DOCKETED				
Docket Number:	99-AFC-01C			
Project Title:	Elk Hills Power Project - Compliance			
TN #:	266445			
Document Title:	Appendix J Energy Utilization Study			
Description:	Appendix J Energy Utilization Study for CalCapture Project			
Filer:	Daniel I. Padilla			
Organization:	California Resources Corporation			
Submitter Role:	Applicant			
Submission Date:	10/10/2025 12:13:58 PM			
Docketed Date:	10/10/2025			

CalCapture CCS Project

Energy Utilization Study

Prepared for: Carbon TerraVault Holdings, LLC, a carbon management subsidiary of California Resources Corporation

Prepared by:

Stantec Consulting Services Inc. 2646 Santa Maria Way, Suite 107 Santa Maria, CA 9345 October 2025

Project/File: 185806775

Revision Schedule

Revision	Description	Author	Date	Quality Check	Date	Independent Review	Date

Disclaimer

The conclusions in the Report titled CalCapture CCS Project Energy Utilization Study are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from Carbon TerraVault Holdings, LLC, a carbon management subsidiary of California Resources Corporation (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

Prepared by:	Brutte Shear	
	Signature	
	Briette Shea	-
Reviewed by:	Kaitlyn Heck	
, <u> </u>	Signature	_
	Kaitlyn Heck	
Approved by:	Tick Shallow	
	Signature	
	Eric Snelling	_

Project: 185806775

Table of Contents

Acrony	/ms / Abbreviations	
1	Introduction	
1.1	Project Description	
1.2	CTV I Background Information	
1.2.1	Steam Extraction Option	
1.3	Project Location	
2	Environmental Setting	9
2.1	Electricity and Natural Gas	9
2.2	Petroleum Fuel	
3	Regulatory Setting	10
3.1	Federal	
3.1.1	National Energy Conservation Policy Act	
3.1.2	Energy Independence and Security Act of 2007	
3.1.3	Corporate Average Fuel Economy Standards	11
3.1.4	Inflation Reduction Act of 2022	11
3.1.5	Declaring a National Energy Emergency	11
3.2	State	
3.2.1	California Public Utilities Commission	12
3.2.2	California Energy Commission	12
3.2.3	California Energy Code	12
3.2.4	California Integrated Energy Policy	12
3.2.5	California Renewables Portfolio Standard	13
3.2.6	Low Carbon Fuel Standard	13
3.2.7	In-Use Off-Road Diesel-Fueled Fleets Regulation	13
3.2.8	2022 Scoping Plan for Achieving Carbon Neutrality	14
3.2.9	CARB Heavy-Duty Diesel Vehicle Idling Information	14
3.2.10	California Green Building Standards, Part 11, Title 24	15
3.2.11	Kern Council of Governments Regional Transportation Plan	15
3.3	Local	15
3.3.1	Kern County General Plan	15
4	Methodology	17
4.1	Construction Assumptions	17
4.2	Operational Assumptions	18
4.2.1	Vehicle Trips	18
4.2.2	Carbon Capture and Sequestration Equipment	18
4.3	Decommissioning Assumptions	18
5	Energy Analysis	
5.1	CEQA Guidelines	19
5.2	Energy Impact Analysis	
5.2.1	Impact Analysis	
5.2.2	Impact Analysis	
6	Cumulative Impacts	
7	Mitigation Measures	
8	References	28

CalCapture CCS Project – Energy Utilization Study Table of Contents

List of Tables	
Table 1 Project Parcel Data	8
Table 2 Construction On-Road Vehicle Fuel Consumption	21
Table 3 Operational On-Road Vehicle Fuel Consumption	
List of Figures	
Figure 1 Regional Location	3

List of Appendices Appendix A Energy Calculations

Project: 185806775

ii

Acronyms / Abbreviations

Acronym / Abbreviation	Full Name
2022 Scoping Plan	2022 Scoping Plan for Achieving Carbon Neutrality
AB	Assembly Bill
ACC	Advanced Clean Cars
CAFE	Corporate Average Fuel Economy
CALCOG	California Association of Councils of Governments
CalEEMod	California Emissions Estimator Model
CalGEM	California Geologic Energy Management Division
CALGreen	California Green Building Standards Code
CARB	California Air Resources Board
CCR	California Code of Regulations [
CCS	Carbon Capture and Sequestration
CCU	Carbon Capture Unit
CEC	California Energy Commission
CEQA	California Environmental Quality Act
CFR	Code of Federal Regulation
CO ₂	carbon dioxide
COG	Council of Governments
CPUC	California Public Utilities Commission
CRC	California Resources Corporation
CTV	Carbon TerraVault Holdings, LLC
CTV I	Carbon TerraVault I Project
CUP	Conditional Use Permit
the CUP	Collectively, CUP No. 13, Map 118; CUP No. 14, Map 118; CUP No. 5, Map 119; CUP No. 3, Map 120; CUP No. 2, Map 138; and CUP No. 6, Map 119
EFG+	Econamine FG Plus SM
EHOF	Elk Hills Oilfield
EHPP	Elk Hills Power Plant
EIR	Environmental Impact Report
EISA	Energy Independence and Security Act

Project: 185806775

iii

Acronym / Abbreviation	Full Name	
EO	Executive Order	
EPCA	Energy Policy and Conservation Act	
EV	electric vehicle	
GHG	greenhouse gases	
GT	gas turbine	
GWh	gigawatt-hours	
HDD	horizontal directional drilling	
HRSG	heat recovery steam generator	
IP	intermediate power	
IRA	Inflation Reduction Act	
Kern COG	Kern Council of Governments	
kV	kilovolt	
kWh	kilowatt-hour	
LCFS	Low Carbon Fuel Standard	
LP	low pressure	
M	magnitude	
MDB&M	Mount Diablo Base and Meridian	
MM	mitigation measure	
MMPTY	Million Metric Tons Per Year	
MPO	Metropolitan Planning Organization	
MTPD	Metric Tons Per Day	
MW	megawatt	
MWe	megawatt equivalent	
NHTSA	National Highway Traffic Safety Administration	
NO _X	oxides of nitrogen	
NOD	Notice of Determination	
PG&E	Pacific Gas and Electric Company	
PM	particulate matter	
PRC	Public Resources Code	
Project	CalCapture Carbon Capture and Sequestration Project	
psig	pounds per square inch	
RFS	renewable fuel standards	

Acronym / Abbreviation	Full Name
RO	reverse osmosis
RPS	Renewable Portfolio Standard
RTP	Regional Transportation Plan
SB	Senate Bill
ST	steam turbine
Stantec	Stantec Consulting Services Inc.
UIC	Underground Injection Control
USC	U.S. Code
U.S. EPA	United States Environmental Protection Agency

Project: 185806775

1 Introduction

Stantec Consulting Services Inc. (Stantec) has prepared this Energy Utilization Study on behalf of Carbon TerraVault Holdings, LLC (CTV), a carbon management subsidiary of California Resources Corporation (CRC), for the CalCapture Carbon Capture Sequestration (CCS) Project (Project), located in the Elk Hills Oilfield (EHOF) near Tupman, Kern County, California (Project site). The Regional Location and Project Location are shown in Figures 1 and 2.

The purpose of this Energy Utilization Study is to determine the potential energy use, primarily in the form of petroleum fuel, associated with construction, operation, and decommissioning of the Project. This evaluation is consistent with the air quality and greenhouse gas (GHG) emissions modelling prepared for the Project (Stantec 2025).

1.1 Project Description

The proposed Project would capture carbon dioxide (CO₂) generated as a by-product by CRC's 550-megawatt-equivalent (MWe) Elk Hills Power Plant (EHPP), located in the EHOF near Tupman, Kern County, California. The EHPP was commissioned in 2003 and is powered by two General Electric 7FA gas turbines (GTs), with two heat recovery steam generators (HRSGs) providing steam to a General Electric D11 steam turbine (ST). The Carbon Capture Unit (CCU), not including pipelines or temporary staging and parking areas, would be located immediately south of the EHPP in a 7.64-acre existing disturbed area.

Implementation of the Project will require approval of a Petition for Modification Application from the California Energy Commission (CEC), who has the exclusive authority for licensing thermal power plants of 50 MW or larger, as well as related transmission lines, fuel supply lines, and other facilities.

The CCU would utilize Fluor's Econamine FG PlusSM (EFG+) process to capture and concentrate the CO₂. The EFG+ process is designed to capture 95 percent of the CO₂ from the total flue gas feed to the unit. The EFG+ CCU can be divided into seven primary subsystems or sections: Flue Gas Cooling, CO₂ Absorption, Solvent Regeneration, Solvent Maintenance, Chemical Storage and Supply, CO₂ Compression, and Utility Support Systems. The treated flue gas is vented to the atmosphere directly from the EFG+ CCU plant absorber. The concentrated CO₂ would then be compressed, dehydrated, and stripped of oxygen prior to conveyance to the permitted manifold pad, permitted as part of the approved Carbon TerraVault I (CTV I) project (State Clearinghouse No. 2022030180), which will direct the CO₂ to the U.S. Environmental Protection Agency (U.S. EPA) approved Class VI Underground Injection Control (UIC) wells to be injected into a depleted oil and gas reservoir located on the CRC property and approved as part of the CTV I project. The previously approved CTV I manifold pad, injection wells, depleted oil and gas reservoir and related facilities further discussed in Section 1.2 below are not part of the CalCapture CCS Project analyzed in this report.

A new, approximately 0.5-mile, 8- to 10-inch pipeline, installed primarily below ground utilizing either trenching or horizontal directional drilling (HDD) techniques, would transport the CO₂ from the CCU to the

CalCapture CCS Project – Energy Utilization Study Introduction

tie-in with the Carbon TerraVault I (CTV I) permitted 35R manifold facility (pad). It is anticipated that the proposed Project would capture approximately 4,400 metric tons of CO₂ per day (MTPD) (1.6 million metric tons of CO₂ per year [MMTPY]). The proposed Project is estimated to be in operation for up to 26 years.¹

Water use during operation of the CalCapture CCU would be minimized by the inclusion of a hybrid cooling system (Wet Surface Air Coolers [WSAC], air coolers, secondary glycol cooling, and water cooling). Additionally, the CCU would be equipped with a water treatment system, consisting of a reverse osmosis (RO) Unit that is designed to recover and reuse water from the Cooling Tower blowdown. The recovered water is utilized as make-up to the CO₂ absorption system and the Wash Water WSAC Basin. A wastewater stream (less than 10 gallons per minute) would be collected at the CalCapture CCU and transferred by a new surface pipeline to the EHPP for disposal via an existing UIC Class I injection well.

The proposed Project includes a single connection to the CRC Power System and would include a connection of a new 115-kilovolt (kV) transmission line to a new CRC electrical substation. The proposed Project would require a new transmission tie line to connect the Project switching station to the existing CRC substation. Electrical power would be supplied to the CalCapture Substation with a new dedicated electrical transformer. The new 115-kV transmission tie line is expected to be built using pre-engineered steel poles with anchor bolt foundation designs.

During construction, temporary offices and existing parking areas would be used by construction personnel. Temporary office and parking areas have been designated on previously disturbed areas to the south and northeast of the Project site. Two additional areas are located approximately 5.5 miles southeast of the Project site. There are no permanent new buildings proposed for the Project, and no grading would occur within the temporary office and parking areas. Total temporary staging and parking area would be approximately 30.74 acres.

¹The life of the project is dependent on the sources permitted for injection into the CTV I approved storage reservoir, the ability of the project year by year to obtain CO₂ and inject at the maximum 2,210,000 million tons per year, and the total estimated storage capacity of up to 48 million tons of CO₂.

Notes
1. Coordinate System: NAD 1983 StatePlane
California V FIPS 90405 Feet
2. Data Sources: Stantec, USGS, 2025.
3. Background: Esri. GEBCO, NOAA, National
Geographic, Garin, HERE, Geonames.org
Copyright:@2013 National Geographic Society, icubed

Capture Facility

Temporary Parking, Office, and Staging Areas

Proposed Sub Location (250 x 250)

Substation Extension $\times\!\!\times\!\!\times$ Proposal

New BPSTG & Transformer

Warehouse Cooling Water Sump

Township, Range, Section*

*Entire map extent within Township 30S Range 23E.

Electrical Lines

CO2 Line **CWR** Line

CWS Line

Condensate Line **HP Steam Line**

LP Steam Line Raw Water Line

RO Permeate Stream Pipeline

CWS Line Alternative

1,000 (At original document size of 8.5x11) 1:12,000

Prepared by MMD on 2025-07-31 TR by CT 2025-07-31 IR by ES on 2025-07-31 Kern County, CA

California Resources Corporation
CalCapture Carbon Capture and Sequestration Project

Figure **2a** Title Site Plan

Temporary Parking, Office, and Staging Areas

Township, Range, Section*

Section

*Entire map extent within Township 31S Range 24E.

Project Location	Prepared by MMD on 2025-07-31
Kern County, CA	TR by CT 2025-07-31 IR by ES on 2025-07-31
Client/Project	185806775

California Resources Corporation
CalCapture Carbon Capture and Sequestration Project

Figure No.
2b
Title
Site Plan

Notes
1. Coordinate System: NAD 1983 StatePlane
California V FIPS 0405 Feet
2. Data Sources: Stantec, USGS, 2025.
3. Background: Esri. GEBCO, NOAA, National
Geographic, Garin, HERE, Geonames.org
Copyright:@2013 National

1.2 CTV I Background Information

On December 31, 2024, the U.S. EPA issued four UIC Class VI well permits to CTV, a carbon management subsidiary of CRC.

