMMISSIONER MCALLISTER: Just I don't need to
5 repeat anything I said this morning.

6 I did just want to acknowledge Commissioner John
7 Reynolds from the PUC. Thanks for joining us this
8 afternoon. Really appreciate that. And wanted to give you
9 a chance to make any sort of initial comments for the
10 afternoon sessions if you'd like.

11 COMMISSIONER REYNOLDS: Thank you, Commissioner
12 McAllister. I'll just briefly offer my thanks to all the
13 CEC staff who have put together this workshop. Thank you
14 to the CEC for hosting and inviting us at the PUC.
15 Obviously, the IEPR is a very important component of
16 California's overall energy policy plan, and I look forward
17 to learning some more this afternoon as we dive further
18 into energy efficiency and fuel substitution and data
19 centers. I think there will be some very interesting
20 topics.

21 I will have to step in and out as the afternoon
22 goes along for some other meetings, but I'm really looking
23 forward to hearing some more.

24 COMMISSIONER MCALLISTER: All right. Well,
25 understood. And thanks for joining us to the extent you

1 can. Really appreciate that. Unfortunately, it looks like
2 I'll have to miss the data center's presentation or at
3 least part of it, but I think there's just a lot of real
4 great work going on trying to figure that out and
5 understand that load and what is likely to appear and what
6 isn't, so really critical to know for all of us.

7 So with that, I think we are expecting Vice Chair
8 Gunda at some point during the course of the afternoon
9 sessions, but he will announce himself when he joins.

10 And yeah, with that, pass it straight over to
11 Quentin. Thanks for kicking us off.

12 MR. GEE: Great. Thank you, Commissioner
13 McAllister. Welcome, Commissioner Reynolds and everyone
14 else back to the workshop on load modifiers and demand
15 loads. For those of you that are arriving fresh this
16 afternoon, just I'll give you some broad context on the
17 IEPR Forecast.

18 The IEPR Forecast involves significant
19 interagency collaboration and public input, with this
20 workshop being a useful step in the forecast development.
21 This year's forecast expands the range of load modifier
22 scenarios, including -- or offering a sort of a broader
23 view of potential futures that are out there.

24 While all the scenarios are usually adopted by
25 the CEC, specific combinations are selected to guide

1 planning efforts. Namely, the planning scenario is used in
2 resource adequacy and other resource procurement, where the
3 local reliability scenario is used for local transmission
4 studies and distribution planning. This dual scenario
5 approach enables planners to address distinct needs, such
6 as overall energy demand versus grid capacity, sort of
7 capturing that range of uncertainty that exists in the
8 current economic -- the current economic and policy
9 landscape, while ensuring consistency with California's
10 decarbonization objectives.

11 We are particularly interested in stakeholder
12 feedback on the various load modifier scenarios to be
13 considered for the two main scenarios, that planning and
14 local reliability scenarios that I discussed, keeping in
15 mind the sort of distinct objectives of each.

16 With that, I'll hand off to Ingrid Neumann.
17 Ingrid and her colleague Ethan Cooper are going to discuss
18 Additional Achievable energy efficiency and fuel
19 substitution load modifiers.

20 Ingrid?

21 MS. NEUMANN: Hello. Can you hear me?

22 MR. GEE: Loud and clear.

23 MS. NEUMANN: Excellent. All right. Good
24 afternoon, Commissioners and stakeholders. I'm Ingrid
25 Neumann, Decarbonization Principal in the Advanced

1 Electrification Analysis Branch. My colleague Ethan and I
2 will present on our combined AAEE and AAES load modifier
3 draft results for 2025.

4 Let's move forward in the slide deck. And one
5 more. And one more. Great.

6 So here we have a couple of slides, so two
7 slides, of handy acronyms, initialisms, and abbreviations
8 which are employed in our slide deck.

9 Next slide. Next slide.

10 This is our agenda for today's presentation. I
11 will start out with a little background information on the
12 Energy Commission's Additional Achievable framework and
13 then dive into the program and incremental codes and
14 standards portion of our work. Ethan will continue by
15 describing the zero-emissions appliance adoption scenarios
16 and summarize how the components are combined to create the
17 aggregate AAEE and AAES load modifier combinations.
18 Finally, he will show how our load modifiers are ultimately
19 expected to affect the baseline electric and gas
20 consumption forecasts.

21 Next slide.

22 The Additional Achievable framework is applied to
23 energy efficiency, fuel substitution, and as you saw this
24 morning, transportation electrification for the IEPR Demand
25 Forecast. It has existed formally for AAEE since 2015 and

1 AAFS since 2021.

2 As before, our Additional Achievable scenarios
3 capture a range of incremental market potential impacts
4 beyond what is included in the baseline Demand Forecast but
5 within the range of what is reasonably expected to occur.
6 The scenarios range across a spectrum from conservative,
7 here on the left in red, to optimistic on the right in
8 violet. Scenario 3 is designed to be a business-as-usual
9 or best view of what the future might look like when
10 considering current available data within the existing
11 policy landscape, while the other scenarios can be viewed
12 as lower and upper bounds to these expectations.

13 Next slide.

14 As we have added components and complexity to our
15 building load modifiers, we found it necessary to introduce
16 some new nomenclature to fully explain our AAEE-AAFS
17 paradigm. Programs and incremental codes and standards are
18 abbreviated as PiCS. They capture IOU and POU programs, as
19 well as all of the other programs outside of those
20 designations, which we group and refer to as beyond-utility
21 or BU. PiCS also include the incremental impacts from
22 buildings and appliance standards. PiCS are the only
23 contribution to AAEE, while AAFS has two pieces, one being
24 PiCS and the other being zero-emission appliance adoption
25 scenarios, which capture local impacts from air quality

1 management district efforts or statewide impacts from
2 CARB's Scoping Plan or State Implementation Plan.

3 Now looking at our table here on the slide, PiCS
4 AAEE are modeled within about 45 separate workbooks, one
5 for each program in incremental code and standard type, and
6 are then aggregated and integrated for each scenario on an
7 annual basis using an R script. AAEE has been developed in
8 this format since 2019 and is represented in the first row
9 of this table.

10 A similar approach is used for the PiCS AAFS in
11 the second row and has been developed in this format since
12 2021. Hourly results for both PiCS components are
13 generated using an R-based hourly tool, which applies
14 sector and use-based load shapes to the annual PiCS load
15 modifiers.

16 Zero-emissions AAFS shown in the third row
17 utilizes an R-based technology replacement model called
18 FSSAT. which we first developed in 2020 to support AB 3232
19 policy analysis.

20 The final AAEE and AAFS load modifier is composed
21 of a combination of scenarios from the three aforementioned
22 components, which are aggregated in additional modules for
23 both annual and hourly results. This combination of
24 building load modifiers has been part of our IEPR Forecast
25 since 2023.

1 I will now transition to focus on the PiCS
2 discussion. Afterwards, my colleague Ethan will focus on
3 the zero-emission appliance standards piece and how all
4 three pieces, PiCS AAEE, PiCS AAFS, and zero-emissions AAFS
5 combine into our final total IEPR AAEE-AAFS load modifier
6 scenarios.

7 Next slide, please.

8 So we're making that transition; all about PiCS.
9 Excellent. So the PiCS AAEE and PiCS AAFS are refreshed
10 every two years, and there were a few significant updates
11 listed here for 2025.

12 We received a new CMUA potential study, as
13 expected, every four years, which for the first time
14 included electrification potentials for the POUs. The IOU
15 potential and goals study, which we leveraged for IOU
16 program potential, was also updated. This is on a two-year
17 cycle coinciding with our PiCS updates.

18 Then AB 130 paused the California Title 24
19 Residential Building Standards for the 2028 cycle, but does
20 not affect non-residential construction. What this means
21 is that the residential standards will be held at the 2025
22 level through the 2028 cycle and have the opportunity for
23 improvement again in 2031. Non-residential standards will
24 be updated as usual in 2028 and again in 2031 and so on.

25 We also improved our modeling of both appliance

1 and building standards past 2030 to ensure minimum impacts
2 were retained even when new standards had not yet been
3 proposed. Title 24 impacts show higher levels of
4 electrified new construction versus what was assumed in
5 2023. This is based on data collected over the past two
6 years.

7 We were able to model new future standards,
8 including federal appliance standards. There was some
9 concern earlier this year about existing standards being
10 rescinded, but that has not occurred. IRA funding is being
11 eliminated this year and this did affect cost-effectiveness
12 of electrification measures in the IOU portfolios.

