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RE: Comments on Non-Energy Impacts (24-OIIP-03) of Woody Biomass Energy 
 
To the California Energy Commission, 
 

The Center for Biological Diversity (“Center”) submits the following comments on the 
California Energy Commission’s (“CEC”) Order Instituting Informational Proceeding, 24-OIIP-
03, to integrate non-energy benefits (“NEBs”) and social costs (collectively “Non-Energy 
Impacts” or “NEIs”) into energy planning and investment decisions (“NEI OIIP”). We appreciate 
the CEC undertaking this important proceeding.  

 
These comments focus on the NEIs of woody biomass energy, i.e., energy made from 

forest and agricultural biomass. Woody biomass energy in California has, to date, primarily been 
produced through biomass combustion to generate electricity. However, new proposals for 
biomass energy production have focused on gasification or pyrolysis of woody biomass to 
generate electricity and other products including methane, hydrogen, and bio-oil. Therefore, 
these comments address biomass combustion, gasification, and pyrolysis.  
 

Woody biomass energy production, whether through combustion, gasification, or 
pyrolysis, has significant negative impacts. It degrades local air quality; worsens climate change; 
is expensive; reduces wildfire resilience and forest ecosystem resilience; has high water usage in 
the case of hydrogen production; and can lead to detrimental land use change. As the CEC 
develops NEI values, we ask that you ensure that the methodologies can capture the impacts 
from biomass energy detailed in this comment.  

 
I. Local Air Quality Impacts 
 

Woody biomass combustion, gasification, and pyrolysis degrade local air quality by 
emitting a wide range of health-harming air pollutants including fine particulate matter, NOx, 
and benzene. Woody biomass energy facilities routinely exceed their emissions allowances, and 
air quality violations are common. Biomass energy facilities are frequently sited in low-income 
communities and communities of color, worsening environmental injustice. Biomass proponents 
incorrectly claim that woody biomass residues must either be piled burned or used to make 
energy, when in fact there are cleaner alternatives for biomass that do not create air pollution. 
 

A. Biomass combustion, gasification, and pyrolysis produce a wide array of health-
harming air pollutants that must be accounted for.1  
 
Biomass combustion power plants are among the largest emitters of nitrogen oxide 

(NOx) and fine particulate matter (PM 2.5) in California. In the San Joaquin Valley Air 
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Basin, three biomass power plants—DTE Stockton, Rio Bravo Fresno, and Mount Poso—were 
the 9th, 10th, and 12th biggest stationary source of NOx, respectively, in 2022 out of 144 sources.2 
Rio Bravo Fresno and DTE Stockton were also the 11th and 19th largest stationary sources of PM 
2.5 in 2022.3 In the Sacramento Valley Air Basin, 8 of the 10 worst NOx polluters were biomass 
power plants, and 5 of the 10 worst PM 2.5 polluters were biomass plants in 2022 out of 55 
sources.4  

 
Biomass power plants also emit hazardous air pollutants such as hydrochloric acid, 

dioxins, benzene and other BTEX chemicals, formaldehyde, arsenic, chromium, cadmium, lead, 
and mercury.5 For example, in 2022, Humboldt Redwood Company’s Scotia biomass 
cogeneration facility reported emitting a whopping 13,672 pounds of the carcinogen benzene 
(second-highest benzene emitter across the state’s stationary sources) and 14,472 pounds of the 
toxin formaldehyde (tenth-highest formaldehyde emitter across the state’s stationary sources).6 

 
Fine particulate matter (PM 2.5) can penetrate deeply into the lungs, even enter the 

bloodstream, and cause serious health problems including heart disease, premature death, stroke, 
and aggravated asthma. NOx damages the respiratory system and contributes to acid rain, 
harming ecosystems. Benzene is a well-known human carcinogen, and toluene and xylenes 
damage the brain and nervous system, respiratory system, kidneys, and liver. 
 