The specific U.S. EPA permits issued for the four wells are as follows:

- R9UIC-CA6-FY22 1.1 for well 373-35R
- R9UIC-CA6-FY22 1.2 for well 345C-36R
- R9UIC-CA6-FY22 1.3 for well 353XC-35R
- R9UIC-CA6-FY22 1.4 for well 363C-27R

These four wells would be utilized to inject the CO₂ captured from the proposed Project into the Monterey Formation 26R storage reservoir located approximately 6,000 feet below the ground surface. The CTV I project area is located within the EHOF, which is a suitable area for long-term CO₂ storage and sequestration. The CTV I project was designed to implement sustainable CCS in support of California's initiative to combat climate change by reducing CO₂ levels in the atmosphere.

In addition to the Class VI Permit, CTV obtained a land use permit from the Kern County Planning and Natural Resources Department (Kern County) in 2024. Specifically, the CTV I project was approved by the Kern County Board of Supervisors on October 21, 2024, based on a final Environmental Impact Report (EIR, State Clearinghouse #2022030180) prepared by Kern County and certified by it on the same date. A Notice of Determination was filed with the Kern County Clerk on October 22, 2024. The CTV I project is subject to the terms, conditions and restrictions set forth in the Conditional Use Permits (CUP) issued by Kern County and identified as CUP No. 13, Map 118; CUP No. 14, Map 118; CUP No. 5, Map 119; CUP No. 3, Map 120; CUP No. 2, Map 138; and CUP No. 6, Map 119 (collectively, "the CUP"). Implementation of the CUP authorizes the construction and operation of underground CO₂ facility pipelines to support the CTV I CCS facility and related infrastructure (e.g., injection/monitoring wells, CO₂ manifold piping and metering facilities) within the 9,104-acre project site, located within the EHOF.

Four monitoring wells permitted by the California Geologic Energy Management Division (CalGEM), as part of the CUP issued by Kern County for the CTV I project would be used for CO₂ monitoring. In addition, six CTV I permitted wells would be used to monitor for seismic activity. The seismic monitoring wells will be used to detect seismic events at or above magnitude (M) 1.0 in real time as required by the California Air Resources Board (CARB) CCS Protocol under the Low Carbon Fuel Standard (LCFS) (C.4.3.2.3). Additionally, the California Integrated Seismic Network will be monitored continuously for indication of a 2.7 M or greater earthquake or greater occurring within a 1-mile radius of injection operations from commencement of injection activity to its completion.

Monitoring activities would extend beyond the injection phase of the Project pursuant to Code of Federal Regulation (CFR) Title 40 Section 146.93 until site closure is granted. Monitoring requirements during post-injection are similar to those during injection, with activities such as sampling occurring quarterly and monitoring well integrity testing at frequency per U.S. EPA requirement.

As noted above, the facilities approved as part of the CTV I project, including but not limited to the manifold, pad, injection wells, monitoring wells and related transmission lines, pipelines and other related facilities that have already been approved by applicable agencies with jurisdiction over those facilities, including the U.S. EPA, CalGEM and Kern County, are not included as part of the proposed Project. Accordingly, such facilities are not analyzed in this report.

1.2.1 Steam Extraction Option

To supply the required thermal energy to the CCU, the proposed Project includes steam supply from the existing ST low pressure (LP) inlet/ intermediate pressure (IP)-LP crossover via addition of a new controlled extraction. Supply of steam from the LP inlet/IP-LP crossover will require modification to the existing ST to accommodate the new controlled extraction. This equipment will support operation of the CCU via new steam extraction, but it will also maintain the capability for the ST to operate with the extraction closed when the CCU is not in operation. In case the steam extraction cannot meet the full required thermal energy to the CCU, a supplemental natural gas fired boiler at the CCU, with up to 160 MMBtu/hr fuel input, has been considered in the project impacts. Flue gas from the boiler would be ducted to the CCU for CO₂ capture.

As an option to steam extraction from the existing EHPP ST, CRC is also including a non-condensing back pressure ST in the proposed Project.

The steam supply tie-in will be located at the common steam header from EHPP, after combining flow from both HRSGs. The back pressure ST will be designed to exhaust at 55 pounds per square inch (psig) and the steam exhausting from the back pressure turbines will be superheated, with the amount of superheat varying depending on the steam supply location and the operating load. Further desuperheating to meet specific CCU requirements will be accomplished within the CCU.

The back pressure ST would electrically interconnect with the existing electrical infrastructure at EHOF. A new step-up transfer would be used to step up from the back pressure turbine generator voltage to the existing substation. The new back pressure ST could be located within a developed area between EHPP and the adjacent cogeneration facility.

The steam supply piping would follow similar pathway/corridor as the current main steam extraction/supply from EHPP to the adjacent cogeneration facility. Steam exhausting from the new back pressure ST would be routed to the tie-in location at the CCU.

1.3 Project Location

The Project is located within the EHOF in the southwestern edge of the San Joaquin Valley near Tupman in Kern County, California.

The Project comprises portions of six parcels owned by CRC. The Project is contained within the following sections of EHOF: sections 26, 34, and 35 of Township 30 South Range 23 East and sections 10 and 11 of Township 31 South Range 24 East, Mount Diablo Base and Meridian (MDB&M), Kern

CalCapture CCS Project – Energy Utilization Study Introduction

County, State of California (Table 1). The proposed Project would be located on approximately 52 acres within the identified parcels.

Table 1 Project Parcel Data

Assessor's Parcel Number	Section/ Township/ Range	Acreage*	
158-090-19	Section 35/ Township 30S/ Range 23E	590.61	
158-090-16	Section 35/ Township 30S/ Range 23E	14.78	
158-090-02	Section 26/ Township 30S/ Range 23E	640	
158-090-04	Section 34/ Township 30S/ Range 23E	682.86	
298-070-05	Section 11/Township 31S/Range 24E	640	
298-070-06	06 Section 10/Township 31S/Range 24E		

Notes:

Assessor's parcel acreages from Kern County Web Map (Kern County GIS, 2025).

2 Environmental Setting

2.1 Electricity and Natural Gas

Pacific Gas and Electric Company (PG&E) provides natural gas and electric service to approximately 16 million people throughout a 70,000-square-mile service area in northern and central California, including Kern County (PG&E 2025b). In February 2018, PG&E announced that it had reached California's 2020 renewable energy goal 3 years ahead of schedule (PG&E 2018). In 2022, approximately 38 percent of PG&E's electricity came from eligible renewable resources including solar, wind, geothermal, biomass and small hydroelectric sources. Additionally, approximately 95 percent of PG&E's total electric power mix was from GHG-free sources, which include nuclear and large hydroelectric sources of energy (CEC 2025).

The CEC tracks electricity and natural gas consumption across the state for residential and non-residential sources. In 2022, Kern County used a total of 14,861 gigawatt-hours (GWh) of electricity and 1,774 million therms of natural gas. Approximately 81 percent of the electricity usage and 94 percent of the natural gas usage in the County was attributed to non-residential consumption (CEC 2016a, 2016b).

2.2 Petroleum Fuel

According to the U.S. Energy Information Administration, California used approximately 628 million barrels of petroleum in 2022. By sector, 85 percent (533,951 thousand barrels) of the state's petroleum was used by transportation, 11 percent from industrial uses (70,102 thousand barrels), 3 percent from commercial uses (18,126 thousand gallons), and 1 percent from residential uses (5,850 thousand barrels) (U.S. Energy Information Administration 2025).

In 2024, California sold 2.7 billion gallons of diesel fuel and 12.3 billion gallons of gasoline (CDTFA 2025a, 2025b).

Project: 185806775

3 Regulatory Setting

The following includes the key federal, state, and local regulations related to energy resources that are applicable to the Project.

3.1 Federal

3.1.1 National Energy Conservation Policy Act

The National Energy Conservation Policy Act (42 U.S. Code [USC] Sections 8201 et seq.) serves as the underlying authority for federal energy management goals and requirements and is the foundation of most federal energy requirements. The National Energy Conservation Policy Act also established fuel economy standards for on-road motor vehicles in the United States. The National Highway Traffic Safety Administration (NHTSA) is responsible for establishing additional vehicle standards and for revising existing standards. NHTSA and the U.S. EPA are taking coordinated steps to enable the production of clean energy vehicles with improved fuel efficiency. NHTSA sets the Corporate Average Fuel Economy (CAFE) levels, which are rapidly increasing over the next several years to improve energy security and reduce fuel consumption.

3.1.2 Energy Independence and Security Act of 2007

The Energy Independence and Security Act (EISA) aimed to increase United Sates energy security, increased CAFE standards for motor vehicles, and included provisions related to energy efficiency, such as renewable fuel standards (RFS), appliance and lighting efficiency standards; and building energy efficiency standards. The EISA required increasing levels of renewable fuels to replace petroleum. The U.S. EPA is responsible for developing and implementing regulations to ensure transportation fuel sold into the United States contains a minimum volume of renewable fuel.

The RFS programs regulations were developed in collaboration with refiners, renewable fuel products, and other stakeholders and were created under the Energy Policy Act of 2005. The RFS program established the first renewable fuel volume mandate in the United States. As required under the EISA, the original RFS program required 7.5 billion gallons of renewable fuel to be blended into gasoline by 2012. The RFS program was expanded in several ways that laid the foundation for achieving significant reductions of GHG emissions through the use of renewable fuels, for reducing imported petroleum, and for encouraging the development and expansion of the nation's renewable fuels sector. The updated program is referred to as RFS2, and includes the following:

- EISA expanded the RFS program to include diesel, in addition to gasoline;
- EISA increased the volume of renewable fuel required to be blended into transportation fuel from 9 billion gallons in 2008 to 36 billion gallons by 2022;
- EISA established new categories of renewable fuel and set separate volume requirements for each one; and

CalCapture CCS Project – Energy Utilization Study Regulatory Setting

EISA required by the U.S. EPA to apply lifecycle GHG performance threshold standards to
ensure that each category of renewable fuel emits fewer GHGs than the petroleum fuel it
replaces.

Additional provisions of the EISA address energy savings in government and public institutions, promoting research for alternate energy, additional research in carbon capture, international energy programs, and the creation of "green jobs."

3.1.3 Corporate Average Fuel Economy Standards

The Energy Policy and Conservation Act of 1975 (EPCA) mandated that NHTSA establish and implement a regulatory program for motor vehicle fuel economy, known as the CAFE program, to reduce national energy consumption. The CAFE program establishes average fuel economy standards for passenger cars and light-duty trucks (see 49 USC Sections 32901 et seq.). The EISA, discussed above, amended the CAFE program requirements by providing the Department of Transportation additional rulemaking authority and responsibilities. In June 2024, NHTSA finalized CAFE standards for model years 2027 to 2031. The standards will bring the average light-duty vehicle fuel economy to approximately 50.4 miles per gallon by model year 2031. In addition, heavy-duty pickup truck and van fuel efficiency will increase to an average of approximately 35 miles per gallon by model year 2035. NHTSA projects that the foregoing standards will avoid the consumption of almost 70 billion gallons of gasoline through 2050, preventing more than 710 million metric tons of CO₂ emissions by 2050 (NHTSA 2024).

3.1.4 Inflation Reduction Act of 2022

The Inflation Reduction Act (IRA) of 2022 is considered the most ambitious climate law in United States history, and is intended to reduce GHG emissions, help build a clean economy, reduce energy costs for Americans, and advance environmental justice. With funding from the IRA, the United States. U.S. EPA has launched a network of clean energy financing and provided grant funding for climate pollution reduction programs (U.S. EPA 2023). The IRA increases the 45Q tax credit, a credit to incentivize carbon capture projects, to \$85 per ton for geologic sequestration of CO₂ from industrial sources. The IRA project funding has been paused under Executive Order (EO) as signed in January 2025 entitled Unleashing American Energy.

3.1.5 Declaring a National Energy Emergency

In January 2025, EO 14156 was issued declaring a national energy emergency. The EO is intended to address the identified emergency and reduce energy prices by expediting energy and infrastructure projects and facilitating the production of domestic energy resources, which include, but are not limited to, crude oil, natural gas, petroleum products, coal, biofuels, hydropower, and minerals.

3.2 State

3.2.1 California Public Utilities Commission

The California Public Utilities Commission (CPUC) is a state agency created by a constitutional amendment to regulate privately-owned utilities providing telecommunications, electric, natural gas, water, railroad, rail transit, and passenger transportation services and in-state moving companies. The CPUC is responsible for ensuring that California utility customers have safe, reliable utility services at reasonable rates, while protecting utility customers from fraud. The CPUC regulates the planning and approval for the physical construction of electric generation, transmission, or distribution facilities, and local distribution pipelines of natural gas.

3.2.2 California Energy Commission

The Warren-Alquist Energy Resources Conservation and Development Act (Warren-Alquist Act of 1974; Public Resources Code [PRC] Sections 25000 et seq.) created the CEC, California's primary energy and planning agency. The CEC is charged with forecasting future energy needs, promoting energy efficiency and conservation through setting standards, supporting energy-related research, developing renewable energy resources, advancing alternative and renewable transportation fuels and technologies, certifying certain thermal power plants, and planning for and directing state response to energy emergencies. Additionally, the Warren-Alquist Act of 1974 acknowledges the need for renewable energy resources and encourages the CEC to explore renewable energy options that would be in line with environmental and public safety goals.