13 While equitable building decarbonization programs
14 were affected by the California budget adjustments, they
15 are now fully scoped or existing firm programs and thus
16 were incorporated across all scenarios.

17 Next slide please.

18 This slide serves to remind us of the various
19 types of elements that are quantified in PiCS AAEE. It's a
20 summary, not an exhaustive list, but the savings for the
21 first grouping increase by scenario from one through six
22 and are included in each scenario. Those include the IOU
23 and POU energy efficiency programs, the Title 20 and
24 Federal Appliance Standards, as well as the Title 204
25 California Building Standards.

1 There are various new appliance standard measures
2 modeled this cycle that start having significant first-year
3 savings in 2026 and 2027. They include Federal Appliance
4 Standards for air compressors, pool pumps, microwave ovens,
5 refrigerated vending machines, and single-package vertical
6 AC and heat pumps. Also on the Title 20 side, there is an
7 expanded scope for general service lamps and energy
8 conservation standards for consumer clothes dryers with
9 impacts starting in 2028. We also included commercial
10 dishwashers and fryers in future Title 20 standards. Both
11 are currently still at the RFP stage but are being pursued
12 by the energy commissions. First-year savings for those
13 standards would be expected in 2030.

14 Then in the second and the third grouping, other
15 programs are only included in a conservative view in the
16 business-as-usual scenario and to higher levels in more
17 optimistic scenarios.

18 Next slide, please.

19 This is the spectrum of the draft PiCS AAEE
20 Scenarios 1 through 6 for 2025. Electricity savings are
21 shown on the left and gas savings on the right. There is
22 the uncertainty is shown by the bounds from one through
23 six, but the focus on business-as-usual and for planning
24 has historically around AAEE 3 and the more conservative
25 view of that in AAEE 2 or the more optimistic view of the

1 business-as-usual scenario in AAEE 4.

2 Next slide, please.

3 Here we're showing the four major groupings and
4 their contributions to PiCS AAEE Scenario 3 in 2025 on the
5 left and 2023 on the right. Scenario 3 is chosen here
6 because it's our business-as-usual scenario and has
7 traditionally in the past been utilized for statewide
8 planning. As you can see, savings are larger, reflecting
9 more savings from incremental codes and standards.

10 More future new appliance standard measures are
11 modeled and included in Scenario 3 in 2025 than were
12 modeled and included in Scenario 3 in 2023. We also
13 improved our modeling parameters this cycle to preserve the
14 impacts from Title 24 post-2030.

15 POU programs, however, show an increased focus on
16 energy efficiency versus fuel substitution. The opposite
17 had been foreshadowed in the 2021 CMUA Report, we get that
18 every four years, on POU Energy Efficiency Potential, which
19 saw energy efficiency savings diminishing and did not yet
20 quantify fuel substitution. POU fuel substitution
21 potential was limited to preliminary data from a small
22 subset of POUs willing to share it with the Energy
23 Commission in 2021 when we first introduced AAES and may
24 have been optimistic and not reflective of the majority of
25 California's POUs.

1 The remainder of the programs, which we bundle
2 here as beyond-utility, show a focus on fuel substitution
3 rather than energy efficiency, so those savings are
4 smaller. Those programs had been scoped to be able to
5 include both energy efficiency savings and fuel
6 substitution impacts, but obtained data shows that the
7 focus is on the latter rather than the former.

8 Next slide, please.

9 This slide shows a similar comparison of the more
10 conservative AAEE 2 scenario between 2025 and 2023.
11 Traditionally, this scenario had been used for local
12 planning efforts. The trends by bundle remain the same as
13 before and, as expected, the savings are slightly less.

14 Next slide, please.

15 Now we transition to the PiCS AAES scenarios, and
16 we can see that there are various types of elements
17 quantified in PiCS AAES as there were in PiCS AAEE. It's
18 again a summary and not exhaustive. The impacts for the
19 first group do increase by scenario from one through six,
20 but everything in that first group is included in each
21 scenario, so those are IOU and POU fuel substitution
22 programs, the Energy Commission's BUILD Program, IRA Pay
23 for Performance and HHERA, the components of the building
24 standards that encourage all or partial electric new
25 construction and additions and alterations, the TECH

1 Program, our own Equitable Building Decarbonization
2 Program, or programs plural, and California Electric Homes
3 program.

4 Other programs in the second and the third bubble
5 are only included in a conservative view in the business-
6 as-usual scenario and to higher levels in more optimistic
7 scenarios. Programs previously retained only in some of
8 the more optimistic scenarios are now captured across the
9 bulk of the scenarios because they are fully scoped,
10 funded, and/or have started making awards.

11 For 2025, we were able to leverage existing
12 program data to better split energy efficiency and fuel
13 substitution impacts for programs that could be employed
14 for both. Data collected established that fuel
15 substitution was the predominant choice by program
16 participants.

17 Next slide.

18 This is the resultant spectrum of the draft PiCS
19 AAFS Scenarios 1 through 6 for 2025. The gas savings are
20 shown on the left and the resultant incremental electricity
21 additions are shown on the right. So, for example, if a
22 furnace is removed, that gas consumption is displaced. The
23 heat pump that is replacing that furnace then does have an
24 incremental amount of electricity consumption and that's
25 what we're showing on the right.

1 Next slide.

2 Here we're showing the four major groupings again
3 and their contributions to PiCS AAfs Scenario 3 in 2025 on
4 the left and comparing that to 2023 on the right. Again,
5 Scenario 3 is our business-as-usual scenario and had been
6 used traditionally for utilized for statewide planning.

7 Increases in PiCS AAfs 3 this year with respect
8 to 2023 are due to improved modeling preserving the impacts
9 from Title 24 post 2030 and the fact that established
10 electrification impacts in new construction for the past
11 two years have been greater than what we originally assumed
12 them to be in 2023.

13 Improved data on existing beyond-utility programs
14 also yielded in greater fuel substitution impacts than
15 energy efficiency and these impacts are more firm so more
16 programs were included in the AAfs 3 PiCS component.

17 Next slide.

18 This slide shows a similar comparison of the more
19 aggressive AAfs 4 scenario between 2025 and 2023. Since
20 the introduction of AAfs in 2021, this scenario was
21 utilized for local electricity planning efforts. The
22 trends by bundle again remain the same and the impacts as
23 expected are slightly greater in the more aggressive
24 Scenario 4 than in Scenario 3.

25 And next slide please.

1 Here we have a similar comparison of the more
2 conservative AAES 2 scenario. The trends by bundle are the
3 same as before and the impacts as expected are slightly
4 less in Scenario 2 than in Scenario 3.

5 Next slide please.

6 This is a table summarizing the notable changes
7 presented in the previous slides, the most important of
8 which I already highlighted as we covered the draft results
9 and will summarize once again here.

10 So in the first row we saw increased savings and
11 impacts from codes and standards for both PICS AAEE and
12 PICS AAES. That is due to modeling new or more new future
13 appliance standards in 2025 than we had data and capability
14 to do in 2023. We also improved our modeling to preserve
15 the impacts from Title 24 post-2030.

16 Then in the second row we saw increased 2025 PICS
17 AAES impacts in most cases relative to 2023. There are
18 greater assumed Title 24 electrification impacts in 2025
19 based on the last two years of data on all-electric or
20 partial-electric new construction and additions and
21 alterations. We also had improved data on existing beyond-
22 utility programs to show that greater fuel substitution
23 impacts are observed than energy efficiency for both for
24 programs that can address both and beyond-utility programs
25 with existing impacts are included in more scenarios.

1 The third row, lower PiCS AAES potential from POU
2 programs, so that's one item that did go down a significant
3 amount. That is because the POU impacts this cycle are
4 based on the actual 2025 CMUA potential study rather than a
5 scattering of data from selected and willing
6 participating POUs in 2021. That was preliminary data
7 that's also four years old.

8 Then the 2025 potential study did show
9 prioritization of energy efficiency for the POUs over fuel
10 substitution. So that is one thing that we also saw. So
11 their energy efficiency programs increased while fuel
12 substitution decreased.

13 In our second to last row, we did see a slight
14 decrease in AAES -- or PiCS AAES potential from IOU
15 programs in 2025. That is due to the elimination of IRA
16 incentives, changes to EULs, and incorporation of
17 electrification adders, which altered the cost
18 effectiveness of the fuel substitution measures modeled in
19 the potential and goal study process, which must compete
20 against energy efficiency measures.

