DOCKETED	
Docket Number:	22-SPPE-02
Project Title:	San Jose Data Center 04
TN #:	265716
Document Title:	SJC04 Thermal and Visual Plume Memo
Description:	N/A
Filer:	Scott Galati
Organization:	DayZenLLC
Submitter Role:	Applicant Representative
Submission Date:	8/20/2025 8:53:35 AM
Docketed Date:	8/20/2025

April 12, 2023

California Energy Commission 1516 9th St Sacramento, CA 95814

RE: Microsoft SJC04 Data Center Building Project

Dear California Energy Commission,

Capitol Airspace Group was retained to assess a planned building project in San Jose, California. The project will house two data centers, SJC04 and SJC06, for the Microsoft Corporation. In order to mitigate heat produced by the data centers, the structures will include generator and fluid coolers on the rooftops that will produce both visual and thermal plumes.

According to expert analysis conducted by Environmental Systems Design, Inc, the complete dissipation of the plumes will occur at an altitude between 182 and 189 feet above mean sea level (AMSL) with diameters no greater than 15 feet laterally (Appendix A & B). The nature of these plumes may, at times, make them visible to pilots and people on the ground.

Capitol Airspace Group is an aviation consulting firm that provides analytical, strategic, and advocacy services to airports, communities, and commercial developers. The company prides itself on helping airports and developers strike a balance between economic development and the need to preserve the national airspace system. Over the past twenty years, Capitol Airspace has successfully advocated for over 5,000 development projects which amount to over 90,000 federal filings.

There are two FAA published documents that provide some reference regarding plumes. ¹ These documents generally discourage the placement of plumes close to an airport. However, neither document provides regulatory standards that can be used to differentiate between acceptable and unacceptable plumes, as well as appropriate proximity to airports. Absent clear guidance from the FAA, Capitol Airspace sought an alternative method for assessing the potential for an adverse effect of plumes on aircraft operations.

Since there are no federal or state standards for determining unacceptable risk associated with plumes, Capitol Airspace conducted analyses to determine if aircraft are operating in the same airspace as the plumes. The logic being that, if aircraft are not operating in proximity to the plumes, then there should be no concern that plumes will adversely affect aircraft operations. To do this, Capitol Airspace looked at the altitudes of aircraft operating on or near the building site through two methods:

¹ Federal Aviation Administration Memorandum: *Technical Guidance and Assessment Tool for Evaluation of Thermal Exhaust Plume Impact on Airport Operations*, September 24, 2015.

Federal Aviation Administration Report: Safety Risk Analysis of Aircraft Overflight of Industrial Exhaust Plumes, January 2006

Theoretical:

Capitol Airspace first assessed published Instrument Flight Rules (IFR) and Visual Flight Rules (VFR) procedures that would position an aircraft low and close to the buildings (Appendix C). ² The results of that analysis indicated the lowest altitude that an aircraft would fly over the site is 341 feet Above Mean Sea Level (AMSL), and are associated with the Norman Y. Mineta San Jose International (SJC) RNAV (GPS) Y Approach to Runway 12L. Given the plume dissipation heights, an aircraft flying the approach procedure would be at least 100 feet above the plumes and would be therefore unaffected.

Practical:

Capitol Airspace then assessed 2019 and 2020 historical air traffic data to determine the number of flights, if any, that would be close enough to the buildings where they might encounter the plumes. When the flight track data was analyzed, both IFR and VFR aircraft overflew the project area. However, zero flights occurred below 299 feet within 24 feet laterally of the location of the plumes. (Appendix D). Given these results, no flights in 2019 or 2020 would have been exposed to visual or thermal plumes.

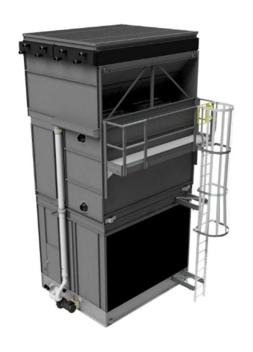
In summary, an IFR procedure would position an aircraft as low as 341 feet AMSL above the SJC04 and SJC06 Data Centers. This is at least 100 feet above the greatest plume dissipation height. These findings are further evidenced by the review of 2019 and 2020 historical air traffic data, which did not identify any flights lower than 299 feet AMSL above the buildings and their footprints.

As of the date of this letter, the buildings have been filed with the FAA. The FAA is still completing their analysis of the proposed structures, and has not issued final determinations.

Any questions regarding this memo should be directed to me. I can be reached at 571-303-1124 or via email at <u>James.Scott@capitolairspace.com</u>.

Sincerely,

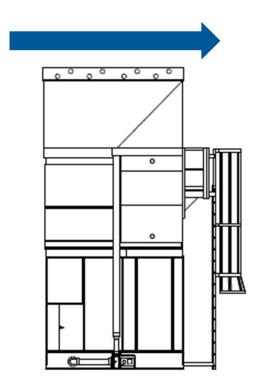
James R. Scott Senior Project Manager Director of FAA Programs Capitol Airspace Group


² The November 2022 Obstruction Evaluation and Airspace Analysis (see appendix X) was used to identify the lowest Obstacle Clearance Surface (OCS). In doing so, Capitol Airspace was also able to use the data to determine the lowest an aircraft may be flying over the project area.

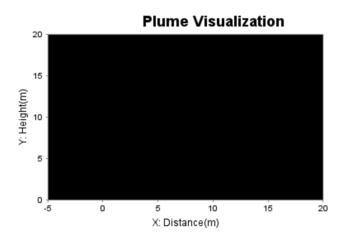
Appendix A: BAC Fluid Cooler Study for Visual Plume

Plume Analysis SJC04

Stephen Kline, P.E.
Applications Manager
skline@baltimoreaircoil.com
Feb 24, 2023


Plume Analysis

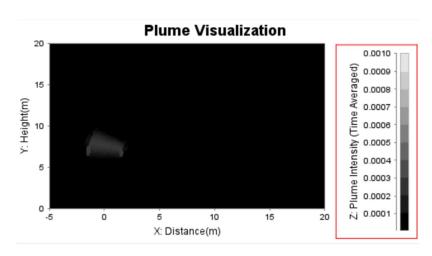
- Design parameters and selections
- Model HXV-1012C-24T-L fluid cooler
 - > Flow = 345 gpm/cell water
 - > Range = 16 degrees
 - > Fan HP = 15 hp/cell @ 72,620 CFM
 - > Dry Switchpoint = ~43F (dry operation below this temp = no plume)
 - > San Jose, CA weather data
 - > Point 1: 92F DB / 71F WB
 - > Point 2: 50F DB / 48F WB
 - > Evaluate at wind speed of 2.5 MPH



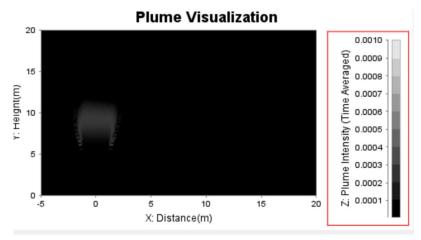
Plume Evaluation

Ambient wind direction assumed

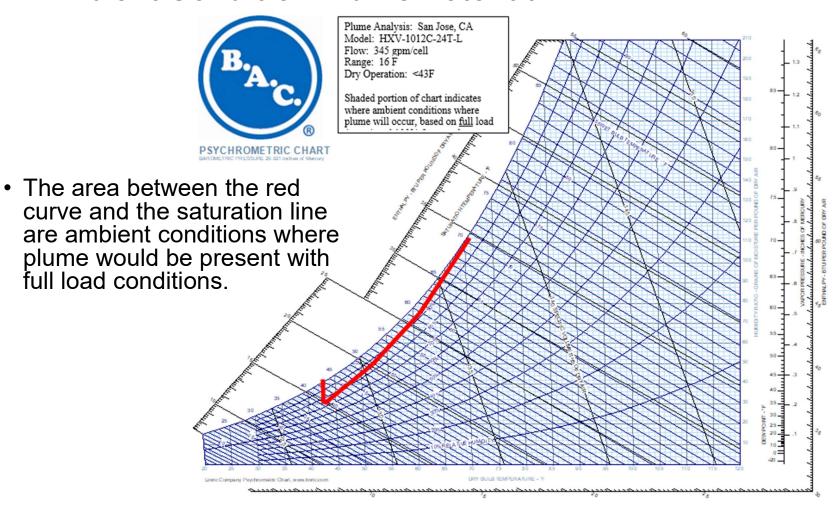
HXV-1012C-24T-L Heat Load = 345 gpm water, 16F range Point 1: 92F DB / 71F WB ambient



• 2.5 mph wind


No measurable plume at summer condition

HXV-1012C-24T-L Heat Load = 345 gpm water, 16F range Point 2: 50F DB / 48F WB ambient


- 2.5 mph wind
- Operating at fan speed to achieve 98F in / 82F out water
- Visible plume height ~4m (13 ft) above top of unit

- 2.5 mph wind
- Operating at 100% fan speed to achieve coldest water temp possible
- Visible plume height of ~6m (20ft) above top of unit

Ambient Condition Plume Potential

SJC02 Plume Analysis - Summary

- San Jose ambient conditions and the reheat effect of the HXV dry coil create very few hours of plume potential during full load operation
- The maximum visible plume height is estimated at ~20 ft above the top of the unit with fans operating at 100% fan speed
- Visible plume has varying degrees of intensity (from complete opaque to see through mist). The visible plume intensity is greater at lower ambient temperatures with higher ambient humidity

Appendix B: ADI Calculations for Velocity Plume (Generator Flue)

"Aviation Safety and Buoyant Plumes," Peter Best, et. al.

