DOCKETED	
Docket Number:	25-IEPR-04
Project Title:	Hydrogen
TN #:	265172
Document Title:	William Mancilla Comments - Hydrogens true cost!!!!!!!
Description:	N/A
Filer:	System
Organization:	William Mancilla
Submitter Role:	Public
Submission Date:	7/31/2025 10:02:32 AM
Docketed Date:	7/31/2025

Comment Received From: William Mancilla

Submitted On: 7/31/2025 Docket Number: 25-IEPR-04

Hydrogens true cost!!!!!!!

Attached is a data analysis that was created by compiling local data on hydrogen resources and their true cost that is associated with the emissions and the added impacts associated with the current form of hydrogen production. The analysis includes a section on what we in Sacramento would need Hydrogen prices to be at to make it a competitive fuel source for ZEVs compared to BEVS.

Additional submitted attachment is included below.

Hydrogen Emissions and Cost Analysis

					Current Hy	ydrogen is primarily prod	uced thro	ugh fossi lfuel comb	ustion to ru	n electrolysis system	to split H20 i	nto H2*
		1 kg of H2 has the same averag	ge energy output as 52.5 kWh		Current pricing around Sacramento							
50-55 kWh	50-55 kWh /kg H2 H70 52.5 kWh / kg H2 52.5				H2 pressur	H2 pressure Vehicle Type Price /kg Fuel source of H2 production				Carbon intensity (kgCo2/ kg)		per gallor
	H35	26.25 kWh / kg H2	26.25		H70	Light duty	\$29.99					
					H35	Medium and Heavy dut	\$36.00	Natural gas (Grey I	Hydrogen)	9.82		36.530
or Hydrogen cost to be the same as an / kwh cost; Hydrogen would have to be	Cost per kWh =	\$0.15 421 \$0.15 0.15		0	ed to make H2 competitive		M/III 131		0 - 1 1111	(1-		
no more than \$6.3 per kg.	Cost per kWh (equivalent of H2	\$0.15		5.15	Cost neede	ed to make HZ competitive	e with Evs	Millions kV	Vn	H70	\$29.99	
		Results:			Tota	l kwH/yr used to produce	H2	227.325		H35	\$36.00	
		Hydrogens economic viability is r	not at the pace needed to comp	ete with traditional ICE or EVs.		t of kWh to produce yr kg/		34.09875		Difference	-	
		There would need to be heavy su decrease. Further, the environment	ental impact of current Hydroge	n production comes at a a		Description		Cost				
1 kg of h2 = 1.55 gallons of gasoline		greater carbon intensity than trac	ditional Gasoline and electric ve	hicles.	(Cost needed per kg of H2		\$	7.88			

		Со	ost per Cost / kWh		t/kWh	Percent Renewable Energy +			(lbs) CO2	(lbs) of
	Fuel Source		kg	equ	ivalent	Hydro	Percent non- renewable	(lbs) of C02 (per kg)	per kWh	NOx
ш	Grey Hydrogen (H70)	\$	29.99	\$	0.57	-	-		0.46	
H2	Grey Hydrogen (H35)	\$	36.00	\$	1.37	-	-	24.25	0.92	0.01968

	Emissions	data for Hydrogen production		
	KG produced at Air Produc	cts Manufacturing Corporation, Sacramento		
	5025 83rd \$	Street, Sacramento, CA 95826		
4.33 millon kg annually H2		4.33		
4.78 million kg of methane		4.78		
45.44 million kg of co2		45.44		
Hydrogen source	Fuel used	Co2 emitted per kg of H2	Average Co2 emitted per kg of H2	
Grey Hydrogen	Coal / Natural Gas	10 - 12 kg	11	
Blue Hydrogen	Methane (CH4) + carbon capture	1.7 - 9.3 kg	5.5	
Green Hydrogen	Renewables	0 kg	0	
PSI per Hydrogen	kwh / kg H2	H70 MJ/L	H35 MJ/L	1 megajoule = 0.27kwh
H70 = 10,000 psi	52.5	5.6	2.8	
H35 = 5,000 psi	26.25			

