| DOCKETED         |                                                                                |  |
|------------------|--------------------------------------------------------------------------------|--|
| Docket Number:   | 25-IEPR-03                                                                     |  |
| Project Title:   | Electricity and Gas Demand Forecast                                            |  |
| TN #:            | 264912                                                                         |  |
| Document Title:  | Presentation by Southern California Edison (SCE)                               |  |
| Description:     | Presentation by Southern California Edison during the July 16<br>DAWG Workshop |  |
| Filer:           | Denise Costa                                                                   |  |
| Organization:    | Southern California Edison Company                                             |  |
| Submitter Role:  | Energy Commission                                                              |  |
| Submission Date: | 7/18/2025 4:41:16 PM                                                           |  |
| Docketed Date:   | 7/18/2025                                                                      |  |

# SCE Data Center Tracking and Forecasting

7/16/25 DAWG Workshop Brent Buffington, SCE



Energy for What's Ahead<sup>ss</sup>

## Existing Data Center Demand

- ~80 MW coincident peak impact
- Existing data centers are small relative to recent requests
- Existing data center demand peaks during the super-peak hours
  - Cooling load
- Load factors between 60-90%



#### Data Center Project Tracking

- 1. Initiation
  - Customer inquiries or requests
- 2. Feasibility Assessment
  - Engineering Analysis Report
  - Method of Service (MOS) Study
- 3. Estimated Timelines Based on System Upgrade Scope
  - Moderate system work: 18-24 months
  - Substantial system work: 24-36 months
  - Long-lead system work: 36+months

# Customer requests and inquiries remain dynamic

- Sixteen (16) new projects have recently been added to our tracking list
  - Each is undergoing assessment to update confidence levels
- Of forty-three (43) projects tracked last year:
  - Increased the likelihood of eight (8) projects
  - Decreased the likelihood of nineteen (19) projects
  - Maintained the likelihood of sixteen (16) projects
- Reasons for likelihood changes
  - Method of Service (MOS) or other study progress
  - Level of customer engagement
  - Shifts in stated development timelines
  - Reported site or permitting issues
  - Completeness of technical data submittal
  - Redundancy with other active inquiries

## Bottoms-up Data Center Forecasting Example

Generally, projects deeper in the process are assigned higher success rates

| Project ID | Project Status                         | Example Success<br>Rate |
|------------|----------------------------------------|-------------------------|
| А          | "Method of Service" Study Completed    | 70%                     |
| В          | MOS submitted                          | 50%                     |
| C          | Pre-MOS                                | 25%                     |
| D          | Contacted CS regarding potential sites | 1%                      |

### Long-Term Data Center Growth Scenarios

Future growth rate needs to be considered

- Bottoms-up methods rely on actual requests and inquiries
- No one is requesting data centers with 2040 online dates

#### SCE's Current Scenarios

- Low Growth
  - Limited future data centers and/or significant self-generation
- Mid Growth
  - Tempered growth reflecting increased efficiency and some self-generation
- Continued Growth
  - Growth continues at near to mid-term rate

### SCE Data Center Forecast Results

| Forecast                                                       |                                    | Incremental<br>Impact | Methods                                                                                                                              | Source                                                     |
|----------------------------------------------------------------|------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1. Start w/<br>Existing<br>Demand                              | Existing<br>Data Center<br>Demand  | 80 MW                 | Carve out existing data center<br>demand to forecast<br>independently of baseline<br>consumption.                                    | Internal<br>Customer Usage<br>Data                         |
| 2. Add in<br>Impact from<br>Planned<br>Projects &<br>Inquiries | Near-Term<br>Growth<br>(2025-2028) | 200 MW                | Known data center projects –<br>from engineering studies, grid<br>planning ops, etc.                                                 | Planned Data<br>Center Projects                            |
|                                                                | Mid-Term<br>Growth<br>(2029-2035)  | 400 MW                | Known projects that may require<br>significant grid upgrades. Add<br>potential impact from early-stage<br>interconnection inquiries. | Planned Data<br>Center Projects<br>& Customer<br>Inquiries |
| 3. Use<br>Growth Rate<br>for Long-<br>Term                     | Long-Term<br>Growth<br>(2036+)     | 300 MW                | Developed four long-term growth scenarios & polled internal experts to get average view.                                             | External Research<br>& Internal Survey                     |
| Cumulative Impact                                              |                                    | 980 MW                | Enorgy for V                                                                                                                         | //hat's Ahead <sup>™</sup> 7                               |