DOCKETED	
Docket Number:	03-AFC-02C
Project Title:	Los Esteros Phase II Compliance
TN #:	267462
Document Title:	Tanager BESS Project Data Response Set 1B
Description:	N/A
Filer:	Samantha G. Neumyer
Organization:	Climate Edge Law Group
Submitter Role:	Applicant Representative
Submission Date:	11/14/2025 4:19:03 PM
Docketed Date:	11/17/2025

Petition for Modification Tanager Battery Energy Storage System Project

Data Response Set 1B

Los Esteros Critical Energy Facility 03-AFC-02C

Submitted to California Energy Commission

Submitted by Los Esteros Critical Energy Facility, LLC

November 2025

LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C)

Petition for Modification- Tanager BESS Project DATA RESPONSE SET 1B

Los Esteros Critical Energy Facility, LLC, on behalf of Tanager Power, LLC, provides the following additional responses to the California Energy Commission ("CEC") Staff's Data Request Set 1. These responses address Data Requests A1 through A4 and A11 through A13, and supplements Data Response Set 1A¹ for the Tanager Battery Energy Storage System ("BESS") Project ("Project").

The responses are grouped by individual discipline or topic area. Within each discipline area, the responses are presented in the same order as presented in CEC Staff's Data Request Set 1² and are keyed to the Data Request numbers.

CONSTRUCTION IMPACTS ANALYSIS

DATA REQUESTS

A1Please provide a construction emission estimate or a comparison of the construction activities with the original project construction. If California Emissions Estimator Model (CalEEMod) is used to quantify construction emissions, please use the most recent version (version 2022.1.1.29 as of April 4, 2025) and provide a JSON file containing the CalEEMod project.

Response:

Please see Attachment DR-A1. Table A1-1 presents the estimated total and average daily emissions associated with construction of the proposed project. The emission estimates shown in Table A1-1 consider implementation of standard emissions minimization measures including fugitive dust control (i.e. watering exposed areas twice per day) and use of clean construction equipment (i.e., Tier 4 Final engines for equipment greater than 25 horsepower). Construction emissions were estimated using the most recent version of California Emissions Estimator Model (CalEEMod) (version 2022.1.1.30 as of August 12, 2025). Average daily emissions would not exceed the Bay Area Air District (BAAD) (formerly Bay Area Air Quality Management District [BAAQMD]) thresholds of significance.

Table A1-1. Construction-Related Total and Average Daily Emissions

Description	ROG	NOx	PM ₁₀ Exhaust	PM _{2.5} Exhaust
Total Emissions (tons)	0.14	0.86	0.02	0.02
Average Daily Emissions (pounds/day)	0.95	5.63	0.10	0.10
BAAD Threshold (pounds/day)	54	54	82	54
Threshold Exceedance?	No	No	No	No

Notes: ROG = reactive organic gases; NOx = nitrogen oxides; PM₁₀ = particulate matter less than 10 micrometers in diameter; PM_{2.5} = particulate matter less than 2.5 micrometers in diameter; BAAD = Bay Area Air District.

Estimated by AECOM in 2025, values rounded to two decimal places. Average daily emissions estimates calculated based on an approximate 14-month construction schedule (305 construction workdays).

Refer to Attachment DR-A1 for assumptions and modeling output.

Source: BAAD 2022

¹ TN: 266305.

A2 Please provide an ambient air quality impacts analysis for criteria pollutants during construction of the project modifications to show compliance with the California Ambient Air Quality Standards and the National Ambient Air Quality Standards or justify why such analysis is not needed.

Response:

Please see Attachment DR-A1. An ambient air quality impact analysis was performed utilizing the mass emissions of the criteria air pollutants associated with construction activities and the American Meteorological Society/EPA Regulatory Model (AERMOD) dispersion model to estimate near ground-level concentrations for comparison to the California Ambient Air Quality Standards (CAAQS) and the National Ambient Air Quality Standards (NAAQS). The San Francisco Bay Area Air Basin is designated as a nonattainment area for PM₁₀ and PM_{2.5}. Therefore, the proposed project impacts were compared to the Environmental Protection Agency (EPA) significant impact levels (SILs) for these pollutants. SILs are considered to represent inconsequential levels of pollution exposure and would not contribute significantly to the NAAQS or CAAQS.

Table A2-1 presents the results of the ambient air quality analysis from the project boundary within the modeling domain. Refer to Attachment DR-A1 for additional modeling details and outputs.

Table A2-1. Maximum Ambient Air Quality Impacts During Construction (µg/m³)

Pollutant	Averaging Period	Project Concentration	Ambient Background	Total Concentration	Limiting Standard	Percent of Standard
	CAAQS 1-hour ^[b]	10.63	110.92 ^[f]	121.55	339	35.9%
$NO_2^{[a]}$	NAAQS 1-hour ^[c]	N/A	See footnote [g,h]	85.60	188	45.5%
	Annual ^[b]	0.23	17.21 ^[f]	17.45	57	30.6%
60	1-hour ^[b]	69.90	1,610.00 ^[i]	1,679.90	23,000	7.3%
СО	8-hour ^[b]	27.61	1,610.00 ^[i]	1,637.61	10,000	16.4%
	24-hour ^[b]	0.94	N/A	0.94	5 ^[e]	18.8%
PM_{10}	Annual ^[b]	0.28	N/A	0.28	1 ^[e]	28.0%
DM	24-hour ^[b]	0.26	N/A	0.26	1.2 ^[e]	21.9%
$PM_{2.5}$	Annual ^[b]	0.12	N/A	0.12	0.13 ^[e]	88.6%
	CAAQS 1-hour ^[b]	0.11	93.53 ^[i]	93.64	655	14.3%
SO_2	NAAQS 1-hour ^[d]	0.10	4.10 ^[i]	4.20	196	2.1%
	24-hour ^[b]	0.022	2.79 ^[i]	2.79	105	2.7%

Notes:

[a] NO₂ impacts were modeled using the Tier 2 conversion method of ARM2 in AERMOD.

[b] Maximum concentration (1st rank).

[c] 98th percentile ranked valued averaged over 5-years.

[d] 99th percentile ranked valued averaged over 5-years.

[e] Limiting Standard is based on the EPA SIL given the nonattainment status of the area from existing conditions already exceeding the ambient air quality standard.

[f] Highest concentration from Jackson Street, San Jose monitor (2021-2023) as 2024 did not meet minimum data capture requirements.

[g] 3-year average design value from Jackston Street, San Jose monitor (2021-2023) as 2024 did not meet minimum data capture requirements.

[h] Used EPA's Tier 2 method (EPA 2011) for background that applies a 3-year average 98th percentile seasonal, hour-of-day varying value to the modeled source concentration directly in the model. Output from the model is the total project plus background value.
[i] Highest concentration from Jackson Street, San Jose monitor (2022-2024).

As shown in Table A2-1, concentrations would not exceed the NAAQS or CAAQS during construction of the proposed project for all pollutants. Refer to Attachment DR-A1 for additional modeling details and outputs. For the annual PM_{2.5} standard, the maximum project impact occurs along the southern edge of the project boundary. Proposed project impacts then quickly decrease with distance from the project boundary. Table A2-2 compares the project-level construction impacts for the annual and 24-hour PM_{2.5} standard at the maximum sensitive or worker receptor, whichever is higher, to the EPA SIL. As shown in Table A2-2, the maximum PM_{2.5} concentration at the sensitive or worker receptor locations would be lower than the maximum concentration along the project boundary. Therefore, the proposed project would comply with the CAAQS and NAAQS.

Table A2-2. Maximum 24-Hour and Annual PM_{2.5} Impacts During Construction at Sensitive Receptors (μg/m³)

Pollutant	Receptor Type	Project Concentration	EPA SIL	Percent of Standard
24-hour PM _{2.5}	Worker	0.032	1.2	2.7%
	Resident	0.015	1.2	1.3%
Annual PM _{2.5}	Worker	0.011	0.13	8.5%
	Resident	0.005	0.13	3.8%

Notes: Closest worker receptor in an office park located approximately 965 feet to the south of the project area at modeled coordinate 594,760 meters Easting and 4,142,020 meters Northing. Closest residential receptor is located at the Griffis South Bay apartment complex at modeled coordinate 594,760 meters Easting and 4,141,790 meters Northing.

A3 Please provide a health risk assessment for toxic air contaminants during construction of the project modifications to show the health risks are below the Bay Area Air Quality Management District (BAAQMD) thresholds or justify why such assessment is not needed.

Response:

Please see Attachment DR-A1. A health risk assessment was performed to evaluate the toxic air contaminants (TACs) impacts during construction for comparison to the BAAD health risk thresholds. The analysis utilized AERMOD and the Hotspots Analysis and Report Program Version 2 (HARP2) to estimate carcinogenic and noncarcinogenic health risks. Additional assumptions and model inputs and outputs are provided in Attachment DR-A1.

Table A3-1 presents the cancer risk results associated with construction of the proposed project at the maximum sensitive and worker individual receptor locations. As shown in Table A3-1, the maximum individual cancer risk for both sensitive and worker receptors is well below the BAAD threshold of 10 in one million.

Table A3-2 summarizes the maximum chronic non-cancer and acute risks at sensitive and worker receptors during project construction. The chronic and acute risk are also well below the thresholds.

Table A3-1. Project Construction Maximum Modeled Excess Cancer Risk Concentrations at Sensitive and Worker Receptors

Receptor	Duration	Cancer Risk (in a million) ⁶	BAAD Threshold	Exceeds Threshold?
Sensitive/Resident ^{3,5}	24 months	0.131	10	No
Worker ^{4,5}	24 months	0.24^{2}	10	No

Notes: BAAD = Bay Area Air District; HRA = health risk assessment; UTM = Universal Transverse Mercator

- 1. Receptor location: X(UTM) = 594,760.00, Y(UTM) = 4,141,791.00
- 2. Receptor location: X(UTM) = 594,760.00, Y(UTM) = 4,142,020.00
- 3. Starting age for residences: 3rd trimester in utero
- 4. Starting age for workers: 16 years
- 5. Conservatively modeled a longer duration at 24 months compared to the actual 14-months as 6 months is the shortest exposure duration available in HARP (3rd trimester in utero 1 year 9 months old for sensitive/resident receptor age; ages 16 and 17 for worker receptor).
- 6. Values are the estimated cancer risk for the first floor of the closest residential receptor, a multi-story apartment building on Murphy Ranch Road. AECOM also evaluated risk at higher elevations (above the first-floor elevation) and determined that the risk would be lower.

Table A3-2. Project Construction Maximum Modeled Chronic Non-Cancer and Acute Risk at Sensitive and Worker Receptors

Receptor	Maximum Chronic Non- Cancer Risk	Maximum Acute Risk	BAAD Threshold	Exceeds Threshold?
Sensitive/Resident1	7.43E-05	$5.27E-05^3$	1	No
Worker ²	1.40E-04	9.38E-05 ⁴	1	No

Notes: BAAD = Bay Area Air District; HRA = health risk assessment; UTM = Universal Transverse Mercator

- 1. Receptor location: X(UTM) = 594,760.00, Y(UTM) = 4,141,791.00
- 2. Receptor location: X(UTM) = 594,760.00, Y(UTM) = 4,142,020.00
- Receptor location: X(UTM) = 593,740.00, Y(UTM) = 4,141,760.00
- 4. Receptor location: X(UTM) = 593,780.00, Y(UTM) = 4,141,900.00

A4 If the result of cancer risk is greater than 10 in one million, please provide a map containing health risk isopleths, including an isopleth showing the risk value of 10 in one million.

Response: As shown in Table A3-1, the maximum individual cancer risk for both sensitive and worker receptors is substantially below 10 in one million. Therefore, a map containing the health risk isopleths is not provided.

THERMAL RUNAWAY

DATA REQUESTS

A8 Provide the exact locations (latitude and longitude or UTM coordinates) and dimensions of the BESS enclosures for modeling purposes. Also include the following input parameters for a dispersion modeling analysis of all potential criteria air pollutants, greenhouse gases, and toxic air contaminants (TACs) that could be generated during combustion: emission rates (in grams/second), exhaust temperature, exhaust diameter, pressure, and exhaust gas velocity resulting from battery damage or thermal runaway of the whole project. Note to include the calculation worksheet, if available.

Response: A response will be provided as part of Data Response Set 1C.

As a copy of the dispersion modeling analysis of all potential criteria air pollutants and TACs for the thermal runaway scenario using a well-validated model (AERMOD preferred).

Response: A response will be provided as part of Data Response Set 1C.

A comparison of the modeled fire-related TACs concentrations to the U.S. EPA Acute Exposure Guideline Levels (AEGL) and the OEHHA/CARB acute Reference Exposure Levels (RELs) and demonstrate whether the acute hazard Index (HI) of TACs would be higher than the significance threshold of 1 at sensitive receptors. Please demonstrate whether the criteria air pollutant impacts would cause or contribute to any exceedance of ambient air quality standards. If exceedances occur, provide a detailed Emergency Response Plan and outline the applicable regulatory notification requirements.

Response: A response will be provided as part of Data Response Set 1C.

BURROWING OWL INCIDENTAL TAKE AUTHORIZATION

DATA REQUESTS

If the project owner would like to pursue incidental take coverage, please provide all information that would be required in an ITP application for CESA- listed or candidate species, specifically burrowing owl, including an impacts analysis and proposed mitigation measures (Cal. Code of Regs., tit.14, § 783.2). Information regarding the project description, schedule, and location has already been provided.

Information on what is required in a typical ITP application can be located here: https://wildlife.ca.gov/Conservation/CESA/Permitting/Incidental-Take-Permits

Response: Burrowing owl mitigation for LECEF, including the proposed site for the Tanager BESS Project, was reviewed and approved in consultation with the

CEC, and implemented by LECEF. The Project nevertheless intends to consult with CEC Staff and the California Department of Fish and Wildlife (CDFW), consistent with the prior mitigation for disturbance and lack of documented use of the site.

Focused surveys of the Project site were conducted in spring 2025 to evaluate potential suitable habitat conditions and the potential presence of burrowing owls using the methods described in the 2012 California Department of Fish and Game (now CDFW) Staff Report on Burrowing Owl Mitigation. Survey details and findings are provided as Attachment DR-A11. The initial habitat assessment documented that the site had tall grass that is not associated with sites that support burrowing owl foraging and nesting. Routine vegetation management for fire abatement in between multiple rounds of surveys improved habitat conditions for burrowing owl foraging, however, no burrowing owls or sign of burrowing owls were observed onsite or in the immediate areas surrounding the Project site during the habitat assessment and subsequent focused surveys. In addition, there are no documented CNDDB occurrences of burrowing owl within the Project site, and no other indicia of presence. This is true notwithstanding an abundance of active ground squirrel burrows and burrow complexes.

Nesting and foraging burrowing owls are present off-site, approximately 0.4 miles (approximately 2,000 feet) from the Project site in a preserve area that is actively managed to support burrowing owls. Previous studies of the foraging and movement of the burrowing owls at the preserve have not documented any use of the Project site. Nevertheless, given the proximity of occupied habitat, the Project has not ruled out the possibility of seeking an incidental take permit to avoid disruptions to the construction schedule. (Additional discussion of the Project's intentions is provided below in Data Responses A12 and A13).

Al2 Please describe any existing compensatory mitigation for the Los Esteros Critical Energy Facility (03-AFC-02C) and how this could potentially apply to the amendment activities for the Tanager BESS and issuance of an incidental take for the project.

Response:

Burrowing Owl mitigation for the LECEF Phase 2 project, including the proposed site for the Tanager BESS Project, was reviewed and approved in consultation with the CEC, and implemented by LECEF. Specifically, the Commission's decision in Los Esteros Phase 2 in October 2006 (TN #: 224679) included Conditions BIO-11 (Survey And Provide Habitat Compensation For Burrowing Owls) and BIO-18 (Burrowing Owl Management Plan), which were successfully implemented. Consistent with the Commission's Decision for the LECEF Phase 2 project, approximately six acres of land was allocated as an open space easement, and suitable habitat was created in accordance with the approved Landscape Plan (which primarily relies on routine mowing to ensure that grasses are kept sufficiently short to allow BUOW to spot predators.

Given that LECEF already mitigated for Burrowing Owl impacts for the whole of the Project area, and further taking into consideration that (1) the Project site

has no documented presence of Burrowing Owls and (2) habitat is marginal (due to high grass, an active ground squirrel population, and nearby resident predators, including multiple red-tailed hawks), the Project would like to discuss with CEC Staff and CDFW whether the potential impacts of the BESS development have already been fully mitigated and whether this prior mitigation could support issuance of incidental take authorization.

A13 If the project owner declines to pursue incidental take coverage, please provide a revised **BIO-11** or other avoidance and minimization measures to fully avoid take of burrowing owl.

Response:

No presence of Burrowing Owl or Burrowing Owl sign was found during multiple surveys of the Project site conducted in 2025. The Project would like to consult with CEC Staff and CDFW to better understand its obligations if it were to seek an incidental take permit, given the prior mitigation for disturbance and lack of documented use of the site. Given the context of the Project, other measures, such as timing new ground disturbance for BESS construction to avoid the nesting season, might be sufficient to fully avoid take.

ATTACHMENT DR-A1

To: Nadira Basdeo, PMP EHS Program Manager 3003 Oak Road, Suite 400 Walnut Creek, CA 94597

CC:

Steve Leach, AECOM

AECOM 401 West A Street Suite 120 San Diego, CA 92101 aecom.com

Project name:

Tanager Battery Energy Storage System (03- AFC-02C)

From:

Paola Peña, AECOM Christopher Warren, AECOM Mary Kaplan, AECOM

Date:

November 14, 2025

Air Quality Analysis and Health Risk Assessment Memo

Executive Summary

Los Esteros Critical Energy Facility (LECEF), LLC, on behalf of Tanager Power, LLC, provides the following Air Quality Analysis and Health Risk Assessment (HRA) technical memorandum to support the air quality related responses to the California Energy Commission (CEC) Staff's Data Requests Set 1, A1 through A4, for the proposed Tanager Battery Energy Storage System (BESS) (proposed project).

A construction mass emissions estimates, ambient air quality analysis (AAQA) and HRA were performed to evaluate air quality impacts and health risk exposure at nearby sensitive receptors to the proposed project located in the City of San Jose. The construction mass emission estimates, AAQA, and HRA were prepared consistent with guidance and methodologies from regional, state, and federal agencies, including the Bay Area Air District (BAAD), the California Air Resources Board (CARB), the Office of Environmental Health Hazard Assessment (OEHHA), and the United States Environmental Protection Agency (EPA).

Construction-related mass emissions, health risks, and an evaluation of criteria pollutant concentrations were evaluated for the proposed project. Average daily emissions of volatile organic compounds (VOCs), nitrogen oxides (NOx), particulate matter less than 10 micrometers in diameter (PM₁₀), and particulate matter less than 2.5 micrometers in diameter (PM_{2.5}) were quantified and compared to the BAAD recommended thresholds of significance. The health risks evaluation included cancer, chronic non-cancer and acute risks for comparison to the BAAD recommended thresholds of significance. Excess cancer and chronic non-cancer health risks were evaluated for the proposed project for the duration of construction at sensitive receptors and off-site worker locations. The AAQA compared the maximum short-term (hourly and daily) to the National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS) for nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), PM₁₀ and PM_{2.5}. A summary of the results and comparison to the applicable thresholds is presented in Table ES-1.

Table ES-1. Construction-Related Air Quality Analysis

Analysis	Threshold	Comparison to Threshold
Construction Mass Emissions	BAAD Average Daily Thresholds of Significance	Below thresholds

1

Analysis	Threshold	Comparison to Threshold	
Ambient Air Quality Analysis	National Ambient Air Quality Standards (NAAQS) and California Ambient Air Quality Standards (CAAQS)	Below thresholds	
Health Risk Assessment	BAAD Excess Cancer, Non- cancer Chronic, and Acute Risk Thresholds of Significance	Below thresholds	

Source: BAAD 2022a, CARB 2024

Project Overview

LECEF, LLC, on behalf of Tanager Power, LLC proposes to construct and operate the proposed project at the former laydown and construction parking area for the LECEF. The proposed project consists of the installation of a nominal 200-megawatt lithium-ion BESS, generation interconnection line (gen-tie), and communication system. The proposed project will provide grid support and reliability services to the Bay Area Local Reliability Area.

Methodology

Construction Mass Emissions

Construction-related activities are temporary, short-term sources of criteria air pollutant emissions. Sources of construction-related criteria air pollutants include exhaust emissions from on-road (worker and haul truck trips) and off-road equipment (i.e., construction equipment); fugitive dust from site preparation and grading activities (e.g., ground disturbance, stockpiling, truck loading) and travel on roads; and off-gassing from paving activities. Construction emissions associated with the proposed project were estimated using the California Emissions Estimator Model (CalEEMod) Version 2022.1.1.30. CalEEMod allows the user to enter project-specific construction information, such as the construction schedule, material import or export quantities, estimated haul truck trips.