Biomass gasification and pyrolysis processes also emit a wide range of air pollutants. 
Gasification of biomass at high temperatures (800-1200°C) produces a “syngas” containing large 
amounts of CO2, as well as methane (CH4), carbon monoxide (CO), and hydrogen (H2), in 
addition to liquid hydrocarbons and tar, solid char and ash residues, and numerous air 
pollutants.7  Pyrolysis heats biomass to temperatures of 350-600°C without oxygen and produces 
similar products to gasification, including large amounts of CO2, with the addition of pyrolytic 
oil (“bio-oil”) and larger quantities of char. Heath-harming pollutants from biomass gasification 
and pyrolysis include fine particulate matter, NOx, SOx, benzene, toluene and xylenes (BTEX), 
tars and soot, and persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) 
(e.g., naphthalene), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs).8 The 
formation of NOx precursors, including NH3, HCN and HNCO, during biomass pyrolysis has 
been widely reported.9  

 
The formation of liquid tar is also an inherent problem in biomass gasification. Tar 

contains toxic substances such as benzene, toluene, and naphthalene, while tar build-up also 
lowers energy efficiency, interrupts continuous operation, and increases maintenance costs of 
gasification processes.10 Methods to clean tar from equipment would create large amounts of 
toxic wastewater, with resulting environmental and community harms.11  

 
B. California’s biomass power plants routinely exceed their permitted emissions.   
 
California’s biomass power plants are guilty of repeated air quality violations.12 For 

example, the U.S. Environmental Protection Agency (EPA) issued a notice of violation in 2022 
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to the Desert View biomass power plant in the Coachella Valley for repeated emissions 
exceedances of mercury, hydrochloric acid, carbon monoxide, sulfur dioxide, nitrous oxides, and 
opacity.13 The plant was the largest single emitter of smog-causing pollutants in the valley — 
producing nine times as much as the second largest source, a gas-fired power plant.14 
Residents voiced concerns for years about smoke plumes from the biomass plant blowing over 
their homes, a school and a daycare center.15 The EPA in 2016 cited and fined the Blue Lake 
biomass power plant, located near Blue Lake Rancheria Indian Tribal lands, for multiple air 
pollution violations.16 Tribal members, especially children and the elderly, reported severe health 
harms from the air pollution from the plant.17 Merced Power and Chowchilla biomass power 
plants in the San Joaquin Valley have been fined for excess emissions of nitrogen oxides and fine 
particulate matter.18    

  
Between 2015 to 2021, at least 2,034 cases of emissions exceedances and violations were 

reported by 18 California biomass power plants, according to records obtained by the Center for 
Biological Diversity from air districts via Public Records Act requests. The records received 
were incomplete and therefore represent an underestimate of excess emissions. Reported 
pollutants included NOx, CO, and particulate matter. Of these 18 biomass power plants,19 four 
reported more than 200 instances of excess emissions during the reporting period: Honey Lake 
had an average of 66.5 exceedances/year, followed by Collins Pine with 56.2 exceedances/year, 
Humboldt with 48 exceedances/year, and SPI Quincy with 47.4 exceedances/year. Across all 18 
plants, the most common type of emissions exceedance was opacity. Opacity measures the 
reduction of light after passing through emitted smoke, and higher opacity indicates higher 
particulate matter. Emissions exceedances are incidents during which the biomass power plant 
exceeded its permitted pollution level. A single exceedance can last hours or multiple 
days. Emissions exceedances are in addition to the sizeable emissions from these power plants 
that are already allowed by permits.   

  
C. Biomass facilities are often sited in environmental justice communities. 

 
California’s biomass power plants are often sited in environmental justice communities. 