3.2.3 California Energy Code

New buildings in California must comply with the California Energy Code (Title 24, Part 6; California's Energy Efficiency Standards). These efficiency standards apply to new construction of both residential and nonresidential buildings (e.g., maintenance buildings and pump station buildings associated with the Project), and address energy consumed for heating, cooling, ventilation, water heating, and lighting. The building efficiency standards are enforced through the local building permit processes, and local jurisdictions may adopt and enforce energy standards for new buildings provided that these standards meet or exceed those provided in Title 24.

3.2.4 California Integrated Energy Policy

Senate Bill (SB) 1389 requires the CEC to "conduct assessments and forecasts of all aspects of energy industry supply, production, transportation, delivery and distribution, demand, and prices. The CEC shall use these assessments and forecasts to develop energy policies that conserve resources, protect the environment, ensure energy reliability, enhance the state's economy, and protect public health and safety." (PRC Section 25301[a]). The CEC adopts an Integrated Energy Policy Report every 2 years and an update every other year. The most recent version is the 2023 Integrated Energy Policy Report (CEC 2023).

3.2.5 California Renewables Portfolio Standard

California's Renewables Portfolio Standard (RPS) was initially established in 2002 by SB 1078, with the initial requirement that 20 percent of electricity retail sales be served by renewable resources by 2017. Renewable sources of electricity include wind, small hydropower, solar, geothermal, biomass, and biogas. The program was accelerated in 2015 with SB 350, which mandated a 50 percent RPS by 2030. In 2018, SB 100 was signed into law, which again increases the RPS to 60 percent by 2030 and requires all the state's electricity to come from carbon-free resources by 2045 (CPUC 2025).

CPUC implements and administers RPS compliance rules for California's retail sellers of electricity, which include large and small investor-owned utilities, publicly owned utilities, electric service providers, and community choice aggregators. The CEC is responsible for the certification of electrical generation facilities as eligible renewable energy resources and adopting regulations for the enforcement of RPS procurement requirements of public owned utilities.

3.2.6 Low Carbon Fuel Standard

In 2007, Governor's EO S-01-07 established the Low Carbon Fuel Standard (LCFS) and directed the Secretary for Environmental Protection to coordinate the actions of the CEC, CARB, the University of California, and other agencies to develop and propose protocols for measuring the "life-cycle carbon intensity" of transportation fuels. CARB adopted the LCFS on April 23, 2009.

The LCFS was subject to legal challenge in 2011. Ultimately, CARB was required to bring a new LCFS regulation for consideration in February 2015. The proposed LCFS regulation was required to contain revisions to the 2010 LCFS and new provisions designed to foster investments in the production of the low-carbon fuels, offer additional flexibility to regulated parties, update critical technical information, simplify and streamline program operations, and enhance enforcement. The LCFS has been subsequently amended to strengthen the carbon intensive fuel reduction targets beyond 2020 and to expand fuel types and activities eligible to participate in LCFS, among other changes (CARB 2025a).

One of the specific regulations added in 2018 is the Carbon Capture and Sequestration Protocol under the Low Carbon Fuel Standard (CARB 2018). The Carbon Capture and Sequestration Protocol establishes methodology for quantifying geological CO₂ sequestration, and permanence requirements related to site characteristics, plume extent evaluation, testing and monitoring, well operation, post-injection site care, and more.

3.2.7 In-Use Off-Road Diesel-Fueled Fleets Regulation

In 2007, CARB approved the In-Use Off-Road Diesel-Fueled Fleets Regulation (Off-Road Regulation) (13 California Code of Regulations [CCR] Section 2449 et seq.). The goal of the Off-Road Regulation is to reduce particulate matter (PM) and oxides of nitrogen (NO_x) emissions from existing off-road heavy-duty diesel vehicles in California. This is achieved by imposing idling limits on vehicles; establishing reporting requirements through the CARB "DOORS" program; restricting the addition of older vehicles into fleets;

CalCapture CCS Project – Energy Utilization Study Regulatory Setting

requiring the phase-out of old and inefficient equipment; requiring the procurement and use of renewable diesel; and others (CARB 2025b).

In November 2022, CARB approved amendments to the Off-Road Regulation that became effective October 1, 2023. The 2022 amendments were one of several measures identified for action by CARB as part of the 2022 State Strategy for the State Implementation Plan. These amendments would achieve additional NO_x and PM reductions and enhance the enforceability of the Off-Road Regulation.

3.2.8 2022 Scoping Plan for Achieving Carbon Neutrality

The 2022 Scoping Plan for Achieving Carbon Neutrality (2022 Scoping Plan) was approved by the CARB in December 2022 and assesses progress toward achieving the state's GHG reduction goals and establishes a path to achieve carbon neutrality no later than 2045. The 2022 Scoping Plan focuses on outcomes needed to achieve carbon neutrality by assessing paths for advancing transportation technology, clean energy deployment, maintenance and preservation of natural and working lands, and others, and is designed to meet the state's long-term climate objectives. Specifically, the 2022 Scoping Plan identifies carbon negative technologies, including nature-based and mechanical carbon sequestration projects, as an essential component in achieving state-wide carbon neutrality (CARB 2022).

3.2.8.1 Assembly Bill 1493: Pavley Regulations and Fuel Efficiency Standards

Assembly Bill (AB) 1493, enacted on July 22, 2002, required CARB to develop and adopt regulations and fuel efficiency standards that reduce GHGs emitted by passenger vehicles and light-duty trucks. The fuel efficiency standards were phased in during the 2009 through 2016 model years.

The second phase of the implementation for AB 1493 was incorporated into Amendments to the LEV III or the Advanced Clean Cars II (ACC) program. The ACC II program combines the control of smog-causing pollutants and GHG emissions into a single coordinated package of requirements for model years 2017 through 2025. The rules helped promote a reduction in pollutants from gasoline and diesel-powered cars and helped deliver increasing numbers of zero-emission technologies, such as full battery electric vehicles (EVs), newly emerging plug-in hybrid EVs, and hydrogen fuel cell cars. The regulations also encouraged adequate fueling infrastructure.

3.2.9 CARB Heavy-Duty Diesel Vehicle Idling Information

CARB has set an airborne toxic control measure (Title 13 CCR Section 2485), which requires that drivers of diesel-fueled commercial motor vehicles with gross vehicle weight ratings greater than 10,000 pounds, including buses and heavy-duty trucks, not idle the vehicle's primary engine longer than 5 minutes in any single location.

3.2.10 California Green Building Standards, Part 11, Title 24

The California Green Building Standards Code – Part 11, Title 24 (CALGreen) is a green building standards code created in an effort for California meet the greenhouse gas reduction goals of AB 32 and SB 32. CALGreen codes have been established for residential and non-residential structures aimed at increasing water and electricity efficiency while promoting EVs and carbon reductions.

3.2.11 Kern Council of Governments Regional Transportation Plan

The California Association of Councils of Governments (CALCOG) is a 49-member agency made up of Metropolitan Planning Organizations (MPO) that serves to plan regional transportation growth across the state. The Kern Council of Governments (Kern COG) is the MPO representative for the Project area. Each COG is responsible for preparing a Regional Transportation Plan (RTP) every 4 years. The RTP is a long-term (20-year) general plan for the region's transportation network that includes projects for all types of travel (road, aviation, and freight). The latest RTP is published by Kern COG was in 2022. The goals of the 2022 RTP include the following:

- Mobility. Improve the mobility of people and freight
- Accessibility. Improve accessibility to major employment and other regional activity centers
- Reliability. Improve the reliability and safety of the transportation system
- Efficiency. Increase the efficiency of the existing and future transportation system
- Livability. Promote livable communities
- Sustainability. Minimize effects on the environment
- Equity. Ensure an equitable distribution of the benefits among various demographic and user groups

3.3 Local

3.3.1 Kern County General Plan

The Kern County General Plan presents a vision for the County's future, looking ahead to 2040. State law required that counties and cities adopt and periodically update a General Plan to guide land use development. The purpose of the General Plan is to encourage economic development; work with federal, state, and local agencies to plan the long-term future of Kern County; ensure the protection of environmental resources; and maintain compliance with the provisions of State Planning and Zoning Laws.

CalCapture CCS Project - Energy Utilization Study

Regulatory Setting

The General Plan includes the following policies related to energy resources that may be applicable to the Project (Kern County 2009):

Section 5.2 – Importance of Energy to Kern County

- Policy 1. Kern County should assert and promote its role as the State's leading energy County.
- Policy 4. The County should actively seek State and federal energy grants and projects to assist in energy planning and development.
- Policy 5. The County shall work with other agencies to define regulatory responsibility concerning energy-related issues, and shall seek to eliminate, insofar as possible, duplicative regulations.
- Policy 6. The County should encourage discussion and mutual cooperation of various energy industries within the County to establish mutual understanding of common needs and issues.
- Policy 7. The processing of all discretionary energy project proposals shall comply with California Environmental Quality Act (CEQA) Guidelines directing that the environmental effects of a project must be taken into account as part of project consideration.
- Policy 8. The County should work closely with local, State, and federal agencies to assure that energy projects (both discretionary and ministerial) avoid or minimize direct impacts to fish, wildlife, and botanical resources, wherever practical.
- Policy 9. The County should develop and implement measures which result in long-term compensation for wildlife habitat, which is unavoidably damaged by energy exploration and development activities.

Section 5.3.2 – Kern County's Economic Dependence on the Oil Marketplace

- o **Policy 3.** The County shall encourage the conversion of existing petroleum-related facilities to other productive uses when they are no longer needed or productive.
- Policy 4. The County should encourage the development of renewable energy industries to diversify the energy economy in Kern County.

Section 5.4.1 – Cogeneration

 Policy 1. The County shall allow the continued development of cogeneration facilities in primary oil resource areas and industrial areas.

4 Methodology

The following discussion explains the methodology and modeling parameters that will be used to estimate the energy demand associated with construction, operations, and decommissioning of the Project.

Project energy demand during construction, operations, and decommissioning was determined based on Project-specific information, modeling performed in the Air Quality and Greenhouse Gas Technical Study (Stantec 2025), and using vehicle and equipment emission factors from the CARB's Emission Factor 2021 model (EMFAC2021) (v1.0.2) and Off-Road Web Query (v1.1.0). The energy calculations are included as Appendix A.

The Project's energy consumption and demand were evaluated in comparison to the CEQA thresholds of significance to determine whether the Project would result in a significant impact related to energy.

4.1 Construction Assumptions

During construction, the Project would require energy in the form of petroleum fuel (gasoline and diesel) to power off-road construction equipment, generators (which power electric hand tools), and motor vehicle trips. The assumptions related to the construction schedule, use of off-road equipment, and vehicle trips are provided below.

Construction of the Project is anticipated to be completed in 24 to 30 months. The construction week would be Monday through Friday with 10-hour workdays. Initial activities are expected to start early 2027. A list of Project-specific construction equipment is provided within the energy calculations in Appendix A.

The maximum number of construction workers and indirect personnel on-site is approximately 500 people. Deliveries of mechanical and electrical equipment, as well as prefabricated piping would be required. All worker trips and cement hauling are anticipated to travel from Bakersfield, approximately 34 miles from the Project site. It was assumed up to one truck delivery would be required per day from the Port of Los Angeles, approximately 152 miles away.² Finally, hauling trucks would also be required for fill and material export. Fill would be acquired from two borrow site locations on the oilfield, approximately 1 mile from the CCS location. Grading cut was assumed to be exported to the McKittrick Waste Landfill (approximately 11.2 miles from the site) or Taft Landfill (approximately 6.4 miles from the site). A weighted trip length was used within the modeling.

Additionally, during construction, the Project anticipates using 1,198,000 gallons of water for civil grading, dust control via water tankers, and water needs for pipeline construction. The treatment and movement of water requires energy in the form of electricity. Electricity usages to treat and distribute water were calculated based on energy intensity factors from the CPUC (CPUC 2017).

² The Project is anticipated to generate 12 vendor truck trips per day. This would result in five round trips to Bakersfield and one round trip to the Port of Los Angeles. Therefore, the vendor trucks would travel an average of 55 miles per trip.

4.2 Operational Assumptions

Operational energy use refers to the energy demand that would occur during operation of the Project. The sources are summarized below.

4.2.1 Vehicle Trips

During operation, the Project is anticipated to generate roughly 40 vehicle trips per day. All delivery and worker trips were assumed to travel from Bakersfield, approximately 34 miles from the Project site. This analysis assumed a mix of gasoline-fueled, diesel-fueled, and plug-in hybrid vehicles based on vehicle use data for Kern County from CARB's EMFAC2021. The vehicle fleet mix was left as the default for the Project region, populated by CalEEMod California Emissions Estimator Model (CalEEMod). Vehicle fuel efficiency was provided by the EMFAC OFFROAD2021 database for an assumed operational year of 2029.

4.2.2 Carbon Capture and Sequestration Equipment

The Project would result in increased demand for electricity for the operation of on-site equipment, including all CCU equipment, compression and pumping equipment. Electricity demand estimates were provided by the Project proponent and are based on Project-specific equipment needs. The increase in electricity demand would be met by the on-site EHPP. This increase in natural gas that is expected to be required to meet the electrical demand was calculated by estimating the increase in fuel flow rate from similar powerplant fuel flows, natural gas emission factors, and combustion rate. This analysis assumes that the CCS would operate 24 hours per day and 7 days per week.