21 Then in the last line, you may have noticed
22 something that is visually odd. There was a crossing of
23 the gas PiCS AAEE 5 and AAEE 6. That is not a novel thing.
24 It's simply because we had some beyond-utility programs
25 included in these aggressive scenarios that have a finite

1 lifetime or potential of energy efficiency savings. And in
2 the most aggressive, Scenario 6, we start those first year
3 savings earlier and exhaust them at a more rapid rate than
4 in Scenario 5. So that shifts the peak savings year
5 earlier in the forecast, making those lines cross.

6 Next slide, please.

7 Thank you for your attention and interest. If
8 you could hold your questions until after Ethan completes
9 his portion of the presentation, we would be happy to
10 answer them then.

11 Without further ado, I would like to then hand
12 off the presentation to my colleague, Ethan Cooper, who
13 will go over the zero-emission appliance adoption scenarios
14 and how the two PiCS components that I've described and the
15 zero-emissions AAFS ultimately combine for our total AAEE
16 AAFS load modifier and actually modify baseline gas and
17 electric consumption.

18 Thank you, Ethan.

19 MR. COOPER: Thank you, Ingrid. Yeah. Make sure
20 I'm unmuted. All right. Pretty good. So, yeah, good
21 morning -- or good afternoon, everyone. My name is Ethan
22 Cooper. I'm going to present on the draft annual and
23 hourly results for our zero-emission or ZE AAFS scenarios,
24 along with the AAEE and AAFS scenario combinations.

25 Next slide, please.

1 So before going into our results, I'm going to
2 provide a bit of background on some of the updates made to
3 our ZE modeling this year. So, one of the first ones is
4 that for our modeling of the Air District's Zero-NOx
5 Appliance Regulations, only the adopted Air District rules
6 are modeled in our scenarios, starting with the Scenario 3,
7 going out to 6, and the South Coast's rejected Rules 1111
8 and 1121 are going to be removed from all of our scenarios
9 this year.

10 For the statewide ZE modeling, our Scenario 3 was
11 updated this year to model CARB's Scoping Plan, while
12 Scenario 4 continues to model a concept of CARB's Zero-
13 Emissions Space and Water Heater Standard, but now with a
14 2030 compliance year. We've also added a new ZE AAES
15 Scenario 1 for this new IEPR cycle.

16 We've also updated our energy efficiency
17 weightings used in FSSAT for residential electric water
18 heaters to better reflect upcoming federal energy
19 efficiency standards shown in the third row here, and
20 again, FSSAT is our fuel substitution scenario analysis
21 tool. Other minor updates were also made this year to some
22 of our inputs and data assumptions, with one of note being
23 revisions to our AC penetration rates data that was based
24 on new advanced metering infrastructure, or AMI, analysis.

25 Next slide, please.

1 So, for our updated AC penetration rates data, we
2 are showing it geographically below in these heat maps that
3 show the percentages of meters within different building
4 climate zones that have high significant cooling load, with
5 higher loads showing up more in the inland regions of
6 California and a lot less on the coast.

7 As a quick note, we had no data available this
8 year to update any information for Building Climate Zone 7,
9 kind of the gray area down by San Diego.

10 This data is used in our FSSAT tool to help us
11 determine the number of homes that currently have air
12 conditioning in them, as added cooling load for our
13 modeling is only calculated for heat pumps that are being
14 installed within buildings, residential buildings, that do
15 not have AC already.

16 Next slide, please.

17 So, when developing our AAES and our AAEE
18 scenario combinations, we created a suite of different
19 combinations that detail how both EE and FS, those two load
20 modifiers, interact and sum together. One major thing I'd
21 like to note about these scenario combinations is that for
22 AAEE, we have our gas savings be dependent on the amount of
23 AAES electrification that we model in FSSAT. For today's
24 presentation, though, we're going to focus on the three
25 combinations that I have bolded in the table below, with

1 our AAFS 3 plus AAEE 3 traditionally being used for our
2 electricity planning scenario, and the AAFS 4 plus AAEE 2
3 traditionally being used for our electricity local
4 reliability scenario.

5 With that, next slide, please.

6 This table here just kind of goes through the
7 characterization for our AAFS scenarios this year. Looking
8 at the ZE components, so kind of the last, after the second
9 row here in this table, all of our scenarios model gas fuel
10 substitution for residential and commercial space and water
11 heating, but Scenarios 5 and 6 also include cooking and
12 clothes drying. Residential propane substitution is also
13 included, but only within Scenario 6.

14 Statewide ZE modeling for new construction
15 buildings, so anything that goes beyond what is already
16 included in our PiCS Title 24 impacts, that starts in
17 Scenario 4, as you can see here in the fifth row in the
18 table. For statewide ZE modeling in existing buildings, we
19 have various replace on burnout or ROB adoption curves
20 being used for the different scenarios, which I'll discuss
21 further in the next slide. But before going to there, the
22 last two rows we have here shows we're including the
23 adopted Bay Area and South Coast Air District rules within
24 Scenarios 3 through 6, as I noted a few slides earlier.

25 Next slide, please.

1 So, the chart here now shows our replace on
2 burnout or ROB adoption curves, which apply to statewide
3 existing buildings for ZE AAfs. FSSAT distributes the
4 amount of gas that will expire or burn out each year based
5 on assumed effective useful life for appliances. These ROB
6 adoption rates are thus indicating the yearly percentage of
7 burning out gas appliances that will be replaced with a
8 zero-emission alternative, such as a heat pump.

9 The orange line we have here is used for our
10 Scenario 2, while the blue line is used for our scenario --
11 excuse me. Orange is for Scenario 1, blue is used for our
12 Scenario 2. The dashed red and gray lines are used for our
13 modeling of the CARB's Scoping Plan in Scenario 3, with
14 different lines for the residential in red or the
15 commercial sector in gray. The line to the far left, the
16 green one, is used for our Scenarios 4 through 6. And
17 again, Scenario 4 just looks at modeling a concept of
18 CARB's Zero-Emission Space and Water Heater Standard, while
19 Scenarios 5 and 6 also go beyond the standard to look at
20 other end uses and fuel types I discussed in the previous
21 table.

22 Next slide, please.

23 Moving on to our draft results, the chart here
24 shows the gas savings seen for our six AAfs scenarios, now
25 combining the impacts from both PiCS and ZE AAfs. We still

1 see a clear progression in gas displacement as we move
2 through our six scenarios, going from most conservative to
3 most optimistic. And when just focusing on Scenarios 2
4 through 4, we see that Scenario 2 shows the lowest amount
5 of gas savings throughout most -- or all of the forecast
6 period. There's about 3,600 MM therms of savings by 2045
7 for Scenario 2, which is compared to about 3,900 MM therms
8 for Scenario 3, and about 4,300 MM therms for Scenario 4.

9 When comparing Scenarios 2 and 4 together on
10 their own, we see a very big difference in gas savings
11 between the middle part of our forecast, which is kind of
12 shown by the second black arrowed lines in the middle of
13 the chart. And this is largely due to the differing ROB
14 adoption rates for these two scenarios that is seen at this
15 time.

16 Lastly, when looking at the two different
17 vintages of AAES 3, the solid line is for this year's IEPR
18 scenario, the dashed orange line is for last year's 2024
19 IEPR update, we see that savings for this scenario are
20 lower for this year's IEPR cycle. This is primarily a
21 result for our characterization updates made to AAES 3 this
22 year, both for statewide modeling of new construction as
23 well as existing buildings.

24 Next slide, please.

25 The chart below now shows the gas displacement

1 seen for the combination of our AAES 2 plus AAEE 3.
2 Baseline gas demand for the residential and commercial
3 sectors is shown by the dashed gray line on the top, and
4 the three transparent colored wedges shows the load
5 reduction seen by our different load modifiers. Our ZE
6 AAES displacement is shown last in the reduction order, as
7 these savings are more uncertain than what is included in
8 our PiCS modeling.

9 By 2045, our load modifiers reduced baseline gas
10 consumption by about 68 percent, leaving us now with around
11 1860 MM therms of baseline gas demand remaining. Most of
12 the baseline gas reduction from this combination and from
13 the other ones we're going to see in the next few slides
14 comes from the ZE AAES component, which is the orange
15 wedge.

16 Next slide, please.

17 All right, now for the baseline gas consumption
18 under the AAES 3 plus AAEE 3 combination, gas reduction
19 happens faster and earlier than seen in the previous chart.
20 By 2045, our modifiers will reduce the baseline gas
21 consumption by about 72 percent, which leaves us with about
22 1,630 MM therms of gas demand remaining.

23 Next slide, please.

24 Finally, for the baseline gas consumption under
25 the AAES 4 plus AAEE 2 combination, the baseline gas

1 reduction occurs at a similar yet slightly more aggressive
2 rate than in the previous slide. By 2045, our load
3 modifiers reduce baseline gas consumption by about 78
4 percent, which leaves us with now around 1,280 MM therms of
5 baseline gas demand remaining.