In the San Joaquin Valley, eight of the 10 active and idle biomass plants are located in 
communities already severely overburdened by pollution.20 Fresno’s Rio Bravo biomass plant is 
located less than a half-mile from the Malaga Elementary School, Malaga Community Park, and 
surrounding homes, all in a majority Hispanic neighborhood with a pollution burden score of 
100.21 The DTE Stockton biomass power plant is located about a half-mile from homes and less 
than a mile from an elementary school and community center in majority Hispanic neighborhood 
with a pollution burden score of 99.22 
 

Proposals for new woody biomass energy facilities also frequently target environmental 
justice communities. For example, in California’s Central Valley, idled biomass power plants 
including the Mendota, Delano, and Madera plants have been proposed to be reopened as 
biomass gasification or pyrolysis facilities to produce electricity, methane, and hydrogen, 
threatening to worsen pollution for these communities.23 Another proposal envisions a massive 
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build-out of 50 to 100 biomass processing facilities—many of them biomass gasification and 
pyrolysis facilities—that would be concentrated in the Central Valley, paired with a polluting 
network of CO2 pipelines, railcars, and trucking, and the injection of 100 million tons of CO2 
underground each year,24 with inevitable harms from air pollution, water pollution, noise 
pollution, CO2 leakage, earthquake risks, and ecosystem damage. 
 

D. Biomass proponents incorrectly claim that woody biomass must be used for 
energy production or pile burning – and ignore cleaner alternatives.  

 
 Bioenergy proponents often claim that woody biomass residues must either be pile 
burned or made into energy, but this is a false choice between two polluting options. There are 
alternative methods for managing forest and agricultural biomass residues that do not create air 
pollution. For forest biomass, the most beneficial practice is leaving these materials in the forest 
to maintain soil organic carbon, retain nutrients in the ecosystem, and support wildlife habitat.25 
Forest residues break down over time, releasing nutrients that stimulate forest growth and add to 
forest soil carbon, which keeps carbon circulating in forest ecosystems. Coarse woody debris and 
downed logs provide important wildlife habitat.26 Forest materials can be broken down into large 
pieces and scattered in a way that maintains their contact with the forest floor, often called “lop 
and scatter,” or masticated or chipped into smaller pieces and scattered across the forest floor. 
Research indicates that chipping, mastication, and “lop and scatter” of materials in the forest do 
not appear to increase wildfire intensity.27 When forest residues are scattered across the forest 
floor, without creating deep layers or piles of material, they are unlikely to produce methane 
emissions, in contrast to the significant methane emissions that are released by the log landings 
and wood chip piles created as part of bioenergy production.28 If wood must be removed from 
forests, it can be turned into mulch, shavings, and other non-incineration products.29 
 
 For agricultural biomass, mulching, and chipping and reincorporation—as alternatives to 
pile burning—have been shown to promote soil health, increase crop yields, create agricultural 
drought resistance, and sequester carbon in soils for the long-term.30 Whole orchard recycling is 
a chipping and reincorporation practice used in California with perennial crops like almonds. 
When an agricultural operation is ready to replant an orchard, the old orchard biomass is ground 
and shredded using land clearing equipment, and the resulting chips are reincorporated into the 
soil in preparation for new tree plantings. Following whole orchard recycling, studies have found 
that trees grew more, trees were more productive, trees were more efficient in irrigated water 
usage, soil nutrient content was greater, soils were able to hold more water, and the carbon 
sequestered in the soil was greater—out to nine years following the start of the study.31 
Mulching, or simply leaving agricultural waste on the ground, even without actively 
reincorporating it into soils, has also been shown to have numerous benefits: controlling erosion, 
conserving soil moisture, reducing soil compaction, removing harmful heavy metals, reducing 
weed growth and minimizing the need for pesticides and herbicides, and regulating soil 
temperature which will be increasingly beneficial in a heating climate.32  
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 Using agricultural waste for mulching or chipping and reincorporation can provide 
notable climate benefits. These methods enable carbon to be incorporated into soils or plants as 
the waste decomposes, leading to additional carbon storage. Using agricultural waste in place of 
nitrogen-based fertilizers has also been shown to reduce nitrous oxide emissions from soils, 
leading to climate benefits. The combination of improving soil health and carbon storage makes 
techniques of agricultural waste management such as mulching and chipping and reincorporation 
more beneficial than using them for bioenergy production. 
 