4.3 Decommissioning Assumptions

If CRC decides to no longer use the EHPP properties as a carbon sequestering facility, CRC would then either divest the Project or decommission the Project site facilities and wells in accordance with appliable law. Decommissioning activities would include injection well plugging and abandonment, post-injection site care, and site closure as required by U.S. EPA's UIC Program Class VI regulations, 40 CFR Parts 146.92 and 146.93 and Kern County decommissioning requirements. Post-injection testing and monitoring requirements would also be followed to monitor the CO₂ plume after injection has ceased as required by 40 CFR 46.90. Removal of surface facilities would be obtained from Kern County in accordance with permits issued that relate to CCS projects. In lieu of removal, surface facilities potentially may be re-purposed for other site uses in accordance with applicable law. Any surface facility removal activities would be limited to removal or demolition of existing equipment and performed in accordance with applicable law.

Decommissioning would likely involve the same activities as construction but would occur later in time when vehicle and off-road emissions are expected to decrease due to increasingly stringent state regulations. As a result, actual decommissioning energy demand is expected to be less than construction. However, this analysis conservatively assumes that decommissioning would generate the same demand for energy resources as construction of the Project.

5 Energy Analysis

5.1 CEQA Guidelines

In accordance with the CEQA Guidelines Appendix G Environmental Checklist,³ the following questions are to be analyzed and evaluated to determine whether impacts related to energy are significant. Where available, the significance criteria established by the applicable air quality management or air pollution district may be relied upon to make the following determinations. Would the proposed project:

- a. Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?
- b. Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

5.2 Energy Impact Analysis

Impact ENG-1 Result in potentially significant environmental impact due to wasteful, inefficient, or unnecessary consumption of energy resources, during project construction or operation?

5.2.1 Impact Analysis

Less than Significant Impact. The energy requirements for the Project were determined using estimates generated from the calculation worksheets for energy consumption (Appendix A) and the modeling within the Project's air quality impact analysis (Stantec 2025). This impact addresses the energy consumption from construction, operations, and decommissioning, each discussed separately below.

5.2.1.1 Construction and Decommissioning

During the temporary construction and decommissioning of the Project, energy resources would be consumed in the form of diesel and gasoline fuel from the use of off-road equipment (e.g., tractors, excavators, cranes) and on-road vehicles (e.g., construction employee commutes, vendors, haul trucks) and electricity from water demand.

Electricity

Temporary electricity may be required to provide as-necessary lighting and electric equipment; such electricity demand would be met by portable generator sets and, possibly, connections to an on-site power facility. Fuel demand associated with portable generators is incorporated in the off-road equipment estimate provided below. Additionally, electricity would be used to treat and distribute the water for

³Appendix G Environmental Checklist Form, Guidelines for the Implementation of the California Environmental Quality Act, 2023

CalCapture CCS Project – Energy Utilization Study Energy Analysis

construction. The Project would require 1,198,000 gallons of water, resulting in the use of 2,168 kilowatthours (kWh) of electrical demand.

Off-Road Equipment

Construction activities associated with the Project were estimated to consume 38,573 gallons of diesel fuel from the use of off-road equipment. For comparison, in 2024, approximately 2.7 billion gallons of diesel fuel was consumed within California (CDTFA 2025a). Thus, the diesel fuel required during construction of the Project would represent approximately 0.0014 percent of the state's annual diesel demand. For the purposes of this analysis, it was assumed that all off-road construction equipment would be diesel fueled. In the event that some are alternatively fueled or electric, the percentage of diesel demand would be further reduced. Additionally, any alternative fuel or electricity use from the off-road construction equipment would similarly be assumed to be minor as compared to statewide consumption.

Decommissioning of the Project is assumed to involve similar activities as construction but would occur later in time when equipment is expected to be more fuel-efficient and less dependent on petroleum-based fuels. For example, CARB has implemented the Clean Off-Road Equipment Voucher Incentive Program to subsidize the purchase or lease of zero-emission off-road equipment (CARB 2025c). With the ongoing implementation of this program, off-road construction fleets in California are expected to transition towards electric equipment. It is noted, however, that statewide diesel use is anticipated to also be lower when decommissioning takes place due to future regulations, including amendments to the CARB's Diesel Engine Off-Road Emission Standards. From 2016 to 2024, the average annual decline in diesel fuel sales in California was approximately 0.12 percent (CDTFA 2025c). Therefore, assuming the state continues to follow this trend over the next 30 years, the total diesel fuel consumed within California would be approximately 2.6 billion gallons per year. As such, assuming the decommissioning continues to use all diesel fueled equipment, the Project would represent approximately 0.0015 percent of the state's annual diesel demand. As a result, the Project's estimated fuel use may constitute a larger percentage of the state's annual fuel demand in the decommissioning year, but it is still anticipated to be a relatively low percentage because Project fuel use would similarly decline.

On-Road Vehicles

On-road vehicles for construction workers, vendors, on-site trucks, and haul trucks would require fuel for travel to and from the site during construction. Table 2 provides an estimate of the total on-road vehicle fuel usage during construction.

Table 2 Construction On-Road Vehicle Fuel Consumption

Trip Type	Average Daily Trips*	Average Fuel Economy (miles/gallon)	Total Vehicle Miles Traveled	Total Fuel Consumption (gallons)
Worker Trips	1,000	28.46	17,714,000	622,487
Vendor Trips	12	7.82	343,860	43,976
Haul Trips	**	6.41	53,337	8,318
Total	Construction On-Road	Trips***	18,111,197	674,781

Notes:

As shown in Table 3, construction of the Project was estimated to consume 674,781 gallons of a combination of gasoline and diesel fuel from on-road vehicles. For comparison, in 2024, approximately 2.7 billion gallons of diesel fuel and 12.3 billion gallons of gasoline were sold within California (CDTFA 2025a, 2025b). Thus, the fuel required to power the on-road motor vehicles during construction of the Project would represent approximately 0.0045 percent of the state's annual diesel and gasoline demand.

Future decommissioning of the Project is expected to generate a similar amount of vehicle trips but would occur later in time when vehicles are expected to be more fuel-efficient due to increasingly stringent state regulations governing motor vehicle fuel efficiency, such as the CARB's Advances Clean Fleets Regulation. Similar to the discussion above, statewide gasoline use is anticipated to be substantially lower when decommissioning takes place due to future regulations. As a result, the Project's estimated fuel use may constitute a larger percentage of the state's annual fuel demand in the decommissioning year but is still anticipated to be a relatively low percentage because Project fuel use is temporary and would similarly decline.

Conclusion

Overall, construction and decommissioning activities associated with the proposed Project would result in the consumption of petroleum-based fuels. However, there are no unusual Project characteristics that would necessitate the use of equipment or vehicles that would be less energy efficient than at comparable construction sites in other parts of the state. The project proponent and contractors have a financial incentive to minimize fuel and energy use in construction. The Project would comply with all rules and regulations pertaining to the reduction of air emissions that would also reduce petroleum fuel use. Specifically, the Project would comply with CARB's 5-minute idling rule and all off-road vehicles would be required to be report vehicle inventories through the Off-Road Diesel Regulation. Moreover, as discussed above, the Project's diesel and gasoline demands from construction would be minimal compared to statewide demand. The analysis above also conservatively assumed all diesel and petroleum off-road equipment. However, construction may use alternatively fueled or electric construction

^{*} Average daily trips were derived from the Air Quality and Greenhouse Gas Technical Assessment and the Traffic Impact Assessments prepared by Stantec.

^{**} During Phase 1 Project Construction (Initial Site Preparation, Foundation) the Project would result in an average of 20.5 hauling truck trips per day for grading fill and export. During Phase 2 Project Construction (Equipment Installation) the Project would result in an average of 2 trucks per day from concrete hauling.

^{***} Calculations use unrounded numbers; totals may not appear to sum exactly due to rounding. Source: Appendix A.

CalCapture CCS Project – Energy Utilization Study

Energy Analysis

equipment. The use of this equipment would reduce petroleum fuel demand but there is limited availability as compared to diesel fueled equipment. As such, any off-road energy demand from the alternative fuels or electricity would continue to be minimal. Transportation fuel demand would also be minimal compared to statewide use. Moreover, as further discussed under Impact Energy-2, the Project's fleet would be required to comply with stricter vehicle standards over time, thereby reducing fuel use. For these reasons, construction and decommissioning fuel consumption associated with the Project would not be inefficient, wasteful, or unnecessary.

5.2.1.2 Operation

During operations of the Project, energy would be required to fuel the vehicles travelling to and from the Project site.

Transportation Energy Demand

During operation, the Project would require trips for on-site staff and regular material deliveries. Table 3 provides an estimate of the annual fuel consumed by vehicles traveling to and from the Project site. As shown in Table 3, annual vehicular fuel consumption is estimated to be 20,577 gallons of motor vehicle fuel.

Table 3 Operational On-Road Vehicle Fuel Consumption

Trip Type	Average Daily Vehicle Trips	Average Fuel Economy (miles/gallon)	Annual Vehicle Miles Traveled	Total Annual Fuel Consumption (gallons)
Passenger Cars)	17	34.04	203,484	5,977
Light Trucks and Medium Vehicles	18	25.45	207,352	8,147
Light-Heavy to Heavy- Heavy Diesel Trucks	4	7.95	46,494	5,851
Motorcycles	0.8	42.34	9,371	221
Other	0.2	7.08	2,699	381
Project Total	40	-	496,400	20,577

Source: Appendix A

As noted previously, in 2024, approximately 2.7 billion gallons of diesel fuel and 12.3 billion gallons of gasoline were sold within California (CDTFA 2025a, 2025b). Thus, if we sum the total diesel and gasoline fuel sold in the state in 2024, then the fuel required to power the on-road motor vehicles during operation of the Project would represent approximately 0.0001 percent of the state's annual diesel and gasoline demand. Further, over the lifetime of the Project, the fuel efficiency of the vehicles being used for deliveries is expected to increase. As such, the amount of petroleum consumed for vehicular trips to and from the Project site during operation would decrease over time.

Carbon Capture and Sequestration Equipment Energy Demand

The Project includes a single connection to the CRC Power System and would include a connection of a new 115-kV line to a new CRC electrical substation. The Project would require a new transmission tie line to connect the Project switching station to the existing CRC substation. Electrical power would be supplied to the CalCapture Substation with a new dedicated electrical transformer.

On average, EHPP currently operates at approximately 475 megawatts (MW). Approximately 150 MW is generated by each of two gas turbine generators, and approximately 175 MW is generated from the hot gas turbine exhaust via heat recovery steam generators and a steam turbine generator. The CCS is anticipated to require approximately 35-40 MW of electric load during operation. The CCS will also use a portion of the steam currently sent to the steam turbine generator, reducing the steam turbine's electrical generation by approximately 35-50 MW. The electrical and steam load for CCS will come from typical historical EHPP operation levels, and total fuel consumption is not expected to increase. Therefore, there would not be an increase in on-site emissions from electricity production as compared to baseline conditions.

Supplemental Boiler

The Project may require a supplemental boiler with a rating of 160 million British thermal units per hour (MMBtu/hour). The boiler would require 1.4 million MMBtu per year or 140,000 therms of natural gas. In 2022, Kern County used a total of 1,774 million therms of natural gas. Therefore, the Project would use approximately 0.008% of the County's demand of natural gas. It should be noted that the boiler would be subject to SJVAPCD permitting and rules and regulations.

5.2.1.3 Conclusion

Based on the analysis above, the Project would consume energy resources during operation. The Project would result in less overall electricity provided to the PG&E grid due to the CCS Project's demand of approximately 70-90 MW_e (35-40 MW of electric load and 35-50 MW of steam generated electricity), as well as due to the planned CCS project capacity, and desire to produce the lowest carbon intensity power to consumers. However, the EHPP has historically only run at about 475 MW gross generation and will retain the capability of close to full nameplate 550 MW_e gross generation should it be needed. Also, PG&E buys and distributes electricity to consumers; therefore, in combination with the electricity generated and electricity purchased, the loss in electrical generation to PG&E would be an insignificant fraction. The Project would only operate under power from the EHPP. PG&E backup power would only be required for turnaround loads such as air conditioning in electrical buildings. However, the energy consumption associated with the proposed Project's operations would not be inefficient, wasteful, or unnecessary, and a less-than-significant impact would occur.

Impact ENG-2 Conflict with or obstruct a state or local plan for renewable energy or energy efficiency?

5.2.2 Impact Analysis

Less than Significant Impact. The following discussion evaluates Project consistency with applicable plans for renewable energy or energy efficiency during construction, operations, and decommissioning.

5.2.2.1 Construction and Decommissioning

During both construction and decommissioning activities, off-road equipment and on-road vehicles would comply with applicable federal, state, and local requirements governing fuel efficiency. For example, off-road equipment would be subject to the most recent In-Use Off-Road Diesel-Fueled Fleets Regulations adopted by the CARB, which establish engine efficiency requirements, among other requirements (CARB 2025b). Off-road engines are categorized per engine tier, with Tier 0 being the least efficient and Tier 4 Final being the cleanest and most efficient. The most recent amendments to the rule are adding an even cleaner Tier 5 engine requirement. Compliance with the In-Use Off-Road Diesel-Fueled Fleets Regulations would ensure that the Project construction and decommissioning fleets consist of energy-efficient engines.