Hydrogen Emissions and Cost Analysis

Hydrogen t	transport Cryogenic Tanker Co2 emissions data	
Description	Value	Units
Fuel efficiency (low end)	4	mpg
Fuel efficiency (high end)	6	mpg
Average MPG (4–6 mpg)	5	mpg
Converted to L/100 km (4–6 mpg avg)	47.043	L/100 km
Total Trip Emissions (tons CO ₂)	1.5	tons
Fuel efficiency (low end)	6	mpg
Fuel efficiency (high end)	8	mpg
Average MPG (6–8 mpg)	7	mpg
Converted to L/100 km (6–8 mpg avg)	33.60214286	L/100 km
Total Trip Emissions (tons CO ₂)	1.1	tons
Typical LH2 Tanker Capacity (liters)	49200	liters
Hydrogen Density (kg/L)	0.071	kg/L
Estimated Hydrogen Payload (kg)	5000	kg
Total Trip Emissions (tons CO ₂)	2.6	tons
Total Trip Emissions (kg CO ₂)	2600	kg
CO ₂ Emissions per kg H ₂ transported	0.52	kg CO ₂ /kg H ₂
Hydro	ogen Production (H70) Co2 emissions data	
Producing hydrogen through SMR	,5011 104401311 (1170) 002 01113310113 4444	
emits approximately 9.3 kg of CO ₂ per		
kilogram of hydrogen	9.3	kg CO ₂ /kg H ₂
Total kg CO ₂ / kg H ₂	9.82	kg CO ₂ /kg H ₂

Hydrogen Emissions and Cost Analysis

		Energy effic	iency adjuste	d for ener	gy content	·	
1 kg of H2 (H70) has the	1 kg of H2 (H70) has the same energy output as 52.5 kWh				Energy ou	tput\$ (energy quivalent)	
					Hydrogen	Electricity	
1 kilogram	52.5 kWh	52.5		1 kg	\$29.99	\$7.88	52.5 kWh
1 gram	0.05 kWh	0.05		1 gram	\$0.03	\$0.01	0.05 kWh
						Actual ene	rgy used
Cost per kWh =	\$0.15	0.15			Vehicle Type	Energy usage (in kWh)	Energy loss (in kWh)
					Electric Vehicle	45.67	6.83
Cost of Hydrogen per gram	\$0.03	0.03			Hydrogen	31.5	21
						Actual KG used	KG's lost
Vehicle Type	Total fuel input	Energy use for motion	Energy loss		Electric Vehicle	0.87	0.13
Electricity vehicles	100%	87%	13%		Hydrogen	0.60	0.40
Hydrogen	100%	60%	40%			Actual \$ used towards motion	\$ lost per gallon purchased
					Electric Vehicle	\$6.85	\$1.02
					Hydrogen	\$17.99	\$12.00
		Energy effic	iency adjuste	d for ener	gy content		
1 kg of H2 (H35) has the s	ame energy output	as 26.25 kWh			Energy ou	tput\$ (energy quivalent)	
					Hydrogen	Electricity	
1 kilogram	26.25 kWh	26.25		1 kg	\$36.00	\$35.96	26.25 kWh
1 gram	0.05 kWh	0.026		1 gram	\$0.04	\$0.04	0.026 kWh
						Actual ene	rov used
Cost per kWh =	\$1.37	1.37			Vehicle Type	Energy usage (in kWh)	Energy loss (in kWh)
	,				Electric Vehicle	22.84	3.41
Cost of Hydrogen per gram	\$0.04	0.03			Hydrogen	15.75	10.5
, , , ,					, ,	Actual KG used	KG's lost
Vehicle Type	Total fuel input	Energy use for motion	Energy loss		Electric Vehicle	0.87	0.13
Electricity vehicles	100%	87%	13%		Hydrogen	0.60	0.40
Hydrogen	100%	60%	40%			Actual \$ used towards motion	\$ lost per gallon purchased
					Electric Vehicle	\$31.29	\$4.68
					Hydrogen	\$21.60	\$14.40
					,0	7-2.00	72