For the purposes of estimating mass emissions, project construction was assumed to begin in December 2026 and last approximately 14 months. CalEEMod default values were used for project parameters where specific information was unavailable. For example, based on the proposed project site acreage, CalEEMod default equipment parameters (types, quantities, and usage hours per day) were utilized based on the anticipated construction phases for the proposed project (i.e., site preparation, grading, concrete and battery placement, and paving). Construction equipment would include: dozers, tractors/loaders/backhoes, excavators, graders, scrapers, cranes, forklifts, generator sets, welders, pavers, paving equipment, and rollers. Consistent with standard emissions minimization measures, the analysis incorporated Tier 4 Final engine standards for construction equipment larger than 25 horsepower (hp). AECOM estimated that approximately 13,500 cubic yards (CY) of material would be excavated and exported off-site associated with grading activities for the concrete slab foundations, detention basin, and gen-tie poles. Additionally, it was conservatively estimated that 1,500 CY of concrete and 31,000 CY of gravel would be required. The analysis also assumed that 12 haul truck trips would be required to deliver the battery containers. For the purposes of the analysis, it was assumed that the truck trips for battery deliveries would originate from the Port of Oakland, approximately 36 miles away from the proposed project site. Additionally, a water truck was assumed to be required during site preparation and grading activities for compliance with BAAD fugitive dust control rules and regulations associated with watering exposed areas twice daily. It is anticipated that construction activities would require an average of 100 daily workers per day. Additional assumptions and modeling outputs are provided in Attachment A.

Dispersion Modeling

The American Meteorological Society/EPA Regulatory Model (AERMOD) (EPA 2024a) dispersion model (Version 24142)¹ was used to estimate pollutant concentrations at specific distances from proposed project emission sources,

¹ Latest version available at the time analysis was performed.

in conjunction with representative meteorological data. The meteorological dataset that was determined to be the most representative of the proposed project site was Moffett Federal Airfield, approximately six (6) miles west of the proposed project site and likely similar influence by the southern portion of the San Francisco Bay at both locations. The predominant flow from the Moffett Federal Airfield meteorological station is from the north-northwest (i.e., flow from the bay to inland). The modeling used the five (5)-year period of 2012 through 2017. The meteorological data was obtained from BAAD's website in model-ready format (BAAD 2022b).

The model was run using default, regulatory options. Consistent with EPA guidance, an analysis of land cover within approximately 10,000 feet (3 kilometers) of the project site indicates it meets urban criteria for modeling (i.e., urban land cover encompasses greater than 50% of the 3 km area). Therefore, urban dispersion characteristics were used in the model. This option requires a representative population, which was calculated from 2020 Census data to be 399,203 to account for cities surrounding the project (Milpitas, Sunnyvale, North San Jose, and Santa Clara). The modeling considered the hours of construction (7AM to 5PM, Monday through Friday) and did not model pollutant emissions on the weekend or at night.

Modeled receptor locations were placed at a spacing of approximately 65 feet (20 meters) within 1,000 feet of the proposed project boundary and selected segments of the construction access routes, consistent with BAAD guidance (BAAD 2022b)². Additional receptors were added at an apartment complex located approximately 1,660 feet (0.3 mile) south of the project site as these residences are downwind of the project boundary. All receptors were assigned elevations based on digitized terrain elevation data developed by the United State Geological Survey (USGS 2024). In accordance with BAAD guidance, receptors were assigned a flagpole height of 5 feet (1.5 meters) to mimic the average breathing height of an individual. Figure 1 depicts the modeled boundary of receptor locations relative to the proposed project site.

Off-road and on-road construction sources utilized for onsite project activities (such as site preparation, grading, concrete and battery placement, and paving) were modeled as adjacent volume sources covering the footprint of the construction area. Fugitive dust generated by construction activities was modeled as a single area source spanning the footprint of the construction area. Offsite, on-road vehicles (e.g., haul trucks, vendor, and worker vehicle emissions) were modeled as adjacent volume sources along the anticipated construction routes to and from the proposed project site and the Southbay Freeway (State Route 237). The construction road segments were extended to the on- and offramps of State Route 237 where the on-road vehicles would then merge with other freeway traffic. Additional details on the source inputs used in the modeling are provided in Attachment B.

⁻

² As detailed in the BAAD CEQA Guidelines, Appendix A: Thresholds of Significance Justification, the 1,000 foot radius is consistent with findings in CARB's 2005 *Land Use Compatibility Handbook*, the Health & Safety Code §42301.6 (Notice for Possible Source Near School), and studies such as that of Zhu et al (2002) which found that concentrations of particulate matter tend to be reduced substantially at a distance 1,000 feet downwind from sources such as freeways or large distribution centers.

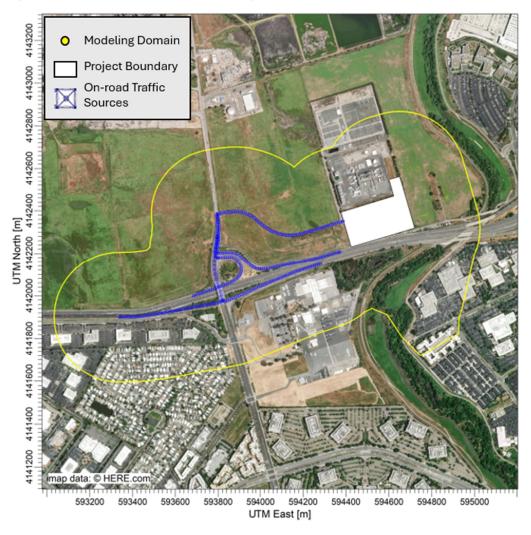


Figure 1. Map of Modeled Area Surrounding the Project

Ambient Air Quality Analysis

The AAQA utilized the mass emissions for criteria pollutants (NO_2 , CO, SO_2 , PM_{10} , and $PM_{2.5}$) and the AERMOD dispersion model to estimate near ground-level concentrations resulting from proposed project construction activities. Because both the NAAQS and CAAQS are cumulative standards, the assessment considered the combined impact of regional background concentrations and project-related emissions. The only exception applies to any pollutants that have existing concentrations exceeding the NAAQS or CAAQS, indicating the area is in nonattainment with the applicable NAAQS or CAAQS. The San Francisco Bay Area Basin is designated as a nonattainment area for $PM_{2.5}$ for both the NAAQS and CAAQS, and a nonattainment area for PM_{10} for only the CAAQS. As a result, project-level impacts for PM_{10} and $PM_{2.5}$ were compared to EPA's significant impact levels (SILs). SILs are considered to represent inconsequential levels of pollution exposure and would not contribute significantly to the NAAQS. In addition, BAAD has established a threshold of significance for annual $PM_{2.5}$ at 0.3 μ g/m³, but this is less stringent than the EPA SIL of 0.13 μ g/m³. The SILs are summarized in Table 3 below.

For the AAQA, the maximum annual mass emissions were used to model pollutants with annual averaging periods. The maximum annual emissions were then scaled based on the number of days and hours of construction to generate the daily and hourly rates for each criteria pollutant which was selected as the input to the model runs, consistent with the averaging periods specified by the NAAQS and CAAQS.

Health Risk Assessment

Risk characterization integrates exposure information provided by the dispersion modeling with potential health effects associated with specific toxic air contaminants (TACs) to quantify estimates of potential health risks associated with TACs that sensitive and worker receptors of the proposed project would be exposed. The CARB developed the Hotspots Analysis and Report Program Version 2 (HARP2) to estimate carcinogenic and noncarcinogenic health risks from projects. The HARP2 model uses the equations and algorithms contained in OEHHA's Air Toxics Hot Spots Program Risk Assessment Guidelines: Guidance Manual for Preparation of Health Risk Assessments (OEHHA 2015) to calculate health risks based on input parameters such as emissions, "unit" ground-level concentrations, and toxicological data based on the OEHHA 2015 Risk Assessment Guidelines.

TACs generated by construction activities from the proposed project are primarily associated with diesel particulate matter (DPM), assumed to be PM_{10} , from diesel-fueled equipment and vehicles, and gasoline-fueled sources (e.g., worker vehicles). AERMOD was run using unit emissions, meaning each source was modeled assuming 1 gram per second (g/s) divided by the number of volume sources in a road segment or 1 g/s divided by the area source in square meters. The unitized AERMOD results for each source are output in microgram per cubic meter per gram per second (μ g/m³ per g/s). Maximum hourly and period-average output files generated by AERMOD were then input to HARP2 with corresponding TAC emission rates for the entire construction period to calculate proposed project concentration contributions.

Cancer risk is a cumulative exposure risk. Cancer risk exposure to sensitive (i.e., residential) and worker receptors was evaluated for a period of 24 months (conservative in comparison to the construction period of 14 months) with a starting age of third trimester in utero and age 16, respectively. An age-sensitivity factor (ASF) is applied to cancer risk calculated in HARP2, with the youngest ages receiving the highest factor. In addition to cancer risk, chronic non-cancer and acute risks were also evaluated on sensitive receptors exposed to TACs (i.e., DPM and those associated with gasoline-fired vehicles) generated from construction activities. The risk calculations in HARP2 used the OEHHA 2015-recommended default values. Additional assumptions and model inputs and outputs are provided in Attachment B.

Results

Data Request A1

Please provide a construction emission estimate or a comparison of the construction activities with the original project construction. If California Emissions Estimator Model (CalEEMod) is used to quantify construction emissions, please use the most recent version (version 2022.1.1.29 as of April 4, 2025) and provide a JSON file containing the CalEEMod project. Table 1 presents the estimated total and average daily emissions associated with construction of the proposed project. As described above, the emission estimates below include incorporation of fugitive dust control measures (i.e., watering exposed areas twice per day) and clean construction equipment (i.e., Tier 4 Final engines for equipment larger than 25 hp). As shown in Table 1, average daily emissions would not exceed the BAAD thresholds of significance.

Table 1. Construction-Related Total and Average Daily Emissions

Description	ROG	NOx	PM ₁₀ Exhaust	PM _{2.5} Exhaust
Total Emissions (tons)	0.14	0.86	0.02	0.02
Average Daily Emissions (pounds/day)	0.95	5.63	0.10	0.10
BAAD Threshold (pounds/day)	54	54	82	54
Threshold Exceedance?	No	No	No	No

Notes: Estimated by AECOM in 2025, values rounded to two decimal places. Average daily emissions estimates calculated based on an approximate 14-month construction schedule (305 construction workdays).

ROG = reactive organic gases; NOx = nitrogen oxides; PM_{10} = particulate matter less than 10 micrometers in diameter; $PM_{2.5}$ = particulate matter less than 2.5 micrometers in diameter; BAAD = Bay Area Air District.

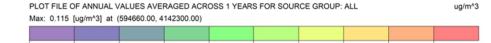
Source: BAAD 2022a

Data Request A2

Please provide an ambient air quality impacts analysis for criteria pollutants during construction of the project modifications to show compliance with the California Ambient Air Quality Standards and the National Ambient Air Quality Standards or justify why such analysis is not needed.

Table 2 presents the results from the AAQA associated with construction of the proposed project. Background concentrations from the most recent 3-year period (2022-2024) were obtained from the Jackson Street ambient monitor in San Jose, CA. As described previously, since the area is in nonattainment for PM₁₀ and PM_{2.5}, the existing PM₁₀ and PM_{2.5} background concentrations are already above the limiting standards. Therefore, the proposed project impacts were compared to the EPA SILs for these pollutants. The limiting standard column in Table 2 represents the combined CAAQS and NAAQS, whichever is more stringent. As shown in Table 2, concentrations would not exceed the NAAQS or CAAQS during construction of the proposed project for all pollutants. The results presented in Table 2 are the impacts from project construction from the project boundary extending out 1,000 feet with additional receptors at an apartment complex located approximately 1,660 feet south. For the annual PM_{2.5} standard, the maximum project impact occurs along the southern edge of the project boundary. Proposed project impacts then guickly decrease with distance from the project boundary as shown in Figure 2. The closest sensitive or worker receptors to the proposed project are approximately 1,625 feet and 750 feet, respectively. Table 3 compares the project-level construction impacts for 24-hour and annual PM_{2.5} at the maximum sensitive or worker receptor, whichever is higher, to the EPA SIL. As shown in Table 3, the maximum PM_{2.5} concentration at the sensitive or worker receptor locations would be lower than the maximum concentration along the project boundary as the concentrations decrease with distance.

Modeling Domain 4143000 **Project Boundary** On-road Traffic 4142800 Sources 4142400 4142600 UTM North [m] 4142200 4142000 4141800 4141600 4141400 map data: © HERE.con 594000 594200 594400 594600 594800 595000 593400 593800 593600 UTM East [m]


Figure 2. Map of Annual PM_{2.5} Concentrations

0.001

0.003

0.005

0.008

0.030

0.050

0.080

0.115

0.100

0.010

Table 2. Maximum Ambient Air Quality Impacts During Construction (µg/m³)

Pollutant	Averaging Period	Project Concentration	Ambient Background	Total Concentration	Limiting Standard	Percent of Standard
	CAAQS 1- hour ^[b]	10.63	110.92 ^[f]	121.55	339	35.9%
NO ₂ [a]	NAAQS 1- hour ^[c]	N/A	See footnote [g,h]	85.60	188	45.5%
	Annual ^[b]	0.23	17.21 ^[f]	17.45	57	30.6%
СО	1-hour ^[b]	69.90	1,610.00 ^[i]	1,679.90	23,000	7.3%
CO	8-hour ^[b]	27.61	1,610.00 ^[i]	1,637.61	10,000	16.4%
DM	24-hour ^[b]	0.94	N/A	0.94	5 ^[e]	18.8%
PM ₁₀	Annual ^[b]	0.28	N/A	0.28	1 ^[e]	28.0%
DM	24-hour ^[b]	0.26	N/A	0.26	1.2 ^[e]	21.9%
PM _{2.5}	Annual ^[b]	0.12	N/A	0.12	0.13 ^[e]	88.6%
	CAAQS 1- hour ^[b]	0.11	93.53 ^[i]	93.64	655	14.3%
SO ₂	NAAQS 1- hour ^[d]	0.10	4.10 ^[i]	4.20	196	2.1%
	24-hour ^[b]	0.022	2.79 ^[i]	2.79	105	2.7%

Notes:

[i] Highest concentration from Jackson Street, San Jose monitor (2022-2024).

Table 3. Maximum 24-hour and Annual PM_{2.5} Impacts During Construction at Sensitive Receptors (µg/m³)

Pollutant	Receptor Type	Project	EPA SIL	Percent of Standard	
		Concentration	LI A SIL	i ercent or standard	
24-hour	Worker	0.032	1.2	2.7%	
$PM_{2.5}$	Resident	0.015	1.2	1.3%	
Annual	Worker	0.011	0.12	8.5%	
PM _{2.5}	Resident	0.005	0.13	3.8%	

Notes: Closest worker receptor in an office park located approximately 965 feet to the south of the project area at modeled coordinate 594,760 meters Easting and 4,142,020 meters Northing. Closest residential receptor is an apartment complex at modeled coordinate 594,760 meters Easting and 4,141,790 meters Northing.

[[]a] NO₂ impacts were modeled using the Tier 2 conversion method of ARM2 in AERMOD.

[[]b] Maximum concentration (1st rank).

[[]c] 98th percentile ranked valued averaged over 5-years.

[[]d] 99th percentile ranked valued averaged over 5-years.

[[]e] Limiting Standard is based on the EPA SIL given the nonattainment status of the area from existing conditions already exceeding the ambient air quality standard.

[[]f] Highest concentration from Jackson Street, San Jose monitor (2021-2023) as 2024 did not meet minimum data capture requirements.

[[]g] 3-year average design value from Jackston Street, San Jose monitor (2021-2023) as 2024 did not meet minimum data capture requirements.

[[]h] Used EPA's Tier 2 method (EPA 2011) for background that applies a 3-year average 98th percentile seasonal, hour-of-day varying value to the modeled source concentration directly in the model. Output from the model is the total project plus background value.

Data Requests A3 and A4

Please provide a health risk assessment for toxic air contaminants during construction of the project modifications to show the health risks are below the Bay Area Air Quality Management District (BAAD) thresholds or justify why such assessment is not needed.

If the result of cancer risk is greater than 10 in one million, please provide a map containing health risk isopleths, including an isopleth showing the risk value of 10 in one million.

The maximum individual excess cancer risk is an estimate of the highest increased cancer risk an individual can expect from exposure to TACs from the proposed project construction activities. Table 4 presents the results from the HRA associated with construction of the proposed project for the maximum sensitive and worker individual receptors. As shown in Table 4, the maximum individual cancer risk for both sensitive and worker receptors is well below the BAAD threshold of 10 in one million. Therefore, a map containing the health risk isopleths is not provided.

Table 5 summarizes the maximum chronic non-cancer and acute risks at sensitive and worker receptors during project construction. The chronic and acute risk are also well below the thresholds.

Table 4. Project Construction Maximum Modeled Excess Cancer Risk Concentrations at Sensitive and Worker Receptors

	Receptor	Duration	Cancer Risk (in a million) ⁶	BAAD Threshold	Exceeds Threshold?
	Sensitive/Resident ^{3,5}	24 months	0.13 ¹	10	No
_	Worker ^{4,5}	24 months	0.24 ²	10	No

Notes: BAAD = Bay Area Air District; HRA = health risk assessment; UTM = Universal Transverse Mercator

- 1. Receptor location: X (UTM) = 594,760.00, Y (UTM) = 4,141,791.00
- 2. Receptor location: X (UTM) = 594,760.00, Y (UTM) = 4,142,020.00
- 3. Starting age for residences: 3rd trimester in utero
- 4. Starting age for workers: 16 years
- Conservatively modeled a longer duration at 24 months compared to the actual 14-months as 6 months is the shortest exposure duration available in HARP (3rd trimester in utero – 1 year 9 months old for sensitive/resident receptor age; ages 16 and 17 for worker receptor).
- 6. Values are the estimated cancer risk for the first floor of the closest residential receptor, a multi-story apartment building on Murphy Ranch Road. AECOM also evaluated risk at higher elevations (above the first-floor elevation) and determined that the risk would be lower.

Table 5. Construction Chronic Non-Cancer and Acute Risk at Sensitive and Worker Receptors

Receptor	Maximum Chronic Non-Cancer Risk	Maximum Acute Risk	BAAD Threshold	Exceeds Threshold?
Sensitive/Resident ¹	7.43E-05	5.27E-05 ³	1	No
Worker ²	1.40E-04	9.38E-05 ⁴	1	No

Notes: BAAD = Bay Area Air District; HRA = health risk assessment; UTM = Universal Transverse Mercator

- 1. Receptor location: X (UTM) = 594,760.00, Y (UTM) = 4,141,791.00
- 2. Receptor location: X (UTM) = 594,760.00, Y (UTM) = 4,142,020.00
- 3. Receptor location: X (UTM) = 593,740.00, Y (UTM) = 4,141,760.00
- Receptor location: X (UTM) = 593,780.00, Y (UTM) = 4,141,900.00

References

- Bay Area Air District (BAAD). 2022a. 2022 CEQA Guidelines: Chapter 3, "Thresholds of Significance." Available at: https://www.baaqmd.gov/?sc_itemid=CDA5FAE5-BBDC-4337-A10C-5648BCD2D71F. Accessed September 2025.
- ______, 2022b. AERMOD-Ready Meteorological Data. Available at: https://www.baaqmd.gov/plans-and-climate/california-environmental-quality-act-ceqa/ceqa-tools/ceqa-modeling-data
- California Air Resources Board (CARB). 2024. Table of Ambient Air Quality Standards. Available at: https://ww2.arb.ca.gov/sites/default/files/2024-08/AAQS%20Table_ADA_FINAL_07222024.pdf. Accessed September 2025.
- Office of Environmental Health Hazard Assessment (OEHHA), 2015. Risk Assessment Guidelines: Guidance Manual for Preparation of Health Risk Assessments. Air Toxics Hot Spots Program. February 2015. Available at: https://oehha.ca.gov/sites/default/files/media/downloads/crnr/2015guidancemanual.pdf
- U.S, Environmental Protection Agency (EPA), 2024a. User's Guide for the AMS/EPA Regulatory Model (AERMOD). EPA-454/B-24-007. November 2024. Office of Air Quality Planning and Standards. Available at: <a href="https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermo
- ______, 2024b. Guideline on Air Quality Models. Appendix W to 40 CFR Part 51. November 2024. Available at: https://www.epa.gov/system/files/documents/2024-11/appendix_w-2024.pdf
- U.S. Geological Survey (USGS), 2024. Multi-Resolution Land Characteristics (MRLC) Consortium. Available at: https://www.mrlc.gov/viewer/

Attachment A: CalEEMod Construction Outputs

Los Esteros Battery Energy Storage System Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.3. Construction Emissions by Year, Mitigated
- 3. Construction Emissions Details
 - 3.1. Site Preparation (2026) Unmitigated
 - 3.2. Site Preparation (2026) Mitigated
 - 3.3. Grading (2026) Unmitigated
 - 3.4. Grading (2026) Mitigated
 - 3.5. Grading (2027) Unmitigated
 - 3.6. Grading (2027) Mitigated

- 3.7. Building Construction (2027) Unmitigated
- 3.8. Building Construction (2027) Mitigated
- 3.9. Building Construction (2028) Unmitigated
- 3.10. Building Construction (2028) Mitigated
- 3.11. Paving (2028) Unmitigated
- 3.12. Paving (2028) Mitigated
- 4. Operations Emissions Details
 - 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
 - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated

- 5.2.2. Mitigated
- 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.3.2. Mitigated
- 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated

- 5.18.1.2. Mitigated
- 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
 - 5.18.2.2. Mitigated
- 6. Climate Risk Detailed Report
 - 6.1. Climate Risk Summary
 - 6.2. Initial Climate Risk Scores
 - 6.3. Adjusted Climate Risk Scores
 - 6.4. Climate Risk Reduction Measures
- 7. Health and Equity Details
 - 7.1. CalEnviroScreen 4.0 Scores
 - 7.2. Healthy Places Index Scores
 - 7.3. Overall Health & Equity Scores
 - 7.4. Health & Equity Measures
 - 7.5. Evaluation Scorecard
 - 7.6. Health & Equity Custom Measures
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	Los Esteros Battery Energy Storage System
Construction Start Date	12/1/2026
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	3.00
Precipitation (days)	31.0
Location	800 Thomas Foon Chew Way, San Jose, CA 95134, USA
County	Santa Clara
City	San Jose
Air District	Bay Area AQMD
Air Basin	San Francisco Bay Area
TAZ	1796
EDFZ	1
Electric Utility	Pacific Gas & Electric Company
Gas Utility	Pacific Gas & Electric
App Version	2022.1.1.30

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description
Other Non-Asphalt Surfaces	20.5	Acre	20.5	0.00	0.00	0.00	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Construction	C-5	Use Advanced Engine Tiers

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	2.02	1.62	11.9	21.1	0.04	0.36	2.13	2.49	0.33	0.52	0.85	_	5,801	5,801	0.26	0.36	8.98	5,925
Mit.	1.14	0.92	5.34	23.0	0.04	0.10	2.13	2.23	0.09	0.52	0.61	_	5,801	5,801	0.26	0.36	8.98	5,925
% Reduced	44%	43%	55%	-9%	_	73%	-	11%	72%	_	28%	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	4.45	3.70	30.4	35.4	0.07	1.24	9.33	10.6	1.14	4.33	5.48	_	10,176	10,176	0.47	0.45	0.27	10,321
Mit.	1.47	1.24	7.60	43.1	0.07	0.15	9.33	9.43	0.15	4.33	4.43	_	10,176	10,176	0.47	0.45	0.27	10,321
% Reduced	67%	67%	75%	-22%	_	88%	_	11%	87%	_	19%	_	_	_	_	_	_	_
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.71	1.38	10.6	16.1	0.03	0.34	1.94	2.29	0.32	0.54	0.86	_	4,614	4,614	0.22	0.27	2.79	4,702
Mit.	0.83	0.68	4.15	18.2	0.03	0.08	1.94	2.02	0.07	0.54	0.61	_	4,614	4,614	0.22	0.27	2.79	4,702
% Reduced	51%	51%	61%	-13%	_	78%	_	12%	77%	_	28%	_	_	_	_	_	_	_

Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.31	0.25	1.94	2.93	0.01	0.06	0.35	0.42	0.06	0.10	0.16	_	764	764	0.04	0.04	0.46	778
Mit.	0.15	0.12	0.76	3.32	0.01	0.01	0.35	0.37	0.01	0.10	0.11	_	764	764	0.04	0.04	0.46	778
% Reduced	51%	51%	61%	-13%	_	78%	_	12%	77%	_	28%	_	_	_	_	_	_	_

2.2. Construction Emissions by Year, Unmitigated

Year	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2027	2.02	1.62	11.9	21.1	0.04	0.36	2.13	2.49	0.33	0.52	0.85	_	5,801	5,801	0.26	0.36	8.98	5,925
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2026	4.45	3.70	30.4	35.4	0.07	1.24	9.33	10.6	1.14	4.33	5.48	_	10,176	10,176	0.47	0.45	0.27	10,321
2027	4.30	3.52	28.6	34.6	0.07	1.07	5.78	6.85	0.99	1.96	2.94	_	10,101	10,101	0.46	0.43	0.24	10,241
2028	1.93	1.54	11.6	19.7	0.04	0.32	2.13	2.45	0.30	0.52	0.82	_	5,609	5,609	0.26	0.36	0.21	5,724
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2026	0.28	0.23	1.90	2.22	< 0.005	0.07	0.44	0.51	0.07	0.17	0.24	_	571	571	0.02	0.02	0.24	578
2027	1.71	1.38	10.6	16.1	0.03	0.34	1.94	2.29	0.32	0.54	0.86	_	4,614	4,614	0.22	0.27	2.79	4,702
2028	0.09	0.07	0.47	0.95	< 0.005	0.02	0.10	0.12	0.01	0.02	0.04	_	212	212	0.01	0.01	0.14	215
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2026	0.05	0.04	0.35	0.41	< 0.005	0.01	0.08	0.09	0.01	0.03	0.04	_	94.5	94.5	< 0.005	< 0.005	0.04	95.6
2027	0.31	0.25	1.94	2.93	0.01	0.06	0.35	0.42	0.06	0.10	0.16	_	764	764	0.04	0.04	0.46	778
2028	0.02	0.01	0.09	0.17	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	35.1	35.1	< 0.005	< 0.005	0.02	35.6

2.3. Construction Emissions by Year, Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		,		,,	. ,	, -		(,	,	,	/						
Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2027	1.14	0.92	5.34	23.0	0.04	0.10	2.13	2.23	0.09	0.52	0.61	_	5,801	5,801	0.26	0.36	8.98	5,925
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2026	1.47	1.24	7.60	43.1	0.07	0.15	9.33	9.43	0.15	4.33	4.43	_	10,176	10,176	0.47	0.45	0.27	10,321
2027	1.43	1.22	7.44	42.6	0.07	0.15	5.78	5.93	0.15	1.96	2.11	_	10,101	10,101	0.46	0.43	0.24	10,241
2028	1.09	0.88	5.44	21.6	0.04	0.10	2.13	2.22	0.09	0.52	0.61	_	5,609	5,609	0.26	0.36	0.21	5,724
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2026	0.08	0.07	0.38	2.53	< 0.005	0.01	0.44	0.45	0.01	0.17	0.18	_	571	571	0.02	0.02	0.24	578
2027	0.83	0.68	4.15	18.2	0.03	0.08	1.94	2.02	0.07	0.54	0.61	_	4,614	4,614	0.22	0.27	2.79	4,702
2028	0.05	0.04	0.18	1.01	< 0.005	< 0.005	0.10	0.10	< 0.005	0.02	0.03	_	212	212	0.01	0.01	0.14	215
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2026	0.02	0.01	0.07	0.46	< 0.005	< 0.005	0.08	0.08	< 0.005	0.03	0.03	_	94.5	94.5	< 0.005	< 0.005	0.04	95.6
2027	0.15	0.12	0.76	3.32	0.01	0.01	0.35	0.37	0.01	0.10	0.11	_	764	764	0.04	0.04	0.46	778
2028	0.01	0.01	0.03	0.18	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	< 0.005	_	35.1	35.1	< 0.005	< 0.005	0.02	35.6

3. Construction Emissions Details

3.1. Site Preparation (2026) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Off-Roa d Equipm ent	3.74	3.14	29.2	28.8	0.05	1.24	_	1.24	1.14	_	1.14	_	5,298	5,298	0.21	0.04	_	5,316
Dust From Material Movemer		_	_	_	_	_	7.67	7.67	_	3.94	3.94	_	-	_	-	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.08	0.07	0.64	0.63	< 0.005	0.03	_	0.03	0.03	_	0.03	_	116	116	< 0.005	< 0.005	_	117
Dust From Material Movemer		_	_	_	_	-	0.17	0.17	_	0.09	0.09	_	-	_	-	-	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.01	0.01	0.12	0.12	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	19.2	19.2	< 0.005	< 0.005	_	19.3
Dust From Material Movemer	—	_	_	_	_	_	0.03	0.03	_	0.02	0.02	_	_	-	-	_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	-	-	-	_	_	_	_	_	_	-	_	_	_	-	-	_
Daily, Winter (Max)	_	_	_	-	-	_	_	_	_	_	_	-	_	_	_	-	-	_
Worker	0.63	0.56	0.55	6.51	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,558	1,558	0.04	0.07	0.16	1,580
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	53.1	53.1	< 0.005	0.01	< 0.005	55.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	-	-	-	_	_	_	_	_	_	_	_	-	_	-	-	_
Worker	0.01	0.01	0.01	0.14	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	34.5	34.5	< 0.005	< 0.005	0.06	35.0
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.16	1.16	< 0.005	< 0.005	< 0.005	1.22
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.72	5.72	< 0.005	< 0.005	0.01	5.80
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.19	0.19	< 0.005	< 0.005	< 0.005	0.20
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.2. Site Preparation (2026) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Roa Equipmer		0.50	2.59	28.3	0.05	0.10	_	0.10	0.10	_	0.10	_	5,298	5,298	0.21	0.04	_	5,316
Dust From Material Movemer	 .t	_	_	_	-	_	7.67	7.67	_	3.94	3.94	_	_	-	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Off-Roa d Equipm ent	0.01	0.01	0.06	0.62	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	116	116	< 0.005	< 0.005	_	117
Dust From Material Movemer	 t	_	_	_	_	_	0.17	0.17	_	0.09	0.09	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	< 0.005	< 0.005	0.01	0.11	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	19.2	19.2	< 0.005	< 0.005	_	19.3
Dust From Material Movemer	 t	_	_	_	-	_	0.03	0.03	_	0.02	0.02	_	_		_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Worker	0.63	0.56	0.55	6.51	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,558	1,558	0.04	0.07	0.16	1,580
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	53.1	53.1	< 0.005	0.01	< 0.005	55.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Worker	0.01	0.01	0.01	0.14	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	34.5	34.5	< 0.005	< 0.005	0.06	35.0
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.16	1.16	< 0.005	< 0.005	< 0.005	1.22
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.72	5.72	< 0.005	< 0.005	0.01	5.80
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.19	0.19	< 0.005	< 0.005	< 0.005	0.20
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.3. Grading (2026) - Unmitigated

Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_		_	_		_	_	_
Off-Roa d Equipm ent	3.62	3.04	27.2	27.6	0.06	1.12	_	1.12	1.03	_	1.03	_	6,599	6,599	0.27	0.05	_	6,621

Dust From Material Movemer		_	_	_	_	_	3.60	3.60	_	1.43	1.43	_	_	_	_	_	_	_
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.15	0.13	1.12	1.13	< 0.005	0.05	_	0.05	0.04	_	0.04	_	271	271	0.01	< 0.005	_	272
Dust From Material Movemer	—	_	_	_	_	_	0.15	0.15	_	0.06	0.06	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.03	0.02	0.20	0.21	< 0.005	0.01	_	0.01	0.01	_	0.01	_	44.9	44.9	< 0.005	< 0.005	_	45.1
Dust From Material Movemer	—	_	_	_	_	_	0.03	0.03	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_
Daily, Summer (Max)	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	-		_	_	_	_	_	_	_		_	_	_	_	_
Worker	0.63	0.56	0.55	6.51	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,558	1,558	0.04	0.07	0.16	1,580

Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	53.1	53.1	< 0.005	0.01	< 0.005	55.4
Hauling	0.20	0.04	2.55	1.20	0.01	0.02	0.52	0.54	0.02	0.14	0.17	_	1,966	1,966	0.16	0.32	0.11	2,064
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.03	0.02	0.02	0.26	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	64.7	64.7	< 0.005	< 0.005	0.11	65.7
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.18	2.18	< 0.005	< 0.005	< 0.005	2.28
Hauling	0.01	< 0.005	0.10	0.05	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	80.8	80.8	0.01	0.01	0.07	84.9
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	10.7	10.7	< 0.005	< 0.005	0.02	10.9
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.36	0.36	< 0.005	< 0.005	< 0.005	0.38
Hauling	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	13.4	13.4	< 0.005	< 0.005	0.01	14.1

3.4. Grading (2026) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.64	0.64	4.43	35.3	0.06	0.12	_	0.12	0.12	_	0.12	_	6,599	6,599	0.27	0.05	_	6,621
Dust From Material Movemen	 nt	_	_	_	_	_	3.60	3.60	_	1.43	1.43	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Average	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily Off-Roa d Equipm ent	0.03	0.03	0.18	1.45	< 0.005	0.01	_	0.01	0.01	_	0.01	_	271	271	0.01	< 0.005	_	272
Dust From Material Movemer	—	_	_	_	_	_	0.15	0.15	_	0.06	0.06	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	< 0.005	< 0.005	0.03	0.27	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	44.9	44.9	< 0.005	< 0.005	_	45.1
Dust From Material Movemer	—	_	_	_	_	_	0.03	0.03	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.63	0.56	0.55	6.51	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,558	1,558	0.04	0.07	0.16	1,580
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	53.1	53.1	< 0.005	0.01	< 0.005	55.4
Hauling	0.20	0.04	2.55	1.20	0.01	0.02	0.52	0.54	0.02	0.14	0.17	_	1,966	1,966	0.16	0.32	0.11	2,064
Average Daily	_	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_
Worker	0.03	0.02	0.02	0.26	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	64.7	64.7	< 0.005	< 0.005	0.11	65.7

Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.18	2.18	< 0.005	< 0.005	< 0.005	2.28
Hauling	0.01	< 0.005	0.10	0.05	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	80.8	80.8	0.01	0.01	0.07	84.9
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	10.7	10.7	< 0.005	< 0.005	0.02	10.9
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.36	0.36	< 0.005	< 0.005	< 0.005	0.38
Hauling	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	13.4	13.4	< 0.005	< 0.005	0.01	14.1

3.5. Grading (2027) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	3.51	2.95	25.6	27.3	0.06	1.04	_	1.04	0.96	_	0.96	_	6,598	6,598	0.27	0.05	_	6,621
Dust From Material Movemen	—	_	_	_	_	_	3.60	3.60	_	1.43	1.43	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.43	0.36	3.15	3.36	0.01	0.13	_	0.13	0.12	_	0.12	_	813	813	0.03	0.01	_	816

Dust From Material Movemer	 it	_	_	_	_	_	0.44	0.44	_	0.18	0.18	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.08	0.07	0.58	0.61	< 0.005	0.02	_	0.02	0.02	_	0.02	_	135	135	0.01	< 0.005	_	135
Dust From Material Movemer	 nt	_	_	_	_	_	0.08	0.08	_	0.03	0.03	_	-	-	-	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	_
Daily, Winter (Max)	_	-	-	_	-	_	_	_	_	-	-	_	_	-	_	-	-	_
Worker	0.60	0.54	0.49	6.08	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,529	1,529	0.04	0.06	0.14	1,550
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	52.0	52.0	< 0.005	0.01	< 0.005	54.4
Hauling	0.18	0.04	2.46	1.17	0.01	0.02	0.52	0.54	0.02	0.14	0.17	_	1,921	1,921	0.15	0.30	0.10	2,016
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.07	0.07	0.06	0.74	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	191	191	< 0.005	0.01	0.29	193
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.41	6.41	< 0.005	< 0.005	0.01	6.71
Hauling	0.02	0.01	0.30	0.14	< 0.005	< 0.005	0.06	0.07	< 0.005	0.02	0.02	_	237	237	0.02	0.04	0.20	249
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.14	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	31.6	31.6	< 0.005	< 0.005	0.05	32.0

Vend	or < 0.0	005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.06	1.06	< 0.005	< 0.005	< 0.005	1.11
Hauli	ng < 0.0	005	< 0.005	0.05	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	39.2	39.2	< 0.005	0.01	0.03	41.2

3.6. Grading (2027) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.64	0.64	4.43	35.3	0.06	0.12	_	0.12	0.12	_	0.12	_	6,598	6,598	0.27	0.05	_	6,621
Dust From Material Movemer	 t	_	_	_	_	-	3.60	3.60	_	1.43	1.43	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.08	0.08	0.55	4.36	0.01	0.02	_	0.02	0.02	_	0.02	_	813	813	0.03	0.01	_	816
Dust From Material Movemer	t	_	_	_	_	_	0.44	0.44	_	0.18	0.18	_	_	_		_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Annual	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_
Off-Roa d Equipm ent	0.01	0.01	0.10	0.80	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	135	135	0.01	< 0.005	_	135
Dust From Material Movemer	t	_	_	_	_	_	0.08	0.08	_	0.03	0.03	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Worker	0.60	0.54	0.49	6.08	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,529	1,529	0.04	0.06	0.14	1,550
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	52.0	52.0	< 0.005	0.01	< 0.005	54.4
Hauling	0.18	0.04	2.46	1.17	0.01	0.02	0.52	0.54	0.02	0.14	0.17	_	1,921	1,921	0.15	0.30	0.10	2,016
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.07	0.07	0.06	0.74	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	191	191	< 0.005	0.01	0.29	193
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.41	6.41	< 0.005	< 0.005	0.01	6.71
Hauling	0.02	0.01	0.30	0.14	< 0.005	< 0.005	0.06	0.07	< 0.005	0.02	0.02	_	237	237	0.02	0.04	0.20	249
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.14	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	31.6	31.6	< 0.005	< 0.005	0.05	32.0
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.06	1.06	< 0.005	< 0.005	< 0.005	1.11
Hauling	< 0.005	< 0.005	0.05	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	39.2	39.2	< 0.005	0.01	0.03	41.2

3.7. Building Construction (2027) - Unmitigated

		ROG	NOx	co	so2	PM10E	PM10D	PM10T		PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	1.23	1.03	9.39	12.9	0.02	0.34	_	0.34	0.31	_	0.31	_	2,397	2,397	0.10	0.02	_	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	1.23	1.03	9.39	12.9	0.02	0.34	_	0.34	0.31	_	0.31	_	2,397	2,397	0.10	0.02	_	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.73	0.61	5.55	7.65	0.01	0.20	_	0.20	0.18	_	0.18	_	1,417	1,417	0.06	0.01	_	1,422
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.13	0.11	1.01	1.40	< 0.005	0.04	_	0.04	0.03	_	0.03	_	235	235	0.01	< 0.005	_	235
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.62	0.55	0.42	7.13	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,651	1,651	0.03	0.06	5.54	1,676
Vendor	0.02	< 0.005	0.28	0.13	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	244	244	0.02	0.04	0.48	257
Hauling	0.15	0.03	1.83	0.92	0.01	0.02	0.41	0.43	0.02	0.11	0.13	_	1,509	1,509	0.12	0.24	2.95	1,586
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.60	0.54	0.49	6.08	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,529	1,529	0.04	0.06	0.14	1,550
Vendor	0.02	< 0.005	0.29	0.13	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	244	244	0.02	0.04	0.01	256
Hauling	0.15	0.03	1.93	0.92	0.01	0.02	0.41	0.43	0.02	0.11	0.13	_	1,510	1,510	0.12	0.24	0.08	1,584
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.35	0.31	0.29	3.56	0.00	0.00	0.96	0.96	0.00	0.22	0.22	_	914	914	0.02	0.04	1.41	927
Vendor	0.01	< 0.005	0.17	0.08	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	144	144	0.01	0.02	0.12	152
Hauling	0.09	0.02	1.12	0.54	0.01	0.01	0.24	0.25	0.01	0.07	0.08	_	892	892	0.07	0.14	0.76	937
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.06	0.06	0.05	0.65	0.00	0.00	0.17	0.17	0.00	0.04	0.04	_	151	151	< 0.005	0.01	0.23	153
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	23.9	23.9	< 0.005	< 0.005	0.02	25.1
Hauling	0.02	< 0.005	0.20	0.10	< 0.005	< 0.005	0.04	0.05	< 0.005	0.01	0.01	_	148	148	0.01	0.02	0.13	155

3.8. Building Construction (2027) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily,	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Summer (Max)																		

Off-Roa	0.35	0.33	2.82	14.8	0.02	0.07	_	0.07	0.07	_	0.07	_	2,397	2,397	0.10	0.02	_	2,405
d																		
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	-	_	-	-	_	_	-	_	_	_	-	-	_	-	-
Off-Roa d Equipm ent	0.35	0.33	2.82	14.8	0.02	0.07	_	0.07	0.07	_	0.07	_	2,397	2,397	0.10	0.02	_	2,405
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_	-	_	_
Off-Roa d Equipm ent	0.21	0.19	1.67	8.76	0.01	0.04	_	0.04	0.04	_	0.04	_	1,417	1,417	0.06	0.01	_	1,422
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.04	0.04	0.30	1.60	< 0.005	0.01	_	0.01	0.01	_	0.01	_	235	235	0.01	< 0.005	_	235
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Worker	0.62	0.55	0.42	7.13	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,651	1,651	0.03	0.06	5.54	1,676
Vendor	0.02	< 0.005	0.28	0.13	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	244	244	0.02	0.04	0.48	257

Daily, Winter (Max)	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Worker	0.60	0.54	0.49	6.08	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,529	1,529	0.04	0.06	0.14	1,550
Vendor	0.02	< 0.005	0.29	0.13	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	244	244	0.02	0.04	0.01	256
Hauling	0.15	0.03	1.93	0.92	0.01	0.02	0.41	0.43	0.02	0.11	0.13	_	1,510	1,510	0.12	0.24	0.08	1,584
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.35	0.31	0.29	3.56	0.00	0.00	0.96	0.96	0.00	0.22	0.22	_	914	914	0.02	0.04	1.41	927
Vendor	0.01	< 0.005	0.17	0.08	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	144	144	0.01	0.02	0.12	152
Hauling	0.09	0.02	1.12	0.54	0.01	0.01	0.24	0.25	0.01	0.07	0.08	_	892	892	0.07	0.14	0.76	937
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.06	0.06	0.05	0.65	0.00	0.00	0.17	0.17	0.00	0.04	0.04	_	151	151	< 0.005	0.01	0.23	153
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	23.9	23.9	< 0.005	< 0.005	0.02	25.1
Hauling	0.02	< 0.005	0.20	0.10	< 0.005	< 0.005	0.04	0.05	< 0.005	0.01	0.01	_	148	148	0.01	0.02	0.13	155