With respect to the on-road vehicle fleet operations, the U.S. EPA and NHTSA have adopted Federal Vehicle Standards with which the Project would comply. The on-road construction and decommissioning fleets would incorporate these standards as they purchase newer model trucks and turn over their fleet. As such, these regulations would have an overall beneficial effect on reducing nationwide fuel consumption over time as older trucks are replaced. Compliance with this regulation would further reduce the demand for petroleum fuels. Moreover, heavy-duty trucks would be required to comply with CARB's 5-minute idling limits, which would reduce fuel consumption. Although the foregoing regulations were primarily designed to reduce air quality emissions, they would also result in an increase in energy efficiency during construction and decommissioning activities.

5.2.2.2 Operation

California adopted the RPS to increase the amount of renewable energy supplied by utilities within the state. As noted previously, the Project would primarily use electricity generated on-site but would have a backup connection to the PG&E grid for small turnaround loads. PG&E will continue to be subject to state RPS requirements, and the Project would not preclude achievement of the RPS goals. In addition, any new structures developed as part of the Project would comply with federal, state, and local regulations aimed at reducing energy consumption, including the Building Energy Efficiency Standards (Title 24 CCR Part 6) and CALGreen (Title 24 CCR Part 11). Moreover, the Project directly supports the goals laid out in CARB's 2022 Scoping Plan, including the measures related to carbon capture and sequestration. Finally, the Project could apply for carbon credits under the CARB's Carbon Capture and Sequestration Protocol under the LCFS (CARB 2018). The LCFS requirements are designed to decrease the carbon intensity of fuels and increase the range of renewable alternatives; therefore, the Project's compliance with CARB's Carbon Capture and Sequestration Protocol would indirectly support the state plan for renewable energy.

CalCapture CCS Project – Energy Utilization Study Energy Analysis

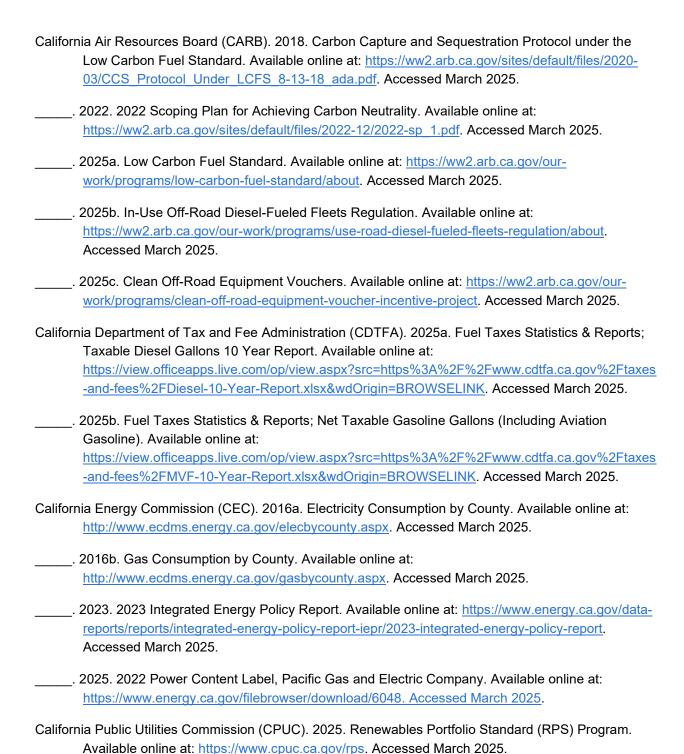
The Project would not conflict with or obstruct a state or local plan for renewable energy or energy efficiency; therefore, the impact would be less than significant.

6 Cumulative Impacts

The geographic scope of cumulative energy impacts is PG&E service area for electricity and natural gas and the State of California for petroleum. Other past, present, and reasonably foreseeable future oil and gas development projects, including wells and abandonment activity and other CCS projects, would constitute a cumulative impact.

The main contribution of energy consumption from the Project would be construction equipment usage, haul trips, and employee trips during the construction phase, and employee and delivery trips during Project operation. However, construction energy demand would be finite and temporary, ceasing at the end of construction activities. As discussed in Impact ENG-1, the Project's fuel demand would be minimal compared to statewide demand. Construction of the Project would be similar in petroleum fuel demand as other projects within the County. The fuel required to power the on-road motor vehicles and off-road equipment during construction of the Project would represent approximately 0.0048 percent of the state's annual diesel and gasoline demand. Even in the event that 100 similar projects are constructed simultaneously, the overall petroleum fuel demand would be less than half a percent of the annual statewide demand. Therefore, the cumulative impact from the Project during construction would be less than significant.

The Project would utilize electricity generated by the EHPP; therefore, that amount of power (70-90MWe) would not be available to the grid and would not be available to other past, present, and reasonably foreseeable future projects. However, PG&E can buy power from other sources, so this amount is an insignificant amount for the total grid usage. Additionally, other future oil and gas development projects would likely require minimal electricity and natural gas, either producing it on the site or using petroleum fuel to power on-site equipment. As stated above, the annual petroleum fuel demand from the Project would be minimal, representing 0.0001 percent of the state's annual diesel and gasoline demand. Other CCS projects would have similar demands and continue to be minimal when combined. Other oil and gas development projects may increase fuel production therefore reducing the cumulative percentage of demand. The Project would implement Mitigation Measure (MM) ENG-1 that requires the tracking of the Project's energy efficiency and consumption to ensure proper energy planning across the region. Compliance with the mitigation would require an annual report of electricity consumption for all Project sources permitted to provide CO2 for injection and storage and an evaluation of any methods to reduce the consumption of any forms of electricity in the capture process. The Project's contribution would not result in a cumulative impact in any wasteful consumption of energy and would comply with all applicable energy reduction plans, the Project would be less than significant with mitigation.


7 Mitigation Measures

The following mitigation measures (MMs) are proposed for the Project to reduce cumulative energy impacts to less than significant.

MM ENG-1: Electricity Reporting. The operator shall provide an annual report on the total amount of electricity consumed by the carbon capture facilities associated with sources that send CO₂ for injection into the project storage site. The report shall detail the facility the source of the power and the annual amount. The report shall include a discussion of modifications that are being considered by each source to reduce electricity use. The first report is due the 13th month after the first month injection commences. The report shall be provided to Kern County, U.S, EPA UIC Permit Division, CARB, CPUC, CEC, and California Independent System Operators. This reporting requirement will be combined with the CTV I energy reporting.

8 References

CalCapture CCS Project – Energy Utilization Study References

2017. Implementation of the Public Utilities Commission's Water-Energy Calculator. Available online at: https://waterenergyinnovations.com/wp-content/uploads/2020/03/FINAL-W-E-White-
<u>Paper-20170417.pdf</u> . Accessed June 2025.
Kern County. 2009. General Plan 2040. Available online at:
https://psbweb.co.kern.ca.us/planning/pdfs/kcgp/KCGP Complete.pdf Accessed March
2025.National Highway Traffic Safety Administration (NHTSA). 2024. USDOT Finalizes New Fuel
Economy Standards for Model Years 2027-2031. Available online at:
https://www.nhtsa.gov/press-releases/new-fuel-economy-standards-model-years-2027-2031.
Accessed March 2025.
Pacific Gas and Electric (PG&E). 2018. News & Events: PG&E Clean Energy Deliveries Already Meet
Future Goals. Available online at: https://investor.pgecorp.com/news-events/press-
releases/press-release-details/2018/PGE-Clean-Energy-Deliveries-Already-Meet-Future-
Goals/default.aspx. Accessed March 2025.
2025a. 2024 Corporate Sustainability Report. Available online at:
https://www.pgecorp.com/assets/pgecorp/csr/csr_2024/assets/pge-csr-2024.pdf. Accessed June
2025.
2025h. Company Profile. Available online at: https://www.pgc.com/ap/abaut/company
. 2025b. Company Profile. Available online at: https://www.pge.com/en/about/company-
information/company-profile.html, Accessed March 2025.

Stantec. 2025. CalCapture CCS Project Air Quality and Greenhouse Gas Technical Study.

U.S. Energy Information Administration. 2025. Total Petroleum Consumption Estimates, 2022. Available online at:

https://www.eia.gov/state/seds/data.php?incfile=/state/seds/sep_fuel/html/fuel_use_pa.html&sid=US&sid=CA. Accessed March 2025.

U.S. Environmental Protection Agency (U.S. EPA). 2023. EPA Marks One Year of Progress Under President Biden's Inflation Reduction Act. Available online at:

https://www.epa.gov/newsreleases/epa-marks-one-year-progress-under-president-bidens-inflation-reduction-act. Accessed March 2025.

Project: 185806775 29

Appendices

Project: 185806775

Appendix A Energy Calculations

Project: 185806775 A-1

<u>CalCapture Project — Energy Consumption Summary</u>

Date of Last Revision: March 2025

Summary of Energy Use During Construction

Construction vehicle fuel Construction equipment fuel Construction Electricity Use

Summary of Energy Use During Proposed Operations

Operational vehicle fuel consumption
Operational electricity consumption

(Annually)

674,781 gallons (gasoline, diesel) 38,573 gallons (diesel)

2,168 kWh

(Annually)

20,577 gallons (gasoline, diesel)

3.84 MW

Construction Vehicle Fuel Calculations (Page 1 of 2)

California Air Resource Board (CARB). 2025. EMFAC2021 Web Database. Accessed March 2025.

Source: EMFAC2021 (v1.0.2) Emissions Inventory

VMT = Vehicle Miles Traveled FE = Fuel Economy

Region Type: County

Region: Kern Calendar Year: 2027, 2028, 2029

Season: Annual

Vehicle Classification: EMFAC2007 Categories

Units: miles/day for CVMT and EVMT, trips/day for Trips, kWh/day for Energy Consumption, tons/day for Emissions, 1000 gallons/day for Fuel Consumption

Given Calculations Fuel Consumption VMT FΕ (1000 Region Calendar Year Vehicle Category Model Year Speed **Fuel** Population (mi/day) gallons/day) (mi/gallon) VMT*FE Kern 2027 HHDT Aggregate Gasoline 1.573555 155.2767 0.038731317 4.00907356 622.5157 Aggregate 2027 HHDT Diesel 31025.6 4830455 752.446232 6.41966789 31009916 Kern Aggregate Aggregate Kern 2027 HHDT Aggregate Aggregate Natural Ga: 453.75368 29238.9 5.632705762 5.19091468 151776.6 2027 LDA Gasoline 333593.36 12978575 31.4104205 4.08E+08 Kern Aggregate Aggregate 413.1932807 807.65928 2027 LDA Diesel 25320.87 0.555719214 45.5641513 1153724 Kern Aggregate Aggregate 2027 LDA Plug-in Hyk 11425.884 508392 7.73006958 65.7681017 33435977 Kern Aggregate Aggregate 31897.968 1076095 25.9569551 27932140 Kern 2027 LDT1 Aggregate Aggregate Gasoline 41.45689026 5.5226177 72.36845 Kern 2027 LDT1 Aggregate Aggregate Diesel 0.002868906 25.2251052 1825.502 2027 LDT1 Plug-in Hyk 100.5429 5042.98 71.9596046 362890.8 Kern Aggregate Aggregate 0.070080702 2027 LDT2 Gasoline 180712.55 7179072 277.9314131 25.8303713 1.85E+08 Kern Aggregate Aggregate 2027 LDT2 Aggregate Aggregate Diesel 591.23646 24814.93 0.688748725 36.0290017 894057.1 Kern Plug-in Hyt 2092.3743 99194.63 68.4904584 6793886 Kern 2027 LDT2 Aggregate Aggregate 1.448298563 Kern 2027 LHDT1 Aggregate Gasoline 15808.048 574211 57.76052636 9.94123494 5708366 Aggregate 2027 LHDT1 Diesel 14181.716 494859.4 31.17439911 15.8739025 7855349 Kern Aggregate Aggregate 2027 LHDT2 2783.3511 93512.5 10.81319202 8.6480014 808696.2 Kern Aggregate Aggregate Gasoline 2027 LHDT2 Diesel 6439.0475 225370.7 17.14425861 13.1455501 2962622 Kern Aggregate Aggregate 150050.58 5369654 Kern 2027 MDV Aggregate Aggregate Gasoline 262.1190036 20.4855571 1.1E+08 2027 MDV 2339.1611 83299.01 3.268247002 25.4873657 2123072 Kern Aggregate Aggregate Diesel 2027 MDV Plug-in Hyk 1453.4713 66111.89 66.0036837 4363628 Kern Aggregate Aggregate 1.001639402 2027 MHDT 1158.4233 73833.74 15.22520972 4.8494402 358052.3 Kern Aggregate Aggregate Gasoline 2027 MHDT Diesel 10756.789 515068.2 57.6033819 8.94163112 4605550 Kern Aggregate Aggregate Kern 2027 MHDT Natural Ga: 92.185233 4552.806 0.637322787 7.14364173 32523.61 Aggregate Aggregate

Worker (LDA, LDT, MDV

Sum of VMT*FE (Column BI) 7.8E+08

Total VMT 27415643

Weighted Average Fuel Economy 28.45682

Vendor (HHDT, LHDT, N

Sum of VMT*FE (Column BI) 53493475

Total VMT 6841257

Weighted Average Fuel Economy 7.819246

Haul (HHDT)

Sum of VMT*FE (Column BI) 31162315

Total VMT 4859849

Weighted Average Fuel Economy 6.412198

Construction Vehicle Fuel Calculations (Page 2 of 2)

Construction Schedule

				Num Days	Num
CalEEMod Phase Type	Phase Name	Start Date	End Date	Week	Days
Site Preparation	P1 - Initial Site Prep, Foundatio	1/1/2027	1/27/2028	5	280
Building Construction	P2 - Equipment Installation	1/1/2027	12/29/2028	5	521