6 Next slide, please.

7 Moving on to our electric impacts for the six
8 scenarios, we again see a gradual increase in added
9 gigawatt-hour impacts as we move through each scenario,
10 most conservative on Scenario 1 to more optimistic in
11 Scenario 6.

12 For the added electric impacts in 2045, we see
13 almost 35,000 gigawatt-hours of added electricity for
14 Scenario 2, close to 40,000 gigawatt-hours for Scenario 3,
15 and about 43,000 gigawatt-hours for Scenario 4. These
16 electric impacts are also displaying a very large gap
17 between Scenarios 2 and 4 during the middle part of the
18 forecast, which, similar to the gas side, does begin to
19 shrink as we get to the tail end of our forecast period in
20 2045.

21 Finally, when comparing our two IEPR vintages for
22 Scenario 3, we see that the electric impacts are going to
23 again be lower for this IEPR scenario -- or for Scenario 3
24 in this year's IEPR forecast. Along with the reasons I
25 discussed for the gas displacement chart, the lower AAFS 3

1 savings for this year's IEPR -- excuse me, lower AAFS 3
2 added electricity impacts, are being driven by our updated
3 efficiency weightings we have for residential electric
4 water heaters, which this year is putting a lot more
5 priority on installing more efficient heat pump water
6 heaters over electric resistance in our modeling.

7 Next slide, please.

8 So, the chart on this and the following few
9 slides are going to show the combined electric impacts for
10 AAEE and AAFS scenario combinations. For AAFS 2 plus AAEE
11 3, the black net impact line shows that we're having
12 overall savings throughout most of the forecast period. By
13 2041, the scenario combination is going to start adding
14 more electricity than it saves, with the net impact in 2045
15 being around 5,800 gigawatt-hours of added electricity.
16 Most of the added load seen for this combination, and for
17 the other two we're going to see later, comes from the ZE
18 AAFS component, which is the orange bar on this graph.

19 Next slide, please. Thank you.

20 So, for the electric impacts of the AAFS 3 plus
21 AAEE 3 combination, the net impact is positive much earlier
22 than what was seen when using AAFS 2. This scenario
23 combination will start adding more electricity than it
24 saves starting in 2031, with the net impact in 2045 being
25 around 10,800 gigawatt-hours of added electricity. Given

1 that we're using the same AAEE scenario here for this
2 combination, the net impact increase is coming solely from
3 more added electricity seen with AAES Scenario 3.

4 Next slide, please.

5 Finally, for our electric impacts of the AAES 4
6 plus AAEE 2 combination, the net impact is positive even
7 earlier than in the previous slide. This scenario
8 combination will be adding more electricity than it saves
9 starting in 2029, with the net impact in 2045 being around
10 18,200 gigawatt-hours of added electricity. The increase
11 we see in the net impact here comes both from the increase
12 in added electricity for AAES 4, along with the decrease in
13 electricity savings seen when using AAEE 2 rather than AAEE
14 3.

15 Next slide, please.

16 Taking a look now at our average hourly profile
17 for our select EE and FS scenario combinations, the first
18 chart below details the impact seen on a winter day in
19 February. The results on this and the following few slides
20 are for the CAISO system impacts, so looking at PG&E, SCE,
21 and SDG&E. For February, all scenario combinations show an
22 increase in megawatt demand during most of the day, with a
23 slight decrease or reduction being seen during the early to
24 late afternoon time period. The large peak that we see
25 during the early morning time comes from added space

1 heating and water heating demand from our AAFS scenarios,
2 and the peak later in the day is also coming from both
3 space and water heating as well.

4 Next slide, please.

5 Splitting up our AAFS 3 and AAEE 3 impacts into
6 the added fuel sub impacts in orange and the reduced energy
7 efficiency impacts in blue, the black net impact line from
8 the previous chart shows that the highest amount of
9 megawatt load, around 9,400 megawatts, would show up at
10 hour ending eight. The load increase at this hour for AAFS
11 3 is going to be more than four times the load decrease
12 seen from AAEE 3, showing just how much of an impact AAFS
13 has in the morning time for February on adding load
14 compared to what gets reduced from AAEE.

15 Next slide, please.

16 We're now looking at the average hourly profile
17 for September in the summertime. We see a very different
18 shape from what was observed in February. There's again
19 added megawatt load happening during the early morning
20 time, but at a significantly smaller scale than what was
21 seen in February, and now being only driven by added water
22 heating demand in our AAFS scenarios. The larger peak will
23 actually be during the late afternoon to early evening time
24 period, so kind of hours 15 to 19, and this is largely
25 being driven by both added residential cooling demand from

1 AAFS and, to a lesser extent, added water heating demand
2 from AAFS as well.

3 Next slide, please.

4 Looking more closely at the average September
5 hourly profile for AAFS 3 plus AAEE 3, the black net impact
6 line now shows that the highest amount of megawatt load
7 would be at hour ending 19, and that would be about 2,500
8 megawatts of load being added at that time. The load
9 increase at this hour from AAFS 3 is now less than two
10 times the load decrease seen from AAEE 3. So, the
11 difference between AAFS and EE in the summertime at the
12 maximum hour here is going to be a lot less than what was
13 seen in the February winter time frame.

14 Next slide, please.

15 I'm going to now move into our electric appliance
16 stock projections for our AAFS scenarios, focusing on
17 Scenario 2 and Scenario 3.

18 Next slide, please.

19 Before going into our results, I do want to
20 provide a quick update on our CEC's heat pump tracking
21 efforts.

22 So first, staff currently have an unofficial heat
23 pump count for heat pumps in California, which is an
24 estimate of 1.9 million heat pumps by quarter four 2024,
25 and 2.1 million heat pumps by quarter two 2025. Overall,

1 we've seen an increase in agency-wide efforts to track both
2 space and water heating appliances, with a particular focus
3 on heat pumps.

4 One thing I want to note here is that we're still
5 planning to be able to leverage AMI data in the future for
6 further help with tracking homes that are installing heat
7 pump technologies. CEC staff are also still in the process
8 of developing a heat pump tracking dashboard, which will
9 provide quarterly updates on heat pump counts in the state
10 and is expected to be coming online by the end of this
11 year.

12 For this year's 2025 IEPR analysis, we're
13 planning to use the quarter four 2024 update -- sorry,
14 estimate of 1.9 million existing heat pumps as a baseline
15 to see how much further we can go in our different AAFS
16 scenarios.

17 Next slide, please.

18 All right, moving now into our electric appliance
19 stock projections, the chart below shows a cumulative
20 forecast for AAFS Scenario 2. For this scenario, most of
21 our added residential heat pumps comes from the PiCS AAFS
22 component, which is the orange wedge -- or orange bar on
23 this chart. By 2030, AAFS 2 has a cumulative total of
24 about 5.8 million heat pumps when combining the impacts
25 from both the PiCS, the ZE, and the baseline component in

1 blue, so the green, orange, and blue bars. We also see an
2 additional 300,000 electric resistance water heaters are
3 being added by ZE AAFFS by 2030, which, had they been heat
4 pumps instead, would have actually pushed our scenario over
5 6 million cumulative heat pumps by 2030.

6 Next slide, please. Thank you.

7 So, for AAFFS 3, there's a significant jump in the
8 added residential heat pumps for the AAFFS component,
9 particularly when looking at ZE AAFFS in green. PiCS AAFFS
10 still plays a major role in added heat pumps up until 2030,
11 which is where ZE AAFFS actually adds just about 0.1 million
12 more heat pumps than the PiCS does.

13 Overall, Scenario 3 is well above 6 million
14 cumulative heat pumps by 2029, and by 2030 has added around
15 8.8 million total heat pumps. ZE AAFFS 3 is also adding
16 about 700,000 electric resistance water heaters by the year
17 2030, which, had they been heat pumps instead, would have
18 actually had our Scenario 3 be around 9.8 -- sorry, excuse
19 me, 9.5 million total heat pumps by that year.

20 All right, next slide, please.

21 That's the end of my presentation. Thank you
22 all, and I'm going to pass it on to Commissioners and the
23 Dias for questions.

24 COMMISSIONER MCALLISTER: Thanks so much. That
25 was great. Ingrid and Ethan both did a nice job. A lot of

1 very dense presentations, visually exciting and dense. So
2 I just want to say thanks for all the hard work, obviously,
3 that went into that.