"The Evaluation of Maximum Updraft Speeds for Calm Conditions at Various Heights in the Plume

	"The Evaluate	ion of Maxim	num Updraft S	Speeds for	Calm Conditions	at Various Heights in the Plui	me
		from a Gas-	Turbine Pow		•	land, Australia," Dr. K.T. Spil	
nbient Conditions:						me neutral conditions (dθ/dz=0	or $\theta_a = \theta_e$)
Ambient Potential Temp θ _a	278.15	Kelvins	41.0	°F		.3048 meters/feet	
me Exit Conditions:				i.	Gravity g	9.81 m/s ²	
Maximum Stack Height h _s		meters	135	feet-inches	λ	1.11	
Stack Diameter D		meters		inches	λ_{\circ}	~1.0	
Stack Velocity V _{exit}	30.08			ft/sec	2		
Volumetric Flow		cu.m/sec		ACFM	$\pi V_{exit} D^2/4$		Sect.2/¶1
Stack Potential Temp θ _s		Kelvins	890	°F	2		
Initial Stack Buoyancy Flux F _o	23.4761					$4 = Vol.Flow(g/\pi)(1-\theta_a/\theta_s)$	Sect.2/¶1
Plume Buoyancy Flux F		m ⁴ /s ³				or a, V, θ_p at plume height (see b	elow)
No.of Stacks N	1			1.000	Multiple Stack M	ultiplication Factor (N ^{0.25})	
editions of End (Ton) of Jot Phone.							
ditions at End (Top) of Jet Phase: Height above Stack z _{iet}	4 445	motoro*	14.6	foot*	7 = 6.25D mot	ore*=motore above stack ton	Cost 2/FI1
,		meters*		feet*	z _{jet} – 0.23D, met	ers*=meters above stack top	Sect.3/¶1
Height above Ground z _{jet} +h _s	45.595		149.6		V = 0.5V = V	10	
Vertical Velocity V _{jet} Plume Top-Hat Diameter 2a _{iet}	15.040	meters		ft/sec feet	$V_{jet} = 0.5V_{exit} = V$ $2a_{jet} = 2D$	Conservation of moment	tum "
Fiditie Top-Hat Diameter Zajet	1.422	meters	4.7	ieet	Zajet – ZD	Conservation of moment	lum
llane Methodology - Analytical Solutions for	r Calm Condit	ions for Plur	ne Heights at	nove Jet Ph	nase		
Single Plume-averaged Vertical Velocity V g			-			uations below:	
Plume Top-Hat Radius a		Solutions in	-			ar increase with height	Sect.2/Eq.6
Virtual Source Height z _v		meters*		feet*], meters*=meters above stack top	Sect.2/Eq.6
Height above Ground z _v +h _s		meters	140.7		υ.Ζυμ[ι-(Φ _e /Φ _s)	j, meters = meters above stack top where $(\theta_a/\theta_s)^{1/2} = (\theta_a/\theta_s)^{1/2}$	
Vertical Velocity V		meters Solutions in		1001	((\/a) ³ 0.12F	where $(\theta_a/\theta_s)^2 = (\theta_e/\theta_s)$ $[(z-z_v)^2 - (6.25D-z_v)^2]^{(1/3)} / a$	Sect.2.1(6)
Product (Va) _o	6.514		. abio DelOW		$V_{\text{exit}}D/2(\theta_{\text{e}}/\theta_{\text{s}})^{1/2}$	(2-2 _V) - (0.23D-2 _V)]}. / a	0601.2.1(0)
Froduct (Va) _o	0.014	111 /S			v _{exit} D/2(d _e /d _s)		
Solve for plume-averaged vertical velo	city at height	200.0	feet	60 0A	meters above gr	ound (z'+h。)	
Gives the following Height above Stack z'		meters*		feet*	o.o.o above gi	Zaa (Z '118)	
Plume Top-Hat Diameter 2a'		meters		feet	2a'=2*0.16(z'-z _v)		Sect.2/Eq.6
Vertical Velocity V	3.650			ft/sec	, ,,	[(z-z _v) ² -(6.25D-z _v) ²]} ^(1/3) /(2a'/2)	Sect.2/Eq.6
vertical velocity v	3.030		11.50	.,,,,,,	ν - χ(να _{/0} τυ. 12Γ	DE(~ 20) -(0.200-20)]] 1(28/2)	555.E.Eq.0
Solve for Height of CASC critical vertica	I velocity V _{crit}	5.30	m/s plume-a	veraged ve	ertical velocity	Critic	al VV > Top of Jet (Spil
Find Height above Stack z _{crit}	11.121		-	feet	-	simultaneously in both eqs. (i.e	
Height above Ground z _{crit} +h _s		meters	171.5			ng the cubic equation ax3+bx2+	
3.1. 3						, c=0, and b=-(0.12F _o)/(4.3 ³ 0.10	
Interpolated Height of critical vertical ve	locity in Jet P	hase:				$2F_o(6.25D-z_v)^2-(Va)_o^3]/(4.3^30.10^3)$	
Find Height above Stack z _{crit}	#N/A	meters	#N/A	feet			nttp://www.1728.org/cubi
Height above Ground z _{crit} +h _s	#N/A	meters	#NI/A				
			#IN/A	feet		gives the real solution x = 2-2	zv = 9
		motoro	#N/A	teet		gives the real solution x = z-z or z(m/above stace	
		motors	#N/A	feet		or z(m/above stac	:k) = 1
le of Plume Top-Hat Diameters (2a) and Plu					f jet phase:	•	:k) = 1
le of Plume Top-Hat Diameters (2a) and Plu Height (feet)			ocities startir	ng at end o	•	or z(m/above stac	:k) = 1
	ıme-Averaged (meters)	Vertical Vel Plume	ocities startir	ng at end o Plume		or z(m/above stac	:k) = 1
Height (feet)	ıme-Averaged (meters)	Vertical Vel Plume	ocities startii SingleStk VertVel(m/s)	ng at end o Plume		or z(m/above stac	:k) = 1
Height (feet) above ground	ıme-Averaged (meters) above stack	Vertical Vel Plume Radius(m)	ocities startii SingleStk VertVel(m/s)	ng at end o Plume Temp(K)		or z(m/above stac	:k) = 1
Height (feet) above ground Stack.Rel.Ht = 135.0	ime-Averaged (meters) above stack 0.00	Vertical Vel Plume Radius(m) 0.356	ocities startin SingleStk VertVel(m/s) 30.08	ng at end o Plume Temp(K)		or z(m/above stac z(ft/above groun	(k) = 1 d) = 5 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0	ime-Averaged (meters) above stack 0.00 1.52	Vertical Vel Plume Radius(m) 0.356 0.477	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78	ng at end o Plume Temp(K)		or z(m/above stac z(ft/above groun Jet Phase Eqs:	(k) = 1 d) = 5 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0	ime-Averaged (meters) above stack 0.00 1.52 3.05	Vertical Vel Plume Radius(m) 0.356 0.477 0.599	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04	ng at end o Plume Temp(K)		or z(m/above stac z(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations:	(k) = 1 d) = 5 foot Inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6	ime-Averaged (meters) above stack 0.00 1.52 3.05 4.45	Vertical Vel Plume Radius(m) 0.356 0.477 0.599	ocities startir SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04	ng at end o Plume Temp(K)		or z(m/above stac z(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac	(k) = 1 d) = 5 foot Inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453	ocities startin SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51	ng at end o Plume Temp(K) 460.76 359.39		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z.,) ²]) ^{1/2} / a 10 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0	ume-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67	Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428	ocities startin SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51	ng at end o Plume Temp(K) 460.76 359.39 326.44		or z(m/above stac z(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: V _{plume} ={(Va) _o ³ +0.12F _o {(z-z _c) ² -(6	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z.,) ²]) ^{1/2} / a 10 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5	ime-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12	Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30	460.76 359.39 326.44 323.37		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z.,) ²]) ^{1/2} / a 10 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54	460.76 359.39 326.44 323.37 310.54		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z.,) ²]) ^{1/2} / a 10 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 190.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 2.404	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00	460.76 359.39 326.44 323.37 310.54 301.50		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,) ²]) ^{1/3} / a 10 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 190.0 200.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 7.62 10.67 11.12 13.71 16.76 19.81	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 2.404 2.892	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65	460.76 359.39 326.44 323.37 310.54 301.50 295.85		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z.,) ²]) ^{1/2} / a 10 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 190.0 200.0 210.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40	19 at end o Plume Temp(K) 460.76 359.38 326.44 323.37 310.54 301.50 295.85 292.08		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,) ²]) ^{1/3} / a 10 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 190.0 200.0 210.0 220.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91	Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40	460.76 359.38 326.44 323.37 310.54 295.85 292.08 289.43		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,) ²]) ^{1/3} / a 10 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 190.0 200.0 210.0 220.0 230.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05	460.76 359.38 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot Inte k Rel.Ht to Top of Jet 2.25D.z./2)) 10 / a 10 foot Inte Max<5.36
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 190.0 200.0 210.0 220.0 230.0 280.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,) ² [) ^{1/3} / a 10 foot inte
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 190.0 200.0 210.0 220.0 230.0 280.0 330.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 2.404 2.892 3.379 3.867 4.355 6.793 9.231	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.40 282.70 280.90		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot Inte k Rel.Ht to Top of Jet 2.25D.z./2)) 10 / a 10 foot Inte Max<5.36
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 280.0 330.0 380.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.90 280.00		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot Inte k Rel.Ht to Top of Jet 2.25D.z./2)) 10 / a 10 foot Inte Max<5.36