II. Climate Impacts 

  
Biomass energy production emits significant greenhouse gas emissions across the 

lifecycle that worsen climate change and reduce climate resilience.  These emissions must 
be fully accounted for. We ask the CEC to review and revise its treatment of greenhouse 
gas emissions from biomass energy to fully account for these emissions and their impacts.  

 
Bioenergy proponents incorrectly claim that making bioenergy using woody biomass is 

carbon neutral, asserting these processes lead to no net increase of CO2 to the atmosphere.33 This 
claim has been repeatedly debunked by scientific experts and assessments,34 including the 
Environmental Protection Agency’s Science Advisory Board and Intergovernmental Panel on 
Climate Change (IPCC).35 At the smokestack, biomass power plants emit more CO2 per unit of 
energy produced than coal.36 Making electricity and fuels using woody biomass is polluting 
across the lifecycle, resulting in decreased forest carbon sequestration; substantial upstream 
emissions from biomass extraction, transport, processing, and storage; and significant 
downstream emissions from combustion, gasification, and pyrolysis.  
 

Decreased forest carbon sequestration: Cutting down trees ends their carbon 
sequestration. Because a tree’s carbon sequestration rate increases with size, large trees capture 
carbon more efficiently than smaller trees.37 Therefore, it takes many years for trees that grow 
back after logging/thinning to become large enough to draw down the same amount of carbon as 
the trees that were cut, resulting in decreased forest carbon sequestration. 
 

Substantial upstream emissions: Substantial upstream emissions are released during 
cutting, extraction, transport, and processing of woody biomass in preparation for making 
bioenergy and fuels. Climate and air pollution is released from the use of heavy machinery to cut 
and extract trees from forests; the use of fertilizers and pesticides after cutting; transporting 
biomass often long distances in diesel trucks; and processing biomass through chipping and 
drying.38  
 

Methane emissions from wood chip storage piles and log landings: The wood chip 
storage piles and log landings at biomass facilities release substantial methane emissions that can 
be large enough to significantly add to the overall climate impact of bioenergy production.39 One 
study reported that wood chip piles can cause “remarkable” methane emissions as well as nitrous 
oxide (N2O) emissions, and that “greenhouse gas emissions from storage [in wood chip piles] 
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can, in some cases, be much greater than emissions from the rest of the biofuel production and 
transportation chain.”40  
 

Significant downstream emissions: The main processes used to turn woody biomass 
into energy and fuels—combustion, gasification and pyrolysis—are dirty processes that emit 
significant climate and air pollution.41 Combusting woody biomass to make electricity is more 
carbon-polluting at the smokestack than coal per unit of energy produced.42 Biomass gasification 
and pyrolysis are similarly dirty. Gasification and pyrolysis heat biomass to high temperatures 
using water and a controlled oxygen stream (or no oxygen in the case of pyrolysis) to produce a 
“syngas” that contains large amounts of CO2, as well as the climate super-pollutant methane 
(CH4).43 
 

Bioenergy production—including using “residues”—is not carbon neutral.  
Bioenergy proponents incorrectly claim that bioenergy production is carbon neutral by (1) 
ignoring upstream emissions and foregone forest carbon sequestration and (2) taking credit for 
future forest growth, ignoring the time lags and uncertainty in that growth. Specifically, 
bioenergy proponents immediately offset the CO2 emissions released from logging/thinning, 
processing and transport, and biomass combustion, gasification and pyrolysis by taking credit for 
the CO2 that will be absorbed by future tree growth.44 This is misleading because forest growth 
takes time and is uncertain—there is no requirement that cut forests will be allowed to grow back 
or that forests won’t be converted to other land uses. Once trees are cut, numerous studies show 
it takes many decades to more than a century—if ever—for forests to regrow and drawdown the 
CO2 emissions that were released when they were cut and turned into energy or fuels.45  
 