4 I've gotten relatively frequent briefings on
5 this, so I'm feeling relatively informed. I guess maybe I
6 would just comment by way of providing a little context
7 that we are entering this, you know, we're solidly in,
8 actually, this new world where we're trying to, you know,
9 electrify very intentionally, and heat pumps are the tool
10 for getting, you know, much of our building stock
11 decarbonized as we leverage the backbone of a clean
12 electric system.

13 And so market transformation, as I think we all
14 know, is a tricky and kind of more of an art, really, than
15 a science. And so, you know, you have a tough task here,
16 which is trying to figure out even what's the baseline, and
17 then what is going to really drive adoption. And, you
18 know, the bookends on adoption are very, very wide; right?

19 And so I think it really just points to the fact
20 that we need to continue to work together across the
21 agencies, across the state, with the Governor's Office,
22 their goals, with industry and the heat pump partnership,
23 and just all of the tools in our toolbox, and just develop
24 those and keep them sharp to do everything we can to really
25 grow the various sectors within the heat pump marketplace,

1 and at the same time, not lose sight of the implications
2 for the grid, and do everything we can to make sure that
3 all of these new loads are good citizens on the grid and,
4 you know, that that load is falling in a place that is most
5 easily accommodated by the grid, and that we can therefore
6 be intentional about investments in the grid
7 infrastructure, and be judicious about that.

8 So lots of different, you know, boxes to check
9 along the way, and so it's really just going to take
10 continued collaboration.

11 I did have one question. I thought, I think it
12 was, Ethan, that I think you said that in one of the FS
13 scenarios, AC was driving a peak increase, and I was a
14 little confused by that, because generally, AC is going to
15 be replacing the existing, less efficient AC, and so the AC
16 itself ought to be not driving the peaks.

17 MR. COOPER: Yeah.

18 COMMISSIONER MCALLISTER: The heating may be
19 driving a winter peak, right, the heating component of the
20 heat pump.

21 MR. COOPER: Yeah, I bet I misspoke there. I
22 think I was trying to mean that added cooling load for any
23 building that never had AC to start with.

24 COMMISSIONER MCALLISTER: Oh, got it.

25 MR. COOPER: That type of cooling load. I meant

1 to say that instead of just AC load, because the tool does
2 account for who has an AC, and if you already do, don't
3 account for -- don't calculate added cooling load --

4 COMMISSIONER MCALLISTER: Yeah.

5 MR. COOPER: -- for that heat pump, because it's
6 probably lower electricity usage than when they had their
7 old AC unit.

8 COMMISSIONER MCALLISTER: Okay, got it.

9 MR. COOPER: Yeah.

10 COMMISSIONER MCALLISTER: So basically,
11 somebody's replacing a furnace with a heat pump and it's
12 coming along with AC, and therefore it's a new AC load?

13 MR. COOPER: Yeah, basically, yeah.

14 COMMISSIONER MCALLISTER: Okay, got it. Got it.
15 Okay, thanks for clarifying that. I appreciate it.

16 MR. COOPER: Yeah.

17 COMMISSIONER MCALLISTER: I don't know,
18 Commissioner Reynolds or Raja? I'm not sure if Vice Chair
19 Gooden has joined us yet. Commissioner Reynolds, I'm not
20 sure, you may have had to step away. I think he said he
21 might have to be in and out.

22 COMMISSIONER REYNOLDS: I'm in transit at the
23 moment. Hello.

24 COMMISSIONER MCALLISTER: Hey, there you are.
25 Okay. No worries at all.

1 COMMISSIONER REYNOLDS: Hopefully --

2 COMMISSIONER MCALLISTER: It was a dense
3 presentation. I can only imagine while you were driving,
4 trying to take it in.

5 COMMISSIONER REYNOLDS: And I definitely echo
6 your remarks about continuing the collaboration to drive
7 heat pump adoption. And I don't think I have any
8 particular questions at the moment, but I do really
9 appreciate the presentation and all the work that's behind
10 it.

11 COMMISSIONER MCALLISTER: Thanks for being with
12 us. I really appreciate your -- and we can follow up, and
13 the presentations are all posted. And if you have any
14 questions, obviously, staff is happy to answer those.

15 I just wanted to point out the TECH Program,
16 which I think has been a very interesting market
17 transformation effort, TechLink (phonetic) California. And
18 we've actually -- so the Energy Commission with some of the
19 federal HERA money has been piggybacking and sort of
20 juicing up the low-income portion of TechLink California,
21 you know, using that infrastructure that the PUC put into
22 place. And that's been really, I think, a great way to get
23 some relatively quick action in growing the heat pump
24 marketplace. And we're trying to now figure out sort of
25 what the next phase of HERA looks like. And we may end up

1 continuing to leverage something like that program design
2 for the rest of the HERA money. We have to kind of see.
3 Now that the government's open, maybe we can get some
4 clarity.

5 And honestly, our DOE counterparts have actually
6 been quite relative to some of the expectations we might
7 have had with the shutdown and just the transition in the
8 general policy direction in D.C., I think DOE, certainly
9 the compliance staff at DOE have been actually quite good,
10 so I want to acknowledge them as well.

11 Oh, Commissioner Houck, hey. Yeah, chime -- go
12 ahead and chime in. The mic's yours.

13 COMMISSIONER HOUCK: Yeah, I just wanted to say
14 that I really appreciated the presentation. I know we're
15 doing a lot of collaborative work with the building
16 decarbonization proceeding, our EE proceeding. We have our
17 market transformation initiative. And just being able to
18 coordinate on what this is going to mean for meeting our
19 goals is really important. And I know we just issued a
20 decision not that long ago in building decarb to start
21 looking at how we can have more flexible engagement with
22 the grid to be able to allow some of these technologies to
23 get into place, even if we're still working on longer-term
24 capacity issues.

25 So just appreciate the presentation and all the

1 work that's being done in the different programs across
2 agencies.

3 COMMISSIONER MCALLISTER: Great. Well, thanks
4 for being here. And, you know, this is sort of a snapshot
5 in a much -- in a long collaboration, so no doubt lots to
6 come.

7 Let's see, any, do we have any Q&A from
8 attendees? I think Jesse Gage was going to step in to
9 moderate that.

10 Hey, Jesse.

11 MR. GAGE: Thank you. Thank you. As it happens,
12 we do not have any Q&A at this time.

13 COMMISSIONER MCALLISTER: We do not?

14 MR. GAGE: So I suppose I could just hand it
15 right back to Mathew, over to Mathew Cooper to take us home
16 with data centers.

17 COMMISSIONER MCALLISTER: Great. And just a
18 heads up, Mathew, I'm going to have to step out mid-
19 presentation, so apologies, but I've got a 2:30 hard stop.
20 But, yeah, obviously I'm in capable hands with the IEPR
21 team.

22 And Raja, please do take over.

23 MR. COOPER: Great. Thanks.

24 COMMISSIONER MCALLISTER: All right. Thanks,
25 everybody.

1 MR. COOPER: Okay, so I'm going to present our
2 preliminary data forecast, Data Center Forecast for 2025.
3 This is similar to what we presented at the DAWG and
4 elsewhere, but we do have a slight update to the results.

5 So next slide.

6 Our methodology is similar to what we've
7 developed for the 2024 IEPR. We're again, relying on the
8 applications for service, which data center developers
9 submit to utilities. So we requested lists of those
10 projects from any utilities that are expecting data center
11 growth, so that we have the total capacity in megawatts
12 that's being requested, as well as the status of the
13 application and a ramping schedule, or at least a year in
14 which they would start service.

15 We then apply some assumptions for utilization
16 factor, confidence level, and in some cases, our own
17 ramping assumptions to create a forecast of maximum demand
18 out of those requested capacity numbers.

19 This year, we're using the same utilization
20 factor as last cycle, 67 percent, which is based on some
21 experience that Silicon Valley Power, the utility, shared
22 with us. They have a lot of data centers in their
23 territory.

24 We're adjusting our confidence levels and ramping
25 assumptions a little bit compared to last year, so I'll

1 have some more slides on that later in the presentation.

2 And lastly, we've analyzed a sample of metering
3 data to create hourly profiles in order to translate this
4 maximum demand into an hourly forecast, and I'll talk about
5 that at the very end.

6 Next slide.

7 So these are the utilities which we received
8 project level data from: PG&E, SCE, SVP, Palo Alto, and
9 VEA. We also had some conversations with these other
10 utilities, San Diego and Burbank, which both described some
11 small potential projects, so we added those to the forecast
12 as well.

13 Note that last year, San Jose was exploring
14 becoming their own LSE, so we had counted the load
15 separately in last year's forecast, but those plans have
16 been put on hold, so this year, those projects will be
17 grouped with PG&E.