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 230.0 280.0 330.0 380.0 430.0	me-Averaged (meters) above stack	Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.20 3.25 2.57 2.30 2.12	460.76 359.39 326.44 301.50 295.85 292.08 289.43 287.49 282.70 280.90 280.02 279.51		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot Inte k Rel.Ht to Top of Jet 2.25D.z./2)) 10 / a 10 foot Inte Max<5.36
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 430.0 480.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15	Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12	460.76 359.38 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.02 279.51		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot Inte k Rel.Ht to Top of Jet 2.25D.z./2)) 10 / a 10 foot Inte Max<5.36
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 380.0 430.0 480.0 530.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.02 279.51 279.20 279.20		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = ((Va), 3 + 0.12F _{ol} (z-z _s) ² -(6 a = 0.16(z-z _s)	(k) = 1 d) = 5 foot Inte k Rel.Ht to Top of Jet 2.25D.z./2)) 10 / a 10 foot Inte Max<5.36
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 430.0 480.0 530.0 580.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.02 279.51 279.22 278.98 278.98		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = ((Va), 3 + 0.12F _{ol} (z-z _s) ² -(6 a = 0.16(z-z _s)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 190.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 430.0 480.0 530.0 580.0	ime-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.02 280.90 280.02 279.51 279.20 278.83 278.83		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = ((Va), 3 + 0.12F _{ol} (z-z _s) ² -(6 a = 0.16(z-z _s)	(k) = 1 d) = 5 foot Inte k Rel.Ht to Top of Jet 2.25D.z./2)) 10 / a 10 foot Inte Max<5.36
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 230.0 280.0 330.0 380.0 430.0 480.0 530.0 580.0 680.0 780.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.40 280.90 280.02 279.51 279.20 278.83 278.63 278.63		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = ((Va), 3 + 0.12F _{ol} (z-z _s) ² -(6 a = 0.16(z-z _s)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 280.0 330.0 380.0 430.0 480.0 530.0 580.0 680.0 680.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 105.15 120.39 135.63 166.11 196.59 227.07	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45	460.76 359.39 326.44 301.50 295.85 292.08 287.49 282.77 280.90 280.02 279.51 279.20 279.52 279.85 278.86 278.86 278.86		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = ((Va), 3 + 0.12F _{ol} (z-z _s) ² -(6 a = 0.16(z-z _s)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 280.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 880.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55	Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39	460.76 359.38 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.90 279.51 279.20 278.83 278.63 278.63 278.63 278.63 278.64 278.44		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = ((Va), 3 + 0.12F _{ol} (z-z _s) ² -(6 a = 0.16(z-z _s)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 980.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03	Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931 45.807	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39 1.34	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.02 279.51 279.20 279.52 279.52 279.52 279.53 278.63 278.63 278.54 278.54		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = ((Va), 3 + 0.12F _{ol} (z-z _s) ² -(6 a = 0.16(z-z _s)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 280.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 880.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55	Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39 1.34	460.76 359.38 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.90 279.51 279.20 278.83 278.63 278.63 278.63 278.63 278.64 278.44		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = ((Va), 3 + 0.12F _{ol} (z-z _s) ² -(6 a = 0.16(z-z _s)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 980.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03	Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931 45.807	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39 1.34 1.30	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.02 279.51 279.20 279.52 279.52 279.52 279.53 278.63 278.63 278.54 278.54		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = ((Va), 3 + 0.12F _{ol} (z-z _s) ² -(6 a = 0.16(z-z _s)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 1080.0 1180.0	ime-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931 45.807 50.684	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39 1.34 1.30 1.26	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.02 279.51 279.22 278.98 278.93 278.63 278.63 278.44 278.38 278.44 278.38		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = ((Va), 3 + 0.12F _{ol} (z-z _s) ² -(6 a = 0.16(z-z _s)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 230.0 230.0 330.0 380.0 430.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 1080.0 1180.0	ime-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99	Nertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931 45.807 50.684 55.561	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39 1.34 1.30 1.26 1.22	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 284.43 287.49 282.70 280.90 278.99 278.83 278.63 278.44 278.38 278.34 278.34 278.31 278.29		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 230.0 280.0 330.0 380.0 430.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 1180.0 1280.0	me-Averaged (meters) above stack	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931 45.807 50.684 55.561 60.438	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.20 3.25 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39 1.34 1.30 1.26 1.22 1.19	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.40 280.90 280.02 279.51 279.20 278.83 278.63 278.63 278.34 278.34 278.34 278.34 278.34		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 280.0 380.0 430.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 1180.0 1180.0 1280.0	me-Averaged (meters) above stack	Nertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.428 1.501 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931 45.807 50.684 55.561 60.438 65.315	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39 1.34 1.30 1.26 1.22 1.19 1.16	460.76 7 Styles 1 St		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 145.0 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 380.0 430.0 480.0 530.0 680.0 780.0 680.0 780.0 880.0 980.0 1180.0 1280.0 1380.0 1180.0 1280.0 1380.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99 379.47 409.95 440.43 470.91	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931 45.807 50.684 55.561 60.438 65.315 70.191 75.068	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39 1.34 1.30 1.26 1.22 1.19 1.16 1.14	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.02 279.51 279.20 279.52 27		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 1180.0 1280.0 1380.0 1480.0 1580.0 1580.0 1680.0 1680.0 1680.0 1680.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99 379.47 409.95 440.43 470.91 501.39	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931 45.807 50.684 55.561 60.438 65.315 70.191 75.068 79.945	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39 1.34 1.30 1.26 1.22 1.19 1.16 1.14 1.11	460.76 359.38 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.02 279.51 279.22 278.83 278.83 278.84 278.34 278.34 278.34 278.32 278.26 278.27 279.22		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i
above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 170.0 Spillane 5.3 m/s Height = 171.5 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 1180.0 1280.0 1380.0 180.0 1180.0 1280.0 1380.0	me-Averaged (meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.12 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99 379.47 409.95 440.43 470.91	Vertical Vel Plume Radius(m) 0.356 0.477 0.599 0.711 0.453 0.941 1.916 2.404 2.892 3.379 3.867 4.355 6.793 9.231 11.670 14.108 16.547 18.985 21.423 26.300 31.177 36.054 40.931 45.807 50.684 55.561 60.438 65.315 70.191 75.068	ocities startii SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.41 7.51 5.48 5.30 4.54 4.00 3.65 3.40 3.20 3.05 2.57 2.30 2.12 1.99 1.89 1.80 1.73 1.61 1.52 1.45 1.39 1.34 1.30 1.26 1.22 1.19 1.16 1.11 1.09	460.76 359.39 326.44 323.37 310.54 301.50 295.85 292.08 289.43 287.49 282.70 280.02 279.51 279.20 279.52 27		or z(m/above stacz(ft/above groun Jet Phase Eqs: Linearly interpolated from Stac Spillane Equations: Vplume = [(Va), 3 + 0.12F _{ol} (z-z _o) ² -(6 a = 0.16(z-z _o)	(k) = 1 d) = 5 foot inte k Rel.Ht to Top of Jet 2.25D-z,/²)) 1/3 / a 10 foot inte Max<5.3i