3.9. Building Construction (2028) - Unmitigated

Location	тос	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	СН4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_		_	_	_	_		_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_		_	_	_	_		_	_	_	_	_	_
Off-Roa d Equipm ent	1.18	0.99	8.92	12.9	0.02	0.30	_	0.30	0.28	_	0.28	_	2,397	2,397	0.10	0.02	_	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.02	0.01	0.12	0.18	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	32.8	32.8	< 0.005	< 0.005	_	33.0
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	< 0.005	< 0.005	0.02	0.03	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.44	5.44	< 0.005	< 0.005	_	5.46
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	-	_	-	_	_	_	_	_	_	-	_	-	_	_	_	-
Daily, Winter (Max)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.58	0.51	0.49	5.72	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,503	1,503	0.04	0.06	0.13	1,523
Vendor	0.02	< 0.005	0.28	0.13	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	238	238	0.02	0.04	0.01	250
Hauling	0.14	0.03	1.86	0.89	0.01	0.02	0.41	0.43	0.02	0.11	0.13	_	1,471	1,471	0.11	0.24	0.07	1,545
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.01	0.01	0.01	0.08	0.00	0.00	0.02	0.02	0.00	0.01	0.01	_	20.8	20.8	< 0.005	< 0.005	0.03	21.1
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	3.26	3.26	< 0.005	< 0.005	< 0.005	3.43
Hauling	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	20.1	20.1	< 0.005	< 0.005	0.02	21.2
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	3.45	3.45	< 0.005	< 0.005	< 0.005	3.50
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.54	0.54	< 0.005	< 0.005	< 0.005	0.57
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	3.33	3.33	< 0.005	< 0.005	< 0.005	3.50

24 / 46

3.10. Building Construction (2028) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.35	0.33	2.81	14.8	0.02	0.07	_	0.07	0.07	_	0.07	_	2,397	2,397	0.10	0.02	_	2,406
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Off-Roa d Equipm ent	< 0.005	< 0.005	0.04	0.20	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	32.8	32.8	< 0.005	< 0.005	_	33.0
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	< 0.005	< 0.005	0.01	0.04	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	5.44	5.44	< 0.005	< 0.005	_	5.46
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.58	0.51	0.49	5.72	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,503	1,503	0.04	0.06	0.13	1,523
Vendor	0.02	< 0.005	0.28	0.13	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	238	238	0.02	0.04	0.01	250
Hauling	0.14	0.03	1.86	0.89	0.01	0.02	0.41	0.43	0.02	0.11	0.13	_	1,471	1,471	0.11	0.24	0.07	1,545
Average Daily	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Worker	0.01	0.01	0.01	0.08	0.00	0.00	0.02	0.02	0.00	0.01	0.01	_	20.8	20.8	< 0.005	< 0.005	0.03	21.1
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	3.26	3.26	< 0.005	< 0.005	< 0.005	3.43
Hauling	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	20.1	20.1	< 0.005	< 0.005	0.02	21.2
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	3.45	3.45	< 0.005	< 0.005	< 0.005	3.50
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.54	0.54	< 0.005	< 0.005	< 0.005	0.57
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	3.33	3.33	< 0.005	< 0.005	< 0.005	3.50

3.11. Paving (2028) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
Off-Roa d Equipm ent	0.82	0.69	6.63	9.91	0.01	0.26	_	0.26	0.24	_	0.24	_	1,511	1,511	0.06	0.01	_	1,516
Paving	0.00	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_
Off-Roa d Equipm ent	0.04	0.03	0.29	0.43	< 0.005	0.01	_	0.01	0.01	_	0.01	_	66.2	66.2	< 0.005	< 0.005	_	66.5
Paving	0.00	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.01	0.01	0.05	0.08	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	11.0	11.0	< 0.005	< 0.005	_	11.0
Paving	0.00	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	-	-	-	_	_	_	_	_	_	_	_	-	-	_	_	-
Worker	0.58	0.51	0.49	5.72	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,503	1,503	0.04	0.06	0.13	1,523
Vendor	< 0.005	< 0.005	0.06	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	50.7	50.7	< 0.005	0.01	< 0.005	53.0
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.03	0.02	0.02	0.25	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	66.6	66.6	< 0.005	< 0.005	0.09	67.6
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.22	2.22	< 0.005	< 0.005	< 0.005	2.32
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	11.0	11.0	< 0.005	< 0.005	0.02	11.2
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.37	0.37	< 0.005	< 0.005	< 0.005	0.38
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.12. Paving (2028) - Mitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.16	0.16	1.93	10.6	0.01	0.03	_	0.03	0.03	_	0.03	_	1,511	1,511	0.06	0.01	_	1,516
Paving	0.00	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Roa d Equipm ent	0.01	0.01	0.08	0.46	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	66.2	66.2	< 0.005	< 0.005	_	66.5
Paving	0.00	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Off-Roa d	< 0.005	< 0.005	0.02	0.08	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	11.0	11.0	< 0.005	< 0.005	_	11.0
Paving	0.00	0.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	-	-	-	_	_	_	_	_	_	-	_	_	_	_	_	_
Daily, Winter (Max)	_	_	-	-	-	_	_	_	_	_	_	-	_	_	_	_	_	_
Worker	0.58	0.51	0.49	5.72	0.00	0.00	1.65	1.65	0.00	0.39	0.39	_	1,503	1,503	0.04	0.06	0.13	1,523
Vendor	< 0.005	< 0.005	0.06	0.03	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	50.7	50.7	< 0.005	0.01	< 0.005	53.0
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.03	0.02	0.02	0.25	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	66.6	66.6	< 0.005	< 0.005	0.09	67.6
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.22	2.22	< 0.005	< 0.005	< 0.005	2.32
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	11.0	11.0	< 0.005	< 0.005	0.02	11.2
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.37	0.37	< 0.005	< 0.005	< 0.005	0.38
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetati	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	co	SO2	PM10F	PM10D	PM10T	PM2.5E	PM2 5D	PM2 5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
opecies	100	INOG	INOX		302	INTOL	I WITOD	וטוואוון	I IVIZ.JL	1 1012.30	1 1012.51	DC02	INDCOZ	0021	Ci i 4	11420	IX.	0026

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_		_	_	_		_	_	_	_		_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetati on			NOx	CO		PM10E				PM2.5D			NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

		into (ib/c		y, 10)			(1.07 0.0	.,	diy, ivii/	,							
Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Site Preparation	Site Preparation	12/1/2026	12/10/2026	5.00	8.00	_
Grading	Grading	12/11/2026	3/4/2027	5.00	60.0	_
Building Construction	Building Construction	3/5/2027	1/7/2028	5.00	221	_
Paving	Paving	1/8/2028	1/31/2028	5.00	16.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Back hoes	Diesel	Average	4.00	8.00	84.0	0.37
Grading	Excavators	Diesel	Average	2.00	8.00	36.0	0.38
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Grading	Scrapers	Diesel	Average	2.00	8.00	423	0.48

Grading	Tractors/Loaders/Back hoes	Diesel	Average	2.00	8.00	84.0	0.37
Building Construction	Cranes	Diesel	Average	1.00	7.00	367	0.29
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Back hoes	Diesel	Average	3.00	7.00	84.0	0.37
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Average	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Rubber Tired Dozers	Diesel	Tier 4 Final	3.00	8.00	367	0.40
Site Preparation	Tractors/Loaders/Back hoes	Diesel	Tier 4 Final	4.00	8.00	84.0	0.37
Grading	Excavators	Diesel	Tier 4 Final	2.00	8.00	36.0	0.38
Grading	Graders	Diesel	Tier 4 Final	1.00	8.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	8.00	367	0.40
Grading	Scrapers	Diesel	Tier 4 Final	2.00	8.00	423	0.48
Grading	Tractors/Loaders/Back hoes	Diesel	Tier 4 Final	2.00	8.00	84.0	0.37
Building Construction	Cranes	Diesel	Tier 4 Final	1.00	7.00	367	0.29
Building Construction	Forklifts	Diesel	Tier 4 Final	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Tractors/Loaders/Back hoes	Diesel	Tier 4 Final	3.00	7.00	84.0	0.37
Building Construction	Welders	Diesel	Tier 4 Final	1.00	8.00	46.0	0.45
Paving	Pavers	Diesel	Tier 4 Final	2.00	8.00	81.0	0.42

1	Paving	Paving Equipment	Diesel	Tier 4 Final	2.00	8.00	89.0	0.36
1	Paving	Rollers	Diesel	Tier 4 Final	2.00	8.00	36.0	0.38

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation	_	_	_	_
Site Preparation	Worker	200	11.7	LDA,LDT1,LDT2
Site Preparation	Vendor	2.00	8.40	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	200	11.7	LDA,LDT1,LDT2
Grading	Vendor	2.00	8.40	HHDT,MHDT
Grading	Hauling	28.0	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	200	11.7	LDA,LDT1,LDT2
Building Construction	Vendor	2.00	36.0	HHDT
Building Construction	Hauling	22.0	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	200	11.7	LDA,LDT1,LDT2
Paving	Vendor	2.00	8.40	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT

5.3.2. Mitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation	_	_	_	_
Site Preparation	Worker	200	11.7	LDA,LDT1,LDT2
Site Preparation	Vendor	2.00	8.40	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	200	11.7	LDA,LDT1,LDT2
Grading	Vendor	2.00	8.40	HHDT,MHDT
Grading	Hauling	28.0	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	200	11.7	LDA,LDT1,LDT2
Building Construction	Vendor	2.00	36.0	HHDT
Building Construction	Hauling	22.0	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	200	11.7	LDA,LDT1,LDT2
Paving	Vendor	2.00	8.40	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area	Residential Exterior Area	Non-Residential Interior Area	Non-Residential Exterior Area	Parking Area Coated (sq ft)
	Coated (sq ft)	Coated (sq ft)	Coated (sq ft)	Coated (sq ft)	

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Site Preparation	0.00	0.00	12.0	0.00	_
Grading	0.00	13,494	72.0	0.00	_
Paving	0.00	0.00	0.00	0.00	20.5

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	2	61%	61%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Other Non-Asphalt Surfaces	20.5	0%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2026	0.00	204	0.03	< 0.005
2027	0.00	204	0.03	< 0.005
2028	0.00	204	0.03	< 0.005

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres

5.18.1.2. Mitigated

Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Initial Acres Final Acres

5.18.1.2. Mitigated

Biomass Cover Type Initial Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)

5.18.2.2. Mitigated

Tree Type Number Electricity Saved (kWh/year) Natural Gas Saved (btu/year)

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	12.4	annual days of extreme heat
Extreme Precipitation	2.60	annual days with precipitation above 20 mm
Sea Level Rise	_	meters of inundation depth
Wildfire	0.00	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi. Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about 3/4 an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events. Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	1	0	0	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	N/A	N/A	N/A	N/A
Extreme Precipitation	1	1	1	2
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	_
AQ-Ozone	15.0

AQ-PM	19.4
AQ-DPM	29.0
Drinking Water	39.0
Lead Risk Housing	50.6
Pesticides	0.00
Toxic Releases	30.3
Traffic	94.1
Effect Indicators	
CleanUp Sites	99.4
Groundwater	94.2
Haz Waste Facilities/Generators	93.2
Impaired Water Bodies	91.9
Solid Waste	100.0
Sensitive Population	_
Asthma	38.0
Cardio-vascular	40.0
Low Birth Weights	98.8
Socioeconomic Factor Indicators	_
Education	73.4
Housing	23.8
Linguistic	
Poverty	27.9
Unemployment	36.4

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	_

Above Poverty	65.64865905
Employed	58.03926601
Median HI	67.43231105
Education	_
Bachelor's or higher	46.42627999
High school enrollment	100
Preschool enrollment	71.06377518
Transportation	_
Auto Access	50.77633774
Active commuting	35.32657513
Social	_
2-parent households	66.12344412
Voting	58.42422687
Neighborhood	_
Alcohol availability	48.03028359
Park access	58.14192224
Retail density	62.49197998
Supermarket access	14.28204799
Tree canopy	39.85628128
Housing	_
Homeownership	46.75991274
Housing habitability	62.22250738
Low-inc homeowner severe housing cost burden	75.25984858
Low-inc renter severe housing cost burden	47.02938535
Uncrowded housing	42.73065572
Health Outcomes	_
Insured adults	53.9715129
Arthritis	0.0

Asthma ER Admissions	20.1
High Blood Pressure	0.0
Cancer (excluding skin)	0.0
Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnosed Diabetes	0.0
Life Expectancy at Birth	80.1
Cognitively Disabled	95.5
Physically Disabled	78.7
Heart Attack ER Admissions	65.7
Mental Health Not Good	0.0
Chronic Kidney Disease	0.0
Obesity	0.0
Pedestrian Injuries	96.4
Physical Health Not Good	0.0
Stroke	0.0
Health Risk Behaviors	_
Binge Drinking	0.0
Current Smoker	0.0
No Leisure Time for Physical Activity	0.0
Climate Change Exposures	_
Wildfire Risk	0.0
SLR Inundation Area	3.9
Children	55.0
Elderly	87.4
English Speaking	31.8
Foreign-born	65.1

Outdoor Workers	23.6
Climate Change Adaptive Capacity	_
Impervious Surface Cover	21.5
Traffic Density	88.2
Traffic Access	46.8
Other Indices	_
Hardship	40.7
Other Decision Support	_
2016 Voting	69.9

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	67.0
Healthy Places Index Score for Project Location (b)	64.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Screen	Justification
Construction: Construction Phases	Default construction schedule adjusted to project's 14-month construction duration.
Construction: Trips and VMT	Updated per 100 average daily workers; haul trucks based on concrete and gravel deliveries. Vendor trips to account for battery deliveries, water truck, and misc. deliveries. Misc. deliveries and battery deliveries assumed to come from the Port of Oakland (36 miles from the project site).
Construction: Dust From Material Movement	Material excavation estimated for concrete slab foundations, detention basin, and gen-tie poles.

Attachment B: AAQA and HRA Modeling Inputs

												Annual Emis	ssions Summ	ary by Construc														
Units: TONS/YEAR						2026									2027													/
		2026	2026	2026	2026	2026	2026	2026	2026	2026	2027	2027	2027	2027	2027	2027	2027	2027	2027	2028	2028	2028	2028	2028	2028	2028	2028	2028
Construction Phase		ROG	NOx	SO2	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10	PM10D	PM10 Total	PM2.5 Total	ROG	NOx	SO2	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10	PM10D	PM10 Total	PM2.5 Total	ROG	NOx	SO2	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10	PM10D	PM10 Total	PM2.5 Total
Site Preparation	Onsite	0.0020	0.0104	0.0002	0.0004	0.0158	0.0004	0.0307	0.0311	0.0162	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Site Preparation	Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Site Preparation	Vendor	0.0000	0.0003	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Site Preparation	Worker	0.0022	0.0020	0.0000	0.0000	0.0015	0.0000	0.0065	0.0065	0.0015	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Grading	Onsite	0.0048	0.0332	0.0005	0.0009	0.0107	0.0009	0.0270	0.0279	0.0116	0.0144	0.0996	0.0014	0.0028	0.0321	0.0028	0.0809	0.0837	0.0349	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Grading	Hauling	0.0003	0.0187	0.0001	0.0002	0.0011	0.0002	0.0038	0.0040	0.0012	0.0009	0.0542	0.0003	0.0006	0.0032	0.0006	0.0115	0.0121	0.0037	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Grading	Vendor	0.0000	0.0005	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0015	0.0000	0.0000	0.0001	0.0000	0.0003	0.0003	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Grading	Worker	0.0041	0.0037	0.0000	0.0000	0.0028	0.0000	0.0122	0.0122	0.0028	0.0119	0.0109	0.0000	0.0000	0.0085	0.0000	0.0365	0.0365	0.0085	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Concrete/Battery Placement	Onsite	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0354	0.3039	0.0025	0.0078	0.0000	0.0080	0.0000	0.0080	0.0078	0.0008	0.0070	0.0001	0.0002	0.0000	0.0002	0.0000	0.0002	0.0002
Concrete/Battery Placement	Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0036	0.2041	0.0011	0.0021	0.0119	0.0021	0.0433	0.0454	0.0140	0.0001	0.0046	0.0000	0.0000	0.0003	0.0000	0.0010	0.0011	0.0003
Concrete/Battery Placement	Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0310	0.0002	0.0003	0.0019	0.0003	0.0071	0.0074	0.0023	0.0000	0.0007	0.0000	0.0000	0.0000	0.0000	0.0002	0.0002	0.0001
Concrete/Battery Placement	Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0569	0.0523	0.0000	0.0000	0.0409	0.0000	0.1748	0.1748	0.0409	0.0013	0.0011	0.0000	0.0000	0.0009	0.0000	0.0041	0.0041	0.0009
Paving	Onsite	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0013	0.0155	0.0001	0.0002	0.0000	0.0002	0.0000	0.0002	0.0002
Paving	Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Paving	Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000
Paving	Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0041	0.0034	0.0000	0.0000	0.0030	0.0000	0.0130	0.0130	0.0030

	ROG	NOx	SO2	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10	PM10D	PM10 Total	PM2.5 Total
MAX YEAR	0.1236	0.7573	0.0055	0.0136	0.0986	0.0138	0.3544	0.3682	0.1122
YEAR	2027	2027	2027	2027	2027	2027	2027	2027	2027

	UAL

Construction Road Segments - Haul Trucks															20	27	2027		2027			2027	
							Trucks		Cars Initial Vertical	Trucks Initial Vertical													
	Road Width		Base		Line Volume		Release Height from	Initial Lateral	Dimension (m) from	Dimension (m) from		Total Length	g/s per vol (1		Exhaust DPM	Total PM2.5	Total PM2.5			Total PM10	NOx	SO2	Total PM10
Road	(ft)	(m)		SourceID	Src Type	BAAQMD (m)	BAAQMD (m)	Dimension (m)	BAAQMD	BAAQMD	Sources	(m)	g/s)	Route	(lb/yr)	(lb/yr)	(g/s/vol)	NOx (lb/yr)	SO2 (lb/yr)	(lb/yr)	(g/s/vol)	(g/s/vol)	(g/s/vol)
Thomas Foon Chew Way	11.48	3.50	varies - AERMAP	CHEW	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	66	627.2	1.51515E-02	Inbound and Outbound	5.16E-02	3.44E-01	2.52948E-07	5.03E+00	2.71E-02	1.12E+00	3.6960E-06	1.9891E-08	8.2235E-07
Southbound on Zanker Road Part 1	14.76	4.50	varies - AERMAP	ZAS1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	114	9.09091E-02	Outbound	9.38E-03	6.26E-02	2.75855E-07	9.15E-01	4.92E-03	2.04E-01	4.0307E-06	2.1692E-08	8.9683E-07
Southbound on Zanker Road Part 2	11.48	3.50	varies - AERMAP	ZAS2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	103	9.09091E-02	Outbound	8.47E-03	5.66E-02	2.49238E-07	8.27E-01	4.45E-03	1.84E-01	3.6417E-06	1.9599E-08	8.1029E-07
Westbound onramp to Southbay Freeway	14.76	4.50	varies - AERMAP	FYW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	40	419.6	2.50000E-02	Outbound	3.45E-02	2.30E-01	2.79219E-07	3.37E+00	1.81E-02	7.49E-01	4.0798E-06	2.1957E-08	9.0776E-07
Southbound and Northbound on Zanker Road	49.21	15.00	varies - AERMAP	ZAS3	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	15			Inbound and Outbound	2.52E-02	1.68E-01	5.44064E-07	2.46E+00	1.32E-02	5.47E-01	7.9496E-06	4.2784E-08	1.7688E-06
Eastbound onramp to Southbay Freeway	13.12	4.00	varies - AERMAP	FYE1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	50	496.7	2.00000E-02	Outbound	4.09E-02	2.73E-01	2.64420E-07	3.99E+00	2.15E-02	8.87E-01	3.8636E-06	2.0793E-08	8.5965E-07
Southbay Freeway offramp heading west toward Zanker Road	13.12	4.00	varies - AERMAP	INW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	60			Inbound	4.97E-02	3.32E-01	2.67995E-07	4.85E+00	2.61E-02	1.08E+00	3.9158E-06	2.1074E-08	8.7127E-07
Northbound on Zanker Road	11.48	3.50	varies - AERMAP	ZAN1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	20	186.4	5.00000E-02	Inbound	1.53E-02	1.02E-01	2.48076E-07	1.50E+00	8.05E-03	3.33E-01	3.6248E-06	1.9508E-08	8.0652E-07
Southbay Freeway offramp heading east toward Zanker Road	11.48	3.50	varies - AERMAP	FYE2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	52	490	1.92308E-02	Inbound	4.03E-02	2.69E-01	2.50820E-07	3.93E+00	2.12E-02	8.75E-01	3.6649E-06	1.9724E-08	8.1543E-07

	2026-2	2028	
Route Length	meters	miles	
Inbound	1724.2	1.071368	Longest inbound
Outbound	1544.5	0.959708	Longest outbound
RT Distance Route (modeling domain)	3268.7	2.031076	Longest Route