Importantly, research shows that making bioenergy using forest “residues” or “waste” 
feedstocks—referring to biomass that would otherwise be disposed of—is also not carbon 
neutral. The combustion or gasification of forest residues leads to a net increase of carbon 
emissions in the atmosphere for decades.46 One study found that combusting all wood types, 
including forest residues (defined as branches, tree tops and bark) and fire-killed trees, to 
generate electricity increases carbon emissions in the atmosphere for more than a century 
compared to generating that electricity with fossil gas.47 These conclusions would be similar for 
gasification and pyrolysis since CO2 is a primary product. 
   

As summarized in a recent review by Mackey et al. (2025), “burning forest biomass for 
energy is not carbon neutral or beneficial”: 
 

We found that models used to evaluate bioenergy rely on key assumptions that are 
in themselves capable of delivering results supportive of bioenergy as an effective 
strategy. Yet there is abundant evidence that these assumptions are invalid and 
that burning forest biomass for energy is not carbon neutral or beneficial. From 
our assessment, we concluded that burning forest biomass, including logging 
residues, increases atmospheric CO2 concentration; land sector reporting using net 
greenhouse gas inventories obscures the impact of forest harvesting on ecosystem 
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carbon stocks; and biomass energy will most likely displace other renewable 
energy, rather than fossil fuels.48 

 
In short, making fuels and energy using woody biomass, including residues, is polluting 

and expensive, resulting in foregone forest carbon sequestration and significant upstream and 
downstream carbon emissions, while displacing clean solar and wind energy. Biomass energy 
production has the overall effect of worsening climate change and reducing climate resilience. 
 
III. Affordability Impacts 
 

Burning or gasifying trees for energy is an inefficient and expensive way to make 
electricity. The significant costs associated with biomass removal, transport, processing, and 
combustion or gasification result in biomass power being very expensive compared to other 
electricity sources.49 Biomass power plants depend on public subsidies to prop them up such as 
the BioMAT program (Bioenergy Market Adjusting Tariff) and BioRAM program (Bioenergy 
Renewable Auction Mechanism). The BioMAT and BioRAM programs require electric utilities 
to buy biomass electricity at high prices that are passed down to California customers in higher 
electricity bills. SoCal Edison buys BioMAT power at $199.72/MWh50 which is ~4 times higher 
than the average wholesale price of power on the California grid – and much higher than PV 
solar and wind energy. PG&E buys BioMAT power $127.72 – $199.72, which it confirms “is 
much higher than the average cost of incremental wholesale electric generation today, even when 
considering only RPS-eligible resources.”51 BioRAM prices are similarly high at ~$115/MWh.52 
PG&E and SoCal Edison are on record opposing extending the BioMAT beyond its current 
December 31, 2025 end date because, among other reasons, it is “administratively complex, 
costly, and largely unused.”53 Based largely on the high costs, the California Public Utilities 
Commission has proposed to end the BioMAT subsidy program on December 31, 2025.54 Public 
subsidies for biomass energy production reduce resources for affordable, truly low-carbon solar 
and wind energy, impeding California’s progress on affordable, clean energy. 
 
IV. Wildfire Resilience Impacts 
 

Thinning forests for bioenergy does not increase wildfire resilience and can even be 
counter-productive. It does not stop wildfires or reduce wildfire emissions, and it is not effective 
for community wildfire safety.  
 