^{2080.0} *Winter Min = Monthly Mean of Minimum Daily Temperatures for 1971-2000 (Lowest in December)

592.83

94.575

1.05 278.21

"Aviation Safety and Buoyant Plumes," Peter Best, et. al.

"The Evaluation of Maximum Updraft Speeds for Calm Conditions at Various Heights in the Plume

	i ne Evaluat	on or maxim	um oparan c		Calm Conditions at Va	roughto in the riam	e
		from a Gas-	Turbine Pow		• • • • • • • • • • • • • • • • • • • •	A <i>ustralia</i> ," Dr. K.T. Spilla	
Ambient Conditions:						utral conditions (dθ/dz=0 o	r θ _a =θ _e)
Ambient Potential Temp θ _a	302.21	Kelvins	84.3	°F		meters/feet	
Plume Exit Conditions:				ı.	Gravity g 9.81	m/s ²	
Maximum Stack Height h _s		meters	135	feet-inches	λ 1.11		
Stack Diameter D		meters		inches	λ _o ~1.0		
Stack Velocity V _{exit}	30.08		98.69		2		
Volumetric Flow		cu.m/sec	25,320		$\pi V_{exit} D^2/4$		Sect.2/¶1
Stack Potential Temp θ _s		Kelvins	890	°F	2		
Initial Stack Buoyancy Flux F _o	22.2748				$gV_{exit}D^{2}(1-\theta_{a}/\theta_{s})/4 = Vo$	(+) ()	Sect.2/¶1
Plume Buoyancy Flux F		m ⁴ /s ³				θ _p at plume height (see bel	low)
No.of Stacks N	1			1.000	Multiple Stack Multiplica	ation Factor (N ^{0.25})	
Conditions at End (Top) of Jet Phase:							
Height above Stack z _{jet}		meters*		feet*	z_{jet} = 6.25D, meters*=m	eters above stack top	Sect.3/¶1
Height above Ground z _{jet} +h _s	45.595	meters	149.6	feet			"
Vertical Velocity V _{jet}	15.040	m/s	49.34	ft/sec	$V_{jet} = 0.5V_{exit} = V_{exit}/2$		"
Plume Top-Hat Diameter 2a _{jet}	1.422	meters	4.7	feet	2a _{jet} = 2D	Conservation of momentur	m "
Spillane Methodology - Analytical Solutions for Single Plume-averaged Vertical Velocity V gi Plume Top-Hat Radius a	ven by Analy		n in Paper wh				Sect.2/Eq.6
Virtual Source Height z _v	1.623	meters*	5.3	feet*	$6.25D[1-(\theta_e/\theta_s)^{1/2}]$, mete		Sect.2/Eq.6
Height above Ground z _v +h _s		meters	140.3			where $(\theta_a/\theta_s)^{1/2} = (\theta_e/\theta_s)^{1/2}$	
Vertical Velocity V		Solutions in 1			$\{(Va)_o^3 + 0.12F_o [(z-z_v)]$	² - (6.25D-z) ²] ^(1/3) / a	Sect.2.1(6)
Product (Va) _o	6.791				$V_{\text{exit}}D/2(\theta_{\text{e}}/\theta_{\text{s}})^{1/2}$	√ =v/ 11 / u	ν-/
Solve for plume-averaged vertical velo	city at height	200.0	feet	60.96	meters above ground (z'+h _s)	
Gives the following Height above Stack z'		meters*		feet*	3 (
Plume Top-Hat Diameter 2a'		meters	19.1		2a'=2*0.16(z'-z _v)		Sect.2/Eq.6
Vertical Velocity V	3.627		11.90		, ,,	² -(6.25D-z _v) ²]} ^(1/3) /(2a'/2)	Sect.2/Eq.6
					· ((· a/6 · 0 · · 2 · 6(2 2 v)	(0.200 20)]] /(20/2)	
Solve for Height of CASC critical vertical	velocity V _{crit}	5.30	m/s plume-a	veraged ve	ertical velocity	Critical	VV > Top of Jet (Spillane)
Find Height above Stack z _{crit}	11.212	meters	36.8	feet	Solve for x=(z-z _v) simul	taneously in both eqs. (i.e.,	
Height above Ground z _{crit} +h _s	52.362	meters	171.8	feet		cubic equation ax3+bx2+cx	
o di o						and b=-(0.12F _o)/(4.3 ³ 0.16 ³	
Interpolated Height of critical vertical ve	ocity in Jet P	hase:				25D-z _v) ² -(Va) _o ³]/(4.3 ³ 0.16 ³	
Find Height above Stack z _{crit}		meters	#N/A	feet	ana a [0.12.0(0		p://www.1728.org/cubic.htm
Height above Ground z _{crit} +h _s		meters	#N/A		give	es the real solution x = z-zv	
J - dit s					3 ····	or z(m/above stack)	
						z(ft/above ground)) = 171.8
Table of Plume Top-Hat Diameters (2a) and Plu	me-Averaged	Vertical Vel	ocities startir	ng at end of	fiet phase:	z(ft/above ground)) = 171.8
Table of Plume Top-Hat Diameters (2a) and Plu Height (feet)	me-Averaged (meters)	Vertical Vel	ocities startir SingleStk	ng at end of Plume	f jet phase:	z(ft/above ground)) = 171.8
Height (feet)	(meters)	Plume	SingleStk	Plume	f jet phase:	z(ft/above ground)	= 171.8
	(meters)	Plume	SingleStk	Plume	f jet phase:	z(ft/above ground)	9 = 171.8
Height (feet) above ground	(meters) above stack	Plume Radius(m)	SingleStk VertVel(m/s)	Plume Temp(K)	f jet phase:	z(ft/above ground) Jet Phase Eqs:	5 foot intervals
Height (feet) above ground Stack.Rel.Ht = 135.0	(meters) above stack 0.00	Plume Radius(m) 0.356	SingleStk VertVel(m/s) 30.08	Plume Temp(K)		, ,	5 foot Intervals
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0	(meters) above stack 0.00 1.52	Plume Radius(m) 0.356 0.477	SingleStk VertVel(m/s) 30.08 24.93	Plume Temp(K)		Jet Phase Eqs:	5 foot Intervals
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0	(meters) above stack 0.00 1.52 3.05	Plume Radius(m) 0.356 0.477 0.599	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04	Plume Temp(K)		Jet Phase Eqs: Linearly interpolated from Stack F	5 foot Intervals
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6	(meters) above stack 0.00 1.52 3.05 4.45	Plume Radius(m) 0.356 0.477 0.599 0.711	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04	Plume Temp(K)	ı	Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations:	5 foot Intervals
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43	Plume Temp(K) 475.79 381.82		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: V _{plume} ={(Va) _o ³ +0.12F _o [(z-z _y) ² -(6.24)	5 foot Intervals Rel.Ht to Top of Jet 5D-z ₂) ²)) ¹³ / a 10 foot Intervals
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52	Plume Temp(K) 475.79 381.82 350.37		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-z ₂) ²)) ¹³ / a 10 foot Intervals
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30	Plume Temp(K) 475.79 381.82 350.37 346.85		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-z ₂) ²)) ¹³ / a 10 foot Intervals
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-z ₂) ²)) ¹³ / a 10 foot Intervals
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-2,/ ² β/ ¹³ / a 10 foot intervals **a ^{2*} λ ²)))
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-z ₂) ²)) ¹³ / a 10 foot Intervals
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37	Plume Temp(K) 475.79 381.82 350.37 348.85 334.91 325.98 320.34 316.54		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-2,/ ² β/ ¹³ / a 10 foot intervals **a ^{2*} λ ²)))
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 200.0 210.0 220.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-2,/ ² β/ ¹³ / a 10 foot intervals **a ^{2*} λ ²)))
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 311.87		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-z ₂) ²]) ^{1/3} / a 10 foot intervals **a ^{2*} *λ ²))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 280.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 311.87		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-2,/ ² β/ ¹³ / a 10 foot intervals **a ^{2*} λ ²)))
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 280.0 330.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 311.87 306.95		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-z ₂) ²]) ^{1/3} / a 10 foot intervals **a ^{2*} *λ ²))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 230.0 280.0 330.0 380.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 318.54 313.85 311.87 306.95 305.08		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-z ₂) ²]) ^{1/3} / a 10 foot intervals **a ^{2*} *λ ²))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 200.0 210.0 220.0 230.0 230.0 280.0 330.0 380.0 380.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 311.87 305.08 304.16 303.64		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-z ₂) ²]) ^{1/3} / a 10 foot intervals **a ^{2*} *λ ²))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 280.0 380.0 380.0 430.0 480.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 311.87 305.08 304.16 303.64 303.64		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-z ₂) ²]) ^{1/3} / a 10 foot intervals **a ^{2*} *λ ²))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 430.0 480.0 530.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77	Plume Temp(K) 475.79 381.82 350.37 346.85 320.34 316.54 313.85 311.87 306.95 305.08 304.16 303.64 303.31		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-z ₂) ²]) ^{1/3} / a 10 foot intervals **a ^{2*} *λ ²))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 480.0 430.0 480.0 530.0 580.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 305.08 304.16 303.64 303.31 303.83		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 230.0 280.0 330.0 380.0 380.0 480.0 530.0 580.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 311.87 306.95 305.08 304.16 303.64 303.38 303.88 302.92		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot intervals Rel.Ht to Top of Jet 5D-z ₂) ²]) ^{1/3} / a 10 foot intervals **a ^{2*} *λ ²))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 230.0 280.0 330.0 380.0 430.0 480.0 530.0 580.0 680.0 780.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 311.87 306.95 305.08 304.16 303.64 303.31 303.08 302.92 302.72		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 230.0 330.0 380.0 480.0 530.0 580.0 680.0 780.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 311.87 306.95 305.08 304.16 303.64 303.31 303.08 302.92 302.72 302.59		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 280.0 380.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 311.87 306.95 305.08 304.16 303.64 303.31 303.08 302.92 302.72 302.599 302.51		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 430.0 480.0 530.0 680.0 680.0 780.0 880.0 980.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949 45.826	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43 1.37	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 301.87 306.95 305.08 304.16 303.31 303.08 302.92 302.72 302.59 302.51 302.45		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 200.0 210.0 220.0 230.0 280.0 380.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 301.87 306.95 305.08 304.16 303.31 303.08 302.92 302.72 302.59 302.51 302.45		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 430.0 480.0 530.0 680.0 680.0 780.0 880.0 980.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949 45.826	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43 1.37	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 311.87 306.95 305.08 304.16 303.36 302.92 302.72 302.59 302.51 302.45 302.41		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 190.0 220.0 230.0 240.0 220.0 230.0 280.0 330.0 380.0 430.0 480.0 530.0 580.0 680.0 780.0 980.0 1080.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949 45.826 50.703	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43 1.37 1.32	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 305.08 304.16 303.64 303.64 303.92 302.72 302.59 302.51 302.45 302.45 302.45 302.38		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 200.0 210.0 220.0 230.0 230.0 230.0 230.0 330.0 380.0 430.0 480.0 580.0 680.0 780.0 880.0 980.0 1080.0 1180.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949 45.826 50.703 55.579	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43 1.37 1.32 1.27 1.23	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 305.08 304.16 303.64 303.31 303.08 302.92 302.72 302.59 302.51 302.45 302.41 302.38 302.36		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 200.0 210.0 220.0 230.0 230.0 230.0 330.0 380.0 430.0 480.0 580.0 580.0 680.0 780.0 880.0 980.0 1180.0 1180.0 1280.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99 379.47	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949 45.826 50.703 55.579 60.456	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43 1.37 1.32 1.27 1.23	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 305.08 304.16 303.64 303.31 303.08 302.92 302.72 302.59 302.51 302.45 302.41 302.38 302.36		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 200.0 210.0 220.0 230.0 230.0 280.0 330.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 1080.0 1180.0 1280.0 1380.0 1480.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99 379.47	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949 45.826 50.703 55.579 60.456 65.333	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43 1.37 1.32 1.27 1.23 1.20 1.17	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 305.08 304.16 303.64 303.31 303.08 302.92 302.72 302.59 302.51 302.45 302.41 302.38 302.34 302.32 302.32		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 1180.0 1180.0 1280.0 1380.0 1480.0 1380.0 1480.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99 379.47 409.95	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949 45.826 50.703 55.579 60.456 65.333 70.210	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43 1.37 1.32 1.27 1.23 1.20 1.17 1.14	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 305.08 304.16 303.64 303.31 303.08 302.92 302.72 302.59 302.51 302.45 302.41 302.38 302.34 302.32 302.32		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 160.0 170.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 200.0 210.0 220.0 230.0 280.0 330.0 380.0 430.0 480.0 530.0 680.0 680.0 780.0 680.0 780.0 880.0 980.0 1180.0 1280.0 1180.0 1280.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99 379.47 409.95 440.43	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949 45.826 50.703 55.579 60.456 65.333 70.210 75.087	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43 1.37 1.32 1.27 1.23 1.20 1.17	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 301.87 306.95 302.30 302.92 302.72 302.59 302.51 302.41 302.38 302.34 302.32 302.31 302.30		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 160.0 170.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 200.0 210.0 220.0 230.0 280.0 330.0 280.0 380.0 430.0 480.0 530.0 580.0 680.0 680.0 780.0 880.0 980.0 1080.0 1180.0 1280.0 1380.0 1480.0 1580.0 1580.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 13.71 13.71 13.71 13.71 13.71 15.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99 379.47 409.95 440.43 470.91 501.39 531.87	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949 45.826 50.703 55.579 60.456 65.333 70.210 75.087	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43 1.37 1.32 1.20 1.17 1.14 1.12 1.09 1.07	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 305.08 304.16 303.64 303.64 303.25 302.72 302.59 302.51 302.45 302.34 302.33 302.33 302.32 302.33		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s
Height (feet) above ground Stack.Rel.Ht = 135.0 140.0 145.0 Top of jet = 149.6 150.0 160.0 170.0 Spillane 5.3 m/s Height = 171.8 180.0 200.0 210.0 220.0 230.0 230.0 230.0 230.0 330.0 380.0 430.0 430.0 480.0 530.0 580.0 680.0 780.0 880.0 980.0 1180.0 1180.0 1180.0 1180.0 1580.0	(meters) above stack 0.00 1.52 3.05 4.45 4.57 7.62 10.67 11.21 13.71 16.76 19.81 22.86 25.91 28.95 44.19 59.43 74.67 89.91 105.15 120.39 135.63 166.11 196.59 227.07 257.55 288.03 318.51 348.99 379.47 409.95 440.43 470.91 501.39	Plume Radius(m) 0.356 0.477 0.599 0.711 0.472 0.959 1.447 1.534 1.935 2.422 2.910 3.398 3.885 4.373 6.811 9.250 11.688 14.127 16.565 19.003 21.442 26.319 31.195 36.072 40.949 45.826 50.703 55.579 60.456 65.333 70.210 75.087 79.963 84.840	SingleStk VertVel(m/s) 30.08 24.93 19.78 15.04 14.43 7.60 5.52 5.30 4.55 3.99 3.63 3.37 3.17 3.01 2.53 2.27 2.09 1.96 1.85 1.77 1.70 1.59 1.50 1.43 1.37 1.32 1.20 1.17 1.14 1.12 1.09 1.07	Plume Temp(K) 475.79 381.82 350.37 346.85 334.91 325.98 320.34 316.54 313.85 305.08 304.16 303.64 303.64 303.25 302.72 302.59 302.51 302.45 302.34 302.33 302.33 302.32 302.33		Jet Phase Eqs: Linearly interpolated from Stack F Spillane Equations: $V_{ptume} = \{(Va)_0^3 + 0.12F_a[(z-z_i)^2 - (6.2t_0^2 - 2.0.16(z-z_i)^2 - (6.2t_0^2 $	5 foot Intervals Rel.Ht to Top of Jet 5D-2 ₃ / ² J) ^{1/3} / a 10 foot Intervals ma*(a*λ²)))) Max<5.30 m/s