Route % 100% r1

Total Hours/12 months of Construction 2600

	JAI	

Construction Road Segments - Vendor															20	27	2027		2027			2027	
		Road			Line	Cars Release	Trucks Release		Cars Initial Vertical Dimension	Trucks Initial Vertical Dimension													
	Road Width		Base		Volume		Height from	Initial Lateral	(m) from	(m) from		Total Length	g/s per vol (1		Exhaust DPM		Total PM2.5			Total PM10	NOx		Total PM10
Road	(ft)	(m)	Elevation	SourceID	Src Type	BAAQMD (m)		Dimension (m)	BAAQMD	BAAQMD	Sources	(m)	g/s)	Route	(lb/yr)	(lb/yr)	(g/s/vol)	NOx (lb/yr)	SO2 (lb/yr)	(lb/yr)	(g/s/vol)	SO2 (g/s/vol)	(g/s/vol)
Thomas Foon Chew Way	11.48	3.50	varies - AERMAP	CHEW	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	66	627.2	1.51515E-02	Inbound and Outbound	1.67E-02	1.11E-01	8.13819E-08	1.50E+00	8.55E-03	3.60E-01	1.1043E-06	6.2781E-09	2.6437E-07
Southbound on Zanker Road Part 1	14.76	4.50	varies - AERMAP	ZAS1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	114	9.09091E-02		3.03E-03	2.01E-02	8.87519E-08	2.73E-01	1.55E-03	6.54E-02	1.2043E-06	6.8467E-09	2.8831E-0
Southbound on Zanker Road Part 2	11.48	3.50	varies - AERMAP	ZAS2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	103	9.09091E-02	Outbound	2.74E-03	1.82E-02	8.01881E-08	2.47E-01	1.40E-03	5.91E-02	1.0881E-06	6.1861E-09	2.6049E-0
Westbound onramp to Southbay Freeway	14.76	4.50	varies - AERMAP	FYW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	40			Outbound	1.11E-02	7.42E-02	8.98341E-08	1.01E+00	5.72E-03	2.41E-01	1.2190E-06	6.9302E-09	2.9182E-0
Southbound and Northbound on Zanker Road	49.21	15.00	varies - AERMAP	ZAS3	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	15	306.6	6.66667E-02	Inbound and Outbound	8.14E-03	5.42E-02	1.75044E-07	7.35E-01	4.18E-03	1.76E-01	2.3752E-06	1.3504E-08	5.6862E-0
Eastbound onramp to Southbay Freeway	13.12	4.00	varies - AERMAP	FYE1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	50	496.7	2.00000E-02		1.32E-02	8.78E-02	8.50726E-08	1.19E+00	6.77E-03	2.85E-01	1.1544E-06	6.5629E-09	2.7636E-07
Southbay Freeway offramp heading west toward Zanker Road	13.12	4.00	varies - AERMAP	INW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	60	604.1	1.66667E-02	Inbound	1.60E-02	1.07E-01	8.62230E-08	1.45E+00	8.24E-03	3.47E-01	1.1700E-06	6.6516E-09	2.8009E-0
Northbound on Zanker Road	11.48	3.50	varies - AERMAP	ZAN1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	20	186.4	5.00000E-02	Inbound	4.95E-03	3.29E-02	7.98145E-08	4.47E-01	2.54E-03	1.07E-01	1.0830E-06	6.1572E-09	2.5927E-0
Southbay Freeway offramp heading east toward Zanker	11.48	3.50	varies -	FYE2	Adjacent	1.3	3.4	varies - based on	1.21	3.16	52	490	1.92308E-02	Inbound	1 30F-02	8 66F-02	8 06972F-06	1 17F+00	6 68F-03	2 81F-01	1.0950F-06	6 2253F-09	2 6214F-0

	2026-2	2028	
Route Length	meters	miles	
Inbound			Longest inbound
Outbound	1544.5	0.959708	Longest outbound
RT Distance Route (modeling domain)	3268.7	2.031076	Longest Route

Route % 100% r1

Total Hours/12 months of Construction 2600

	JAI	

ANNUAL																								
Construction Road Segments - Worker Vehicles															20	27	2027	2027		2027			2027	
							Trucks		Cars Initial Vertical	Trucks Initial														
		Road			Line	Cars Release	Release		Dimension	Vertical Dimension														
	Road Width	Width	Base		Volume	Height from	Height from	Initial Lateral	(m) from	(m) from	# Volume	Total Length	g/s per vol (1		Exhaust DPM	Total PM2.5	Total PM2.5	ROG			Total PM10		SO2	Total PM10
Road	(ft)	(m)	Elevation	SourceID	Src Type	BAAQMD (m)	BAAQMD (m)	Dimension (m)	BAAQMD	BAAQMD	Sources	(m)	g/s)	Route	(lb/yr)	(lb/yr)	(g/s/vol)	(ton/yr)	NOx (lb/yr)	SO2 (lb/yr)	(lb/yr)	(g/s/vol)	(g/s/vol)	(g/s/vol)
Thomas Foon Chew Way	11.48	3.50	varies - AERMAP	CHEW_C	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	66	627.2	1.51515E-02	Inbound and Outbound	0.00E+00	1.65E+00	1.20930E-06	1.15E-03	2.10E+00	0.00E+00	7.04E+00	1.5449E-06	0.0000E+00	5.1661E-06
Southbound on Zanker Road Part 1	14.76	4.50	varies - AERMAP	ZAS1_C	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	114	9.09091E-02	Outbound	0.00E+00	2.99E-01	1.31882E-06	2.08E-04	3.82E-01	0.00E+00	1.28E+00	1.6848E-06	0.0000E+00	5.6340E-06
Southbound on Zanker Road Part 2	11.48	3.50	varies - AERMAP	ZAS2_C	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	103	9.09091E-02	Outbound	0.00E+00	2.70E-01	1.19156E-06	1.88E-04	3.46E-01	0.00E+00	1.16E+00	1.5223E-06	0.0000E+00	5.0904E-06
Westbound onramp to Southbay Freeway	14.76	4.50	varies - AERMAP	FYW1_C	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	40			Outbound	0.00E+00	1.10E+00	1.33490E-06	7.67E-04	1.41E+00	0.00E+00	4.71E+00	1.7054E-06	0.0000E+00	5.7027E-06
Southbound and Northbound on Zanker Road	49.21	15.00	varies - AERMAP	ZAS3_C	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	15			Inbound and Outbound	0.00E+00	8.05E-01	2.60107E-06	5.60E-04	1.03E+00	0.00E+00	3.44E+00	3.3230E-06	0.0000E+00	1.1112E-05
Eastbound onramp to Southbay Freeway	13.12	4.00	varies - AERMAP	FYE1_C	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	50	496.7	2.000000 02	Outbound	0.00E+00	1.30E+00	1.26414E-06	9.07E-04	1.67E+00	0.00E+00	5.57E+00	1.6150E-06	0.0000E+00	5.4004E-06
Southbay Freeway offramp heading west toward Zanker Road	13.12	4.00	varies - AERMAP	INW1_C	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	60	604.1	1.66667E-02	Inbound	0.00E+00	1.59E+00	1.28124E-06	1.10E-03	2.03E+00	0.00E+00	6.78E+00	1.6368E-06	0.0000E+00	5.4735E-06
Northbound on Zanker Road	11.48	3.50	varies - AERMAP	ZAN1_C	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	20	186.4	5.00000E-02	Inbound	0.00E+00	4.89E-01	1.18601E-06	3.41E-04	6.25E-01	0.00E+00	2.09E+00	1.5152E-06	0.0000E+00	5.0666E-06
Southbay Freeway offramp heading east toward Zanker Road	11.48	3.50	varies - AERMAP	FYE2_C	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	52	490	1.92308E-02	Inbound	0.00E+00	1.29E+00	1.19913E-06	8.95E-04	1.64E+00	0.00E+00	5.50E+00	1.5319E-06	0.0000E+00	5.1227E-06

Route % 100% r1

2600 Total Hours/12 months of Construction

CONSTRUCTION YEAR 2027											
	EMFAC Gasoline				\^/+		Footbarrad	Southbay		Southbay	
Toxic Compounds (lb/yr)	TOG		Southbound on	Southbound on	Westbound onramp to	Southbound and	onramp to	Freeway offramp heading west		Freeway offramp heading east	
	Speciation	Thomas Foon Chew Way	Zanker Road Part 1	Zanker Road Part 2	Southbay Freeway	Northbound on Zanker Road	Southbay Freeway	toward Zanker Road	Northbound on Zanker Road	toward Zanker Road	
	(% of TOG)	CHEW_C	ZAS1_C	ZAS2_C	FYW1_C	ZAS3_C	FYE1_C	INW1_C	ZAN1_C	FYE2_C	
Acetaldehyde	0.28%	7.51E-03	1.36E-03	1.23E-03	5.02E-03	3.67E-03	5.94E-03	7.23E-03	2.23E-03	5.86E-03	
Acrolein	0.13%	3.49E-03	6.33E-04	5.72E-04	2.33E-03	1.70E-03	2.76E-03	3.36E-03	1.04E-03	2.72E-03	
Benzene	2.47%	6.62E-02	1.20E-02	1.09E-02	4.43E-02	3.24E-02	5.24E-02	6.38E-02	1.97E-02	5.17E-02	
1,3-Butadiene	0.55%	1.47E-02	2.68E-03	2.42E-03	9.86E-03	7.21E-03	1.17E-02	1.42E-02	4.38E-03	1.15E-02	
Ethylbenzene	1.05%	2.81E-02	5.12E-03	4.62E-03	1.88E-02	1.38E-02	2.23E-02	2.71E-02	8.37E-03	2.20E-02	
Formaldehyde	1.58%	4.24E-02	7.70E-03	6.96E-03	2.83E-02	2.07E-02	3.35E-02	4.08E-02	1.26E-02	3.31E-02	
Hexane	1.60%	4.29E-02	7.80E-03	7.04E-03	2.87E-02	2.10E-02	3.40E-02	4.13E-02	1.27E-02	3.35E-02	
Methanol	0.12%	3.22E-03	5.85E-04	5.28E-04	2.15E-03	1.57E-03	2.55E-03	3.10E-03	9.56E-04	2.51E-03	
Methyl Ethyl Ketone	0.02%	5.36E-04	9.75E-05	8.80E-05	3.59E-04	2.62E-04	4.25E-04	5.16E-04	1.59E-04	4.19E-04	
Naphthalene	0.05%	1.34E-03	2.44E-04	2.20E-04	8.97E-04	6.55E-04	1.06E-03	1.29E-03	3.98E-04	1.05E-03	
Propylene	3.06%	8.20E-02	1.49E-02	1.35E-02	5.49E-02	4.01E-02	6.50E-02	7.90E-02	2.44E-02	6.41E-02	
Styrene	0.12%	3.22E-03	5.85E-04	5.28E-04	2.15E-03	1.57E-03	2.55E-03	3.10E-03	9.56E-04	2.51E-03	
Toluene	5.76%	1.54E-01	2.81E-02	2.54E-02	1.03E-01	7.55E-02	1.22E-01	1.49E-01	4.59E-02	1.21E-01	
Xylenes	4.80%	1.29E-01	2.34E-02	2.11E-02	8.61E-02	6.29E-02	1.02E-01	1.24E-01	3.82E-02	1.01E-01	

Construction Hours 2600 hours/year

lb/hr	(% of TOG)	CHEW_C	ZAS1_C	ZAS2_C	FYW1_C	ZAS3_C	FYE1_C	INW1_C	ZAN1_C	FYE2_C
Acetaldehyde	0.28%	2.89E-06	5.25E-07	4.74E-07	1.93E-06	1.41E-06	2.29E-06	2.78E-06	8.58E-07	2.26E-06
Acrolein	0.13%	1.34E-06	2.44E-07	2.20E-07	8.97E-07	6.55E-07	1.06E-06	1.29E-06	3.98E-07	1.05E-06
Benzene	2.47%	2.55E-05	4.63E-06	4.18E-06	1.70E-05	1.24E-05	2.02E-05	2.45E-05	7.57E-06	1.99E-05
1,3-Butadiene	0.55%	5.67E-06	1.03E-06	9.31E-07	3.79E-06	2.77E-06	4.49E-06	5.46E-06	1.69E-06	4.43E-06
Ethylbenzene	1.05%	1.08E-05	1.97E-06	1.78E-06	7.24E-06	5.29E-06	8.57E-06	1.04E-05	3.22E-06	8.46E-06
Formaldehyde	1.58%	1.63E-05	2.96E-06	2.68E-06	1.09E-05	7.96E-06	1.29E-05	1.57E-05	4.84E-06	1.27E-05
Hexane	1.60%	1.65E-05	3.00E-06	2.71E-06	1.10E-05	8.06E-06	1.31E-05	1.59E-05	4.90E-06	1.29E-05
Methanol	0.12%	1.24E-06	2.25E-07	2.03E-07	8.28E-07	6.05E-07	9.80E-07	1.19E-06	3.68E-07	9.67E-07
Methyl Ethyl Ketone	0.02%	2.06E-07	3.75E-08	3.39E-08	1.38E-07	1.01E-07	1.63E-07	1.99E-07	6.13E-08	1.61E-07
Naphthalene	0.05%	5.16E-07	9.37E-08	8.47E-08	3.45E-07	2.52E-07	4.08E-07	4.97E-07	1.53E-07	4.03E-07
Propylene	3.06%	3.16E-05	5.73E-06	5.18E-06	2.11E-05	1.54E-05	2.50E-05	3.04E-05	9.38E-06	2.46E-05
Styrene	0.12%	1.24E-06	2.25E-07	2.03E-07	8.28E-07	6.05E-07	9.80E-07	1.19E-06	3.68E-07	9.67E-07
Toluene	5.76%	5.94E-05	1.08E-05	9.75E-06	3.97E-05	2.90E-05	4.70E-05	5.72E-05	1.77E-05	4.64E-05
Xylenes	4.80%	4.95E-05	9.00E-06	8.13E-06	3.31E-05	2.42E-05	3.92E-05	4.77E-05	1.47E-05	3.87E-05

Activity Duration (Months of Year)

ANNUAL ONSITE EMISSIONS	(Months of Year)										
					2026 DPM	2027 DPM	2028 DPM	2027 Exhaust	2027 NOx	2027 SO2	2027 Exhaust
Ref Name	2027	SRC ID	VOL	Chi/Q	(lb/yr)	(lb/yr)	(lb/yr)	PM2.5 (g/s/vol)	(g/s/vol)	(g/s/vol)	PM10 (g/s/vol)
Onsite Construciton	11	Onsite	142	7.04225E-03	2.657E+00	2.165E+01	8.206E-01	2.6524E-06	9.6652E-05	1.2071E-06	2.6726E-06
				AERMOD		2027 Fugitive					2027 Fugitive
Ref Name			SRC ID	Area (m²)	PM2.5 (g/s/m²)	PM2.5 (g/s/m²)	PM2.5 (g/s/m²)				PM10 (g/s/m²)
Onsite			AREA_UTL	56929.0	2.69809E-07	5.95676E-08					1.50199E-0

Units: LBS/DAY						20	127				
		2027	2027	2027	2027	2027	2027	2027	2027	2027	2027
Construction Phase		ROG	NOx	CO	SO2	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10	PM10D	PM10 Total	PM2.5 Total
Site Preparation	Onsite	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Site Preparation	Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Site Preparation	Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Site Preparation	Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Grading	Onsite	0.3817	3.0915	18.3455	0.0298	0.0809	0.2458	0.0830	0.6199	0.7028	0.3267
Grading	Hauling	0.0345	1.9795	0.9608	0.0107	0.0203	0.1152	0.0203	0.4201	0.4404	0.1355
Grading	Vendor	0.0039	0.2484	0.1158	0.0014	0.0028	0.0156	0.0028	0.0567	0.0595	0.0183
Grading	Worker	0.5272	0.4840	6.0160	0.0000	0.0000	0.3789	0.0000	1.6186	1.6186	0.3789
Concrete/Battery Placement	Onsite	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Concrete/Battery Placement	Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Concrete/Battery Placement	Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Concrete/Battery Placement	Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Paving	Onsite	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Paving	Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Paving	Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Paving	Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Dail	y		

Construction Road Segments - Haul Trucks																			2027					
									Cars Initial	Trucks Initial													1	
							Trucks	Initial	Vertical	Vertical													1	
		Road	_		Line	Cars Release	Release	Lateral	Dimension	Dimension													1	
	Road Width		Base		Volume			Dimensio		(m) from		Total Length			Total PM10	Total PM2.5				Total PM10	Total PM2.5	NO2		
Road	(ft)	(m)		SourceID	Src Type	BAAQMD (m)	RAAGMD (m)	n (m)	BAAQMD	BAAQMD	Sources	(m)	g/s)	Route	(lb/day)	(lb/day)	NO2 (lb/day)	CO (lb/day)	SO2 (ID/day)	(g/s/vol)	(g/s/vol)	(g/s/vol)	CO (g/s/vol)	SO2 (g/s/vol)
Thomas Foon Chew Way	11.48	3.50	varies - AERMAP	CHEW	Adjacent	1.3	3.4	varies - based on	1.21	3.16	66	627.2	1.51515E-02	Inbound and Outbound	4.29E-03	1.32E-03	1.93E-02	9.36E-03	1.04E-04	3.41E-07	1.05E-07	1.53E-06	7.45E-07	8.26E-09
Southbound on Zanker Road Part 1	14.76	4.50	varies - AERMAP	ZAS1	Adjacent	1.3	3.4	varies - based on	1.21	3.16	11	114	9.09091E-02	Outbound	7.80E-04	2.40E-04	3.51E-03	1.70E-03	1.89E-05	3.72E-07	1.15E-07	1.67E-06	8.12E-07	9.00E-09
Southbound on Zanker Road Part 2	11.48	3.50	varies - AERMAP	ZAS2	Adjacent	1.3	3.4	varies - based on	1.21	3.16	11	103	9.09091E-02	Outbound	7.05E-04	2.17E-04	3.17E-03	1.54E-03	1.70E-05	3.36E-07	1.03E-07	1.51E-06	7.34E-07	8.14E-09
Westbound onramp to Southbay Freeway	14.76	4.50	varies - AERMAP	FYW1	Adjacent	1.3	3.4	varies - based on	1.21	3.16	40	419.6	2.50000E-02	Outbound	2.87E-03	8.83E-04	1.29E-02	6.26E-03	6.94E-05	3.77E-07	1.16E-07	1.69E-06	8.22E-07	9.11E-09
Southbound and Northbound on Zanker Road	49.21	15.00	varies - AERMAP	ZAS3	Adjacent	1.3	3.4	varies - based on	1.21	3.16	15	306.6	6.66667E-02	Inbound and Outbound	2.10E-03	6.45E-04	9.43E-03	4.58E-03	5.07E-05	7.34E-07	2.26E-07	3.30E-06	1.60E-06	1.78E-08
Eastbound onramp to Southbay Freeway	13.12	4.00	varies - AERMAP	FYE1	Adjacent	1.3	3.4	varies - based on	1.21	3.16	50	496.7	2.00000E-02	Outbound	3.40E-03	1.05E-03	1.53E-02	7.41E-03	8.22E-05	3.57E-07	1.10E-07	1.60E-06	7.78E-07	8.63E-09
Southbay Freeway offramp heading west toward Zanker Road	13.12	4.00	varies - AERMAP	INW1	Adjacent	1.3	3.4	varies - based on	1.21	3.16	60	604.1	1.66667E-02	Inbound	4.13E-03	1.27E-03	1.86E-02	9.02E-03	1.00E-04	3.62E-07	1.11E-07	1.63E-06	7.89E-07	8.75E-09
Northbound on Zanker Road	11.48	3.50	varies - AERMAP	ZAN1	Adjacent	1.3	3.4	varies - based on	1.21	3.16	20	186.4	5.00000E-02	Inbound	1.28E-03	3.92E-04	5.73E-03	2.78E-03	3.08E-05	3.35E-07	1.03E-07	1.50E-06	7.30E-07	8.10E-09
Southbay Freeway offramp heading east toward Zanker Road	11.48	3.50	varies - AERMAP	FYE2	Adjacent	1.3	3.4	varies - based on	1.21	3.16	52	490	1.92308E-02	Inbound	3.35E-03	1.03E-03	1.51E-02	7.31E-03	8.11E-05	3.38E-07	1.04E-07	1.52E-06	7.38E-07	8.19E-09

	2026-2	2028	
Route Length	meters	miles	
Inbound	1724.2	1.071368	Longest inbound
Outbound	1544.5	0.959708	Longest outbound
RT Distance Route (modeling domain)	3268.7	2.031076	Longest Route