Construction Trips and VMT

	One-Way Tr	ips per Day	er Day Construction Trip Length in Miles			Number	Trips per Phase			VMT per Phase			Fuel Consumption (gallons)			
					Vendor	Hauling	of Days		Vendor	Hauling						
		Vendor Trip	Hauling Trip	Worker Trip	Trip	Trip	per	Worker Trip	Trip	Trip	Worker	Vendor	Hauling		Vendor	Hauling
Phase Name	Worker Trip Number	Number	Number	Length	Length	Length	Phase	Number	Number	Number	Trips	Trips	Trips	Worker Trips	Trips	Trips
P1 - Initial Site Prep, Foundation	0.0	0.0	20.5	34	43	3.115	280	0	0	5,750	0	0	17,909	0.00	0.00	2,793.02
P2 - Equipment Installation	1000.0	12.0	2.0	34	55	34	521	521,000	6,252	1,042	17,714,000	343,860	35,428	622,486.91	43,976.11	5,525.09
	Project-wide Total 17,714,000 343,860 53,337 622,487 43,976 8,318												8,318			

18,111,197

674,781

Total Project Construction VMT (miles) 18,111,197

Total Project Fuel Consumption (gallons) 674,781

Construction Equipment Fuel Calculation

Construction Schedule

				Num Days	
CalEEMod Phase Type	Phase Name	Start Date	End Date	Week	Num Days
Site Preparation	P1 - Initial Site Prep, Foundations, and Underground Work	1/1/2027	1/27/2028	5	280
Building Construction	P2 - Equipment Installation	1/1/2027	12/29/2028	5	521

Construction Equipment

				Horse	Load	Number of				Fuel (gallons/HP-	
Phase Name	Offroad Equipment Type	Amount	Usage Hours	Power	Factor	Days	HP Hours	HP Bin	Equipment Type + HP	hour)	Diesel Fuel Usage
P1 - Initial Site Prep, Foundations, and Underground Work	Off-Highway Trucks	1	0.2	500	0.38	280	10,640.00	600	Off-Highway Trucks 600	0.04992043	531.15
P1 - Initial Site Prep, Foundations, and Underground Work	Tractors/Loaders/Backhoes	1	1.1	120	0.37		13,675.20	175	Tractors/Loaders/Backhoes 175	0.05079394	694.62
P1 - Initial Site Prep, Foundations, and Underground Work	Skid Steer Loaders	1	2.1	120	0.37	280	26,107.20	175	Skid Steer Loaders 175	0.05061882	1,321.52
P1 - Initial Site Prep, Foundations, and Underground Work	Bore/Drill Rigs	1	1.5	50	0.5	280	10,500.00	50	Bore/Drill Rigs 50	0.05608047	588.84
P1 - Initial Site Prep, Foundations, and Underground Work	Off-Highway Trucks	1	0.2	500	0.38	280	10,640.00	600	Off-Highway Trucks 600	0.04992043	531.15
P1 - Initial Site Prep, Foundations, and Underground Work	Cranes	2	0.4	750	0.29	280	48,720.00	750	Cranes 750	0.05050286	2,460.50
P1 - Initial Site Prep, Foundations, and Underground Work	Graders	1	0.7	120	0.41	280	9,643.20	175	Graders 175	0.05530543	533.32
P1 - Initial Site Prep, Foundations, and Underground Work	Rollers	1	1	120	0.38	280	12,768.00	175	Rollers 175	0.05085933	649.37
P1 - Initial Site Prep, Foundations, and Underground Work	Skid Steer Loaders	1	0.8	120	0.37	280	9,945.60	175	Skid Steer Loaders 175	0.05061882	503.43
P1 - Initial Site Prep, Foundations, and Underground Work	Excavators	1	0.2	250	0.38	280	5,320.00	300	Excavators 300	0.05032723	267.74
P1 - Initial Site Prep, Foundations, and Underground Work	Tractors/Loaders/Backhoes	2	2.3	120	0.37	280	57,187.20	175	Tractors/Loaders/Backhoes 175	0.05079394	2,904.76
P1 - Initial Site Prep, Foundations, and Underground Work	Welders	1	0.3	50	0.45	280	1,890.00	50	Welders 50	0.05390609	101.88
P2 - Equipment Installation	Aerial Lifts	1	0.9	75	0.31	521	10,901.93	75	Aerial Lifts 75	0.05657977	616.83
P2 - Equipment Installation	Off-Highway Trucks	1	1.9	250	0.38		94,040.50	300	Off-Highway Trucks 300	0.04978636	4,681.93
P2 - Equipment Installation	Cranes	1	2.2	120	0.29		39,887.76	175	Cranes 175	0.06304692	2,514.80
P2 - Equipment Installation	Cranes	1	2.6	175	0.29	521	68,745.95	175	Cranes 175	0.06304692	4,334.22
P2 - Equipment Installation	Cranes	1	0.8	250	0.29	521	30,218.00	300	Cranes 300	0.05426549	1,639.79
P2 - Equipment Installation	Cranes	1	0.7	250	0.29		26,440.75	300	Cranes 300	0.05426549	1,434.82
P2 - Equipment Installation	Cranes	1	0.6	500	0.29	521	45,327.00	600	Cranes 600	0.05157611	2,337.79
P2 - Equipment Installation	Rough Terrain Forklifts	1	1.1	175	0.2	521	20,058.50	175	Rough Terrain Forklifts 175	0.06760563	1,356.07
P2 - Equipment Installation	Rough Terrain Forklifts	1	1.1	120	0.2	521	13,754.40	175	Rough Terrain Forklifts 175	0.06760563	929.87
P2 - Equipment Installation	Aerial Lifts	1	2	50	0.31	521	16,151.00	50	Aerial Lifts 50	0.05674691	916.52
P2 - Equipment Installation	Off-Highway Trucks	1	2.1	220	0.38	521	91,466.76	300	Off-Highway Trucks 300	0.04978636	4,553.80
P2 - Equipment Installation	Off-Highway Trucks	1	1	220	0.38	521	43,555.60	300	Off-Highway Trucks 300	0.04978636	2,168.47
		-		•						Total	38,573.22

Equipment assumptions are provided in the CalEEMod output files.

Source of fuel efficiency rates: https://arb.ca.gov/emfac/offroad/emissions-inventory/. Accessed March 2025.

State

2,700,000,000 0.00143%

Model Output: Off-Road Web Query (v1.1.0) Emissions Inventory Region Type: County Region: Kern Calendar Year: 2027, 2028 Scenario: All Adopted Rules - Exhaust Vehicle Classification: Off-Road Web Query Equipment Types