*Summer Max = Monthly Mean of Maximum Daily Temperatures for 1971-2000 (Highest in July)

Appendix C: Obstruction Evaluation Report

Microsoft SJC04 Data Center Project

DayZen LLC Santa Clara County, California

Obstruction Evaluation & Airspace Analysis

November 16, 2022

Capitol Airspace Group capitolairspace.com
(703) 256 - 2485

Summary

Capitol Airspace conducted an obstruction evaluation and airspace analysis for the Microsoft SJC04 Data Center project in Santa Clara County, California. The purpose for this analysis was to identify the lowest obstacle clearance surfaces established by the Federal Aviation Administration (FAA) that could limit structure heights within the defined study area (black outline, *Figure 1*).

The FAA requires that all structures exceeding 14 CFR Part 77.9 notification criteria be submitted to the FAA so that an aeronautical study can be conducted. The FAA's objective in conducting aeronautical studies is to ensure that proposed structures do not affect the safety of air navigation or the efficient utilization of navigable airspace by aircraft. The result of an aeronautical study is the issuance of a determination of 'hazard' or 'no hazard' that can be used by the proponent to obtain necessary local construction permits. It should be noted that the FAA has no control over land use in the United States and cannot enforce the findings of its studies.

The lowest obstacle clearance surfaces overlying the Microsoft SJC04 Data Center project are a constant 180 feet above mean sea level (AMSL) and are associated with an instrument approach procedure. If the FAA determines that proposed structures would affect as few as one operation per week, it could result in determinations of hazard.

Multiple terminal area navigational aid protection areas overlie the Microsoft SJC04 Data Center study area. Impact on navigational aids can result in the issuance of determinations of hazard regardless of the lack of impact on the other surfaces described in this report.

This study did not consider electromagnetic interference on FAA communication or surveillance radar systems. Impact on these systems can result in determinations of hazard regardless of the lack of impact on the physical airspace surfaces described in this report.

Methodology

Capitol Airspace studied the proposed project based on location information provided by DayZen LLC. Using this information, Capitol Airspace generated graphical overlays to determine proximity to airports (*Figure 1*), published instrument procedures, enroute airways, FAA minimum vectoring altitude and minimum instrument flight rules (IFR) altitude charts, as well as military airspace and training routes.

Capitol Airspace evaluated all 14 CFR Part 77 imaginary surfaces, published instrument approach and departure procedures, visual flight rules operations, FAA minimum vectoring altitudes, minimum IFR altitudes, and enroute operations. All formulas, headings, altitudes, bearings, and coordinates used during this study were derived from the following documents and data sources:

- 14 CFR Part 77 Safe, Efficient Use, and Preservation of the Navigable Airspace
- FAA Order 7400.2N Procedures for Handling Airspace Matters
- FAA Order 8260.3E United States Standard for Terminal Instrument Procedures
- FAA Order 8260.58C United States Standard for Performance Based Navigation (PBN) Instrument Procedure Design
- Technical Operations Evaluation Desk Guide for Obstruction Evaluation/Airport Airspace Analysis (1.6.2)
- United States Government Flight Information Publication, US Terminal Procedures
- National Airspace System Resource Aeronautical Data

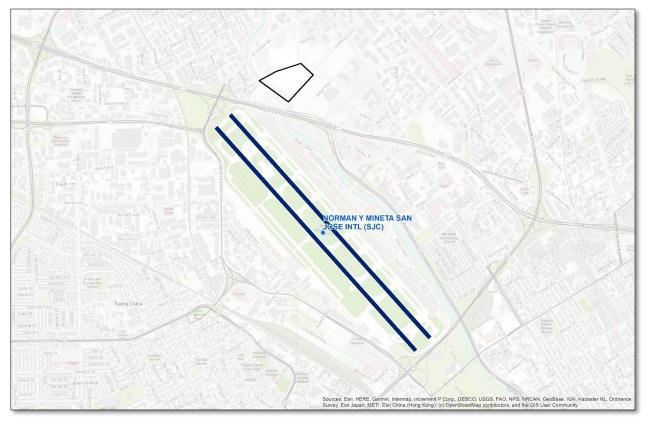


Figure 1: Norman Y. Mineta San Jose International (SJC) in proximity to the Microsoft SJC04 Data Center project

Study Findings

14 CFR Part 77.17(a)(2) Obstruction Standard and 77.19/21/23 Imaginary Surfaces

The FAA uses level and sloping imaginary surfaces to determine if a proposed structure is an obstruction to air navigation. Structures that are identified as obstructions are then subject to a full aeronautical study and increased scrutiny. However, exceeding a Part 77 imaginary surface does not automatically result in the issuance of a determination of hazard. Proposed structures must have airspace impacts that constitute a substantial adverse effect in order to warrant the issuance of determinations of hazard.