Daily	у		
Dall	y		

Construction Road Segments - Vendor																								
							Trucks		Cars Initial Vertical	Trucks Initial Vertical														
	Road Width	Road Width	Base		Line Volume	Cars Release Height from	Release Height from		Dimension (m) from	Dimension (m) from	# Volume	Total Length	g/s per vol (1		Total PM10	Total PM2.5				Total PM10	Total PM2.5	NO2		
Road	(ft)	(m)	Elevation	SourceID	Src Type	BAAQMD (m)	BAAQMD (m)	Dimension (m)	BAAQMD	BAAQMD	Sources	(m)	g/s)	Route	(lb/day)	(lb/day)	NO2 (lb/day)	CO (lb/day)	SO2 (lb/day)	(g/s/vol)	(g/s/vol)	(g/s/vol)	CO (g/s/vol)	SO2 (g/s/vol)
Thomas Foon Chew Way	11.48	3.50	varies - AERMAP	CHEW	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	66	627.2	1.51515E-02	Inbound and Outbound	1.38E-03	4.25E-04	5.76E-03	2.69E-03	3.28E-05	1.10E-07	3.38E-08	4.58E-07	2.14E-07	2.61E-09
Southbound on Zanker Road Part 1	14.76	4.50	varies - AERMAP	ZAS1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11			Outbound	2.51E-04	7.72E-05	1.05E-03	4.88E-04	5.95E-06	1.20E-07	3.68E-08	5.00E-07	2.33E-07	2.84E-09
Southbound on Zanker Road Part 2	11.48	3.50	varies - AERMAP	ZAS2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	103	9.09091E-02	Outbound	2.27E-04	6.97E-05	9.46E-04	4.41E-04	5.38E-06	1.08E-07	3.33E-08	4.52E-07	2.11E-07	2.57E-09
Westbound onramp to Southbay Freeway	14.76	4.50	varies - AERMAP	FYW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	40	419.6	2.50000E-02	Outbound	9.23E-04	2.84E-04	3.85E-03	1.80E-03	2.19E-05	1.21E-07	3.73E-08	5.06E-07	2.36E-07	2.88E-09
Southbound and Northbound on Zanker Road	49.21	15.00	varies - AERMAP	ZAS3	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	15	306.6	6.66667E-02	Inbound and Outbound	6.74E-04	2.08E-04	2.82E-03	1.31E-03	1.60E-05	2.36E-07	7.27E-08	9.86E-07	4.60E-07	5.60E-09
Eastbound onramp to Southbay Freeway	13.12	4.00	varies - AERMAP	FYE1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	50	496.7	2.00000E-02	Outbound	1.09E-03	3.36E-04	4.56E-03	2.13E-03	2.59E-05	1.15E-07	3.53E-08	4.79E-07	2.23E-07	2.72E-09
Southbay Freeway offramp heading west toward Zanker Road	13.12	4.00	varies - AERMAP	INW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	60	604.1	1.66667E-02		1.33E-03	4.09E-04	5.55E-03	2.59E-03	3.16E-05	1.16E-07	3.58E-08	4.86E-07	2.26E-07	2.76E-09
Northbound on Zanker Road	11.48	3.50	varies - AERMAP	ZAN1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	20	186.4	5.00000E-02	Inbound	4.10E-04	1.26E-04	1.71E-03	7.99E-04	9.74E-06	1.08E-07	3.31E-08	4.50E-07	2.10E-07	2.56E-09
Southbay Freeway offramp heading east toward Zanker Road	11.48	3.50	varies - AERMAP	FYE2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	52	490	1.92308E-02	Inbound	1.08E-03	3.32E-04	4.50E-03	2.10E-03	2.56E-05	1.09E-07	3.35E-08	4.54E-07	2.12E-07	2.58E-09

	2026-2	2028	
Route Length	meters	miles	
Inbound			Longest inbound
Outbound	1544.5	0.959708	Longest outbound
RT Distance Route (modeling domain)	3268.7	2.031076	Longest Route

Daily			

Construction Road Segments - Worker Vehicles																			2027					
							Trucks		Cars Initial Vertical	Trucks Initial Vertical														
		Road			Line	Cars Release	Release		Dimension	Dimension														
	Road Width		Base		Volume	Height from	Height from	Initial Lateral	(m) from		# Volume	Total Length	g/s per vol (1		Total PM10	Total PM2.5				Total PM10	Total PM2.5	NO2		
Road	(ft)	(m)		SourceID	Src Type	BAAQMD (m)	BAAQMD (m)		BAAQMD	BAAQMD	Sources	(m)	g/s)	Route	(lb/day)	(lb/day)	NO2 (lb/day)	CO (lb/day)	SO2 (lb/day)	(g/s/vol)	(g/s/vol)	(g/s/vol)	CO (g/s/vol)	SO2 (g/s/vol)
Thomas Foon Chew Way	11.48	3.50	varies - AERMAP	CHEW	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	66	627.2	1.51515E-02	Inbound and Outbound	2.70E-02	6.31E-03	8.06E-03	1.00E-01	0.00E+00	2.14E-06	5.02E-07	6.41E-07	7.97E-06	0.00E+00
Southbound on Zanker Road Part 1	14.76	4.50	varies - AERMAP	ZAS1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	114	9.09091E-02	Outbound	4.90E-03	1.15E-03	1.47E-03	1.82E-02	0.00E+00	2.34E-06	5.47E-07	6.99E-07	8.69E-06	0.00E+00
Southbound on Zanker Road Part 2	11.48	3.50	varies - AERMAP	ZAS2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	103	9.09091E-02	Outbound	4.43E-03	1.04E-03	1.32E-03	1.65E-02	0.00E+00	2.11E-06	4.95E-07	6.32E-07	7.85E-06	0.00E+00
Westbound onramp to Southbay Freeway	14.76	4.50	varies - AERMAP	FYW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	40	419.6	2.50000E-02	Outbound	1.80E-02	4.22E-03	5.39E-03	6.70E-02	0.00E+00	2.37E-06	5.54E-07	7.08E-07	8.80E-06	0.00E+00
Southbound and Northbound on Zanker Road	49.21	15.00	varies - AERMAP	ZAS3	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	15	306.6	6.66667E-02	Inbound and Outbound	1.32E-02	3.08E-03	3.94E-03	4.90E-02	0.00E+00	4.61E-06	1.08E-06	1.38E-06	1.71E-05	0.00E+00
Eastbound onramp to Southbay Freeway	13.12	4.00	varies - AERMAP	FYE1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	50	496.7	2.00000E-02	Outbound	2.13E-02	5.00E-03	6.38E-03	7.93E-02	0.00E+00	2.24E-06	5.25E-07	6.70E-07	8.33E-06	0.00E+00
Southbay Freeway offramp heading west toward Zanker Road	13.12	4.00	varies - AERMAP	INW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	60	604.1	1.66667E-02	Inbound	2.60E-02	6.08E-03	7.76E-03	9.65E-02	0.00E+00	2.27E-06	5.32E-07	6.79E-07	8.44E-06	0.00E+00
Northbound on Zanker Road	11.48	3.50	varies - AERMAP	ZAN1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	20	186.4	5.00000E-02	Inbound	8.01E-03	1.88E-03	2.40E-03	2.98E-02	0.00E+00	2.10E-06	4.92E-07	6.29E-07	7.82E-06	0.00E+00
Southbay Freeway offramp heading east toward Zanker Road	11.48	3.50	varies - AERMAP	FYE2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	52	490	1.92308E-02	Inbound	2.11E-02	4.93E-03	6.30E-03	7.83E-02	0.00E+00	2.13E-06	4.98E-07	6.36E-07	7.90E-06	0.00E+00

	2026-2	2028	
Route Length	meters	miles	
Inbound	1724.2	1.071368	Longest inbound
Outbound	1544.5	0.959708	Longest outbound
RT Distance Route (modeling domain)	3268.7	2.031076	Longest Route

DAILY ONSITE EMISSIONS

		2027 Exhaust
Ref Name	SRC ID	PM2.5 (g/s/vol)
Onsite Construction	Onsite	7.18E-06

2027	2027	2027	2027
			Exhaust PM10
NOx (g/s/vol)	CO (g/s/vol)	SO2 (g/s/vol)	(g/s/vol)
2.74E-04	1.63E-03	2.65E-06	7.36E-06

SRC ID	AERMOD Area (m²)	2027 Fugitive PM2.5 (g/s/m²)	2027 Fugitive PM10 (q/s/m²)
AREA_UTL	56929.0	5.44096E-08	1.37193E-07

Units: LBS/HR						20)27				
		2027	2027	2027	2027	2027	2027	2027	2027	2027	2027
Construction Phase		ROG	NOx	CO	SO2	Exhaust PM2.5	Fugitive PM2.5	Exhaust PM10	PM10D	PM10 Total	PM2.5 Total
Site Preparation	Onsite	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Site Preparation	Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Site Preparation	Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Site Preparation	Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Grading	Onsite	0.0477	0.3864	2.2932	0.0037	0.0101	0.0307	0.0104	0.0775	0.0879	0.0408
Grading	Hauling	0.0043	0.2474	0.1201	0.0013	0.0025	0.0144	0.0025	0.0525	0.0551	0.0169
Grading	Vendor	0.0005	0.0310	0.0145	0.0002	0.0003	0.0019	0.0003	0.0071	0.0074	0.0023
Grading	Worker	0.0659	0.0605	0.7520	0.0000	0.0000	0.0474	0.0000	0.2023	0.2023	0.0474
Concrete/Battery Placement	Onsite	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Concrete/Battery Placement	Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Concrete/Battery Placement	Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Concrete/Battery Placement	Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Paving	Onsite	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Paving	Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Paving	Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Paving	Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Hourly		

Hourly																								
Construction Road Segments - Haul Trucks																			2027					
									Cars Initial	Trucks Initial												1 /		
							Trucks		Vertical	Vertical												1		
		Road				Cars Release	Release		Dimension	Dimension												1 /		
	Road Width		Base		Volume	Height from		Initial Lateral	(m) from	(m) from	# Volume		g/s per vol (1		Total PM10	Total PM2.5				Total PM10	Total PM2.5	NO2		
Road	(ft)	(m)		SourceID	Src Type	BAAQMD (m)		Dimension (m)	BAAQMD	BAAQMD	Sources	(m)	g/s)	Route	(lb/hr)	(lb/hr)	NO2 (lb/hr)	CO (lb/hr)	SO2 (lb/hr)	(g/s/vol)	(g/s/vol)	(g/s/vol)	CO (g/s/vol)	SO2 (g/s/vol)
Thomas Foon Chew Way	11.48	3.50	varies - AERMAP	CHEW	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	66	627.2	1.51515E-02	Inbound and Outbound	5.36E-04	1.65E-04	2.41E-03	1.17E-03	1.30E-05	1.02E-06	3.15E-07	4.60E-06	5 2.23E-06	2.48E-08
Southbound on Zanker Road Part 1	14.76	4.50	varies - AERMAP	ZAS1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	114	9.09091E-02	Outbound	9.75E-05	3.00E-05	4.38E-04	2.13E-04	2.36E-06	1.12E-06	3.44E-07	5.02E-06	5 2.44E-06	2.70E-08
Southbound on Zanker Road Part 2	11.48	3.50	varies - AERMAP	ZAS2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	103	9.09091E-02	Outbound	8.81E-05	2.71E-05	3.96E-04	1.92E-04	2.13E-06	1.01E-06	3.10E-07	4.53E-06	5 2.20E-06	2.44E-08
Westbound onramp to Southbay Freeway	14.76	4.50	varies - AERMAP	FYW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	40	419.6	2.50000E-02	Outbound	3.59E-04	1.10E-04	1.61E-03	7.83E-04	8.68E-06	1.13E-06	3.48E-07	5.08E-06	5 2.47E-06	2.73E-08
Southbound and Northbound on Zanker Road	49.21	15.00	varies - AERMAP	ZAS3	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	15	306.6	/ ////75 00		2.62E-04	8.07E-05	1.18E-03	5.72E-04	6.34E-06	2.20E-06	6.77E-07	9.90E-06	4.80E-06	5.33E-08
Eastbound onramp to Southbay Freeway	13.12	4.00	varies - AERMAP	FYE1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	50	496.7	2.00000E-02	Outbound	4.25E-04	1.31E-04	1.91E-03	9.27E-04	1.03E-05	1.07E-06	3.29E-07	4.81E-06	5 2.34E-06	2.59E-08
Southbay Freeway offramp heading west toward Zanker Road	13.12	4.00	varies - AERMAP	INW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	60	604.1	1.66667E-02	Inbound	5.17E-04	1.59E-04	2.32E-03	1.13E-03	1.25E-05	1.08E-06	3.34E-07	4.88E-06	5 2.37E-06	2.62E-08
Northbound on Zanker Road	11.48	3.50	varies - AERMAP	ZAN1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	20		5.00000E-02		1.59E-04	4.90E-05	7.16E-04	3.48E-04	3.86E-06	1.00E-06	3.09E-07	4.51E-06	5 2.19E-06	2.43E-08
Southbay Freeway offramp heading east toward Zanker Road	11.48	3.50	varies - AERMAP	FYE2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	52	490	1.92308E-02	Inbound	4.19E-04	1.29E-04	1.88E-03	9.14E-04	1.01E-05	1.02E-06	3.12E-07	4.56E-06	5 2.22E-06	2.46E-08

	2026-2	2028	
Route Length	meters	miles	
Inbound	1724.2	1.071368	Longest inbound
Outbound	1544.5	0.959708	Longest outbound
RT Distance Route (modeling domain)	3268.7	2.031076	Longest Route

100% r1 Route %

Hourly		

Hourly Construction Road Segments - Vendor																			2027					
		Road			Line	Cars Release	Trucks Release		Vertical Dimension	Trucks Initial Vertical Dimension														
Road	Road Width (ft)	Width (m)	Base Elevation	SourceID	Volume Src Type	Height from BAAQMD (m)		Initial Lateral Dimension (m)		(m) from BAAQMD	# Volume Sources	Total Length (m)	g/s per vol (1 g/s)	Route	Total PM10 (lb/hr)	Total PM2.5 (lb/hr)	NO2 (lb/hr)	CO (lb/hr)	SO2 (lb/hr)	Total PM10 (g/s/vol)	Total PM2.5 (g/s/vol)	NO2 (g/s/vol)	CO (g/s/vol)	SO2 (g/s/vol)
Thomas Foon Chew Way	11.48	3.50	varies - AERMAP	CHEW	Adjacent	1.3	3.4	varies - based on plume width		3.16	66	627.2	1.51515E-02	Inbound and Outbound	1.72E-04	5.31E-05	7.20E-04	3.36E-04	4.10E-06	3.29E-07	1.01E-07	1.38E-06	6.41E-07	7.82E-09
Southbound on Zanker Road Part 1	14.76	4.50	varies - AERMAP	ZAS1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	114	9.09091E-02	Outbound	3.13E-05	9.65E-06	1.31E-04	6.11E-05	7.44E-07	3.59E-07	1.11E-07	1.50E-06	6.99E-07	8.53E-09
Southbound on Zanker Road Part 2	11.48	3.50	varies - AERMAP	ZAS2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	11	103	9.09091E-02	Outbound	2.83E-05	8.72E-06	1.18E-04	5.52E-05	6.72E-07	3.24E-07	9.99E-08	1.35E-06	6.32E-07	7.70E-09
Westbound onramp to Southbay Freeway	14.76	4.50	varies - AERMAP	FYW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	40	419.6	2 E0000E 02		1.15E-04	3.55E-05	4.82E-04	2.25E-04	2.74E-06	3.63E-07	1.12E-07	1.52E-06	7.08E-07	8.63E-09
Southbound and Northbound on Zanker Road	49.21	15.00	varies - AERMAP	ZAS3	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	15	306.6	6.66667E-02	Inbound and Outbound	8.43E-05	2.59E-05	3.52E-04	1.64E-04	2.00E-06	7.08E-07	2.18E-07	2.96E-06	1.38E-06	1.68E-08
Eastbound onramp to Southbay Freeway	13.12	4.00	varies - AERMAP	FYE1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	50	496.7	2.00000E-02	Outbound	1.37E-04	4.20E-05	5.70E-04	2.66E-04	3.24E-06	3.44E-07	1.06E-07	1.44E-06	6.70E-07	8.17E-09
Southbay Freeway offramp heading west toward Zanker Road	13.12	4.00	varies - AERMAP	INW1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	60	604.1	1.66667E-02	Inbound	1.66E-04	5.11E-05	6.94E-04	3.24E-04	3.94E-06	3.49E-07	1.07E-07	1.46E-06	6.79E-07	8.28E-09
Northbound on Zanker Road	11.48	3.50	varies - AERMAP	ZAN1	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	20	186.4	5.00000E-02	Inbound	5.12E-05	1.58E-05	2.14E-04	9.98E-05	1.22E-06	3.23E-07	9.94E-08	1.35E-06	6.29E-07	7.67E-09
Southbay Freeway offramp heading east toward Zanke Road	11.48	3.50	varies - AERMAP	FYE2	Adjacent	1.3	3.4	varies - based on plume width	1.21	3.16	52	490	1.92308E-02	Inbound	1.35E-04	4.15E-05	5.63E-04	2.62E-04	3.20E-06	3.26E-07	1.00E-07	1.36E-06	6.36E-07	7.75E-09

	2026-2	2028	
Route Length	meters	miles	
Inbound	1724.2	1.071368	Longest inbound
Outbound	1544.5	0.959708	Longest outbound
RT Distance Route (modeling domain)	3268.7	2.031076	Longest Route

Route %

Hourl	V	

Construction Road Segments - Worker Vehicles																			2027					
							Trucks	Initial	Cars Initial Vertical	Trucks Initial Vertical														
		Road			Line	Cars Release	Release	Lateral	Dimension	Dimension											i .			
	Road Width	Width	Base				Height from	Dimensio		(m) from	# Volume	Total Length	g/s per vol (1		Total PM10	Total PM2.5				Total PM10	Total PM2.5	NO2		
Road	(ft)	(m)	Elevation	SourceID	Src Type	BAAQMD (m)	BAAQMD (m)	n (m)	BAAQMD	BAAQMD	Sources	(m)	g/s)	Route	(lb/hr)	(lb/hr)	NO2 (lb/hr)	CO (lb/hr)	SO2 (lb/hr)	(g/s/vol)	(g/s/vol)	(g/s/vol)	CO (g/s/vol)	SO2 (g/s/vol)
Thomas Foon Chew Way	11.48	3.50	varies - AERMAP	CHEW	Adjacent	1.3	3.4	varies - based on	1.21	3.16	66	627.2	1.51515E-02	Inbound and Outbound	3.37E-03	7.89E-04	1.01E-03	1.25E-02	0.00E+00	6.43E-06	1.51E-06	1.92E-06	2.39E-05	0.00E+00
Southbound on Zanker Road Part 1	14.76	4.50	varies - AERMAP	ZAS1	Adjacent	1.3	3.4	varies - based on	1.21	3.16	11	114	9.09091E-02	Outbound	6.12E-04	1.43E-04	1.83E-04	2.28E-03	0.00E+00	7.02E-06	1.64E-06	2.10E-06	2.61E-05	0.00E+00
Southbound on Zanker Road Part 2	11.48	3.50	varies - AERMAP	ZAS2	Adjacent	1.3	3.4	varies - based on	1.21	3.16	11	103	9.09091E-02	Outbound	5.53E-04	1.30E-04	1.65E-04	2.06E-03	0.00E+00	6.34E-06	1.48E-06	1.90E-06	2.36E-05	0.00E+00
Westbound onramp to Southbay Freeway	14.76	4.50	varies - AERMAP	FYW1	Adjacent	1.3	3.4	varies - based on	1.21	3.16	40	419.6	2 500005 02	Outbound	2.25E-03	5.28E-04	6.74E-04	8.38E-03	0.00E+00	7.10E-06	1.66E-06	2.12E-06	2.64E-05	0.00E+00
Southbound and Northbound on Zanker Road	49.21	15.00	varies - AERMAP	ZAS3	Adjacent	1.3	3.4	varies - based on	1.21	3.16	15	306.6	6.66667E-02	Inbound and Outbound	1.65E-03	3.86E-04	4.93E-04	6.12E-03	0.00E+00	1.38E-05	3.24E-06	4.14E-06	5.14E-05	0.00E+00
Eastbound onramp to Southbay Freeway	13.12	4.00	varies - AERMAP	FYE1	Adjacent	1.3	3.4	varies - based on	1.21	3.16	50	496.7	2.00000E-02	Outbound	2.67E-03	6.25E-04	7.98E-04	9.92E-03	0.00E+00	6.72E-06	1.57E-06	2.01E-06	2.50E-05	0.00E+00
Southbay Freeway offramp heading west toward Zanker Road	13.12	4.00	varies - AERMAP	INW1	Adjacent	1.3	3.4	varies - based on	1.21	3.16	60	604.1	1 444475 00	Inbound	3.25E-03	7.60E-04	9.71E-04	1.21E-02	0.00E+00	6.82E-06	1.60E-06	2.04E-06	2.53E-05	0.00E+00
Northbound on Zanker Road	11.48	3.50	varies - AERMAP	ZAN1	Adjacent	1.3	3.4	varies - based on	1.21	3.16	20	186.4	5.00000E-02	Inbound	1.00E-03	2.34E-04	2.99E-04	3.72E-03	0.00E+00	6.31E-06	1.48E-06	1.89E-06	2.34E-05	0.00E+00
Southbay Freeway offramp heading east toward Zanker Road	11.48	3.50	varies - AERMAP	FYE2	Adjacent	1.3	3.4	varies - based on	1.21	3.16	52	490	1.92308E-02	Inbound	2.63E-03	6.16E-04	7.87E-04	9.78E-03	0.00E+00	6.38E-06	1.49E-06	1.91E-06	2.37E-05	0.00E+00

	2026-2	2028
Route Length	meters	miles
Inbound	1724.2	1.071368
Outbound	1544.5	0.959708
RT Distance Route (modeling domain)	2240.7	2.031076
KT Distance Route (modeling domain)	3208.7	2.031076

Hourly Onsite Emissions				2027	2027	2027	2027
			2027 Exhaust				Exhaust PM10
Ref Name	SRC ID	VOL	PM2.5 (g/s/vol)	NOx (g/s/vol)	CO (g/s/vol)	SO2 (g/s/vol)	(g/s/vol)
Onsite Construction	Onsite	142	8.97E-06	3.43E-04	2.03E-03	3.31E-06	9.20E-06

			2027
	AERMOD Area	2027 Fugitive	2027 Fugitive
SRC ID	(m²)	PM2.5 (g/s/m²)	PM10 (g/s/m²)
AREA_UTL	56929.0	6.80120E-08	1.71491E-07

CalEEMod Trip Lengths (mi)