Units: tons/day fo	or Emissions, g	gallons/year for Fuel, hours/year for Acti	ivity, Horsepowe	r-hours/year f	or Horsepower-hours	Horsepower	
Region Kern	_	/ehicle Class + HP Bin Bore/Drill Rigs 100	Model Year Aggregate	Fuel Diesel	Fuel Consumption (gallons/year) 5738.177943	Hours (HP- hours/year) 101569.1599	Fuel (gallons/HP-hour) 0.056495278
Kern Kern Kern	2027 E 2027 E	Bore/Drill Rigs 175 Bore/Drill Rigs 300 Bore/Drill Rigs 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	40580.29942 48585.92529 1923.435587	809917.7058 973720.0413 34297.7822	0.050104226 0.049897222 0.056080465
Kern Kern Kern	2027 E 2027 E	Bore/Drill Rigs 600 Bore/Drill Rigs 75 Bore/Drill Rigs 750	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	69756.30362 7402.435137 28817.11699	1405731.805 131347.3579 577613.3187	0.049622768
Kern Kern	2027 E 2027 E	Bucket 100 Bucket 175	Aggregate Aggregate	Diesel Diesel	440.889268 704.4693467	7861.726274 13965.11739	0.056080465 0.050444928
Kern Kern Kern	2027 B	Bucket 300 Bucket 50 Bucket 75	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	1834.140441 150.6861207 425.8527399	36359.26343 2686.962737 7593.602105	0.050444928 0.056080465 0.056080465
Kern Kern Kern	2027 C	Bucket 750 Compactor 100 Compactor 175	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	1463.434621 205.8428976 3562.27931	29010.54015 3670.491966 70617.19429	0.050444928 0.056080465 0.050444928
Kern Kern Kern	2027 C 2027 C	Compactor 300 Compactor 50 Compactor 600	Aggregate Aggregate	Diesel Diesel Diesel	910.3907511 219.0327871 2337.140798	18047.2206 3905.687759 46796.28177	0.050444928
Kern Kern	2027 C 2027 C	Compactor 75 Concrete Mixer 175	Aggregate Aggregate Aggregate	Diesel Diesel	235.6554405 201.8378224	4202.094954 4001.151925	0.056080465 0.050444928
Kern Kern Kern	2027 C	Concrete Mixer 300 Concrete Mixer 50 Concrete Mixer 600	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	241.3509798 100.1241151 187.1100929	4784.444888 1785.365269 3709.195331	0.050444928 0.056080465 0.050444928
Kern Kern Kern	2027 C	Concrete Mixer 75 Concrete Pump 100 Concrete Pump 175	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	27.74374846 191.9870319 3094.937523	494.7132354 3184.777845 61352.79841	0.056080465 0.060282708 0.050444928
Kern Kern Kern	2027 C	Concrete Pump 300 Concrete Pump 50 Concrete Pump 600	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	1238.353679 17.2087506 2967.897383	24548.62595 306.8581989 58834.40569	0.056080465
Kern Kern	2027 C 2027 C	Concrete Pump 75 Crane less than 35ton 100	Aggregate Aggregate	Diesel Diesel	202.8379397 289.8374394	3616.908995 5168.242408	0.056080465 0.056080465
Kern Kern Kern	2027 C	Crane less than 35ton 175 Crane less than 35ton 300 Crane less than 35ton 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	2051.830239 543.947902 156.4152775	36177.54137 10783.00474 2789.122316	0.05671558 0.050444928 0.056080465
Kern Kern Kern	2027 C	Crane less than 35ton 600 Crane less than 35ton 75 Crane less than 35ton 750	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	418.815452 298.4474313 93.44634669	8302.429307 4655.935109 1852.442845	
Kern Kern Kern	2027 C	Cranes 100 Cranes 175 Cranes 300	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	2749.162162 21266.87489 65486.62413	32583.20335 337318.2398 1206782.202	
Kern Kern	2027 C 2027 C	Cranes 50 Cranes 600	Aggregate Aggregate	Diesel Diesel	263.6713056 90175.44148	2641.190399 1748395.671	0.09983048 0.051576107
Kern Kern Kern	2027 C 2027 C	Cranes 75 Cranes 750 Crawler Tractors 100	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	1116.399545 13928.08837 30295.44604	11249.10263 275788.0894 510544.1157	0.099243431 0.050502864 0.059339526
Kern Kern Kern	2027 C	Crawler Tractors 175 Crawler Tractors 300 Crawler Tractors 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	107467.1508 132586.8959 1289.473334	2105282.327 2616215.852 17650.26285	0.051046432 0.050678883 0.073056891
Kern Kern Kern	2027 C	Crawler Tractors 600 Crawler Tractors 75 Crawler Tractors 750	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	230588.582 7961.058067 14960.34896	4683879.705 129983.9194 317624.5221	0.049230253 0.061246484 0.047100737
Kern Kern Kern	2027 C	Crushing/Processing Equipment 100 Crushing/Processing Equipment 175 Crushing/Processing Equipment 300	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	393.6046987 5628.019171 2761.387593	7018.570479 111567.5916 54740.63856	0.056080465 0.050444928
Kern Kern	2027 C 2027 C	Crushing/Processing Equipment 50 Crushing/Processing Equipment 600	Aggregate Aggregate	Diesel Diesel	123.5593613 15188.26033	2203.251355 301085.9725	0.056080465 0.050444928
Kern Kern Kern	2027 C	Crushing/Processing Equipment 75 Crushing/Processing Equipment 750 Excavators 100	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	612.1206921 1441.504597 73453.73015	10915.04302 28575.80816 1297399.552	
Kern Kern Kern	2027 E	Excavators 175 Excavators 300 Excavators 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	412693.1518 442159.3395 118621.6158	8174170.816 8785687.956 2103238.103	0.05032723
Kern Kern Kern	2027 E	Excavators 600 Excavators 75 Excavators 750	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	508067.1944 93642.93225 14338.90257	10143248.94 1662899.815 302425.0403	0.056313033
Kern Kern	2027 G 2027 G	Graders 100 Graders 175	Aggregate Aggregate	Diesel Diesel	3403.806284 50689.01205	51361.03204 916528.5923	0.066272155 0.055305435
Kern Kern Kern	2027 0	Graders 300 Graders 50 Graders 600	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	161320.0008 394.0645189 38712.4977	3160620.653 6456.824149 767602.483	0.061030703
Kern Kern Kern	2027	Graders 75 Graders 750 Hopper Tractor Trailer 300	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	1422.893273 1465.760765 263.5000199	19626.96572 29056.6527 5223.518562	0.072496854 0.050444928 0.050444928
Kern Kern Kern	2027 F 2027 A	Hopper Tractor Trailer 500 Hopper Tractor Trailer 600 Asphalt Pavers 100 Asphalt Pavers 50	Aggregate Aggregate Aggregate Aggregate	Diesel Gasoline Gasoline	230.8717111 1292.1 1474.6	4576.708073 19815.85 19505.6	0.050444928 0.065205379
Kern Kern	2027 B 2027 B	Bore/Drill Rigs 100 Bore/Drill Rigs 175	Aggregate Aggregate	Gasoline Gasoline	1543.95 536.55	21199.2 6438.6	0.072830579 0.083333333
ern ern ern	2027 C 2027 C	Bore/Drill Rigs 50 Concrete/Industrial Saws 100 Concrete/Industrial Saws 50	Aggregate Aggregate Aggregate	Gasoline Gasoline Gasoline	94.9 3029.5 3102.5	1635.2 42639.3 39091.5	0.071049478 0.079365079
Kern Kern Kern	2027 C 2027 C	Concrete/Industrial Saws 50 Cranes 100 Cranes 175	Aggregate Aggregate Aggregate	Diesel Gasoline Gasoline	1069.45 1540.3 58.4	25414.95 32952.2 0	0.042079563
ern ern	2027 C 2027 D	Cranes 50 Dumpers/Tenders 100	Aggregate Aggregate	Gasoline Gasoline	438 91.25	8238.05 3372.6	0.053167922 0.027056277
Kern Kern Kern	2027 F 2027 F	Other 175 Paving Equipment 100 Paving Equipment 50	Aggregate Aggregate	Gasoline Gasoline Gasoline	3186.45 682.55 1693.6	73124.1 13249.5 28765.65	0.058875777
(ern (ern (ern	2027 F 2027 F	Rollers 100 Rollers 50 Rough Terrain Forklifts 100	Aggregate Aggregate Aggregate	Gasoline Gasoline Gasoline	5967.75 1923.55 13424.7	99097.5 25119.3 225241.5	0.060220994 0.076576577
Kern Kern Kern	2027 F 2027 F	Rough Terrain Forklifts 175 Rough Terrain Forklifts 50 Rubber Tired Loaders 100	Aggregate Aggregate Aggregate	Gasoline Gasoline Gasoline	700.8 598.6 7135.75	10366 5489.6 136656	
Čern Čern	2027 F 2027 S	Rubber Tired Loaders 50 Signal Boards 50	Aggregate Aggregate	Gasoline Diesel	719.05 452.6	11242 10533.9	0.063961039 0.042966043
Kern Kern Kern	2027 S	Skid Steer Loaders 100 Skid Steer Loaders 50 Tractors/Loaders/Backhoes 100	Aggregate Aggregate Aggregate	Gasoline Gasoline Gasoline	12099.75 9059.3 5029.7	228052 151723.2 107616.6	
Kern Kern Kern	2027 T	renchers 100 renchers 50 Nurse Rig Other 175	Aggregate Aggregate Aggregate	Gasoline Gasoline Diesel	5646.55 9150.55 45.93023947	90337.5 123078 910.5026198	0.062505051 0.074347568 0.050444928
Kern Kern	2027 C 2027 C	Off-Highway Tractors 100 Off-Highway Tractors 175	Aggregate Aggregate	Diesel Diesel	16818.93293 90818.94609	298869.7628 1803286.906	0.056275124 0.050363004
Kern Kern Kern	2027 C 2027 C	Off-Highway Tractors 300 Off-Highway Tractors 50 Off-Highway Tractors 600	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	40794.6066 20396.37772 107576.3698	819840.5581 351394.0123 2179351.012	0.049759195 0.058044181 0.049361654
Kern Kern Kern	2027 C	Off-Highway Tractors 75 Off-Highway Tractors 750 Off-Highway Trucks 100	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	17739.27904 8689.372657 461.1497316	302484.405 174012.187 8223.001156	0.058645268 0.049935426 0.056080465
Kern Kern Kern	2027 C	Off-Highway Trucks 175 Off-Highway Trucks 300 Off-Highway Trucks 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	23628.90503 55043.09811 864.4125297	469928.9062 1105585.868 15413.79024	0.050281872 0.049786362 0.056080465
Kern Kern	2027 C 2027 C	Off-Highway Trucks 600 Off-Highway Trucks 75	Aggregate Aggregate	Diesel Diesel	402555.3763 1052.967497	8063939.699 16250.59414	0.049920435 0.064795631
(ern (ern (ern	2027 C	Off-Highway Trucks 750 Other Construction Equipment 100 Other Construction Equipment 175	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	50058.18229 16422.92661 51707.82328	1156501.593 271582.4031 1000871.715	0.043284145 0.060471247 0.051662788
Kern Kern Kern	2027 C	Other Construction Equipment 300 Other Construction Equipment 50 Other Construction Equipment 600	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	48990.39451 12198.90506 153909.7445	952596.5281 206076.1164 3097139.906	0.051428273 0.059196113 0.049694153
Cern Cern Cern	2027 C	Other Construction Equipment 75 Other Construction Equipment 750 Other Material Handling Equipment 100	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	21009.93832 24234.12201 5208.779991	349121.1126 489029.6516 89957.1935	0.060179512 0.049555527 0.057902873
(ern (ern (ern	2027 C 2027 C	Other Material Handling Equipment 175 Other Material Handling Equipment 300 Other Material Handling Equipment 50	Aggregate Aggregate	Diesel Diesel Diesel	21401.7731 21853.74323 2396.608937	419684.0932 433037.1595 38878.2085	0.050994959 0.050466208 0.061644017
(ern (ern	2027 C 2027 C	Other Material Handling Equipment 600 Other Material Handling Equipment 75	Aggregate Aggregate Aggregate	Diesel Diesel	38655.33685 2886.44307	769459.5382 50684.40622	0.050236997 0.056949332
íern íern íern	2027 F	Other Material Handling Equipment 750 Pavers 100 Pavers 175	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	4199.907291 10354.83494 34386.30499	83257.27528 181441.7746 679813.4154	0.050444928 0.05706974 0.050581975
Čern Čern Čern	2027 F 2027 F	Pavers 300 Pavers 50 Pavers 600	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	41630.03 1963.12837 7322.802967	825896.2451 32950.54384 148001.9759	0.050405884
(ern (ern	2027 F 2027 F	Pavers 75 Pavers 750	Aggregate Aggregate	Diesel Diesel	9562.642644 300.5070164	166458.8757 5957.130397	0.057447478 0.050444928
Kern Kern Kern	2027 F	Paving Equipment 100 Paving Equipment 175 Paving Equipment 300	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	5988.44562 38147.89714 17197.69112	98441.24339 752286.2617 340366.8458	0.06083269 0.050709283 0.050526928
ern ern ern	2027 F 2027 F	Paving Equipment 50 Paving Equipment 600 Paving Equipment 75	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	4793.008041 40469.34348 3565.666248	83740.13007 806977.0451 62195.43501	0.057236692 0.050149312 0.057330031
ern ern	2027 F 2027 F	Paving Equipment 750 Rollers 100	Aggregate Aggregate	Diesel Diesel	8750.239775 29902.65772	173461.2389 498899.2018	0.050444928 0.059937273
ern ern ern	2027 F	Rollers 175 Rollers 300 Rollers 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	165706.6569 14419.31253 48569.77397	3258137.107 280441.1625 800449.4864	0.050859326 0.051416534 0.060678125
ern ern ern	2027 F	Rollers 600 Rollers 75 Rollers 750	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	11408.17677 19322.26502 279.7039152	234700.3585 325152.7864 5544.738075	0.048607411 0.059425187 0.050444928
ern ern ern	2027 F	Rough Terrain Forklifts 100 Rough Terrain Forklifts 175 Rough Terrain Forklifts 300	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	42139.39996 264166.5753 2266.203382	712440.1586 5216065.317 44194.0295	0.059147985 0.050644798 0.051278496
ern ern	2027 F 2027 F	Rough Terrain Forklifts 50 Rough Terrain Forklifts 600	Aggregate Aggregate	Diesel Diesel	1469.001705 640.8032194	26194.53486 12695.14423	0.056080465 0.050476246
ern ern ern	2027 F	Rough Terrain Forklifts 75 Rough Terrain Forklifts 750 Rubber Tired Dozers 100	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	58556.21013 211.177896 2081.20391	1030896.405 4184.59082 34545.67034	0.056801256 0.050465602 0.060245
íern íern íern	2027 F	Rubber Tired Dozers 175 Rubber Tired Dozers 300 Rubber Tired Dozers 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	6294.715262 7807.075176 543.478532	124179.617 155425.5901 4842.436385	0.050690406 0.050230307 0.112232457
ern ern ern	2027 F	Rubber Tired Dozers 600 Rubber Tired Dozers 75 Rubber Tired Dozers 750	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	42374.07593 1043.777033 1287.292821	934998.278 15407.64563 31016.92539	0.045319951 0.067744097 0.041502915
ern ern	2027 F	Rubber Tired Loaders 100 Rubber Tired Loaders 175	Aggregate Aggregate	Diesel Diesel	36186.69035 271005.8014	623120.0032 5354035.76	0.058073389 0.050617107
ern ern ern	2027 F 2027 F	Rubber Tired Loaders 300 Rubber Tired Loaders 50 Rubber Tired Loaders 600	Aggregate Aggregate Aggregate	Diesel Diesel	505413.9728 2822.499561 388268.6637	10055722.7 47597.32975 7819415.663	0.050261328 0.059299536 0.049654435
ern ern ern	2027 F	Rubber Tired Loaders 75 Rubber Tired Loaders 750 Scrapers 100	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	22021.90083 10097.85938 1079.742593	376300.8096 259326.4375 17016.90838	0.058522066 0.038938796 0.063451161
ern ern ern	2027 S 2027 S	Scrapers 100 Scrapers 175 Scrapers 300 Scrapers 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	9274.468842 129350.5287 104.3925805	175031.4006 2477266.555 1103.327895	0.052987457 0.052215022
ern ern	2027 S 2027 S	Scrapers 600 Scrapers 75	Aggregate Aggregate	Diesel Diesel	460137.9853 873.0091762	9632816.826 14282.09782	0.04776775 0.061126117
ern ern ern	2027 S 2027 S	Scrapers 750 Skid Steer Loaders 100 Skid Steer Loaders 175	Aggregate Aggregate	Diesel Diesel	71770.06853 163420.1269 47306.72316	1664278.614 2893986.459 934567.8611	0.04312383 0.056468864 0.050618821
ern ern ern	2027 S 2027 S	Skid Steer Loaders 300 Skid Steer Loaders 50 Skid Steer Loaders 600	Aggregate Aggregate Aggregate	Diesel Diesel	3889.866831 45812.88636 2691.570954	77313.58442 786212.2813 53356.62155	0.050312851 0.058270377 0.050444928
ern ern ern	2027 S 2027 S	Skid Steer Loaders 75 Skid Steer Loaders 750 Spray Truck 100	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	319607.4762 267.9444119 321.5388113	5651642.622 5311.622403 5733.52609	0.056551254 0.050444928 0.056080465
ern ern ern	2027 S 2027 S	Spray Truck 175 Spray Truck 300	Aggregate Aggregate	Diesel Diesel Diesel	1016.248101 955.5140824 724.6105374	20145.69419 18851.65241 12920.90807	0.050680403 0.050444928 0.050685959 0.056080465
ern ern	2027 S 2027 S	Spray Truck 50 Spray Truck 600 Spray Truck 75	Aggregate Aggregate Aggregate	Diesel Diesel	3892.566935 443.1581837	77164.68351 7902.184491	0.050444928 0.056080465
ern ern ern	2027 S 2027 S	Spreader Tractor Trailer 50 Spreader Tractor Trailer 600 Spreader Truck 100	Aggregate Aggregate Aggregate	Diesel Diesel	42.01540315 886.9684357 512.4560945	749.1985468 17582.90603 9137.871648	0.056080465 0.050444928 0.056080465
ern ern ern	2027 S 2027 S	Spreader Truck 175 Spreader Truck 300 Spreader Truck 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	613.6337198 431.0979189 12.13593421	12164.4284 8545.911997 216.4021665	
ern ern	2027 S 2027 S	Spreader Truck 50 Spreader Truck 600 Spreader Truck 75 Surfacing Equipment 100	Aggregate Aggregate	Diesel Diesel Diesel	4094.97762 71.83249682 1233.646532	81177.19162 1280.882681 17079.32374	0.050080405 0.050444928 0.056080465 0.072230409
ern ern ern	2027 S 2027 S	Burfacing Equipment 175 Burfacing Equipment 300	Aggregate Aggregate Aggregate	Diesel Diesel	4401.508361 5122.128165	85929.01432 99948.89719	0.05122261 0.051247471
ern ern ern	2027 S 2027 S	Surfacing Equipment 50 Surfacing Equipment 600 Surfacing Equipment 75	Aggregate Aggregate	Diesel Diesel Diesel	517.9064331 29007.03739 889.32486	7922.09605 579321.689 13756.53403	0.064647451
ern ern ern	2027 T 2027 T	Surfacing Equipment 750 Tank Truck 100 Tank Truck 175	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	12273.41528 124.7445518 178.1475281	243963.777 2224.385105 3531.525047	0.050444928
ern ern ern	2027 T 2027 T	Fank Truck 300 Fank Truck 600 Fanker Truck Trailer 100	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	8694.973335 3498.798764 185.2042059	172365.6591 69358.78143 3302.4727	0.050444928 0.050444928 0.056080465
ern ern ern	2027 T 2027 T	Tanker Truck Trailer 175 Tanker Truck Trailer 300 Tanker Truck Trailer 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	258.9321302 101.9614625 53.21699857	5132.966551 2021.24308 948.9400315	0.050444928 0.050444928 0.056080465
ern ern	2027 T 2027 T	anker Truck Trailer 600 anker Truck Trailer 75	Aggregate Aggregate	Diesel Diesel	292.0944952 62.28348654	5790.363956 1110.609303	0.050444928 0.056080465
ern ern ern	2027 T 2027 T	Telescopic Handler 100 Telescopic Handler 175 Telescopic Handler 300	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	2597.683036 14422.0996 412.4975361	46320.63981 285897.91 8177.18548	0.056080465 0.050444928 0.050444928
ern ern ern	2027 T 2027 T	Felescopic Handler 50 Felescopic Handler 600 Felescopic Handler 75	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	188.5543532 194.7255107 5296.690599	3362.210923 3860.160314 94448.05004	0.056080465 0.050444928
ern ern	2027 T 2027 T	elescopic Handler 750 ractors/Loaders/Backhoes 100	Aggregate Aggregate	Diesel Diesel	214.0512796 502032.1996	4243.266595 8785305.33	0.050444928 0.057144536
ern ern ern	2027 T 2027 T	ractors/Loaders/Backhoes 175 ractors/Loaders/Backhoes 300 ractors/Loaders/Backhoes 50	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	522961.5351 221231.1579 48188.02502	10295746.69 4384646.234 791168.2462	0.050455874 0.060907431
ern ern ern	2027 T 2027 T	ractors/Loaders/Backhoes 600 ractors/Loaders/Backhoes 75 ractors/Loaders/Backhoes 750	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	168095.4182 213917.3111 7719.582069	3370506.643 3686505.819 155421.9253	
ern ern	2027 T 2027 T	renchers 100 renchers 175	Aggregate Aggregate	Diesel Diesel	5750.744926 9276.699051	98809.85386 180340.0446	0.058200116 0.05144004
ern ern ern	2027 T 2027 T	renchers 300 renchers 50 renchers 600	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	5423.017401 14707.93405 8779.217966	107916.3119 251436.1822 177392.7535	
ern ern ern	2027 T 2027 T	Tenchers 75 Trenchers 750 /acuum Truck 100	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	4856.118694 380.4556457 544.5824542	78925.86507 8754.149581 9710.733508	0.061527595 0.043460035 0.056080465
ern ern	2027 V 2027 V	/acuum Truck 175 /acuum Truck 300	Aggregate Aggregate	Diesel Diesel	4974.908756 5502.349334	98620.59306 109076.3632	0.050444928 0.050444928
ern ern ern	2027 V 2027 V	/acuum Truck 50 /acuum Truck 600 /acuum Truck 75	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	240.7866373 7435.457831 354.8658038	4293.591998 147397.5297 6327.797058	0.056080465 0.050444928 0.056080465
iern Iern Iern	2027 V 2027 V	Vater Truck 175 Vater Truck 300 Vater Truck 50	Aggregate Aggregate	Diesel Diesel Diesel	1467.384399 9427.924491 80.97633148	28977.95205 186358.3025 1443.931161	0.050637961 0.050590311 0.056080465
Čern Čern	2027 V 2027 V	Vater Truck 600 Vater Truck 75	Aggregate Aggregate Aggregate	Diesel Diesel	42423.478 473.9770331	844432.1892 7644.916658	0.050239058 0.06199898
Cern Cern Cern	2027 A 2027 A	Vater Truck 750 Aerial Lifts 100 Aerial Lifts 175	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	699.1137159 3821.514241 5615.156967	13858.94951 67612.78818 111260.564	0.050468529
Kern Kern Kern	2027 A 2027 A	Aerial Lifts 300 Aerial Lifts 50 Aerial Lifts 600	Aggregate Aggregate Aggregate	Diesel Diesel Diesel	118.6417638 9675.348379 70.55910096	2351.906674 170499.9945 1398.735278	0.050444928 0.056746913
Kern Kern Kern	2027 A 2027 V	Aerial Lifts 75 Welders 100 Welders 175	Aggregate Aggregate Aggregate	Diesel Gasoline Gasoline	19237.29084 19574.95 2445.5	340002.9624 412632.5 50771.5	0.056579774 0.047439186
ern ern ern	2027 V	Velders 175 Velders 50 Velders 50	Aggregate Aggregate Aggregate	Gasoline Gasoline Diesel	2445.5 14016 45650.55	260007.75 1767819.1	0.048166786 0.053906085 0.025823089