Military and public use airport 14 CFR Part 77.17(a)(2) obstruction standard (dashed blue outline, *Figure* 2) and imaginary surfaces (solid blue outline, *Figure* 2) overlying the Microsoft SJC04 Data Center project:

Norman Y. Mineta San Jose International (SJC)

77.17(a)(2): 262 feet AMSL

77.19: 198 to 212 feet AMSL

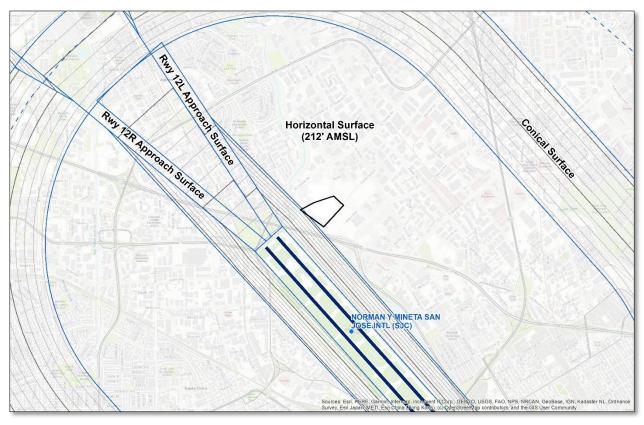


Figure 2: 77.17(a)(2) obstruction standard (dashed blue) and 77.19 imaginary surfaces (solid blue)

Runway Protection Zones

The FAA has established Runway Protection Zones (RPZ) to designate areas located along the extended runway centerline where the protection of people and property on the ground is enhanced. In order to ensure enhanced safety, the FAA recommends airport control of this area to guarantee the RPZ remain clear of incompatible objects and activities. The size of the RPZ is directly related to the airplane design group and approach categories that the runway is expected to serve as well as the visibility minimums associated with instrument approach procedures.

RPZs (e.g., *Figure 3*) do not overlie the study area. Therefore, RPZs should not limit development within the defined study area.

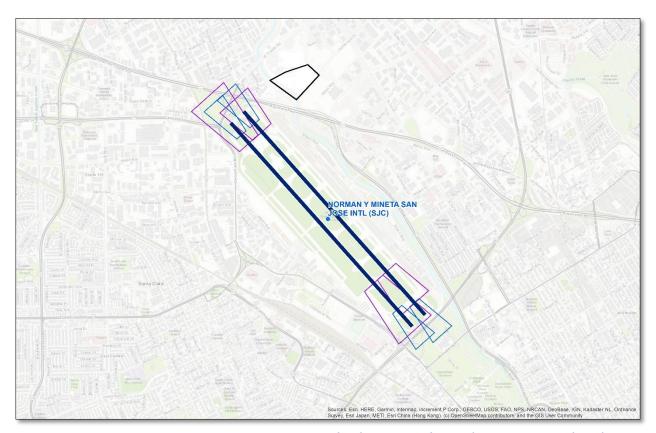


Figure 3: Norman Y. Mineta San Jose International (SJC) approach (purple) and departure (blue) RPZs

One Engine Inoperative (OEI) Procedures

The FAA requires that airlines develop one engine inoperative (OEI) procedures that allow for the clearance of all terrain and obstacles in the even that an aircraft loses an engine during departure. Aircraft performance calculations based on the loss of one engine ensure that aircraft meet these clearance requirements. The introduction of new obstacles to existing OEI procedures can impact aircraft loading by decreasing the number of passengers or amount of fuel and cargo an aircraft can carry. While this impact is not currently considered by the FAA during aeronautical study, it will likely result in airline objections.

OEI procedures vary by airline, aircraft type, and runway end, and are proprietary airline information. Since these procedures are not publicly available, Capitol Airspace applied the "straight" OEI obstacle accountability areas (OAA) (e.g., *Figure 4*) defined in FAA Advisory Circular 120-91A *Airport Obstacle Analysis* to determine the likelihood of proposed structures impacting OEI operations.

The straight-out Norman Y. Mineta San Jose International (SJC) OEI OAAs (purple outlines, *Figure 4*) do not overlie the study area. Therefore, it is unlikely that the Microsoft SJC04 Data Center project would impact OEI operations.

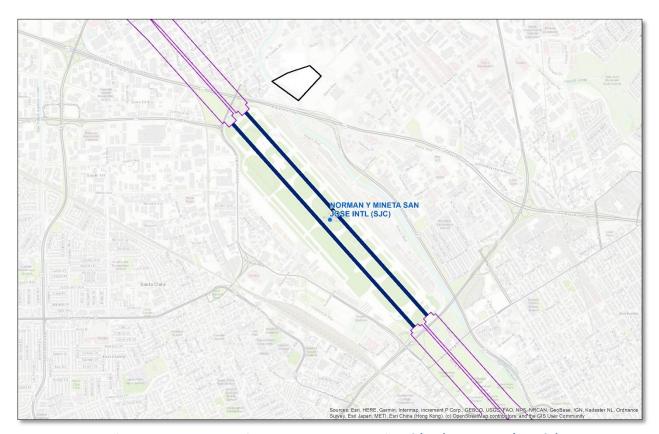


Figure 4: Norman Y. Mineta San Jose International (SJC) OEI OAAs (purple)

Visual Flight Rules (VFR) Traffic Pattern Airspace

VFR traffic pattern airspace is used by pilots operating during visual meteorological conditions (VMC). The airspace dimensions are based upon the category of aircraft which, in turn, is based upon the approach speed of the aircraft. 14 CFR Part 77.17(a)(2) and 77.19 (as applied to a *visual* runway) imaginary surfaces establish the obstacle clearance surface heights within VFR traffic pattern airspace.

VFR traffic pattern airspace obstacle clearance surfaces (*Figure 5*) are in excess of other, lower surfaces and do not result in the lowest height constraint overlying the Microsoft SJC04 Data Center project.

Figure 5: Norman Y. Mineta San Jose International (SJC) VFR traffic pattern airspace overlying the Microsoft SJC04 Data Center project

Instrument Departures

In order to ensure that aircraft departing during marginal weather conditions do not fly into terrain or obstacles, the FAA publishes instrument departure procedures that provide obstacle clearance to pilots as they transition between the terminal and enroute environments. These procedures contain specific routing and minimum climb gradients to ensure clearance from terrain and obstacles.

Proposed structures that exceed instrument departure procedure obstacle clearance surfaces would require an increase to instrument departure procedure minimum climb gradients. If the FAA determines that this impact would affect as few as one operation per week, it could be used as the basis for determinations of hazard.

Instrument departure procedure obstacle clearance surfaces (e.g., *Figure 6*) are in excess of other, lower surfaces and do not result in the lowest height constraint overlying the Microsoft SJC04 Data Center project.

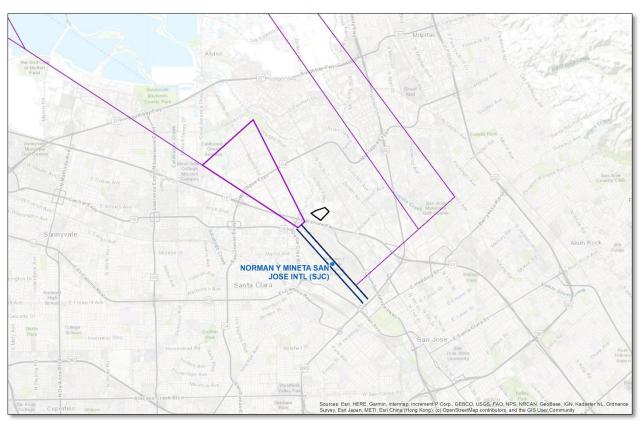


Figure 6: Norman Y. Mineta San Jose International (SJC) Runway 30R obstacle departure procedure

Instrument Approaches

Pilots operating during periods of reduced visibility and low cloud ceilings rely on terrestrial and satellite based navigational aids (NAVAIDS) in order to navigate from one point to another and to locate runways. The FAA publishes instrument approach procedures that provide course guidance to on-board avionics that aid the pilot in locating the runway. Capitol Airspace assessed 12 published instrument approach procedures at Norman Y. Mineta San Jose International (SJC) in proximity to the Microsoft SJC04 Data Center project:

Norman Y. Mineta San Jose International (SJC)

ILS or Localizer Approach to Runway 12R

ILS or Localizer Approach to Runway 30L

ILS Approach to Runway 30L (SA CAT I & II)

RNAV (RNP) Z Approach to Runway 12L

RNAV (RNP) Z Approach to Runway 12R

RNAV (RNP) Z Approach to Runway 30L

RNAV (RNP) Z Approach to Runway 30R

RNAV (GPS) Y Approach to Runway 12L

RNAV (GPS) Y Approach to Runway 12R

RNAV (GPS) Y Approach to Runway 30L

RNAV (GPS) Y Approach to Runway 30R

Fairgrounds Visual Approach to Runways 30L/R

Proposed structures that exceed instrument approach procedure obstacle clearance surfaces would require an increase to their minimum altitudes. Increases to these altitudes, especially critical *decision altitudes (DA)* and *minimum descent altitudes (MDA)*, can directly impact the efficiency of instrument approach procedures. If the FAA determines this impact would affect as few as one operation per week, it could be used as the basis for determinations of hazard.