	Worker	Vendor	Hauling
One-way	11.70	8.4	20.00
RT	23.4	16.8	40

Calpine Tanager	Sca	ling Factor	
RT w/in model domain	8.7%	12.1%	5.1%

HARP INPUT FILE

HARP INPUT					
Source ID	Source No.	CAS No.	TAC	lb/yr	lb/hr
CONST	1		DieselExhPM	2.51E+01	0.00E+00
CHEW	2		DieselExhPM	7.39E-02	0.00E+00
ZAS1	3		DieselExhPM	1.34E-02	0.00E+00
ZAS2	4	9901	DieselExhPM	1.21E-02	0.00E+00
FYW1	5	9901	DieselExhPM	4.94E-02	0.00E+00
ZAS3	6	9901	DieselExhPM	3.61E-02	0.00E+00
FYE1	7	9901	DieselExhPM	5.85E-02	0.00E+00
INW1	8	9901	DieselExhPM	7.11E-02	0.00E+00
ZAN1	9	9901	DieselExhPM	2.19E-02	0.00E+00
FYE2	10	9901	DieselExhPM	5.77E-02	0.00E+00
CHEW_C	11	75070	Acetaldehyde	7.51E-03	2.89E-06
CHEW_C	11	107028	Acrolein	3.49E-03	1.34E-06
CHEW_C	11	71432	Benzene	6.62E-02	2.55E-05
CHEW_C	11	106990	1,3-Butadiene	1.47E-02	5.67E-06
CHEW_C	11	100414	Ethylbenzene	2.81E-02	1.08E-05
CHEW_C	11	50000	Formaldehyde	4.24E-02	1.63E-05
CHEW_C	11	110543	Hexane	4.29E-02	1.65E-05
CHEW_C	11	67561	Methanol	3.22E-03	1.24E-06
CHEW_C	11	78933	Methyl Ethyl Ketone	5.36E-04	2.06E-07
CHEW_C	11	91203	Naphthalene	1.34E-03	5.16E-07
CHEW_C	11	115071	Propylene	8.20E-02	3.16E-05
CHEW_C	11	100425	Styrene	3.22E-03	1.24E-06
CHEW_C	11		Toluene	1.54E-01	5.94E-05
CHEW_C	11	1330207	Xylenes	1.29E-01	4.95E-05
ZAS1_C	12		Acetaldehyde	1.36E-03	5.25E-07
ZAS1_C	12		Acrolein	6.33E-04	2.44E-07
ZAS1_C	12	71432	Benzene	1.20E-02	4.63E-06
ZAS1_C	12	106990	1,3-Butadiene	2.68E-03	1.03E-06
ZAS1_C	12		Ethylbenzene	5.12E-03	1.97E-06
ZAS1_C	12		Formaldehyde	7.70E-03	2.96E-06
ZAS1_C	12		Hexane	7.80E-03	3.00E-06
ZAS1_C	12	67561	Methanol	5.85E-04	2.25E-07
ZAS1_C	12	78933	Methyl Ethyl Ketone	9.75E-05	3.75E-08
ZAS1_C	12		Naphthalene	2.44E-04	9.37E-08
ZAS1_C	12		Propylene	1.49E-02	5.73E-06
ZAS1_C	12		Styrene	5.85E-04	2.25E-07
ZAS1_C	12		Toluene	2.81E-02	1.08E-05
ZAS1_C	12	1330207		2.34E-02	9.00E-06
ZAS2_C	13		Acetaldehyde	1.23E-03	4.74E-07
ZAS2_C	13		Acrolein	5.72E-04	2.20E-07
ZAS2_C	13		Benzene	1.09E-02	4.18E-06
ZAS2_C	13		1,3-Butadiene	2.42E-03	9.31E-07
ZAS2_C	13		Ethylbenzene	4.62E-03	1.78E-06
ZAS2_C	13		Formaldehyde	6.96E-03	2.68E-06
ZAS2_C	13		Hexane	7.04E-03	2.71E-06
	1.0		- 1001100	1.0.2 00	=2 30

ZAS2_C	13	67561 Methanol	5.28E-04	2.03E-07	
ZAS2_C	13	78933 Methyl Ethyl Ketone	8.80E-05	3.39E-08	
ZAS2_C	13	91203 Naphthalene	2.20E-04	8.47E-08	
ZAS2_C	13	115071 Propylene	1.35E-02	5.18E-06	
ZAS2_C	13	100425 Styrene	5.28E-04	2.03E-07	
ZAS2_C	13	108883 Toluene	2.54E-02	9.75E-06	
ZAS2_C	13	1330207 Xylenes	2.11E-02	8.13E-06	
FYW1_C	14	75070 Acetaldehyde	5.02E-03	1.93E-06	
FYW1_C	14	107028 Acrolein	2.33E-03	8.97E-07	
FYW1_C	14	71432 Benzene	4.43E-02	1.70E-05	
FYW1_C	14	106990 1,3-Butadiene	9.86E-03	3.79E-06	
FYW1_C	14	100414 Ethylbenzene	1.88E-02	7.24E-06	
FYW1_C	14	50000 Formaldehyde	2.83E-02	1.09E-05	
FYW1_C	14	110543 Hexane	2.87E-02	1.10E-05	
FYW1_C	14	67561 Methanol	2.15E-03	8.28E-07	
FYW1_C	14	78933 Methyl Ethyl Ketone	3.59E-04	1.38E-07	
FYW1_C	14	91203 Naphthalene	8.97E-04	3.45E-07	
FYW1_C	14	115071 Propylene	5.49E-02	2.11E-05	
FYW1_C	14	100425 Styrene	2.15E-03	8.28E-07	
FYW1_C	14	108883 Toluene	1.03E-01	3.97E-05	
_	14		8.61E-02		
FYW1_C		1330207 Xylenes		3.31E-05	
ZAS3_C	15 15	75070 Acetaldehyde	3.67E-03	1.41E-06	
ZAS3_C	15 15	107028 Acrolein	1.70E-03	6.55E-07	
ZAS3_C	15 15	71432 Benzene	3.24E-02	1.24E-05	
ZAS3_C	15 15	106990 1,3-Butadiene	7.21E-03	2.77E-06	
ZAS3_C	15	100414 Ethylbenzene	1.38E-02	5.29E-06	
ZAS3_C	15	50000 Formaldehyde	2.07E-02	7.96E-06	
ZAS3_C	15	110543 Hexane	2.10E-02	8.06E-06	
ZAS3_C	15	67561 Methanol	1.57E-03	6.05E-07	
ZAS3_C	15	78933 Methyl Ethyl Ketone	2.62E-04	1.01E-07	
ZAS3_C	15	91203 Naphthalene	6.55E-04	2.52E-07	
ZAS3_C	15	115071 Propylene	4.01E-02	1.54E-05	
ZAS3_C	15	100425 Styrene	1.57E-03	6.05E-07	
ZAS3_C	15	108883 Toluene	7.55E-02	2.90E-05	
ZAS3_C	15	1330207 Xylenes	6.29E-02	2.42E-05	
FYE1_C	16	75070 Acetaldehyde	5.94E-03	2.29E-06	
FYE1_C	16	107028 Acrolein	2.76E-03	1.06E-06	
FYE1_C	16	71432 Benzene	5.24E-02	2.02E-05	
FYE1_C	16	106990 1,3-Butadiene	1.17E-02	4.49E-06	
FYE1_C	16	100414 Ethylbenzene	2.23E-02	8.57E-06	
FYE1_C	16	50000 Formaldehyde	3.35E-02	1.29E-05	
FYE1_C	16	110543 Hexane	3.40E-02	1.31E-05	
FYE1_C	16	67561 Methanol	2.55E-03	9.80E-07	
FYE1_C	16	78933 Methyl Ethyl Ketone	4.25E-04	1.63E-07	
FYE1_C	16	91203 Naphthalene	1.06E-03	4.08E-07	
FYE1_C	16	115071 Propylene	6.50E-02	2.50E-05	
FYE1_C	16	100425 Styrene	2.55E-03	9.80E-07	

FYE1_C	16	108883 Toluene	1.22E-01	4.70E-05
FYE1_C	16	1330207 Xylenes	1.02E-01	3.92E-05
INW1_C	17	75070 Acetaldehyde	7.23E-03	2.78E-06
INW1_C	17	107028 Acrolein	3.36E-03	1.29E-06
INW1_C	17	71432 Benzene	6.38E-02	2.45E-05
INW1_C	17	106990 1,3-Butadiene	1.42E-02	5.46E-06
INW1_C	17	100414 Ethylbenzene	2.71E-02	1.04E-05
INW1_C	17	50000 Formaldehyde	4.08E-02	1.57E-05
INW1_C	17	110543 Hexane	4.13E-02	1.59E-05
INW1_C	17	67561 Methanol	3.10E-03	1.19E-06
INW1_C	17	78933 Methyl Ethyl Ketone	5.16E-04	1.99E-07
INW1_C	17	91203 Naphthalene	1.29E-03	4.97E-07
INW1_C	17	115071 Propylene	7.90E-02	3.04E-05
INW1_C	17	100425 Styrene	3.10E-03	1.19E-06
INW1_C	17	108883 Toluene	1.49E-01	5.72E-05
INW1_C	17	1330207 Xylenes	1.24E-01	4.77E-05
ZAN1_C	18	75070 Acetaldehyde	2.23E-03	8.58E-07
ZAN1_C	18	107028 Acrolein	1.04E-03	3.98E-07
ZAN1_C	18	71432 Benzene	1.97E-02	7.57E-06
ZAN1_C	18	106990 1,3-Butadiene	4.38E-03	1.69E-06
ZAN1_C	18	100414 Ethylbenzene	8.37E-03	3.22E-06
ZAN1_C	18	50000 Formaldehyde	1.26E-02	4.84E-06
ZAN1_C	18	110543 Hexane	1.27E-02	4.90E-06
ZAN1_C	18	67561 Methanol	9.56E-04	3.68E-07
ZAN1_C	18	78933 Methyl Ethyl Ketone	1.59E-04	6.13E-08
ZAN1_C	18	91203 Naphthalene	3.98E-04	1.53E-07
ZAN1_C	18	115071 Propylene	2.44E-02	9.38E-06
ZAN1_C	18	100425 Styrene	9.56E-04	3.68E-07
ZAN1_C	18	108883 Toluene	4.59E-02	1.77E-05
ZAN1_C	18	1330207 Xylenes	3.82E-02	1.47E-05
FYE2_C	19	75070 Acetaldehyde	5.86E-03	2.26E-06
FYE2_C	19	107028 Acrolein	2.72E-03	1.05E-06
FYE2_C	19	71432 Benzene	5.17E-02	1.99E-05
FYE2_C	19	106990 1,3-Butadiene	1.15E-02	4.43E-06
FYE2_C	19	100414 Ethylbenzene	2.20E-02	8.46E-06
FYE2_C	19	50000 Formaldehyde	3.31E-02	1.27E-05
FYE2_C	19	110543 Hexane	3.35E-02	1.29E-05
FYE2_C	19	67561 Methanol	2.51E-03	9.67E-07
FYE2_C	19	78933 Methyl Ethyl Ketone	4.19E-04	1.61E-07
FYE2_C	19	91203 Naphthalene	1.05E-03	4.03E-07
FYE2_C	19	115071 Propylene	6.41E-02	2.46E-05
FYE2_C	19	100425 Styrene	2.51E-03	9.67E-07
FYE2_C	19	108883 Toluene	1.21E-01	4.64E-05
FYE2_C	19	1330207 Xylenes	1.01E-01	3.87E-05
		•		

LOS ESTEROS CRITICAL ENERGY FACILITY (03-AFC-02C) Petition for Modification- Tanager BESS Project DATA RESPONSE SET 1B

ATTACHMENT DR-A11

AECOM 300 Lakeside Drive Suite 400 Oakland, CA 94612 aecom.com

To:

Nadira Basdeo, PMP EHS Program Manager 3003 Oak Road, Suite 400 Walnut Creek, CA 94597

CC:

Steve Leach

Project name:

Tanager BESS Project

From:

Matthew Bettelheim

Date:

November 12, 2025

Memo

Subject: Burrowing Owl Habitat Assessment and Protocol-Level Surveys for the Tanager BESS Project, Santa Clara County, California

Tanager Power, LLC, proposes to construct and operate the Tanager Battery Energy Storage System (BESS) Project (Project) at the former laydown and construction parking area for the Los Esteros Critical Energy Facility (LECEF). The western burrowing owl (*Athene cunicularia hypugaea*) is a California Species of Special Concern and, as a candidate for potential listing as a protected species under the California Endangered Species Act, is presently afforded protection as a state threatened/endangered species until the listing candidacy is resolved.

This technical memorandum provides the results of a western burrowing owl habitat assessment and protocollevel surveys performed in 2025 to determine whether this protected species or suitable habitat to support this species are present at the project site or vicinity.

Project Location

The LECEF is located on Assessor Parcel No. 015-31-072. The Tanager BESS Project will be co-located on the same parcel, north of Aviso Milpitas Rd. and south of the LECEF just outside of the existing fence line. The project site and study area includes 12.8-acres south of LECEF that was previously used for construction staging, parking, and laydown during construction of the LECEF, and the gen-tie corridor, which totals 3.4 acres, located along the strip of land immediately east of the LECEF (Figure 1). The project site is currently undeveloped.

Project Description

The BESS project consists of the installation of a lithium-ion-battery system that will be used to store and provide power to the grid via a new generation interconnection (gen-tie) line. Existing paved roadways would provide access to the 12.8-acre BESS footprint from Zanker Road. The project site is currently vegetated by non-native annual grasses and ornamental woody plants around the LECEF perimeter.

Due to the known presence of western burrowing owl in the City of San José's designated burrowing owl habitat preserve., and the availability of potentially suitable nesting/overwintering habitat onsite, a western burrowing owl habitat assessment and protocol-level surveys were performed in 2025 and are described below.

AECOM

FIGURE 1Tanager BESS Project Location

Habitat Assessment

Environmental Setting

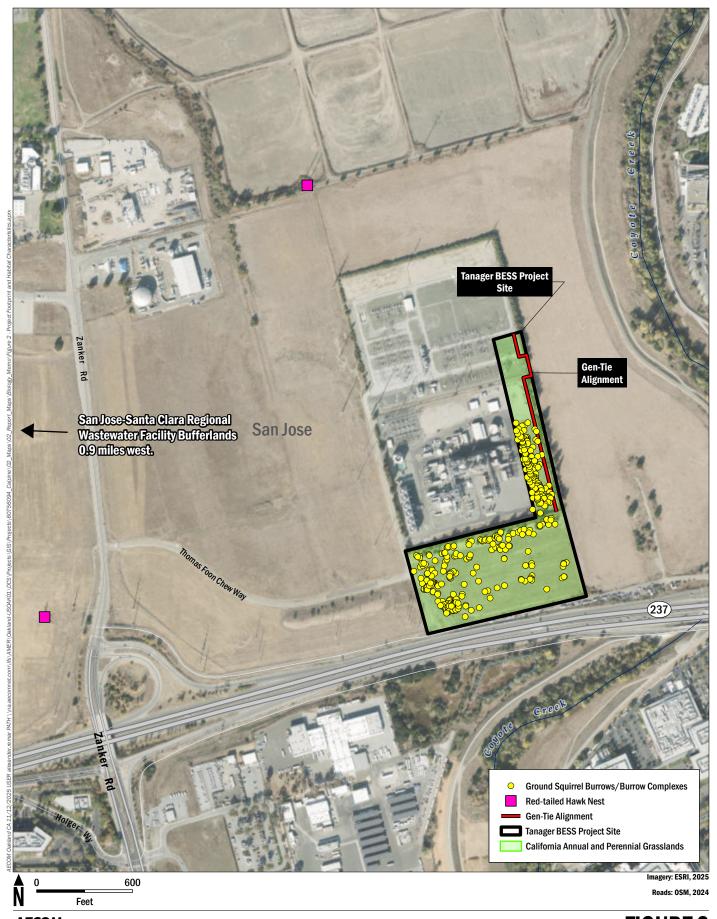
The proposed BESS Project is located immediately south of the existing LECEF, and north of State Route 237. Coyote Creek and the associated riparian corridor are approximately 1,050 feet east of the project site. The project site is approximately 2,200 feet southeast of the San Jose/Santa Clara Water Pollution Control Plant (WPCP), and approximately 0.9 mile east of the WPCP buffer lands. The WPCP sludge drying ponds are located approximately 0.4 mile north of the LECEF.

The existing vegetation of the project site was previously mapped as California Annual and Perennial Grasslands Macrogroup dominated by European annual grasses such as *Avena*, *Bromus*, *Hordeum*, and *Festuca* (Jacobs 2025). Characteristic weedy species observed during the habitat assessment in this predominantly non-native annual grassland include common wild oat (*Avena fatua*) and mustard (*Brassica* sp.) (Figure 2). Native coyote brush (*Baccharis pilularis*) is present throughout the project site, but the limited occurrences are primarily low-growing due to annual mowing required for fire control. Bare ground was limited to areas along the road shoulder, a north-south gravel service road connected to Thomas Foon Chew Way, and deposits of soil surrounding active California ground squirrel (*Otospermophilus beecheyi*) burrows.

At the time of the initial habitat assessment (April 10, 2025), the non-native annual grasslands were typically 12 to 18 inches high throughout a majority of the project site, with the exception of the westernmost edge of the project site paralleling Thomas Foon Chew Way and the gravel service road. The elevation of the western margin of the project site appears to be slightly lower than the other portions of the project site. The elevation difference may be due to the placement of fill material when the project site was used as a temporary construction staging, parking, and laydown area during the construction of the LECEF.

The project site was cultivated prior to the development of the LECEF. Aerial photos from March 2000 indicate the presence of intensive row crop and greenhouse cultivation at the project site. Construction activities are visible in subsequent aerial photos from 2003. The project site is currently mowed for weed abatement and fire risk reduction in accordance with local ordinances and fire codes. The project site had not been mowed in April but had been recently mowed prior to the third protocol-level survey on May 21, 2025.

Habitat Assessment


Methods

The first of two western burrowing owl habitat assessments was performed by AECOM biologists Matthew Bettelheim and Andrea Cortes on April 10, 2025, from 8:00 AM to 1:00 PM in accordance with the California Department of Fish and Game *Staff Report on Burrowing Owl Mitigation* (CDFG 2012) to record and characterize vegetation and burrows. The initial habitat assessment was performed by walking transect surveys, spaced roughly 75 feet apart, across the entire project footprint. All suitably-sized burrows and burrow complexes were mapped using the Field Maps application, and representative photographs of burrows and burrow complexes were recorded. All burrows were inspected for burrowing owl presence and/or sign of presence. A second walking transect survey of the project site was conducted on May 21, 2025, to update the April 10, 2025, habitat assessment because the project site had been subsequently mowed.

Results

During the initial habitat assessment, AECOM Biologists mapped approximately 215 ground squirrel burrows and burrow complexes within the 12.8-acre project site. In addition to the abundance of burrows, ground squirrel activity was high in the parcels adjacent to the survey area and surrounding the LECEF perimeter. Grassland habitats observed within the survey area, the surrounding parcels, and around the LECEF perimeter were primarily dominated by non-native grasses and some native and non-native ornamental tree and shrub plantings. At the time of the initial habitat assessment, the annual grasslands were approximately 12 to 18 inches high throughout much of the survey area (Figures 4-8).

The parcels to the west and east of the project footprint are dominated by the same California Annual and Perennial Grasslands Macrogroup characterized by tall grasses, approximately 24-36 inches high.

Although these adjacent parcels are outside the project footprint and were not formally assessed by AECOM biologists, portions of these perimeter parcels within approximately 300 feet of the project site were regularly scanned with binoculars as part of the protocol-level surveys. A small mound, approximately 700 feet in length, is located immediately west of the survey area on the south side of Thomas Foon Chew Way. The mound supports several small trees, but the remainder of the mound is regularly mowed and inhabited by ground squirrels with burrows and burrow complexes present. The undeveloped land to the east is separated from the survey area and the LECEF by a chain link fence.

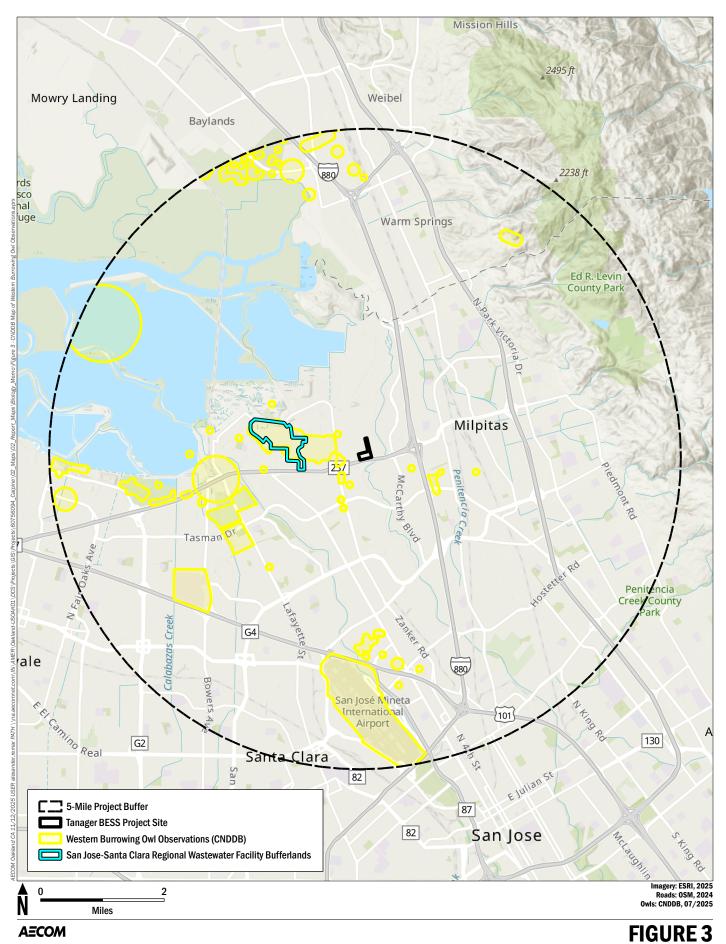
Ground squirrel activity was observed throughout the survey area during the initial habitat assessment and in the parcels extending from Zanker Rd, in the grasslands along Thomas Foon Chew Way, and surrounding the LECEF. During the initial habitat assessment, 215 suitable burrows and/or burrow complexes of approximately >11 cm in diameter (height and width) and >150 cm in depth were mapped within the 12.8-acre survey area.