Construction Electricity (Water)

Navigant Table ES2. IOU Marginal Energy Intensity (kWh/AF) 19

Region	Extraction and Conveyance	Treatment	Distribution	Wastewater Collection + Treatment	Outdoor (Upstream of Customer)	Indoor (All Components)
North Coast	0	490	153	406	643	1,049
San Francisco	0	490	299	406	789	1,195
Central Coast	0	490	153	406	643	1,049
South Coast	0	490	153	406	643	1,049
Sacramento River	0	490	17	406	507	913
San Joaquin River	0	490	17	406	507	913
Tulare Lake	0	490	17	406	507	913
North Lahontan	0	490	17	406	507	913
South Lahontan	0	490	153	406	643	1,049
Colorado River	0	490	17	406	507	913

Source: https://waterenergy innovations.com/wp-content/uploads/2020/03/FINAL-W-E-White-Paper-20170417.pdf

Treatment (average): 490 kWh/AF Distribution (average): 99.6 kWh/AF

Construction Water Use 1198000 gallons Construction Water Use 3.676542 AF

Total 2,167.69 kWh

Operational Fuel Calculation—Project-Generated Operational Trips (Page 1 of 2)

California Air Resource Board (CARB). 2025. EMFAC2021 Web Database. Accessed March 2025.

Source: EMFAC2021 (v1.0.2) Emissions Inventory

Region Type: County Region: Kern

Calendar Year: 2027, 2028, 2029

Season: Annual

Vehicle Classification: EMFAC2007 Categories

Units: miles/day for CVMT and EVMT, trips/day for Trips, kWh/day for Energy Consumption, tons/day for Emissions, 1000 gallons/day for Fuel Consumption

			Given					Calcula	ations
							Fuel		
Region	Calendar Year Vehicle Class		Speed	Fuel	Population	VMT	Consumption	FE	VMT*FE
Kern	2029 LDA	Aggregate	Aggregate	Gasoline	334670.4165	13056290.65	400.4405161	32.60481926	425697997.1
Kern	2029 LDA	Aggregate	Aggregate	Diesel	653.6843876	20510.96119	0.43751726	46.88034754	961560.9889
Kern	2029 LDA	Aggregate	Aggregate	Plug-in Hybrid	12657.68601	550382.5119	8.129198926	67.70439706	37263316.12
								Sum of VMT*FE	463922874.2
								Total VMT	
							Weight	ed Average Fuel Economy	34.04392792
Kern	2029 LDT1	Aggregate	Aggregate	Gasoline	30897.93175	1055088.006	39.15357707	26.94742307	28431902.86
Kern	2029 LDT1	Aggregate	Aggregate	Diesel	1.280941051	22.83570163	0.000904005	25.2605954	576.8434197
Kern	2029 LDT1	Aggregate	Aggregate	Plug-in Hybrid	156.2157886	7653.997401	0.104847913	73.00095132	558749.0916
Kern	2029 LDT2	Aggregate	Aggregate	Gasoline	190270.7528	7524179.53	280.2212407	26.85085367	202030643.5
Kern	2029 LDT2	Aggregate	Aggregate	Diesel	644.9937174	26694.00985	0.716847055	37.23808262	994033.7443
Kern	2029 LDT2	Aggregate	Aggregate	Plug-in Hybrid	2696.734339	124010.0247	1.772214796	69.97460182	8677552.1
Kern	2029 MDV	Aggregate	Aggregate	Gasoline	147561.6011	5275055.275	247.4407916	21.31845457	112456026.2
Kern	2029 MDV	Aggregate	Aggregate	Diesel	2237.608081	77749.40775	2.962351799	26.24583879	2040598.422
Kern	2029 MDV	Aggregate	Aggregate	Plug-in Hybrid	1818.701594	80756.25009	1.188949978	67.92232775	5485152.487
TOTT	2020 MB (, iggi ogato	, iggi ogalo	r lag iir r rybria	1010.701001	00700.2000	1.100010010	Sum of VMT*FE	360675235.3
									14171209.34
							Weight	ed Average Fuel Economy	25.4512672
Kern	2029 LHDT1	Aggregate	Aggregate	Gasoline	15164.708	550755.9092	53.98886013	10.20128797	5618419.629
Kern	2029 LHDT1	Aggregate	Aggregate	Diesel	13319.0207	457025.3956	28.66517986	15.94357328	7286617.884
Kern	2029 LHDT2	Aggregate	Aggregate	Gasoline	2586.215203	85630.72336	9.715323266	8.813986011	754747.9978
Kern	2029 LHDT2	Aggregate	Aggregate	Diesel	6159.930679	210521.6137	15.8652125	13.26938506	2793492.357
Kern	2029 MHDT	Aggregate	Aggregate	Gasoline	1087.178821	68904.54741	13.94429378	4.941415355	340485.9886
Kern	2029 MHDT	Aggregate	Aggregate	Diesel	11161.95572	524406.9417	57.83120933	9.067888219	4755263.529
Kern	2029 MHDT	Aggregate	Aggregate	Natural Gas	100.6214915	4778.890331	0.667605275	7.158257293	34208.52656
Kern	2029 HHDT	Aggregate	Aggregate	Gasoline	1.299506506	155.4162811	0.037027316	4.197341274	652.3351714
Kern	2029 HHDT	Aggregate	Aggregate	Diesel	32361.07231	4987097.652	748.1123703	6.666241397	33245196.82
Kern	2029 HHDT	Aggregate	Aggregate	Natural Gas	481.8874591	30340.76544	5.746592597	5.279783615	160192.6762
								Sum of VMT*FE	
							Wajaht		6919617.856
							vveignu	ed Average Fuel Economy	7.940000271
Kern	2029 MCY	Aggregate	Aggregate	Gasoline	19120.45179	106237.0211	2.509149387	42.33985494	4498060.062
							Weight	ed Average Fuel Economy	42.33985494
I/ o mo	0000 MIL	A	A man = = + =	Coordina	2000 50024	10574 00400	4 000005707	4 44 45 45005	04000 04004
Kern	2029 MH	Aggregate	Aggregate	Gasoline	2099.599674	18571.93192	4.206985797	4.414545905	81986.64601
Kern	2029 MH	Aggregate	Aggregate	Diesel	1187.111601	9925.305254	1.055069719	9.407250603	93369.83383
IZ	2029 OBUS	Aggregate	Aggregate	Gasoline	309.5761881	15492.75888	3.114434837	4.974500895	77068.74294
Kern	2029 OBUS	Aggregate	Aggregate	Diesel	171.1057199	11541.82607	1.642844598	7.025512991	81087.24897
Kern	2029 OBUS	Aggregate	Aggregate	Natural Gas	4.333854993	202.1689217	0.025261699	8.002981989	1617.954239
Kern	2029 SBUS	Aggregate	Aggregate	Gasoline	173.062545	11546.02074	1.148130772	10.0563638	116110.985
Kern	2029 SBUS	Aggregate	Aggregate	Diesel	1022.070271	22211.80309	2.687168308	8.265877139	183600.0354
Kern	2029 SBUS	Aggregate	Aggregate	Natural Gas	196.0277301	4703.628164	0.80649049	5.832217763	27432.58373
Kern	2029 UBUS	Aggregate	Aggregate	Gasoline	58.3999123	4420.533252	0.752090134	5.877664197	25982.41003
Kern	2029 UBUS	Aggregate	Aggregate	Diesel	38.4010574	4070.16023	0.407948431	9.977143984	40608.57466
Kern	2029 UBUS	Aggregate	Aggregate	Natural Gas	155.0098961	16129.31952	2.322910681		111995.2439
								Sum of VMT*FE	
							\A/ - !! · /	Total VMT	118815.456

VMT = Vehicle Miles Traveled

Weighted Average Fuel Economy 7.077027575

FE = Fuel Economy

Operational Fuel Calculation—Project-Generated Operational Trips (Page 2 of 2) Total Operational VMT

Land Use	Annual VMT
Total VMT	469,400.00

Fleet Mix from CalEEMod

LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH	
43.349755	3.383162	22.963920	17.826734	3.205678	0.986814	1.684909	4.027608	0.054688	0.036393	1.996353	0.172108	0.311879	100.000

Vehicle Type	Fraction of 1	Annual VMT	Daily VMT	Average Fuel Economy (miles/gallon)	Consumption	Total Annual Fuel Consumption (gallons)
Passenger Cars (LDA)	0.4335	203,484	557	34.04	16.4	5,977
Light Trucks and Medium Vehicles (LDT1, LDT2, and MDV)	0.4417	207,352	568	25.45	22.3	8,147
Light-Heavy to Heavy-Heavy Diesel Trucks	0.0991	46,494	127	7.95	16.0	5,851
Motorcycles	0.0200	9,371	26	42.34	0.6	221
Other	0.0058	2,699	7	7.08	1.0	381
Project Total		469,400	1286.027417		56.38	20,577.48

1.0000

44.17% 9.91%

43.35%

2.00% 0.58%

Stantec is a global leader in sustainable architecture, engineering, and environmental consulting. The diverse perspectives of our partners and interested parties drive us to think beyond what's previously been done on critical issues like climate change, digital transformation, and future-proofing our cities and infrastructure. We innovate at the intersection of community, creativity, and client relationships to advance communities everywhere, so that together we can redefine what's possible.