Norman Y. Mineta San Jose International (SJC)

RNAV (GPS) Y Approach to Runway 12L

The final approach segment (purple outline, *Figure 7*) and missed approach segment (blue outline, *Figure 7*) obstacle clearance surfaces are a constant 180 feet AMSL where they overlie the study area and are the lowest height constraints overlying the Microsoft SJC04 Data Center project.

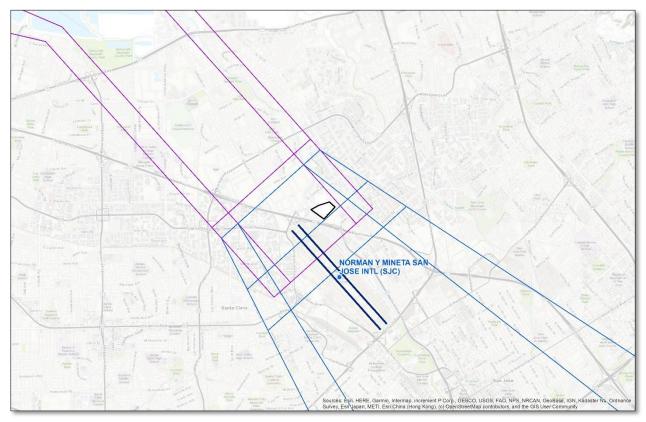


Figure 7: Norman Y. Mineta San Jose International (SJC) RNAV GPS Approach to Runway 12L with LNAV/VNAV final and missed approach segments

Enroute Airways

Enroute airways provide pilots a means of navigation when flying from airport to airport and are defined by radials between VHF omni-directional ranges (VORs). The FAA publishes minimum altitudes for airways to ensure clearance from obstacles and terrain. The FAA requires that each airway have a minimum obstacle clearance of 1,000 feet in non-mountainous areas and normally 2,000 feet in mountainous areas.

Proposed structures that exceed enroute airway obstacle clearance surfaces would require an increase to their minimum obstruction clearance altitudes (MOCA) and/or minimum enroute altitudes (MEA). If the FAA determines that this impact would affect as few as one operation per week, it could be used as the basis for determinations of hazard.

Low altitude enroute airway obstacle clearance surfaces (e.g., *Figure 8*) are in excess of other, lower surfaces and do not result in the lowest height constraint overlying the Microsoft SJC04 Data Center project.

Figure 8: Low altitude enroute chart L-3 with V334 (purple) and T259 (brown) obstacle evaluation areas

Minimum Vectoring/IFR Altitudes

The FAA publishes minimum vectoring altitude (MVA) and minimum IFR altitude (MIA) charts that define sectors with the lowest altitudes at which air traffic controllers can issue radar vectors to aircraft based on obstacle clearance. The FAA requires that sectors have a minimum obstacle clearance of 1,000 feet in non-mountainous areas and normally 2,000 feet in mountainous areas.

Proposed structures that exceed MVA/MIA sector obstacle clearance surfaces would require an increase to the altitudes usable by air traffic control for vectoring aircraft. If the FAA determines that this impact would affect as few as one operation per week, it could result in determinations of hazard.

MVA and MIA obstacle clearance surfaces (e.g., *Figure 9*) are in excess of other, lower surfaces and do not result in the lowest height constraint overlying the Microsoft SJC04 Data Center project.

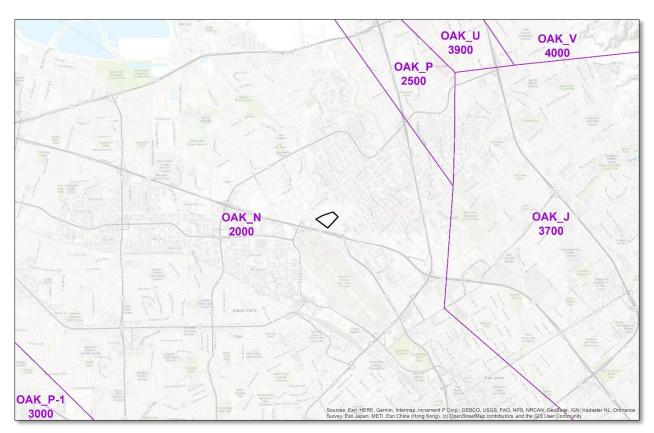


Figure 9: Northern California (NCT) TRACON MVA FUS 3 sectors and the Microsoft SJC04 Data Center project

Terminal and Enroute Navigational Aids

The FAA has established protection areas in order to identify proposed structures that may have a physical and/or electromagnetic effect on navigational aids (NAVAIDs). The protection area dimensions vary based on the proposed structure type as well as the NAVAID type. Proposed structures within these areas may interfere with NAVAID services and will require further review by FAA Technical Operations. If further review determines that proposed structures would have a significant physical and/or electromagnetic effect on NAVAIDs, it could result in determinations of hazard.

San Jose (SJC) VOR/DME 1

The Microsoft SJC04 Data Center project is located within the two nautical mile (NM) protection area of the *San Jose (SJC) VOR/DME* (blue outline, *Figure 10*). As a result, the Microsoft SJC04 Data Center project may be subject to further review by FAA Technical Operations.

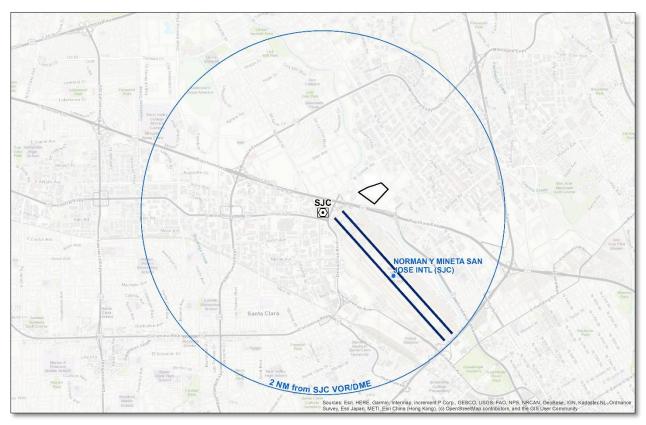


Figure 10: San Jose (SJC) VOR/DME protection area overlying the Microsoft SJC04 Data Center project

¹ In accordance with Technical Operations Evaluation Desk Guide for Obstruction Evaluation/Airport Airspace Analysis (1.6.1), Chapter 6.2, the methodology to analyze a VOR will be used to protect TACAN and DME services until a separate DME siting criteria order can be approved. Therefore, Capitol Airspace applied the VOR protection area criteria to this TACAN facility.

Norman Y. Mineta San Jose International (SJC)

Runway 12R Localizer (I-SLV) and Glideslope (I-SLV_GS)

The Runway 12R localizer and glideslope protection area (purple outline, *Figure 11*) overlies the Microsoft SJC04 Data Center project. As a result, the Microsoft SJC04 Data Center project may be subject to further review by FAA Technical Operations.