A. Thinning forests for bioenergy does not stop wildfires which are largely being 
driven by climate change. 

 
 Contrary to bioenergy proponents’ claims, forest logging and thinning projects do not 
typically stop fires or reduce the amount of area burned.55 Forest thinning projects can even 
increase fire intensity and rate of spread by creating hotter, drier, more wind-prone conditions 
and introducing invasive fire-prone grasses.56 One comprehensive study covering three decades 
and 1,500 fires in the western US, including California, found that forests with the most 
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protection from logging/thinning burned with the lowest intensities.57 Instead, the amount of 
forest area burned is primarily influenced by weather and climate and has little relationship to the 
amount of forest area treated. 58 Regardless of logging/thinning, forests are burning in extreme 
fire weather conditions—periods of high temperatures, low humidity, and strong winds—which 
are becoming more prevalent due to anthropogenic climate change. Anthropogenic climate 
change has been identified as the primary driver of the increases in area burned, extreme fire 
weather, and community wildfire destruction in California in recent decades.59  
 

B. Thinning forests for bioenergy does not reduce wildfire emissions. 
 
 Biomass proponents often claim that logging/thinning will reduce the amount of area 
burned and lead to a decrease in wildfire emissions. While this claim can sound appealing, it is 
not supported. Instead, numerous studies have demonstrated the opposite: that broad-scale 
thinning for wildfire management leads to more carbon emissions than it prevents from being 
released in a wildfire, and results in a net increase of carbon emissions to the atmosphere and net 
decrease in forest carbon storage.60  
 
 Forest logging/thinning does not reduce overall emissions primarily because the carbon 
loss from forest thinning followed by wildfire is greater than the carbon loss from wildfire in un-
thinned stands, when cumulative tree mortality is accounted for. In other words, thinning kills 
more trees than it prevents from being killed in wildfires.61 In contrast to thinning, wildfire 
consumes a small percentage of forest carbon while improving availability of key nutrients and 
stimulating rapid forest regeneration. Research from California shows that even very severe fires 
combust less than 2% of living tree biomass on average.62 Most of what is combusted is small 
material such as needles, twigs and small branches. In short, logging/thinning is the largest cause 
of carbon loss from California (and U.S.) forests rather than wildfire.63  
 

C. Thinning forests for bioenergy is not effective for community wildfire safety. 
 
 A large body of research and on-the-ground experience demonstrates that the most 
effective way to protect communities from wildfires is to reduce the ignitability of structures 
themselves through proven “home hardening” retrofits paired with vegetation trimming within 
60 to 100 feet of homes and other structures—not logging/thinning forests.64 California-focused 
studies have found that vegetation management beyond 100 feet from homes and other structures 
provide no additional benefit for protecting those structures from burning.65  
 
 A 2023 study co-authored by U.S. Forest Service scientists concluded that “[t]he best 
way to make existing wildfire-vulnerable developments ignition resistant is to work within the 
limited area of the ‘home ignition zone’—a home and its surroundings within 100 feet (which 
may include neighboring homes).”66 The scientists emphasized that addressing the community 
wildfire destruction crisis will require changing from a “focus on the wildlands to one centered 
on the structure and its immediate surroundings,” highlighting that the current approach 
“primarily directed toward fuel treatments in natural areas” is ineffective and insufficient.67  
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 Similarly, Calkin et al. (2014) emphasized that treating wildland fuels does not 
“measurably impact the susceptibility of homes to ignition and subsequent destruction.”68 The 
study highlighted that home losses are increasing despite enormous investments in modifying 
wildland fuels because home susceptibility to wildfire is a direct function of their ignitability, 
which is dependent of the small area of the “home ignition zone” which “is independent of fire 
behavior in the nearby wildlands.” According to the study, “research demonstrates a home’s 
characteristics in relation to its immediate surroundings principally determine home ignition 
potential during extreme wildfires.” The scientists emphasized that “[o]vercoming perceptions of 
wildland-urban interface fire disasters as a wildfire control problem rather than a home ignition 
problem, determined by home ignition conditions, will reduce home loss.” 
 