18 We have talked with SMUD a few times in the past,
19 and based on those previous conversations, we don't expect
20 any new data centers in Sacramento.

21 So this first data request was in September, and
22 we've asked the utilities in the first list to give us an
23 update by early December just to see if their application
24 queue has changed significantly, so we can try and use the
25 latest data possible before the Demand Forecast is

1 finalized in January. And we'll issue another data request
2 in early 2026 just to get the information we need to do our
3 load bus allocation.

4 Next slide.

5 So just a quick note on VEA, which is Valley
6 Electric Association. It's a utility in western Nevada
7 that also covers a small area in California. They're
8 preparing for some large load growth, including data
9 centers. The actual large loads will be in Nevada, not in
10 California, so we won't be including them in our annual
11 Consumption and Sales Forecasts because those are for
12 energy demand in California only, but since VEA is part of
13 CAISO, we will still account for them in the hourly
14 forecasts. So they're included here.

15 Next slide.

16 So in our data request, we asked the utilities to
17 give us a status for each project, which informed what
18 confidence level we assigned, basically like probability of
19 completion. And this year, our definitions have changed a
20 little bit as we tried to define the groups consistently
21 across utilities. Last year, we considered Group 1 to be
22 active applications with engineering studies completed or
23 in work, and this year Group 1 consists of projects with
24 signed agreements only. Group 2 previously had active
25 applications which hadn't yet initiated engineering

1 studies. Now our new Group 2 is all projects with an
2 active application. Group 3 is the same as before,
3 inquiries only, which haven't yet filed applications, so
4 those are the most speculative.

5 So our new Group 1 projects being signed
6 agreements only have more certainty than the previous Group
7 1 definition. They're basically projects that are moving
8 forward, they're pretty likely to get built. We've heard
9 anecdotally there are still dropouts sometimes. Our new
10 Group 2 is any active applications, which would have been
11 split between Groups 1 and 2 in the previous scheme. So
12 we're also adjusting our confidence levels a bit to reflect
13 this difference in the definitions.

14 Next slide.

15 Here's what we received this year. This chart
16 shows the sum of all agreements, applications, and
17 inquiries stacked for each utility, agreements in blue,
18 applications in orange, and inquiries are the hatched
19 green. The total capacity statewide is over 20 gigawatts
20 of requested load, and this is higher than what we received
21 last year, although a lot of it is in Group 2 and Group 3,
22 the more speculative projects.

23 Next slide.

24 So here's the new data compared to last year's
25 data just for PG&E and SCE. So for PG&E, some of the

1 applications have moved forward into agreements, and there
2 are some additional applications. SCE has a small amount
3 of Group 1 capacity. There's a little bit of blue at the
4 bottom of the stack there.

5 In a previous version of this presentation, we
6 had shown 2025 having less Group 2 capacity, less orange in
7 2025, but a large increase in Group 3. It turns out after
8 clarifying our definitions with the SCE team, some of those
9 Group 3 projects should have been counted as Group 2. So
10 the total application capacity, the total height of that
11 bar is the same, but because we give Group 2 a higher
12 confidence level, we count more of it in the forecast. So
13 this resulted in our forecast being a little bit higher
14 than what we had previously presented.

15 Next slide.

16 So this is just a histogram showing the number of
17 projects bucketed by the requested capacity. Most
18 applications are for 100 megawatts or less due to the small
19 power plant exemption. There are a few larger ones, even
20 some larger ones with signed agreements, and there are a
21 few very large applications also, like in the 500 megawatts
22 or more range.

23 Next slide.

24 So for 2025, we've tried to develop some
25 confidence levels that we can use consistently across

1 utilities and that reflect our updated group definitions.
2 We're developing three data center scenarios, low, mid, and
3 high, and here on the right are the confidence levels that
4 we're using this year.

5 For the high scenario, on the far right, we would
6 take 100 percent of the project capacity with signed
7 agreements, that's Group 1, plus 50 percent of the active
8 applications plus 10 percent of the Group 3 inquiries, and
9 that load would be used in our local reliability forecast.

10 For the mid case, we're taking 70 percent of
11 Group 1 plus 33 percent of Group 2 and zero percent of
12 Group 3, and that will go into our Planning Forecast. And
13 we also have a low scenario with just 50 percent of Group
14 1, although we don't currently use that for anything.

15 Yeah, next slide, please.

16 Our ramping assumptions are also a little
17 different than last year. Both methods were based on
18 information also shared with us by Silicon Valley Power,
19 and this year we're using a linear seven-year ramp rather
20 than the growth rate on the left.

21 Last year, we only applied the ramping to Group 3
22 projects that were submitted without a schedule, but this
23 year we dug into the individual projects a little more and
24 applied the ramp to any projects that appeared to come
25 online with a full or a very large load in the first year

1 of request service, because our understanding is that's not
2 realistic. And we also pushed Group 2 and Group 3 projects
3 past 2027 because it's not feasible that they would start
4 service in two years or less if they haven't signed an
5 agreement yet or even submitted an application yet.

6 So next slide.

7 So finally, here's the results. This is the mid
8 case maximum demand for the Planning Forecast. Last year's
9 forecast is on the left, the new draft on the right. As I
10 mentioned, in our first draft of the 2025 forecast the
11 statewide total was slightly lower than last year, but
12 since we revised some SCE project groupings to be
13 consistent with our definitions, that's now causing the
14 forecast to be a little bit higher in the long term. It's
15 still slightly lower in the first few years, which is
16 probably due to our updated ramping assumptions.

17 And overall, it's still fairly similar to last
18 year, even though the total request capacity this year was
19 much higher, like we saw in those previous bar charts.
20 Many of those new projects were Group 3 inquiries, so they
21 don't show up here at all in the mid case. The Planning
22 Forecast is used for resource adequacy and integrated
23 resource planning.

24 So obviously we acknowledge there's some
25 uncertainty in forecasting data centers. But I just want

1 to note that this mid case forecast especially, we have a
2 high confidence in. It's based primarily on signed
3 agreements, which takes a significant commitment for
4 projects to get to that stage. And the fact that the mid
5 case is pretty similar to last year, even with a different
6 mix of applications, also gives us confidence around the
7 total amount of load statewide. Next slide.

8 This chart just breaks out PG&E separately, which
9 has the largest amount of load. Just want to point out
10 their forecast did increase in the long run, even though
11 the ramping is slightly slower, so it's a little bit lower
12 in the near term before 2033.

13 Yeah, next slide.

14 This is the high case demand, so that goes into
15 the local reliability scenario. This one is higher than
16 last year, again, because we have a significant increase in
17 the total requested capacity, including applications and
18 inquiries. And this scenario counts more of those
19 speculative projects. As the earlier slide said, it
20 includes 50 percent of Group 2 and 10 percent of Group 3.

21 So the difference between the mid and the high
22 case, which was about 2,000 megawatts by the end of the
23 forecast, kind of shows even if a fraction of these new or
24 less certain projects are completed, the load could be much
25 higher, as we see here.

1 Next slide.

2 So we're showing VEA separately. They were not
3 included in the last -- in the result slides just now
4 because we didn't have a forecast for them last year. So
5 the left and right side here are just the mid and high
6 cases. And the data is currently characterizing these as
7 Group 2 coming online starting in 2028, I think, a little
8 bit.

9 Next slide.

10 So lastly, I'm just going to mention how this
11 translates to our hourly forecast. We used a sample of
12 metering data from about 50 data centers in PG&E territory
13 to create an hourly profile. And the original data set is
14 actually the same as last year, but this year we calculated
15 monthly profiles in addition to just weekday, weekend
16 profiles.

17 Next slide.

18 Here's the hourly load factor compared to last
19 year. The average of all months is kind of almost the same
20 as last year, last year being the dashed line there, and
21 this year being -- this year's average being the orange
22 line. The light blue line is October, which had the
23 highest load factor, and the green is March, which had the
24 lowest. And October demand is higher because it's hotter,
25 so data centers require more cooling than in March. The

1 October month represented in the AMI data, I think it was
2 from 2023, was a pretty hot October. And we looked at our
3 historical weather for the region also which showed it was
4 above average, so it was actually hotter than September, so
5 that's why October is the maximum here.

6 But anyways, the profiles are relatively flat
7 over 24 hours, but the monthly difference does show that
8 there is a seasonal component, so weather sensitivity does
9 end up being significant here.

10 Next slide.

11 This is the weekend profiles, pretty similar,
12 just a little lower overall compared to the weekdays. So
13 these profiles will apply to the maximum demand to create
14 the hourly forecast for this year, and we're using the same
15 profile for all utilities.