Habitat characteristics during the second habitat assessment were similar to the April conditions with the exception that the non-native grasslands had been mowed, resulting in short-stature grasslands throughout the project site, and ground squirrel activity was markedly less prevalent. Considerably fewer open, active burrows were observed in May compared to the number of burrows recorded in April. This observation may be attributable to seasonal changes in the surface activity of California ground squirrels. Although newborn and juvenile squirrels can be active year-round, adults often disappear from the surface after the breeding season for 3–4 months each year to estivate (avoid the summer heat) from as early as May into November (males) or from late July into January (females) (Smith et al. 2016).

Burrowing Owl Occupancy

Methods

In addition to conducting a habitat assessment for burrowing owls, AECOM biologists reviewed the CDFW's California Natural Diversity Database (CNDDB) to determine whether known occurrences of burrowing owl breeding, foraging, or over-wintering activity has been reported within the project site or within a 5-mile radius.


Approximately 1 mile west of the project site and Zanker Road, the San José-Santa Clara Regional Wastewater Facility maintains undeveloped open space that consists of two primary areas: the "bufferlands" (687 ac) and an owl management area (50 acres). Approximately 180 acres of these two areas combined have been designated as a burrowing owl habitat preserve by the city of San José. The city partners with the Santa Clara Valley Habitat Agency to manage and improve the habitat, monitor, and track the owls at the preserve (City of San José 2013). The resident owl population is managed under the guidance of the Santa Clara Valley Audubon Society (Talon Ecological Research Group 2025).

AECOM biologists surveyed portions of the bufferlands burrowing owl habitat preserve that were visible from the public right-of-way (e.g., Disk Drive, Nortech Parkway, Baytech Drive) to compare habitat and owl activity with the project site. The off-site survey results confirmed that burrowing owls were active and detectible by surveyors at roughly the same time that habitat assessment and breeding season surveys were conducted within the study area.

Results

During the April habitat assessment, no burrowing owls, individuals or pairs, were observed. Additionally, there was no sign of burrowing owl presence at any of the burrows that were mapped during the initial habitat assessment.

No CNDDB occurrences of burrowing owls have been reported within the 12.8-acre project site. In 2009, observations of burrowing owls were reported in the parcel bounded by SR 237, Zanker Road, and Thomas Foon Chew Way (CNDDB #647) roughly 1,220 feet to the west of the project site (Figure 3). Burrowing owl have also been reported roughly 1,860 feet to the southwest in the parcel southeast of the intersection of Zanker Road and SR 237 (Occurrence #1228) south of SR 237 in 2011; in the burrowing owl preserve roughly 1,925 feet to the northwest near the San José-Santa Clara Regional Wastewater Facility (Occurrence #392) in 2016; and roughly 2,260 feet to the northwest (Occurrence #749) in 2005.

One burrowing owl was observed in the Wastewater Facility bufferlands roughly 3,560 feet west of the project site in August 2024, while telemetry data documented one of three tracked owls foraging within 2,880 feet of the project site in August and September 2024 (Talon Ecological Research Group 2025). At the locations where these owls were observed, vegetation was reportedly "too tall and unsuitable for burrowing owls during the earlier part of the breeding season until mowing occurred in later July/August" (Talon Ecological Research Group 2025).

During off-site surveys of the burrowing owl habitat preserve, burrowing owl activity in the region was recorded from two separate vantage points of two separate sections of the preserve. From the first vantage point located off-site roughly 1.65 miles west of the project site, a pair of owls were observed in the preserve on April 30, 2025, near the entrance of several presumed active nest mound burrows. Burrowing owls were observed from this first vantage point during a return trip to the burrowing owl habitat preserve on May 21, 2025 (Figure 12). Three downy owlets were observed near the entrance to the same presumed active nest mound burrows, and two adults were observed in the area surrounding the nest mound within 5 to 10 feet from the young. During a follow-up visit on June 11, 2025, to this location, seven individual owls that included three adults and four juveniles were observed near the same presumed active nest mound burrow.

On April 30, 2025, another owl visible from the public right-of-way was observed from a second vantage point inside one of the preserve's hacking enclosures (= temporary aviaries) located approximately 0.97 mile west of the project site. The hacking enclosures have been constructed to assist with the "soft-release" (= introduction) of breeding owl pairs in the preserve (Talon Ecological Research Group 2025).

Although a formal habitat assessment and protocol-level breeding season surveys were not conducted within the burrowing owl habitat preserve, the habitat conditions within the preserve appeared to be more favorable for burrowing owl occupancy due to the prevalence of sparsely vegetated artificial burrow mounds and sparse, short-stature grasses (12 to 18 inches tall) throughout the preserve (see Figure 12). The preserve boundaries are approximately 1 mile west of the project site.

Protocol Surveys

Western burrowing owl protocol-level surveys were performed in accordance with the California Department of Fish and Wildlife's *Staff Report on Burrowing Owl Mitigation* (CDFG 2012), which calls for a combination of breeding season and/or non-breeding season surveys.

Methods

In accordance with the *Staff Report on Burrowing Owl Mitigation* (CDFG 2012), breeding season surveys were conducted consisting of four (4) survey visits between February 1 and August 31, as follows (Table 1):

- 1. One site visit between 15 February and 15 April, and
- 2. Three survey visits, at least three weeks apart, between 15 April and 15 July.

Table 1. Survey Dates and Weather Conditions

Habitat Assessment	Survey #1	Survey #2	Survey #3	Survey #4
April 10, 2025 (8AM – 1PM)	April 10, 2025 (5PM – 8PM)	April 30, 2025 (5PM – 8PM)	May 21, 2025 (6AM – 8AM)	June 11 (6AM – 8AM)
Temp: 56-65 degrees F	Temp: 67-58 degrees F	Temp: 70-63 degrees F	Temp: 53-57 degrees F	Temp : 54-57 degrees F
Winds: 9 mph NNW to 0 mph N	Winds: 15 mph NNW to 9 mph N	Winds: 14 mph NW to 12 mph NW	Winds: 0mph N to 0 mph N	Winds: 5 mph N to 5 mph NW
Precipitation: none	Precipitation: none	Precipitation: none	Precipitation: none	Precipitation: none
Ambient: partly cloudy, 100% visibility	Ambient: partly cloudy, 100% visibility	Ambient: clear skies, 100% visibility	Ambient: clear skies, 100% visibility	Ambient: overcast, 100% visibility

AECOM biologists Matthew Bettelheim and Andrea Cortes performed four breeding season surveys timed in accordance with the Staff Report on Burrowing Owl Mitigation (Table 1). Survey dates, times, and prevailing weather conditions are summarized in Table 1. Biologist qualifications are summarized in Table 2. Field forms are included in Appendix A.

Table 2. Surveyor qualifications

	Matthew Bettelheim, CWB ®		Andrea Cortes
•	26 years of experience	•	6 years of experience with over 700+ hours conducting nesting bird and raptor surveys and pre-construction
•	1 year nest searching (nest, eggs, hatchlings), banding, handling/collecting Dark-Eyed Juncos		surveys
•	26 years (annual) nest searching (nest, eggs, hatchlings), pre-construction, and construction monitoring surveys for passerines, raptors, shorebirds,	•	Surveys involve locating nests, nest identification, identifying nest status, nest abatement, and establishing exclusion buffers.
•	etc. 26 years (intermittent) performing protocol-level habitat	•	2 years (intermittent) performing protocol-level habitat assessment and breeding/wintering surveys for Western Burrowing Owl (positive detections)
	assessment and breeding/wintering surveys for Western Burrowing Owl (positive detections)	•	Rare Shoreline Species Workshop course (San
•	Home Study Course in Bird Biology course (Cornell Lab of Ornithology; 2010)		Francisco Bay Bird Observatory; 2023) for Snowy Plover, Least Terns, Ridgeway's Rail.
•	North American Owls course (Golden Gate Audubon Society/Dave Quady; 2009)	•	125+ hours of bird banding experience in Central America
•	Urban Wildlife Management course (Texas A&M University; 2010)	•	Previously approved as Qualified/Authorized Biologist for nesting birds
•	WildC.A.T. – Wildlife Construction Awareness Training (training; presenter/organizer), The Wildlife Society – Western Section (2016 – present)		
•	Previously approved as Qualified/Authorized Biologist for Western Burrowing Owl and nesting birds		

During the protocol-level breeding season surveys, biologists positioned themselves at two different locations, at opposite ends of the project site, which provided a clear, elevated, unobstructed view of the project site. During each survey event, biologists surveyed the project site and the surrounding area for either three hours before sunset (April 10, April 30), or two hours after sunrise (May 21, June 11) monitoring all bird activity with binoculars. AECOM biologists also regularly scanned adjacent portions of the parcel that borders the service road on the western edge of the project site.

Results

No western burrowing owl individuals, sign, or nesting activity were observed within the project site or adjacent areas during the 2025 breeding season surveys.

Bird species observed within the project footprint during the initial habitat assessment and protocol level surveys are listed in Table 3.

Known or potential predatory species observed in the study area include common raven (Clark 2017); American crow; two red-tailed hawk nest pairs and their young (Figure 9 – 10); Pacific gophersnake (*Pituophis catenifer catenifer*) (Figure 11), and a family of striped skunks (*Mephitis mephitis*) (Coulombe 1971).

Table 3. Bird species observed during the 2025 habitat assessment and protocol level surveys

Scientific Name	Common Name		
Agelaius phoeniceus	red-winged blackbird		
Anas platyrhynchos	mallard		
Aphelocoma californica	California scrub-jay		
Ardea herodias	great blue heron		
Baeolophus inornatus	oak titmouse		
Bombycilla cedrorum	cedar waxwing		
Branta canadensis	Canada goose		
Buteo jamaicensis	red-tailed hawk *		
Calypte anna	Anna's hummingbird		
Cathartes aura	turkey vulture		
Charadrius vociferus	killdeer		
Columba livia	rock pigeon		
Corvus brachyrhynchos	American crow *		
Corvus corax	common raven *		
Fulica americana	American Coot		
Haemorhous mexicanus	house finch		
Hirundo rustica	barn swallow		
Meleagris gallopavo	wild turkey		
Melospiza melodia	song sparrow		
Mimus polyglottos	northern mockingbird		
Psaltriparus minimus	bushtit		
Sayornis nigricans	black phoebe		
Sturnus vulgaris	European starling		
Zenaida macroura	mourning dove		
* Indicates potential predator species			

Red-tailed hawks were observed at the project site and vicinity. Two active nests were observed between April and June (see Figure 9 - 10). One nest was observed in a tree snag 0.45 mile west of Thomas Foon Chew Way,

and the second nest was located on a power pylon 0.38 mile north of the LECEF facility. Adult red-tailed hawks were present at both nests during the two April surveys. The adult red-tailed hawks associated with the nest west of Thomas Foon Chew Way were not seen again during the May and June surveys, but the adults associated with the pylon nest site north of the LECEF facility were seen regularly between April and June. The adults and one fledgling from the pylon nest were observed atop the pylon with the young close to flight in May, and all three birds were observed foraging in the fields west of the LECEF facility in June. In addition to these birds, additional red-tailed hawks were seen perched and in flight in the ornamental trees between the LECEF facility and the project site, and along several power poles just north of State Route 237.

Discussion

No burrowing owls or associated signs of burrowing owls were observed within the project site or adjacent areas west of the service road that were visible during the surveys. Habitat conditions ranged from unsuitable (prior to vegetation management activities) due to the high-stature grasslands, to suitable for nesting and overwintering of owls after the field was mowed. High-stature grasslands typically provide sub-optimal habitat that precludes burrowing owl occupancy because the tall grasses impair their ability to detect approaching predators. Low-stature grasslands are more suitable for nesting and occupancy by burrowing owls because they provide an open viewshed for burrowing owls that allows them to more easily detect approaching threats. Although grassland height is not an absolute determinant in burrowing owl occupancy, it can be an important factor in overall habitat suitability.

Likewise, while the presence of predators is not an absolute determinant in burrowing owl occupancy, it can be a factor in overall habitat suitability. The presence of several established red-tailed hawk pairs and the family of skunks could play a factor in overall habitat suitability at this location.

The observations of western burrowing owls at the nearby burrowing owl habitat preserve confirmed that the survey timing was appropriate to detect the species if they were present within the project site. Habitat conditions within the preserve appeared to be more favorable for burrowing owl occupancy due to the prevalence of short-stature grasses and artificial mounds. Based on data collected at the burrowing owl preserve between 2016 and 2024, researchers "surmise[d] that the presence of burrowing owls was due to rigorous vegetation management, maintaining the vegetation around burrows short" and that tall-stature grasslands were "too tall and unsuitable for burrowing owls during the earlier part of the breeding season until mowing occurred in later July/August" (Talon Ecological Research Group 2025). These observations support the idea that grass-height may be a determining factor in burrowing owl occupancy in this area.

References

- City of San Jose. 2013. The Plant Master Plan. San Jose / Santa Clara Water Pollution Control Plant. https://www.sanjoseca.gov/home/showpublisheddocument/206/636611441889800000
- Clark, Howard O., Jr. 2017. Possible Predation of a Western Burrowing Owl by Common Ravens. Central Valley Bird Club Bulletin 20:65–69.
- Coulombe, H.N. 1971. Behavior and Population Ecology of the Burrowing Owl, Speotyto cunicularia, in the Imperial Valley of California. Condor. Volume 73, Number 2, Summer 1971, pp. 162-176.
- Santa Clara County. 2012. Final Santa Clara Valley Habitat Plan. Santa Clara County, California. https://scv-habitatagency.org/178/Santa-Clara-Valley-Habitat-Plan
- Smith, Jennifer E., Douglas J. Long, Imani D. Russell, Kate Lee Newcomb, and Valeska D. Muñoz. Otospermophilus beecheyi (Rodentia: Sciuridae). Mammalian Species 48(939):91–108.
- Talon Ecological Research Group. 2025. 2024 Burrowing Owl Management at the San José-Santa Clara Regional Wastewater Facility Bufferlands Conservation Easement (Year 8). Prepared for the Santa Clara Valley Habitat Agency. January. 26 pp. https://scv-habitatagency.org/DocumentCenter/View/2116/2024-RWF-BUOW-Management-Report_Jan-2025

Figure 4. Representative photo of Project site conditions during initial habitat assessment (April 10, 2025).

Figure 5. Representative photo of Project site conditions during initial habitat assessment (April 10, 2025).

Figure 6. Representative photo of site conditions after the Project site was mowed (May 21, 2025).

Figure 7. Representative photo of site conditions after the Project site was mowed (May 21, 2025).

Figure 8. Representative photo of ground squirrel burrows on the Project site (April 10, 2025).

Figure 9. Red-tailed hawk nest in power pylon north of LEEC (May 21, 2025).

Figure 10. Red-tailed hawk observed foraging on the Project site (April 10, 2025).

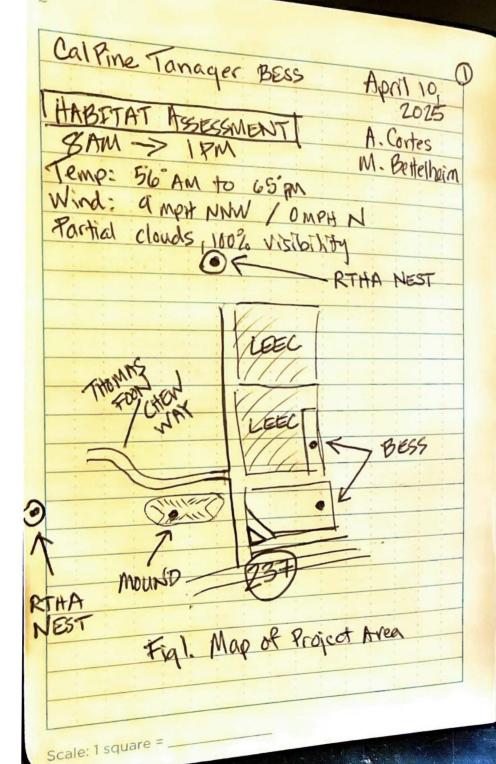


Figure 11. Pacific gopher snake observed on the Project site (May 21, 2025).

Figure 12. Burrowing owls observed off site at the San José-Santa Clara Wastewater Facility bufferlands burrowing owl habitat preserve (May 21, 2025). Note the preserve's short-stature grassland habitat compared to the tall-stature grasslands on the Project site prior to (Figures 4-5) and after (Figures 6-7) mowing.

Appendix A. Field Forms

Species dos: red-tailed many Pacific tier frog, striped skunk, ved winged black bird Anna's humaning bird song sparrow bushfit house finch, common raven, rock ageon, American cosa, mouning dove, Calbornia scrubjay Two red tailed have nest obs in Vicinity. LEEC site #2 In snap west of Thomas From

		DEME	16.00	X DO	10
Tem	167°P	4-758 NNW#	PORTS PORT N Visibility	A. Co	tes etellain
No	Buow	abs			
1 1	song sp Californ reven	arrow, I	Digeon	comm	3 7
1		1 1			

Scale: 1 square = _

Rite in the Rain.

Scale: 1 square =

Calfine Tanager BESS April 30, 2015 Bettelheim, U. BROEDING SEASON SURVEY Cortes, A 5PM -> 8PM Temp: 70 to 834 63 Wind: 14mph NW to 12mph NW clear skies, 160% visibility Species Obs: pacific gopher snake (huge) great have heron, rock pigeon, red-tailed hawky European starling, house finch, Canado 90000 No BUDY

May 21, 2025 Cal Pine Tanager BESS Zetelhein, M BRECOONY SKASON SHRUEY COCTOS, A. CAM > 8AM BMP. 53 -> 57 Wind: Omph - Omph Clear skies, 100% visib Species Obs. Ved-tailed hauk, vocle pigeon, house finch, killder, Canada goose, Annas huming Wird, buchtit, Bombus vosnesenskii Calline Tanager BESS June 11,200 Bettellim, M BREEDSH SEASON SURVEYS Cortes, A 6AM-8AM BMP. 54-57 Wind 5mon N/Shet NW Overcast skies, 1000 visibility Species obs house finch, vocle pigen ved-tailed hawk, bushtit barn swallow, Common raver Scale: Carrada goose, ved-Winged bladebioda

April 10,2025 8:	00 am - 1:00pm
56-65° F wind 19 mp	h NNW, o Mph N
precipi o partly cloud	
Red Winged Blackbird	Kerkhan Laker VIII.
mailard	CHON I was at the
Scrubyay	or 17 to sale I - Y transform with
Great blue heron	Cotton of Marin who do and
cedar waxwing	Cally English Charles I had be been
Red tailed hawk	migration and the second secon
Rock pigeon	manuscrame of the second of th
Turky vulture	The state of the s
House finch	and the state of t
Barn swallow	and the state of t
Song sparrow	and Andread of the second of t
wild turkey	and the second s
Northern mockingbird	(N) / Delice with M (N)
European Starting	The same who was a sometime and will be a second of the same and the s
mourning dove	
American coot	
Canada goose	
Bushtit	
Black phoebe	

April 10,2025 5:00pm - 8:00pm 67-58°F Wird:15 mph NNW +0 9mph N Precip: 0 Partly Cloudy, 100°10 visibility

· Red wing blackbird

· Turkey Vulture

· Song sparrow

· mourning dove

· Great blue heron

· American crow

· Killdeer

· Row pigeon

· black phoebe

· Red failed hawk

· Northern making bird

· Mallard

· Canada goose

· Barn Swallow

1-11-11-1

DENTERY /

white we

Friverit later

althrican reason

propagation in the same

dra d

La Company

1 11

April 30, 2025 5:00pm - 8:00pm 70- Le3°F Wind: 14 mph NW to 12 mph NW Precip: O Clear Skies, 1000/0 Visibility · Red winged blackbird Mayard · California Scrub Jay " Great blue heron · Canada goose · Red failed hawk · oak titmouse · Anna's hummingbird · Tuncy Vusture · how pigeon · American Crow · Common raven · House finch · born Swarrow · Song Sparrow · European starling

May 21,2025 le:00am - 8:00am 53-57°F wind: Omph N to Omph N Precip: O Clear skies, 100°10 visibility

- · Great blue heron
- · Red winged blackbird
- mallard
- · oak titmouse
- · European Starling
- · California Scrubjay
- · Canada goose
- · Anna's hummingbird
- · Turkey Vuture
- · Killdeer
- · American crow
- · House Finch
- · Barn Swallow
- · Song Sparrow
- · Northern mouring bird
- · Bushtit
- · Black phoebe
- · Mourning dove

June 11, 2025 6:00 am - 8:00 am 54-57°F wind: 5mph N to 5 mph NW Precip: 0 overcast, 100°/0 visibility

- · Red winged blackbird
- · mallard
- · California Scrub Jay
- · Great blue heron
- · sax titmouse
- · Canada goose
- · Red tailed hawk
- · Turning Vulture
- hilldeer
- · nour pigeon
- · American crow
- · House finch
- · Song Sparrow
- · Northern maxingbird
- European Starting
- · mourning dove