 In a California-focused study, Syphard et al. (2014) found that structures were more 
likely to survive a fire if the vegetation was treated in the defensible space immediately adjacent 
to them.69 These scientists reported that “[t]he most effective treatment distance varied between 
5 and 20 m (16–58 ft) from the structure, but distances larger than 30 m (100 ft) did not provide 
additional protection, even for structures located on steep slopes. The most effective actions 
were reducing woody cover up to 40% immediately adjacent to structures and ensuring that 
vegetation does not overhang or touch the structure.” Subsequent studies have re-affirmed the 
important role of defensible space adjacent to structures.70  
 
V. Forest Ecosystem Resilience Impacts 
 

Logging and thinning forests for biomass use in energy facilities can reduce forest 
ecosystem resilience. Logging and thinning cuts and removes trees, often big trees and large 
numbers of trees, and other forest vegetation using heavy machinery that degrades soils and 
wildlife habitat.71 A recent review concluded that “the use of bioenergy results in major negative 
cascading impacts for forest ecosystem integrity and consequently a reduction in the resilience 
and natural adaptive capacity of species in the face of climate change impacts.”72  

 
Dead trees, which are often clearcut during “post-fire salvage logging,” are a common 

source of woody feedstock for biomass energy facilities. However, removing dead trees lowers 
forest ecosystem resilience. Dead trees do not increase wildfire risk, including no increase in fire 
severity, rate of spread, or extent.73 Instead dead trees – standing or fallen – provide numerous 
ecological benefits such as wildlife habitat, soil stabilization, and improved water quality.74 Dead 
trees left standing in the forest after intense fires provide critical carbon storage by retaining the 
vast majority of their carbon and undergoing subsequent slow decay.75  

 
In a recent PNAS study titled “Removing dead trees will not save us from fast-moving 

wildfires,” the researchers concluded that “a substantial body of evidence shows that such 
largescale [dead] tree removals will have cumulative and mostly negative ecosystem and climate 
consequences, reducing the ability for ecosystems to regenerate after severe natural disturbances, 
emitting vast quantities of carbon from commercial logging activities, and increasing the risk of 
fires and floods. Put simply, the wholesale removal of dead trees will make the fast-fire situation 
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worse.”76 Many studies recommend restoring forest health by allowing natural disturbance 
processes – such as wildfire – to proceed to increase forest resilience and adaptation under 
climate change.77  

 
VI. Water Quantity Impacts 
 

Biomass gasification to make hydrogen has extremely high water usage that should be 
accounted for. A recent study estimated that biomass gasification uses 306 kg water per kg of H2 

produced, which is orders of magnitude more than electrolysis production pathways estimated at 
9 to 18 kg water per kg H2.

78
 This would put extra stress on water supplies in areas already 

suffering from climate change-intensified drought.   
 

VII. Land Use Impacts 
 

Subsidies and incentives for biomass energy projects risk driving an increase in forest 
logging and thinning, leading to harmful changes in land use and land management practices. 
When incentives are designed to encourage the cutting and burning of forest biomass, it is only 
reasonable to expect that these incentives change the way that forests are cut, and that more and 
more forest “biomass” will be cut and burned. Biomass subsidies in the European Union have led 
to the development of wood pellet manufacturing industries in the US Southeast that cut whole 
trees specifically for biomass production.79 The extent and the intensity of forest cutting in the 
US Southeast have been far-reaching, leading to extensive land use change and distorted markets 
for wood products.80  
 
Conclusion 
 

We thank the CEC for undertaking this important proceeding and for considering our 
recommendations. We have provided the pdfs of the cited references in the box.com folder at 
this link for your reference: https://diversity.box.com/s/b59vxbimtr4ysmj17yfmrx0h7fql9b1j. 
We respectfully request that, as the CEC develops NEI values, you ensure that the methodologies 
capture the impacts from biomass energy detailed in this comment. 
 
Sincerely, 

 
Shaye Wolf, PhD 
Climate Science Director 
Center for Biological Diversity 
Oakland, CA 
415-385-5746 
swolf@biologicaldiversity.org 
 
 

https://diversity.box.com/s/b59vxbimtr4ysmj17yfmrx0h7fql9b1j
https://diversity.box.com/s/b59vxbimtr4ysmj17yfmrx0h7fql9b1j
mailto:swolf@biologicaldiversity.org
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