16 Next steps for the profiles, we would like to
17 expand our dataset to create a more robust sample, explore
18 differences between hyperscale data centers and smaller
19 data center profiles, likely to be some difference there,
20 and possibly develop some kind of regression framework to
21 quantify the weather sensitivity.

22 Next slide.

23 I think, yeah, that's it. So we can go to
24 questions from the dais first.

25 VICE CHAIR GUNDA: Thank you, Mathew. Sorry for

1 joining late today.

2 Let me see if other Commissioners have any
3 questions. I have the benefit of bugging you all a lot
4 during briefings, so let me see. I see Commissioner
5 Reynolds. And any questions from you both? Don't think we
6 have questions.

7 Let's move to Q&A first, Mathew.

8 MR. GAGE: Hi.

9 "Is the utilization factor provided by Silicon Valley
10 Power at 67 percent overly weighted in favor of
11 transmission-connected data centers, given the
12 footprints of transmission-connected data centers in
13 their service territory?"

14 MR. COOPER: Good question. Yeah, that seems --
15 that sounds reasonable. We understood the 67 percent to be
16 the highest number that they had seen, so we sort of
17 conservatively used that. But, yeah, that's an interesting
18 point.

19 We did discuss this with some of the other
20 utilities, and I think most folks thought that the 67
21 percent was reasonable, or they had possibly even seen
22 maybe slightly lower numbers than that. But, yeah,
23 definitely would be interested in seeing any numbers that
24 anyone else has on that.

25 Also, just want to note that the majority of the

1 applications which we have, and I think especially the
2 large ones, are for transmission-connected data centers.

3 MR. GAGE: Thank you. "Did LADWP provide info on
4 data centers?"

5 MR. COOPER: We did have conversations with them
6 also. I guess I should have mentioned that. And I don't
7 think they're expecting any new load coming online.

8 MR. GAGE: Thanks.

9 "In November 2024, PG&E announced a flexible data
10 center pilot. Through this pilot, PG&E will use load
11 control technology to send signals to data centers to
12 reduce their load during grid events. In that same
13 month, PG&E reported that it started three flexible
14 data center pilots and intended to start two more. Do
15 you have any updates on these pilots?"

16 MR. COOPER: Good question. I don't, personally.
17 I know load flex is something we've been discussing, and
18 that is very interesting. I know, you know, load flex
19 isn't something we'd include in the forecast. It is
20 something we're tracking and thinking about, though,
21 obviously. I mean, most, anecdotally, it seems that many
22 data centers are not interested in participating in that.
23 So, yeah, it would be interesting to hear, to keep
24 following that question.

25 MR. GAGE: "Are you assuming that any new Google

1 data centers will have flexible peak demand load?"

2 MR. COOPER: We do not. I believe identifying
3 individual customers is confidential information that's not
4 necessarily shared with us, especially at this stage of the
5 forecast, so I couldn't speak to any specific, you know,
6 company or customer on their plans. But, yeah, again,
7 we're definitely interested in the questions about load
8 flex, so we'll keep following that.

9 MR. GAGE: The same questioner had a couple of
10 other comments attached to their questions.

11 I will remind participants that we are only
12 handling questions during this time. You may want to join
13 in with public comments at the end of this presentation,
14 the general public comments, or the written public
15 comments, which Heather has described before.

16 Continuing on.

17 "On slide 11, can you explain the difference between
18 2024 and 2025's mid case charts for each utility,
19 specifically why some of them dropped out?"

20 MR. COOPER: I believe the dropout was San Jose.
21 As I mentioned earlier, they had been exploring becoming
22 their own load serving entity, and so we had broken them
23 out separately in the past. And because those plans are on
24 hold, now we're not breaking them out separately.

25 I believe, was that the only dropout? Let me

1 take a quick look at my -- yeah, I think that was the only
2 dropout. We also have Palo Alto on there, which is a small
3 load, but it's in both sides.

4 MR. GAGE: Thank you. "How did you come up with
5 the confidence levels? Did you do any analysis of
6 utilities' historical data?"

7 MR. COOPER: Originally, some of those numbers
8 were shared with us by SCE. I think I had a shot of that
9 in one of the slides, although I didn't explain it. They
10 had assigned sort of by individual project confidence
11 levels. And I'm not -- and I believe some of that was
12 probably based on experience, but I know they don't have a
13 ton of data centers in their territory.

14 We've also discussed these confidence levels with
15 various utilities. And, yeah, it think, so it's sort of
16 based on those discussions, I guess, of, you know,
17 experience, PG&E's experience, SVP's experience, you know,
18 sort of floating those numbers. We've presented this
19 multiple times and discussed these last year and this year.
20 And so this year, we opted to keep similar numbers to last
21 year, unless there was a specific reason for changing it,
22 such as our revised group definitions.

23 MR. GAGE: Thank you. "Are all these load
24 profiles applied against IOU time of use rates, or is it
25 all driven by cooling demand?"

1 MR. COOPER: I don't think TOU was considered in
2 the calculation. Well, it would inherently. It's based on
3 AMI data, so inherently, if TOUs are affecting, it would be
4 in the data, although our understanding is that data
5 centers are not really sensitive to TOU rates. So cooling
6 demand would be it, yeah.

7 MR. GAGE: Okay.

8 "Can you advise on how the IEPR mid case should be
9 used for resource planning? Is it safe to say that the
10 mid case is sufficiently discounted to address
11 speculative loads, or should LSEs and agencies further
12 discount the mid case forecast to address risk and
13 plan for a lower load forecast?"

14 MR. COOPER: I would say it is sufficiently
15 discounted, and we have done our best to do the best
16 forecasts, the most realistic forecasts we can.

17 Oh, Heidi, did you have a thought on that?

18 MS. JAVANBAKHT: Yeah. Hi, everyone. Heidi
19 Javanbakht with the Energy Commission.

20 Actually, Mathew, where you're going with it was
21 perfect. So as far as the data centers, for the mid case,
22 we are primarily counting the ones that have the most
23 certainty around them, which are the least -- and are the
24 least speculative. So I would say that there's pretty low
25 risk with using the mid case for resource planning.

1 MR. GAGE: Thank you.

2 MS. JAVANBAKHT: Of course.

3 MR. GAGE: Oh, I'm sorry.

4 "Are you planning to compare distribution-connected
5 data centers against transmission-connected data
6 centers in terms of performance that might skew the
7 data analysis?"

8 MR. COOPER: Yeah, that is -- we're interested in
9 those kinds of differences. We are sort of digging into
10 our metering data to try to make some of those -- identify
11 some of those differences. As I mentioned, the majority
12 are transmission-connected, so -- and I believe the biggest
13 ones that probably have the most impact are transmission-
14 connected, so we would focus on those.

15 MR. GAGE: Yeah.

16 "I believe ERCOT, the Electric Reliability Council of
17 Texas, has adopted a 50 percent discount factor for
18 data center load. Are you looking into how other
19 areas are discounting data center load?"

20 MR. COOPER: We're definitely interested in
21 hearing any numbers like that, yeah. I assume they're
22 meaning like what we call the utilization factor, which
23 would be the requested capacity in the application, what
24 does that translate to? Like what's the actual maximum
25 demand?

1 And as I said, the 67 percent was the maximum
2 that Silicon Valley Power said they had seen, so 50
3 percent, you know, I would think it's reasonable. I
4 believe PG&E reported seeing an average of 60 percent. So,
5 you know, comparing those numbers, you know, I don't know
6 what the exact right one is to use, so we erred on slightly
7 conservative side, but I think definitely would be
8 interested in hearing whatever numbers are out there, yeah.

9 MR. GAGE: Thank you. That is all the Q&A we
10 have, so I will turn it over to Heather for the public
11 comments and the closeout.

12 MS. RAITT: Great. Thank you, Jason -- Jesse,
13 sorry.

14 And then Commissioner -- or Vice Chair Gunda, did
15 you want to make any remarks before I --

16 VICE CHAIR GUNDA: Yeah, Heather --

17 MS. RAITT: -- go to public comment?

18 VICE CHAIR GUNDA: -- I just want to say thanks.
19 Yeah, I just wanted to add my thanks to everybody who
20 attended. I know Commissioner Houck and Reynolds and
21 Commissioner McAllister were there for most of the day.
22 Apologies, I couldn't join the entire day, but really good
23 work in continuing to bring in the known and unknown --
24 known and pending loads, which has been a very important
25 improvement in the forecasting this year.