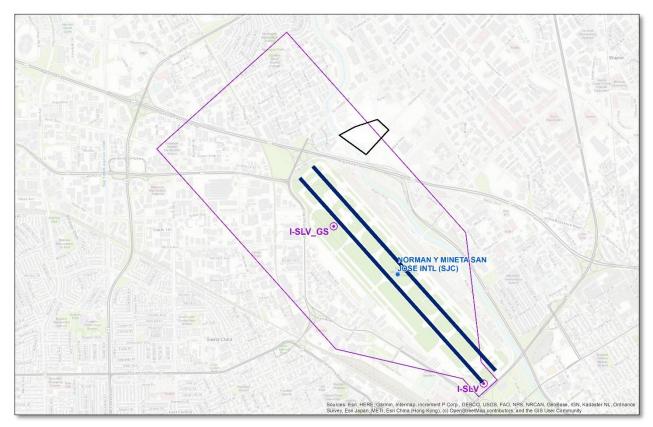
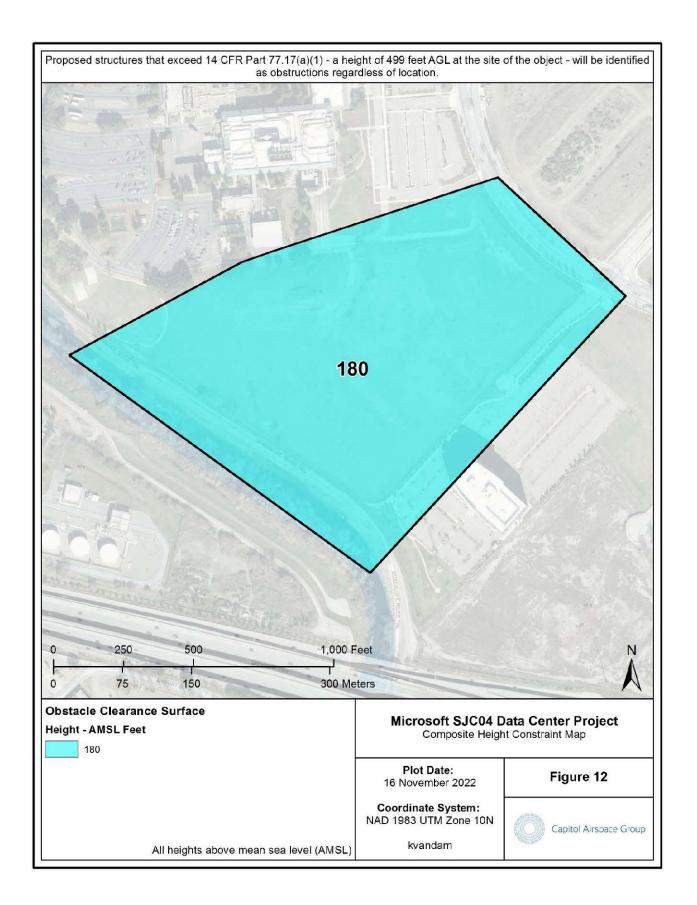


Figure 11: Norman Y. Mineta San Jose International (SJC) Runway 12R Localizer and Glide Slope protection area (purple) overlying the Microsoft SJC04 Data Center project

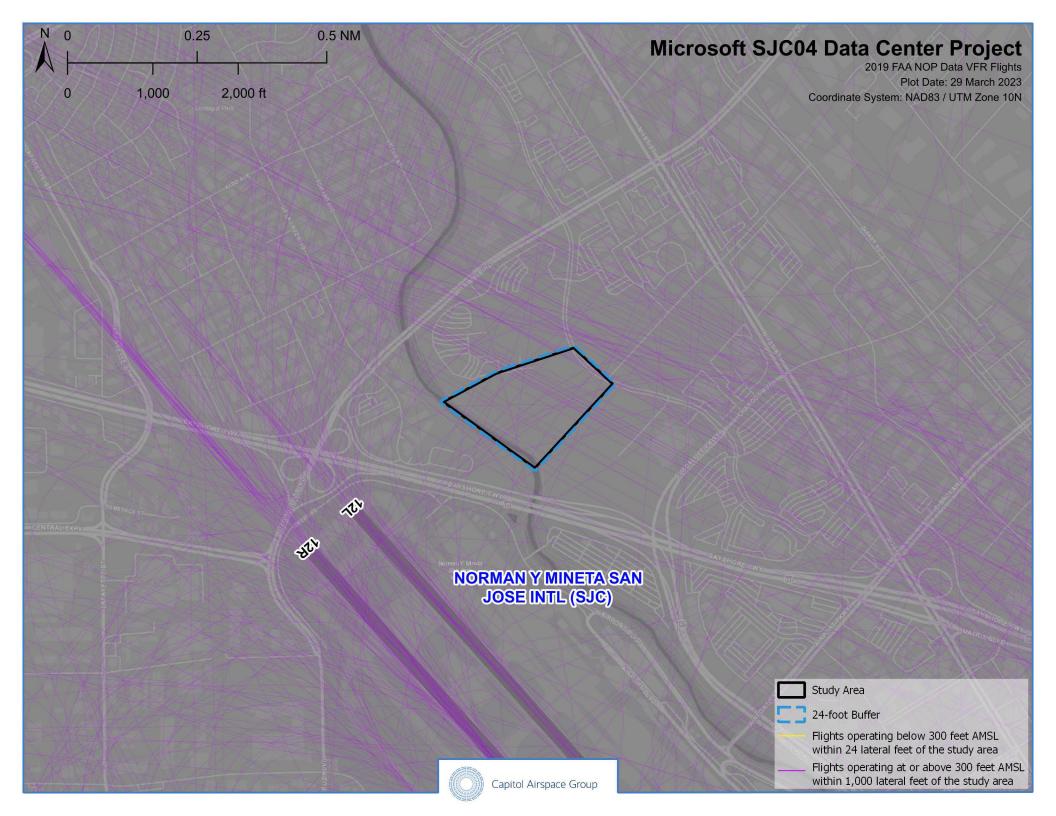
Conclusion

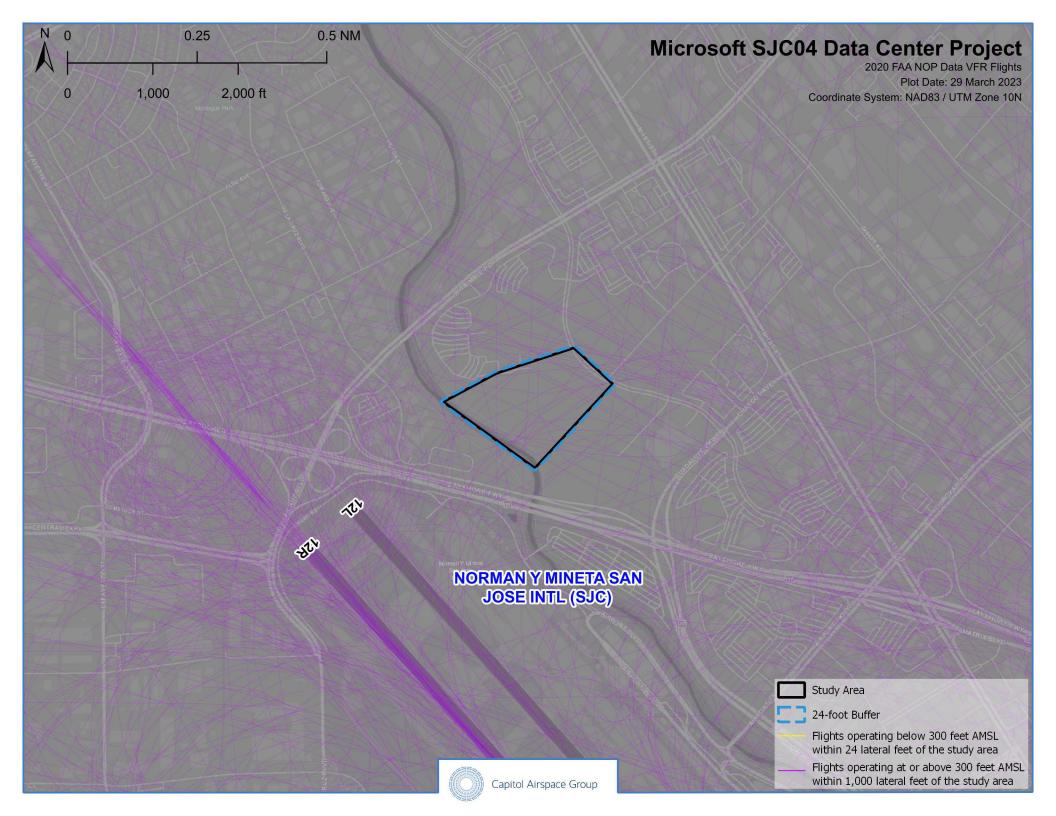
Proposed structures that exceed 14 CFR Part 77.17(a)(2) obstruction standard or 77.19 imaginary surfaces (*Figure 2*) will be identified as obstructions. Additionally, proposed structures that exceed 14 CFR Part 77.17(a)(1) - a height of 499 feet above ground level at the site of the object - will be identified as obstructions regardless of their location. However, exceeding these surfaces does not automatically result in the issuance of a determination of hazard. Proposed structures must have airspace impacts that constitute a substantial adverse effect in order to warrant the issuance of determinations of hazard.


The lowest obstacle clearance surfaces overlying the Microsoft SJC04 Data Center project are a constant 180 feet AMSL (*Figure 13*) and are associated with the Norman Y. Mineta San Jose International (SJC) RNAV (GPS) Y Approach to Runway 12L (*Figure 7*). If the FAA determines that this impact would affect as few as one operation per day, it could result in determinations of hazard.

Proposed structures within enroute or terminal protection areas (*Figure 10* & *Figure 11*) will be forwarded for further review by FAA Technical Operations. If further review determines that structures would have a substantial adverse effect on navigational aids, it could result in determinations of hazard.

Cranes and other construction equipment that exceed the height or the footprint of the proposed structures must also be filed with the FAA and receive favorable determinations. If temporary equipment required to construct the Microsoft SJC04 Data Center project exceeds FAA obstacle clearance surfaces, it may not receive favorable temporary determinations.


If you have any questions regarding the findings of this study, please contact *James Scott* or *Kevin Van Dam* at (703) 256-2485.





Appendix D: Traffic Flow Analysis