1 I think specific to the data centers, I just
2 wanted to share with the attendees that there is also some
3 work that is happening at the WECC level and in other
4 regional entities like YRAB (phonetic) and CREB-C
5 (phonetic) to really understand how to best forecast data
6 centers given a number of these applications might be
7 happening in different states at the same time and to
8 really understand potential duplication of those
9 applications or kind of just the realization rate. So
10 that's something we're continuing to look for from our
11 regional partners as well.

12 So with that, I'll pass it back to you, Heather.
13 Thank you.

14 MS. RAITT: Great. Thank you.

15 So we'll move on to the public comment portion of
16 the day. And so if you are on Zoom and you wanted to make
17 comments, you can just press that raise-hand icon on your
18 screen. That will let us know that you'd like to make
19 comments. And if you're on the phone, press star nine, and
20 that will let us know that you'd like to make comments.
21 And so comments are limited to three minutes per person,
22 and we requested we only have one speaker per organization.

23 And so I see we have a hand up and we will
24 go to that person. And if you could --

25 MR. HART: And if you're able to hear me.

1 MS. RAITT: Yeah. I'm sorry, and I should have
2 mentioned, could you state your name and spell your name
3 and your affiliation if you have any for the record? Thank
4 you.

5 MR. HART: Yes. Jon Hart, J-O-N H-A-R-T. I'm
6 the policy director with the California Solar and Storage
7 Association, or CALSSA. Really appreciate all the work
8 going into these reports. Obviously a ton of thought and
9 really appreciate that.

10 A few comments I wanted to make related to
11 forecasting for behind-the-meter solar and storage. It
12 looks like next year things kind of fall off a cliff as far
13 as, you know, 80 percent decrease in storage adoption and a
14 lot of that due to the ITC. We do expect a decrease in
15 installations compared to now because of the ITC going
16 away.

17 However, I had made this comment earlier in the
18 Q&A, but the ITC will still be available even for
19 residential over the next two years if it's third-party
20 owned systems. So the ITC is not just going away
21 completely. For non-residential, it will still be there as
22 well, and same thing for storage.

23 And then also, just based on data and intel we're
24 getting from our member companies, there's still demand out
25 there even without the ITC. So we think an 80 percent

1 decrease is too much. We would be happy to provide data
2 and intel that we've been gathering to help correct that,
3 but we think that that needs to be corrected.

4 And then also, I think just opening this up in
5 general, we do very often collect data from our member
6 companies. We're happy to provide that and be a resource
7 in moving forward in the future for these or other types of
8 reports.

9 Thanks again.

10 MS. RAITT: Okay. Appreciate your comments.
11 Thank you.

12 Next is Sam Maslin. If you could go ahead and
13 unmute on your end. Go ahead.

14 MR. MASLIN: Can you hear me?

15 MS. RAITT: Yes, thanks.

16 MR. MASLIN: Yeah, thank you. This is great. So
17 my name is Sam Maslin. I'm the CEO of Eddy Energy. Eddy
18 Energy is a developer of community-scale energy storage
19 projects.

20 Our comment, and we're going to submit comments
21 in writing, is just that at a high level around the load
22 modification process. We would really urge the CEC to
23 really widen the aperture of resources and assets that are
24 included as load modifying resources. You know, the CEC
25 itself has issued relatively recent reports on meeting the

1 load flexibility goal, which I believe is 7 gigawatts.
2 We're essentially halfway there and seem a bit stalled at
3 3.5 gigawatts. The report from the CEC from June mentions
4 that new strategies and programs are needed in the near
5 term to enable resources and enable the load flexibility
6 that we all know delivers a lot of benefits.

7 We would really urge that included in that, which
8 is already listed in various, you know, CEC kind of
9 definitions, front-of-the-meter distribution-connected DERs
10 be included as potential load modifiers. I'll talk a
11 little bit about that segment.

12 This is a segment that's really, frankly, taking
13 off in so many different markets. A lot of people might be
14 familiar with the New York Meter Program and the kind of
15 gigawatts of community-scale solar and storage that's been
16 enabled. But in addition to New York, in addition to ISO
17 New England, we now have states such as Minnesota with the
18 distributed capacity procurement where they're -- you know,
19 they've sort of rated the value and are committing to, you
20 know, 400-plus megawatts of, you know, 3-megawatt front-of-
21 the-meter batteries across their distribution system. We
22 have IRP-driven 150-plus megawatt procurements with Puget
23 Sound Energy, Portland General, you know, and kind of the
24 list goes on.

25 So there really is a lot of benefit for a well-

1 cited front-of-the-meter community-scale resource. It's in
2 a load pocket. It is actually shifting net load in a
3 really economical and good way. And so we really would
4 urge the CEC to expand its definition to make sure those
5 get counted.

6 And again, we're going to detail this in our
7 comments. We really want to stress that in California,
8 there are current barriers for those resources to be
9 counted and really come to fruition. So these resources in
10 general don't currently qualify for RA. They're actually
11 barred from seeking deliverability under interconnection
12 rules. These same interconnection rules, you know, study
13 the resources and confirm that they do not back feed to
14 transmission using the local load profile. If they do,
15 they have to go to the cluster and they fail the screen.

16 So, again, we're going to detail this. But
17 resources that pass WDAT and Rule 21 interconnection
18 processes that are distribution are confirmed to shift
19 local load, to serve local load. We think they ought to be
20 included in the modification process.

21 Yeah. Thank you.

22 MS. RAITT: Great. Thank you.

23 Looking to see if anybody else wants to make
24 comments. Use that raise-hand function to let us know you
25 have comments. And if you're on the phone, press star

1 nine, and that will let us know. And we will just give it
2 another moment to see if anyone else has comments. I'm not
3 seeing any, so I think we're done with public comment.

4 And I'll just remind folks that written comments
5 are due on November 26. And just look for the notice and
6 I'll tell you how to do that. And then we have our next
7 workshop on December 11th that will talk about the forecast
8 results in the afternoon.

9 And, okay, it looks like perhaps we can just take
10 one last comment. Karolina, if you want to go ahead and
11 we'll just -- this will be our very last comment. If we
12 can unmute Karolina?

13 MS. MASLANKA: Hi. Can you hear me?

14 MS. RAITT: Yeah.

15 MS. MASLANKA: Hi, this is Karolina Maslanka.
16 Apologies for the last minute comment there.

17 I just wanted to respond to what Sam Maslin was
18 saying, and also just urge the CEC to consider the
19 expanding what is considered for load modification. And
20 just wanted to ask if you or someone else could speak to
21 the extent to which, you know, that could be considered
22 within the scope of this work and how it would fit into the
23 work that you all are doing on the Demand Forecast, if you
24 could speak to that at all?

25 MS. RAITT: Yeah, sorry, I can't. We can't speak

1 to that right now, but perhaps staff can follow up with you
2 on that.

3 MS. MASLANKA: That would be excellent. Thank
4 you.

5 MS. RAITT: Okay. Thank you.

6 MS. MASLANKA: And I'll also be submitting
7 comments. Thank you.

8 MS. RAITT: Thanks.

9 All right, so that officially closes our public
10 comment period.

11 And here's the information of how to submit
12 written comments. And I don't know if the Vice Chair
13 wanted to say anything else.

14 VICE CHAIR GUNDA: Just, Heather, thank you.
15 Thanks to all the participants. And Karolina had the last
16 word, which is great.

17 So with that, the meeting is adjourned.

18 (The workshop adjourned at 2:56 p.m.)

19
20
21
22
23
24
25

CERTIFICATE OF REPORTER

I do hereby certify that the testimony in the foregoing hearing was taken at the time and place therein stated; that the testimony of said witnesses were reported by me, a certified electronic court reporter and a disinterested person, and was under my supervision thereafter transcribed into typewriting.

And I further certify that I am not of counsel or attorney for either or any of the parties to said hearing nor in any way interested in the outcome of the cause named in said caption.

IN WITNESS WHEREOF, I have hereunto set my hand this 6th day of January, 2026.

Elise Hicks
ELISE HICKS, IAPRT CERT**2176

CERTIFICATE OF TRANSCRIBER

I do hereby certify that the testimony in the foregoing hearing was taken at the time and place therein stated; that the testimony of said witnesses were transcribed by me, a certified transcriber and a disinterested person, and was under my supervision thereafter transcribed into typewriting.

And I further certify that I am not of counsel or attorney for either or any of the parties to said hearing nor in any way interested in the outcome of the cause named in said caption.

I certify that the foregoing is a correct transcript, to the best of my ability, from the electronic sound recording of the proceedings in the above-entitled matter.

January 6, 2026

MARTHA L. NELSON, CERT**367